ORACLE

SQL*Plus®

User's Guide and Reference
Release 11.1

B31189-01

July 2007

SQL*Plus User’s Guide and Reference, Release 11.1
B31189-01

Copyright © 1996, 2007 Oracle. All rights reserved.
Primary Author: Simon Watt

Contributor: ~ Alison Holloway, Anil Samuel, Christopher Jones, Luan Nim, Richard Rendell, Andrei
Souleimanian

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PPEIACE ... e s Xiii
AUAICIICE ...ttt et e et e et et e e eteeeaeeeateeetaeeaseeeteeeeteeaeeeateseraeeaeeeete e e eaeeetaeereeaeean Xiii
Documentation ACCesSIDILItYcccoviiiiiiiiiiiiiiiiiiiic xiii
Related DOCUITIENESccueiiiiiieitiecieetietie ettt ettt ettt e et e sreebaeebaetaeeteeabeasesabeessaseeasesseesaesssessesteessenseans Xiv
CONVEINEIONS ...ttt ettt ettt e ettt eeetae e e eae e e etaeeeeeaeseeaeaeeeeseeeeesaesesaeseeeseesensaeeeaneeseesseeennneseeasaeenn XV

What's NeW in SQL*PIUS?oo e Xvii
New Features in SQL*PIus Release 11.1.........cccouiiiiiiieiiieeietieceeete et ettt et er e er v saesvaerae s XVii

SQL*PIUS QUICK Start ... Xix
SQOL¥PIUS RESOUTICESveeveeeveieiieeieeetieesteeteesteasteeeteestaeesseestesesseasssaesseassaessseesssassseesssssssesssessssessssenssessseass XiX
SQLXPIUS OVEIVIEW ...uvviiiieeiiieiieeeeetieestteteesteaeteeteestaeasseestesesseassseesseassaessseesssassseesssssssessseesssensssensseesseass XiX
SQL*PIUS Prer@qUiSites.......ccoviiiiiiiiiiiiiiiiitic it e XXi
Starting SQL*Plus Command-LNecccoceuiiiiiiiiiiiiiiiiiicc e XXi
Starting SQL*Plus Instant CHeNtccoeiiiiiiiiiicc e XXiii
Connecting to a Different Database............cccccooiviiniiiiiiiiiin XXiii
Sample Schemas and SQL*PIUS........cccccoiviiiniiiiiiiiiii e XXiii
Running your first QUETYccccouviiiiiiiiiiiiiiicii s e XXiv
EXiting SQLAPIUScviviiiiiiiiiiiiiiciiiccc s XXV

Partl| SQL*Plus Getting Started

1 SQL*Plus User Interface

The Command-line SCreencccoociiniiiiiiiiiiiii e e 1-1
Changing the Command-line Font and Font Sizeccocooiiiiiin, 1-1

2 Configuring SQL*Plus

SQL*Plus Environment Variables...........ccoccoviiiiiiiiiiiiiee ettt 2-1
SQLPATH Registry ENEIYccoviiiiiiiiiiiiiicccc s 2-2
SQL*Plus Configuration...........cccccooiiiiiiiiiiiiiic 2-3
SIEE PLOSILE vttt ettt ettt ettt e et ebae st ebaetbe e teetbeereeabeeteas e et e b e et sreenaeeareens 2-4
USEE PTOFILE.... ittt et e te et b e abeeteeabeeae s te e s e s e e s e esaesbeebaesbeeteeabeeteenbeneseseens 2-4
Storing and Restoring SQL*Plus System Variables...........ccccooooioinininiiiiiiieeccece, 2-5
Installing Command-line Helpccccooiiiiiniiiiiiii e 2-6

Configuring Oracle Net SEIVICESccccoiiiiiiiiiiiiiiiiiiiic e 2-7

Starting SQL*Plus

Login Username and PasswWordc.ccooooiiiiiiiiiiiin e 3-1
Secure External PassSWord SEOTE......cccocuviiiiicie ettt ettt et ae e s eraeereerees 3-2
EXpired PasswWord ... s 3-2
Changing your PassWordccccoviiiiiiiiiiiiii i e 3-2

Connecting to a Databasecccoiiiiiiiiiiic 3-2
INEt SEIVICE INAIMIE.....eecueieciiieiiee et ete ettt et et e e e e e ste e aeeetbeassaesaeeeste e sseesssaesseasaessseesssansseesssansaesnseeas 3-3
Full Connection IAENtfIercceivieieiiicie ettt ettt ettt et eas e e e eraesreeraes 3-3
Easy Connection Identifier ... 3-4
Connectionless Session With /INOLOGooi ottt et es st te e st e eeaae st aessaaesenes 3-4

Starting SQLAPIUS ... 3-4
Starting Command-line SQLA*PIUSccccoiviiiniiiiiiiiniiicii e 3-5
Getting Command-line Helpcccouviiiiiiiniiiiiiii e 3-6

Exiting SQL*Plus Command-lineccooviiiiiiiii 3-6

SQLPLUS Program SYNtaXcccooiiiiiiiiiiii ettt 3-6
OPHONS .ot e 3-7
LLOZOML 1ttt 3-11
o ¢= 1 o SRS 3-12

Partll Using SQL*Plus

4

SQL*Plus Basics

Entering and Executing Commandsc..cococoiniiiiiiniiiiiiiicc e 4-1
THE SQL BULET ..ttt ettt ettt ev e sae vt et e taeebe et e asesabenssaseeseeseesaesseerees 4-2
Executing ComMmMAndSccccuviiiiiiiiiiniiiiiii i s e e 4-2

Listing a Table Definition...........ccccooiiiiiiiiiiii s 4-2

Listing PL/SQL Definitions.ccccooiiniiiiiiiiiiiii e 4-3

Running SQL Commands..........cccoceviiiiiiiniiiiiiiniicicic e e 4-3
Understanding SQL Command SYNtaXccceevevueuriiiinneeeccieiecc s 4-4

Running PL/SQL BIOCKSccccoooiiiiiiiiiiiiiiiccc e 4-5
Creating Stored PrOCEdUTIES ..ot 4-6

Running SQL*Plus Commands............ccccoooiniiiniiiniiniiie e 4-6
Understanding SQL*Plus Command Syntax ..ot 4-7

System Variables that Affect How Commands Run............ccooviiiiniiiice 4-8

Stopping a Command while itis RUNNing ..., 4-8

Running Operating System Commands.............ccccoiiiiiiiiiiiiiiic e 4-8

Pausing the Display ..o 4-9

Saving Changes to the Database Automatically ..., 4-9

Interpreting Error MESSaZeS........ocooiiuiiiiiiiiiiiiiiciciictict et 4-10

Using Scripts in SQL*Plus

Editing SCripts.....c.ooiiiiiiiii e e s e e e e 5-1
Writing Scripts with a System Editor.........cccooiiiiiiiccas 5-1
Editing Scripts in SQL*Plus Command-Linecccooviiiiiiiiiiic s 5-2

Listing the Buffer CONtENtS..........ccciiiiiiiiiiiiiiic e e 5-3

Editing the CUITent LINecccoooiiiiiiiiiiiiiiii i e 5-4
Appending Text t0 @ LINeccccoviviviiiiiiiiiiiiiincci e 5-5
AddIng @ NeW LINe.......ccoioiiiiiiiiiiiii i s s e 5-6
Deleting LINES ..ot s e 5-7
Placing Comments in SCripts ..o 5-7
Using the REMARK Commandcccccciiiniiiiiiieecesc s 5-7
USING /¥, / e 5-7
USIINE = oottt r b 5-8
Notes on Placing COMMENLSccoceeiiiiiiiiiiiniiiiiic i 5-8
RUNNING SCIIPES ..o 5-10
Running a Script as You Start SQL*PIUS........ccccovviiiiiiiiiiiiiiicccr e 5-10
NESHNG SCHIPLS.....cocviiiiiiic s 5-11
Exiting from a Script with a Return Code ..o 5-11
Defining Substitution Variables ..o 5-11
Using Predefined Variables.............cccccooiiiiiiiiiii s 5-12
Using Substitution Variables ... 5-12
Where and How to Use Substitution Variables..........cccevecieieiriineieniieeieieeeee e 5-12
Avoiding Unnecessary Prompts for Values..........cccccocoiviviiiininiiiiiinccccnneces 5-14
) ET] o T o) o V=S TSR 5-17
SYStem Variables ..o s 5-17
Passing Parameters through the START Command ... 5-17
Communicating with the User..............ccccooooiiiii 5-19
Receiving a Substitution Variable Value ..o 5-19
Customizing Prompts for Substitution Variable ... 5-20
Sending a Message and Accepting Return as INputcccooeeeiiiiiiiiiiiiice 5-21
Clearing the SCIEeMcciiiiiiiiiiiiiiiii s 5-21
Using Bind Variables ... s 5-21
Creating Bind Variables ... 5-21
Referencing Bind Variables............ccccoiiiiiiiiiiiiiiiiiii i 5-22
Displaying Bind Variablesccccooviiiiiiiiiiiiiii i 5-22
Using REFCURSOR Bind Variables.............ccocooiviiiiiiiiiii e 5-22

Formatting SQL*Plus Reports

Formatting COIUMISccoooooiiiiiiiiiiic s 6-1
Changing Column Headings. ... 6-1
Formatting NUMBER COIUMNSc.cooiiiiiiiiiiiiii e s 6-3
Formatting Datatypes ... 6-4
Copying Column Display Atributescccoooviiiiiiiiiiiiiincc s 6-7
Listing and Resetting Column Display Attributes.........ccoooeeioiiiiiiiiiiiiicccce 6-7
Suppressing and Restoring Column Display Attributes...........cccocouoeiveieiiciciniiiicccee 6-8
Printing a Line of Characters after Wrapped Column Valuesccccceiviviiiinnninnnnnne. 6-8

Clarifying Your Report with Spacing and Summary Linesc.ccccocooiiiiiiiinini 6-9
Suppressing Duplicate Values in Break Columns...........ccccocoooioiiiiiiiniiiiiiie 6-10
Inserting Space when a Break Column's Value Changes..........c.cccccooviinininnniinnnnnn 6-10
Inserting Space after EVery ROWccccooiviiiiiiiiiiiiiiinci i 6-11
Using Multiple Spacing Techniques..........ccccoiiiniiiniiiniiiiiiic e 6-11

vi

Listing and Removing Break Definitionsccccoeiiiiiiiinniiiiiiiiiinccci e 6-12

Computing Summary Lines when a Break Column's Value Changes............cccccececviinnnnne 6-12
Computing Summary Lines at the End of the Reportc.ccooieioiiiiiii 6-15
Computing Multiple Summary Values and Lines ... 6-16
Listing and Removing COMPUTE Definitionscccocovviniiininniiciiiniiiiiiccccnnccees 6-17
Defining Page and Report Titles and Dimensions.............c.cccocccvvininiinniiiiniiiinccecn 6-17
Setting the Top and Bottom Titles and Headers and Footers...............cccooeiiniiiiciiiniinnnnn. 6-18
Displaying System-Maintained Values in Titlescccoouveinioiiiiiiiiieccs 6-21
Listing, Suppressing, and Restoring Page Title Definitionscccccocovveeiiiinininiccne. 6-22
Displaying Column Values in Titles ... 6-23
Displaying the Current Date in Titlescccooviviviiiininiiiiicccc s 6-24
Setting Page DIMeNSIONS........c.couoieiiuiiiiiiiiiiiiic et s 6-24
Storing and Printing Query Results ... 6-26
Creating a Flat File ... 6-26
Sending Results t0 @ Filecccocoviiiiiiiiiiiiiiiiii i 6-27
Sending Results t0 @ PIINteT.........ccccoviiiiiiiiiiiiiiiii i 6-27

Generating HTML Reports from SQL*Plus

Creating Reports using Command-line SQL*PIus ..., 7-1
Creating RePOTIES......ccooiiiiiiiiicicccc s e 7-1
Suppressing the Display of SQL*Plus Commands in Reportscccoueueiiiieicicnieinicicnnnn, 7-5
HTML ENEHES ..o s s 7-5

Tuning SQL*Plus

Tracing StatemeEntsc.coooiiiiiiiiii e 8-1
Controlling the Autotrace RepOrt.........ccccoiiiiiiiiiiiiiiiiiii 8-1
et Ua o) o W od V- o T USSR 8-2
o ¥= X £ 0 (o= TSRS UURUPSPRRt 8-3

Collecting Timing Statistics ..o 8-5

Tracing Parallel and Distributed Queries..............ccoccoiviiiiiiiiiii s 8-6

Execution Plan Output in Earlier Databases...............cccccooviiiiiiiiii, 8-7

SQL*PIus Script TUNINEG ..o e 8-8
COLUMN NOPRINT ...cocutttetieiestteste st tete et etie et ettt e et estessteseeesaesseesaesbeesbesseanbesseaneeetessesseessessees 8-8
SET APPINEFO OFFouoiiiititiete ettt ettt et ettt v e tae et e taeeteetteatessbesesasesseenseesaesseerees 8-8
SET ARRAYSIZE ..ottt ettt ettt et ettt et teeae st et e e e et e esaesbesbaesbeersesseereenbennssnseans 8-8
SET DEFINE OFF ..ottt ettt ettt et ettt sve et et taeebe e beaseasbesssasesssensaesaensaerees 8-9
SET FLUSH OFFooiitiieteeteee ettt ettt ettt et ettt vt et s taeebe et beabeesbeseaaseeseensaesaesseesees 8-9
SET LINESIZE ..ottt ettt ettt ettt ettt s ve et eatestteabeeae e ae st e e st e s eesaesbessaeeaeessesseereantensssnseseas 8-9
SET LONGCHUNKSIZE ...ttt ettt ettt ettt sttt sttt sbe s e e e et et et seeeaeeseeesees 8-9
SET PAGESIZE ...ttt ettt ettt ettt et e et e st sb e tae et aesaeebe et besseesbenseenseseensessaesseesees 8-9
SET SERVEROUTPUTootiititeiietiet ettt ettt sttt et sse sttt se s ss et ansesae e ansassesesnssessensens 8-9
SET SQLPROMPT ...ttt ettt ettt et ettt ettt e e et e et svaebaeetaetaeebeesbesseesseseenseeseensessaesseerees 8-9
SET TAB. .ottt et ettt ettt et e e s et e e saesbaesaesbaesbeebeeebesteasbease et eeneeneeraenraas 8-10
SET TERMOIUT ...ttt et ettt ettt ettt ev et et e et sbaesaesbaesaeebeesaenseasbessssnsesssensesseessens 8-10
SET TRIMOUT ON
SET TRIMSPOOL ON 8-10
UNDEFINE ...ttt ettt ettt e e e v e evae et e etaeebeetbeabe st tesseersaeseenseessenseeseessesrsessesanes 8-10

10

1

SQL*Plus Security

PRODUCT_USER_PROFILE Table.........cccceoviiiiiiiectiece ettt ettt evaetve vt eve e ean e 9-1
Creating the PUP Tableccccoooiiiiiiiiiiiiiiiii e 9-1
PUP Table SETUCEULE.ccvviveciieeie ettt ettt ete et et etveateeteseteeae s ae e s eeseesseesaesteeraesseereenseereensenseenseenns 9-2
Description and Use of PUP COIUMNSccoiiiiiiiiniiiiiiii s e 9-2
PUP Table AdmINIStration........cccocuieieiiiiie ettt ettt et eree e ereetaeeveetveveeae s see s eessesseesaesaeerees 9-3

Disabling SQL*Plus, SQL, and PL/SQL Commandsc.ccccoceviiininiiiiiiiiiiie s 9-3

Creating and Controlling Roles..............cccocooiiiiiiiiii e 9-5
Disabling SET ROLEccccoooiiiiiiiiiiii i s s e 9-5
Disabling User ROIES.........cccoiiiiiiiiiiiiiiiiii i e 9-5

Disabling Commands with SQLPLUS -RESTRICTcccoooiiiiiiiiccccee e 9-6

Program Argument SeCUTity ..o 9-7

Database Administration with SQL*Plus

O VI VIBW ...ttt st te ettt stae et e e ste e e steeate e et beassaesteeessbasssaesseasaeessee st bannsaesseaasseanseesssaensaansesessesnssesssenns 10-1
Introduction to Database Startup and Shutdown...............c.ccooiin 10-1
Database STATtUP ..o s 10-1
Database SNULAOWIL......c.uccuiiiiie ettt ettt ettt ettt e e et et e e sbeebaesbeeteeateeteenreenesanes 10-2
Redo Log FIles.......oooiiii e e s s s s e 10-3
ARCHIVELOG MOAE ..ottt ettt ettt ettt e et sree st sveetaeebeetaeeveetvessssssaseensesssessesssessens 10-3
Database RECOVELYccccoiiiiiiiiiiiii i s s e e 10-3

SQL*Plus Globalization Support

Configuring Globalization Support in Command-line SQL*Plus..........cccccccoerivrnnnirninnnn 11-1
o (0) I o LF T G 1<) o ST USSR 11-1
OTaCLe DAtADASE......ccuvicviceiieiiceiete ettt ettt st ettt te e ete e beeae e te e s e se e st e etaesbestaesbeeteeateereenreeaeaanes 11-1

NLS_LANG Environment Variablec.oooviiiiiiiiiiiiiiii ettt e e e 11-1
Viewing NLS_LANG Settingscccouvieireiiiiiiiininiccc e 11-2

Setting NLS_LANG ..ot et st s s st s 11-2

Part Il SQL*Plus Reference

12

SQL*Plus Command Reference
SQL*Plus Command SUMMATYc.coooiiiiiiiiiiiiiii s s 12-2
@ (AL SIGN) c.veeie et 12-5
@@ (double at SigN)c.cvviiiiiiiii s 12-7
F(SLASI) ..o s 12-9
ACCEPT ... s 12-10
APPEND ..o s s 12-12
ARCHIVE LOG ..o s s s s s 12-13
ATTRIBUTEocooiiiiiiiic s s s s s 12-16
BREAK ..o e 12-18
BTITLE ..o bbb bbb s s 12-22
CHANGE ... e s e s 12-24
CLEAR ..ot e 12-26

vii

viii

COLUDMN ...ttt s s e st e et ees et st sae sa e enae saeennenneenn 12-28

COMPUTE ...ttt ettt e te ettt e tte e te et e e ae et e et e sbeebaesaeebaesbeesbesteereanteeseenseensetesesenseens 12-36
CONNEC T ...ttt ettt tae et be e te et bebe et bete s eesee s eessessaesaesaessaesteesbesseeteanteesesnseensetesssenseans 12-41
COPY ...ttt ettt e ettt ettt et et e et e et e e et e ebaesbeebaesbe et besbeeaseateaassabeenseseeteetaeateebaetaeebeerbenteen 12-43
DEFINE. ...ttt ettt et e et et e e et e e tae s teetaetbe et besbeereeateeasseseensaseeasessaessesbaesaestesssenseans 12-44
Predefined Variables....... .ottt ettt st et et eee et e ereeas 12-46
DIEL....o oottt ettt et ettt ettt et et et e b e e eheebaeeheebaetbe et betbeereeabeeasabeensebeeteehaeateebaetaeeteerbenteen 12-49
DESCRIBEoooiiiiiitie ettt ettt e te et te et te e ae et e e st e s e e e e st eesaesaeebaeebeesbesseereanseessanseensetesesenseens 12-51
DISCONNECT ...ttt ettt et et et e et esteetaetbe et beabeereeateessaseensaeseeasessaessestaesaeetessseneeans 12-57
EDIT ...ttt ettt ettt et et e et e et e e et e etaeebeebaesbe et beabeeteeateeasaabtenseseeteebeenbeebaeraeeteeraenteen 12-58
EXECUTEoo oottt ettt ettt ettt et et e et e tae s teebaesbe et beabesteeabeeassessensaseensessaessesraesaestessseneeans 12-60
EXIT ...ttt ettt e et et et etbe e teetbeabeetbeseeaseeaee s e e st e s eesaeeaeehaeebe et benteeteentenseebaesaeeteeraenteen 12-61
GET ..ottt ettt et et e te et b te et b ettt e ae et et e b e et aeeaeetaeebeetbetbeeteenbenteehaetaeeteerbenteen 12-63
HELDP ...ttt et ettt ettt e te et e e e e beeae et e e aseeseebeebaebaeebeetbeebeetbenteereeeneanseese et eeraenteerees 12-64
HOST ..ottt et ettt e ettt ettt et s be et e b e e seebeeste et aetteebeetbeereesbests st eensanbeeesenseneenseenes 12-65
INPUT ...ttt ettt ettt et et e et e et e e et e ebaesbeebaesbe et besbeeaeasbesssaseenssseensessaessesbaesaestesssenseans 12-66
LIS T .ottt ettt et et e et et e e te ettt et b ettt ettt et e b e et aeeaeehaeebeetbenbeereenteateebaetaeeteerbenteen 12-68
PASSWORD ...ttt ettt ettt ettt ettt e et et e s beebaetbe et besbeereeateasseseensaseesessaessessaesaestessseneeans 12-70
PATUSE ...ttt ettt et e et et e et e e tae s teeta et be et besbeetsesteassseenseseensessaessesbaesbeetesebeneeans 12-71
PRINT ...ttt ettt ettt ettt et e et e et e et e e st e ebaesbeebaesbe et besbeeaeeabenssaseensaseensessaessessaesaesteseseneeans 12-72
PROMPT ...ttt ettt ettt ettt e et et e e et e ebae s beebaesbe et besbeeaeeatesssaseensaseensessaessesbaesaestessseneeans 12-73
RECOVER ...ttt ettt ettt e te et te et te e e e st e s e et e sseebaesaeetaeebeesbesaeereanteeseenseensetesesenseans 12-74
REMARK ..ottt ettt ettt et et e et e etaesbeebaesbe et seabeeteeateassaseenssseensessaessesbaesaeetessseneeans 12-81
REPFOOTERoc.oooiitetie ettt ettt ettt et et e s aeetaetae et besbeeteeateesesaseensssaensessaessesbaesaeetessseneeans 12-82
REPHEADER...........ooiitiotie ettt ettt et et s te e ta et be et e sbeetesabeesssaseenssseensessaessestaesaeetesssenseans 12-84
RUN .ottt ettt e et et e et e etbeete et beabeetbestesaseese e s eesse s aesaesaeetbeebeetbesaeersentessestaesaestesssenseens 12-87
SAVE ...ttt ettt ettt e et e bae e heeba et be et beabeete e beaae e bt eat e b e eteebeeateetaetaeeteerbenteen 12-88
SET oottt ettt ettt et e b e e et e ebaeeheebaetbe et beabeereeabeeasabeensebeeteetaeateehaeraeeteeraentean 12-89
SET System Variable SUMMATrycccoocooiiiiiiiniii e 12-90
SET APPI[NFOJ{ON | OFF | FXL} weeietietieitecie ettt ettt ettt et et eve s aer s 12-93
SET ARRAY[SIZE] {15 | 7} eouueuicieeeeeeeeeee ettt et ettt sttt ev et v saesvaesaeeveerbenne e 12-94
SET AUTO[COMMIT]{ON | OFF | IMM[EDIATE] | 71} cuecvieoieieeieeiereeceeeeeee e 12-95
SET AUTOP[RINT] {ON | OFF}.....coiotieiecteeie ettt ettt ettt sve e st staeaeevssave e aes s 12-96
SET AUTORECOVERY [ON | OFF]....ccitiiiciicticiiie ettt sre et s evaeave st sveevs v e ses s 12-97
SET AUTOT[RACE] {ON | OFF | TRACE[ONLY]} [EXP[LAIN]] [STATI[ISTICS]]........... 12-98
SET BLO[CKTERMINATOR] {. | ¢ | ON | OFF} ..octiiiiiiiieeieteeeteee et 12-99
SET CMDS[EP] {; | ¢ | ON | QOFF} ...ttt ettt eve e s s aesreevaes 12-100
SET COLSEP {_ | X} oetieieeeietee ettt ettt ettt ettt et sae vt eva et eveeabea e s beenssseenesreerees 12-101
SET CON[CAT]{. | € | ON | OFF} ...ttt ettt e s aeeveeraes 12-102
SET COPYC[OMMITT] {0 | 71} cueeeeeetieee ettt ettt ettt et er v 12-103
SET COPYTYPECHECK {ON | OFF} ...cuiiiiiiiieieeieeee ettt ettt ettt sr e nesveeraes 12-104
SET DEF[INE] {& | ¢ | ON | OFF} ..ottt ettt et r et e eraes 12-105
SET DESCRIBE [DEPTH {1 | n | ALL}] [LINENUM {ON | OFF}] [INDENT {ON | OFF}]
... 12-106
SET ECHO {ON | OFF] ..ottt ettt ettt ettt evee st vt ettt eveeevease s te s sseenesraerees 12-107
SET EDITF[ILE] file_name[.eXt]c.cveeriemiimiiiiiinieeciee sttt 12-108
SET EMB[EDDEDY] {ON | OFF]}coiititictiieceeteeeeteet ettt eveetae et eve e s s nesreeraes 12-109

SET ERRORL[OGGING] {ON | OFF} [TABLE [schema.]tablename] [TRUNCATE] [IDENTIFIER

BAETEITIET] o 12-110
SET ESCIAPE] {\ | € | ON | OFF] ...ttt ettt ettt st st es st ss s 12-115
SET ESCCHAR{@ | 2 1 % | $ | OFF} woeioie ettt ettt sttt 12-116
SET FEED[BACKI] {6 | 72 | ON | OFF] ..ottt sttt ese e 12-117
SET FLAGGER {OFF | ENTRY | INTERMED[IATE] | FULL}...ccccoevertiieirieee e, 12-118
SET FLU[SH] {OIN | OFF]...uiitiioiitee ettt sttt et sttt e et s et eenesneeese e e 12-119
SET HEA[DING] {ON | OFF} ...uiitiietieie ettt ettt ettt st ses e s e eae s ese e e 12-120
SET HEADSI[EP] {_ | ¢ | ON | OFF} ..ottt ettt sttt s 12-121
SET INSTANCE [instance_path | LOCAL]ccoevniriiiiniireiireetiese et 12-122
SET LIN[ESIZE] {80 | 7}.ueeeetieieietiesiee ettt sttt ettt ettt sttt en s e s eese e 12-123
SET LOBOF[FSET] {1 | 71} ceeteieeiet ettt sttt sttt st e e 12-124
SET LOGSOURCE [PATRAAINE] ...ttt st st 12-125
SET LONG {80 | 72} 1ottt ettt sttt ettt et bt st e as s e ne s eesesnennas 12-126
SET LONGC[HUNKSIZE] {80 | 72} .eutetietieie ettt ettt sttt s eese e 12-127
SET MARK[UP] HTML [ON | OFF] [HEAD text] [BODY text] [TABLE text] [ENTMAP {ON |

OFF}] [SPOOL {ON | OFF}] [PRE[FORMAT] {ON | OFF}] .coeeoeeieeeeeeeecene. 12-128
SET NEWP[AGE] {1 | 71 | NONE} ..ottt ettt sttt sttt es e 12-130
SET INNULL £EXE c.veuteveetieteteiesteteiette st ettt e st se e teste s ee e ese et te e eseetessessensesseseensasseseenseneeseesessensas 12-131
SET NUMF[ORMAT] fOFMAE......oooeviuiiiiiiieiiiieiciiiet sttt 12-132
SET NUM[WIDTHI] {10 | 71} eeteierieeiee ettt ettt sttt sttt an s es s 12-133
SET PAGES[IZE] {14 | 1} cueeetieteieeeee ettt ettt ettt st st et an s en s 12-134
SET PAU[SE] {ON | OFF | £EXE} cueeoteteeietieiee ettt ettt ettt sttt as s e sseese e 12-135
SET RECSEP {WR[APPED] | EA[CH] | OFF} ..oueieoeteeeieeeee et 12-136
SET RECSEPCHAR {_ | €]ttt ettt ettt ettt sttt sttt ea e 12-137
SET SERVEROUT[PUT] {ON | OFF} [SIZE {n | UNL[IMITED]}] [FOR[MAT] {WRA[PPED]

| WOR[D_WRAPPED] | TRU[NCATED]}] ceeeeeee e 12-138
SET SHIFT[INOUT] {VIS[IBLE] | INV[ISIBLE]} ...c.ceeeteetetieireee ettt 12-140
SET SHOW[MODE] {ON | OFF}ioiiiiiiieetitee ettt ettt e s et sre e sae e 12-141
SET SQLBL[ANKLINES] {ON | OFF]}ccotiteeetiieiesetee ettt ettt st essesee st ss s 12-142
SET SQLC[ASE] {MIX[ED] | LO[WER] | UP[PER]} .cueeceettiireeerieieie et 12-143
SET SQLCO[NTINUE] {2 | £eXE}eueeietieiee ettt sttt e e 12-144
SET SQLN[UMBER] {ON | OFF} ..ottt ettt ettt sttt st st es s e ss s 12-145
SET SQLPLUSCOMPATI[IBILITY] {X.Y[.Z]} corveveeeereetienieeeeecce s 12-146
SET SQLPRE[FIX] {# | €} eeeeteeteieiereee ettt ettt ettt st st an st es s 12-148
SET SQLP[ROMPT] {SQL> | EEXE} cuveueeeieeieiieie ettt ettt sttt sttt sr s 12-149
SET SQLT[ERMINATOR] {; | ¢ | ON | OFF} ...oooiiiieieieeee ettt 12-150
SET SUF[FIX] {SQL | £XE} weveteuierienieeetietieee sttt sttt ettt ettt st st ensesee e e eseesesneneas 12-151
SET TAB {OIN | OFF}...iiiiieetiteietiertee ettt sttt sttt st st sseste st st et assesasesseeseesesnennes 12-152
SET TERM[OUT] {ON | OFF}..uiiteieiieie ettt ettt sttt e st e s e st eese s ane e e 12-153
SET TI[ME] {ON | OFF]....oioiiieieiieieeetieteeee ettt sttt ettt st sre st este st seeneasseseeesnesseesessennas 12-154
SET TIMI[NG] {ON | OFFE] ..ottt ettt sttt ettt st sttt ete st st eseasseseeseeseeseesessennas 12-155
SET TRIM[OUTT] {ON | OFF} ..ottt sttt ettt et sttt st st an s e snesseesesnenees 12-156
SET TRIMS[POOL] {ON | OFF} ..ottt ettt ettt ettt sttt as s e sseese e 12-157
SET UNDI[ERLINE] {= | ¢ | ON | OFF} ...ttt ettt sttt ese s 12-158
SET VER[IFY] {OIN | OFF] ..ottt sttt ettt sttt st st an s e sseesessenees 12-159
SET WRA[P] {ON | OFF ..ottt sttt sttt ettt st st sa et st st aseassesaesaese s eesessennas 12-160

13

SET XQUERY BASEURI {£EXH} v revveeeoeeeeeeeeeeeo oo oo eeseeoe e ee e eeseses e eeeeeseso e seeeenes 12-161

SET XQUERY ORDERING {UNORDERED | ORDERED | DEFAULT} ...coooovvveerr.. 12-162
SET XQUERY NODE {BYVALUE | BYREFERENCE | DEFAULT} ..vvveeeeeeeeeeeere . 12-163
SET XQUERY CONTEXT {EEXE} e revveeeeeeeeeeeeeeeoe oo eeeeeeeseeeesseeeeseeseess oo eeeseses e eeseesss e seeeene 12-164

SHOW ..o eee oo eeese e eee e eee e oot 12-165

SHUTDOWN ..o oo e oo s e s ses e ses e e se e seeeess e eee 12-170

SPOOL. ..o oo oo oo ettt e 12-172

START ...oooe oo oo eee oo e oo e oo eeese e eee e oo oo eee e 12-174

STARTUP oo eeese e eeees e eeese e oo oo eee e 12-176

STORE ..o oo eee e e oo e e e 12-179

TIMING oo eee oo oo eese e oo ee e e oo e e e e s s s e reene 12-180

TTITLE oo oo oo eee oo ee e s oo s s e s e s seses e eeene 12-181

UNDEFINE ...coooeooeeeooee oo e oo oo e oo oo eeees e e o2 e s e e s e s e e se e se e eeeee 12-184

VARTABLE ..o oo oo ee oo e oo s e s e s e ss e e eeese e eeene 12-185

WHENEVER OSERRORoooooooooo oo oeeeeooe e eee oo e eee oo se e eeesess e eeeesss e eeeseses s eeeeene 12-192

WHENEVER SQLERRORoooooooe oo e oo eeoe e se e ss oo ses e seses s eeeeene 12-193

XQUERY ... oo ee e oo eese e oo e s et s e 12-195

SQL*Plus Error Messages

SQL*PIUS ETTOr MESSAZES ...ttt s e e 13-1
COPY Command MEeSSaGESc.ccccceiiuiriiiiniiiiniiiiieiieirie s s s e s s st es e se e 13-33

Part IV SQL*Plus Appendixes

A

SQL*Plus Limits

SQL*Plus COPY Command

COPY Command SYNtaX.........cccooiiiiiiiiininiii s s B-1
TOIIINIS ...t e s s s B-1
USAZE . ittt e e B-3
EXQIMPIES .ot s B-3

Copying Data from One Database to Anothercc.ccocooooiiiiii B-3
Understanding COPY Command SYNtaX............oeueiiinnniicicieieecsce s B-4
Controlling Treatment of the Destination Table...........c.ccccoeiniiiiiniiiiii B-5
Interpreting the Messages that COPY Displayscccoooeueuiiiininieiiiiciiiiieeeec e B-6
Specifying Another User's Table...........ccccoiviiiiiiiiiiiiii s B-6

Copying Data between Tables on One Database................cccccooiiiiiiiiini B-7

Obsolete SQL*Plus Commands

SQL*Plus Obsolete Command AIternatives...........ccocoeuieieiieiiiieiiceee et e e C-1
BTI[TLE] text (0bS0lete Old £OII)uvviiiiiiiiiiiiii ettt eaaee e s eaaae e eeeans C-2
COL[UMN] {column | expr} DEF[AULT] (0DSOlete)ccoeiriiriimiiiicrienieriee e C-2
DOCIUMENT] (ODSOLELE) ...t e et e e et e e e e e et e e e eee e e seeeeae e e e Cc-2
NEWPAGE [1110] (ODSOLEER)......coooieeieiieiieeee ettt eaae e s e st ae e saeaesessnnne s C-2
SET BUF[FER] {buffer | SQL} (0DSOlete)..........ccooiuimiiiiiiiniieiii et C-2
SET COMIPATIBILITY{V7 | V8 | NATIVE} (0bSolete)ccoeuvieririicrieiecreeeeereerie et C-3

SET CLOSECURI[SOR] {ON | OFF} (ODSOLEEE) ..ot eeeeeeeeeeeeeeeeeeeeeeeeeseeeeesneeae s C-3

SET DOC[UMENT] {ON | OFF} (ODSOLELE)c.veeeeeeeeeee oottt et eeeeeeeeee et eee e e seeeeneee e e C-3
SET MAXDIATAL] 77 (ODSOLEEE) ..ot et ettt et ettt ae s st s eabe s sne e s saeee s C-3
SET SCAN {ON | OFF} (ODSOLELE) ..ottt et eae et e et e s eae et e eeaeesieeea C-4
SET SPACE {1117} (ODSOLELE) ..ottt ettt et e et e et ae s st e s eatessneessaeee s C-4
SET TRU[NCATE] {ON | OFF} (ODSOLEte)..........oo oot C-4
TTI[TLE] text (0bsolete 01d OIXmM)c..ooiiiiiieeeee e e C-4

D SQL*Plus Instant Client

Choosing the SQL*Plus Instant Client to Installcccooiiiinnnin D-1
Basic INSTANt CIENT.....covitiieiiiieieiie sttt ettt ettt ettt ettt s e eae b essesben e sbe st ensenseseeneeneenes D-1
Lightweight Instant CHENt..........ccccoiviiiiiiiiiiiiii s D-1

Installing SQL*Plus Instant Client by Downloading from OTN...........cccccoooiiinnninniicnnnn, D-2
Installing SQL*Plus Instant Client from Linux RPM Packagescccocecvvviininnnnnnncnnnns D-2
Installing SQL*Plus Instant Client from the UNIX or Windows Zip Files ..o D-2
List of Files Required for SQL*Plus Instant CLientcccccccciiiiiiiiiiiiiiiccccecee D-3

Installing SQL*Plus Instant Client from the 11g Client Release Media.............ccccccoovernvninnn. D-3
Installing SQL*Plus Instant Client on UNIX or LinUX......cccccccovviniiiiniiiiiiiicccccecce D-3
Installing SQL*Plus Instant Client on WIndowsccccuvniniiiinininiiiiiiice e D-4

Configuring SQL*Plus Instant Client ... D-4
Configuring SQL*Plus Instant Client on Linux (from RPMS)ccccccovivninininninniinnicicnn D-4
Configuring SQL*Plus Instant Client on Linux (from Client Media or Zip File) and UNIX. D-5
Configuring SQL*Plus Instant Client on WIndowscccoviinininiiininiiii e D-5

Connecting to a Database with SQL*Plus Instant Client................ccccocoooiniinnin D-6

AS SYSDBA or AS SYSOPER Connections with SQL*Plus Instant Client..............c.ccccceeennee. D-7

Uninstalling Instant Client.................ccoooin s D-7
Uninstalling SQL*Plus Instant CHent..........ccccooviiiiiiiiiiicc s D-7
Uninstalling the Complete Instant CLentccccccccviiiiiiiiiiiicccccces D-7

Index

Xi

Xii

Audience

Preface

The SQL*Plus (pronounced "sequel plus") User's Guide and Reference introduces
SQL*Plus and its uses, and provides a description of each SQL*Plus command.

This preface contains these topics:
= Audience

s Documentation Accessibility
= Related Documents

s Conventions

The SQL*Plus User’s Guide and Reference is intended for business and technical users
and system administrators who perform the following tasks:

= Develop and run batch scripts

= Format, calculate on, store, print and create web output from query results
= Examine table and object definitions

s Perform database administration

This document assumes a basic understanding of the SQL language. If you do not
have familiarity with SQL, see the Oracle Database SQL Language Reference. If you plan
to use PL/SQL in conjunction with SQL*Plus, see the Oracle Database PL/SQL Language
Reference.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Xiii

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see these Oracle resources:
s SQL*Plus Quick Reference
s Oracle Database PL/SQL Language Reference
s Oracle Database SQL Language Reference
» Oracle Call Interface Programmer's Guide
» Oracle Database Concepts
s Oracle Database Administrator’s Guide
» Oracle Database Backup and Recovery User’s Guide
» Oracle Database Advanced Application Developer’s Guide
» Oracle XML DB Developer’s Guide
» Oracle Database Globalization Support Guide
» Oracle Database Heterogeneous Connectivity Administrator’s Guide
= Oracle Database Error Messages
» Oracle Database Upgrade Guide
» Oracle Database Reference
s Oracle Database Performance Tuning Guide
s Oracle Database Net Services Administrator’s Guide
s Pro*COBOL Programmer’s Guide
s Pro*C/C++ Programmer’s Guide
= Oracle Database installation and user's manuals for your operating system

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. See Oracle Database Sample Schemas for information on how these schemas
were created and how you can use them yourself.

Xiv

SQL*Plus error message documentation is available in Chapter 13, "SQL*Plus Error
Messages". Oracle Database error message documentation is only available in HTML.
If you only have access to the Oracle Database Documentation media, you can browse
the Oracle Database error messages by range. Once you find the specific range, use
your browser's "find in page" feature to locate the specific message. When connected to
the Internet, you can search for a specific error message using the error message search
feature of the Oracle Database online documentation.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XV

XVi

What’s New in SQL*Plus?

This section describes new features of the SQL*Plus Release 11.1 and provides pointers
to additional information.

New Features in SQL*Plus Release 11.1

SQL*Plus Release 11.1 is a superset of SQL*Plus 10.2. This section describes new
features introduced in SQL*Plus Release 11.1.

SQL*Plus Error Logging

SQL*Plus has a new SET ERRORLOGGING command to enable error logging of
SQL, PL/SQL and SQL*Plus errors. Errors from interactive queries or queries
contained in a script are written to a default table, SPERRORLOG, in the current
schema. A user-defined table can be specified instead of the default table. When
enabled, SQL*Plus error logging records the username, the time the error
occurred, the script that contained the query if applicable, a user-defined identifier
to enable errors from a specific session to be selected, the ORA, PLS, or SP2 error
message, and the query statement that caused the error.

SQL*Plus error logging is set OFF by default.

See Also:
SET ERRORL[OGGING] {ON | OFF} [TABLE [schema.]tablename]
[TRUNCATE] [IDENTIFIER identifier] on page 12-110
BLOB and BFILE Datatypes
SQL*Plus now supports standard querying and printing of tables and objects
containing BLOB and BFILE datatypes.
See Also:

Oracle Database SQL Language Reference

Escaping Special Characters in File Names

SQL*Plus has a new SET ESCCHAR command to enable specific characters in file
names to be escaped. If not escaped, the characters @, ? and $ have significance
when translated and will cause errors for the SPOOL, START, @, RUN and EDIT
commands. For example, if the @ character is not escaped, it is translated as the
Oracle Home directory.

SET ESCCHAR is set OFF by default.

Xvii

See Also:
SET ESCCHAR {@ | ? | % | $ | OFF} on page 12-116

= Site Profile file glogin.sql is Blank

SQL*Plus settings previously in glogin.sql are now embedded in the executable.
SQL*Plus Instant Client is now easier to install as the glogin.sql file and SQLPATH
environment variable are no longer required.

Glogin.sql is still installed and called by all sqlplus interfaces.

See Also:

Site Profile on page 2-4

= Automatic Storage Management (ASM) Connections

SQL*Plus now supports SYSASM connections for ASM instances. Connecting to
an ASM instance using CONNECT as SYSASM provides full access to all ASM
resources and disk groups.

See Also:
Oracle Database SQL Language Reference
CONNECT on page 12-41

s FAN Events in a RAC Database

The SQLPLUS command now has a new -F argument to enable SQL*Plus to
receive FAN events from a RAC database.

See Also:

SQLPLUS Program Syntax on page 3-6

Xviii

SQL*Plus Quick Start

These instructions are to enable you to login and connect to a database after you have

installed SQL*Plus. You can connect to the default database you created during
installation, or to another existing Oracle database.

SQL*Plus Resources

SQL*Plus Overview

SQL*Plus Prerequisites

Starting SQL*Plus Command-line
Starting SQL*Plus Instant Client
Connecting to a Different Database
Sample Schemas and SQL*Plus
Running your first Query

Exiting SQL*Plus

SQL*Plus Resources

SQL*Plus on the Oracle Technology Network at
http://www.oracle.com/technology/tech/sgl_plus/.

SQL*Plus Discussion Forum at http: //www.oracle.com/forums/.

Oracle Documentation Library at

http://www.oracle.com/technology/documentation.

SQL*Plus Product and Documentation feedback by emailing sqlplus@oracle.com.

SQL*Plus Overview

SQL*Plus is an interactive and batch query tool that is installed with every Oracle
Database installation. It has a command-line user interface.

There is also the SQL*Plus Instant Client which is a stand-alone command-line

interface available on platforms that support the OCI Instant Client. SQL*Plus Instant

Client connects to any available Oracle database, but does not require its own Oracle
database installation. See the Oracle Call Interface Programmer’s Guide for more

information on the OCI Instant Client.

SQL*Plus has its own commands and environment, and it provides access to the
Oracle Database. It enables you to enter and execute SQL, PL/SQL, SQL*Plus and
operating system commands to perform the following:

Xix

XX

» Format, perform calculations on, store, and print from query results
= Examine table and object definitions

= Develop and run batch scripts

s Perform database administration

You can use SQL*Plus to generate reports interactively, to generate reports as batch
processes, and to output the results to text file, to screen, or to HTML file for browsing
on the Internet. You can generate reports dynamically using the HTML output facility
of SQL*Plus.

Who Can Use SQL*Plus

The SQL*Plus, SQL, and PL/SQL command languages are powerful enough to serve
the needs of users with some database experience, yet straightforward enough for new
users who are just learning to work with the Oracle Database.

The SQL*Plus language is easy to use. For example, to rename a column labelled
LAST_NAME with the heading "Family Name", enter the command:

COLUMN LAST_NAME HEADING 'Family Name'

Similarly, to list column definitions for the EMPLOYEES table, enter the command:

DESCRIBE EMPLOYEES

How Can | Learn SQL*Plus

There are several sources available to assist you to learn SQL*Plus:
s PartII of this Guide, Using SQL*Plus

= Help for SQL*Plus, Command-line help

= Oracle Database 11g: SQL Fundamentals

An instructor-led course run by Oracle. This is a comprehensive hands-on course
taking the student through all aspects of using SQL*Plus to access Oracle
Database.

= More Oracle Database 11¢ Training

To find more useful Oracle courses, go to
http://www.oracle.com/education.

How to Use the SQL*Plus Guide

This guide provides information about SQL*Plus that applies to all operating systems.
It also includes some Windows and UNIX specific information, for example, the
Windows Graphical User Interface. Some aspects of SQL*Plus differ on each operating
system. Such operating system specific details are covered in the Oracle Database
Installation Guide provided for your system. Use these operating system specific
guides in conjunction with this SQL*Plus User's Guide and Reference.

Throughout this guide, examples showing how to enter commands use a common
command syntax and a common set of sample tables. The tables are described in
"Sample Schemas and SQL*Plus" on page xxiii.

SQL*Plus Command-line Architecture
SQL*Plus command-line uses a two-tier model comprising:

s Client (command-line user interface).

= Database (Oracle Database).

The two tiers may be on the same machine.

SQL*Plus Client
The command-line user interface is the character-based terminal implementation.

Oracle Database

Oracle Database Net components provide communication between the SQL*Plus
Client and Oracle Database.

SQL*Plus Prerequisites

SQL*Plus is a component of Oracle Database. SQL*Plus is installed by default when
you install the Oracle Database.

Some aspects of Oracle Database and SQL*Plus differ from one computer and
operating system to another. These topics are discussed in the Oracle Database
Installation Guide for each operating system that SQL*Plus supports.

What is necessary before you can run SQL*Plus?

s Install Oracle Database or Oracle Client. See the Oracle Database Installation
Guide for your operating system available at
http://www.oracle.com/technology/documentation/.

s Obtain an Oracle Database login username and password during installation or
from your Database Administrator. See Login Username and Password.

= Ensure a sample database is installed and that you have a login username and
password for it during Oracle Database installation. See Sample Schemas and
SQL*Plus.

s Create a default database during installation or obtain the connection identifier for
the Oracle Database you want to connect to from your Database Administrator.
See Connecting to a Database.

= Ensure the database you want to connect to is started. See the STARTUP
command.

SQL*Plus Date Format

The default date format in SQL*Plus is determined by the database
NLS_DATE_FORMAT parameter and may use a date format displaying two digit
years. You can use the SQL TO_CHAR function, or the SQL*Plus COLUMN FORMAT
command in your SELECT statements to control the way dates are displayed in your
report.

Starting SQL*Plus Command-line

The SQL*Plus executable is usually installed in §ORACLE_HOME/bin, which is
usually included in your operating system PATH environment variable. You may need
to change directory to the SORACLE_HOME /bin directory to start SQL*Plus.

In the following examples, you are prompted to enter the database account password.

An example using an Easy Connection identifier to connect to the HR schema in the
MYDB database running on mymachine is:

sglplus hr@//mymachine.mydomain:port/MYDB

XXi

XXil

An example using a Net Service Name is:

sglplus hr@MYDB

Net Service Names can be stored in a number of places, including Oracle Names. See
the Net Services Reference Guide for more information.

If you want to use Net Service Names configured in a local Oracle Net tnsnames.ora
file, then set the environment variable TNS_ADMIN to the directory containing the
tnsnames.ora file. For example, on UNIX, if your tnsnames.ora file is in /home/userl
and it defines the Net Service Name MYDB2:

TNS_ADMIN=/home/userl
export TNS_ADMIN
sglplus hr@MYDB2

This example assumes the ORACLE_HOME environment variable is set, and the
$ORACLE_HOME/network/admin/tnsnames.ora or
ORACLE_HOME\network\admin\tnsnames.ora file defines the Net Service Name
MYDB3:

sglplus hr@MYDRB3
The TWO_TASK (on UNIX) or LOCAL (on Windows) environment variable can be set
to a connection identifier. This removes the need to explicitly enter the connection

identifier whenever a connection is made in SQL*Plus or SQL*Plus Instant Client. This
UNIX example connects to the database known as MYDB4:

TNS_ADMIN=/home/userl
export TNS_ADMIN
TWO_TASK=MYDB4

export TWO_TASK
sglplus hr

To start SQL*Plus and connect to the default database
1. Open a UNIX or a Windows terminal and enter the SQL*Plus command:

sglplus
2. When prompted, enter your Oracle Database username and password. If you do

not know your Oracle Database username and password, ask your Database
Administrator.

3. Alternatively, enter the SQL*Plus command in the form:

sqglplus username

You are prompted to enter your password.
4. SQL*Plus starts and connects to the default database.

Now you can start entering and executing SQL, PL/SQL and SQL*Plus statements
and commands at the SQL> prompt.

To start SQL*Plus and connect to a database other than the default
Open a UNIX or a Windows terminal and enter the SQL*Plus command:

sqglplus username@connect_identifier

You are prompted to enter your password.

Starting SQL*Plus Instant Client

SQL*Plus Instant Client is the SQL*Plus command-line without the need to install
Oracle Database. For information about using it, see Starting SQL*Plus Command-line
on page xxi.

Because SQL*Plus Instant Client does not include a database, it is always 'remote’ from
any database server. To connect to a database you must specify the database using an
Oracle Net connection identifier.

If TNS_ADMIN is not set, then an operating system dependent set of directories is
examined to find tnsnames.ora. This search path includes looking in the directory

specified by the ORACLE_HOME environment variable for

network /admin/tnsnames.ora. This is the only reason to set the ORACLE_HOME
environment variable for SQL*Plus Instant Client. If ORACLE_HOME is set when
running Instant Client applications, it must be set to a directory that exists.

Connecting to a Different Database
From an existing command-line session, enter a CONNECT command in the form:

SQL> connect username@connect_identifier

You are prompted to enter your password.

Sample Schemas and SQL*Plus

Sample schemas are included with the Oracle Database. Examples in this guide use the
EMP_DETAILS_VIEW view of the Human Resources (HR) sample schema. This
schema contains personnel records for a fictitious company. To view column details for
the view, EMP_DETAILS_VIEW, enter

DESCRIBE EMP_DETAILS_VIEW

For more information about the sample schemas, see the Oracle Database Sample
Schemas guide.

Unlocking the Sample Tables

The Human Resources (HR) Sample Schema is installed as part of the default Oracle
Database installation. The HR account is locked by default.

You need to unlock the HR account before you can use the HR sample schema. To
unlock the HR account, log in as the SYSTEM user and enter the following command,
where your_password is the password you want to define for the user HR:

ALTER USER HR IDENTIFIED BY your_password ACCOUNT UNLOCK;

For further information about unlocking the HR account, see the Oracle Database
Sample Schemas guide. The HR user is primarily to enable you to access the HR sample
schema and is necessary to enable you to run the examples in this guide.

Each table in the database is "owned" by a particular user. You may wish to have your
own copies of the sample tables to use as you try the examples in this guide. To get
your own copies of the HR tables, see your DBA or see the Oracle Database Sample
Schemas guide, or you can create the HR tables with the script HR_MAIN.SQL which is
located in the following directory on UNIX:

SORACLE_HOME/demo/schema/human_resources/hr_main.sqgl

xxiii

And on the following directory on Windows:

ORACLE_HOME\DEMO \ SCHEMA\HUMAN_RESOURCES\HR_MAIN. SQL

To create the HR tables from command-line SQL*Plus, do the following:

1. Ask your DBA for your Oracle Database account username and password.

2. Login to SQL*Plus.

3. On UNIX, enter the following command at the SQL*Plus prompt:

SQL> @?/DEMO/SCHEMA/HUMAN_RESOURCES/HR_MAIN.SQL

On Windows, enter the following command at the SQL*Plus prompt:

SQL> @?\DEMO\SCHEMA\HUMAN_RESOURCES\HR_MAIN.SQL

To remove the sample tables, perform the same steps but substitute HR_DROP.SQL for

HR_MAIN.SQL.

Running your first Query
To describe a database object, for example, column details for EMP_DETAILS_VIEW,

XXiv

enter a DESCRIBE command like:

DESCRIBE EMP_DETAILS_VIEW

which produces the following output:

Name Null?
EMPLOYEE_ID MOT MULL
JOB_ID MOT MULL
MANAGER_ID
DERARTMENT_ID
LOCATION_ID
COUNTRY_ID
FIRST_MAME
LAST _MAME MOT MULL
SALARY
COMMISSION_PCT
DEPARTMENT _MAME MOT MULL
JOB_TITLE MOT MULL
CITY MOT MULL

STATE_PROVINCE
COUNTRY _MNAME
REGION_MNAME

Type
HNUMBER(E)
WARCHARZ(D)
HNUMBER(E)
HNUMBER(4)
HNUMBER(4)
CHARZ
WARCHARZ2O)
WARCHARZ(2S)
MNUMBER(S 2]
HNUMBER(2 2]
WARCHARZ(3O
WARCHARZ(3S
WARCHARZ(3O
WARCHARZ(2S
WARCHARZ(A0
WARCHARZ(2S

To rename the column headings, and to select data from the HR sample schema view,

EMP_DETAILS_VIEW, enter

COLUMN FIRST_NAME HEADING "First Name"
COLUMN LAST_NAME HEADING "Family Name"
SELECT FIRST_NAME, LAST_NAME

FROM EMP_DETAILS_VIEW

WHERE LAST NAME LIKE 'K%';

which produces the following output:

| First Name

| Family Hame

[Payam [aufling
[Steven King
[Neena [kochhar
[sexander [khoo
lanette King
[Sundita [kurnar

Exiting SQL*Plus

To exit SQL*Plus command-line, enter EXIT.

XXV

XXVi

Part |

SQL*Plus Getting Started

Part 1 provides the information you need to get started with SQL*Plus. It describes the
command-line user interface, provides configuration information and information you
need to log in and run SQL*Plus.

Part 1 contains the following chapters:
s SQL*Plus User Interface

s Configuring SQL*Plus

= Starting SQL*Plus

1

SQL*Plus User Interface

This chapter describes the SQL*Plus command-line user interface. It contains the
following topics:

s The Command-line Screen

s Changing the Command-line Font and Font Size

The Command-line Screen
The following image shows the SQL*Plus command-line interface.

The SQL*Plus command-line interface is standard on all operating systems.

nraglplus

[EQL*Plus: Release 11.1.8.8.8 — Production on Thu July 24 19:32:49 2887

opyright (c) 1982, 2807, Oracle. All rights reserved.

[Enter user—name: hr
[Enter password:

onnected to: i
Oracle Database 1lg Enterprise Edition Release 11.1.8.8.8 — Production
Jith the Partitioning,. OLAP and Data Mining options

When SQL*Plus starts, it displays the date and time, the SQL*Plus version and
copyright information before the SQL*Plus prompt appears. The default prompt for
SQL*Plus command-line is:

SQL>

Changing the Command-line Font and Font Size

In Windows, from a Command Prompt, open the Command Prompt Properties dialog
to set the font and font size used in the SQL*Plus command-line interface.

To Change the Command-line Interface Font and Font Size
1. Right click in the command-line interface title bar.

2. Click Properties. The Window Preview box displays the current window's relative
size on your monitor based on your font and font size selections. The Selected
Font: box displays a sample of the current font.

3. Click the Font tab.

4. Select the font size to use from the Size box. Raster font sizes are shown as width
by height in pixels. TrueType font sizes are shown as height in pixels.

SQL*Plus User Interface 1-1

Changing the Command-line Font and Font Size

5. Select the font to use from the Font box.
6. Select the Bold Fonts check box if you want to use a bold version of the font.

For more information about changing Command Prompt properties, see Windows
Help or click Help in the Command Prompt Properties dialog.

1-2 SQL*Plus User's Guide and Reference

2

Configuring SQL*Plus

This chapter explains how to configure your SQL*Plus command-line environment. It
has the following topics:

s SQL*Plus Environment Variables

= SQL*Plus Configuration

SQL*Plus Environment Variables

These environment variables specify the location or path of files used by SQL*Plus. For
other environment variables that influence the behavior of SQL*Plus, see the Oracle
Database Administrator’s Reference.

Table 2-1 Parameters or Environment Variables influencing SQL*Plus

Parameter or Variable Description

LD_LIBRARY_PATH Environment variable to specify the path used to search for
libraries on UNIX and Linux. The environment variable may
have a different name on some operating systems, such as
DYLD_LIBRARY_PATH on Apple Mac OS, LIBPATH on
IBM/AIX-5L, and SHLIB_PATH on HP-UX. Not applicable to
Windows operating systems.

Example

$SORACLE_HOME/1lib

LOCAL Windows environment variable to specify a connection string.
Performs the same function as TWO_TASK on UNIX.

NLS_LANG Environment variable to specify globalization behavior.
Example

american_america.utf8

ORACLE_HOME Environment variable to specify where SQL*Plus is installed.
It is also used by SQL*Plus to specify where message files are
located.

Examples:

d:\oracle\1l0g
/u0l/app/oracle/product/v10g

ORA_NLS10 Environment variable to specify the locations of the NLS data
and the user boot file in SQL*Plus 10.2. The default location is
$ORACLE_HOME/nls/data. In a system with both Oracle9i
and 10g, or a system under version upgrade, you should set
ORA_NLSI10 for Oracle 10g and set ORA_NLS33 for 9i. The
default NLS location in 9i was $ORACLE_
HOME/common/nls/admin/data.

Configuring SQL*Plus 2-1

SQL*Plus Environment Variables

Table 2-1 (Cont.) Parameters or Environment Variables influencing SQL*Plus

Parameter or Variable Description

ORACLE_PATH Environment variable to specify the location of SQL scripts. If
SQL*Plus cannot find the file in ORACLE_PATH, or if
ORACLE_PATH is not set, it searches for the file in the
current working directory.

Not applicable to Windows

ORACLE_SID Environment variable to specify the database instance,
optional
PATH Environment variable to specify the path to search for

executables, and DLLs in Windows. Typically includes
ORACLE_HOME /bin

SQLPATH Environment variable or Windows registry entry to specify
the location of SQL scripts. SQL*PIus searches for SQL
scripts, including login.sql, in the current directory and then in
the directories specified by SOLPATH, and in the
subdirectories of SQLPATH directories. SQLPATH is a colon
separated list of directories. There is no default value set in
UNIX installations.

In Windows, SQLPATH is defined in a registry entry during
installation. For more information about the SQLPATH
registry entry, see SQLPATH Registry Entry on page 2-2.

SQLPLUS Environment variable to specify the location of SQL*Plus
message files in Windows. This environment variable is set
during installation. It has a default value of:

ORACLE_HOME\ SQLPLUS\MESG
Not applicable to UNIX.

TNS_ADMIN Environment variable to specify the location of the
tnsnames.ora file. If not specified, SORACLE_
HOME /network/admin is used

Example
h:\network

/var/opt/oracle

TWO_TASK UNIX environment variable to specify a connection string.
Connections that do not specify a database will connect to the
database specified in TWO_TASK.

Example

TWO_TASK=MYDB
export TWO_TASK
sqglplus hr

is the same as:

sglplus hr@MYDB

SQLPATH Registry Entry

The SQLPATH registry entry specifies the location of SQL scripts. SQL*Plus searches
for SQL scripts in the current directory and then in the directories specified by the
SQLPATH registry entry, and in the subdirectories of SQLPATH directories.

The HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\HOMEQO registry subkey (or
the HOMEn directory for the associated ORACLE_HOME) contains the SQLPATH
registry entry. SQLPATH is created with a default value of ORACLE_HOMEN\DBS.
You can specify any directories on any drive as valid values for SQLPATH.

2-2 SQL*Plus User’'s Guide and Reference

SQL*Plus Configuration

When setting the SQLPATH registry entry, you can concatenate directories with a
semicolon (;). For example:

c:\oracle\oralO\database;c:\oracle\oralO\dbs

See the Registry Editor's help system for instructions on how to edit the SQLPATH
registry entry.

SQL*Plus Configuration
You can set up your SQL*Plus environment to use the same settings with each session.
There are two operating system files to do this:
= The Site Profile file, glogin.sql, for site wide settings.
= Additionally, the User Profile, login.sql, sets user specific settings.
The exact names of these files is system dependent.

Some privileged connections may generate errors if SET SERVEROUTPUT or SET
APPINFO commands are put in the Site Profile or User Profile.

The following tables show the profile scripts, and some commands and settings that
affect the Command-line user interface.

Table 2-2 Profile Scripts affecting SQL*Plus User Interface Settings

This script ...

is run in the Command-line...

Site Profile (glogin.sql) After successful Oracle Database connection from a
. SQLPLUS or CONNECT command.
Can contain any content that

can be included in a SQL*Plus ~ Where /NOLOG is specified.
script, such as system variable

settings or other global settings

the DBA wants to implement.

User Profile (login.sql) Immediately after the Site Profile.

Can contain any content that
can be included in a SQL*Plus
script, but the settings are only
applicable to the user's sessions.

Table 2-3 Commands in Profile scripts affecting SQL*Plus User Interface Settings

In a profile script, this

command ... affects the Command-line by ...

SET Setting the SQL*Plus compatibility mode to obtain the
SQLPLUSCOMPATI[IBILITY] behavior the DBA wants for this site.

{x.yl.z]}

Also see the SQL*Plus

Compatibility Matrix on

page 12-146.

SQLPLUS command As for SET SQLPLUSCOMPATIBILITY but set with the
COMPATIBILITY Option SQLPLUS command COMPATIBILITY option.
SQLPLUS command RESTRICT = Starting SQL*Plus with the RESTRICT option set to 3
Option prevents the User Profile script from being read.

Configuring SQL*Plus 2-3

SQL*Plus Configuration

Site Profile

A Site Profile script is created during installation. It is used by the database
administrator to configure session-wide behavior for SQL*Plus Command-line
connections. The Site Profile script installed during installation is an empty script.

The Site Profile script is generally named glogin.sql. SQL*Plus executes this script
whenever a user starts a SQL*Plus session and successfully establishes the Oracle
Database connection.

The Site Profile enables the DBA to set up site wide SQL*Plus environment defaults for
all users of a particular SQL*Plus installation

Users cannot directly access the Site Profile.

Default Site Profile Script

The Site Profile script is SORACLE_HOME/sqlplus/admin/glogin.sql in UNIX, and
ORACLE_HOME\sqlplus\admin\glogin.sql in Windows. If a Site Profile already
exists at this location, it is overwritten when you install SQL*Plus. If SQL*Plus is
removed, the Site Profile script is deleted.

User Profile

For SQL*Plus command-line connections, SQL*Plus also supports a User Profile script.
The User Profile is executed after the Site Profile and is intended to allow users to
specifically customize their session. The User Profile script is generally named
login.sql. SQL*Plus searches for the User Profile in your current directory, and then the
directories you specify with the SQLPATH environment variable. SQL*Plus searches
this colon-separated list of directories and their subdirectories in the order they are
listed.

You can add any SQL commands, PL/SQL blocks, or SQL*Plus commands to your
user profile. When you start SQL*Plus, it automatically searches for your user profile
and runs the commands it contains.

Modifying Your LOGIN File

You can modify your LOGIN file just as you would any other script. The following
sample User Profile script shows some modifications that you could include:

-- login.sql
-- SQL*Plus user login startup file.

-- This script is automatically run after glogin.sql

-- To change the SQL*Plus prompt to display the current user,
-- connection identifier and current time.

-- First set the database date format to show the time.
ALTER SESSION SET nls_date_format = 'HH:MI:SS';

-- SET the SQLPROMPT to include the _USER, _CONNECT_IDENTIFIER
-- and _DATE variables.
SET SQLPROMPT "_USER'@'_CONNECT_IDENTIFIER _DATE> "

-- To set the number of lines to display in a report page to 24.
SET PAGESIZE 24

-- To set the number of characters to display on each report line to 78.
SET LINESIZE 78

2-4 SQL*Plus User’'s Guide and Reference

SQL*Plus Configuration

-- To set the number format used in a report to $99,999.
SET NUMFORMAT $99,999

See Also:

= SET command on page 12-89 for more information on these and
other SET command variables you may wish to set in your
SQL*Plus LOGIN file.

s Using Predefined Variables on page 5-12 for more information
about predefined variables.

Storing and Restoring SQL*Plus System Variables

From the Command-line you can store the current SQL*Plus system variables in a
script with the STORE command. If you alter any variables, this script can be run to
restore the original values. This is useful if you want to reset system variables after
running a report that alters them. You could also include the script in your User Profile
script so that these system variables are set each time you start SQL*Plus.

To store the current setting of all system variables, enter
STORE SET file_name
Enter a file name and file extension, or enter only the file name to use the default

extension .SQL. You can use the SET SUF[FIX] {SQL | text} command on page 12-151
to change the default file extension.

Restoring the System Variables
To restore the stored system variables, enter

START file_name
If the file has the default extension (as specified by the SET SUF[FIX] {SQL | text} on

page 12-151 command), you do not need to add the period and extension to the file
name.

You can also use the @ (at sign) or the @@ (double at sign) commands to run the script.

Example 2-1 Storing and Restoring SQL*Plus System Variables

To store the current values of the SQL*Plus system variables in a new script
"plusenv.sql":

STORE SET plusenv

Created file plusenv

Now the value of any system variable can be changed:

SHOW PAGESIZE

PAGESIZE 24

SET PAGESIZE 60
SHOW PAGESIZE

PAGESIZE 60

Configuring SQL*Plus 2-5

SQL*Plus Configuration

The original values of system variables can then be restored from the script:

START plusenv
SHOW PAGESIZE

PAGESIZE 24

Installing Command-line Help

Command-line help is usually installed during Oracle Database installation. If not, the
database administrator can create the SQL*Plus command-line help tables and
populate them with SQL*Plus help data by running a supplied SQL script from
SQL*Plus.

The database administrator can also remove the SQL*Plus command-line help tables
by running a SQL script from SQL*Plus.

Before you can install or remove SQL*Plus help, ensure that:
s SQL*Plus is installed.
s The ORACLE_HOME environment variable is set.
s The SQL*Plus help script files exist:
- HLPBLD.SQL - to drop and create new help tables.
- HELPDROPSQL - to drop existing help tables.
- HELPUS.SQL - to populate the help tables with the help data.

Running the hipbld.sql Script to Install Command-line Help
Run the provided SQL script, HLPBLD.SQL, to load command-line help.

1. Log in to SQL*Plus as the SYSTEM user with:

SQLPLUS SYSTEM

You are prompted to enter the password you have defined for the SYSTEM user.
2. In UNIX run the SQL script, HLPBLD.SQL, from SQL*Plus with:

@SORACLE_HOME/SQLPLUS/ADMIN/HELP/HLPBLD.SQL HELPUS.SQL

In Windows run the SQL script, HLPBLD.SQL, from SQL*Plus with:

@ORACLE_HOME\ SQLPLUS\ADMIN\HELP\HLPBLD. SQL. HELPUS.SQL

The HLPBLD.SQL script creates and loads the help tables.

Running the helpdrop.sql Script to Remove Command-line Help
Run the provided SQL script, HELPDROP.SQL, to remove the command-line help.

1. Log in to SQL*Plus as the SYSTEM user with:

SQLPLUS SYSTEM

You are prompted to enter the password you have defined for the SYSTEM user.
2. In UNIX run the SQL script, HELPDROP.SQL, from SQL*Plus with:

@$SORACLE_HOME/SQLPLUS/ADMIN/HELP/HELPDROP. SQL

In Windows run the SQL script, HELPDROP.SQL, from SQL*Plus with:

2-6 SQL*Plus User’'s Guide and Reference

SQL*Plus Configuration

@ORACLE_HOME\ SQLPLUS\ADMIN\HELP\HELPDROP. SQL

The HELPDROP.SQL script drops the help tables, and then disconnects.

Configuring Oracle Net Services

If you plan to connect to a database other than the default, whether on the same
computer or another computer, you need to ensure that Oracle Net is installed, and the
database listener is configured and running. Oracle Net services are used by SQL*Plus.

Oracle Net services and the database listener are installed by default during Oracle
Database installation. For further information about installing and configuring Oracle
Net, see the Oracle Database documentation at
http://www.oracle.com/technology/documentation.

Configuring SQL*Plus 2-7

SQL*Plus Configuration

2-8 SQL*Plus User’'s Guide and Reference

3

Starting SQL*Plus

This chapter describes how to start, login, and connect to a database, how to get help,
and how to exit SQL*Plus.

Specific topics discussed are:

= Login Username and Password

= Connecting to a Database

= Starting SQL*Plus

» Exiting SQL*Plus Command-line
= SQLPLUS Program Syntax

Login Username and Password

When you start SQL*Plus, you need a username and password to login to an Oracle
Database schema. Your username and password identify you as an authorized user of
the Oracle Database schema.

The database administrator (DBA) is responsible for creating your database account
with the necessary privileges and giving you the username and password that enables
you to access your account.

Default logins are created and you are prompted for associated passwords during
Oracle Database installation. Some of the default login usernames created are:

= SYS
= SYSTEM
= HR

Logins are created and displayed in messages during Oracle Database installation.

For further information about the default logins, see the Oracle Database Administrator’s
Guide.

Once you have logged in, you can connect under a different username using the
CONNECT command. The username and password must be valid for the database.
For example, to connect the username TODD to the default database using the
password FOX, you could enter

CONNECT TODD

You are prompted to enter the password, FOX.

Starting SQL*Plus 3-1

Connecting to a Database

In the command-line interface, if you omit the username and password, SQL*Plus
prompts you for them. Because CONNECT first disconnects you from your current
database, you will be left unconnected to any database if you use an invalid username
and password in your CONNECT command.

If you log on or connect as a user whose account has expired, you are prompted to
change your password before you can connect.

If an account is locked, a message is displayed and connection as this user is not
permitted until the account is unlocked by your DBA.

You can use the DISCONNECT command to disconnect from a database without
leaving SQL*Plus.

Secure External Password Store

As a command-line alternative for large-scale deployments where applications use
password credentials to connect to databases, it is possible to store such credentials in
a client-side Oracle wallet. An Oracle wallet is a secure software container that is used
to store authentication and signing credentials.

Storing database password credentials in a client-side Oracle wallet eliminates the
need to embed usernames and passwords in application code, batch jobs, or scripts.
This reduces the risk of exposing passwords in the clear in scripts and application
code, and simplifies maintenance because you need not change your code each time
usernames and passwords change. In addition, not having to change application code
also makes it easier to enforce password management policies for these user accounts.

When you configure a client to use the external password store, applications can use
the following syntax to connect to databases that use password authentication:

CONNECT /@database_alias

Note that you need not specify database login credentials in this CONNECT statement.
Instead your system looks for database login credentials in the client wallet.

See Also: Oracle Database Administrator’s Guide for information
about configuring your client to use secure external password store
and for information about managing credentials in it.

Expired Password

In the command-line interface, if your password has expired, SQL*Plus prompts you
to change it when you attempt to log in. You are logged in once you successfully
change your password.

Changing your Password

In the command-line interface, you can change your password with the PASSWORD
command. See PASSWORD on page 12-70.

Connecting to a Database

You must connect to an Oracle Database (instance) before you can query or modify
data in that database. You can connect to the default database and to other databases
accessible through your network. To connect to another database over a network, both
databases must have Oracle Net configured, and have compatible network drivers.

3-2 SQL*Plus User’'s Guide and Reference

Connecting to a Database

You must enter either a connection identifier or a net service name to connect to a
database other than the default.

The connection identifier or net service name is entered:

= asan argument to the SQLPLUS Program Syntax when starting a command-line
session.

= asan argument to the CONNECT command from a current session.

Net Service Name

Your DBA is responsible for creating the databases you use and defining net service
names for them in the tnsnames.ora file.

A net service name definition in the tnsnames.ora file has the syntax:

net_service_name=

(DESCRIPTION=

(ADDRESS= (PROTOCOL=tcp) (HOST=host) (PORT=port))
(CONNECT_DATA=

(SERVICE_NAME=service_name)))

To use a net service name (alias), it must have an entry in the tnsnames.ora file on the
machine running SQL*Plus. An entry in tnsnames.ora is not required if you use a
connection identifier.

Example 3—-1 The tnsnames.ora entry for the sales database

SALES1 =

(DESCRIPTION =

(ADDRESS= (PROTOCOL=tcp) (HOST=sales-server) (PORT=1521))
(CONNECT_DATA=

(SERVICE_NAME=sales.us.acme.com)))

Example 3-2 Start a command-line session to the sales database using the net service
name

SQLPLUS hr@SALES1

See the Oracle Database Net Services Reference and the Oracle Database Net Services
Administrator’s Guide for more information about database connections and net service
name definitions.

Full Connection Identifier

Depending on your configuration, use the full connection identifier syntax like:

(DESCRIPTION=

(ADDRESS= (PROTOCOL=tcp) (HOST=host) (PORT=port))

(CONNECT_DATA=

(SERVICE_NAME=service_name)))

The SERVICE_NAME is the global database name entered during database creation. It
combines a database name with a domain name. For example, the SERVICE_NAME
sales.us.acme.com has a database name of sales and a domain of
us.acme.com.

An INSTANCE_NAME is the name you give to the database instance during creation. It
defaults to the SID you entered during database creation.

Starting SQL*Plus 3-3

Starting SQL*Plus

An Oracle System Identifier (SID) identifies a specific Oracle release 8.0 database
instance.

You can optionally use an INSTANCE_NAME in place of the SERVICE_NAME phrase.

Use a SID in place of the SERVICE_NAME when connecting to an Oracle release 8.0 or
earlier database.

Example 3-3 Full connection identifier for SALES1

SQLPLUS hr@ (DESCRIPTION=

(ADDRESS= (PROTOCOL=tcp) (HOST=sales-server) (PORT=1521))
(CONNECT_DATA=

(SERVICE_NAME=sales.us.acme.com)))

Easy Connection Identifier
The easy or abbreviated connection identifier has the syntax:

[//1host[:port] [/service_name]

Example 3—4 Start a command-line session to the sales database using the easy
connection identifier

sqglplus hr@sales-server:1521/sales.us.acme.com

Example 3-5 CONNECT to the sales database using the easy connection identifier

connect hr@sales-server:1521/sales.us.acme.com

The easy connection identifier can be used wherever you can use a full connection
identifier, or a net service name. The easy syntax is less complex, and no tnsnames.ora
entry is required.

Connectionless Session with /NOLOG

In the command-line interface, it is possible to start SQL*Plus without connecting to a
database. This is useful for performing some database administration tasks, writing
transportable scripts, or to use SQL*Plus editing commands to write or edit scripts.

You use the /NOLOG argument to the SQLPLUS command to start a connectionless

command-line session. After SQL*Plus has started you can connect to a database with
the CONNECT command.

Example 3—6 Start a connectionless SQL*Plus session with /INOLOG
SQLPLUS /NOLOG

Starting SQL*Plus

If you are connecting to a remote Oracle database, make sure your Oracle Net software
is installed and working properly. For more information, see the Oracle Database Net
Services Administrator’s Guide.

When you start a SQL*Plus command-line session, and after a CONNECT command
in that session, the site profile, glogin.sql, and the user profile file, login.sql, are
processed:

= After SQL*Plus starts and connects, and prior to displaying the first prompt.

3-4 SQL*Plus User’'s Guide and Reference

Starting SQL*Plus

After SQL*Plus starts and connects, and prior to running a script specified on the
command line.

Prior to the first prompt when /NOLOG is specified on the command line and no
connection is made.

The site profile file, glogin.sql is processed first, then the user profile file, login.sql.

Behavior in SQL*Plus 10.1 may be unexpected depending on the setting of SET
SQLPLUSCOMPATIBILITY. For example, processing glogin.sql and login.sql after a
CONNECT command only occurs with the default SQLPLUSCOMPATIBILITY setting
of 10.1. For more information, see SET SQLPLUSCOMPATIIBILITY] {x.y[.z]} on

page 12-146.

Starting Command-line SQL*Plus
To begin using SQL*Plus, you must first understand how to start and stop SQL*Plus.

Example 3-7 Starting SQL*Plus
This example shows you how to start SQL*Plus:

1.
2.
3.

Make sure that SQL*Plus has been installed on your computer.
Log on to the operating system (if required).
Enter the command, SQLPLUS, and press Return.

Note: Some operating systems expect you to enter commands in
lowercase letters. If your system expects lowercase, enter the
SQLPLUS command in lowercase.

SQLPLUS

SQL*Plus displays its version number, the current date, and copyright
information, and prompts you for your username (the text displayed on your
system may differ slightly):

SQL*Plus: Release 11.1.0.0.0 - Production on Thu Jun 2 16:29:01 2007
(c) Copyright 1982, 2007 Oracle Corporation. All rights reserved.
Enter user-name:

Enter your username and press Return. SQL*Plus displays the prompt "Enter
password:".

Enter your password and press Return again. For your protection, your password
does not appear on the screen.

The process of entering your username and password is called logging in.
SQL*Plus displays the version of Oracle Database to which you connected and the
versions of available tools such as PL/SQL.

Next, SQL*Plus displays the SQL*Plus command prompt:
SQL>

The SQL*Plus command prompt indicates that SQL*Plus is ready to accept your
commands.

If SQL*Plus does not start, you should see a message to help you correct the problem.

Starting SQL*Plus 3-5

Exiting SQL*Plus Command-line

Getting Command-line Help

To access command-line help for SQL*Plus commands, type HELP or ? followed by
the command name at the SQL command prompt. See the HELP command on
page 12-64 for more information. For example:

HELP ACCEPT
To display a list of SQL*Plus commands, type HELP followed by either TOPICS or
INDEX. HELP TOPICS displays a single column list of SQL*Plus commands. HELP

INDEX displays a four column list of SQL*Plus commands which fits in a standard
screen. For example:

HELP INDEX

Exiting SQL*Plus Command-line

If you cannot log in to SQL*Plus because your username or password is invalid or for
some other reason, SQL*Plus returns an error status equivalent to an EXIT FAILURE
command. See the EXIT command on page 12-61 for further information.

When you are done working with SQL*Plus and wish to return to the operating
system, enter EXIT or QUIT at the SQL*Plus prompt, or enter the end of file character,
Ctrl+D on UNIX or Ctrl+Z on Windows.

SQL*Plus displays the version of Oracle Database from which you disconnected and
the versions of tools available through SQL*Plus before you return to the operating
system prompt.

SQLPLUS Program Syntax

You use the SQLPLUS command at the operating system prompt to start
command-line SQL*Plus:

SQLPLUS [[Options] [Logon] [Start]]
where: Options has the following syntax:

-H[ELP] | -V[ERSION]
| [[-C[OMPATIBILITY] {x.y[.z]] [-F[AILOVER]] [-L[OGON]] [-M[ARKUP] markup_option]
[-R[ESTRICT] {1|2|3}] [-S[ILENT]]]

and markup_option has the following syntax:

HTML [ON|OFF] [HEAD text] [BODY text] [TABLE text] [ENTMAP {ON|OFF}]

[SPOOL {ON|OFF}] [PRE[FORMAT] {ON|OFF}]
where Logon has the following syntax:

{username[/password] [@connect_identifier]\ / 3}

[AS {SYSOPER|SYSDBA|SYSASM}] | /NOLOG
where Start has the following syntax:

@{url|file namel.ext]} larg ...]

Warning: Including your password in plain text is a security risk.
You can avoid this risk by omitting the password, and entering it
only when the system prompts for it.

3-6 SQL*Plus User’'s Guide and Reference

SQLPLUS Program Syntax

Options

You have the option of entering logon. If you do not specify logon but do specify start,
SQL*Plus assumes that the first line of the script contains a valid logon. If neither start
nor logon are specified, SQL*Plus prompts for logon information.

The following sections contain descriptions of SQLPLUS command options:

HELP Option
-H[ELP]

Displays the usage and syntax for the SQLPLUS command, and then returns control to
the operating system.

VERSION Option
-V[ERSION]

Displays the current version and level number for SQL*Plus, and then returns control
to the operating system.

COMPATIBILITY Option

-C[OMPATIBILITY] {x./{.Z]

Sets the value of the SQLPLUSCOMPATIBILITY system variable to the SQL*Plus
release specified by x.y[.z]. Where x is the version number, y is the release number, and

z is the update number. For example, 9.0.1 or 10.2. For more information, see the SET
SQLPLUSCOMPATI[IBILITY] {x.y[.z]} on page 12-146system variable.

FAILOVER Option
-F[AILOVER]
Enables SQL*Plus to receive FAN events when connected to a Real Application Cluster

(RAC) database. In this mode a service or instance failure is transparently handled
with transaction status messages if applicable.

See Also: Oracle Real Application Clusters Administration and
Deployment Guide for information about FAN events in RAC
environments.

LOGON Option

-L[OGON]

Specifies not to reprompt for username or password if the initial connection does not
succeed. This can be useful in operating system scripts that must either succeed or fail

and you don't want to be reprompted for connection details if the database server is
not running.

MARKUP Options
-M[ARKUP]

You can use the MARKUP option to generate a complete stand alone web page from
your query or script. MARKUP currently supports HTML 4.0 transitional.

Starting SQL*Plus 3-7

SQLPLUS Program Syntax

Note: Depending on your operating system, the complete markup_
option clause for the SQLPLUS command may need to be contained in
quotes.

Use SQLPLUS -MARKUP HTML ON or SQLPLUS -MARKUP HTML ON SPOOL ON
to produce standalone web pages. SQL*Plus will generate complete HTML pages
automatically encapsulated with <HTML> and <BODY> tags. The HTML tags in a
spool file are closed when SPOOL OFF is executed or SQL*Plus exits.

The -SILENT and -RESTRICT command-line options may be useful when used in
conjunction with -MARKUP.

You can use MARKUP HTML ON to produce HTML output in either the <PRE> tag or
in an HTML table. Output to a table uses standard HTML <TABLE>, <TR> and <TD>
tags to automatically encode the rows and columns resulting from a query. Output to
an HTML table is the default behavior when the HTML option is set ON. You can
generate output using HTML <PRE> tags by setting PREFORMAT ON.

In SQL*Plus, use the SHOW MARKUP command to view the status of MARKUP
options.

The SQLPLUS -MARKUP command has the same options and functionality as the SET
MARKUP command. These options are described in this section. For other
information on the SET MARKUP command, see the SET command on page 12-89.

HTML [ONIOFF]

HTML is a mandatory MARKUP argument which specifies that the type of output to
be generated is HTML. The optional HTML arguments, ON and OFF, specify whether
or not to generate HTML output. The default is OFF.

MARKUP HTML ON generates HTML output using the specified MARKUP options.

You can turn HTML output ON and OFF as required during a session. The default is
OFFE.

HEAD text

The HEAD text option enables you to specify content for the <HEAD> tag. By default,
text includes a default in-line cascading style sheet and title.

If text includes spaces, it must be enclosed in quotes. SQL*Plus does not test this free
text entry for HTML validity. You must ensure that the text you enter is valid for the
HTML <HEAD> tag. This gives you the flexibility to customize output for your
browser or special needs.

BODY fext

The BODY text option enables you to specify attributes for the <BODY> tag. By
default, there are no attributes. If text includes spaces, it must be enclosed in quotes.
SQL*Plus does not test this free text entry for HTML validity. You must ensure that the
text you enter is valid for the HTML <BODY> tag. This gives you the flexibility to
customize output for your browser or special needs.

TABLE text

The TABLE text option enables you to enter attributes for the <TABLE> tag. You can
use TABLE text to set HTML <TABLE> tag attributes such as BORDER,
CELLPADDING, CELLSPACING and WIDTH. By default, the <TABLE> WIDTH
attribute is set to 90% and the BORDER attribute is set to 1.

3-8 SQL*Plus User’'s Guide and Reference

SQLPLUS Program Syntax

If text includes spaces, it must be enclosed in quotes. SQL*Plus does not test this free
text entry for HTML validity. You must ensure that the text you enter is valid for the
HTML <TABLE> tag. This gives you the flexibility to customize output for your
browser or special needs.

ENTMAP {ONIOFF}

ENTMAP ON or OFF specifies whether or not SQL*Plus replaces special characters <,
>, " and & with the HTML entities <, >, " and & respectively.
ENTMAP is set ON by default.

You can turn ENTMAP ON and OFF as required during a session. For example, with
ENTMAP OFF, SQL*Plus screen output is:

SQL>PROMPT A > B
A >B

With ENTMAP ON, SQL*Plus screen output is:

SQL> PROMPT A > B
A > B

As entities in the <HEAD> and <BODY> tags are not mapped, you must ensure that
valid entities are used in the MARKUP HEAD and BODY options.

If entities are not mapped, web browsers may treat data as invalid HTML and all
subsequent output may display incorrectly. ENTMAP OFF enables users to write their
own HTML tags to customize output.

Note: ENTMAP only takes effect when the HTML option is set ON.
For more information about using entities in your output, see the
COLUMN command on page 12-28.

SPOOL {ONIOFF}

SPOOL ON or OFF specifies whether or not SQL*Plus writes the HTML opening tags,
<HTML> and <BODY>, and the closing tags, </BODY> and </HTML>, to the start
and end of each file created by the SQL*Plus SPOOL filename command. The default
is OFFE.

You can turn SPOOL ON and OFF as required during a session.

Note: Itis important to distinguish between the SET MARKUP
HTML SPOOL option, and the SQLPLUS SPOOL filename command.

The SET MARKUP HTML SPOOL ON option enables the writing of
the <HTML> tag to the spool file. The spool file is not created, and the
header and footer tags enabled by the SET MARKUP HTML SPOOL
ON option are not written to the spool file until you issue the
SQLPLUS SPOOL filename command. See the SPOOL command on
page 12-172 for more information.

SQL*Plus writes several HTML tags to the spool file when you issue the SPOOL
filename command.

When you issue any of the SQL*Plus commands: EXIT, SPOOL OFF or SPOOL
filename, SQL*Plus appends the following end tags and closes the file:

</BODY>

Starting SQL*Plus 3-9

SQLPLUS Program Syntax

</HTML>

You can specify <HEAD> tag contents and <BODY> attributes using the HEAD and
BODY options

PRE[FORMAT] {ONIOFF}

PREFORMAT ON or OFF specifies whether or not SQL*Plus writes output to the
<PRE> tag or to an HTML table. The default is OFF, so output is written to a HTML
table by default. You can turn PREFORMAT ON and OFF as required during a session.

Note: To produce report output using the HTML <PRE> tag, you
must set PREFORMAT ON. For example:

SQLPLUS -M "HTML ON PREFORMAT ON"
or

SET MARKUP HTML ON PREFORMAT ON

MARKUP Usage Notes

When MARKUP HTML ON PREFORMAT OFF is used, commands originally
intended to format paper reports have different meaning for reports intended for web
tables:

s PAGESIZE is the number of rows in an HTML table, not the number of lines. Each
row may contain multiple lines. The TTITLE, BTITLE and column headings are
repeated every PAGESIZE rows.

» LINESIZE may have an effect on data if wrapping is on, or for very long data.
Depending on data size, output may be generated on separate lines, which a
browser may interpret as a space character.

s TTITLE and BTITLE content is output to three line positions: left, center and right,
and the maximum line width is preset to 90% of the browser window. These
elements may not align with the main output as expected due to the way they are
handled for web output. Entity mapping in TTITLE and BTITLE is the same as the
general ENTMARP setting specified in the MARKUP command.

= If you use a title in your output, then SQL*Plus starts a new HTML table for
output rows that appear after the title. Your browser may format column widths of
each table differently, depending on the width of data in each column.

= SET COLSEP, RECSEP and UNDERLINE only produce output in HTML reports
when PREFORMAT is ON.

RESTRICT Option

-R[ESTRICT] {11213}

Enables you to disable certain commands that interact with the operating system. This
is similar to disabling the same commands in the Product User Profile (PUP) table.

However, commands disabled with the -RESTRICT option are disabled even if there is
no connection to a server, and remain disabled until SQL*Plus terminates.

If no -RESTRICT option is active, than all commands can be used, unless disabled in
the PUP table.

If -RESTRICT 3 is used, then LOGIN.SQL is not read. GLOGIN.SQL is read but
restricted commands used will fail.

3-10 SQL*Plus User’s Guide and Reference

SQLPLUS Program Syntax

Logon

Table 3-1 Commands Disabled by Restriction Level

Command Level 1 Level 2 Level 3
EDIT disabled disabled disabled
GET disabled
HOST disabled disabled disabled
SAVE disabled disabled
SPOOL disabled disabled
START, @, @@ disabled
STORE disabled disabled
SILENT Option

-S[ILENT]

Suppresses all SQL*Plus information and prompt messages, including the command
prompt, the echoing of commands, and the banner normally displayed when you start
SQL*Plus. If you omit username or password, SQL*Plus prompts for them, but the
prompts are not visible! Use SILENT to invoke SQL*Plus within another program so
that the use of SQL*Plus is invisible to the user.

SILENT is a useful mode for creating reports for the web using the SQLPLUS
-MARKUP command inside a CGI script or operating system script. The SQL*Plus
banner and prompts are suppressed and do not appear in reports created using the
SILENT option.

usernamel/password]

Represent the username and password with which you wish to start SQL*Plus and
connect to Oracle Database.

Warning: Including your password in plain text is a security risk.
You can avoid this risk by omitting the password, and entering it
only when the system prompts for it.

If you omit username and password, SQL*Plus prompts you for them. If you omit only
password, SQL*Plus prompts for it. In silent mode, username and password prompts
are not visible! Your username appears when you type it, but not your password.

@ connect_identifier

Consists of an Oracle Net connect identifier. The exact syntax depends upon the Oracle
Net configuration. For more information, refer to the Oracle Net manual or contact
your DBA.

/

Represents a default logon using operating system authentication. You cannot enter a
connect identifier if you use a default logon. In a default logon, SQL*Plus typically
attempts to log you in using the username OPS$name, where name is your operating
system username. Note that the prefix "OPS$" can be set to any other string of text. For
example, you may wish to change the settings in your INIT.ORA parameters file to

Starting SQL*Plus 3-11

SQLPLUS Program Syntax

Start

LOGONmname or USERIDname. See the Oracle Database Administrator’s Guide for
information about operating system authentication.

AS {SYSOPERISYSDBAISYSASM}

The AS clause enables privileged connections by users who have been granted
SYSOPER, SYSDBA or SYSASM system privileges.

/NOLOG

Establishes no initial connection to Oracle Database. Before issuing any SQL
commands, you must issue a CONNECT command to establish a valid logon. Use
/NOLOG when you want to have a SQL*Plus script prompt for the username,
password, or database specification. The first line of this script is not assumed to
contain a logon.

@{urlfile_namel.ext]} [arg ...]

Specifies the name of a script and arguments to run. The script can be called from the
local file system or from a web server.

SQL*Plus passes the arguments to the script as if executing the file using the SQL*Plus
START command. If no file suffix (file extension) is specified, the suffix defined by the
SET SUFFIX command is used. The default suffix is .sql.

See the START command on page 12-174 for more information.

3-12 SQL*Plus User’s Guide and Reference

Part Il

Using SQL*Plus

Part II helps you learn how to use SQL*Plus, how to tune SQL*Plus for better
performance, how to restrict access to tables and commands and provides overviews
of database administration tools and globalization support.

Part II contains the following chapters:

SQL*Plus Basics

Using Scripts in SQL*Plus

Formatting SQL*Plus Reports

Generating HTML Reports from SQL*Plus
Tuning SQL*Plus

SQL*Plus Security

Database Administration with SQL*Plus
SQL*Plus Globalization Support

4

SQL*Plus Basics

This chapter helps you learn the basics of using SQL*Plus. It has the following topics:
= Entering and Executing Commands

» Listing a Table Definition

= Listing PL/SQL Definitions

= Running SQL Commands

= Running PL/SQL Blocks

= Running SQL*Plus Commands

= System Variables that Affect How Commands Run
= Stopping a Command while it is Running

= Running Operating System Commands

» Pausing the Display

= Saving Changes to the Database Automatically

= Interpreting Error Messages

Entering and Executing Commands

Unless stated otherwise, descriptions of commands are applicable to all user
interfaces.

In the command-line, type commands at the SQL*Plus prompt and press Return to
execute them.

Usually, you separate the words in a command with a space or a tab. You can use
additional spaces or tabs between words to make your commands more readable.

Case sensitivity is operating system specific. For the sake of clarity, all table names,
column names, and commands in this guide appear in capital letters.

You can enter three kinds of commands:
= SQL commands, for working with information in the database
= PL/SQL blocks, also for working with information in the database

= SQL*Plus commands, for formatting query results, setting options, and editing
and storing SQL commands and PL/SQL blocks

The manner in which you continue a command on additional lines, end a command,
or execute a command differs depending on the type of command you wish to enter

SQL*Plus Basics 4-1

Listing a Table Definition

and run. Examples of how to run and execute these types of commands are found on
the following pages.

The SQL Buffer

The SQL buffer stores the most recently entered SQL command or PL/SQL block (but
not SQL*Plus commands). The command or block remains in the buffer until replaced
by the next SQL command or PL/SQL block. You can view the buffer contents with
the LIST command.

You can execute the command or block in the SQL buffer using the RUN or /(slash)
commands. RUN displays the command or block in the buffer before executing it.

/ (slash) executes the command or block in the buffer without displaying it first. For
information about editing a command or block stored in the buffer see Editing Scripts
in SQL*Plus Command-Line on page 5-2.

SQL*Plus does not store SQL*Plus commands, or the semicolon or slash characters
you type to execute a command in the SQL buffer.

Executing Commands

In command-line SQL*Plus, you type a command and direct SQL*Plus to execute it by
pressing the Return key. SQL*Plus processes the command and re-displays the
command prompt when ready for another command.

Listing a Table Definition

To see the definitions of each column in a given table or view, use the SQL*Plus
DESCRIBE command.

Example 4-1 Using the DESCRIBE Command

To list the column definitions of the columns in the sample view EMP_DETAILS_
VIEW, enter

DESCRIBE EMP_DETAILS_VIEW

Name Null? Type
EMPLOYEE_ID NOT NULL NUMBER(6)
JOB_ID NOT NULL VARCHAR2 (10)
MANAGER_ID NUMBER (6)
DEPARTMENT_ID NUMBER (4)
LOCATION_ID NUMBER (4)
COUNTRY_ID CHAR (2)
FIRST NAME VARCHAR2 (20)
LAST_NAME NOT NULL VARCHAR2 (25)
SALARY NUMBER (8, 2)
COMMISSION_PCT NUMBER (2, 2)
DEPARTMENT_NAME NOT NULL VARCHAR2 (30)
JOB_TITLE NOT NULL VARCHAR2 (35)
CITY NOT NULL VARCHAR2 (30)
STATE_PROVINCE VARCHAR?2 (25)
COUNTRY_NAME VARCHAR?2 (40)
REGION_NAME VARCHAR?2 (25)

4-2 SQL*Plus User’'s Guide and Reference

Running SQL Commands

Note: DESCRIBE accesses information in the Oracle Database data
dictionary. You can also use SQL SELECT commands to access this
and other information in the database. See your Oracle Database SQL
Language Reference for details.

Listing PL/SQL Definitions

To see the definition of a function or procedure, use the SQL*Plus DESCRIBE
command.

Example 4-2 Using the DESCRIBE Command
To create and list the definition of a function called AFUNC, enter

create or replace function afunc (fl varchar2, f2 number) return number as

begin
if (length(fl) > f2) then
return 1;
else
return 0;
end if;
end;
/

FUNCTION created.

DESCRIBE afunc

FUNCTION afunc RETURNS NUMBER

Argument Name Type In/Out Default?
Fl VARCHAR2 IN

F2 NUMBER IN

Running SQL Commands

The SQL command language enables you to manipulate data in the database. See your
Oracle Database SQL Language Reference for information on individual SQL commands.

Example 4-3 Entering a SQL Command

In this example, you will enter and execute a SQL command to display the employee
number, name, job, and salary of each employee in the EMP_DETAILS_VIEW view.

1. At the command prompt, enter the first line of the command:
SELECT EMPLOYEE_ID, LAST_NAME, JOB_ID, SALARY
If you make a mistake, use Backspace to erase it and re-enter. When you are done,
press Return to move to the next line.

2. SQL*Plus displays a "2", the prompt for the second line. Enter the second line of
the command:

FROM EMP_DETAILS_VIEW WHERE SALARY > 12000;

SQL*Plus Basics 4-3

Running SQL Commands

The semicolon (;) means that this is the end of the command. Press Return or click
Execute. SQL*Plus processes the command and displays the results:

EMPLOYEE_ID LAST NAME JOB_ID SALARY
100 King AD_PRES $24,000
101 Kochhar AD_VP $17,000
102 De Haan AD_VP $17,000
145 Russell SA_MAN $14,000
146 Partners SA_MAN $13,500
201 Hartstein MK_MAN $13,000

6 rows selected.

After displaying the results and the number of rows retrieved, SQL*Plus
command-line displays the command prompt again. If you made a mistake and
therefore did not get the results shown, re-enter the command.

The headings may be repeated in your output, depending on the setting of a
system variable called PAGESIZE. Sometimes, the result from a query will not fit
the available page width. You can use the system variable, LINESIZE, to set the
width of the output in characters. See Setting Page Dimensions on page 6-24.
Typically, LINESIZE is set to 80 in command-line. Whether you see the message
stating the number of records retrieved depends on the setting of the system
variable, FEEDBACK. See System Variables that Affect How Commands Run on
page 4-8 for more information.

Understanding SQL Command Syntax

Just as spoken language has syntax rules that govern the way we assemble words into
sentences, SQL*Plus has syntax rules that govern how you assemble words into
commands. You must follow these rules if you want SQL*Plus to accept and execute
your commands.

Dividing a SQL Command into Separate Lines

You can divide your SQL command into separate lines at any points you wish, as long
as individual words are not split. Thus, you can enter the query you entered in
Example 4-3, "Entering a SQL Command" on three lines:

SELECT EMPLOYEE_ID, LAST_NAME, JOB_ID
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000;

In this guide, you will find most SQL commands divided into clauses, one clause on
each line. In Example 4-3, "Entering a SQL Command", for instance, the SELECT and
FROM clauses were placed on separate lines. Many people find this clearly visible
structure helpful, but you may choose whatever line division makes commands most
readable to you.

Ending a SQL Command

You can end a SQL command in one of three ways:
= with a semicolon (;)
= with a slash (/) on a line by itself

s with a blank line

4-4 SQL*Plus User’'s Guide and Reference

Running PL/SQL Blocks

A semicolon (;) tells SQL*Plus that you want to run the command. Type the semicolon
at the end of the last line of the command, as shown in Example 4-3, "Entering a SQL
Command", and press Return or click Execute. SQL*Plus processes the command and
also stores the command in the SQL buffer. See The SQL Buffer on page 4-2 for details.
If you mistakenly press Return before typing the semicolon, SQL*Plus prompts you
with a line number for the next line of your command. Type the semicolon and press
Return again or click Execute to run the command.

A slash (/) on a line by itself also tells SQL*Plus that you wish to run the command.
Press Return at the end of the last line of the command. SQL*Plus prompts you with
another line number. Type a slash and press Return again or click Execute. SQL*Plus
executes the command and stores it in the buffer.

A blank line in a SQL statement or script tells SQL*Plus that you have finished
entering the command, but do not want to run it yet. Press Return at the end of the last
line of the command. SQL*Plus prompts you with another line number.

Note: You can change the way blank lines appear and behave in SQL
statements using the SET SQLBLANKLINES command. For more
information about changing blank line behavior, see the SET
command on page 12-89.

To execute commands this way, press Return again; SQL*Plus now prompts you with
the SQL*Plus command prompt. SQL*Plus does not execute the command, but stores
it in the SQL buffer. See The SQL Buffer on page 4-2 for details. If you subsequently
enter another SQL command, SQL*Plus overwrites the previous command in the
buffer.

Running PL/SQL Blocks

You can also use PL/SQL subprograms (called blocks) to manipulate data in the
database. See your Oracle Database PL/SQL Language Reference for information on
individual PL/SQL statements.

SQL*Plus treats PL/SQL subprograms in the same manner as SQL commands, except
that a semicolon (;) or a blank line does not terminate and execute a block. Terminate
PL/SQL subprograms by entering a period (.) by itself on a new line. You can also
terminate and execute a PL/SQL subprogram by entering a slash (/) by itself on a new
line.

You enter the mode for entering PL/SQL statements when:

= You type DECLARE or BEGIN. After you enter PL/SQL mode in this way, type
the remainder of your PL/SQL subprogram.

= You type a SQL command (such as CREATE PROCEDURE) that creates a stored
procedure. After you enter PL/SQL mode in this way, type the stored procedure
you want to create.

SQL*Plus stores the subprograms you enter in the SQL buffer. Execute the current
subprogram with a RUN or slash (/) command. A semicolon (;) is treated as part of the
PL/SQL subprogram and will not execute the command.

SQL*Plus sends the complete PL/SQL subprogram to Oracle Database for processing
(as it does SQL commands). See your Oracle Database PL/SQL Language Reference for
more information.

You might enter and execute a PL/SQL subprogram as follows:

SQL*Plus Basics 4-5

Running SQL*Plus Commands

DECLARE
b'e NUMBER := 100;
BEGIN
FOR 1 IN 1..10 LOOP
IF MOD (i, 2) = 0 THEN --1 1is even
INSERT INTO temp VALUES (i, x, 'i is even');
ELSE
INSERT INTO temp VALUES (i, x, 'i is odd');
END IF;
X := x + 100;
END LOOP;
END;

Creating Stored Procedures

Stored procedures are PL/SQL functions, packages, or procedures. To create stored
procedures, you use the following SQL CREATE commands:

= CREATE FUNCTION

= CREATE LIBRARY

= CREATE PACKAGE

= CREATE PACKAGE BODY
= CREATE PROCEDURE

» CREATE TRIGGER

= CREATE TYPE

Entering any of these commands places you in PL/SQL mode, where you can enter
your PL/SQL subprogram. For more information, see Running PL/SQL Blocks on
page 4-5. When you are done typing your PL/SQL subprogram, enter a period (.) on a
line by itself to terminate PL/SQL mode. To run the SQL command and create the
stored procedure, you must enter RUN or slash (/). A semicolon (;) will not execute
these CREATE commands.

When you use CREATE to create a stored procedure, a message appears if there are
compilation errors. To view these errors, you use SHOW ERRORS. For example:

SHOW ERRORS PROCEDURE ASSIGNVL

See SHOW on page 12-165 for more information.

To execute a PL/SQL statement that references a stored procedure, you can use the
SQL*Plus EXECUTE command. EXECUTE runs the PL/SQL statement that you enter
immediately after the command. For example:

EXECUTE EMPLOYEE_MANAGEMENT.NEW_EMP ('BLAKE"')

See EXECUTE on page 12-60 for more information.

Running SQL*Plus Commands

You can use SQL*Plus commands to manipulate SQL commands and PL/SQL blocks
and to format and print query results. SQL*Plus treats SQL*Plus commands differently
than SQL commands or PL/SQL blocks.

4-6 SQL*Plus User’'s Guide and Reference

Running SQL*Plus Commands

To speed up command entry, you can abbreviate many SQL*Plus commands. For
information on and abbreviations of all SQL*Plus commands, see Chapter 12, "
SQL*Plus Command Reference".

Example 4-4 Entering a SQL*Plus Command

This example shows how you might enter a SQL*Plus command to change the format
used to display the column SALARY of the sample view, EMP_DETAILS_VIEW.

1. Enter this SQL*Plus command:
COLUMN SALARY FORMAT $99,999 HEADING 'MONTHLY SALARY'
If you make a mistake, use Backspace to erase it and re-enter. When you have

entered the line, press Return. SQL*Plus notes the new format and displays the
SQL*Plus command prompt again, ready for a new command.

2. Enter the following query and press Return to run it:

SELECT EMPLOYEE_ID, LAST NAME, JOB_ID, SALARY
FROM EMP_DETAILS_VIEW WHERE SALARY > 12000;

EMPLOYEE_ID LAST NAME JOB_ID MONTHLY SALARY
100 King AD_PRES $24,000
101 Kochhar AD_VP $17,000
102 De Haan AD_VP $17,000
145 Russell SA_MAN $14,000
146 Partners SA_MAN $13,500
201 Hartstein MK_MAN $13,000

6 rows selected.

The COLUMN command formatted the column SALARY with a dollar sign ($) and a
comma (,) and gave it a new heading.

Understanding SQL*Plus Command Syntax
SQL*Plus commands have a different syntax from SQL commands or PL/SQL blocks.
You do not need to end a SQL*Plus command with a semicolon. When you finish

entering the command, you can just press Return or click Execute. There is no need to
end a SQL*Plus command with a semicolon.

Continuing a Long SQL*Plus Command on Additional Lines

You can continue a long SQL*Plus command by typing a hyphen at the end of the
line and pressing Return. If you wish, you can type a space before typing the hyphen.
SQL*Plus displays a right angle-bracket (>) as a prompt for each additional line.

For example:
COLUMN SALARY FORMAT $99,999 -
HEADING 'MONTHLY SALARY'

Since SQL*Plus identifies the hyphen as a continuation character, entering a hyphen
within a SQL statement is ignored by SQL*Plus. SQL*Plus does not identify the
statement as a SQL statement until after the input processing has joined the lines
together and removed the hyphen. For example, entering the following:

SELECT 200 -

SQL*Plus Basics 4-7

System Variables that Affect How Commands Run

100 FROM DUAL;

returns the error:

SELECT 200 100 FROM DUAL
*
ERROR at line 1:
ORA-00923: FROM keyword not found where expected

To ensure that the statement is interpreted correctly, reposition the hyphen from the
end of the first line to the beginning of the second line.

System Variables that Affect How Commands Run

The SQL*Plus SET command controls many variables—called SET variables or system
variables—which affect the way SQL*Plus runs your commands. System variables
control a variety of conditions within SQL*Plus, including default column widths for
your output, whether SQL*Plus displays the number of records selected by a
command, and your page size.

The examples in this guide are based on running SQL*Plus with the system variables
at their default settings. Depending on the settings of your system variables, your
output may appear slightly different than the output shown in the examples. (Your
settings might differ from the default settings if you have a SQL*Plus LOGIN file on
your computer.)

See the SET command on page 12-89 for more information on system variables and
their default settings. See SQL*Plus Configuration on page 2-3 and SQLPLUS Program
Syntax on page 3-6 for details on the SQL*Plus LOGIN file.

To list the current setting of a system variable, enter SHOW followed by the variable
name. See the SHOW command on page 12-165 for information on other items you can
list with SHOW.

Stopping a Command while it is Running

Suppose you have displayed the first page of a 50 page report and decide you do not
need to see the rest of it. Press Cancel, the system's interrupt character, which is
usually CTRL+C. SQL*Plus stops the display.

Note: Pressing Cancel does not stop the printing of a file that you
have sent to a printer with the OUT clause of the SQL*Plus SPOOL
command. (You will learn about printing query results in Chapter 6,
"Formatting SQL*Plus Reports".) You can stop the printing of a file
through your operating system. For more information, see your
operating system's installation and user's guide.

Running Operating System Commands

You can execute an operating system command from the SQL*Plus command prompt.
This is useful when you want to perform a task such as listing existing operating
system files.

4-8 SQL*Plus User’'s Guide and Reference

Saving Changes to the Database Automatically

To run an operating system command, enter the SQL*Plus command HOST followed
by the operating system command. For example, this SQL*Plus command runs the
command, DIRECTORY *.SQL.:

HOST DIRECTORY *.SQL

When the command finishes running, the SQL*Plus command prompt appears again.

Note: Operating system commands entered from a SQL*Plus session
using the HOST command do not affect the current SQL*Plus session.
For example, setting an operating system environment variable does
not affect the current SQL*Plus session, but may affect SQL*Plus
sessions started subsequently.

You can suppress access to the HOST command. For more information
about suppressing the HOST command see Chapter 9, "SQL*Plus
Security".

Pausing the Display

You can use the PAUSE system variable to stop and examine the contents of the screen
after each page during the display of a long report, or during the display of a table
definition with many columns.

You can use SET PAUSE to pause output after displaying each screen of a query or
report. See SET PAU[SE] {ON | OFF | text} on page 12-135 for more information.

Saving Changes to the Database Automatically

You can specify changes you wish to make to the information stored in the database
using the SQL Database Manipulation Language (DML) commands UPDATE,
INSERT, and DELETE—which can be used independently or within a PL/SQL block.
These changes are not made permanent until you enter a SQL COMMIT command or
a SQL Database Control Language (DCL) or Database Definition Language (DDL)
command (such as CREATE TABLE), or use the autocommit feature. The SQL*Plus
autocommit feature causes pending changes to be committed after a specified number
of successful SQL DML transactions. (A SQL DML transaction is either an UPDATE,
INSERT, or DELETE command, or a PL/SQL block.)

You control the autocommit feature with the SQL*Plus AUTOCOMMIT system
variable. Regardless of the AUTOCOMMIT setting, changes are committed when you
exit SQL*Plus successfully.

Example 4-5 Turning Autocommit On

To turn the autocommit feature on, enter

SET AUTOCOMMIT ON

Alternatively, you can enter the following to turn the autocommit feature on:

SET AUTOCOMMIT IMMEDIATE

Until you change the setting of AUTOCOMMIT, SQL*Plus automatically commits
changes from each SQL DML command that specifies changes to the database. After
each autocommit, SQL*Plus displays the following message:

SQL*Plus Basics 4-9

Interpreting Error Messages

COMMIT COMPLETE

When the autocommit feature is turned on, you cannot roll back changes to the
database.

To commit changes to the database after a number of SQL DML commands, for
example, 10, enter

SET AUTOCOMMIT 10

SQL*Plus counts SQL DML commands as they are executed and commits the changes
after each 10th SQL DML command.

Note: For this feature, a PL/SQL block is regarded as one
transaction, regardless of the actual number of SQL commands
contained within it.

To turn the autocommit feature off again, enter the following command:

SET AUTOCOMMIT OFF

To confirm that AUTOCOMMIT is now set to OFF, enter the following SHOW
command:

SHOW AUTOCOMMIT

AUTOCOMMIT OFF

See SET AUTO[COMMIT]{ON | OFF | IMMI[EDIATE] | n} on page 12-95 for more
information.

Interpreting Error Messages

If SQL*Plus detects an error in a command, it displays an error message. See
Chapter 13, "SQL*Plus Error Messages" for a list of SQL*Plus error messages.

Example 4-6 Interpreting an Error Message
If you attempt to execute a file that does not exist or is unavailable by entering:

START EMPLYYES.SQL

An error message indicates that the table does not exist:

SP2-0310: unable to open file "emplyyes.sql"

You will often be able to figure out how to correct the problem from the message alone.
If you need further explanation, take one of the following steps to determine the cause
of the problem and how to correct it:

s If the error is a numbered error beginning with the letters "SP2", look up the
SQL*Plus message in SQL*Plus Error Messages on page 13-1.

s If the error is a numbered error beginning with the letters "CPY" look up the
SQL*Plus COPY command message in COPY Command Messages on page 13-33.

4-10 SQL*Plus User’s Guide and Reference

Interpreting Error Messages

» If the error is a numbered error beginning with the letters "ORA", look up the
Oracle Database message in the Oracle Database Error Messages guide or in the
platform-specific Oracle documentation provided for your operating system.

s If the error is a numbered error beginning with the letters "PLS", look up the
Oracle Database message in the Oracle Database PL/SQL Language Reference.

If the error is unnumbered, look up correct syntax for the command that generated the
error in Chapter 12, " SQL*Plus Command Reference" for a SQL*Plus command, in the
Oracle Database SQL Language Reference for a SQL command, or in the Oracle Database
PL/SQL Language Reference for a PL/SQL block. Otherwise, contact your DBA.

SQL*Plus Basics 4-11

Interpreting Error Messages

4-12 SQL*Plus User’s Guide and Reference

O

Using Scripts in SQL*Plus

This chapter helps you learn to write and edit scripts containing SQL*Plus commands,
SQL commands, and PL/SQL blocks. It covers the following topics:

Editing Scripts

Editing Scripts in SQL*Plus Command-Line
Placing Comments in Scripts

Running Scripts

Nesting Scripts

Exiting from a Script with a Return Code
Defining Substitution Variables

Using Predefined Variables

Using Substitution Variables

Passing Parameters through the START Command
Communicating with the User

Using Bind Variables

Using REFCURSOR Bind Variables

Read this chapter while sitting at your computer and try out the examples shown.
Before beginning, make sure you have access to the sample schema described in
SQL*Plus Overview on page Xix.

Editing Scripts

In SQL*Plus command-line, the use of an external editor in combination with the @,
@@ or START commands is an effective method of creating and executing generic
scripts. You can write scripts which contain SQL*Plus, SQL and PL/SQL commands,
which you can retrieve and edit. This is especially useful for storing complex
commands or frequently used reports.

Writing Scripts with a System Editor

Your operating system may have one or more text editors that you can use to write
scripts. You can run your operating system's default text editor without leaving the
SQL*Plus command-line by entering the EDIT command.

Using Scripts in SQL*Plus 5-1

Editing Scripts in SQL*Plus Command-Line

You can use the SQL*Plus DEFINE command to define the variable, _EDITOR, to hold
the name of your preferred text editor. For example, to define the editor used by EDIT
to be vi, enter the following command:

DEFINE _EDITOR = vi

You can include an editor definition in your user or site profile so that it is always
enabled when you start SQL*Plus. See SQL*Plus Configuration on page 2-3, the
DEFINE command on page 12-44, and the EDIT command on page 12-58 for more
information.

To create a script with a text editor, enter EDIT followed by the name of the file to edit
or create, for example:

EDIT SALES

EDIT adds the filename extension .SQL to the name unless you specify the file
extension. When you save the script with the text editor, it is saved back into the same
file. EDIT lets you create or modify scripts.

You must include a semicolon at the end of each SQL command and a slash (/) on a
line by itself after each PL/SQL block in the file. You can include multiple SQL
commands and PL/SQL blocks in a script.

Example 5-1 Using a System Editor to Write a SQL Script

Suppose you have composed a query to display a list of salespeople and their
commissions. You plan to run it once a month to keep track of how well each
employee is doing.

To compose and save the query using your system editor, invoke your editor and
create a file to hold your script:

EDIT SALES

Enter each of the following lines in your editor. Do not forget to include the semicolon
at the end of the SQL statement:

COLUMN LAST_NAME HEADING 'LAST NAME'

COLUMN SALARY HEADING 'MONTHLY SALARY' FORMAT $99,999
COLUMN COMMISSION_PCT HEADING 'COMMISSION %' FORMAT 90.90
SELECT LAST_NAME, SALARY, COMMISSION_PCT

FROM EMP_DETAILS_VIEW

WHERE JOB_ID='SA_MAN';

The format model for the column COMMISSION_PCT tells SQL*Plus to display an
initial zero for decimal values, and a zero instead of a blank when the value of
COMMISSION_PCT is zero for a given row. Format models and the COLUMN
command are described in more detail in the COLUMN command on page 12-28 and
in the Oracle Database SQL Language Reference.

Now use your editor's save command to store your query in a file called SALES.SQL.

Editing Scripts in SQL*Plus Command-Line

You can use a number of SQL*Plus commands to edit the SQL command or PL/SQL
block currently stored in the buffer.

Table 5-1, " SQL*Plus Editing Commands" lists the SQL*Plus commands that allow
you to examine or change the command in the buffer without re-entering the
command.

5-2 SQL*Plus User’'s Guide and Reference

Editing Scripts in SQL*Plus Command-Line

Table 5-1 SQL*Plus Editing Commands

Command Abbreviation Purpose

APPEND text A text adds text at the end of the current line
CHANGE/old/new C/old/new changes old to new in the current line
CHANGE/ text C/text deletes text from the current line
CLEAR BUFFER CL BUFF deletes all lines

DEL (none) deletes the current line

DEL n (none) deletes line n

DEL * (none) deletes the current line

DEL n * (none) deletes line 1 through the current line
DEL LAST (none) deletes the last line

DEL m n (none) deletes a range of lines (m to 1)

DEL * n (none) deletes the current line through line n
INPUT I adds one or more lines

INPUT text I text adds a line consisting of text

LIST ; or L lists all lines in the SQL buffer

LIST n Lnorn lists line n

LIST * L * lists the current line

LIST n * Lon* lists line 1 through the current line
LIST LAST L LAST lists the last line

LIST m n Lmn lists a range of lines (1 to n)

LIST * n L *n lists the current line through line n

These are useful if you want to correct or modify a command you have entered.

Listing the Buffer Contents

The SQL buffer contains the last SQL or PL/SQL command. Any editing command
other than LIST and DEL affects only a single line in the buffer. This line is called the
current line. It is marked with an asterisk when you list the current command or block.

Example 5-2 Listing the Buffer Contents

Suppose you want to list the current command. Use the LIST command as shown. (If
you have exited SQL*Plus or entered another SQL command or PL/SQL block since
following the steps in Example 4-3, "Entering a SQL Command", perform the steps in
that example again before continuing.)

LIST

SELECT EMPLOYEE_ID, LAST_NAME, JOB_ID, SALARY
2 FROM EMP_DETAILS_VIEW
3* WHERE SALARY>12000

Notice that the semicolon you entered at the end of the SELECT command is not
listed. This semicolon is necessary to indicate the end of the command when you enter

Using Scripts in SQL*Plus 5-3

Editing Scripts in SQL*Plus Command-Line

it, but it is not part of the SQL command and SQL*Plus does not store it in the SQL
buffer.

Editing the Current Line

The SQL*Plus CHANGE command enables you to edit the current line. Various
actions determine which line is the current line:

s LIST a given line to make it the current line.

= When you LIST or RUN the command in the buffer, the last line of the command
becomes the current line. (Note, that using the slash (/) command to run the
command in the buffer does not affect the current line.)

= If you get an error, the error line automatically becomes the current line.

Example 5-3 Making an Error in Command Entry

Suppose you try to select the JOB_ID column but mistakenly enter it as JO_ID. Enter
the following command, purposely misspelling JOB_ID in the first line:

SELECT EMPLOYEE_ID, LAST_NAME, JO_ID, SALARY
FROM EMP_DETAILS_VIEW
WHERE JOB_ID='SA_MAN';

You see this message on your screen:

SELECT EMPLOYEE_ID, LAST_NAME, JO_ID, SALARY

*

ERROR at line 1:
ORA-00904: invalid column name

Examine the error message; it indicates an invalid column name in line 1 of the query.
The asterisk shows the point of error—the mis-typed column JOB_ID.

Instead of re-entering the entire command, you can correct the mistake by editing the
command in the buffer. The line containing the error is now the current line. Use the
CHANGE command to correct the mistake. This command has three parts, separated
by slashes or any other non-alphanumeric character:

= the word CHANGE or the letter C
= the sequence of characters you want to change
= the replacement sequence of characters

The CHANGE command finds the first occurrence in the current line of the character
sequence to be changed and changes it to the new sequence. You do not need to use
the CHANGE command to re-enter an entire line.

Example 5-4 Correcting the Error
To change JO_ID to JOB_ID, change the line with the CHANGE command:

CHANGE /JO_ID/JOB_ID

The corrected line appears on your screen:

1* SELECT EMPLOYEE_ID, FIRST NAME, JOB_ID, SALARY

5-4 SQL*Plus User’'s Guide and Reference

Editing Scripts in SQL*Plus Command-Line

Now that you have corrected the error, you can use the RUN command to run the
command again:

RUN

SQL*Plus correctly displays the query and its result:

1 SELECT EMPLOYEE_ID, LAST NAME, JOB_ID, SALARY
2 FROM EMP_DETAILS_VIEW
3* WHERE JOB_ID='SA MAN'

EMPLOYEE_ID LAST NAME JOB_ID MONTHLY SALARY
145 Russell SA_MAN $14,000
146 Partners SA_MAN $13,500
147 Errazuriz SA_MAN $12,000
148 Cambrault SA_MAN $11,000
149 Zlotkey SA_MAN $10,500

Note that the column SALARY retains the format you gave it in Example 44,
"Entering a SQL*Plus Command". (If you have left SQL*Plus and started again since
performing Example 44, "Entering a SQL*Plus Command" the column has reverted to
its original format.)

See CHANGE on page 12-24 for information about the significance of case in a
CHANGE command and on using wildcards to specify blocks of text in a CHANGE
command.

Appending Text to a Line
To add text to the end of a line in the buffer, use the APPEND command.
1. Use the LIST command (or the line number) to list the line you want to change.

2. Enter APPEND followed by the text you want to add. If the text you want to add
begins with a blank, separate the word APPEND from the first character of the text
by two blanks: one to separate APPEND from the text, and one to go into the
buffer with the text.

Example 5-5 Appending Text to a Line
To append a space and the clause DESC to line 4 of the current query, first list line 4:

LIST 4

4* ORDER BY SALARY

Next, enter the following command (be sure to type two spaces between APPEND and
DESC):

APPEND DESC

4* ORDER BY SALARY DESC

Type RUN to verify the query:

Using Scripts in SQL*Plus 5-5

Editing Scripts in SQL*Plus Command-Line

1 SELECT EMPLOYEE_ID, LAST NAME, JOB_ID, SALARY
2 FROM EMP_DETAILS_VIEW

3 WHERE JOB_ID='SA MAN'

4* ORDER BY SALARY DESC

EMPLOYEE_ID LAST NAME JOB_ID MONTHLY SALARY
145 Russell SA_MAN $14,000
146 Partners SA_MAN $13,500
147 Errazuriz SA_MAN $12,000
148 Cambrault SA_MAN $11,000
149 zlotkey SA_MAN $10,500
Adding a New Line

To insert a new line after the current line, use the INPUT command.

To insert a line before line 1, enter a zero ("0") and follow the zero with text. SQL*Plus
inserts the line at the beginning of the buffer and all lines are renumbered starting at 1.

0 SELECT EMPLOYEE_ID

Example 5-6 Adding a Line

Suppose you want to add a fourth line to the SQL command you modified in
Example 54, "Correcting the Error". Since line 3 is already the current line, enter
INPUT and press Return.

INPUT

SQL*Plus prompts you for the new line:

Enter the new line. Then press Return.

4 ORDER BY SALARY

SQL*Plus prompts you again for a new line:

Press Return again to indicate that you will not enter any more lines, and then use
RUN to verify and re-run the query.

1 SELECT EMPLOYEE_ID, LAST NAME, JOB_ID, SALARY
2 FROM EMP_DETAILS_VIEW

3 WHERE JOB_ID='SA MAN'

4* ORDER BY SALARY

EMPLOYEE_ID LAST NAME JOB_ID MONTHLY SALARY
149 Zlotkey SA_MAN $10,500
148 Cambrault SA_MAN $11,000
147 Errazuriz SA_MAN $12,000
146 Partners SA_MAN $13,500
145 Russell SA_MAN $14,000

5-6 SQL*Plus User’'s Guide and Reference

Placing Comments in Scripts

Deleting Lines

Use the DEL command to delete lines in the buffer. Enter DEL specifying the line
numbers you want to delete.

Suppose you want to delete the current line to the last line inclusive. Use the DEL
command as shown.

DEL * LAST

DEL makes the following line of the buffer (if any) the current line.

See DEL on page 12-49 for more information.

Placing Comments in Scripts

You can enter comments in a script in three ways:
= using the SQL*Plus REMARK command for single line comments.
= using the SQL comment delimiters /*... */ for single or multi line comments.

= using ANSI/ISO (American National Standards Institute/International Standards
Organization) comments -- for single line comments.

Comments entered at the command-line are not stored in the SQL buffer.

Using the REMARK Command

Using /%...*/

Use the REMARK command on a line by itself in a script, followed by comments on
the same line. To continue the comments on additional lines, enter additional
REMARK commands. Do not place a REMARK command between different lines of a
single SQL command.

REMARK Commission Report;

REMARK to be run monthly.;

COLUMN LAST_NAME HEADING 'LAST_ NAME';

COLUMN SALARY HEADING 'MONTHLY SALARY' FORMAT $99,999;
COLUMN COMMISSION_PCT HEADING 'COMMISSION %' FORMAT 90.90;
REMARK Includes only salesmen;

SELECT LAST NAME, SALARY, COMMISSION_PCT

FROM EMP_DETAILS_VIEW

WHERE JOB_ID='SA_MAN';

Enter the SQL comment delimiters, /*...*/, on separate lines in your script, on the
same line as a SQL command, or on a line in a PL/SQL block.

You must enter a space after the slash-asterisk(/*) beginning a comment.

The comments can span multiple lines, but cannot be nested within one another:

/* Commission Report
to be run monthly. */
COLUMN LAST_NAME HEADING 'LAST NAME';
COLUMN SALARY HEADING 'MONTHLY SALARY' FORMAT $99,999;
COLUMN COMMISSION_PCT HEADING 'COMMISSION %' FORMAT 90.90;
REMARK Includes only salesmen;
SELECT LAST_NAME, SALARY, COMMISSION_PCT
FROM EMP_DETAILS_VIEW
/* Include only salesmen.*/
WHERE JOB_ID='SA_MAN';

Using Scripts in SQL*Plus 5-7

Placing Comments in Scripts

Using --

You can use ANSI/ISO "--" style comments within SQL statements, PL/SQL blocks, or
SQL*Plus commands. Since there is no ending delimiter, the comment cannot span
multiple lines.

For PL/SQL and SQL, enter the comment after a command on a line, or on a line by
itself:

-- Commissions report to be run monthly
DECLARE --block for reporting monthly sales

For SQL*Plus commands, you can only include "--" style comments if they are on a
line by themselves. For example, these comments are legal:

-- set maximum width for LONG to 777
SET LONG 777

This comment is illegal:

SET LONG 777 -- set maximum width for LONG to 777

If you enter the following SQL*Plus command, SQL*Plus interprets it as a comment
and does not execute the command:

-- SET LONG 777

Notes on Placing Comments

SQL*Plus does not have a SQL or PL/SQL command parser. It scans the first few
keywords of each new statement to determine the command type, SQL, PL/SQL or
SQL*Plus. Comments in some locations can prevent SQL*Plus from correctly
identifying the command type, giving unexpected results. The following usage notes
may help you to use SQL*Plus comments more effectively:

1. Do not put comments within the first few keywords of a statement. For example:

CREATE OR REPLACE

2 /* HELLO */
PROCEDURE HELLO AS
BEGIN
DBMS_OUTPUT.PUT_LINE('HELLO') ;
END;
/

~ o Ul W

Warning: Procedure created with compilation errors.

The location of the comment prevents SQL*Plus from recognizing the command as
a command. SQL*Plus submits the PL/SQL block to the server when it sees the
slash "/" at the beginning of the comment, which it interprets as the "/" statement
terminator. Move the comment to avoid this error. For example:

CREATE OR REPLACE PROCEDURE

2 /* HELLO */
HELLO AS
BEGIN
DBMS_OUTPUT.PUT_LINE('HELLO') ;
END;

/

~ o Ul W

Procedure created.

5-8 SQL*Plus User’'s Guide and Reference

Placing Comments in Scripts

Do not put comments after statement terminators (period, semicolon or slash). For
example, if you enter:

SELECT 'Y' FROM DUAL; -- TESTING

You get the following error:

SELECT 'Y' FROM DUAL; -- TESTING

ERROR at line 1:
ORA-00911: invalid character

*

SQL*Plus expects no text after a statement terminator and is unable to process the
command.

Do not put statement termination characters at the end of a comment line or after
comments in a SQL statement or a PL/SQL block. For example, if you enter:

SELECT *
-- COMMENT;

You get the following error:

-- COMMENT

ERROR at line 2:
ORA-00923: FROM keyword not found where expected

*

The semicolon is interpreted as a statement terminator and SQL*Plus submits the
partially formed SQL command to the server for processing, resulting in an error.

Do not use ampersand characters '&' in comments in a SQL statement or PL/SQL
block. For example, if you enter a script such as:

SELECT REGION_NAME, CITY
/* THIS & THAT */

FROM EMP_DETAILS_VIEW
WHERE SALARY>12000;

SQL*Plus interprets text after the ampersand character "&" as a substitution
variable and prompts for the value of the variable, &that:

Enter value for that:
old 2: /* THIS & THAT */

new 2: /* THIS */

REGION_NAME CITY
Americas Seattle
Americas Seattle
Americas Seattle
Europe Oxford
Europe Oxford
Americas Toronto

6 rows selected.

You can SET DEFINE OFF to prevent scanning for the substitution character.

Using Scripts in SQL*Plus 5-9

Running Scripts

For more information on substitution and termination characters, see DEFINE,
SQLTERMINATOR and SQLBLANKLINES in the SET command on page 12-89.

Running Scripts

The START command retrieves a script and runs the commands it contains. Use
START to run a script containing SQL commands, PL/SQL blocks, and SQL*Plus
commands. You can have many commands in the file. Follow the START command
with the name of the file:

START file_name

SQL*Plus assumes the file has a .SQL extension by default.

Example 5-7 Running a Script

To retrieve and run the command stored in SALES.SQL, enter

START SALES

SQL*Plus runs the commands in the file SALES and displays the results of the

commands on your screen, formatting the query results according to the SQL*Plus
commands in the file:

LAST NAME MONTHLY SALARY COMMISSION %
Russell $14,000 0.40
Partners $13,500 0.30
Errazuriz $12,000 0.30
Cambrault $11,000 0.30
Zlotkey $10,500 0.20

You can also use the @ (at sign) command to run a script:

@SALES

The @ and @@ commands list and run the commands in the specified script in the
same manner as START. SET ECHO affects the @ and @@ commands in the same way
as it affects the START command.

To see the commands as SQL*Plus "enters" them, you can SET ECHO ON. The ECHO
system variable controls the listing of the commands in scripts run with the START, @
and @@ commands. Setting the ECHO variable OFF suppresses the listing.

START, @ and @@ leave the last SQL command or PL/SQL block of the script in the
buffer.

Running a Script as You Start SQL*Plus

5-10

To run a script as you start SQL*Plus, use one of the following options:

= Follow the SQLPLUS command with your username, a slash, a space, @, and the
name of the file:

SQLPLUS HR @SALES

SQL*Plus starts, prompts for your password and runs the script.

SQL*Plus User’'s Guide and Reference

Defining Substitution Variables

s Include your username as the first line of the file. Follow the SQLPLUS command
with @ and the filename. SQL*Plus starts, prompts for your password and runs the
file.

Nesting Scripts

To run a series of scripts in sequence, first create a script containing several START
commands, each followed by the name of a script in the sequence. Then run the script
containing the START commands. For example, you could include the following
START commands in a script named SALESRPT:

START Q1SALES
START Q2SALES
START Q3SALES
START Q4SALES
START YRENDSLS

Note: The @@ command may be useful in this example. See the @@
(double at sign) command on page 12-7 for more information.

Exiting from a Script with a Return Code

You can include an EXIT command in a script to return a value when the script
finishes. See the EXIT command on page 12-61 for more information.

You can include a WHENEVER SQLERROR command in a script to automatically exit
SQL*Plus with a return code should your script generate a SQL error. Similarly, you
can include a WHENEVER OSERROR command to automatically exit should an
operating system error occur. See the WHENEVER SQLERROR command on

page 12-193, and the WHENEVER OSERROR command on page 12-192 for more
information.

Defining Substitution Variables

You can define variables, called substitution variables, for repeated use in a single
script by using the SQL*Plus DEFINE command. Note that you can also define
substitution variables to use in titles and to save your keystrokes (by defining a long
string as the value for a variable with a short name).

Example 5-8 Defining a Substitution Variable

To define a substitution variable L_NAME and give it the value "SMITH", enter the
following command:

DEFINE L_NAME = SMITH

To confirm the variable definition, enter DEFINE followed by the variable name:

DEFINE L_NAME

DEFINE L_NAME = "SMITH" (CHAR)

To list all substitution variable definitions, enter DEFINE by itself. Note that any
substitution variable you define explicitly through DEFINE takes only CHAR values
(that is, the value you assign to the variable is always treated as a CHAR datatype).

Using Scripts in SQL*Plus 5-11

Using Predefined Variables

You can define a substitution variable of datatype NUMBER implicitly through the
ACCEPT command. You will learn more about the ACCEPT command.

To delete a substitution variable, use the SQL*Plus command UNDEFINE followed by
the variable name.

Using Predefined Variables

There are eight variables containing SQL*Plus information that are defined during
SQL*Plus installation. These variables can be redefined, referenced or removed the
same as any other variable. They are always available from session to session unless
you explicitly remove or redefine them.

See Also:

Predefined Variables on page 12-46 for a list of the predefined
variables and examples of their use.

Using Substitution Variables

Suppose you want to write a query like the one in SALES (see Example 5-1, "Using a
System Editor to Write a SQL Script") to list the employees with various jobs, not just
those whose job is SA_MAN. You could do that by editing a different value into the
WHERE clause each time you run the command, but there is an easier way.

By using a substitution variable in place of the text, SA_MAN, in the WHERE clause,
you can get the same results you would get if you had written the values into the
command itself.

A substitution variable is preceded by one or two ampersands (&). When SQL*Plus
encounters a substitution variable in a command, SQL*Plus executes the command as
though it contained the value of the substitution variable, rather than the variable
itself.

For example, if the variable SORTCOL has the value JOB_ID and the variable
MYTABLE has the value EMP_DETAILS_VIEW, SQL*Plus executes the commands

SELECT &SORTCOL, SALARY
FROM &MYTABLE
WHERE SALARY>12000;

as if they were

SELECT JOB_ID, SALARY
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000;

Where and How to Use Substitution Variables

You can use substitution variables anywhere in SQL and SQL*Plus commands, except
as the first word entered. When SQL*Plus encounters an undefined substitution
variable in a command, SQL*Plus prompts you for the value.

You can enter any string at the prompt, even one containing blanks and punctuation. If
the SQL command containing the reference should have quote marks around the
variable and you do not include them there, the user must include the quotes when
prompted.

5-12 SQL*Plus User’s Guide and Reference

Using Substitution Variables

SQL*Plus reads your response from the keyboard, even if you have redirected terminal
input or output to a file. If a terminal is not available (if, for example, you run the
script in batch mode), SQL*Plus uses the redirected file.

After you enter a value at the prompt, SQL*Plus lists the line containing the
substitution variable twice: once before substituting the value you enter and once after
substitution. You can suppress this listing by setting the SET command variable
VERIFY to OFE

Example 5-9 Using Substitution Variables

Create a script named STATS, to be used to calculate a subgroup statistic (the
maximum value) on a numeric column:

SELECT &GROUP_COL, MAX(&NUMBER_COL) MAXIMUM
FROM &TABLE
GROUP BY &GROUP_COL

SAVE STATS

Created file STATS

Now run the script STATS:

@STATS

And respond to the prompts for values as shown:

Enter value for group_col: JOB_ID
old 1: SELECT &GROUP_COL,

new 1: SELECT JOB_ID,

Enter value for number_col: SALARY

old 2: MAX (&NUMBER_COL) MAXIMUM
new 2: MAX (SALARY) MAXIMUM
Enter value for table: EMP_DETAILS_VIEW
old 3: FROM &TABLE

new 3: FROM EMP_DETAILS_VIEW

Enter value for group_col: JOB_ID
old 4: GROUP BY &GROUP_COL
new 4: GROUP BY JOB_ID

SQL*Plus displays the following output:

Using Scripts in SQL*Plus 5-13

Using Substitution Variables

JOB_ID MAXIMUM
AC_ACCOUNT 8300
AC_MGR 12000
AD_ASST 4400
AD_PRES 24000
AD_VP 17000
FI_ACCOUNT 9000
FI_MGR 12000
HR_REP 6500
IT_PROG 9000
MK_MAN 13000
MK_REP 6000
JOB_ID MAXIMUM
PR_REP 10000
PU_CLERK 3100
PU_MAN 11000
SA_MAN 14000
SA_REP 11500
SH_CLERK 4200
ST_CLERK 3600
ST_MAN 8200
19 rows selected.

If you wish to append characters immediately after a substitution variable, use a
period to separate the variable from the character. For example:

SELECT SALARY FROM EMP_DETAILS_VIEW WHERE EMPLOYEE_ID='&X.5';
Enter value for X: 20

is interpreted as

SELECT SALARY FROM EMP_DETAILS_VIEW WHERE EMPLOYEE_ID='205';

Avoiding Unnecessary Prompts for Values

Suppose you wanted to expand the file STATS to include the minimum, sum, and
average of the "number" column. You may have noticed that SQL*Plus prompted you
twice for the value of GROUP_COL and once for the value of NUMBER_COL in
Example 5-9, "Using Substitution Variables", and that each GROUP_COL or
NUMBER_COL had a single ampersand in front of it. If you were to add three more
functions—using a single ampersand before each—to the script, SQL*Plus would
prompt you a total of four times for the value of the number column.

You can avoid being re-prompted for the group and number columns by adding a
second ampersand in front of each GROUP_COL and NUMBER_COL in STATS.
SQL*Plus automatically DEFINEs any substitution variable preceded by two
ampersands, but does not DEFINE those preceded by only one ampersand. When you
have defined a variable, SQL*Plus will not prompt for its value in the current session.

Example 5-10 Using Double Ampersands

To expand the script STATS using double ampersands and then run the file, first
suppress the display of each line before and after substitution:

SET VERIFY OFF

5-14 SQL*Plus User’s Guide and Reference

Using Substitution Variables

Now retrieve and edit STATS by entering the following commands:

GET STATS

SELECT &GROUP_COL,

MAX (&NUMBER_COL) MAXIMUM
FROM &TABLE

GROUP BY &GROUP_COL

2* MAX (&NUMBER_COL) MAXIMUM

APPEND ,

2* MAX (&NUMBER_COL) MAXIMUM,

CHANGE/ &/ &&

2* MAX (&&NUMBER_COL) MAXIMUM,

3i

MIN (&&NUMBER_COL) MINIMUM,

41

SUM (&&NUMBER_COL) TOTAL,

51

AVG (&&NUMBER_COL) AVERAGE

61

1* SELECT &GROUP_COL,

CHANGE/ &/ &&

1* SELECT &&GROUP_COL,

7* GROUP BY &GROUP_COL

Using Scripts in SQL*Plus 5-15

Using Substitution Variables

CHANGE/&/ &&/

7* GROUP BY &&GROUP_COL

SAVE STATS2

Created file STATS2

Finally, run the script STATS2 and respond to the prompts as follows:

START STATS2

Enter value for group_col: JOB_ID

Enter value for number_col: SALARY
Enter value for table: EMP_DETAILS_VIEW

SQL*Plus displays the following output:

JOB_ID MAXIMUM MINIMUM TOTAL AVERAGE
AC_ACCOUNT 8300 8300 8300 8300
AC_MGR 12000 12000 12000 12000
AD_ASST 4400 4400 4400 4400
AD_PRES 24000 24000 24000 24000
AD_VP 17000 17000 34000 17000
FI_ACCOUNT 9000 6900 39600 7920
FI_MGR 12000 12000 12000 12000
HR_REP 6500 6500 6500 6500
IT_PROG 9000 4200 28800 5760
MK_MAN 13000 13000 13000 13000
MK_REP 6000 6000 6000 6000
JOB_ID MAXIMUM MINIMUM TOTAL AVERAGE
PR_REP 10000 10000 10000 10000
PU_CLERK 3100 2500 13900 2780
PU_MAN 11000 11000 11000 11000
SA_MAN 14000 10500 61000 12200
SA_REP 11500 6100 250500 8350
SH_CLERK 4200 2500 64300 3215
ST_CLERK 3600 2100 55700 2785
ST _MAN 8200 5800 36400 7280
19 rows selected.

Note that you were prompted for the values of NUMBER_COL and GROUP_COL
only once. If you were to run STATS2 again during the current session, you would be
prompted for TABLE (because its name has a single ampersand and the variable is
therefore not DEFINEd) but not for GROUP_COL or NUMBER_COL (because their
names have double ampersands and the variables are therefore DEFINEd).

Before continuing, set the system variable VERIFY back to ON:

SET VERIFY ON

5-16 SQL*Plus User’s Guide and Reference

Passing Parameters through the START Command

Restrictions

You cannot use substitution variables in the buffer editing commands, APPEND,
CHANGTE, DEL, and INPUT, nor in other commands where substitution would be
meaningless. The buffer editing commands, APPEND, CHANGE, and INPUT, treat
text beginning with "&" or "&&" literally, like any other text string.

System Variables

The following system variables, specified with the SQL*Plus SET command, affect
substitution variables:

System Variable Affect on Substitution Variables

SET CONCAT Defines the character that separates the name of a substitution
variable or parameter from characters that immediately follow
the variable or parameter—by default the period (.).

SET DEFINE Defines the substitution character (by default the ampersand
"&'") and turns substitution on and off.

SET ESCAPE Defines an escape character you can use before the substitution
character. The escape character instructs SQL*Plus to treat the
substitution character as an ordinary character rather than as a
request for variable substitution. The default escape character is
a backslash (\).

SET NUMFORMAT Sets the default format for displaying numbers, including
numeric substitution variables.

SET NUMWIDTH Sets the default width for displaying numbers, including
numeric substitution variables.

SET VERIFY ON Lists each line of the script before and after substitution.

See SET on page 12-89 for more information about system variables.

Passing Parameters through the START Command

You can bypass the prompts for values associated with substitution variables by
passing values to parameters in a script through the START command.

You do this by placing an ampersand (&) followed by a numeral in the script in place
of a substitution variable. Each time you run this script, START replaces each &1 in the
file with the first value (called an argument) after START filename, then replaces each
&2 with the second value, and so forth.

For example, you could include the following commands in a script called MYFILE:

SELECT * FROM EMP_DETAILS_VIEW
WHERE JOB_ID='&1'
AND SALARY='&2';

In the following START command, SQL*Plus would substitute PU_CLERK for &1 and
3100 for &2 in the script MYFILE:

START MYFILE PU_CLERK 3100

When you use arguments with the START command, SQL*Plus DEFINEs each
parameter in the script with the value of the appropriate argument.

Using Scripts in SQL*Plus 5-17

Passing Parameters through the START Command

Example 5-11 Passing Parameters through START
To create a new script based on SALES that takes a parameter specifying the job to be

displayed, enter

GET SALES

1 COLUMN LAST_NAME HEADING 'LAST NAME'

2 COLUMN SALARY HEADING 'MONTHLY SALARY' FORMAT $99,999

3 COLUMN COMMISSION_PCT HEADING 'COMMISSION %' FORMAT 90.90
4 SELECT LAST_NAME, SALARY, COMMISSION_PCT

5 FROM EMP_DETAILS_VIEW

6* WHERE JOB_ID='SA MAN'

6* WHERE JOB_ID='SA_ MAN'

CHANGE /SA_MAN/&1

6* WHERE JOB_ID='&1'

SAVE ONEJOB

Created file ONEJOB

Now run the command with the parameter SA_MAN:

START ONEJOB SA_MAN

SQL*Plus lists the line of the SQL command that contains the parameter, before and
after replacing the parameter with its value, and then displays the output:

old 3: WHERE JOB_ID='&1'

new 3: WHERE JOB_ID='SA_MAN'

LAST NAME MONTHLY SALARY COMMISSION %
Russell $14,000 0.40
Partners $13,500 0.30
Errazuriz $12,000 0.30
Cambrault $11,000 0.30
Zlotkey $10,500 0.20

You can use many parameters in a script. Within a script, you can refer to each
parameter many times, and you can include the parameters in any order.

While you cannot use parameters when you run a command with RUN or slash (/),
you could use substitution variables instead.

Before continuing, return the columns to their original heading by entering the
following command:

CLEAR COLUMN

5-18 SQL*Plus User’s Guide and Reference

Communicating with the User

Communicating with the User

Three SQL*Plus commands—PROMPT, ACCEPT, and PAUSE—help you
communicate with the end user. These commands enable you to send messages to the
screen and receive input from the user, including a simple Return. You can also use
PROMPT and ACCEPT to customize the prompts for values SQL*Plus automatically
generates for substitution variables.

Receiving a Substitution Variable Value

Through PROMPT and ACCEPT, you can send messages to the end user and receive
values from end-user input. PROMPT displays a message you specify on-screen to
give directions or information to the user. ACCEPT prompts the user for a value and
stores it in the substitution variable you specify. Use PROMPT in conjunction with
ACCEPT when a prompt spans more than one line.

Example 5-12 Prompting for and Accepting Input

To direct the user to supply a report title and to store the input in the variable
MYTITLE for use in a subsequent query, first clear the buffer:

CLEAR BUFFER

Next, set up a script as shown and save this file as PROMPT1:

PROMPT Enter a title of up to 30 characters
ACCEPT MYTITLE PROMPT 'Title: '

TTITLE LEFT MYTITLE SKIP 2

SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW

WHERE JOB_ID='SA_MAN'

SAVE PROMPT1

Created file PROMPTI1.sql

The TTITLE command sets the top title for your report. See Defining Page and Report
Titles and Dimensions on page 6-17 for more information about the TTITILE
command.

Finally, run the script, responding to the prompt for the title as shown:

START PROMPT1

Enter a title of up to 30 characters
Title: Department Report
Department Report

EMPLOYEE_ID FIRST_ NAME LAST_NAME SALARY
145 John Russell 14000
146 Karen Partners 13500
147 Alberto Errazuriz 12000
148 Gerald Cambrault 11000
149 Eleni Zlotkey 10500

Before continuing, turn the TTITLE command off:

TTITLE OFF

Using Scripts in SQL*Plus 5-19

Communicating with the User

Customizing Prompts for Substitution Variable

If you want to customize the prompt for a substitution variable value, use PROMPT
and ACCEPT in conjunction with the substitution variable, as shown in the following
example.

Example 5-13 Using PROMPT and ACCEPT in Conjunction with Substitution Variables

As you have seen in Example 5-12, "Prompting for and Accepting Input", SQL*Plus
automatically generates a prompt for a value when you use a substitution variable.
You can replace this prompt by including PROMPT and ACCEPT in the script with the
query that references the substitution variable. First clear the buffer with:

CLEAR BUFFER

To create such a file, enter the following;:

INPUT

PROMPT Enter a valid employee ID

PROMPT For Example 145, 206

ACCEPT ENUMBER NUMBER PROMPT 'Employee ID. :'
SELECT FIRST_NAME, LAST_NAME, SALARY

FROM EMP_DETAILS_VIEW

WHERE EMPLOYEE_ID=&ENUMBER;

Save this file as PROMPT2. Next, run this script. SQL*Plus prompts for the value of
ENUMBER using the text you specified with PROMPT and ACCEPT:

START PROMPT2

SQL*Plus prompts you to enter an Employee ID:

Enter a valid employee ID
For Example 145, 206

Employee ID. :

205

old 3: WHERE EMPLOYEE_ID=&ENUMBER
new 3: WHERE EMPLOYEE_ID= 205

Department Report
FIRST_NAME LAST_NAME SALARY

Shelley Higgins 12000

What would happen if you typed characters instead of numbers? Since you specified
NUMBER after the variable name in the ACCEPT command, SQL*Plus will not accept
a non-numeric value:

Try entering characters instead of numbers to the prompt for "Employee ID.",
SQL*Plus will respond with an error message and prompt you again to re-enter the
correct number:

START PROMPT2

5-20 SQL*Plus User’s Guide and Reference

Using Bind Variables

When SQL*Plus prompts you to enter an Employee ID, enter the word "one" instead of
a number:

Enter a valid employee ID
For Example 145, 206

Employee ID. :

one

SP2-0425: "one" is not a valid number

Sending a Message and Accepting Return as Input

If you want to display a message on the user's screen and then have the user press
Return after reading the message, use the SQL*Plus command PAUSE. For example,
you might include the following lines in a script:

PROMPT Before continuing, make sure you have your account card.
PAUSE Press RETURN to continue.

Clearing the Screen

If you want to clear the screen before displaying a report (or at any other time), include
the SQL*Plus CLEAR command with its SCREEN clause at the appropriate point in
your script, using the following format:

CLEAR SCREEN
Before continuing to the next section, reset all columns to their original formats and
headings by entering the following command:

CLEAR COLUMNS

Using Bind Variables

Bind variables are variables you create in SQL*Plus and then reference in PL/SQL or
SQL. If you create a bind variable in SQL*Plus, you can use the variable as you would
a declared variable in your PL/SQL subprogram and then access the variable from
SQL*Plus. You can use bind variables for such things as storing return codes or
debugging your PL/SQL subprograms.

Because bind variables are recognized by SQL*Plus, you can display their values in
SQL*Plus or reference them in PL/SQL subprograms that you run in SQL*Plus.

Creating Bind Variables
You create bind variables in SQL*Plus with the VARIABLE command. For example
VARIABLE ret_val NUMBER
This command creates a bind variable named ret_val with a datatype of NUMBER. See

the VARIABLE command on page 12-185 for more information. (To list all bind
variables created in a session, type VARIABLE without any arguments.)

Using Scripts in SQL*Plus 5-21

Using REFCURSOR Bind Variables

Referencing Bind Variables

You reference bind variables in PL/SQL by typing a colon (:) followed immediately by
the name of the variable. For example

:ret_val := 1;

To change this bind variable in SQL*Plus, you must enter a PL/SQL block. For
example:

BEGIN
:ret_val:=4;

END;

/

PL/SQL procedure successfully completed.

This command assigns a value to the bind variable named ret_val.

Displaying Bind Variables
To display the value of a bind variable in SQL*Plus, you use the SQL*Plus PRINT
command. For example:

PRINT RET_VAL

RET_VAL

This command displays a bind variable named ret_val. See PRINT on page 12-72 for
more information about displaying bind variables.

Using REFCURSOR Bind Variables

SQL*Plus REFCURSOR bind variables allow SQL*Plus to fetch and format the results
of a SELECT statement contained in a PL/SQL block.

REFCURSOR bind variables can also be used to reference PL/SQL cursor variables in
stored procedures. This enables you to store SELECT statements in the database and
reference them from SQL*Plus.

A REFCURSOR bind variable can also be returned from a stored function.

Example 5-14 Creating, Referencing, and Displaying REFCURSOR Bind Variables
To create, reference and display a REFCURSOR bind variable, first declare a local bind
variable of the REFCURSOR datatype

VARIABLE employee_info REFCURSOR

Next, enter a PL/SQL block that uses the bind variable in an OPEN... FOR SELECT
statement. This statement opens a cursor variable and executes a query. See the Oracle
Database PL/SQL Language Reference for information on the OPEN command and cursor
variables.

In this example we are binding the SQL*Plus employee_info bind variable to the cursor
variable.

5-22 SQL*Plus User’s Guide and Reference

Using REFCURSOR Bind Variables

BEGIN
OPEN :employee_info FOR SELECT EMPLOYEE_ID, SALARY
FROM EMP_DETAILS_VIEW WHERE JOB_ID='SA_MAN' ;
END;
/

PL/SQL procedure successfully completed.

The results from the SELECT statement can now be displayed in SQL*Plus with the
PRINT command.

PRINT employee_info

EMPLOYEE_ID SALARY
145 14000
146 13500
147 12000
148 11000
149 10500

The PRINT statement also closes the cursor. To reprint the results, the PL/SQL block
must be executed again before using PRINT.

Example 5-15 Using REFCURSOR Variables in Stored Procedures

A REFCURSOR bind variable is passed as a parameter to a procedure. The parameter
has a REF CURSOR type. First, define the type.

CREATE OR REPLACE PACKAGE EmpPack AS

TYPE EmpInfoTyp IS REF CURSOR;

PROCEDURE EmpInfoRpt (emp_cv IN OUT EmpInfoTyp);
END EmpPack;
/

Package created.

Next, create the stored procedure containing an OPEN... FOR SELECT statement.

CREATE OR REPLACE PACKAGE BODY EmpPack AS
PROCEDURE EmpInfoRpt (emp_cv IN OUT EmpInfoTyp) AS
BEGIN
OPEN emp_cv FOR SELECT EMPLOYEE_ID, SALARY
FROM EMP_DETAILS_VIEW
WHERE JOB_ID='SA_MAN' ;
END;
END;
/

Procedure created.

Execute the procedure with a SQL*Plus bind variable as the parameter.

VARIABLE cv REFCURSOR
EXECUTE EmpPack.EmpInfoRpt (:cv)

Using Scripts in SQL*Plus 5-23

Using REFCURSOR Bind Variables

PL/SQL procedure successfully completed.

Now print the bind variable.

PRINT cv

EMPLOYEE_ID SALARY
145 14000
146 13500
147 12000
148 11000
149 10500

The procedure can be executed multiple times using the same or a different
REFCURSOR bind variable.

VARIABLE pcv REFCURSOR
EXECUTE EmpInfo_rpt (:pcv)

PL/SQL procedure successfully completed.

PRINT pcv

EMPLOYEE_ID SALARY
145 14000
146 13500
147 12000
148 11000
149 10500

Example 5-16 Using REFCURSOR Variables in Stored Functions
Create a stored function containing an OPEN... FOR SELECT statement:

CREATE OR REPLACE FUNCTION EmpInfo_fn RETURN -
cv_types.EmpInfo IS

resultset cv_types.EmpInfoTyp;

BEGIN

OPEN resultset FOR SELECT EMPLOYEE_ID, SALARY
FROM EMP_DETAILS_VIEW

WHERE JOB_ID='SA_MAN';

RETURN (resultset) ;

END;

/

Function created.

Execute the function.

VARIABLE rc REFCURSOR
EXECUTE :rc := EmpInfo_fn

PL/SQL procedure successfully completed.

5-24 SQL*Plus User’s Guide and Reference

Using REFCURSOR Bind Variables

Now print the bind variable.

PRINT rc

EMPLOYEE_ID SALARY
145 14000
146 13500
147 12000
148 11000
149 10500

The function can be executed multiple times using the same or a different
REFCURSOR bind variable.

EXECUTE :rc := EmpInfo_fn

PL/SQL procedure successfully completed.

Using Scripts in SQL*Plus 5-25

Using REFCURSOR Bind Variables

5-26 SQL*Plus User’s Guide and Reference

6

Formatting SQL*Plus Reports

This chapter explains how to format your query results to produce a finished report.
This chapter does not discuss HTML output, but covers the following topics:

s Formatting Columns

» Clarifying Your Report with Spacing and Summary Lines
= Defining Page and Report Titles and Dimensions

= Storing and Printing Query Results

Read this chapter while sitting at your computer and try out the examples shown.
Before beginning, make sure you have access to the HR sample schema described in
SQL*Plus Quick Start on page xix.

Formatting Columns

Through the SQL*Plus COLUMN command, you can change the column headings and
reformat the column data in your query results.

Changing Column Headings

When displaying column headings, you can either use the default heading or you can
change it using the COLUMN command. The following sections describe how default
headings are derived and how to alter them using the COLUMN command. See the
COLUMN command on page 12-28 for more details.

Default Headings

SQL*Plus uses column or expression names as default column headings when
displaying query results. Column names are often short and cryptic, however, and
expressions can be hard to understand.

Changing Default Headings

You can define a more useful column heading with the HEADING clause of the
COLUMN command, in the following format:

COLUMN column_name HEADING column_heading

Example 6-1 Changing a Column Heading

To produce a report from EMP_DETAILS_VIEW with new headings specified for
LAST_NAME, SALARY, and COMMISSION_PCT, enter the following commands:

COLUMN LAST_NAME HEADING 'LAST NAME'

Formatting SQL*Plus Reports 6-1

Formatting Columns

COLUMN SALARY HEADING 'MONTHLY SALARY'
COLUMN COMMISSION_PCT HEADING COMMISSION
SELECT LAST_NAME, SALARY, COMMISSION_PCT

FROM EMP_DETAILS_VIEW

WHERE JOB_ID='SA_MAN';

LAST NAME MONTHLY SALARY COMMISSION
Russell 14000 4
Partners 13500 .3
Errazuriz 12000 .3
Cambrault 11000 3
Zlotkey 10500 2

Note: The new headings will remain in effect until you enter
different headings, reset each column's format, or exit from SQL*Plus.

To change a column heading to two or more words, enclose the new heading in single
or double quotation marks when you enter the COLUMN command. To display a
column heading on more than one line, use a vertical bar (|) where you want to begin
anew line. (You can use a character other than a vertical bar by changing the setting of
the HEADSEP variable of the SET command. See the SET command on page 12-89 for
more information.)

Example 6-2 Splitting a Column Heading

To give the columns SALARY and LAST_NAME the headings MONTHLY SALARY
and LAST NAME respectively, and to split the new headings onto two lines, enter

COLUMN SALARY HEADING 'MONTHLY‘SALARY'
COLUMN LAST NAME HEADING 'LAST‘NAME'

Now rerun the query with the slash (/) command:

/

LAST MONTHLY

NAME SALARY COMMISSION
Russell 14000 4
Partners 13500 .3
Errazuriz 12000 .3
Cambrault 11000 3
Zlotkey 10500 2

Example 6-3 Setting the Underline Character

To change the character used to underline headings to an equal sign and rerun the
query, enter the following commands:

SET UNDERLINE =
/

6-2 SQL*Plus User’'s Guide and Reference

Formatting Columns

LAST MONTHLY

NAME SALARY COMMISSION
Russell 14000 4
Partners 13500 .3
Errazuriz 12000 .3
Cambrault 11000 3
Zlotkey 10500 2

Now change the underline character back to a dash:

SET UNDERLINE '-'

Note: You must enclose the dash in quotation marks; otherwise,
SQL*Plus interprets the dash as a hyphen indicating that you wish to
continue the command on another line.

Formatting NUMBER Columns

When displaying NUMBER columns, you can either accept the SQL*Plus default
display width or you can change it using the COLUMN command. Later sections
describe the default display and how you can alter it with the COLUMN command.
The format model will stay in effect until you enter a new one, reset the column's
format with

COLUMN column_name CLEAR

or exit from SQL*Plus.

Default Display

A NUMBER column's width equals the width of the heading or the width of the
FORMAT plus one space for the sign, whichever is greater. If you do not explicitly use
FORMAT, then the column's width will always be at least the value of SET
NUMWIDTH.

SQL*Plus normally displays numbers with as many digits as are required for accuracy,
up to a standard display width determined by the value of the NUMWIDTH variable
of the SET command (normally 10). If a number is larger than the value of SET
NUMWIDTH, SQL*Plus rounds the number up or down to the maximum number of
characters allowed if possible, or displays hashes if the number is too large.

You can choose a different format for any NUMBER column by using a format model
in a COLUMN command. A format model is a representation of the way you want the
numbers in the column to appear, using 9s to represent digits.

Changing the Default Display
The COLUMN command identifies the column you want to format and the model you
want to use, as shown:

COLUMN column_name FORMAT model
Use format models to add commas, dollar signs, angle brackets (around negative
values), and leading zeros to numbers in a given column. You can also round the

values to a given number of decimal places, display minus signs to the right of
negative values (instead of to the left), and display values in exponential notation.

Formatting SQL*Plus Reports 6-3

Formatting Columns

To use more than one format model for a single column, combine the desired models
in one COLUMN command (see Example 6—4). See COLUMN on page 12-28 for a
complete list of format models and further details.

Example 6-4 Formatting a NUMBER Column

To display SALARY with a dollar sign, a comma, and the numeral zero instead of a
blank for any zero values, enter the following command:

COLUMN SALARY FORMAT $99,990

Now rerun the current query:

LAST MONTHLY

NAME SALARY COMMISSION
Russell $14,000 4
Partners $13,500 .3
Errazuriz $12,000 .3
Cambrault $11,000 3
Zlotkey $10,500 2

Use a zero in your format model, as shown, when you use other formats such as a
dollar sign and wish to display a zero in place of a blank for zero values.

Formatting Datatypes

When displaying datatypes, you can either accept the SQL*Plus default display width
or you can change it using the COLUMN command. The format model will stay in
effect until you enter a new one, reset the column's format with

COLUMN column_name CLEAR

or exit from SQL*Plus. Datatypes, in this manual, include the following types:
» CHAR

= NCHAR

= VARCHAR?2 (VARCHAR)

= NVARCHAR2 (NCHAR VARYING)

= DATE

= LONG

= BLOB
BFILE

= CLOB

= NCLOB

= XMLIype

6-4 SQL*Plus User’'s Guide and Reference

Formatting Columns

Default Display

The default width of datatype columns is the width of the column in the database. The
column width of a LONG, BLOB, BFILE, CLOB, NCLOB or XMLType defaults to the
value of SET LONGCHUNKSIZE or SET LONG, whichever is the smaller.

The default width and format of unformatted DATE columns in SQL*Plus is
determined by the database NLS_DATE_FORMAT parameter. Otherwise, the default
format width is A9. See the FORMAT clause of the COLUMN command on page 12-28
for more information on formatting DATE columns.

Left justification is the default for datatypes.

Changing the Default Display

You can change the displayed width of a datatype or DATE, by using the COLUMN
command with a format model consisting of the letter A (for alphanumeric) followed
by a number representing the width of the column in characters.

Within the COLUMN command, identify the column you want to format and the
model you want to use:

COLUMN column_name FORMAT model

If you specify a width shorter than the column heading, SQL*Plus truncates the
heading. See the COLUMN command on page 12-28 for more details.

Example 6-5 Formatting a Character Column
To set the width of the column LAST_NAME to four characters and rerun the current
query, enter

COLUMN LAST_NAME FORMAT A4
/

LAST MONTHLY
NAME SALARY COMMISSION

Russ $14,000 .4
ell
Part $13,500 .3
ners
Erra $12,000 .3

LAST MONTHLY
NAME SALARY COMMISSION

Camb $11,000 .3
raul

t

Zlot $10,500 .2
key

If the WRAP variable of the SET command is set to ON (its default value), the
employee names wrap to the next line after the fourth character, as shown in

Formatting SQL*Plus Reports 6-5

Formatting Columns

Example 6-5, "Formatting a Character Column". If WRAP is set to OFF, the names are
truncated (cut off) after the fourth character.

The system variable WRAP controls all columns; you can override the setting of
WRAP for a given column through the WRAPPED, WORD_WRAPPED, and
TRUNCATED clauses of the COLUMN command. See the COLUMN command on
page 12-28 for more information on these clauses. You will use the WORD_WRAPPED
clause of COLUMN later in this chapter.

NCLOB, BLOB, BFILE or multibyte CLOB columns cannot be formatted with the
WORD_WRAPPED option. If you format an NCLOB, BLOB, BFILE or multibyte
CLOB column with COLUMN WORD_WRAPPED, the column data behaves as
though COLUMN WRAPPED was applied instead.

Note: The column heading is truncated regardless of the setting of
WRAP or any COLUMN command clauses.

Now return the column to its previous format:

COLUMN LAST_NAME FORMAT Al0Q

Example 6-6 Formatting an XMLType Column

Before illustrating how to format an XMLType column, you must create a table with an
XMLType column definition, and insert some data into the table. You can create an
XMLType column like any other user-defined column. To create a table containing an
XMLIype column, enter

CREATE TABLE warehouses (
warehouse_id NUMBER(3),
warehouse_spec SYS.XMLTYPE,
warehouse_name VARCHAR2 (35),
location_id NUMBER(4));

To insert a new record containing warehouse_id and warehouse_spec values into the
new warehouses table, enter

INSERT into warehouses (warehouse_id, warehouse_spec)
VALUES (100, sys.XMLTYPE.createXML (
'<Warehouse whNo="100">
<Building>Owned</Building>
</Warehouse>"'));

To set the XMLType column width to 20 characters and then select the XMLType
column, enter

COLUMN Building FORMAT A20

SELECT
w.warehouse_spec.extract (' /Warehouse/Building/text () ') .getStringVal ()
"Building"
FROM warehouses w;

Building

6-6 SQL*Plus User’'s Guide and Reference

Formatting Columns

For more information about the createXML, extract, text and getStringVal functions,
and about creating and manipulating XMLType data, see Oracle Database PL/SQL
Packages and Types Reference.

Copying Column Display Attributes

When you want to give more than one column the same display attributes, you can
reduce the length of the commands you must enter by using the LIKE clause of the
COLUMN command. The LIKE clause tells SQL*Plus to copy the display attributes of
a previously defined column to the new column, except for changes made by other
clauses in the same command.

Example 6-7 Copying a Column's Display Attributes

To give the column COMMISSION_PCT the same display attributes you gave to
SALARY, but to specify a different heading, enter the following command:

COLUMN COMMISSION_PCT LIKE SALARY HEADING BONUS

Rerun the query:
/

LAST MONTHLY

NAME SALARY BONUS
Russell $14,000 S0
Partners $13,500 $0
Errazuriz $12,000 $0
Cambrault $11,000 S0
Zlotkey $10,500 $0

Listing and Resetting Column Display Attributes

To list the current display attributes for a given column, use the COLUMN command
followed by the column name only, as shown:

COLUMN column_name

To list the current display attributes for all columns, enter the COLUMN command
with no column names or clauses after it:

COLUMN

To reset the display attributes for a column to their default values, use the CLEAR
clause of the COLUMN command as shown:

COLUMN column_name CLEAR

Example 6-8 Resetting Column Display Attributes to their Defaults
To reset all column display attributes to their default values, enter:

CLEAR COLUMNS

columns cleared

Formatting SQL*Plus Reports 6-7

Formatting Columns

Suppressing and Restoring Column Display Attributes

You can suppress and restore the display attributes you have given a specific column.
To suppress a column's display attributes, enter a COLUMN command in the
following form:

COLUMN column_name OFF
OFF tells SQL*Plus to use the default display attributes for the column, but does not

remove the attributes you have defined through the COLUMN command. To restore
the attributes you defined through COLUMN, use the ON clause:

COLUMN column_name ON

Printing a Line of Characters after Wrapped Column Values

As you have seen, by default SQL*Plus wraps column values to additional lines when
the value does not fit the column width. If you want to insert a record separator (a line
of characters or a blank line) after each wrapped line of output (or after every row),
use the RECSEP and RECSEPCHAR variables of the SET command.

RECSEP determines when the line of characters is printed; you set RECSEP to EACH
to print after every line, to WRAPPED to print after wrapped lines, and to OFF to
suppress printing. The default setting of RECSEP is WRAPPED.

RECSEPCHAR sets the character printed in each line. You can set RECSEPCHAR to
any character.

You may wish to wrap whole words to additional lines when a column value wraps to
additional lines. To do so, use the WORD_WRAPPED clause of the COLUMN
command as shown:

COLUMN column_name WORD_WRAPPED

Example 6-9 Printing a Line of Characters after Wrapped Column Values

To print a line of dashes after each wrapped column value, enter the commands:

SET RECSEP WRAPPED
SET RECSEPCHAR "-"

Finally, enter the following query:

SELECT LAST_NAME, JOB_TITLE, CITY
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000;

Now restrict the width of the column JOB_TITLE and tell SQL*Plus to wrap whole
words to additional lines when necessary:

COLUMN JOB_TITLE FORMAT A2(0 WORD_WRAPPED

Run the query:
/

6-8 SQL*Plus User’'s Guide and Reference

Clarifying Your Report with Spacing and Summary Lines

LAST_NAME JOB_TITLE CITY

King President Seattle

Kochhar Administration Vice Seattle
President

De Haan Administration Vice Seattle
President

Russell Sales Manager Oxford

Partners Sales Manager Oxford

Hartstein Marketing Manager Toronto

6 rows selected.

If you set RECSEP to EACH, SQL*Plus prints a line of characters after every row (after
every department, for the above example).

Before continuing, set RECSEP to OFF to suppress the printing of record separators:

SET RECSEP OFF

Clarifying Your Report with Spacing and Summary Lines

When you use an ORDER BY clause in your SQL SELECT command, rows with the
same value in the ordered column (or expression) are displayed together in your
output. You can make this output more useful to the user by using the SQL*Plus
BREAK and COMPUTE commands to create subsets of records and add space or
summary lines after each subset.

The column you specify in a BREAK command is called a break column. By including
the break column in your ORDER BY clause, you create meaningful subsets of records
in your output. You can then add formatting to the subsets within the same BREAK
command, and add a summary line (containing totals, averages, and so on) by
specifying the break column in a COMPUTE command.

SELECT DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW

WHERE SALARY > 12000

ORDER BY DEPARTMENT_ID;

DEPARTMENT_ID LAST NAME SALARY
20 Hartstein 13000
80 Russell 14000
80 Partners 13500
90 King 24000
90 Kochhar 17000
90 De Haan 17000

6 rows selected.

To make this report more useful, you would use BREAK to establish DEPARTMENT _
ID as the break column. Through BREAK you could suppress duplicate values in
DEPARTMENT_ID and place blank lines or begin a new page between departments.
You could use BREAK in conjunction with COMPUTE to calculate and print summary
lines containing the total salary for each department and for all departments. You

Formatting SQL*Plus Reports 6-9

Clarifying Your Report with Spacing and Summary Lines

could also print summary lines containing the average, maximum, minimum,
standard deviation, variance, or row count.

Suppressing Duplicate Values in Break Columns

The BREAK command suppresses duplicate values by default in the column or
expression you name. Thus, to suppress the duplicate values in a column specified in
an ORDER BY clause, use the BREAK command in its simplest form:

BREAK ON break_column

Note: Whenever you specify a column or expression in a BREAK
command, use an ORDER BY clause specifying the same column or
expression. If you do not do this, breaks occur every time the column
value changes.

Example 6—10 Suppressing Duplicate Values in a Break Column

To suppress the display of duplicate department numbers in the query results shown,
enter the following commands:

BREAK ON DEPARTMENT_ID;

For the following query (which is the current query stored in the buffer):

SELECT DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW

WHERE SALARY > 12000

ORDER BY DEPARTMENT_ID;

DEPARTMENT_ID LAST NAME SALARY
20 Hartstein 13000
80 Russell 14000
Partners 13500
90 King 24000
Kochhar 17000
De Haan 17000
6 rows selected.

Inserting Space when a Break Column's Value Changes

You can insert blank lines or begin a new page each time the value changes in the
break column. To insert n blank lines, use the BREAK command in the following form:

BREAK ON break _column SKIP n

To skip a page, use the command in this form:

BREAK ON break column SKIP PAGE

Example 6-11 Inserting Space when a Break Column's Value Changes

To place one blank line between departments, enter the following command:

BREAK ON DEPARTMENT_ID SKIP 1

Now rerun the query:

6-10 SQL*Plus User’s Guide and Reference

Clarifying Your Report with Spacing and Summary Lines

DEPARTMENT_ID LAST NAME SALARY
20 Hartstein 13000
80 Russell 14000
Partners 13500
90 King 24000
Kochhar 17000
De Haan 17000
6 rows selected.

Inserting Space after Every Row

You may wish to insert blank lines or a blank page after every row. To skip n lines after
every row, use BREAK in the following form:

BREAK ON ROW SKIP n

To skip a page after every row, use

BREAK ON ROW SKIP PAGE

Note: SKIP PAGE does not cause a physical page break character to
be generated unless you have also specified NEWPAGE 0.

Using Multiple Spacing Techniques

Suppose you have more than one column in your ORDER BY clause and wish to insert
space when each column's value changes. Each BREAK command you enter replaces
the previous one. Thus, if you want to use different spacing techniques in one report or
insert space after the value changes in more than one ordered column, you must
specify multiple columns and actions in a single BREAK command.

Example 6—12 Combining Spacing Techniques
Type the following:

SELECT DEPARTMENT_ID, JOB_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW

WHERE SALARY>12000

ORDER BY DEPARTMENT_ID, JOB_ID;

Now, to skip a page when the value of DEPARTMENT_ID changes and one line when
the value of JOB_ID changes, enter the following command:

BREAK ON DEPARTMENT_ID SKIP PAGE ON JOB_ID SKIP 1

To show that SKIP PAGE has taken effect, create a TTITLE with a page number:

TTITLE COL 35 FORMAT 9 'Page:' SQL.PNO

Run the new query to see the results:

Formatting SQL*Plus Reports 6-11

Clarifying Your Report with Spacing and Summary Lines

Page: 1
DEPARTMENT_ID JOB_ID LAST_NAME SALARY
20 MK_MAN Hartstein 13000

Page: 2
DEPARTMENT_ID JOB_ID LAST_NAME SALARY
80 SA_MAN Russell 14000
Partners 13500

Page: 3
DEPARTMENT_ID JOB_ID LAST_NAME SALARY
90 AD_PRES King 24000
AD_VP Kochhar 17000
De Haan 17000

6 rows selected.

Listing and Removing Break Definitions
Before continuing, turn off the top title display without changing its definition:

TTITLE OFF

You can list your current break definition by entering the BREAK command with no
clauses:

BREAK

You can remove the current break definition by entering the CLEAR command with
the BREAKS clause:

CLEAR BREAKS

You may wish to place the command CLEAR BREAKS at the beginning of every script
to ensure that previously entered BREAK commands will not affect queries you run in
a given file.

Computing Summary Lines when a Break Column's Value Changes

If you organize the rows of a report into subsets with the BREAK command, you can
perform various computations on the rows in each subset. You do this with the
functions of the SQL*Plus COMPUTE command. Use the BREAK and COMPUTE
commands together in the following forms:

BREAK ON break_column
COMPUTE function LABEL label_name OF column column column
. ON break_column

You can include multiple break columns and actions, such as skipping lines in the
BREAK command, as long as the column you name after ON in the COMPUTE
command also appears after ON in the BREAK command. To include multiple break
columns and actions in BREAK when using it in conjunction with COMPUTE, use
these commands in the following forms:

BREAK ON break column_1 SKIP PAGE ON break_column_2 SKIP 1
COMPUTE function LABEL label_name OF column column column

6-12 SQL*Plus User’s Guide and Reference

Clarifying Your Report with Spacing and Summary Lines

. ON break_column_2

The COMPUTE command has no effect without a corresponding BREAK command.

You can COMPUTE on NUMBER columns and, in certain cases, on all types of
columns. For more information see the COMPUTE command on page 12-36.

The following table lists compute functions and their effects

Table 6-1 Compute Functions

Function... Computes the...

SUM Sum of the values in the column.

MINIMUM Minimum value in the column.

MAX IMUM Maximum value in the column.

AVG Average of the values in the column.

STD Standard deviation of the values in the column.
VARIANCE Variance of the values in the column.

COUNT Number of non-null values in the column.
NUMBER Number of rows in the column.

The function you specify in the COMPUTE command applies to all columns you enter
after OF and before ON. The computed values print on a separate line when the value
of the ordered column changes.

Labels for ON REPORT and ON ROW computations appear in the first column;
otherwise, they appear in the column specified in the ON clause.

You can change the compute label by using COMPUTE LABEL. If you do not define a
label for the computed value, SQL*Plus prints the unabbreviated function keyword.

The compute label can be suppressed by using the NOPRINT option of the COLUMN
command on the break column. See the COMPUTE command on page 12-36 for more
details. If you use the NOPRINT option for the column on which the COMPUTE is
being performed, the COMPUTE result is also suppressed.

Example 6-13 Computing and Printing Subtotals

To compute the total of SALARY by department, first list the current BREAK
definition:

BREAK

which displays current BREAK definitions:

break on DEPARTMENT_ID page nodup
on JOB_ID skip 1 nodup

Now enter the following COMPUTE command and run the current query:

COMPUTE SUM OF SALARY ON DEPARTMENT_ID
/

Formatting SQL*Plus Reports 6-13

Clarifying Your Report with Spacing and Summary Lines

DEPARTMENT_ID JOB_ID LAST_NAME SALARY
20 MK_MAN Hartstein 13000
khkkkkhkkhkhkkkkkhkkk *xkkkkkkkkx 0 ___
sum 13000
DEPARTMENT_ID JOB_ID LAST_NAME SALARY
80 SA_MAN Russell 14000

Partners 13500

khkkkkhkkkhkkhkkkhkkkk *kkkkkkkkk

sum 27500
DEPARTMENT_ID JOB_ID LAST_NAME SALARY
"""""" %0 ap_PRES King 24000
AD_VP Kochhar 17000

De Haan 17000

khkkkkhkkkhkkhkkkhkkkk *hkkkkkkkk*

sum 58000

6 rows selected.

To compute the sum of salaries for departments 10 and 20 without printing the
compute label:

COLUMN DUMMY NOPRINT;

COMPUTE SUM OF SALARY ON DUMMY;

BREAK ON DUMMY SKIP 1;

SELECT DEPARTMENT_ID DUMMY,DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW

WHERE SALARY>12000

ORDER BY DEPARTMENT_ID;

DEPARTMENT_ID LAST NAME SALARY
20 Hartstein 13000
13000
80 Russell 14000
80 Partners 13500
27500
90 King 24000
90 Kochhar 17000
90 De Haan 17000
58000
6 rows selected.

To compute the salaries just at the end of the report:

6-14 SQL*Plus User’s Guide and Reference

Clarifying Your Report with Spacing and Summary Lines

COLUMN DUMMY NOPRINT;

COMPUTE SUM OF SALARY ON DUMMY;

BREAK ON DUMMY;

SELECT NULL DUMMY,DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW

WHERE SALARY>12000

ORDER BY DEPARTMENT_ID;

DEPARTMENT_ID LAST NAME SALARY
20 Hartstein 13000
80 Russell 14000
80 Partners 13500
90 King 24000
90 Kochhar 17000
90 De Haan 17000
98500
6 rows selected.

When you establish the format of a NUMBER column, you must allow for the size of
the sums included in the report.

Computing Summary Lines at the End of the Report

You can calculate and print summary lines based on all values in a column by using
BREAK and COMPUTE in the following forms:

BREAK ON REPORT
COMPUTE function LABEL label_name OF column column column
. ON REPORT

Example 6-14 Computing and Printing a Grand Total

To calculate and print the grand total of salaries for all sales people and change the
compute label, first enter the following BREAK and COMPUTE commands:

BREAK ON REPORT
COMPUTE SUM LABEL TOTAL OF SALARY ON REPORT

Next, enter and run a new query:

SELECT LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE JOB_ID='SA_MAN';

LAST_ NAME SALARY
Russell 14000
Partners 13500
Errazuriz 12000
Cambrault 11000
Zlotkey 10500
TOTAL 61000

To print a grand total (or grand average, grand maximum, and so on) in addition to
subtotals (or sub-averages, and so on), include a break column and an ON REPORT

Formatting SQL*Plus Reports 6-15

Clarifying Your Report with Spacing and Summary Lines

clause in your BREAK command. Then, enter one COMPUTE command for the break
column and another to compute ON REPORT:

BREAK ON break_column ON REPORT
COMPUTE function LABEL label_name OF column ON break_column
COMPUTE function LABEL label _name OF column ON REPORT

Computing Multiple Summary Values and Lines

You can compute and print the same type of summary value on different columns. To
do so, enter a separate COMPUTE command for each column.

Example 6—-15 Computing the Same Type of Summary Value on Different Columns

To print the total of salaries and commissions for all sales people, first enter the
following COMPUTE command:

COMPUTE SUM OF SALARY COMMISSION_PCT ON REPORT
You do not have to enter a BREAK command; the BREAK you entered in

Example 6-14, "Computing and Printing a Grand Total" is still in effect. Now, change
the first line of the select query to include COMMISSION_PCT:

1

1* SELECT LAST_NAME, SALARY

APPEND , COMMISSION_PCT;

Finally, run the revised query to see the results:

/

LAST_NAME SALARY COMMISSION_PCT
Russell 14000 4
Partners 13500 .3
Errazuriz 12000 .3
Cambrault 11000 3
Zlotkey 10500 2
sum 61000 1.5

You can also print multiple summary lines on the same break column. To do so,
include the function for each summary line in the COMPUTE command as follows:

COMPUTE function LABEL label_name function
LABEL label_name function LABEL Iabel_name ...
OF column ON break_column

If you include multiple columns after OF and before ON, COMPUTE calculates and
prints values for each column you specify.

Example 6-16 Computing Multiple Summary Lines on the Same Break Column

To compute the average and sum of salaries for the sales department, first enter the
following BREAK and COMPUTE commands:

BREAK ON DEPARTMENT_ID

6-16 SQL*Plus User’s Guide and Reference

Defining Page and Report Titles and Dimensions

COMPUTE AVG SUM OF SALARY ON DEPARTMENT_ID

Now, enter and run the following query:

SELECT DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW

WHERE DEPARTMENT_ID = 30

ORDER BY DEPARTMENT_ID, SALARY;

DEPARTMENT_ID LAST NAME SALARY

30 Colmenares 2500

Himuro 2600

Tobias 2800

Baida 2900

Khoo 3100

Raphaely 11000

kkkkkkkkkxkxxkx

avg 4150

sum 24900
6 rows selected.

Listing and Removing COMPUTE Definitions

You can list your current COMPUTE definitions by entering the COMPUTE command
with no clauses:

COMPUTE

Example 6-17 Removing COMPUTE Definitions

To remove all COMPUTE definitions and the accompanying BREAK definition, enter
the following commands:

CLEAR BREAKS

breaks cleared

CLEAR COMPUTES

computes cleared

You may wish to place the commands CLEAR BREAKS and CLEAR COMPUTES at
the beginning of every script to ensure that previously entered BREAK and
COMPUTE commands will not affect queries you run in a given file.

Defining Page and Report Titles and Dimensions

The word page refers to a screen full of information on your display or a page of a
spooled (printed) report. You can place top and bottom titles on each page, set the
number of lines per page, and determine the width of each line.

The word report refers to the complete results of a query. You can also place headers
and footers on each report and format them in the same way as top and bottom titles
on pages.

Formatting SQL*Plus Reports 6-17

Defining Page and Report Titles and Dimensions

Setting the Top and Bottom Titles and Headers and Footers

As you have already seen, you can set a title to display at the top of each page of a
report. You can also set a title to display at the bottom of each page. The TTITLE
command defines the top title; the BTITLE command defines the bottom title.

You can also set a header and footer for each report. The REPHEADER command
defines the report header; the REPFOOTER command defines the report footer.

A TTITLE, BTITLE, REPHEADER or REPFOOTER command consists of the command
name followed by one or more clauses specifying a position or format and a CHAR
value you wish to place in that position or give that format. You can include multiple
sets of clauses and CHAR values:

TTITLE position_clause(s) char _value position_clause(s) char_value ...
BTITLE position_clause(s) char value position_clause(s) char_value ...
REPHEADER position_clause(s) char_value position_clause(s) char_value ...
REPFOOTER position_clause(s) char_value position_clause(s) char_value ...

For descriptions of all TTITLE, BTITLE, REPHEADER and REPFOOTER clauses, see
the TTITLE command on page 12-181 and the REPHEADER command on page 12-84.

Example 6-18 Placing a Top and Bottom Title on a Page
To put titles at the top and bottom of each page of a report, enter

TTITLE CENTER -
"ACME SALES DEPARTMENT PERSONNEL REPORT"
BTITLE CENTER "COMPANY CONFIDENTIAL"

Now run the current query:

/
ACME SALES DEPARTMENT PERSONNEL REPORT

DEPARTMENT_ID LAST NAME SALARY

30 Colmenares 2500

30 Himuro 2600

30 Tobias 2800

30 Baida 2900

30 Khoo 3100

30 Raphaely 11000

COMPANY CONFIDENTIAL

6 rows selected.

Example 6-19 Placing a Header on a Report
To put a report header on a separate page, and to center it, enter

REPHEADER PAGE CENTER 'PERFECT WIDGETS'

Now run the current query:

/

which displays the following two pages of output, with the new REPHEADER
displayed on the first page:

6-18 SQL*Plus User’s Guide and Reference

Defining Page and Report Titles and Dimensions

ACME SALES DEPARTMENT PERSONNEL REPORT
PERFECT WIDGETS

COMPANY CONFIDENTIAL

ACME SALES DEPARTMENT PERSONNEL REPORT

DEPARTMENT_ID LAST NAME SALARY
30 Colmenares 2500
30 Himuro 2600
30 Tobias 2800
30 Baida 2900
30 Khoo 3100
30 Raphaely 11000

COMPANY CONFIDENTIAL

6 rows selected.

To suppress the report header without changing its definition, enter

REPHEADER OFF

Positioning Title Elements

The report in the preceding exercises might look more attractive if you give the
company name more emphasis and place the type of report and the department name
on either end of a separate line. It may also help to reduce the line size and thus center
the titles more closely around the data.

You can accomplish these changes by adding some clauses to the TTITLE command
and by resetting the system variable LINESIZE, as the following example shows.

You can format report headers and footers in the same way as BTITLE and TTITLE
using the REPHEADER and REPFOOTER commands.

Example 6-20 Positioning Title Elements

To redisplay the personnel report with a repositioned top title, enter the following
commands:

TTITLE CENTER 'ACME WIDGET' SKIP 1 -

CENTER ==================== SKIP 1 LEFT 'PERSONNEL REPORT' -
RIGHT 'SALES DEPARTMENT' SKIP 2

SET LINESIZE 60

/

Formatting SQL*Plus Reports 6-19

Defining Page and Report Titles and Dimensions

ACME WIDGET
PERSONNEL REPORT SALES DEPARTMENT
DEPARTMENT_ID LAST NAME SALARY
30 Colmenares 2500
30 Himuro 2600
30 Tobias 2800
30 Baida 2900
30 Khoo 3100
30 Raphaely 11000
COMPANY CONFIDENTIAL
6 rows selected.

The LEFT, RIGHT, and CENTER clauses place the following values at the beginning,
end, and center of the line. The SKIP clause tells SQL*Plus to move down one or more
lines.

Note that there is no longer any space between the last row of the results and the
bottom title. The last line of the bottom title prints on the last line of the page. The
amount of space between the last row of the report and the bottom title depends on
the overall page size, the number of lines occupied by the top title, and the number of
rows in a given page. In the above example, the top title occupies three more lines than
the top title in the previous example. You will learn to set the number of lines per page
later in this chapter.

To always print n blank lines before the bottom title, use the SKIP n clause at the
beginning of the BTITLE command. For example, to skip one line before the bottom
title in the example above, you could enter the following command:

BTITLE SKIP 1 CENTER 'COMPANY CONFIDENTIAL'

Indenting a Title Element

You can use the COL clause in TTITLE or BTITLE to indent the title element a specific
number of spaces. For example, COL 1 places the following values in the first
character position, and so is equivalent to LEFT, or an indent of zero. COL 15 places
the title element in the 15th character position, indenting it 14 spaces.

Example 6-21 Indenting a Title Element

To print the company name left-aligned with the report name indented five spaces on
the next line, enter

TTITLE LEFT 'ACME WIDGET' SKIP 1 -
COL 6 'SALES DEPARTMENT PERSONNEL REPORT' SKIP 2

Now rerun the current query to see the results:

/

6-20 SQL*Plus User’s Guide and Reference

Defining Page and Report Titles and Dimensions

ACME WIDGET
SALES DEPARTMENT PERSONNEL REPORT

DEPARTMENT_ID LAST NAME SALARY
30 Colmenares 2500
30 Himuro 2600
30 Tobias 2800
30 Baida 2900
30 Khoo 3100
30 Raphaely 11000

COMPANY CONFIDENTIAL

6 rows selected.

Entering Long Titles

If you need to enter a title greater than 500 characters in length, you can use the
SQL*Plus command DEFINE to place the text of each line of the title in a separate
substitution variable:

DEFINE LINEL = 'This is the first line...®

DEFINE LINE2 = 'This is the second line...'

DEFINE LINE3 = 'This is the third line...®

Then, reference the variables in your TTITLE or BTITLE command as follows:

TTITLE CENTER LINEl SKIP 1 CENTER LINE2 SKIP 1 -
CENTER LINE3

Displaying System-Maintained Values in Titles

You can display the current page number and other system-maintained values in your
title by entering a system value name as a title element, for example:

TTITLE LEFT system-maintained_value_name

There are five system-maintained values you can display in titles, the most commonly
used of which is SQL.PNO (the current page number). See TTITLE on page 12-181 for
a list of system-maintained values you can display in titles.

Example 6—22 Displaying the Current Page Number in a Title

To display the current page number at the top of each page, along with the company
name, enter the following command:

TTITLE LEFT 'ACME WIDGET' RIGHT 'PAGE:' SQL.PNO SKIP 2

Now rerun the current query:

/

Formatting SQL*Plus Reports 6-21

Defining Page and Report Titles and Dimensions

ACMEWIDGET PAGE: 1
DEPARTMENT_ID LAST NAME SALARY

30 Colmenares 2500

30 Himuro 2600

30 Tobias 2800

30 Baida 2900

30 Khoo 3100

30 Raphaely 11000

COMPANY CONFIDENTIAL

6 rows selected.

Note that SQL.PNO has a format ten spaces wide. You can change this format with the
FORMAT clause of TTITLE (or BTITLE).

Example 6-23 Formatting a System-Maintained Value in a Title

To close up the space between the word PAGE: and the page number, reenter the
TTITLE command as shown:

TTITLE LEFT 'ACME WIDGET' RIGHT 'PAGE:' FORMAT 999 -
SQL.PNO SKIP 2

Now rerun the query:

/
ACME WIDGET 'PAGE:"' 1
DEPARTMENT_ID LAST NAME SALARY

30 Colmenares 2500

30 Himuro 2600

30 Tobias 2800

30 Baida 2900

30 Khoo 3100

30 Raphaely 11000

COMPANY CONFIDENTIAL

6 rows selected.

Listing, Suppressing, and Restoring Page Title Definitions

To list a page title definition, enter the appropriate title command with no clauses:

TTITLE
BTITLE

To suppress a title definition, enter:

TTITLE OFF
BTITLE OFF

6-22 SQL*Plus User’s Guide and Reference

Defining Page and Report Titles and Dimensions

These commands cause SQL*Plus to cease displaying titles on reports, but do not clear
the current definitions of the titles. You may restore the current definitions by entering:

TTITLE ON
BTITLE ON

Displaying Column Values in Titles

You may wish to create a master/detail report that displays a changing master column
value at the top of each page with the detail query results for that value underneath.
You can reference a column value in a top title by storing the desired value in a
variable and referencing the variable in a TTITLE command. Use the following form of
the COLUMN command to define the variable:

COLUMN column_name NEW_VALUE variable_ name

You must include the master column in an ORDER BY clause and in a BREAK
command using the SKIP PAGE clause.

Example 6—24 Creating a Master/Detail Report

Suppose you want to create a report that displays two different managers' employee
numbers, each at the top of a separate page, and the people reporting to the manager
on the same page as the manager's employee number. First create a variable,
MGRVAR, to hold the value of the current manager's employee number:

COLUMN MANAGER_ID NEW_VALUE MGRVAR NOPRINT

Because you will only display the managers' employee numbers in the title, you do not
want them to print as part of the detail. The NOPRINT clause you entered above tells
SQL*Plus not to print the column MANAGER_ID.

Next, include a label and the value in your page title, enter the proper BREAK
command, and suppress the bottom title from the last example:

TTITLE LEFT 'Manager: ' MGRVAR SKIP 2
BREAK ON MANAGER_ID SKIP PAGE
BTITLE OFF

Finally, enter and run the following query:

SELECT MANAGER_ID, DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW

WHERE MANAGER_ID IN (101, 201)

ORDER BY MANAGER_ID, DEPARTMENT_ID;

Formatting SQL*Plus Reports 6-23

Defining Page and Report Titles and Dimensions

Manager: 101

DEPARTMENT_ID LAST_NAME SALARY
10 Whalen 4400
40 Mavris 6500
70 Baer 10000
100 Greenberg 12000
110 Higgins 12000

Manager: 201

DEPARTMENT_ID LAST_NAME SALARY
20 Fay 6000

6 rows selected.

If you want to print the value of a column at the bottom of the page, you can use the
COLUMN command in the following form:

COLUMN column_name OLD_VALUE variable_ name

SQL*Plus prints the bottom title as part of the process of breaking to a new page—after
finding the new value for the master column. Therefore, if you simply referenced the
NEW_VALUE of the master column, you would get the value for the next set of
details. OLD_VALUE remembers the value of the master column that was in effect
before the page break began.

Displaying the Current Date in Titles

You can, of course, date your reports by simply typing a value in the title. This is
satisfactory for ad hoc reports, but if you want to run the same report repeatedly, you
would probably prefer to have the date automatically appear when the report is run.
You can do this by creating a variable to hold the current date.

You can reference the predefined substitution variable _DATE to display the current
date in a title as you would any other variable.

The date format model you include in your LOGIN file or in your SELECT statement
determines the format in which SQL*Plus displays the date. See your Oracle Database
SQL Language Reference for more information on date format models. See Modifying
Your LOGIN File on page 2-4 for more information about the LOGIN file.

You can also enter these commands interactively. See COLUMN on page 12-28 for
more information.

Setting Page Dimensions

Typically, a page of a report contains the number of blank line(s) set in the NEWPAGE
variable of the SET command, a top title, column headings, your query results, and a
bottom title. SQL*Plus displays a report that is too long to fit on one page on several
consecutive pages, each with its own titles and column headings. The amount of data
SQL*Plus displays on each page depends on the current page dimensions.

The default page dimensions used by SQL*Plus are shown underneath:

= number of lines before the top title: 1

6-24 SQL*Plus User’s Guide and Reference

Defining Page and Report Titles and Dimensions

= number of lines per page, from the top title to the bottom of the page: 14
= number of characters per line: 80

You can change these settings to match the size of your computer screen or, for
printing, the size of a sheet of paper.

You can change the page length with the system variable PAGESIZE. For example, you
may wish to do so when you print a report.

To set the number of lines between the beginning of each page and the top title, use the
NEWPAGE variable of the SET command:

SET NEWPAGE number_of_lines

If you set NEWPAGE to zero, SQL*Plus skips zero lines and displays and prints a
formfeed character to begin a new page. On most types of computer screens, the
formfeed character clears the screen and moves the cursor to the beginning of the first
line. When you print a report, the formfeed character makes the printer move to the
top of a new sheet of paper, even if the overall page length is less than that of the
paper. If you set NEWPAGE to NONE, SQL*Plus does not print a blank line or
formfeed between report pages.

To set the number of lines on a page, use the PAGESIZE variable of the SET command:

SET PAGESIZE number_of_lines

You may wish to reduce the line size to center a title properly over your output, or you
may want to increase line size for printing on wide paper. You can change the line
width using the LINESIZE variable of the SET command:

SET LINESIZE number_of_ characters

Example 6-25 Setting Page Dimensions

To set the page size to 66 lines, clear the screen (or advance the printer to a new sheet
of paper) at the start of each page, and set the line size to 70, enter the following
commands:

SET PAGESIZE 66
SET NEWPAGE 0
SET LINESIZE 70

Now enter and run the following commands to see the results:

TTITLE CENTER 'ACME WIDGET PERSONNEL REPORT' SKIP 1 -
CENTER '01-JAN-2001' SKIP 2

Now run the following query:

COLUMN FIRST_NAME HEADING 'FIRST‘NAME';

COLUMN LAST NAME HEADING 'LAST‘NAME';

COLUMN SALARY HEADING 'MONTHLY‘SALARY' FORMAT $99,999;
SELECT DEPARTMENT_ID, FIRST NAME, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW

WHERE SALARY>12000;

Formatting SQL*Plus Reports 6-25

Storing and Printing Query Results

ACME WIDGET PERSONNEL REPORT
01-JAN-2001

FIRST LAST MONTHLY
DEPARTMENT_ID NAME NAME SALARY
90 Steven King $24,000
90 Neena Kochhar $17,000
90 Lex De Haan $17,000
80 John Russell $14,000
80 Karen Partners $13,500
20 Michael Hartstein $13,000

6 rows selected.

Now reset PAGESIZE, NEWPAGE, and LINESIZE to their default values:

SET PAGESIZE 14
SET NEWPAGE 1
SET LINESIZE 80

To list the current values of these variables, use the SHOW command:

SHOW PAGESIZE
SHOW NEWPAGE
SHOW LINESIZE

Through the SQL*Plus command SPOOL, you can store your query results in a file or
print them on your computer's default printer.

Storing and Printing Query Results

Send your query results to a file when you want to edit them with a word processor
before printing or include them in a letter, email, or other document.

To store the results of a query in a file—and still display them on the screen—enter the
SPOOL command in the following form:

SPOOL file name

If you do not follow the filename with a period and an extension, SPOOL adds a
default file extension to the filename to identify it as an output file. The default varies
with the operating system; on most hosts it is LST or LIS. The extension is not
appended when you spool to system generated files such as /dev/null and

/dev /stderr. See the platform-specific Oracle documentation provided for your
operating system for more information.

SQL*Plus continues to spool information to the file until you turn spooling off, using
the following form of SPOOL:

SPOOL OFF

Creating a Flat File

When moving data between different software products, it is sometimes necessary to
use a "flat" file (an operating system file with no escape characters, headings, or extra
characters embedded). For example, if you do not have Oracle Net, you need to create
a flat file for use with SQL*Loader when moving data from Oracle9i to Oracle
Database 10g.

6-26 SQL*Plus User’s Guide and Reference

Storing and Printing Query Results

To create a flat file with SQL*Plus, you first must enter the following SET commands:

SET NEWPAGE 0

SET SPACE 0

SET LINESIZE 80

SET PAGESIZE 0

SET ECHO OFF

SET FEEDBACK OFF

SET VERIFY OFF

SET HEADING OFF

SET MARKUP HTML OFF SPOOL OFF

After entering these commands, you use the SPOOL command as shown in the
previous section to create the flat file.

The SET COLSEP command may be useful to delineate the columns. For more
information, see the SET command on page 12-89.

Sending Results to a File

To store the results of a query in a file—and still display them on the screen—enter the
SPOOL command in the following form:

SPOOL file name

SQL*Plus stores all information displayed on the screen after you enter the SPOOL
command in the file you specify.

Sending Results to a Printer

To print query results, spool them to a file as described in the previous section. Then,
instead of using SPOOL OFF, enter the command in the following form:

SPOOL OUT

SQL*Plus stops spooling and copies the contents of the spooled file to your computer's
standard (default) printer. SPOOL OUT does not delete the spool file after printing.

Example 6-26 Sending Query Results to a Printer
To generate a final report and spool and print the results, create a script named
EMPRPT containing the following commands.

First, use EDIT to create the script with your operating system text editor.

EDIT EMPRPT

Next, enter the following commands into the file, using your text editor:

SPOOL TEMP
CLEAR COLUMNS
CLEAR BREAKS
CLEAR COMPUTES

COLUMN DEPARTMENT_ID HEADING DEPARTMENT
COLUMN LAST_NAME HEADING 'LAST NAME'
COLUMN SALARY HEADING 'MONTHLY SALARY' FORMAT $99,999

BREAK ON DEPARTMENT_ID SKIP 1 ON REPORT

COMPUTE SUM OF SALARY ON DEPARTMENT_ID
COMPUTE SUM OF SALARY ON REPORT

Formatting SQL*Plus Reports 6-27

Storing and Printing Query Results

SET PAGESIZE 24
SET NEWPAGE 0
SET LINESIZE 70

TTITLE CENTER 'ACME W IDGET' SKIP 2 -
LEFT 'EMPLOYEE REPORT' RIGHT 'PAGE:' -

FORMAT 999 SQL.PNO SKIP 2

BTITLE CENTER 'COMPANY CONFIDENTIAL'

SELECT DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW

WHERE SALARY>12000

ORDER BY DEPARTMENT_ID;

SPOOL OFF

If you do not want to see the output on your screen, you can also add SET TERMOUT
OFF to the beginning of the file and SET TERMOUT ON to the end of the file. Save
and close the file in your text editor (you will automatically return to SQL*Plus). Now,
run the script EMPRPT:

@EMPRPT

SQL*Plus displays the output on your screen (unless you set TERMOUT to OFF), and
spools it to the file TEMP:

ACME WIDGET
EMPLOYEE REPORT PAGE: 1
DEPARTMENT LAST NAME MONTHLY SALARY
20 Hartstein $13,000
kkkkkkkkxkx
sum $13,000
80 Russell $14,000
Partners $13,500
*kkkkkkkkxkx
sum $27,500
90 King $24,000
Kochhar $17,000
De Haan $17,000
kkkkkkkkxk
sum $58,000
sum $98,500
COMPANY CONFIDENTIAL
6 rows selected.

6-28 SQL*Plus User’s Guide and Reference

7

Generating HTML Reports from SQL*Plus

This chapter explains how to generate a HTML report containing your query results.
This chapter covers the following topics:

s Creating Reports using Command-line SQL*Plus

Creating Reports using Command-line SQL*Plus

In addition to plain text output, the SQL*Plus command-line interface enables you to
generate either a complete web page, or HTML output which can be embedded in a
web page. You can use SQLPLUS -MARKUP "HTML ON" or SET MARKUP HTML
ON SPOOL ON to produce complete HTML pages automatically encapsulated with
<HTML> and <BODY> tags.

By default, data retrieved with MARKUP HTML ON is output in HTML, though you
can optionally direct output to the HTML <PRE> tag so that it displays in a web
browser exactly as it appears in SQL*Plus. See the SQLPLUS MARKUP Options on
page 3-7 and the SET MARKUP command on page 12-89 for more information about
these commands.

SQLPLUS -MARKUP "HTML ON" is useful when embedding SQL*Plus in
program scripts. On starting, it outputs the HTML and BODY tags before executing
any commands. All subsequent output is in HTML until SQL*Plus terminates.

The -SILENT and -RESTRICT command-line options may be effectively used with
-MARKUP to suppress the display of SQL*Plus prompt and banner information, and
to restrict the use of some commands.

SET MARKUP HTML ON SPOOL ON generates an HTML page for each subsequently
spooled file. The HTML tags in a spool file are closed when SPOOL OFF is executed or
SQL*Plus exits.

You can use SET MARKUP HTML ON SPOOL OFF to generate HTML output suitable
for embedding in an existing web page. HTML output generated this way has no
<HTML> or <BODY> tags.

Creating Reports
During a SQL*Plus session, use the SET MARKUP command interactively to write
HTML to a spool file. You can view the output in a web browser.

SET MARKUP HTML ON SPOOL ON only specifies that SQL*Plus output will be
HTML encoded, it does not create or begin writing to an output file. You must use the
SQL*Plus SPOOL command to start generation of a spool file. This file then has HTML
tags including <HTML> and </HTML>.

Generating HTML Reports from SQL*Plus 7-1

Creating Reports using Command-line SQL*Plus

When creating a HTML file, it is important and convenient to specify a .html or .htm
file extension which are standard file extensions for HTML files. This enables you to
easily identify the type of your output files, and also enables web browsers to identify
and correctly display your HTML files. If no extension is specified, the default
SQL*Plus file extension is used.

You use SPOOL OFF or EXIT to append final HTML tags to the spool file and then
close it. If you enter another SPOOL filename command, the current spool file is closed
as for SPOOL OFF or EXIT, and a new HTML spool file with the specified name is
created.

You can use the SET MARKUP command to enable or disable HTML output as
required.

Example 7-1 Creating a Report Interactively

You can create HTML output in an interactive SQL*Plus session using the SET
MARKUP command. You can include an embedded style sheet, or any other valid text
in the HTML <HEAD> tag. Open a SQL*Plus session and enter the following:

SET MARKUP HTML ON SPOOL ON PREFORMAT OFF ENTMAP ON -
HEAD "<TITLE>Department Report</TITLE> -

<STYLE type='text/css'> -

<!-- BODY {background: #FFFFC6} --> -

</STYLE>" -

BODY "TEXT='#FFOOFf'" -

TABLE "WIDTH='90%' BORDER='5"'"

You use the COLUMN command to control column output. The following COLUMN
commands create new heading names for the SQL query output. The first command
also turns off entity mapping for the DEPARTMENT_NAME column to allow HTML
hyperlinks to be correctly created in this column of the output data:

COLUMN DEPARTMENT_NAME HEADING 'DEPARTMENT' ENTMAP OFF
COLUMN CITY HEADING 'CITY'

SET MARKUP HTML ON SPOOL ON enables SQL*Plus to write HTML to a spool
file. The following SPOOL command triggers the writing of the <HTML> and
<BODY> tags to the named file:

SPOOL report.html

After the SPOOL command, anything entered or displayed on standard output is
written to the spool file, report.html.

Enter a SQL query:

SELECT ''||DEPARTMENT
NAME| | '' DEPARTMENT NAME, CITY

FROM EMP_DETAILS_VIEW

WHERE SALARY>12000;

Enter the SPOOL OFF command:

SPOOL OFF

The </BODY> and </HTML> tags are appended to the spool file, report.html, before
it is closed.

The output from report.sql is a file, report.html, that can be loaded into a web browser.
Open report.html in your web browser. It should appear something like the following:

7-2 SQL*Plus User’'s Guide and Reference

Creating Reports using Command-line SQL*Plus

floracle. com/DEPARTMENT_MAME|| himl">'|DEP ARTMENT _NAME|'</4>

DEFARTMENT CITY

Exzecutive

Executive Seattle
Executive eattle
Sales Jford
Sales rufard

T arketing aTofits

In this example, the prompts and query text have not been suppressed. Depending on

how you invoke a script, you can use SET ECHO OFF or command-line -SILENT
options to do this.

The SQL*Plus commands in this example contain several items of usage worth noting:

s The hyphen used to continue lines in long SQL*Plus commands.

= The TABLE option to set table WIDTH and BORDER attributes.

s The COLUMN command to set ENTMAP OFF for the DEPARTMENT_NAME

column to enable the correct formation of HTML hyperlinks. This makes sure that
any HTML special characters such as quotes and angle brackets are not replaced

by their equivalent entities, ", &, &It; and >.

= The use of quotes and concatenation characters in the SELECT statement to create

hyperlinks by concatenating string and variable elements.

View the report.html source in your web browser, or in a text editor to see that the
table cells for the Department column contain fully formed hyperlinks as shown:

<html>
<head>
<TITLE>Department Report</TITLE> <STYLE type="text/css">
<!-- BODY {background: #FFFFC6} --> </STYLE>
<meta name="generator" content="SQL*Plus 10.2.0.1">
</head>
<body TEXT="#FFOOFf">
SQL> SELECT '<A HREF="http://oracle.com/'
| IDEPARTMENT_NAME| | ' .html"> ' | | DEPARTMENT NAME
||'' DEPARTMENT NAME, CITY

2 FROM EMP_DETAILS_VIEW

3* WHERE SALARY>12000

<p>
<table WIDTH="90%" BORDER="5">
<tr><th>DEPARTMENT</th><th>CITY</th></tr>
<tr><td>Executive</td>
<td>Seattle</td></tr>
<tr><td>Executive</td>
<td>Seattle</td></tr>
<tr><td>Executive</td>
<td>Seattle</td></tr>
<tr><td>Sales</td>
<td>Oxford</td></tr>

Generating HTML Reports from SQL*Plus

Creating Reports using Command-line SQL*Plus

<tr><td>Sales</td>
<td>Oxford</td></tr>

<tr><td>Marketing</td>
<td>Toronto</td></tr>

</table>

<p>

6 rows selected.

SQL> spool off

</body>

</html>

Example 7-2 Creating a Report using the SQLPLUS Command
Enter the following command at the operating system prompt:

SQLPLUS -S -M "HTML ON TABLE 'BORDER="2"'" HR@OralOg @depart.sgl>depart.html

where depart.sql contains:

SELECT DEPARTMENT_NAME, CITY
FROM EMP_DETAILS_VIEW

WHERE SALARY>12000;

EXIT

This example starts SQL*Plus with user "HR", prompts for the HR password, sets
HTML ON, sets a BORDER attribute for TABLE, and runs the script depart.sql. The
output from depart.sql is a web page which, in this case, has been redirected to the file
depart.html using the ">" operating system redirect command (it may be different on
your operating system). It could be sent to a web browser if SQL*Plus was called in a
web server CGI script. See Suppressing the Display of SQL*Plus Commands in
Reports on page 7-5 for information about calling SQL*Plus from a CGI script.

Start your web browser and enter the appropriate URL to open depart.html:

DEPARTMENT_INAME| CITY
Executive Seattle
Executive Seattle
Executive Seattle
Sales Ozford
Sales Ozford
Nlarketing Toronto

& rows selected.

The SQLPLUS command in this example contains three layers of nested quotes. From
the inside out, these are:

= "2"is aquoted HTML attribute value for BORDER.

= 'BORDER="2" is the quoted text argument for the TABLE option.

= "HTML ON TABLE 'BORDER="2""is the quoted argument for the -MARKUP
option.

The nesting of quotes may be different in some operating systems or program
scripting languages.

7-4 SQL*Plus User’'s Guide and Reference

Creating Reports using Command-line SQL*Plus

Suppressing the Display of SQL*Plus Commands in Reports

The SQLPLUS -SILENT option is particularly useful when used in combination with
-MARKUP to generate embedded SQL*Plus reports using CGI scripts or operating
system scripts. It suppresses the display of SQL*Plus commands and the SQL*Plus
banner. The HTML output shows only the data resulting from your SQL query.

You can also use SET ECHO OFF to suppress the display of each command in a script
that is executed with the START command.

HTML Entities

Certain characters, <, >, " and & have a predefined meaning in HTML. In the previous
example, you may have noticed that the > character was replaced by > as soon as
you entered the SET MARKUP HTML ON command. To enable these characters to be
displayed in your web browser, HTML provides character entities to use instead.

Table 7-1 Equivalent HTML Entities

Character HTML Entity Meaning

< < Start HTML tag label
> > End HTML tag label
! " Double quote

& & Ampersand

The web browser displays the > character, but the actual text in the HTML encoded file
is the HTML entity, >. The SET MARKUP option, ENTMAP, controls the
substitution of HTML entities. ENTMAP is set ON by default. It ensures that the
characters <, >, " and & are always replaced by the HTML entities representing these
characters. This prevents web browsers from misinterpreting these characters when
they occur in your SQL*Plus commands, or in data resulting from your query.

You can set ENTMAP at a global level with SET MARKUP HTML ENTMAP ON, or at
a column level with COLUMN column_name ENTMAP ON.

Generating HTML Reports from SQL*Plus 7-5

Creating Reports using Command-line SQL*Plus

7-6 SQL*Plus User’'s Guide and Reference

8

Tuning SQL*Plus

This chapter provides information about how to tune SQL*Plus for better
performance. It discusses the following topics:

s Tracing Statements

s Collecting Timing Statistics

s Tracing Parallel and Distributed Queries

= Execution Plan Output in Earlier Databases

= SQL*Plus Script Tuning

For information about tuning Oracle Database, see the Oracle Database Performance

Tuning Guide.

Tracing Statements

You can automatically get a report on the execution path used by the SQL optimizer
and the statement execution statistics. The report is generated after successful SQL
DML (that is, SELECT, DELETE, UPDATE and INSERT) statements. It is useful for
monitoring and tuning the performance of these statements.

Controlling the Autotrace Report

You can control the report by setting the AUTOTRACE system variable.

Autotrace Setting

Result

SET AUTOTRACE OFF

SET AUTOTRACE ON EXPLAIN

SET AUTOTRACE ON

STATISTICS
SET AUTOTRACE ON

SET AUTOTRACE TRACEONLY

No AUTOTRACE report is generated. This is the
default.

The AUTOTRACE report shows only the optimizer
execution path.

The AUTOTRACE report shows only the SQL
statement execution statistics.

The AUTOTRACE report includes both the optimizer
execution path and the SQL statement execution
statistics.

Like SET AUTOTRACE ON, but suppresses the
printing of the user's query output, if any. If
STATISTICS is enabled, query data is still fetched, but
not printed.

Tuning SQL*Plus 8-1

Tracing Statements

To use this feature, you must create a PLAN_TABLE table in your schema and then
have the PLUSTRACE role granted to you. DBA privileges are required to grant the
PLUSTRACE role. For information on how to grant a role and how to create the
PLAN_TABLE table, see the Oracle Database SQL Language Reference.

For more information about the roles and the PLAN_TABLE, see the Oracle Database
SQL Language Reference and the AUTOTRACE variable of the SET command on
page 12-89.

Example 8-1 Creating a PLAN_TABLE

Run the following commands from your SQL*Plus session to create the PLAN_TABLE
in the HR schema:

CONNECT HR
@SORACLE_HOME/rdbms/admin/utlxplan.sql

Table created.

Example 8-2 Creating the PLUSTRACE Role

Run the following commands from your SQL*Plus session to create the PLUSTRACE
role and grant it to the DBA:

CONNECT / AS SYSDBA
@SORACLE_HOME/sglplus/admin/plustrce.sqgl

drop role plustrace;

Role dropped.

create role plustrace;

Role created.

grant plustrace to dba with admin option;

Grant succeeded.

Example 8-3 Granting the PLUSTRACE Role

Run the following commands from your SQL*Plus session to grant the PLUSTRACE
role to the HR user:

CONNECT / AS SYSDBA
GRANT PLUSTRACE TO HR;

Grant succeeded.

Execution Plan

The Execution Plan shows the SQL optimizer's query execution path. Execution Plan
output is generated using EXPLAIN PLAN and DBMS_XPLAN.

For information about interpreting the output of DBMS_XPLAN, see the Oracle
Database Performance Tuning Guide.

8-2 SQL*Plus User’'s Guide and Reference

Tracing Statements

Statistics

The statistics are recorded by the server when your statement executes and indicate
the system resources required to execute your statement. The results include the

following statistics.

Database Statistic Name Description

recursive calls

db block gets

consistent gets

Number of recursive calls generated at both the user and
system level. Oracle Database maintains tables used for
internal processing. When Oracle Database needs to make a
change to these tables, it internally generates an internal SQL
statement, which in turn generates a recursive call.

Number of times a CURRENT block was requested.

Number of times a consistent read was requested for a block

physical reads Total number of data blocks read from disk. This number
equals the value of "physical reads direct" plus all reads into
buffer cache.

redo size Total amount of redo generated in bytes

Total number of bytes sent to the client from the foreground
processes.

bytes sent through
SQL*Net to client

bytes received through
SQL*Net from client

Total number of bytes received from the client over Oracle Net.

SQL*Net round-trips
to/from client

Total number of Oracle Net messages sent to and received from
the client

sorts (memory) Number of sort operations that were performed completely in

memory and did not require any disk writes
sorts (disk) Number of sort operations that required at least one disk write

rows processed Number of rows processed during the operation

The client referred to in the statistics is SQL*Plus. Oracle Net refers to the generic
process communication between SQL*Plus and the server, regardless of whether
Oracle Net is installed. You cannot change the default format of the statistics report.

For a more complete list of database statistics, see the Oracle Database Reference. For
more information about the statistics and how to interpret them, see Chapter 3,
"Gathering Optimizer Statistics" in the Oracle Database Performance Tuning Guide.

Example 8—4 Tracing Statements for Performance Statistics and Query Execution Path

If the SQL buffer contains the following statement:

SELECT E.LAST_NAME, E.SALARY, J.JOB_TITLE

FROM EMPLOYEES E, JOBS J

WHERE E.JOB_ID=J.JOB_ID AND E.SALARY>12000;

The statement can be automatically traced when it is run:

SET AUTOTRACE ON
/

Tuning SQL*Plus 8-3

Tracing Statements

LAST_NAME SALARY JOB_TITLE

King 24000 President

De Haan 17000 Administration Vice President
Kochhar 17000 Administration Vice President
Partners 13500 Sales Manager

Russell 14000 Sales Manager

Hartstein 13000 Marketing Manager

6 rows selected.

Execution Plan

| 1d | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
| 0 | SELECT STATEMENT | | 6 | 360 | 6 (17)] 00:00:01 |
[* 1 | HASH JOIN | | 6 | 360 | 6 (17)] 00:00:01 |
|* 2 | TABLE ACCESS FULL| EMPLOYEES| 6 | 204 | 3 (0)] 00:00:01 |
| 3| TABLE ACCESS FULL| JOBS | 19 | 494 | 2 (0)]| 00:00:01 |

1 - access("E"."JOB_ID"="J"."JOB_ID")
2 - filter("E"."SALARY">12000)

- dynamic sampling used for this statement

Statistics
0 recursive calls
0 db block gets
10 consistent gets
0 physical reads
0 redo size
706 bytes sent via SQL*Net to client
496 bytes received via SQL*Net from client
SQL*Net roundtrips to/from client
sorts (memory)
sorts (disk)
rows processed

o O O N

Example 8-5 Tracing Statements Without Displaying Query Data
To trace the same statement without displaying the query data, enter:

SET AUTOTRACE TRACEONLY
/

8-4 SQL*Plus User’'s Guide and Reference

Collecting Timing Statistics

6 rows selected.
Execution Plan

Plan hash value: 2988506077

| 1@ | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
| 0 | SELECT STATEMENT | \ 6 | 360 | 6 (17)] 00:00:01 |
[* 1 | HASH JOIN | \ 6 | 360 | 6 (17)] 00:00:01 |
|* 2 | TABLE ACCESS FULL| EMPLOYEES| 6 | 204 | 3 (0)] 00:00:01 |
| 3| TABLE ACCESS FULL| JOBS | 19 | 494 | 2 (0)]| 00:00:01 |

1 - access("E"."JOB_ID"="J"."JOB_ID")
2 - filter("E"."SALARY">12000)

- dynamic sampling used for this statement

Statistics
0 recursive calls
0 db block gets
10 consistent gets
0 physical reads
0 redo size
706 bytes sent via SQL*Net to client
496 bytes received via SQL*Net from client
SQL*Net roundtrips to/from client
sorts (memory)
sorts (disk)
rows processed

o O O N

This option is useful when you are tuning a large query, but do not want to see the
query report.

Note: Your output may vary depending on the server version and
configuration.

Collecting Timing Statistics

Use the SQL*Plus TIMING command to collect and display data on the amount of
computer resources used to run one or more commands or blocks. TIMING collects
data for an elapsed period of time, saving the data on commands run during the
period in a timer.

See the TIMING command on page 12-180, and Tracing Statements on page 8-1 for
information about using AUTOTRACE to collect statistics.

To delete all timers, enter CLEAR TIMING.

Tuning SQL*Plus 8-5

Tracing Parallel and Distributed Queries

Tracing Parallel and Distributed Queries

When you trace a statement in a parallel or distributed query, the Execution Plan
output depends on the statement you use.

Example 8-6 Tracing Statements With Parallel Query Option

To trace a parallel query running the parallel query option:

create table D2_tl (uniquel number) parallel -
(degree 6);

Table created.

create table D2_t2 (uniquel number) parallel -
(degree 6);

Table created.

create unique index d2_i_uniquel on d2_tl1(uniquel);

Index created.

set long 500 longchunksize 500

SET AUTOTRACE ON EXPLAIN

SELECT /*+ INDEX(B,D2_I_UNIQUEl) USE_NL(B) ORDERED -
*/ COUNT (A.UNIQUEL)

FROM D2_T2 A, D2_T1 B

WHERE A.UNIQUEl = B.UNIQUEL;

Execution Plan

Plan hash value: 107954098

1d	Operation	Name	Rows	Bytes	Cost (%CPU)	Time	TQ	IN-OUT	PQ Distrib
0	SELECT STATEMENT		1] 26	1 (0)] 00:00:01					
1	SORT AGGREGATE		1] 26						
2	PX COORDINATOR								
3] PX SEND QC (RANDOM)	:TQ10001]	1] 26			Q1,01	P->S	QC (RAND)		
4 SORT AGGREGATE		1] 26			01,01	pCWP			
5] NESTED LOOPS		1] 26	1 (0)]	00:00:01	Q1,01	PCWP			
6	PX RECEIVE						01,01	pCWP	

7 PX SEND BROADCAST	:TQ10000					Q1,00	P->P	BROADCAST
8] PX BLOCK ITERATOR		1] 13] 0 (0)] 00:00:01	Q1,00	pPCWC				
9 TABLE ACCESS FULL	D2_T2	1] 13] 0 (0)	00:00:01	Q1,00	pPCWP			
10	PX BLOCK ITERATOR		1] 13] 2 (0)	00:00:01	Q1,01	PCWC		
[* 11 | TABLE ACCESS FULL | D2_T1 | 1] 13 2 (0)] 00:00:01 | Q1,01 | PCWP | |

- dynamic sampling used for this statement

8-6 SQL*Plus User’'s Guide and Reference

Execution Plan Output in Earlier Databases

Example 8-7 To monitor disk reads and buffer gets.
SET AUTOTRACE TRACEONLY STATISTICS

The following shows typical results:

Statistics
467 recursive calls
27 db block gets
147 consistent gets
20 physical reads
4548 redo size
502 bytes sent via SQL*Net to client
496 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
14 sorts (memory)
0 sorts (disk)
1 rows processed

If consistent gets or physical reads are high relative to the amount of data returned, it
indicates that the query is expensive and needs to be reviewed for optimization. For
example, if you are expecting less than 1,000 rows back and consistent gets is 1,000,000
and physical reads is 10,000, further optimization is needed.

Note: You can also monitor disk reads and buffer gets using V$SQL
or TKPROE.

Execution Plan Output in Earlier Databases
Execution Plan output from Oracle Database 9i Release 2 (9.2) or earlier is different.

Each line of the Execution Plan has a sequential line number. SQL*Plus also displays
the line number of the parent operation.

The Execution Plan consists of four columns displayed in the following order:

Column Name Description

ID_PLUS_EXP Shows the line number of each execution step.

PARENT_ID_PLUS_EXP Shows the relationship between each step and its parent.
This column is useful for large reports.

PLAN_PLUS_EXP Shows each step of the report.

OBJECT_NODE_PLUS_EXP Shows database links or parallel query servers used.

The format of the columns may be altered with the COLUMN command. For example,
to stop the PARENT_ID_PLUS_EXP column being displayed, enter

COLUMN PARENT_ID_PLUS_EXP NOPRINT

The Execution Plan output is generated using the EXPLAIN PLAN command.

When you trace a statement in a parallel or distributed query, the Execution Plan
shows the cost based optimizer estimates of the number of rows (the cardinality). In
general, the cost, cardinality and bytes at each node represent cumulative results. For

Tuning SQL*Plus 8-7

SQL*Plus Script Tuning

example, the cost of a join node accounts for not only the cost of completing the join
operations, but also the entire costs of accessing the relations in that join.

Lines marked with an asterisk (*) denote a parallel or remote operation. Each
operation is explained in the second part of the report. See the Oracle Database
Performance Tuning Guide for more information on parallel and distributed operations.

The second section of this report consists of three columns displayed in the following

order

Column Name Description

ID_PLUS_EXP Shows the line number of each execution step.

OTHER_TAG_PLUS_ Describes the function of the SQL statement in the OTHER_PLUS_

EXP EXP column.

OTHER_PLUS_EXP Shows the text of the query for the parallel server or remote
database.

The format of the columns may be altered with the COLUMN command.

SQL*Plus Script Tuning

Most performance benefit comes from tuning SQL queries executed in a script. This is
done with tools like SQL*Plus's AUTOTRACE command. It involves restructuring
queries to make best use of the Oracle Database SQL optimizer. For information about
Tuning SQL statements, see the Oracle Database Performance Tuning Guide.

The performance gains made by tuning SQL*Plus-specific commands are smaller, but
could be important for some applications. The following system variables and
commands can influence SQL*Plus performance.

COLUMN NOPRINT

COLUMN NOPRINT turns off screen output and printing of the column heading and
all values selected for the column.

It is better to remove an unneeded column from a SELECT then it is to use COLUMN
NOPRINT to stop it displaying. Removing the column from the query means the SQL
engine does not need to process it, or need to transfer the column data back to
SQL*Plus.

SET APPINFO OFF

Sets automatic registering of scripts through the DBMS_APPLICATION_INFO
package. Setting APPINFO OFF prevents administrators monitoring the performance
and resource usage of scripts.

If many SQL scripts are being called, then turning APPINFO OFF stops internal
SQL*Plus calls to the database DBMS_APPLICATION_INFO package.

SET ARRAYSIZE

Sets the number of rows that SQL*Plus will fetch from the database at one time. Valid
values are 1 to 5000.

The effectiveness of setting ARRAYSIZE depends on how well Oracle Database fills
network packets and your network latency and throughput. In recent versions of

8-8 SQL*Plus User’'s Guide and Reference

SQL*Plus Script Tuning

SQL*Plus and Oracle Database, ARRAYSIZE may have little effect. Overlarge sizes can
easily take more SQL*