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Preface

Oracle’s Real Application Testing option enables you to perform real-world testing of 
Oracle Database. By capturing production workloads and assessing the impact of 
system changes before production deployment, Oracle Real Application Testing 
minimizes the risk of instabilities associated with changes.

Database Replay enables you to replay a full production workload on a test system to 
assess the overall impact of system changes. SQL Performance Analyzer enables you 
to assess the impact of system changes on SQL response time on a given SQL 
workload.

In this release, Oracle Real Application Testing supports the added functionality to 
read SQL trace files from Oracle Database 9i to construct a SQL tuning set that can be 
used as an input source for SQL Performance Analyzer. Once constructed, you can use 
SQL Performance Analyzer to execute the SQL tuning set on Oracle Database 10g 
Release 2 remotely over a database link. This functionality is provided so that you can 
use this option to test the impact on SQL response time of a database upgrade from 
Oracle Database 9i to Oracle Database 10g Release 2.

This preface contains the following topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This document provides information about how to use SQL Performance Analyzer to 
test database upgrades from Oracle Database 9i to Oracle Database 10g and 
subsequent releases. This document is intended for database administrators, 
application designers, and programmers who are responsible for upgrading and 
performing real application testing on Oracle Database.

Note: The use of Database Replay and SQL Performance Analyzer 
requires the Oracle Real Application Testing licensing option. For 
more information, see Oracle Database Licensing Information.
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Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation 
accessible, with good usability, to the disabled community. To that end, our 
documentation includes features that make information available to users of assistive 
technology. This documentation is available in HTML format, and contains markup to 
facilitate access by the disabled community. Accessibility standards will continue to 
evolve over time, and Oracle is actively engaged with other market-leading 
technology vendors to address technical obstacles so that our documentation can be 
accessible to all of our customers. For more information, visit the Oracle Accessibility 
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The 
conventions for writing code require that closing braces should appear on an 
otherwise empty line; however, some screen readers may not always read a line of text 
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or 
organizations that Oracle does not own or control. Oracle neither evaluates nor makes 
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services 
within the United States of America 24 hours a day, 7 days a week. For TTY support, 
call 800.446.2398. Outside the United States, call +1.407.458.2479.

Related Documents
For more information about some of the topics discussed in this document, see the 
following documents in the Oracle Database Release 11.1 documentation set:

■ Oracle Database Concepts

■ Oracle Database Administrator's Guide

■ Oracle Database 2 Day DBA

■ Oracle Database Performance Tuning Guide

■ Oracle Database 2 Day + Performance Tuning Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated 
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for 
which you supply particular values.
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monospace Monospace type indicates commands within a paragraph, URLs, code 
in examples, text that appears on the screen, or text that you enter.

Convention Meaning
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1
SQL Performance Analyzer 

SQL Performance Analyzer enables you to assess the performance impact of any 
system change resulting in changes to SQL execution plans and performance 
characteristics. Examples of common system changes for which you can use SQL 
Performance Analyzer include:

■ Database upgrade

■ Configuration changes to the operating system, hardware, or database

■ Database initialization parameter changes

■ Schema changes, for example, adding new indexes or materialized views

■ Gathering optimizer statistics

■ Validating SQL tuning actions, for example, creating SQL profiles or 
implementing partitioning

This document specifically describes how to use SQL Performance Analyzer in a 
database upgrade from Oracle Database 9i to Oracle Database 10g Release 2. For 
complete information about SQL Performance Analyzer, and how to use it in other 
cases, see Oracle Database Performance Tuning Guide.

This chapter contains the following sections:

■ Testing Database Upgrade from Oracle Database 9i to Oracle Database 10g

■ Enabling SQL Trace on the Production System

■ Creating a Mapping Table

■ Building a SQL Tuning Set

■ Running SQL Performance Analyzer

■ Comparing SQL Performance

■ Tuning Regressed SQL

Testing Database Upgrade from Oracle Database 9i to Oracle Database 
10g

SQL Performance Analyzer accepts a representative set of SQL statements stored in a 
SQL tuning set as its input source. Since SQL tuning sets are not supported in Oracle 
Database 9i, this release supports the added functionality to read SQL trace files from 
Oracle Database 9i to construct a SQL tuning set that can be used as an input source 
for SQL Performance Analyzer. Once constructed, you can use SQL Performance 
Analyzer to execute the SQL tuning set on Oracle Database 10g Release 2 remotely 
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over a database link. This functionality is provided so that you can use SQL 
Performance Analyzer to test the impact on SQL response time of a database upgrade 
from Oracle Database 9i to Oracle Database 10g Release 2, as illustrated in Figure 1–1.

Figure 1–1 SQL Performance Analyzer Workflow for Database Upgrade from Oracle 
Database 9i to Oracle Database 10g Release 2

The production system which you are upgrading from should be running Oracle 
Database 9i. The test system which you are upgrading to should be running Oracle 
Database 10g Release 2. The database version can be release 10.2.0.2 or later. If you are 
upgrading to Oracle Database 10g release 10.2.0.2 or 10.2.0.3, you will also need to 
install a one-off patch before proceeding. To ensure that the analysis made by SQL 
Performance Analyzer is accurate, this system should contain an exact copy of the 
production data found on the production system. Furthermore, the hardware 
configuration should also be as similar to the production system as possible.

Next, you will need to set up a separate system running Oracle Database 11g Release 
1. The database version should be release 11.1.0.6. You will also need to install a 
one-off patch for this release. You will be using this system to build a SQL tuning set 
and to run SQL Performance Analyzer. Neither your production data or schema need 
to be available on this system, since the SQL tuning set will be built using statistics 
stored in the SQL trace files from the production system, and SQL Performance 
Analyzer tasks will be executed remotely on the test system over a database link.

Once the upgrade environment is configured as described, you can use SQL 
Performance Analyzer in a database upgrade from Oracle Database 9i to Oracle 
Database 10g by completing the following steps, as illustrated in Figure 1–1:

1. Enable the SQL Trace facility on the production system running Oracle Database 
9i.

To minimize the performance impact on the production system and still be able to 
fully capture a representative set of SQL statements, consider enabling SQL Trace 
for only a subset of the sessions, for as long as required, to capture all important 
SQL statements at least once.

2. Create a mapping table on the production system running Oracle Database 9i.
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This mapping table will be used to convert the user and object identifier numbers 
in the SQL trace files to their string equivalents.

3. Move the SQL trace files and the mapping table from the production system 
running Oracle Database 9i to the system running Oracle Database 11g.

4. On the system running Oracle Database 11g, construct a SQL tuning set using the 
SQL trace files.

The SQL tuning set will contain the SQL statements captured in the SQL trace 
files, along with their relevant execution context and statistics.

5. On the system running Oracle Database 11g, use SQL Performance Analyzer to 
build a pre-upgrade SQL trial and a post-upgrade SQL trial:

a. Convert the contents in the SQL tuning set into a pre-upgrade SQL trial that 
will be used as a baseline for comparison.

b. Remotely test execute the SQL statements on the test system running Oracle 
Database 10g over a database link to build a post-upgrade SQL trial.

6. Compare SQL performance and fix regressed SQL:

SQL Performance Analyzer compares the performance of SQL statements read 
from the SQL tuning set during the pre-upgrade SQL trial to those captured from 
the remote test execution during the post-upgrade SQL trial. A report is produced 
to identify any changes in execution plans or performance of the SQL statements.

If the report reveals any regressed SQL statements, you can make further changes 
to fix the regressed SQL. You can then repeat the process of executing the SQL 
tuning set and comparing its performance to a previous execution to test any fixes 
or additional changes made. Repeat these steps until you are satisfied with the 
outcome of the analysis.

The remaining sections in this chapter discuss each of these steps in greater detail.

Enabling SQL Trace on the Production System
Oracle Database 9i uses the SQL Trace facility to collect performance data on 
individual SQL statements. The information generated by SQL Trace is stored in SQL 
trace files. SQL Performance Analyzer consumes the following information from these 
files:

■ SQL text and username under which parse occurred

■ Bind values for each execution

■ CPU and elapsed times

■ Physical reads and logical reads

■ Number of rows processed

■ Execution plan for each SQL statement (only captured if the cursor for the SQL 
statement is closed)

Although it is possible to enable SQL Trace for an instance, it is recommended that 
you enable SQL Trace for a subset of sessions instead. When the SQL Trace facility is 
enabled for an instance, performance statistics for all SQL statements executed in the 
instance are stored into SQL trace files. Using SQL Trace in this way can have a severe 
performance impact and may result in increased system overhead, excessive CPU 
usage, and inadequate disk space. It is required that trace level be set to 4 to capture 
bind values, along with the execution plans.
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After enabling SQL Trace on the production system running Oracle 9i, identify the 
SQL trace files containing statistics for a representative set of SQL statements that you 
want to use with SQL Performance Analyzer. You can then copy the SQL trace files to 
the system running Oracle Database 11g. Once the SQL workload is captured in the 
SQL trace files, disable SQL Trace on the production system running Oracle 9i.

Creating a Mapping Table
To convert the user and object identifier numbers stored in the SQL trace files to their 
respective names, you need to provide a table that specifies each mapping. Oracle 
Database 11g will read this mapping table when converting the trace files into a SQL 
tuning set.

To create a mapping table, run the following SQL statements on the production 
database running Oracle Database 9i:

create table mapping as
    select object_id id, owner, substr(object_name, 1, 30) name from dba_objects
    where object_type NOT IN ('CONSUMER GROUP', 'EVALUATION CONTEXT', ’FUNCTION’,
                              'INDEXTYPE', 'JAVA CLASS', ’JAVA DATA’,
                              'JAVA RESOURCE', 'LIBRARY', ’LOB’, ’OPERATOR’,
                              'PACKAGE', 'PACKAGE BODY', ’PROCEDURE’, ’QUEUE’,
                              'RESOURCE PLAN', 'TRIGGER', ’TYPE’, ’TYPE BODY’)
    union all
    select user_id id, username owner, null name from dba_users;

Once the mapping table is created, you can use Data Pump to transport it to the 
system running Oracle Database 11g.

Building a SQL Tuning Set
Once the SQL trace files and mapping table are moved to the system running Oracle 
Database 11g, you can build a SQL tuning set using the DBMS_SQLTUNE package.

To build a SQL tuning set:

1. Copy the SQL trace files to a directory on the system running Oracle Database 11g.

2. Create a directory object for this directory.

3. Use the DBMS_SQLTUNE.SELECT_SQL_TRACE function to read the SQL 
statements from the SQL trace files.

The following example reads the contents of SQL trace files stored in the sql_
trace_prod directory object and loads them into a SQL tuning set.

DECLARE
  cur sys_refcursor;
BEGIN
  DBMS_SQLTUNE.CREATE_SQLSET(’my_sts_9i’);
  OPEN cur FOR
    SELECT VALUE (P) 
    FROM table(DBMS_SQLTUNE.SELECT_SQL_TRACE('sql_trace_prod', ’%ora%’)) P;
  DBMS_SQLTUNE.LOAD_SQLSET(’my_sts_9i’, cur);

See Also: Oracle Database Performance Tuning Guide for additional 
considerations when using SQL Trace, such as setting initialization 
parameters to manage SQL trace files

See Also: Oracle Database Utilities for information about using Data 
Pump
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  CLOSE cur;
END;
/

The syntax for the SELECT_SQL_TRACE function is as follows:

  DBMS_SQLTUNE.SELECT_SQL_TRACE ( 
    directory              IN VARCHAR2,
    file_name              IN VARCHAR2 := NULL,
    mapping_table_name     IN VARCHAR2 := ’mapping’,
    mapping_table_owner    IN VARCHAR2 := NULL,
    select_mode            IN POSITIVE := SINGLE_EXECUTION,
    options                IN BINARY_INTEGER := LIMITED_COMMAND_TYPE,
    pattern_start          IN VARCHAR2 := NULL,
    parttern_end           IN VARCHAR2 := NULL,
    result_limit           IN POSITIVE := NULL)
  RETURN sys.sqlset PIPELINED;

Table 1–1 describes the available parameters for the SELECT_SQL_TRACE function.

Table 1–1  DBMS_SQLTUNE.SELECT_SQL_TRACE Function Parameters

Parameter Description

directory Specifies the directory object pointing to the directory where the 
SQL trace files are stored.

file_name Specifies all or part of the name of the SQL trace files to process. 
If unspecified, the current or most recent trace file in the 
specified directory will be used. % wildcards are supported for 
matching trace file names.

mapping_table_name Specifies the name of the mapping table. The default mapping 
table name is mapping. Note that the mapping table name is not 
case-sensitive.

mapping_table_owner Specifies the schema where the mapping table resides. If set to 
NULL, the current schema will be used.

select_mode Specifies the mode for selecting SQL statements from the trace 
files. The default value is SINGLE_EXECUTION. In this mode, 
only statistics for a single execution per SQL statement will be 
loaded into the SQL tuning set. The statistics are not cumulative, 
as is the case with other SQL tuning set data source table 
functions.

options Specifies the options for the operation. The default value is 
LIMITED_COMMAND_TYPE, only SQL types that are meaningful 
to SQL Performance Analyzer (such as SELECT, INSERT, 
UPDATE, and DELETE) are returned from the SQL trace files.

pattern_start Specifies the opening delimiting pattern of the trace file sections 
to consider. This parameter is currently not used.

pattern_end Specifies the closing delimiting pattern of the trace file sections 
to process. This parameter is currently not used.

result_limit Specifies the top SQL from the (filtered) source. The default 
value is MAXSB4.

See Also: Oracle Database PL/SQL Packages and Types Reference for 
information about the DBMS_SQLTUNE package
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Running SQL Performance Analyzer
After building the SQL tuning set on the system running Oracle Database 11g, you can 
use it as an input source to run SQL Performance Analyzer. Running SQL 
Performance Analyzer involves creating SQL trials for Oracle Database 9i and Oracle 
Database 10g Release 2, and storing them in a central task container. A SQL trial 
represents a discrete set of performance data in the task and is generated automatically 
by the EXECUTE_ANALYSIS_TASK procedure as a place to store its results.

To run SQL Performance Analyzer:

1. Create a SQL Performance Analyzer task, as described in "Creating a SQL 
Performance Analyzer Task" on page 1-6.

2. Execute the task to convert production statistics from the SQL tuning set into a 
pre-upgrade SQL trial, as described in "Building the Pre-Upgrade SQL Trial" on 
page 1-6.

3. Perform a test execution to generate statistics and execution plans on the test 
system running Oracle Database 10g Release 2 to build a post-upgrade SQL trial, 
as described in "Building the Post-Upgrade SQL Trial" on page 1-7.

Creating a SQL Performance Analyzer Task
This section describes how to create a new SQL Performance Analyzer task on the 
system running Oracle Database 11g by using the DBMS_SQLPA.CREATE_ANALYSIS_
TASK function. A task is a database container for SQL Performance Analyzer execution 
inputs and results.

Before creating the task, ensure that the SQL workload to use for the performance 
analysis is available in the form of a SQL tuning set on the system. Call the CREATE_
ANALYSIS_TASK function using the following parameters:

■ Set task_name to specify the name for the SQL Performance Analyzer task.

■ Set sqlset_name to the name of the SQL Tuning Set.

■ Set sqlset_owner to the owner of the SQL Tuning Set. The default is the current 
schema owner.

■ Use basic_filter to filter out SQL statements that you do not want to include 
in the trial.

■ Set order_by to specify an order-by clause on the selected SQL.

■ Set top_sql to consider only the top number of SQL statements after filtering and 
ranking.

The following example creates a SQL Performance Analyzer task named my_spa_
task that will use the SQL tuning set named my_sts_9i as its input source:

VARIABLE t_name VARCHAR2(100);
EXEC :t_name := DBMS_SQLPA.CREATE_ANALYSIS_TASK(sqlset_name => 'my_sts_9i', -
       task_name => 'my_spa_task');

Building the Pre-Upgrade SQL Trial
After the SQL Performance Analyzer task is created on the system running Oracle 
Database 11g, you need to call the EXECUTE_ANALYSIS_TASK procedure to take the 

See Also: Oracle Database PL/SQL Packages and Types Reference to 
learn more about the DBMS_SQLPA.CREATE_ANALYSIS_TASK 
function
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execution plans and runtime statistics in the SQL tuning set and use them to build a 
pre-upgrade SQL trial.

To build the pre-upgrade SQL trial, call the EXECUTE_ANALYSIS_TASK procedure 
using the following parameters:

■ Set the task_name parameter to the name of the SQL Performance Analyzer task 
that you want to execute.

■ Set the execution_type parameter to CONVERT SQLSET to direct SQL 
Performance Analyzer to treat the statistics in the SQL tuning set as a trial 
execution.

■ Specify a name to identify the execution using the execution_name parameter. 
If not specified, then SQL Performance Analyzer automatically generates a name 
for the task execution.

The following example executes the SQL Performance Analyzer task named my_spa_
task as a trial execution:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(task_name => 'my_spa_task', -
       execution_type => 'CONVERT SQLSET', - 
       execution_name => 'my_trial_9i');

Building the Post-Upgrade SQL Trial
After the pre-upgrade SQL trial is built, you need to run a SQL Performance Analyzer 
task to perform a test execute or explain plan of SQL statements in the SQL tuning set 
on the test system running Oracle Database 10g Release 2 to build a post-upgrade SQL 
trial. SQL Performance Analyzer remotely test executes the SQL statements using a 
database link that you need to specify so that Oracle Database 11g can connect to 
Oracle Database 10g Release 2 to generate the execution plan and statistics for the SQL 
trial. The database link should exist on the system running Oracle Database 11g and 
connect to the test system running Oracle Database 10g Release 2.

To build the post-upgrade SQL trial, perform an explain plan or test execute using the 
system running Oracle Database 11g by calling the EXECUTE_ANALYSIS_TASK 
procedure with the DATABASE_LINK task parameter set to the global name of a public 
database link to be used. If you choose to use EXPLAIN PLAN, only execution plans 
will be generated. Subsequent comparisons will only be able to yield a list of changed 
plans without making any conclusions about performance changes. If you choose to 
use TEST EXECUTE, the SQL workload will be executed to completion. This 
effectively builds the post-upgrade performance data using the statistics and execution 
plans generated from the test system running Oracle Database 10g. Using TEST 
EXECUTE is recommended to capture the SQL execution plans and performance data 
at the source, thereby resulting in a more accurate analysis.

The following example performs a test execute of the SQL statements remotely over a 
database link:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(task_name => 'my_spa_task', -
       execution_type => 'TEST EXECUTE', - 
       execution_name => 'my_remote_trial_10g', -
       execution_params => dbms_advisor.arglist(’database_link’,
                                                'LINK.A.B.C.BIZ.COM'));

See Also: Oracle Database PL/SQL Packages and Types Reference to 
learn about the DBMS_SQLPA.EXECUTE_ANALYSIS_TASK function
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Comparing SQL Performance
After the pre-upgrade and post-upgrade SQL trials are built, you can compare the 
pre-upgrade version of performance data (from the production system) to the 
post-upgrade version (from the test system) by calling the DBMS_SQLPA.EXECUTE_
ANALYSIS_TASK procedure or function to run a comparison analysis. Afterwards, 
SQL Performance Analyzer can generate a report that shows the results of the 
comparison and then interpret the results.

To compare the pre-change and post-change SQL performance data:
1. Call the EXECUTE_ANALYSIS_TASK procedure or function using the following 

parameters:

■ Set the task_name parameter to the name of the SQL Performance Analyzer 
task.

■ Set the execution_type parameter to COMPARE PERFORMANCE. This 
setting will analyze and compare two versions of SQL performance data.

■ Specify a name to identify the execution using the execution_name 
parameter. If not specified, it will be generated by SQL Performance Analyzer 
and returned by the function.

■ Specify two versions of SQL performance data using the execution_params 
parameters. The execution_params parameters are specified as (name, 
value) pairs for the specified execution. Set the execution parameters that are 
related to comparing and analyzing SQL performance data as follows:

– Set the execution_name1 parameter to the name of pre-upgrade SQL 
trial.

– Set the execution_name2 parameter to the name of the post-upgrade 
SQL trial.

– Set the comparison_metric parameter to specify an expression of 
execution statistics to use in the performance impact analysis. Possible 
values include the following metrics or any formula combining them: 
elapsed_time (default), cpu_time, buffer_gets, disk_reads, 
direct_writes, and optimizer_cost.

For other possible parameters that you can set for comparison, see the 
description of the DBMS_SQLPA package in Oracle Database PL/SQL Packages 
and Types Reference.

The following example illustrates a function call:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(task_name => 'my_spa_task', - 
       execution_type => 'COMPARE PERFORMANCE', -
       execution_name => 'my_exec_compare', -
       execution_params => dbms_advisor.arglist(-
                           'comparison_metric', 'buffer_gets',
                           'execution_name1', 'my_trial_9i',
                           'execution_name2', 'my_remote_trial_10g',

2. Call the DBMS_SQLPA.REPORT_ANALYSIS_TASK function to generate a report 
using the following parameters:

See Also: Oracle Database PL/SQL Packages and Types Reference to 
learn about the DBMS_SQLPA.SET_ANALYSIS_TASK_PARAMETER 
procedure
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■ Set the task_name parameter to the name of the SQL Performance Analyzer 
task.

■ Set the execution_name parameter to the name of the COMPARE 
PERFORMANCE execution.

■ Set the type parameter to specify the type of report to generate. Possible 
values include TEXT (default), HTML, and XML.

■ Set the level parameter to specify the format of the recommendations. 
Possible values include TYPICAL (default), BASIC, and ALL.

■ Set the section parameter to limit the report to a particular section. Possible 
values include SUMMARY (default) and ALL.

■ Set the top_sql parameter to specify the number of SQL statements in a SQL 
Tuning Set to include in the report. By default, the report shows the top 100 
SQL statements impacted by the system change.

The following example illustrates a portion of a SQL script that you could use to 
create and display a comparison summary report:

VAR rep   CLOB;
EXEC :rep := DBMS_SQLPA.REPORT_ANALYSIS_TASK('my_spa_task', -
                'text', 'typical', 'summary', NULL, 100, ’my_exec_compare’);
SET LONG 100000 LONGCHUNKSIZE 100000 LINESIZE 130
PRINT :rep

3. Review the SQL Performance Analyzer report.

When reviewing the reports, the following considerations should be made to 
determine the validity of the results:

■ Hardware and data differences

Any data or hardware differences between the two systems may produce a 
greater discrepancy in the results.

■ Use of the SQL Trace facility

SQL tracing itself has an impact on the statistics generated. Consequently, 
performance data for the Oracle Database 9i trial may appear worse than 
actual. Therefore, any regression detected after comparing the SQL 
performance should be addressed before upgrading your production system.

Tuning Regressed SQL
After reviewing the SQL Performance Analyzer report, you should tune any regressed 
SQL statements that are identified after comparing the SQL performance. If there are 
large numbers of SQL statements that appear to have regressed, you should try to 
identify the root cause and make system-level changes to rectify the problem. In cases 
when only a few SQL statements have regressed, consider using one of the following 
tuning methods to implement a point solution for them:

See Also: 

■ For information about the SQL Performance Analyzer report, see 
Oracle Database Performance Tuning Guide

■ Oracle Database PL/SQL Packages and Types Reference for 
information about the DBMS_SQLPA.EXECUTE_ANALYSIS_TASK 
and DBMS_SQLPA.REPORT_ANALYSIS_TASK functions
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■ Run the SQL Tuning Advisor on the regressed SQL statements using the test 
system running Oracle Database 10g Release 2

For more information about using the SQL Tuning Advisor, see Oracle Database 
Performance Tuning Guide.

■ Capture stored outlines on the production system and move them to the test 
system

For more information about using stored outlines, see Oracle Database Performance 
Tuning Guide.

After tuning the regressed SQL statements, you should test these changes using SQL 
Performance Analyzer. Run a new remote test execution on the test system, followed 
by a second comparison (between this new SQL trial and the pre-upgrade SQL trial) to 
validate your results. Once SQL Performance Analyzer shows that performance has 
stabilized, the testing is complete. Implement the fixes from this step as part of the 
upgrade process of your production system.
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C
CREATE_ANALYSIS_TASK function, 1-6

D
database version

production system, 1-2
system running SQL Performance Analyzer, 1-2
test system, 1-2

E
EXECUTE_ANALYSIS_TASK procedure, 1-7, 1-8

M
mapping table

about, 1-4
creating, 1-2, 1-4
moving, 1-3, 1-4

R
regressed SQL

tuning, 1-3, 1-9
REPORT_ANALYSIS_TASK function, 1-8

S
SELECT_SQL_TRACE function

parameters, 1-5
syntax, 1-5
using, 1-4

SQL performance
comparing, 1-3, 1-8

SQL Performance Analyzer
database upgrade

Oracle Database 9i to 10g, 1-2
input source, 1-1
remote test execution, 1-7
task

about, 1-6
creating, 1-6

use cases, 1-1
SQL Trace

about, 1-3

enabling, 1-2, 1-3
impact, 1-9
trace level, 1-3

SQL trace files
about, 1-3
moving, 1-3, 1-4

SQL trial
about, 1-6
building

post-upgrade version, 1-3, 1-7
pre-upgrade version, 1-3, 1-7

SQL tuning set
building, 1-4
constructing, 1-3
converting, 1-3, 1-7
executing, 1-6

U
upgrade environment, 1-2
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