
Oracle® Database
Real Application Testing Addendum

11g Release 1 (11.1)
E12159-01

February 2008

Oracle Database Real Application Testing Addendum, 11g Release 1 (11.1)

E12159-01

Copyright © 2008, Oracle. All rights reserved.

Primary Author: Immanuel Chan

Contributors: Pete Belknap, Karl Dias, Prabhaker Gongloor, Mughees Minhas, Khaled Yagoub

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... v

Audience... v
Documentation Accessibility ... vi
Related Documents ... vi
Conventions ... vi

1 SQL Performance Analyzer
Testing Database Upgrade from Oracle Database 9i to Oracle Database 10g 1-1
Enabling SQL Trace on the Production System ... 1-3
Creating a Mapping Table.. 1-4
Building a SQL Tuning Set .. 1-4
Running SQL Performance Analyzer... 1-6

Creating a SQL Performance Analyzer Task ... 1-6
Building the Pre-Upgrade SQL Trial... 1-6
Building the Post-Upgrade SQL Trial ... 1-7

Comparing SQL Performance .. 1-8
Tuning Regressed SQL ... 1-9

Index

iv

v

Preface

Oracle’s Real Application Testing option enables you to perform real-world testing of
Oracle Database. By capturing production workloads and assessing the impact of
system changes before production deployment, Oracle Real Application Testing
minimizes the risk of instabilities associated with changes.

Database Replay enables you to replay a full production workload on a test system to
assess the overall impact of system changes. SQL Performance Analyzer enables you
to assess the impact of system changes on SQL response time on a given SQL
workload.

In this release, Oracle Real Application Testing supports the added functionality to
read SQL trace files from Oracle Database 9i to construct a SQL tuning set that can be
used as an input source for SQL Performance Analyzer. Once constructed, you can use
SQL Performance Analyzer to execute the SQL tuning set on Oracle Database 10g
Release 2 remotely over a database link. This functionality is provided so that you can
use this option to test the impact on SQL response time of a database upgrade from
Oracle Database 9i to Oracle Database 10g Release 2.

This preface contains the following topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This document provides information about how to use SQL Performance Analyzer to
test database upgrades from Oracle Database 9i to Oracle Database 10g and
subsequent releases. This document is intended for database administrators,
application designers, and programmers who are responsible for upgrading and
performing real application testing on Oracle Database.

Note: The use of Database Replay and SQL Performance Analyzer
requires the Oracle Real Application Testing licensing option. For
more information, see Oracle Database Licensing Information.

vi

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, 7 days a week. For TTY support,
call 800.446.2398. Outside the United States, call +1.407.458.2479.

Related Documents
For more information about some of the topics discussed in this document, see the
following documents in the Oracle Database Release 11.1 documentation set:

■ Oracle Database Concepts

■ Oracle Database Administrator's Guide

■ Oracle Database 2 Day DBA

■ Oracle Database Performance Tuning Guide

■ Oracle Database 2 Day + Performance Tuning Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

vii

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

viii

SQL Performance Analyzer 1-1

1
SQL Performance Analyzer

SQL Performance Analyzer enables you to assess the performance impact of any
system change resulting in changes to SQL execution plans and performance
characteristics. Examples of common system changes for which you can use SQL
Performance Analyzer include:

■ Database upgrade

■ Configuration changes to the operating system, hardware, or database

■ Database initialization parameter changes

■ Schema changes, for example, adding new indexes or materialized views

■ Gathering optimizer statistics

■ Validating SQL tuning actions, for example, creating SQL profiles or
implementing partitioning

This document specifically describes how to use SQL Performance Analyzer in a
database upgrade from Oracle Database 9i to Oracle Database 10g Release 2. For
complete information about SQL Performance Analyzer, and how to use it in other
cases, see Oracle Database Performance Tuning Guide.

This chapter contains the following sections:

■ Testing Database Upgrade from Oracle Database 9i to Oracle Database 10g

■ Enabling SQL Trace on the Production System

■ Creating a Mapping Table

■ Building a SQL Tuning Set

■ Running SQL Performance Analyzer

■ Comparing SQL Performance

■ Tuning Regressed SQL

Testing Database Upgrade from Oracle Database 9i to Oracle Database
10g

SQL Performance Analyzer accepts a representative set of SQL statements stored in a
SQL tuning set as its input source. Since SQL tuning sets are not supported in Oracle
Database 9i, this release supports the added functionality to read SQL trace files from
Oracle Database 9i to construct a SQL tuning set that can be used as an input source
for SQL Performance Analyzer. Once constructed, you can use SQL Performance
Analyzer to execute the SQL tuning set on Oracle Database 10g Release 2 remotely

Testing Database Upgrade from Oracle Database 9i to Oracle Database 10g

1-2 Oracle Database Real Application Testing Addendum

over a database link. This functionality is provided so that you can use SQL
Performance Analyzer to test the impact on SQL response time of a database upgrade
from Oracle Database 9i to Oracle Database 10g Release 2, as illustrated in Figure 1–1.

Figure 1–1 SQL Performance Analyzer Workflow for Database Upgrade from Oracle
Database 9i to Oracle Database 10g Release 2

The production system which you are upgrading from should be running Oracle
Database 9i. The test system which you are upgrading to should be running Oracle
Database 10g Release 2. The database version can be release 10.2.0.2 or later. If you are
upgrading to Oracle Database 10g release 10.2.0.2 or 10.2.0.3, you will also need to
install a one-off patch before proceeding. To ensure that the analysis made by SQL
Performance Analyzer is accurate, this system should contain an exact copy of the
production data found on the production system. Furthermore, the hardware
configuration should also be as similar to the production system as possible.

Next, you will need to set up a separate system running Oracle Database 11g Release
1. The database version should be release 11.1.0.6. You will also need to install a
one-off patch for this release. You will be using this system to build a SQL tuning set
and to run SQL Performance Analyzer. Neither your production data or schema need
to be available on this system, since the SQL tuning set will be built using statistics
stored in the SQL trace files from the production system, and SQL Performance
Analyzer tasks will be executed remotely on the test system over a database link.

Once the upgrade environment is configured as described, you can use SQL
Performance Analyzer in a database upgrade from Oracle Database 9i to Oracle
Database 10g by completing the following steps, as illustrated in Figure 1–1:

1. Enable the SQL Trace facility on the production system running Oracle Database
9i.

To minimize the performance impact on the production system and still be able to
fully capture a representative set of SQL statements, consider enabling SQL Trace
for only a subset of the sessions, for as long as required, to capture all important
SQL statements at least once.

2. Create a mapping table on the production system running Oracle Database 9i.

Enabling SQL Trace on the Production System

SQL Performance Analyzer 1-3

This mapping table will be used to convert the user and object identifier numbers
in the SQL trace files to their string equivalents.

3. Move the SQL trace files and the mapping table from the production system
running Oracle Database 9i to the system running Oracle Database 11g.

4. On the system running Oracle Database 11g, construct a SQL tuning set using the
SQL trace files.

The SQL tuning set will contain the SQL statements captured in the SQL trace
files, along with their relevant execution context and statistics.

5. On the system running Oracle Database 11g, use SQL Performance Analyzer to
build a pre-upgrade SQL trial and a post-upgrade SQL trial:

a. Convert the contents in the SQL tuning set into a pre-upgrade SQL trial that
will be used as a baseline for comparison.

b. Remotely test execute the SQL statements on the test system running Oracle
Database 10g over a database link to build a post-upgrade SQL trial.

6. Compare SQL performance and fix regressed SQL:

SQL Performance Analyzer compares the performance of SQL statements read
from the SQL tuning set during the pre-upgrade SQL trial to those captured from
the remote test execution during the post-upgrade SQL trial. A report is produced
to identify any changes in execution plans or performance of the SQL statements.

If the report reveals any regressed SQL statements, you can make further changes
to fix the regressed SQL. You can then repeat the process of executing the SQL
tuning set and comparing its performance to a previous execution to test any fixes
or additional changes made. Repeat these steps until you are satisfied with the
outcome of the analysis.

The remaining sections in this chapter discuss each of these steps in greater detail.

Enabling SQL Trace on the Production System
Oracle Database 9i uses the SQL Trace facility to collect performance data on
individual SQL statements. The information generated by SQL Trace is stored in SQL
trace files. SQL Performance Analyzer consumes the following information from these
files:

■ SQL text and username under which parse occurred

■ Bind values for each execution

■ CPU and elapsed times

■ Physical reads and logical reads

■ Number of rows processed

■ Execution plan for each SQL statement (only captured if the cursor for the SQL
statement is closed)

Although it is possible to enable SQL Trace for an instance, it is recommended that
you enable SQL Trace for a subset of sessions instead. When the SQL Trace facility is
enabled for an instance, performance statistics for all SQL statements executed in the
instance are stored into SQL trace files. Using SQL Trace in this way can have a severe
performance impact and may result in increased system overhead, excessive CPU
usage, and inadequate disk space. It is required that trace level be set to 4 to capture
bind values, along with the execution plans.

Creating a Mapping Table

1-4 Oracle Database Real Application Testing Addendum

After enabling SQL Trace on the production system running Oracle 9i, identify the
SQL trace files containing statistics for a representative set of SQL statements that you
want to use with SQL Performance Analyzer. You can then copy the SQL trace files to
the system running Oracle Database 11g. Once the SQL workload is captured in the
SQL trace files, disable SQL Trace on the production system running Oracle 9i.

Creating a Mapping Table
To convert the user and object identifier numbers stored in the SQL trace files to their
respective names, you need to provide a table that specifies each mapping. Oracle
Database 11g will read this mapping table when converting the trace files into a SQL
tuning set.

To create a mapping table, run the following SQL statements on the production
database running Oracle Database 9i:

create table mapping as
 select object_id id, owner, substr(object_name, 1, 30) name from dba_objects
 where object_type NOT IN ('CONSUMER GROUP', 'EVALUATION CONTEXT', ’FUNCTION’,
 'INDEXTYPE', 'JAVA CLASS', ’JAVA DATA’,
 'JAVA RESOURCE', 'LIBRARY', ’LOB’, ’OPERATOR’,
 'PACKAGE', 'PACKAGE BODY', ’PROCEDURE’, ’QUEUE’,
 'RESOURCE PLAN', 'TRIGGER', ’TYPE’, ’TYPE BODY’)
 union all
 select user_id id, username owner, null name from dba_users;

Once the mapping table is created, you can use Data Pump to transport it to the
system running Oracle Database 11g.

Building a SQL Tuning Set
Once the SQL trace files and mapping table are moved to the system running Oracle
Database 11g, you can build a SQL tuning set using the DBMS_SQLTUNE package.

To build a SQL tuning set:

1. Copy the SQL trace files to a directory on the system running Oracle Database 11g.

2. Create a directory object for this directory.

3. Use the DBMS_SQLTUNE.SELECT_SQL_TRACE function to read the SQL
statements from the SQL trace files.

The following example reads the contents of SQL trace files stored in the sql_
trace_prod directory object and loads them into a SQL tuning set.

DECLARE
 cur sys_refcursor;
BEGIN
 DBMS_SQLTUNE.CREATE_SQLSET(’my_sts_9i’);
 OPEN cur FOR
 SELECT VALUE (P)
 FROM table(DBMS_SQLTUNE.SELECT_SQL_TRACE('sql_trace_prod', ’%ora%’)) P;
 DBMS_SQLTUNE.LOAD_SQLSET(’my_sts_9i’, cur);

See Also: Oracle Database Performance Tuning Guide for additional
considerations when using SQL Trace, such as setting initialization
parameters to manage SQL trace files

See Also: Oracle Database Utilities for information about using Data
Pump

Building a SQL Tuning Set

SQL Performance Analyzer 1-5

 CLOSE cur;
END;
/

The syntax for the SELECT_SQL_TRACE function is as follows:

 DBMS_SQLTUNE.SELECT_SQL_TRACE (
 directory IN VARCHAR2,
 file_name IN VARCHAR2 := NULL,
 mapping_table_name IN VARCHAR2 := ’mapping’,
 mapping_table_owner IN VARCHAR2 := NULL,
 select_mode IN POSITIVE := SINGLE_EXECUTION,
 options IN BINARY_INTEGER := LIMITED_COMMAND_TYPE,
 pattern_start IN VARCHAR2 := NULL,
 parttern_end IN VARCHAR2 := NULL,
 result_limit IN POSITIVE := NULL)
 RETURN sys.sqlset PIPELINED;

Table 1–1 describes the available parameters for the SELECT_SQL_TRACE function.

Table 1–1 DBMS_SQLTUNE.SELECT_SQL_TRACE Function Parameters

Parameter Description

directory Specifies the directory object pointing to the directory where the
SQL trace files are stored.

file_name Specifies all or part of the name of the SQL trace files to process.
If unspecified, the current or most recent trace file in the
specified directory will be used. % wildcards are supported for
matching trace file names.

mapping_table_name Specifies the name of the mapping table. The default mapping
table name is mapping. Note that the mapping table name is not
case-sensitive.

mapping_table_owner Specifies the schema where the mapping table resides. If set to
NULL, the current schema will be used.

select_mode Specifies the mode for selecting SQL statements from the trace
files. The default value is SINGLE_EXECUTION. In this mode,
only statistics for a single execution per SQL statement will be
loaded into the SQL tuning set. The statistics are not cumulative,
as is the case with other SQL tuning set data source table
functions.

options Specifies the options for the operation. The default value is
LIMITED_COMMAND_TYPE, only SQL types that are meaningful
to SQL Performance Analyzer (such as SELECT, INSERT,
UPDATE, and DELETE) are returned from the SQL trace files.

pattern_start Specifies the opening delimiting pattern of the trace file sections
to consider. This parameter is currently not used.

pattern_end Specifies the closing delimiting pattern of the trace file sections
to process. This parameter is currently not used.

result_limit Specifies the top SQL from the (filtered) source. The default
value is MAXSB4.

See Also: Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_SQLTUNE package

Running SQL Performance Analyzer

1-6 Oracle Database Real Application Testing Addendum

Running SQL Performance Analyzer
After building the SQL tuning set on the system running Oracle Database 11g, you can
use it as an input source to run SQL Performance Analyzer. Running SQL
Performance Analyzer involves creating SQL trials for Oracle Database 9i and Oracle
Database 10g Release 2, and storing them in a central task container. A SQL trial
represents a discrete set of performance data in the task and is generated automatically
by the EXECUTE_ANALYSIS_TASK procedure as a place to store its results.

To run SQL Performance Analyzer:

1. Create a SQL Performance Analyzer task, as described in "Creating a SQL
Performance Analyzer Task" on page 1-6.

2. Execute the task to convert production statistics from the SQL tuning set into a
pre-upgrade SQL trial, as described in "Building the Pre-Upgrade SQL Trial" on
page 1-6.

3. Perform a test execution to generate statistics and execution plans on the test
system running Oracle Database 10g Release 2 to build a post-upgrade SQL trial,
as described in "Building the Post-Upgrade SQL Trial" on page 1-7.

Creating a SQL Performance Analyzer Task
This section describes how to create a new SQL Performance Analyzer task on the
system running Oracle Database 11g by using the DBMS_SQLPA.CREATE_ANALYSIS_
TASK function. A task is a database container for SQL Performance Analyzer execution
inputs and results.

Before creating the task, ensure that the SQL workload to use for the performance
analysis is available in the form of a SQL tuning set on the system. Call the CREATE_
ANALYSIS_TASK function using the following parameters:

■ Set task_name to specify the name for the SQL Performance Analyzer task.

■ Set sqlset_name to the name of the SQL Tuning Set.

■ Set sqlset_owner to the owner of the SQL Tuning Set. The default is the current
schema owner.

■ Use basic_filter to filter out SQL statements that you do not want to include
in the trial.

■ Set order_by to specify an order-by clause on the selected SQL.

■ Set top_sql to consider only the top number of SQL statements after filtering and
ranking.

The following example creates a SQL Performance Analyzer task named my_spa_
task that will use the SQL tuning set named my_sts_9i as its input source:

VARIABLE t_name VARCHAR2(100);
EXEC :t_name := DBMS_SQLPA.CREATE_ANALYSIS_TASK(sqlset_name => 'my_sts_9i', -
 task_name => 'my_spa_task');

Building the Pre-Upgrade SQL Trial
After the SQL Performance Analyzer task is created on the system running Oracle
Database 11g, you need to call the EXECUTE_ANALYSIS_TASK procedure to take the

See Also: Oracle Database PL/SQL Packages and Types Reference to
learn more about the DBMS_SQLPA.CREATE_ANALYSIS_TASK
function

Running SQL Performance Analyzer

SQL Performance Analyzer 1-7

execution plans and runtime statistics in the SQL tuning set and use them to build a
pre-upgrade SQL trial.

To build the pre-upgrade SQL trial, call the EXECUTE_ANALYSIS_TASK procedure
using the following parameters:

■ Set the task_name parameter to the name of the SQL Performance Analyzer task
that you want to execute.

■ Set the execution_type parameter to CONVERT SQLSET to direct SQL
Performance Analyzer to treat the statistics in the SQL tuning set as a trial
execution.

■ Specify a name to identify the execution using the execution_name parameter.
If not specified, then SQL Performance Analyzer automatically generates a name
for the task execution.

The following example executes the SQL Performance Analyzer task named my_spa_
task as a trial execution:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(task_name => 'my_spa_task', -
 execution_type => 'CONVERT SQLSET', -
 execution_name => 'my_trial_9i');

Building the Post-Upgrade SQL Trial
After the pre-upgrade SQL trial is built, you need to run a SQL Performance Analyzer
task to perform a test execute or explain plan of SQL statements in the SQL tuning set
on the test system running Oracle Database 10g Release 2 to build a post-upgrade SQL
trial. SQL Performance Analyzer remotely test executes the SQL statements using a
database link that you need to specify so that Oracle Database 11g can connect to
Oracle Database 10g Release 2 to generate the execution plan and statistics for the SQL
trial. The database link should exist on the system running Oracle Database 11g and
connect to the test system running Oracle Database 10g Release 2.

To build the post-upgrade SQL trial, perform an explain plan or test execute using the
system running Oracle Database 11g by calling the EXECUTE_ANALYSIS_TASK
procedure with the DATABASE_LINK task parameter set to the global name of a public
database link to be used. If you choose to use EXPLAIN PLAN, only execution plans
will be generated. Subsequent comparisons will only be able to yield a list of changed
plans without making any conclusions about performance changes. If you choose to
use TEST EXECUTE, the SQL workload will be executed to completion. This
effectively builds the post-upgrade performance data using the statistics and execution
plans generated from the test system running Oracle Database 10g. Using TEST
EXECUTE is recommended to capture the SQL execution plans and performance data
at the source, thereby resulting in a more accurate analysis.

The following example performs a test execute of the SQL statements remotely over a
database link:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(task_name => 'my_spa_task', -
 execution_type => 'TEST EXECUTE', -
 execution_name => 'my_remote_trial_10g', -
 execution_params => dbms_advisor.arglist(’database_link’,
 'LINK.A.B.C.BIZ.COM'));

See Also: Oracle Database PL/SQL Packages and Types Reference to
learn about the DBMS_SQLPA.EXECUTE_ANALYSIS_TASK function

Comparing SQL Performance

1-8 Oracle Database Real Application Testing Addendum

Comparing SQL Performance
After the pre-upgrade and post-upgrade SQL trials are built, you can compare the
pre-upgrade version of performance data (from the production system) to the
post-upgrade version (from the test system) by calling the DBMS_SQLPA.EXECUTE_
ANALYSIS_TASK procedure or function to run a comparison analysis. Afterwards,
SQL Performance Analyzer can generate a report that shows the results of the
comparison and then interpret the results.

To compare the pre-change and post-change SQL performance data:
1. Call the EXECUTE_ANALYSIS_TASK procedure or function using the following

parameters:

■ Set the task_name parameter to the name of the SQL Performance Analyzer
task.

■ Set the execution_type parameter to COMPARE PERFORMANCE. This
setting will analyze and compare two versions of SQL performance data.

■ Specify a name to identify the execution using the execution_name
parameter. If not specified, it will be generated by SQL Performance Analyzer
and returned by the function.

■ Specify two versions of SQL performance data using the execution_params
parameters. The execution_params parameters are specified as (name,
value) pairs for the specified execution. Set the execution parameters that are
related to comparing and analyzing SQL performance data as follows:

– Set the execution_name1 parameter to the name of pre-upgrade SQL
trial.

– Set the execution_name2 parameter to the name of the post-upgrade
SQL trial.

– Set the comparison_metric parameter to specify an expression of
execution statistics to use in the performance impact analysis. Possible
values include the following metrics or any formula combining them:
elapsed_time (default), cpu_time, buffer_gets, disk_reads,
direct_writes, and optimizer_cost.

For other possible parameters that you can set for comparison, see the
description of the DBMS_SQLPA package in Oracle Database PL/SQL Packages
and Types Reference.

The following example illustrates a function call:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(task_name => 'my_spa_task', -
 execution_type => 'COMPARE PERFORMANCE', -
 execution_name => 'my_exec_compare', -
 execution_params => dbms_advisor.arglist(-
 'comparison_metric', 'buffer_gets',
 'execution_name1', 'my_trial_9i',
 'execution_name2', 'my_remote_trial_10g',

2. Call the DBMS_SQLPA.REPORT_ANALYSIS_TASK function to generate a report
using the following parameters:

See Also: Oracle Database PL/SQL Packages and Types Reference to
learn about the DBMS_SQLPA.SET_ANALYSIS_TASK_PARAMETER
procedure

Tuning Regressed SQL

SQL Performance Analyzer 1-9

■ Set the task_name parameter to the name of the SQL Performance Analyzer
task.

■ Set the execution_name parameter to the name of the COMPARE
PERFORMANCE execution.

■ Set the type parameter to specify the type of report to generate. Possible
values include TEXT (default), HTML, and XML.

■ Set the level parameter to specify the format of the recommendations.
Possible values include TYPICAL (default), BASIC, and ALL.

■ Set the section parameter to limit the report to a particular section. Possible
values include SUMMARY (default) and ALL.

■ Set the top_sql parameter to specify the number of SQL statements in a SQL
Tuning Set to include in the report. By default, the report shows the top 100
SQL statements impacted by the system change.

The following example illustrates a portion of a SQL script that you could use to
create and display a comparison summary report:

VAR rep CLOB;
EXEC :rep := DBMS_SQLPA.REPORT_ANALYSIS_TASK('my_spa_task', -
 'text', 'typical', 'summary', NULL, 100, ’my_exec_compare’);
SET LONG 100000 LONGCHUNKSIZE 100000 LINESIZE 130
PRINT :rep

3. Review the SQL Performance Analyzer report.

When reviewing the reports, the following considerations should be made to
determine the validity of the results:

■ Hardware and data differences

Any data or hardware differences between the two systems may produce a
greater discrepancy in the results.

■ Use of the SQL Trace facility

SQL tracing itself has an impact on the statistics generated. Consequently,
performance data for the Oracle Database 9i trial may appear worse than
actual. Therefore, any regression detected after comparing the SQL
performance should be addressed before upgrading your production system.

Tuning Regressed SQL
After reviewing the SQL Performance Analyzer report, you should tune any regressed
SQL statements that are identified after comparing the SQL performance. If there are
large numbers of SQL statements that appear to have regressed, you should try to
identify the root cause and make system-level changes to rectify the problem. In cases
when only a few SQL statements have regressed, consider using one of the following
tuning methods to implement a point solution for them:

See Also:

■ For information about the SQL Performance Analyzer report, see
Oracle Database Performance Tuning Guide

■ Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_SQLPA.EXECUTE_ANALYSIS_TASK
and DBMS_SQLPA.REPORT_ANALYSIS_TASK functions

Tuning Regressed SQL

1-10 Oracle Database Real Application Testing Addendum

■ Run the SQL Tuning Advisor on the regressed SQL statements using the test
system running Oracle Database 10g Release 2

For more information about using the SQL Tuning Advisor, see Oracle Database
Performance Tuning Guide.

■ Capture stored outlines on the production system and move them to the test
system

For more information about using stored outlines, see Oracle Database Performance
Tuning Guide.

After tuning the regressed SQL statements, you should test these changes using SQL
Performance Analyzer. Run a new remote test execution on the test system, followed
by a second comparison (between this new SQL trial and the pre-upgrade SQL trial) to
validate your results. Once SQL Performance Analyzer shows that performance has
stabilized, the testing is complete. Implement the fixes from this step as part of the
upgrade process of your production system.

Index-1

Index

C
CREATE_ANALYSIS_TASK function, 1-6

D
database version

production system, 1-2
system running SQL Performance Analyzer, 1-2
test system, 1-2

E
EXECUTE_ANALYSIS_TASK procedure, 1-7, 1-8

M
mapping table

about, 1-4
creating, 1-2, 1-4
moving, 1-3, 1-4

R
regressed SQL

tuning, 1-3, 1-9
REPORT_ANALYSIS_TASK function, 1-8

S
SELECT_SQL_TRACE function

parameters, 1-5
syntax, 1-5
using, 1-4

SQL performance
comparing, 1-3, 1-8

SQL Performance Analyzer
database upgrade

Oracle Database 9i to 10g, 1-2
input source, 1-1
remote test execution, 1-7
task

about, 1-6
creating, 1-6

use cases, 1-1
SQL Trace

about, 1-3

enabling, 1-2, 1-3
impact, 1-9
trace level, 1-3

SQL trace files
about, 1-3
moving, 1-3, 1-4

SQL trial
about, 1-6
building

post-upgrade version, 1-3, 1-7
pre-upgrade version, 1-3, 1-7

SQL tuning set
building, 1-4
constructing, 1-3
converting, 1-3, 1-7
executing, 1-6

U
upgrade environment, 1-2

Index-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 SQL Performance Analyzer
	Testing Database Upgrade from Oracle Database 9i to Oracle Database 10g
	Enabling SQL Trace on the Production System
	Creating a Mapping Table
	Building a SQL Tuning Set
	Running SQL Performance Analyzer
	Creating a SQL Performance Analyzer Task
	Building the Pre-Upgrade SQL Trial
	Building the Post-Upgrade SQL Trial

	Comparing SQL Performance
	Tuning Regressed SQL

	Index
	C
	D
	E
	M
	R
	S
	U

