
[image: Oracle Corporation]

Oracle® COM Automation Feature

Developer's Guide

11g Release 1 (11.1)

B31223-02

September 2007

Oracle COM Automation Feature Developer's Guide, 11g Release 1 (11.1)

B31223-02

Copyright © 1999, 2007, Oracle. All rights reserved.

Primary Author: Tulika Das

Contributors: Neeraj Gupta, Janis Greenberg, Eric Belden, Steven Caminez, Jagadish Changavi, Barmak Meftah, Valarie Moore, Neeraj Gupta, Vikhram Shetty, Sujith Somanathan, Alex Keh, Christian Shay, Riaz Ahmed

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party.

Contents

List of Figures

List of Tables

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

1 Introducing Oracle COM Automation Feature

	Overview of Oracle COM Automation Feature
	Oracle COM Automation Feature Functionality
	Oracle COM Automation Feature for PL/SQL
	Oracle COM Automation Feature for Java

	Benefits of Oracle COM Automation Feature
	Oracle COM Automation Feature Architecture
	PL/SQL Architecture
	Invoking COM Automation External Procedure APIs
	Architectural Impact on Availability Issues

	Java Architecture
	Reliability

2 Installing and Configuring Oracle COM Automation Feature

	Oracle COM Automation Feature Components
	PL/SQL Components
	Java Components

	System Requirements
	Upgrading from Oracle Database 10g to Oracle Database 11g Release 1
	Upgrading from Oracle9i to Oracle Database 10g
	Configurations for Oracle COM Automation Feature
	Configuring Oracle COM Automation Feature for PL/SQL
	Configuring Oracle COM Automation Feature for Java

	Configuring the Listener for PL/SQL
	Troubleshooting Listener Problems

	Support for DCOM
	Configuring the Computer for DCOM
	Configurations for the Computer Running the Database Instance
	Setting Services to a Domain User

	Configuring the Computer Containing the Remote Object

3 Oracle COM Automation Feature Core Functionality

	Data Type Conversions
	Data Type Conversion for PL/SQL
	Data Type Conversion for Java

	HRESULT Error Codes
	PL/SQL Use of HRESULT
	Java Use of HRESULT

	Oracle COM Automation for Java Exception Handling
	Typical COM Automation Functionality
	Information Required for COM Objects
	OLE/COM Object Viewer
	Using COM Automation Feature APIs

	Application Programming Interfaces
	PL/SQL APIs
	Java APIs

	PL/SQL APIs
	CreateObject
	DestroyObject
	GetLastError
	GetProperty
	SetProperty
	InitArg
	InitOutArg
	GetArg
	SetArg
	Invoke

	Java APIs
	Automation Constructor
	Create
	Destroy
	GetProperty
	SetProperty
	InitArg
	SetArg
	Invoke
	Currency Constructor
	Get
	Set

4 Oracle COM Automation PL/SQL Demos

	Overview of Oracle COM Automation Feature for PL/SQL Demos
	Microsoft Word Demo
	Installing the Microsoft Word Demo
	Using the Microsoft Word Demo
	Core Functionality

	Microsoft Excel Demo
	Installing the Microsoft Excel Demo
	Using the Microsoft Excel Demo
	Core Functionality

	Microsoft PowerPoint Demo
	Installing the Microsoft PowerPoint Demo
	Using the Microsoft PowerPoint Demo
	Core Functionality

	MAPI Demo
	Setting Up the Environment to Use the MAPI Demo
	Preparing to Install MAPI Demo
	Installing the MAPI Demo
	Using the MAPI Demo
	Core Functionality

5 Oracle COM Automation Java Demos

	Overview of Oracle COM Automation Feature for Java Demos
	Microsoft Word Java Demo
	Installing the Microsoft Word Java Demo
	Using the Microsoft Word Java Demo
	Creating a Custom Application
	Core Functionality

A COM Automation Error Messages

	Oracle COM Automation Feature, PL/SQL Errors
	Microsoft COM Automation Errors

Glossary

Index

List of Figures

	1-1 Oracle COM Interaction
	1-2 COM Automation Feature Architecture for PL/SQL
	1-3 COM Automation Feature Architecture for Java
	3-1 OLE/COM Object Viewer

List of Tables

	2-1 Services That Determine Security Credentials
	3-1 PL/SQL to COM Automation Data Types
	3-2 Java to COM Automation Data Types
	3-3 COMException Data Members

Preface

This document is your primary source of introductory, installation, post-installation configuration, and usage information for Oracle COM Automation Feature.

This document describes the features of Oracle Database for Windows that apply to the Windows 2000, Windows XP, and Windows Server 2003 operating systems.

This Preface contains these topics:

	
Audience

	
Documentation Accessibility

	
Related Documents

	
Conventions

Audience

Oracle COM Automation Feature Developer's Guide is intended for developers who develop solutions that use COM.

To use this document, you need familiarity with:

	
Component Object Model (COM)

	
OLE Automation

	
Structured query language (SQL)

	
Data definition language (DDL)

	
Data manipulation language (DML)

	
PL/SQL or Java

	
Oracle object-relational database management system (ORDBMS) concepts

	
Windows Server operating systems

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, 7 days a week. For TTY support, call 800.446.2398. Outside the United States, call +1.407.458.2479.

Related Documents

For more information, see these Oracle resources:

	
Oracle Database Installation Guide for Microsoft Windows

	
Oracle Database Release Notes for Microsoft Windows

	
Oracle Database Platform Guide for Microsoft Windows

	
Oracle Services for Microsoft Transaction Server Developer's Guide

	
Oracle Database Net Services Administrator's Guide

	
Oracle Database New Features Guide

	
Oracle Database Concepts

	
Oracle Database Reference

	
Oracle Database Java Developer's Guide

For information about Oracle error messages, see Oracle Database Error Messages. Oracle error message documentation is available only in HTML. If you only have access to the Oracle Documentation CD, you can browse the error messages by range. Once you find the specific range, use your browser's "find in page" feature to locate the specific message. When connected to the Internet, you can search for a specific error message using the error message search feature of the Oracle online documentation.

Many of the examples in this book use the sample schemas of the seed database, which is installed by default when you install Oracle. Refer to Oracle Database Sample Schemas for information about how these schemas were created and how you can use them yourself.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

1 Introducing Oracle COM Automation Feature

This chapter describes the Oracle COM Automation Feature Software Development Kit (SDK) and provides an overview of the product. Read this chapter before installing or using Oracle COM Automation Feature.

This chapter contains these topics:

	
Overview of Oracle COM Automation Feature

	
Benefits of Oracle COM Automation Feature

	
Oracle COM Automation Feature Architecture

Overview of Oracle COM Automation Feature

Oracle COM Automation Feature enables you to use Component Object Model (COM)-based components to customize and enhance the functionality of the Oracle database on Windows operating systems.

You can build your own custom components or use the thousands of prebuilt components that are available from third-party independent software vendors (ISVs).

Oracle COM Automation Feature Functionality

Oracle COM Automation Feature provides a mechanism to manipulate COM objects through either PL/SQL or Java.

	
Oracle COM Automation Feature acts as a generic wrapper around the IDispatch interface.

	
Oracle COM Automation Feature externalizes all methods supported by the IDispatch interface.

	
COM objects expose properties, data attributes, and methods (functions that perform an action) to the developer.

	
The IDispatch interface supports three basic operations for any COM object:

	
Gets the value of an exposed property

	
Sets the value of an exposed property

	
Invokes a method on an object

When an Oracle COM Automation Feature application programming interface (API) is invoked from PL/SQL or Java stored procedures, Oracle COM Automation Feature converts the parameters to the appropriate COM Automation data types and then invokes the corresponding IDispatch API with the converted parameters.

	
See Also:

Chapter 3, "Oracle COM Automation Feature Core Functionality" for descriptions of the data types and APIs

Oracle COM Automation Feature for PL/SQL

Oracle COM Automation Feature for PL/SQL provides a PL/SQL package and exposes a set of application programming interfaces (APIs) to instantiate COM objects. Developers can call these APIs from PL/SQL subprograms, stored procedures, stored functions, or triggers to manipulate COM objects.

There are no restrictions concerning where these COM objects reside. They can be local to the database or accessed remotely through the Distributed Component Object Model (DCOM).

Oracle COM Automation Feature for Java

Oracle COM Automation Feature for Java provides a set of Java APIs to instantiate COM objects. Developers can call these APIs from Java stored procedures, Java functions, or Java triggers to manipulate COM objects.

Oracle COM Automation Feature for Java does not allow in-process COM Automation servers. Developers can use dllhost to support in-process servers.

Benefits of Oracle COM Automation Feature

Oracle COM Automation Feature is a powerful and enabling infrastructure technology for Oracle developers on Windows. It has the following advantages:

	
Ease of Development

Oracle COM Automation Feature exposes a simple set of APIs to manipulate COM objects. If you are familiar with COM and Microsoft Visual Basic, you can easily incorporate these APIs into your PL/SQL subprograms or Java programs.

	
Reusability

Oracle COM Automation Feature enables you to leverage prebuilt COM components that have been developed in-house or by third-party independent software vendors (ISVs). In addition, there are thousands of existing COM components from which you can choose. The COM component market is expanding rapidly and already offers solutions to many common programming problems.

	
Flexibility and Extensibility

You can use Oracle COM Automation Feature to customize and enhance the functionality of the database server. Through the use of COM components, the Oracle database can be customized to:

	
Exchange data among productivity applications, such as Microsoft Word, Microsoft Excel, and Microsoft PowerPoint.

	
Generate reports using Seagate Crystal Reports.

	
Send and receive e-mail with MAPI-compliant applications.

The possibilities for customization and extensibility of the database server are limitless.

	
Enhanced Integration

Oracle COM Automation Feature enables you to deploy Oracle Database in a combined Oracle and Windows environment. You can be assured that Oracle COM Automation Feature integrates fully with and capitalizes on the services that are exposed by Windows, Microsoft BackOffice applications, and Microsoft Office applications.

	
Portability and Platform-Specific Requirements

Applications using Oracle COM Automation Feature are written in Java or PL/SQL, which are platform-independent. Only the database instance that needs to invoke COM components must be run on Windows.

Oracle COM Automation Feature Architecture

Figure 1-1 illustrates the interaction between an Oracle9i database with Oracle COM Automation Feature, client applications, and server applications.

Figure 1-1 Oracle COM Interaction

[image: Description of Figure 1-1 follows]

The architectural differences between Oracle COM Automation Feature for PL/SQL and for Java are described in the next two sections.

PL/SQL Architecture

Oracle COM Automation Feature for PL/SQL provides a package of PL/SQL APIs for manipulating COM objects. These APIs are implemented as external procedures in a dynamic-link library (DLL).

Oracle9i supports external procedures that enable developers to call third-generation language (3GL) functions from server-based object type methods and stored procedures. External procedures are invoked exactly like standard PL/SQL stored procedures. However, unlike standard PL/SQL procedures where the body of the procedure is written in PL/SQL and stored in the database, external procedures are functions in the C programming language that reside within a DLL. You can invoke Oracle COM Automation Feature APIs in the same manner in which you call a standard PL/SQL stored procedure or function.

Figure 1-2 shows an Oracle9i database invoking COM Automation external procedure APIs.

Figure 1-2 COM Automation Feature Architecture for PL/SQL

[image: Description of Figure 1-2 follows]

Invoking COM Automation External Procedure APIs

The database server invokes any of the COM Automation external procedure APIs as follows:

	
The PL/SQL interpreter looks up the path name to the Oracle COM Automation Feature DLL (orawpcomVER.dll) where VER is the release version.

	
The PL/SQL interpreter sends a message to the listener using Oracle Net to start extproc.exe, if it has not already been started for the current user session.

	
The PL/SQL interpreter passes the procedure name, the parameters, and the path name of the DLL to extproc.exe.

	
The extproc.exe file loads the DLL and executes the external procedure. Each of the COM Automation external procedure APIs in turn calls Win32 APIs that instantiate a COM object, set or get properties of a COM object, or invoke a method of a COM object.

	
The extproc.exe file acts as an intermediary and handles any interaction between Oracle COM Automation Feature and the database server.

Architectural Impact on Availability Issues

The dependence on external procedures by Oracle COM Automation Feature for PL/SQL has implications for the availability of the database server.

You do not jeopardize the availability of the database server by using Oracle COM Automation Feature and custom or third-party COM objects in a production environment. Oracle COM Automation Feature operates outside of the Oracle kernel's address space. This safeguards the Oracle database from COM objects that stop abruptly.

Java Architecture

Oracle COM Automation Feature for Java is implemented by the Java Native Interface (JNI). The key components of this architecture are the Automation class and the Java COM Proxy DLL, orawcomVER.dll, where VER is the release version.

The interface is the Automation class, a Java proxy to the COM Automation server. The Automation class provides the methods necessary for developers to manipulate COM objects through the IDispatch interface.

The Java-specific COM proxy, orawcomVER.dll, enables Java functions to invoke their corresponding COM functions.

Figure 1-3 illustrates implementation of Oracle COM Automation Feature for Java.

Figure 1-3 COM Automation Feature Architecture for Java

[image: Description of Figure 1-3 follows]

Reliability

Oracle COM Automation Feature for Java invokes COM components from the database server. However, these COM components are run outside of the Oracle9i database process. This design prevents unstable COM components from interfering with the database process.

2 Installing and Configuring Oracle COM Automation Feature

This chapter provides an overview of the Oracle COM Automation Feature installation and postinstallation configuration tasks.

This chapter contains these topics:

	
Oracle COM Automation Feature Components

	
System Requirements

	
Upgrading from Oracle Database 10g to Oracle Database 11g Release 1

	
Upgrading from Oracle9i to Oracle Database 10g

	
Configurations for Oracle COM Automation Feature

	
Configuring the Listener for PL/SQL

	
Support for DCOM

Oracle COM Automation Feature Components

The Oracle COM Automation Feature package is included as part of the Oracle installation. It contains the features and demos that illustrate how to use this product to solve real-world problems.

	
See Also:

Oracle Database Installation Guide for Microsoft Windows for installation instructions

The COM Automation package includes the following PL/SQL and Java components:

	
PL/SQL Components

	
Java Components

PL/SQL Components

The PL/SQL components for Oracle COM Automation Feature are:

	
Oracle COM Automation Feature PL/SQL (orawpcomVER.dll)

	
PL/SQL installation and definition script (comwrap.sql)

	
Oracle COM Automation demonstration programs

	
Message files (such as comus.msb)

Oracle COM Automation PL/SQL feature orawpcomVER.dll is located in the ORACLE_BASE\ORACLE_HOME\bin directory.

All other components are located in the ORACLE_BASE\ORACLE_HOME\com directory.

Java Components

The Java components for Oracle COM Automation Feature are:

	
The JAR file, orawcom.jar

	
Oracle COM Automation Feature Java (orawcomVER.dll)

	
Oracle COM Automation demonstration programs

	
The grant.sql script file

Oracle COM Automation Java feature orawcomVER.dll is located in the ORACLE_BASE\ORACLE_HOME\bin directory. All other components are located in the ORACLE_BASE\ORACLE_HOME\com\java directory.

System Requirements

Oracle COM Automation Feature requires:

	
Windows XP, Windows 2000, or Windows Server 2003

	
A functioning database on the computer before installation takes place

Note that you need to have a COM Automation server in the system to use Oracle COM Automation Feature. For example, the COM Automation Feature demos require that you first install the applications that are used in the demonstration programs:

	
The Microsoft Word, Excel, and PowerPoint demos require Microsoft Office 2000 or later.

	
The messaging application programming interface (MAPI) demo requires Microsoft Outlook 2000 or later.

The demonstrations and installations are discussed in "Overview of Oracle COM Automation Feature for PL/SQL Demos" and "Overview of Oracle COM Automation Feature for Java Demos".

Upgrading from Oracle Database 10g to Oracle Database 11g Release 1

To upgrade Oracle COM Automation Feature from Oracle Database 10g Release 1 to Oracle Database 11g Release 1, do the following:

	
Rerun the comwrap.sql script.

	
Reinstall Java classes.

	
Run the grant.sql script.

	
Reinstall demos.

Upgrading from Oracle9i to Oracle Database 10g

For this release, the right to execute orawcom.dll to PUBLIC, which was granted for Oracle9i must be revoked.

	
Note:

In Oracle Database 10g, orawcom.dll is renamed to orawcomVER.dll where VER is the release version.

To upgrade Oracle COM Automation Feature from Oracle9i to Oracle Database 10g, do the following:

	
Rerun the comwrap.sql script.

	
Reinstall Java classes.

	
Revoke the right to execute orawcom.dll from PUBLIC.

	
Run the grant.sql script.

	
Reinstall demos.

	
See Also:

"Configuring Oracle COM Automation Feature for PL/SQL" for information about rerunning the comwrap.sql script

Configurations for Oracle COM Automation Feature

Configuration procedures differ for PL/SQL and Java asexplained in the following sections:

	
Configuring Oracle COM Automation Feature for PL/SQL

	
Configuring Oracle COM Automation Feature for Java

Configuring Oracle COM Automation Feature for PL/SQL

To configure Oracle COM Automation Feature for PL/SQL:

	
Start SQL*Plus.

	
Connect to the database as SYSTEM.

SQL> CONNECT SYSTEM@net_service_name
Enter password: password

	
Grant the CREATE LIBRARY privilege to the database users who will use Oracle COM Automation Feature. For example:

SQL> GRANT CREATE LIBRARY TO hr;

	
Connect to the user who will use Oracle COM Automation Feature, and run the comwrap.sql script at the SQL*Plus prompt:

SQL> CONNECT hr;
Enter password: password
SQL> @ORACLE_BASE\ORACLE_HOME\com\comwrap.sql

In the preceding command, ORACLE_BASE\ORACLE_HOME represents the Oracle home directory where Oracle COM Automation Feature is installed.

You will receive several ORA-04043: object XXXX does not exist messages when you run this script for the first time. These messages are usual.

Configuring Oracle COM Automation Feature for Java

Perform the following to configure Oracle COM Automation Feature for Java:

	
Connect to the database as SYSTEM using SQL*Plus. For example:

SQL> CONNECT SYSTEM@net_service_name
Enter password: password

	
Run the grant.sql script with the name of the user who will be using Oracle COM Automation Feature. You may need to capitalize all letters in the user's name. For example:

SQL> @ORACLE_BASE\ORACLE_HOME\com\java\grant.sql HR

	
Run the loadjava tool at the command prompt as follows:

loadjava -force -resolve -user hr ORACLE_BASE\ORACLE_HOME\com\java\orawcom.jar
Password: password

In the preceding command, hr is the user who uses Oracle COM Automation Feature.

	
See Also:

Oracle Database Java Developer's Guide for further information about the loadjava tool

Configuring the Listener for PL/SQL

This section describes the specific configurations for the listener.ora and tnsnames.ora files when used with Oracle COM Automation Feature for PL/SQL.

	
Note:

Oracle COM Automation Feature for Java needs no special modifications to the listener.ora and tnsnames.ora files.

Because Oracle COM Automation Feature for PL/SQL relies on listener callouts, you must configure the listener and Oracle Net remote procedure call (RPC) mechanism for the feature to work.

The following are examples of listener.ora and tnsnames.ora files that can be used with interprocess communication (IPC) to invoke external stored procedures.

	
See Also:

Oracle Database Net Services Administrator's Guide for additional information about configuring the listener.ora and tnsnames.ora files for external procedures

listener.ora Configuration File

LISTENER =
 (ADDRESS_LIST =
 (ADDRESS=
 (PROTOCOL= IPC)
 (KEY= EXTPROC0)
)
)
STARTUP_WAIT_TIME_LISTENER = 0
CONNECT_TIMEOUT_LISTENER = 10
TRACE_LEVEL_LISTENER = off
SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = ORCL)
)
 (SID_DESC =
 (SID_NAME = plsextproc)
 (PROGRAM=extproc)
)
)
PASSWORDS_LISTENER = (oracle)

tnsnames.ora Configuration File

EXTPROC_CONNECTION_DATA=
 (DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=IPC)
 (KEY=EXTPROC0)
)
 (CONNECT_DATA=(SID=plsextproc))
)
)

Troubleshooting Listener Problems

An "ORA-28575: unable to open RPC connection to external procedure agent" error message indicates one of two possible listener problems.

Problem 1

Problem: The listener is not started.

Action: You must start the OracleHOME_NAMETNSListener service from the Control Panel or the command prompt.

To start Oracle services from the Control Panel:

	
Choose Start, Settings, and then Control Panel.

The Control Panel window appears.

	
Double-click Services.

The Services dialog box appears.

	
Go to OracleHOME_NAMETNSListener in the list and verify that it has a status of Started. If it does not, select it and click Start.

To start Oracle services from the command prompt:

Enter the following command:

C:\> net start service

In the preceding command, service is a specific service name, such as OracleHOME_NAMETNSListener.

Problem 2

Problem: The listener is not configured correctly.

Action: You must modify the listener.ora and tnsnames.ora files.

	
See Also:

"Configuring the Listener for PL/SQL" for information about how to configure these files

Support for DCOM

Oracle COM Automation Feature supports the use of Distributed Component Object Model (DCOM) to access remote Component Object Model (COM) objects over a network.

To authenticate the client's access to the remote computer, DCOM passes the appropriate security credentials to the remote computer. The remote computer validates the security credentials and allows DCOM to proceed.

These security credentials are based on the domain user's privileges associated with either the client's listener service or database service. Table 2-1 indicates the determining service for COM Automation for PL/SQL and Java.

Table 2-1 Services That Determine Security Credentials

	COM Automation Feature for...	Is Determined by This Service
	
PL/SQL

	
Listener

	
Java

	
Oracle database service

Configuring the Computer for DCOM

To use DCOM, you must configure security settings on the following:

	
The computer that is running the database instance

	
The computer that contains the remote COM object

Configurations for the Computer Running the Database Instance

The configuration for the computer running the database instance requires setting the listener and the database service to the same domain user.

Setting Services to a Domain User

In this procedure for setting a service to a domain user, the service to be set is selected in Step 3.

You must follow this procedure twice, once to set the listener and once to set the database service. The order is unimportant.

To set a service to a domain user:

	
Choose Start, Settings, and then Control Panel. The Control Panel window appears.

	
Double-click Services. The Services dialog box appears.

	
Select the service and click Startup. The service should be either OracleHOME_NAMETNSListener or the database service.

	
Select the This Account option.

	
Enter the name or browse for a domain user.

	
Enter and confirm the password of the selected domain user.

	
Click OK to save the changes.

Configuring the Computer Containing the Remote Object

Configuring the computer containing the remote object requires using the dcomcnfg.exe tool provided by Microsoft to configure the computer's DCOM security settings.

This tool enables you to set the access permissions, launch permissions, and configuration permissions for a specific COM object or all COM objects on a computer.

Using the dcomcnfg.exe tool, set the following:

	
Set the DCOM security privileges so that the appropriate service (that is, listener for PL/SQL and database service for Java), operating as a domain user, has sufficient privileges to instantiate and manipulate the remote COM object.

	
Set the remote COM object to execute with the same privileges as the service.

If the COM object attempts to perform an action for which it does not have permission, DCOM denies the operation and returns a security violation to Oracle COM Automation Feature. It is essential that you configure the DCOM security properly and provide the Oracle Database with the necessary permissions.

	
See Also:

Microsoft documentation for more information aboutv:
	
Using the dcomcnfg.exe tool and the implications of the related permissions

	
Setting up the client and server computers to use DCOM

3 Oracle COM Automation Feature Core Functionality

This chapter describes aspects of the programming interface for Oracle COM Automation Feature.

This chapter contains these topics:

	
Data Type Conversions

	
HRESULT Error Codes

	
Oracle COM Automation for Java Exception Handling

	
Typical COM Automation Functionality

	
Application Programming Interfaces

	
PL/SQL APIs

	
Java APIs

Data Type Conversions

Because Microsoft COM Automation uses COM Automation data types, and Oracle COM Automation Feature uses either PL/SQL or Java data types, Oracle COM Automation Feature must convert the data that it receives and pass it to the COM Automation object. Similarly, Oracle COM Automation Feature must pass the data that it receives from the COM Automation object and convert it.

Data Type Conversion for PL/SQL

Table 3-1 shows the mapping between PL/SQL data types and COM Automation data types.

This guide follows a convention where COM Automation data types are prefaced by an initial p when used as IN OUT or OUT parameters. Data types without the initial p are IN parameters.

Table 3-1 PL/SQL to COM Automation Data Types

	PL/SQL Data Type	COM Automation Data Type
	
VARCHAR2

	
BSTR, pBSTR

	
BOOLEAN

	
BOOL, pBOOL

	
BINARY_INTEGER

	
DISPATCH, pDISPATCH

	
DOUBLE PRECISION

	
UI1, pUI1, I2, pI2, I4, pI4, R4, pR4, R8, pR8, SCODE, pSCODE, CY, pCY, DISPATCH, pDISPATCH

	
DATE

	
DATE, pDATE

	
Note:

Oracle restricts a CY and pCY value to be between -9999999999.9999 and 9999999999.9999.

Data Type Conversion for Java

Table 3-2 lists the supported COM Automation data types and related mappings to Java data types.

All data type mapping applies to properties, arguments, and return values, except void, which applies only to return values.

Table 3-2 Java to COM Automation Data Types

	Java Data Type	COM Automation Data Type
	
boolean

	
BOOL

	
char

	
CHAR

	
double

	
DOUBLE

	
int

	
INT

	
long

	
LONG

	
float

	
FLOAT

	
short

	
SHORT

	
byte

	
BYTE

	
java.lang.String

	
BSTR

	
oracle.win.com.Currency

	
CURRENCY

	
java.util.Calendar

	
DATE

	
void

	
VOID (return values only)

	
oracle.win.com.Automation

	
IDispatch*

HRESULT Error Codes

HRESULT error codes are provided by the Microsoft Windows API.

An HRESULT is a COM error code of the hexadecimal form 0x800nnnnn. However, it has the decimal form -214nnnnnnn. For example, passing an invalid object name when creating a COM object causes the HRESULT of -2147221005 to be returned, which is 0x800401f3 in hexadecimal form.

For complete information about the HRESULT return code, refer to the Microsoft documentation.

	
See Also:

"Microsoft COM Automation Errors" for additional information

PL/SQL Use of HRESULT

The PL/SQL APIs return an integer return code. The return code is 0 when successful, or a nonzero value of HRESULT when an error occurs.

	
See Also:

"GetLastError" for additional information about how to interpret the return codes from Oracle COM Automation Feature

Java Use of HRESULT

In the Java API, HRESULT is a data member of the COMException class.

	
See Also:

"Oracle COM Automation for Java Exception Handling"

Oracle COM Automation for Java Exception Handling

Oracle COM Automation for Java uses standard Java exception mechanisms. Specifically, a Java exception class, oracle.win.com.COMException, is introduced to represent COM errors.

This exception is thrown by the Automation Java class when an error occurs.

The error information provided by this exception is similar to that provided by the PL/SQL API GetLastError function.

	
Note:

The HRESULT data member has the same meaning as the value of HRESULT returned by the PL/SQL functions.

If the COM error is DISP_E_EXCEPTION as indicated by the excepInfo data member, COMException uses the source, description, helpfile, and helpid data members. Otherwise, these data members are not valid.

The COMException writes an error message representing the COM error to the errmsg data member.

Table 3-3 lists the COMException data members and their descriptions.

Table 3-3 COMException Data Members

	Member	Description
	
hresult

	
is an HRESULT value as defined by the Windows API.

	
errmsg

	
is the textual representation of HRESULT in the appropriate language.

	
source

	
is the source of the exception, typically the application name.

	
description

	
is the error description.

	
helpfile

	
is the fully qualified path name of the helpfile containing more information about the error.

	
helpid

	
is the help context ID of a topic within the helpfile specified by help file.

	
excepInfo

	
is DISP_E_EXCEPTION, if HRESULT returns true, and source, description, helpfile, and helpid contain more information.

Code Sample

This example demonstrates the COMException exception.

 try
 {
 // Some code that might throw a COMException exception.
 }
 catch(COMException e)
 {
 System.out.println(e.toString());
 if(e.excepInfo)
 {
 System.out.println(e.source);
 System.out.println(e.description);
 System.out.println(e.helpfile);
 System.out.println(e.helpid);
 }
 }

Typical COM Automation Functionality

This section discusses the required information and the general steps to build a solution using Oracle COM Automation Feature.

Information Required for COM Objects

Review the following information about the COM objects that you intend to use:

	
You must determine the Program ID of the COM object. The Program ID, or progID, is a descriptive string that maps to the globally unique identifier (GUID), a hexadecimal number that uniquely identifies a COM object.

The following string is an example of a progID:

Excel.Worksheet.1

Use the progID with the API that instantiates the COM object.

	
You must be aware of the types of properties and methods that are exposed through the COM object's IDispatch interface. Usually, the ISV provides documentation describing the names and data type of the object's properties and the prototypes of the object's methods. Properties are referred to by a descriptive string, such as xpos or ypos. A property can be any standard COM Automation data type, such as INT or BSTR. The GetProperty and SetProperty APIs take the property name and a variable of the appropriate data type. Methods are referred to by a descriptive string, such as InsertChart. A method takes a set of parameters that are of different COM Automation data types and returns a COM Automation data type.

The following is an example of a COM Automation method prototype in COM Interface Definition Language (IDL) grammar:

[id(0x6003000)]
long Post([in, out] long* lngAccountNo,
 [in, out] long* lngAmount,
 [in, out] BSTR* strResult);

Interfaces define object methods and properties. COM IDL is used to specify interfaces that are defined on COM objects.

OLE/COM Object Viewer

Microsoft provides a tool called the OLE/COM Object Viewer with Microsoft Visual Studio for browsing the properties and methods of COM objects on a local system. This tool enables you to quickly and easily determine the properties and methods that each COM object exposes. See Figure 3-1 for an example.

Figure 3-1 OLE/COM Object Viewer

[image: Description of Figure 3-1 follows]

Using COM Automation Feature APIs

In a typical use of Oracle COM Automation Feature, you design a Java class or PL/SQL block to create and manipulate a COM object. The class or code block performs the following steps:

	
Creates the COM object as follows:

	
In PL/SQL, using CreateObject

	
In Java, using a constructor or the Create method

	
Manipulates the COM object calling the following APIs:

	
GetProperty to get a property value

	
SetProperty to set a property value to a new value

	
Calls Invoke to call a method

To prepare for the Invoke call, you use InitArg and SetArg to package the argument to be sent to the COM Automation method.

	
Calls GetLastError in PL/SQL to get the most recent error information

	
Destroys the object using DestroyObject in PL/SQL or Destroy in Java

Application Programming Interfaces

This section lists and then describes the APIs available for Oracle COM Automation Feature.

PL/SQL APIs

Oracle COM Automation Feature externalizes the following APIs for PL/SQL development:

	
CreateObject

	
DestroyObject

	
GetLastError

	
GetProperty

	
SetProperty

	
InitArg

	
InitOutArg

	
GetArg

	
SetArg

	
Invoke

Java APIs

Oracle COM Automation Feature externalizes the following APIs for Java development:

	
Automation Constructor

	
Automation Methods

	
Create

	
Destroy

	
GetProperty

	
SetProperty

	
InitArg

	
SetArg

	
Invoke

	
Currency Constructor

	
Currency Methods

	
Get

	
Set

PL/SQL APIs

This section describes the PL/SQL APIs for manipulating COM objects using the COM Automation interface. Each of the following PL/SQL stored procedures resides in the package ORDCOM.

CreateObject

This API instantiates a COM object in a COM Automation server.

Syntax

FUNCTION CreateObject(progid VARCHAR2, reserved BINARY_INTEGER, servername VARCHAR2, objecttoken OUT BINARY_INTEGER) RETURN BINARY_INTEGER;

	Where	Is
	progid	the programmatic identifier (progID) of the COM Automation object to create. This character string describes the class of the COM Automation object and has the following form:
COMComponent.Object

COMComponent is the component name of the COM Automation server, and Object is the name of the COM Automation object. The specified COM Automation object must be creatable and must support the IDispatch interface.

	reserved	a parameter currently reserved for future use. Pass a value of 0. Future versions of Oracle COM Automation Feature may use this parameter.
	servername	the name of the remote DCOM server on which the COM object is being instantiated.
Passing a specified name forces Oracle COM Automation Feature to attempt to instantiate the COM object on a remote computer. Passing an empty string, for example, '', forces Oracle COM Automation Feature to check the registry for the location of the COM object. Registry information indicates whether the COM object is local or remote. Therefore, to create a local COM object, always pass an empty string and ensure that the registry indicates that the COM object exists locally. The registry information for COM objects can be configured with the tool dcomcnfg.exe.

	objecttoken	the returned object token. It must be a local variable of data type BINARY_INTEGER. This object token identifies the created COM Automation object and is used in calls to the other Oracle COM Automation Feature APIs.

Remarks

The created COM Automation object is freed with a corresponding call to DestroyObject. This nullifies the internal representation of the object in the Oracle COM Automation Feature and releases all interfaces associated with the object.

This funtion returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

Code Sample

HRESULT BINARY_INTEGER;
applicationToken BINARY_INTEGER:=-1;

HRESULT :=ORDCOM.CreateObject('Excel.Application', 0, '', applicationToken);
IF (HRESULT!=0) THEN
 dbms_output.put_line(HRESULT);
END IF;

DestroyObject

This API destroys a created COM Automation object.

Syntax

FUNCTION DestroyObject(objecttoken BINARY_INTEGER) RETURN BINARY_INTEGER;

	Where	Is
	objecttoken	the object token of a COM Automation object previously created by CreateObject.

Remarks

Calling DestroyObject nullifies the internal representation of the object in the Oracle COM Automation Feature and releases all interfaces associated with the object.

This function returns 0 when successful, or a nonzero value of HRESULT when an error occurs.

Code Sample

HRESULT BINARY_INTEGER;
applicationToken BINARY_INTEGER:=-1;

/* Assume applicationToken is initialized. */

HRESULT:=ORDCOM.DestroyObject(applicationToken);
IF (HRESULT!=0) THEN
 dbms_output.put_line(HRESULT);

GetLastError

This API obtains the COM Automation error information about the last error that occurred.

Syntax

FUNCTION GetLastError(source OUT VARCHAR2, description OUT VARCHAR2, helpfile OUT VARCHAR2, helpid OUT BINARY_INTEGER) RETURN BINARY_INTEGER;

	Where	Is
	source	the source of the error information. If specified, it must be a local CHAR or VARCHAR variable. The return value is truncated to fit the local variable if necessary.
	description	the description of the error. If specified, it must be a local CHAR or VARCHAR variable. The return value is truncated to fit the local variable if necessary.
	helpfile	the Help file for the COM Automation object. If specified, it must be a local CHAR or VARCHAR variable. The return value is truncated to fit the local variable if necessary.
	helpid	the Help file context ID. If specified, it must be a local INT variable.

Remarks

Each call to an Oracle COM Automation Feature API (except GetLastError) resets the error information, so that GetLastError obtains error information only for the most recent Oracle COM Automation Feature API call. Because GetLastError does not reset the last error information, it can be called multiple times to get the same error information.

This funtion returns 0 when successful, or a nonzero value of HRESULT when an error occurs.

See "Microsoft COM Automation Errors" for a description of the types of errors that can be returned by this function.

Code Sample

HRESULT BINARY_INTEGER;
applicationToken BINARY_INTEGER:=-1;
error_src VARCHAR2(255);
error_description VARCHAR2(255);
error_helpfile VARCHAR2(255);
error_helpID BINARY_INTEGER;

HRESULT:=ORDCOM.CreateObject('Excel.Application', 0, '', applicationToken);
IF (HRESULT!=0) THEN
 ORDCOM.GetLastError(error_src, error_description, error_helpfile,
 error_helpID);
 dbms_output.put_line(error_src);
 dbms_output.put_line(error_description);

 dbms_output.put_line(error_helpfile);
END IF;

GetProperty

This API returns the property value of a COM Automation object.

Syntax

FUNCTION GetProperty(objecttoken BINARY_INTEGER, propertyname VARCHAR2, argcount BINARY_INTEGER, propertyvalue OUT any_PL/SQL_data type) RETURN BINARY_INTEGER;

	Where	Is
	objecttoken	the object token of a COM object previously created by CreateObject.
	propertyname	the property name of the COM object to return.
	argcount	the index of the property array. If the property is not an array, then the developer should specify 0.
	propertyvalue	the returned property value. The returned property type depends on the COM Automation data type that is returned. You must pass the PL/SQL data type that corresponds to the COM Automation data type of the COM Automation property. Otherwise, the COM Automation Feature will not properly convert the COM Automation data type.
	any_PL/SQL_data type	any data type supported by COM Automation Feature.

Remarks

If the property returns a COM object, then you must specify a local variable of data type BINARY_INTEGER for the propertyvalue parameter. An object token is stored in the local variable, and this object token can be used with other COM Automation stored procedures.

When the property returns an array, if propertyvalue is specified, then it is set to NULL.

This function returns 0 when successful, or a nonzero value of HRESULT when an error occurs.

Code Sample

/*
 * This is an excerpt from a Microsoft Excel application.
 */

HRESULT BINARY_INTEGER;
ChartObject BINARY_INTEGER := -1;
ChartToken BINARY_INTEGER := -1;

/* Assume ChartObject is initialized. */

HRESULT := ORDCOM.GetProperty(ChartObject, 'Chart', 0, ChartToken);
IF (HRESULT!=0) THEN
 dbms_output.put_line(HRESULT);
END IF;

SetProperty

This API sets a property of a COM Automation object to a new value.

Syntax

FUNCTION SetProperty(objecttoken BINARY_INTEGER, propertyname VARCHAR2, newvalue any_PL/SQL_data type, data type VARCHAR2) RETURN BINARY_INTEGER;

	Where	Is
	objecttoken	the object token of a COM Automation object previously created by CreateObject.
	propertyname	the property name of the COM object to set to a new value.
	newvalue	the new value of the property. It must be a value of the appropriate data type.
	data type	the explicitly specified data type of the value passed in. The available data types are:
	
UI1 - byte integer

	
I2 - 2 byte integer

	
I4 - 4 byte integer

	
R4 - IEEE 4 byte real

	
R8 - IEEE 8 byte real

	
SCODE - error code

	
CY - currency (value - 9999999999.9999 to 9999999999.9999)

(This is an Oracle restriction)

	
DISPATCH - dispatch pointer

	
BSTR - String

	
BOOL - boolean

	
DATE - date

	any_PL/SQL_data type	any data type supported by COM Automation Feature.

Remarks

This function returns a 0 when successful, or a nonzero value of HRESULT when an error occurs.

Code Sample

/*
 * This is an excerpt from a Microsoft Excel application.
 */

HRESULT BINARY_INTEGER;
RangeToken BINARY_INTEGER := -1;

/* Assume RangeToken is initialized. */

HRESULT := ORDCOM.SetProperty(RangeToken, 'Value', 'EmpNo', 'BSTR');
IF (HRESULT!=0) THEN
 dbms_output.put_line(HRESULT);
END IF;

InitArg

This API initializes the parameter set passed to an Invoke call.

Syntax

PROCEDURE InitArg();

Remarks

The InitArg call initializes the parameter set. After InitArg has been called, a SetArg call sets the first parameter to the specified value. A second SetArg call sets the second parameter in the parameter list. Subsequent calls set the nth parameters in the parameter list, where n is the number of times SetArg has been called after an InitArg call. Another call to InitArg resets the argument list and a call to SetArg sets the first parameter again.

Code Sample

See "Invoke" for sample code.

InitOutArg

InitOutArg must be called after a COM method is invoked in preparation for getting the values of OUT and IN OUT parameters using GetArg. After calling InitOutArg, the first call to GetArg gets the value for the first OUT or IN OUT parameter, the second call to GetArg gets the value for the second OUT or IN OUT parameters, and so on. Calling InitOutArg again restarts this process.

Syntax

PROCEDURE InitOutArg();

Remarks

See the section on SetArg data type strings in "SetArg" for information about IN and OUT parameters.

Code Sample

See "Invoke" for sample code.

GetArg

Gets the argument of OUT and IN OUT parameters after the COM method has been invoked.

Syntax

PROCEDURE GetArg(data OUT any_PL/SQL_data type, type VARCHAR2);

	Where	Is
	data	the value of the OUT or IN OUT parameter after the COM method has been invoked.
	type	the COM Automation data type of the parameter.
	
	The available data types are:
	
pUI1 - byte integer

	
pI2 - 2 byte integer

	
pI4 - 4 byte integer

	
pR4 - IEEE 4 byte real

	
pR8 - IEEE 8 byte real

	
pSCODE - error code

	
pCY - currency (value -9999999999.9999 to 9999999999.9999) (This is an Oracle restriction)

	
pDISPATCH - dispatch pointer

	
pBSTR - String

	
pBOOL - Boolean

	
pDATE - date

	any_PL/SQL_data type	any data type supported by COM Automation Feature.

Remarks

See the section on SetArg data type strings in "SetArg" for information about IN and OUT parameters.

Code Sample

See "Invoke" for sample code.

SetArg

Used to construct the parameter list for the next Invoke call.

SetArg sets a parameter's value to be passed by value.

Syntax

PROCEDURE SetArg(paramvalue any_PL/SQL_data type, data type VARCHAR2);

	Where	Is
	paramvalue	the value of the parameter to be passed to an Invoke call. The parameter set is the nth parameter in the parameter list, where n is the number of times SetArg has been called after an InitArg call.
	data type	the explicitly specified data type for the parameters.
Those data types prefaced by an initial p are IN OUT or OUT parameters. The p indicates that the VT_BYREF flag will be set for the COM Automation data type.

	
	Those data types without the initial p are IN parameters. The available data types are:
	
UI1 - byte integer

	
pUI1 - byte integer

	
I2 - 2-byte integer

	
pI2 - 2-byte integer

	
I4 - 4-byte integer

	
	
	pI4 - 4-byte integer
	
R4 - IEEE 4-byte real

	
pR4 - IEEE 4-byte real

	
R8 - IEEE 8-byte real

	
pR8 - IEEE 8-byte real

	
SCODE - error code

	
pSCODE - error code

	
	
	CY - currency (value -9999999999.9999 to 9999999999.9999)
(This is an Oracle restriction)

	
pCY - currency (value -9999999999.9999 to 9999999999.9999)

(This is an Oracle restriction)

	
DISPATCH - dispatch pointer

	
pDISPATCH - dispatch pointer

	
BSTR - String

	
pBSTR - String

	
	
	BOOL - Boolean
	
pBOOL - Boolean

	
DATE - date

	
pDATE - date

	any_PL/SQL_data type	any data type supported by COM Automation Feature.

Remarks

Each SetArg procedure sets the nth parameter value. The InitArg call initializes the parameter set. After InitArg has been called, a SetArg call sets the first parameter to the specified value. A second SetArg call sets the second parameter in the parameter list. Subsequent calls set the nth parameters in the parameter list, where n is the number of times SetArg has been called after an InitArg call. Another call to InitArg resets the argument list and a call to SetArg sets the first parameter again.

Data types without the initial p are IN parameters. Those data types prefaced by an initial p are IN OUT or OUT parameters.

Code Sample

See "Invoke" for sample code.

Invoke

This API calls a method of a COM Automation object. This function uses the parameter list, previously created by the calls to InitArg and SetArg as input for the COM Automation method.

Syntax

FUNCTION Invoke(objecttoken BINARY_INTEGER, methodname VARCHAR2, argcount BINARY_INTEGER, returnvalue OUT any_PL/SQL_data type) RETURN BINARY_INTEGER;

	Where	Is
	objecttoken	the object token of a COM Automation object previously created by CreateObject.
	methodname	the method name of the COM Automation object to call.
	argcount	the number of arguments passed to the COM Automation object method.
	returnvalue	the return value of the method of the COM Automation object. If specified, it must be a local variable of the appropriate data type.
	any_PL/SQL_data type	any data type supported by COM Automation Feature.

Remarks

If the return value of the function is a COM object, then the developer must specify a local variable of data type BINARY_INTEGER for the returnvalue parameter. An object token is stored in the local variable, and this object token can be used with other Oracle COM Automation Feature APIs.

This function returns 0 when successful, or a nonzero value of HRESULT when an error occurs.

Code Sample

/*
* Following is the IDL definition of the COM Automation method
* being called:
*
* HRESULT TestOutArg([in, out] short *x1,
* [in] short x2,
* [out] short *x3,
* [out, retval] short *x4);
*/

HRESULT BINARY_INTEGER := -1;
applicationToken BINARY_INTEGER := -1;
x1 DOUBLE PRECISION := 12;
x2 DOUBLE PRECISION := 7;
x3 DOUBLE PRECISION := 0;
x4 DOUBLE PRECISION := 0;

/* Assume applicationToken is initialized. */

ORDCOM.InitArg();
ORDCOM.SetArg(x1, 'pI2');
ORDCOM.SetArg(x2, 'I2');
ORDCOM.SetArg(x3, 'pI2');

HRESULT := ORDCOM.Invoke(applicationToken, 'TestOutArg', 3, x4);
IF (HRESULT!=0) THEN
 dbms_output.put_line(HRESULT);
END IF;

ORDCOM.InitOutArg();
ORDCOM.GetArg(x1, 'pI2');
ORDCOM.GetArg(x3, 'pI2');

Java APIs

This section describes the Java APIs for manipulating COM objects using the COM Automation interface. These APIs are found in the Automation and Currency Java classes.

The Automation Java class provides access to COM objects that support COM Automation. With this Java class, you can create a COM object and obtain a pointer to the IDispatch interface for the COM object. You can then get and set properties on the COM object, as well as invoke methods (with or without arguments) on the COM object. This class provides a wrapper for the COM object, so there is no direct access to the COM object or to its IDispatch interface.

The Currency Java class represents the CURRENCY COM Automation data type. CURRENCY is a an 8-byte number where the last four digits represent the fractional part of the value. For example, the number 12345 actually represents the value 1.2345. CURRENCY has a range of (+/-)922337203685477.5807.

COM Object Reference Counting

COM object interface reference counting is handled internally, and IUnknown::AddRef() and IUnknown::Release() are not exposed. The user cannot explicitly address COM object interfaces. The lifetime of a particular COM object starts when the associated Java constructor or Create method is invoked, and it is released when the associated Destroy method is invoked.

Constructors and Destructors

Because the default constructor does not create a COM object, there are two approaches to creating a COM object:

	
Instantiate the Java object using the default constructor, and call one of the Create methods. Which Create method you use depends on whether you want to specify the server name. Later, you must call the Destroy method to free the COM object.

The Create method can be called at any time, but if a COM object was previously created through one of the nondefault constructors or the Create method, then you must first call the Destroy method.

	
Instantiate the Java object using a nondefault constructor. Which nondefault constructor you use depends on whether you want to specify the server name. Later, you must call the Destroy method to free the COM object.

Handling COM Object Errors

All COM errors are mapped to Java exceptions. Users can catch COM object errors through the Java exception handling mechanism.

	
Note:

Oracle COM Automation Feature for Java does not allow in-process COM Automation servers. Developers can use dllhost to support in-process servers.

Automation Constructor

This API creates a COM object.

Syntax

 public Automation()
 public Automation(String progID)
 public Automation(String progID, String serverName)

	Where	Is
	progID	the programmatic identifier (progID) of the COM Automation object to create. This character string describes the class of the COM Automation object and has the following form:
COMComponent.Object

COMComponent is the component name of the COM Automation server, and Object is the name of the COM Automation object. The specified COM Automation object must be creatable and must support the IDispatch interface.

	serverName	the name of the remote DCOM server on which the COM object is being instantiated.
	
	Passing a specified name forces Oracle COM Automation Feature to attempt to instantiate the COM object on a remote computer.

Remarks

The default constructor public Automation() does nothing. It is used with a Create method.

Using a constructor that takes only the progID parameter forces Oracle COM Automation Feature to check the registry for the location of the COM object. Registry information indicates whether the COM object is local or remote.

COM Automation objects created using the nondefault constructors are freed with a corresponding call to Destroy. This nullifies the internal representation of the objects in Oracle COM Automation Feature and releases all interfaces associated with the objects.

Oracle COM Automation Feature for Java does not allow in-process COM Automation servers. Developers can use dllhost to support in-process servers.

The COMException exception is thrown if an error occurs.

Code Sample

The following code sample demonstrates the nondefault constructors.

 // Use the registry to determine where to create the COM object.
 Automation word = new Automation("Word.Basic");

 // Create the COM object on the specified server.
 Automation excel = new Automation("Excel.Application",
 "\\ServerName");

 // Free the COM objects.
 word.Destroy();
 excel.Destroy();

Create

This API instantiates a COM object in a COM Automation server.

Syntax

public void Create(String progID)
public void Create(String progID, String serverName)

	Where	Is
	progID	the programmatic identifier (progID) of the COM Automation object to create. This character string describes the class of the COM Automation object and has the following form:
COMComponent.Object

COMComponent is the component name of the COM Automation server, and Object is the name of the COM Automation object. The specified COM Automation object must be creatable and must support the IDispatch interface.

	serverName	the name of the remote DCOM server on which the COM object is being instantiated.
	
	Passing a specified name forces Oracle COM Automation Feature to attempt to instantiate the COM object on a remote computer.

Remarks

The COM Automation object created with the Create method is freed with a corresponding call to Destroy. This nullifies the internal representation of the object in Oracle COM Automation Feature and releases all interfaces associated with the object.

Using the constructor that takes only the progID parameter forces Oracle COM Automation Feature to check the registry for the location of the COM object. Registry information indicates whether the COM object is local or remote.

Oracle COM Automation Feature for Java does not allow in-process COM Automation servers. Developers can use dllhost to support in-process servers.

The COMException exception is thrown if an error occurs.

Code Sample

 // Use the default constructor.
 Automation word = new Automation();
 Automation excel = new Automation();

 // Use the registry to determine where to create the COM object.
 word.Create("Word.Basic");

 // Create the COM object on the specified server system.
 excel.Create("Excel.Application", "\\ServerName");

 // Free the COM objects.
 word.Destroy();
 excel.Destroy();

Destroy

This API destroys a created COM Automation object.

Syntax

 public void Destroy()

Remarks

Calling Destroy nullifies the internal representation of the object in the Oracle COM Automation Feature and releases all interfaces associated with the object.

Code Sample

See "Create" for code sample.

GetProperty

This API gets a property value of a COM Automation object.

Syntax

public allowed_type GetProperty(String propName, allowed_type[] propVal)

	Where	Is
	propName	the property name of the COM object to return
	propVal	the returned property value. The returned property type depends on the COM Automation type that is returned. The array must be big enough to hold at least one element although only the first element will be accessed to return the property.
	allowed_type	from the following list:
	
	
	boolean
	
byte

	
char

	
short

	
int

	
long

	
float

	
double

	
java.long.String

	
oracle.win.com.Automation

	
oracle.win.com.Currency

	
java.util.Calendar

Remarks

If the property is a COM object, then it can be retrieved using the allowed_type of oracle.win.com.Automation. The Automation Java object that is returned can be used to get and set properties and call methods on the property.

GetProperty uses an array parameter to return the property value to overload the GetProperty method. Overloading would not be possible if the property value were returned as a return value. The array solves the problem caused by Java not having an out parameter.

The property is still returned as a return value for convenience.

The COMException exception is thrown if an error occurs.

Code Sample

 // A Microsoft Excel ChartObject object.
 Automation chartObject = null;
 // A Microsoft Excel Chart object.
 Automation chart = null;
 // Used for properties of type Automation.
 Automation[] autoProp = { null };

 // Assume the Microsoft Excel ChartObject object is initialized.

 // Get the Chart property.
 chartObject.GetProperty("Chart", autoProp);
 chart = autoProp[0];

 // Set the Chart property.
 chartObject.SetProperty("Chart", chart);

SetProperty

This API sets a property of a COM Automation object to a new value.

Syntax

public void SetProperty(String propName, allowed_type propVal)

	Where	Is
	propName	the property name of the COM object being set to a new value
	propVal	the new value of the property. It must be a value of the appropriate data type.
	allowed_type	from the following list:
	
	
	boolean
	
byte

	
char

	
short

	
int

	
long

	
float

	
double

	
java.long.String

	
oracle.win.com.Automation

	
oracle.win.com.Currency

	
java.util.Calendar

Remarks

If the property is a COM object, it can be set using the allowed type of oracle.win.com.Automation. The property value must be a valid Automation Java object.

The COMException exception is thrown if an error occurs.

Code Sample

See "GetProperty" for sample code.

InitArg

This API initializes the parameter set passed to an Invoke call.

Syntax

public void InitArg()

Remarks

The InitArg call initializes the parameter set and must be called even if the COM method does not take any parameters. After InitArg has been called, a SetArg call sets the first parameter to the specified value. A second SetArg call sets the second parameter in the parameter list. Subsequent calls set the nth parameters in the parameter list, where n is the number of times SetArg has been called after an InitArg call. Another call to InitArg resets the argument list and a call to SetArg sets the first parameter again.

Code Sample

See "Invoke" for sample code.

SetArg

This API is used to construct the parameter list for the next Invoke call.

Syntax

public void SetArg(allowed_type val)

	Where	Is
	val	the value of the parameter to be passed to an Invoke call. The parameter set is the nth parameter in the parameter list, where n is the number of times SetArg has been called after an InitArg call.
	allowed_type	from the following list.
	
	
	boolean
	
byte

	
char

	
short

	
int

	
long

	
float

	
double

	
	
	java.long.String
	
oracle.win.com.Automation

	
oracle.win.com.Currency

	
java.util.Calendar

Remarks

If a parameter is a COM object, then the allowed_type of the corresponding argument should be oracle.win.com.Automation. The argument should be a valid Automation Java object.

No exceptions are thrown at this time. However, if an error occurs, for example, if the wrong argument type is passed, then it will be caught when the Invoke method is called.

Code Sample

See "Invoke" for sample code.

Invoke

Calls a method of a COM Automation object. This function uses the parameter list, previously created by the calls to InitArg and SetArg, as input for the COM Automation method.

Syntax

public void Invoke(String methodName, allowed_type[] retVal)
public void Invoke(String methodName)

	Where	Is
	methodName	the method name of the COM Automation object to call
	retVal	the return value of the method of the COM Automation object. If specified, then it must be a local variable of the appropriate data type. The array must be big enough to hold at least one element, although only the first element will be accessed to return the property.
	allowed_type	a type from the following list:
	
	
	boolean
	
byte

	
char

	
short

	
int

	
long

	
float

	
double

	
java.long.String

	
oracle.win.com.Automation

	
oracle.win.com.Currency

	
java.util.Calendar

Remarks

If the COM method returns a COM object as the return value, then the allowed_type of the return value is oracle.win.com.Automation. The Automation Java object that is returned can be used to get and set properties, and call methods on the return value.

To overload the Invoke method, Invoke uses an array parameter to return the values of COM object methods. Overloading would not be possible if the property value was returned as a return value. The array solves the problem caused by Java not having an out parameter.

The version of Invoke that takes only one parameter, public void Invoke(String methodName), is used for COM object methods with void return types.

The property is still returned as a return value for convenience.

The COMException exception is thrown if an error occurs.

Code Sample

 // A Microsoft Excel Worksheet object.
 Automation workSheet = null;
 // A Microsoft Excel ChartObjects collection object.
 Automation chartObjects = null;
 // A Microsoft Excel ChartObject object.
 Automation chartObject = null;
 // Used for return values of type Automation.
 Automation[] autorv = { null };
 // Dimensions for a Microsoft Excel ChartObject object.
 short xpos = 100, ypos = 30, width = 400, height = 250;

 // Assume the Microsoft Excel Worksheet object is initialized.

 // Invoke a method that takes no arguments.
 workSheet.InitArg();
 workSheet.Invoke("ChartObjects", autorv);
 chartObjects = autorv[0];

 // Invoke a method that takes multiple arguments.
 chartObjects.InitArg();
 chartObjects.SetArg(xpos);
 chartObjects.SetArg(ypos);
 chartObjects.SetArg(width);
 chartObjects.SetArg(height);
 chartObjects.Invoke("Add", autorv);
 chartObject = autorv[0];

Currency Constructor

This API creates a currency Java object.

Syntax

public Currency(long value)

	Where	Is
	value	the 8-byte CURRENCY number

Get

This API gets the 8-byte CURRENCY number.

Syntax

public long Get()

Remarks

Returns the 8-byte CURRENCY number.

Set

This API sets the 8-byte CURRENCY number.

Syntax

public void Set(long value)

	Where	Is
	value	the 8-byte CURRENCY number

4 Oracle COM Automation PL/SQL Demos

This chapter describes how to use Oracle COM Automation Feature demonstration programs for PL/SQL.

This chapter contains these topics:

	
Overview of Oracle COM Automation Feature for PL/SQL Demos

	
Microsoft Word Demo

	
Microsoft Excel Demo

	
Microsoft PowerPoint Demo

	
MAPI Demo

Overview of Oracle COM Automation Feature for PL/SQL Demos

Oracle COM Automation Feature for PL/SQL includes examples that demonstrate how to use the feature to build solutions. These demos provide base functionality and can serve as a foundation on which to build more customized, complex applications that use COM Automation. The demos are based on the human resources schema available with the sample schema.

Each demo exposes a core set of APIs that enables you to do simple operations using COM Automation. Each COM Automation server, such as Word and Excel, provides more advanced capabilities than what is offered through the demo APIs. To take advantage of these advanced features, you must design and code your own PL/SQL procedures.

In this release, COM Automation has provided the following demos:

	
Microsoft Word Demo - Exchanges data between Microsoft Word and Oracle Database

	
Microsoft Excel Demo - Exchanges data between Microsoft Excel and Oracle Database

	
Microsoft PowerPoint Demo - Exchanges data between Microsoft PowerPoint and Oracle Database

	
MAPI Demo - Exchanges data between Messaging Application Programming Interface (MAPI) compliant applications and Oracle Database

Microsoft Word Demo

The following sections describe how to install the Microsoft Word demo and the APIs that it exposes. This demo is provided as an example of the types of solutions that can be built with Oracle Database and Microsoft Word.

The demo creates a Microsoft Word document containing the names of employees in the database.

The Microsoft Word demo provides the following:

	
ORDWord, a PL/SQL package that exposes several APIs for manipulating Microsoft Word. This package is created by the wordsol.sql script.

	
worddem.sql, a script that displays the capabilities of exchanging data between Oracle Database and Microsoft Word. It exchanges data from the EMPLOYEES and JOBS tables to a Microsoft Word document. These tables are available in the human resources schema in the sample schema.

Installing the Microsoft Word Demo

Microsoft Word must be installed on the local computer before you install this demo.

To install Microsoft Word demos:

	
Start SQL*Plus.

C:\> sqlplus /NOLOG

	
Connect to the Oracle database instance as the user who will use the Microsoft Word demo. For example:

SQL> connect hr
Enter password: password

	
Run the wordsol.sql script at the SQL*Plus prompt:

SQL> @ORACLE_BASE\ORACLE_HOME\com\demos\wordsol.sql;

This script creates the ORDWord package in the current user's schema. You will receive the following error several times when you run this script for the first time:

ORA-04043: object XXXX does not exist.

These messages are normal.

Using the Microsoft Word Demo

To use the Microsoft Word demo:

	
Run the worddem.sql script at the SQL*Plus prompt:

SQL> @ORACLE_BASE\ORACLE_HOME\com\demos\worddem.sql;

This script creates a Microsoft Word document (worddemo.doc) in the C:\ directory. The document contains data from the EMPLOYEES and JOBS tables. These tables are available in the human resources schema in the sample schema.

	
Open the worddemo.doc file to see its contents.

Core Functionality

The following subsections describe the APIs that the Microsoft Word demo exposes. These APIs are primitive and do not expose all the functionalities that Microsoft Word exposes through COM Automation.

CreateWordObject

This API instantiates a Word.Basic object in the Microsoft Word Automation server.

Syntax

FUNCTION CreateWordObject() RETURN BINARY_INTEGER;

Remarks

This function must be called before any other operation can be performed. This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

FileNew

This API creates a new Microsoft Word document.

Syntax

FUNCTION FileNew() RETURN BINARY_INTEGER;

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

FileLoad

This API loads a document into Microsoft Word.

Syntax

FUNCTION FileLoad(filename VARCHAR2) RETURN BINARY_INTEGER;

	Where	Is
	filename	the fully qualified filename of the document.

Remarks

This function returns a 0 when successful or a nonzero HRESULT when an error occurs.

FileSave

This API saves the current Microsoft Word document to disk.

Syntax

FUNCTION FileSave() RETURN BINARY_INTEGER;

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

FileSaveAs

This API saves the current Microsoft Word document as a specific file.

Syntax

FUNCTION FileSaveAs(filename VARCHAR2) RETURN BINARY_INTEGER;

	Where	Is
	filename	the fully qualified filename of the document.

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

FileClose

This API closes the current Microsoft Word document.

Syntax

FUNCTION FileClose() RETURN BINARY_INTEGER;

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

InsertText

This API inserts a text string into the current Microsoft Word document.

Syntax

FUNCTION InsertText(textstr VARCHAR2) RETURN BINARY_INTEGER;

	Where	Is
	textstr	the text that will be inserted into the document.

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

InsertNewLine

This API inserts a new line into the current Microsoft Word document.

Syntax

FUNCTION InsertNewLine() RETURN BINARY_INTEGER;

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

FormatFontSize

This API sets the font size for the current Microsoft Word document.

Syntax

FUNCTION FormatFontSize(fontsize BINARY_INTEGER) RETURN BINARY_INTEGER;

	Where	Is
	fontsize	the point size of the font.

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

Microsoft Excel Demo

The following sections detail how to install the Microsoft Excel demo and describe the APIs that it exposes. This demo is provided as an example of the types of solutions that can be built with Oracle and Microsoft Excel.

The Microsoft Excel demo provides the following:

	
ORDExcel, a PL/SQL package that exposes several APIs for manipulating Microsoft Excel. This package is created by the excelsol.sql script.

	
exceldem.sql, a script that displays the capabilities of exchanging data between Oracle database instance and Microsoft Excel. It exchanges data from the EMPLOYEES and JOBS tables in Oracle database instance to a Microsoft Excel spreadsheet and puts it in a graph. These tables are available in the human resources schema in the sample schema.

Installing the Microsoft Excel Demo

Microsoft Excel must be installed on the local computer before you install this demo.

To install the Microsoft Excel demo:

	
Start SQL*Plus.

C:\> sqlplus /NOLOG

	
Connect to the Oracle Database instance as the user who will use the Microsoft Excel demo. For example:

SQL> connect hr
Enter password: password

	
Run the excelsol.sql script at the SQL*Plus prompt:

SQL> @ORACLE_BASE\ORACLE_HOME\com\demos\excelsol.sql;

This script creates the ORDExcel package in the schema of the current user. You will receive the following error several times when you run this script for the first time:

ORA-04043: object XXXX does not exist.

These messages are normal.

Using the Microsoft Excel Demo

To use the Microsoft Excel demo:

	
Run the exceldem.sql script at the SQL*Plus prompt:

SQL> @ORACLE_BASE\ORACLE_HOME\com\demos\exceldem.sql;

This script creates a Microsoft Excel spreadsheet (excelxxxxx.xls) in the C:\ directory. The document contains data from the EMPLOYEES and JOBS tables. These tables are available in the human resources schema in the sample schema.

	
Open the excelxxxxx.xls file, where xxxxx is a time stamp, to see the content of this file.

Core Functionality

The following subsections describe the APIs that the Microsoft Excel demo exposes. These APIs are primitive and do not expose all the functionalities that Microsoft Excel exposes through COM Automation.

 CreateExcelWorkSheet

This API starts the Microsoft Excel COM Automation server and instantiates the objects for a workbook and a worksheet.

Syntax

FUNCTION CreateExcelWorkSheet() RETURN BINARY_INTEGER;

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

InsertData

This API inserts any kind of data into a specific cell of the current Excel worksheet.

Syntax

FUNCTION InsertData(range VARCHAR2, data any_PL/SQL_data type, data type VARCHAR2) RETURN BINARY_INTEGER;

	Where	Is
	range	a string that indicates a specific cell in the current Excel worksheet (for example, 'A1', 'B1').
	data	the data that you want to insert into the current Excel worksheet.
	data type	a string that indicates the data type of the data that you are inserting into Excel. The list of available data types are:
	
	
	I2 - 2-byte integer
	
I4 - 4-byte integer

	
R4 - IEEE 4-byte real

	
R8 - IEEE 8-byte real

	
SCODE - error code

	
CY - currency

	
DISPATCH - dispatch pointer

	
BSTR - String

	
BOOL - boolean

	
DATE - date

	any_PL/SQL_data type	any data type supported by COM Automation Feature.

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

InsertChart

This API creates a chart of a specified range of data and inserts the chart at the x and y position of the current worksheet with the desired height and width.

Syntax

FUNCTION InsertChart(xpos BINARY_INTEGER, ypos BINARY_INTEGER, width BINARY_INTEGER, height BINARY_INTEGER, range VARCHAR2, type VARCHAR2) RETURN BINARY_INTEGER;

	Where	Is
	xpos	the x position in the current worksheet where the chart should be inserted
	ypos	the y position in the current worksheet where the chart should be inserted
	width	the width of the chart
	height	the height of the chart
	range	the range of cells to be graphed
	type	the data type of the data to be graphed

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

SaveExcelFile

This API saves the current Microsoft Excel workbook as a specific file.

Syntax

FUNCTION SaveExcelFile(filename VARCHAR2) RETURN BINARY_INTEGER;

	Where	Is
	filename	the fully qualified file name of the Excel workbook

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

ExitExcel

Performs some cleanup and destroys the outstanding references to the Excel COM Automation server. This should be the last API called.

Syntax

FUNCTION ExitExcel() RETURN BINARY_INTEGER;

Remarks

This function returns a 0 when successful or a nonzero HRESULT when an error occurs.

Microsoft PowerPoint Demo

The following sections detail how to install the Microsoft PowerPoint demo and describe the APIs that it exposes. This demo is provided as an example of the types of solutions that can be built with Oracle Database instance and Microsoft PowerPoint.

The Microsoft PowerPoint demo provides the following:

	
ORDPPT, a PL/SQL package that exposes several APIs for manipulating Microsoft PowerPoint. This package is created by the pptsol.sql script.

	
pptdem.sql, a script that displays the capabilities of exchanging data between Oracle Database instance and Microsoft PowerPoint. It exchanges data from the EMPLOYEES and JOBS tables in Oracle Database instance to a Microsoft PowerPoint document. These tables are available in the human resources schema in the sample schema.

Installing the Microsoft PowerPoint Demo

Microsoft PowerPoint must be installed on the local computer before installing this demo.

To install the Microsoft PowerPoint demo:

	
Start SQL*Plus.

C:> sqlplus /NOLOG

	
Connect to the Oracle Database instance as the user who will use the Microsoft PowerPoint demo. For example:

SQL> connect hr
Enter password: password

	
Run the pptsol.sql script at the SQL*Plus prompt:

SQL> @ORACLE_BASE\ORACLE_HOME\com\demos\pptsol.sql;

This script creates the ORDPPT package in the current user's schema. You will receive the following error several times when you run this script for the first time:

ORA-04043: object XXXX does not exist.

These messages are normal.

Using the Microsoft PowerPoint Demo

To run the Microsoft PowerPoint demo:

	
Run the pptdem.sql script at the SQL*Plus prompt:

SQL> @ORACLE_BASE\ORACLE_HOME\com\demos\pptdem.sql;

This script creates a Microsoft PowerPoint presentation (pptdemo.ppt) on C:\. The document contains a list of employee names.

	
Open pptdemo.ppt to see its contents.

Core Functionality

The following subsections describe the APIs that the Microsoft PowerPoint demo exposes. These APIs are primitive and do not expose all the functionalities that Microsoft PowerPoint exposes through COM Automation.

CreatePresentation

This API starts the Microsoft PowerPoint COM Automation server and instantiates the objects for a presentation.

Syntax

FUNCTION CreatePresentation (servername IN VARCHAR2) RETURN BINARY_INTEGER;

	Where	Is
	servername	Microsoft Powerpoint COM Automation Server name

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

AddSlide

This API inserts a new slide in the PowerPoint presentation.

Syntax

FUNCTION AddSlide (layout IN BINARY_INTEGER) RETURN BINARY_INTEGER;

	Where	Is
	layout	the layout of the new slide

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

SetTitle

This API specifies the title of the PowerPoint slide.

Syntax

FUNCTION SetTitle (title IN VARCHAR2) RETURN BINARY_INTEGER;

	Where	Is
	title	Powerpoint slide title

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

InsertText

This API inserts text into the specified location on the slide.

Syntax

FUNCTION InsertText (orientation IN BINARY_INTEGER, left IN BINARY_INTEGER, top IN BINARY_INTEGER, width IN BINARY_INTEGER, height IN BINARY_INTEGER, text IN VARCHAR2) RETURN BINARY_INTEGER;

	Where	Is
	orientation	orientation of the text box
	left	distance between the left edge of the text box and the left edge of the slide in pixels
	top	distance between the top edge of the text box and the top edge of the slide in pixels
	width	width of the text box in pixels
	height	height of the text box in pixels
	text	text entered in the text box

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

PresentationSave

This API saves the current PowerPoint presentation.

Syntax

FUNCTION PresentationSave RETURN BINARY_INTEGER;

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

PresentationSaveAs

This API saves the current presentation using the specified name.

Syntax

FUNCTION PresentationSaveAs (filename IN VARCHAR2) RETURN BINARY_INTEGER;

	Where	Is
	filename	the fully qualified filename of the presentation.

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

PresentationClose

This API closes the current PowerPoint presentation.

Syntax

FUNCTION PresentationClose RETURN BINARY_INTEGER;

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

Exit

This API exits the PowerPoint program.

Syntax

FUNCTION Exit RETURN BINARY_INTEGER;

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

MAPI Demo

The following sections detail how to install the messaging application programming interface (MAPI) demo and describe the APIs that it exposes. This demo is provided as an example of the types of solutions that can be built with an Oracle Database instance and MAPI-compliant applications.

The MAPI demo provides the following:

	
ORDMAPI, a PL/SQL package that exposes several APIs for manipulating the Extended MAPI client.

	
mapidem.sql, a script that displays the capabilities of exchanging data between Oracle Database instance and the Extended MAPI client.

	
mapi.reg, a registration entry file that updates the registry settings.

Setting Up the Environment to Use the MAPI Demo

You must set up certain related applications to use the MAPI demo.

	
Note:

The following setup requires Microsoft Outlook 2000 or later. Outlook Express will not work.

To set up the environment for the MAPI demo:

	
Install Exchange Server and create a new account as follows:

Select Start, Programs, Microsoft Exchange, and then Active Directory Users and Computers.

Select your domain and expand the folders. Select users and right-click to create a new user.

	
Install Microsoft Outlook as follows:

Select Custom Install. Select Collaboration Data Objects.

	
Note:

During the installation, these are not installed by default.

Select the Corporate or Workgroup option.

	
Configure Microsoft Outlook and set connection information as follows:

Add the account that you created on Exchange Server.

Enter your incoming and outgoing mail servers, and enter the account name and password.

Select the connection type (for example, LAN).

	
Set Microsoft Outlook as the default program for the e-mail, newsgroups, and calendar tools as follows:

From Internet Explorer, choose Tools, Internet Options, Programs and set the fields.

	
Patch CDO.DLL as mentioned in the MSDN article, 268272. This patched DLL is part of Microsoft Exchange 5.5. Manually copy the patched DLL to the proper location. The default location for this DLL is:

C:\Program Files\Common Files\System\Mapi\1033\NT

	
Update the registry settings by double-clicking MAPI.REG from the Windows Explorer. MAPI.REG is located in:

ORACLE_BASE\ORACLE_HOME\com\demos

Preparing to Install MAPI Demo

The MAPI Solution invokes Extended MAPI client on behalf of the Oracle Database server. The Oracle Database service on Windows 2000 and higher, by default, runs as the system user LocalSystem. The MAPI profile for user LocalSystem is not easily configured. Before using the MAPI Solution, change both the Oracle Database service and OracleHOME_NAMETNSListenerservice to start up using a login user account.

To prepare to install the MAPI demo:

	
Log on to Windows using your local user account or domain user account, for example, DOMAIN-1\hr.

	
Start the MAPI server (for example, Microsoft Outlook) and configure the MAPI profile for the Windows 2000 and higher user DOMAIN-1\hr. Ensure that you can send out e-mail using this profile.

	
Go to Windows Control Panel/Services.

	
Shut down the OracleHOME_NAMETNSListener service.

	
Select the OracleHOME_NAMETNSListener service and click Startup.

	
Change the Log On As to This Account and fill in DOMAIN-1\hr.

	
Enter the password and confirm the password for DOMAIN-1\hr.

	
Restart the OracleHOME_NAMETNSListener service.

	
Shut down the Oracle Database service.

	
Select the Oracle Database service and click Startup.

	
Change Log On As to This Account and fill in DOMAIN-1\hr.

	
Enter the password and confirm the password for DOMAIN-1\hr.

	
Restart the Oracle Database service.

Installing the MAPI Demo

The MAPI application, such as Microsoft Outlook 2000 or later, must be installed on the local computer before you install this demo.

To install the MAPI demo:

	
Start SQL*Plus.

C:> sqlplus /NOLOG

	
Connect to the Oracle Database instance as the user who will use the MAPI demo. For example:

SQL> connect hr
Enter password: password

	
Run the mapisol.sql script at the SQL*Plus prompt:

SQL> @ORACLE_BASE\ORACLE_HOME\com\demos\mapisol.sql;

This script creates the ORDMAPI package in the current user's schema. You will receive the following error several times when you run this script for the first time:

ORA-04043: object XXXX does not exist.

These messages are normal.

Using the MAPI Demo

To use the MAPI demo:

	
Open mapidem.sql with a text editor and change the e-mail address hr@us.oracle.com in ORDMapi.AddRecipient to your own e-mail address. If you are not using the default as your profile name, also change the profile name that is indicated in ORDMapi.CreateMAPISession, MS Exchange Settings. Save the changes.

	
Run the mapidem.sql script at the SQL*Plus prompt:

SQL> @ORACLE_BASE\ORACLE_HOME\com\demos\mapidem.sql;

This script connects to a database server, extracts the data, and sends an e-mail to a specified recipient.

Core Functionality

The following subsections describe the APIs that the MAPI demo exposes. These APIs are primitive and do not expose all the functionalities that MAPI exposes through COM Automation.

CreateMAPISession

This API starts the MAPI COM Automation server and instantiates the objects for a session.

Syntax

FUNCTION CreateMAPISession (servername IN VARCHAR2 DEFAULT '', profilename IN VARCHAR2 DEFAULT NULL, password IN VARCHAR2 DEFAULT NULL) RETURN BINARY_INTEGER;

	Where	Is
	servername	MAPI server name
	profilename	name of the profile present in the MAPI server
	password	password to connect to the MAPI server

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

NewMessage

This API creates a new message.

Syntax

FUNCTION NewMessage RETURN BINARY_INTEGER;

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

AddRecipient

This API adds the e-mail address of a recipient. This is the address where the e-mail message will be sent.

Syntax

FUNCTION AddRecipient (emailaddress VARCHAR2) RETURN BINARY_INTEGER;

	Where	Is
	emailaddress	e-mail address of the recipient

Remarks

This function returns a 0 when successful or a nonzero HRESULT when an error occurs.

SetSubject

This API specifies the subject of the e-mail message.

Syntax

FUNCTION SetSubject (subject VARCHAR2) RETURN BINARY_INTEGER;

	Where	Is
	subject	the subject of the e-mail message

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

SetBody

This API inserts the body text of the e-mail message.

Syntax

FUNCTION SetBody (messagetext VARCHAR2) RETURN BINARY_INTEGER;

	Where	Is
	messagetext	the body of the e-mail message

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

SendMessage

This API sends the e-mail message to the specified recipients.

Syntax

FUNCTION SendMessage RETURN BINARY_INTEGER;

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

EndMAPISession

This API exits the MAPI session.

Syntax

FUNCTION EndMAPISession RETURN BINARY_INTEGER;

Remarks

This function returns 0 when successful, or a nonzero value for HRESULT when an error occurs.

5 Oracle COM Automation Java Demos

This chapter describes how to use the demonstration program designed for Oracle COM Automation Feature for Java.

This chapter contains these topics:

	
Overview of Oracle COM Automation Feature for Java Demos

	
Microsoft Word Java Demo

Overview of Oracle COM Automation Feature for Java Demos

Oracle COM Automation Feature for Java includes an example that demonstrates how to use the feature to build solutions. The demo provides base functionality and can serve as a foundation on which to build more customized, complex applications that use COM Automation. This demo is based on the human resources schema available with the sample schema.

The demo exposes a core set of APIs that enable you to do simple operations using Oracle COM Automation Feature. Each COM Automation server, such as Word and Excel, provides more advanced capabilities than what is offered through the demo APIs. To take advantage of these advanced features, you must design and code your own Java classes.

In this release, COM Automation has provided the Microsoft Word Java Demo, which exchanges data between an Oracle Database instance and Microsoft Word.

Microsoft Word Java Demo

The following sections describe how to install the Microsoft Word Java demo and the APIs that it exposes. This demo is provided as an example of the types of solutions that can be built with Oracle Database and Microsoft Word.

The demo creates a Microsoft Word document containing the names of employees in the database.

The Microsoft Word Java demo is installed in the ORACLE_BASE\ORACLE_HOME\com\java\demos directory and provides the following:

	
TestWORD.java, the Java source for the demo. In addition to the collection of APIs, it includes the demo program test.

	
TestWORD.class, the Java class for the demo.

	
TestWORD.sql, the script that creates the call specification for the demo.

Installing the Microsoft Word Java Demo

Microsoft Word must be installed on the local computer before you install this demo.

To install the demo:

	
Run the loadjava tool from the command line:

loadjava -force -resolve -user hr ORACLE_BASE\ORACLE_HOME\com\java\demos\TestWORD.class
Password: password

	
Start SQL*Plus.

C:\> sqlplus /NOLOG

	
Connect to the Oracle Database instance as the user who will use the Microsoft Word demo. For example:

SQL> connect hr
Enter password: password

	
Run the TestWORD.sql script to create the call specification:

SQL> @ORACLE_BASE\ORACLE_HOME\com\java\demos\TestWORD.sql

	
See Also:

Oracle Database Java Developer's Guide for further information about the loadjava tool

Using the Microsoft Word Java Demo

To use the Word demo:

	
Set SERVEROUTPUT on at the SQL*Plus prompt:

SQL> SET SERVEROUTPUT ON

	
Call TestWORD() at the SQL*Plus prompt:

SQL> CALL TestWORD();

This creates a Microsoft Word document (worddemoj.doc) in the C:\ directory. The document contains data from the EMPLOYEES and JOBS tables. These tables are available in the human resources schema in the sample schema.

	
Open worddemoj.doc to see its contents.

Creating a Custom Application

The public class TestWORD API as described in "Core Functionality" , provides a wrapper around the Word.Basic COM Automation class as well as some sample code that demonstrates how to use the wrapper. This code was written to be run on the Oracle database server.

To create a custom application that uses this wrapper:

	
Instantiate an object of this class.

	
Create the Word.Basic object by calling the CreateWordObject method.

	
Create a new Microsoft Word document with the FileNew method, or open an existing document with the FileLoad method.

	
Use the FormatFontSize, InsertText, and InsertNewLine methods to add text and formatting to the document.

	
Save the document with the FileSaveAs or the FileSave method.

	
Call the FileClose method when you are finished with the document.

	
Call the DestroyWordObject method when you are finished with the Word.Basic object.

Core Functionality

The following subsections describe the APIs that the Microsoft Word Java demo exposes. These APIs are primitive and do not expose all the functionalities that Microsoft Word exposes through COM Automation.

TestWORD

This API is the constructor. It does nothing.

Syntax

public TestWORD()

CreateWordObject

Creates the Word.Basic COM object.

Syntax

public void CreateWordObject(java.lang.String servername)

	Where	Is
	servername	the server on which to create the COM object. Specify null or the empty string for the local server.

DestroyWordObject

This API destroys the Word.Basic COM object.

Syntax

public void DestroyWordObject()

FileNew

This API creates a new Microsoft WORD document.

Syntax

public void FileNew()

Remarks

This API is a wrapper for the FileNewDefault COM method of the Word.Basic COM object.

FileLoad

This API loads an existing Microsoft WORD document.

Syntax

public void FileLoad(java.lang.String filename)

	Where	Is
	filename	the name of the file to load.

Remarks

This API is a wrapper for the FileOpen COM method of the Word.Basic COM object.

FormatFontSize

This API sets the font size.

Syntax

public void FormatFontSize(long fontsize)

	Where	Is
	fontsize	the new font size.

Remarks

This API is a wrapper for the FormatFont COM method of the Word.Basic COM object.

InsertText

This API inserts text into the Microsoft Word document.

Syntax

public void InsertText(java.lang.String textstr)

	Where	Is
	textstr	the text to insert.

Remarks

This API is a wrapper for the Insert COM method of the Word.Basic COM object.

InsertNewLine

This API inserts a new line into the Microsoft Word document.

Syntax

public void InsertNewLine()

Remarks

This API is a wrapper for the InsertPara COM method of the Word.Basic COM object.

FileSaveAs

This API saves the Microsoft Word document using a specified name.

Syntax

public void FileSaveAs(java.lang.String filename)

	Where	Is
	filename	the name of the file.

Remarks

This API is a wrapper for the FileSaveAs COM method of the Word.Basic COM object.

FileSave

This API saves the Microsoft Word document.

Syntax

public void FileSave()

Remarks

This API is a wrapper for the FileSave COM method of the Word.Basic COM object.

FileClose

This API closes the Microsoft Word document, and exits Microsoft Word.

Syntax

public void FileClose()

Remarks

This API is a wrapper for the FileClose and FileExit COM methods of the Word.Basic COM object.

A COM Automation Error Messages

This appendix contains these topics:

	
Oracle COM Automation Feature, PL/SQL Errors

	
Microsoft COM Automation Errors

Oracle COM Automation Feature, PL/SQL Errors

The following is a list of Oracle COM Automation Feature PL/SQL errors and their common causes.

	COM-0001: Not a Boolean type
	
Cause: The property type, or return value type, is not a boolean, but a Boolean value was requested.

	
Action: Make sure that the variable is of the appropriate data type.

	COM-0002: Invalid Token or no interface for token
	
Cause: The token that was specified does not reference any COM object created using CreateObject, or the COM object was freed using DestroyObject.

	
Action: Make sure that the interface exists.

	COM-0003: Maximum Objects reached
	
Cause: Only 1024 COM objects can be active at any time. This includes COM objects created using CreateObject as well as COM objects obtained as property values and return values.

	
Action: Make sure that objects are destroyed after they are used, by calling DestroyObject.

	COM-0004: The registered CLSID for the ProgID is invalid
	
Cause: The ProgID is located in the registry, but the CLSID associated with the ProgID is not correct.

	
Action: Check that the COM component of the specified ProgID is registered.

	COM-0005: An error occurred writing the CLSID to the registry
	
Cause: The ProgID is not located in the registry. An attempt was made to create the ProgID and assign a CLSID to it, but the registry could not be modified.

	
Action: Ensure that your registry can be written to and is not corrupted.

	COM-0006: A specified class is not registered in the registration database
	
Cause: A specified class is not registered in the registration database.

	
Action: Make sure that the class is registered.

	COM-0007: Failed to initialize COM Automation object
	
Cause: There was an error creating the COM object.

	
Action: Make sure that the object is registered as a COM Automation object.

	COM-0008: No interface is supported
	
Cause: This COM object does not support the IDispatch interface, so it cannot support COM Automation.

	
Action: Verify that the interface specified is valid.

	COM-0014: Failure to invoke
	
Cause: There was an error invoking the method or property.

	
Action: Verify that the method name is valid for the object.

	COM-0015: Bad parameter count
	
Cause: The number of parameters given for the method or property is different from the number of parameters expected.

	
Action: Make sure that the number of parameters for a method is equal to the count.

	COM-0017: The application needs to raise an exception. The structure passed in pexcepinfo should be filled in
	
Cause: The COM object threw an exception.

	
Action: The exception includes an error source, error description, Help file, and the help file context. Call GetLastError to get this additional information

	COM-0018: The requested member does not exist, or the call to Invoke tried to set the value of a read-only property
	
Cause: The requested member does not exist, or the call to Invoke tried to set the value of a read-only property.

	
Action: Make sure that the property value can be written to or the member exists.

	COM-0020: One of the arguments in rgvarg could not be coerced to the specified type
	
Cause: One of the arguments is not the type expected by the method or property, and the argument cannot be coerced to the expected type.

	
Action: Make sure that the coerced arguments are of compatible data types.

	COM-0022: One or more of the arguments could not be coerced
	
Cause: One of the arguments is not the type expected by the method or property, and the argument cannot be coerced to the expected type.

	
Action: Make sure that your arguments are compatible.

	COM-0025: Not an optional parameter
	
Cause: A required argument is missing.

	
Action: Make sure that your argument count is correct for the number of -parameters passed in.

	COM-0026: Name exceeded the maximum character allowed
	
Cause: The property name, method name, server name, or ProgID is too long.

	
Action: Enter less than 1024 characters for the name.

Microsoft COM Automation Errors

The following is a list of Microsoft COM Automation errors and their common causes. Both the hexadecimal and binary error codes are listed.

	(0x800401f3) (-2147221005) Invalid class string
	
Cause: The specified ProgID or CLSID is not registered as a COM object in the registry of the local computer.

	
Action: Correctly install the COM component.

	(0x8007007e) (-2147024770) The specified module could not be found
	
Cause: The specified COM object is registered as an in-process COM server (DLL file), but the DLL file could not be found or loaded.

	
Action: Correctly install the COM component.

	(0x80020004) (-2147352572) Parameter not found
	
Cause: A named parameter was specified before a positional parameter.

	
Action: Ensure that all named parameters are specified after all positional parameters.

	(0x80020005) (-2147352571) Type mismatch
	
Cause: The data type of a PL/SQL local variable used to store a returned property value or a method return value did not match the Visual Basic data type of the property or method return value, or the return value of a method was requested, but it does not return a value.

	
Action: Ensure that the local variable is of the appropriate data type and, for methods, ensure that the return value is not type void.

	(0x80020006) (-2147352570) Unknown name
	
Cause: The specified property or method name was not found for the specified object.

	
Action: Verify that the method or property name is valid for the object.

	(0x80020008) (-2147352568) Bad variable type
	
Cause: The data type of a PL/SQL or Java value passed as a method parameter did not match the COM Automation data type of the method parameter, or a NULL value was passed as a method parameter.

	
Action: Ensure that any local variables used as method parameters are of the appropriate data type and are set to a value other than NULL.

	(0x80080005) (-2146959355) Server execution failed
	
Cause: The specified COM object is registered as a local COM server (.EXE file), but the .EXE file could not be found or started.

	
Action: Correctly install the COM component.

Glossary

Component Object Model (COM)

A binary standard that enables objects to interact with other objects, regardless of the programming language that each object was written in

Distributed Component Object Model (DCOM)

An extension of COM that enables objects to interact with other objects across a network

dynamic-link library (DLL)

An executable file that a Windows application can load when needed

external procedure

A function written in a third-generation language (3GL), such as C, and callable from within PL/SQL or SQL as if it were a PL/SQL function or procedure

GUID

An identifier that uniquely identifies a COM object. GUID is an acronym for Globally Unique Identifier

IID

A GUID that identifies a COM interface

listener

The server process that listens for and accepts incoming connection requests from client applications. Oracle listener processes start up Oracle Database processes to handle subsequent communications with the client

listener.ora

A configuration file that describes one or more Transparent Network Substrate (TNS) listeners on a server

messaging application programming interface (MAPI)

A messaging architecture composed of a set of common application programming interfaces that enables multiple applications to interact with multiple messaging systems across a variety of hardware platforms

Optimal Flexible Architecture (OFA)

A set of file naming and placement guidelines for Oracle software and databases

Oracle COM Automation Feature

An Oracle feature that enables PL/SQL developers to programmatically manipulate COM objects through the IDispatch COM Automation interface

Oracle Net

The Oracle client/server communication software that offers transparent operation to Oracle tools or databases over any type of network protocol and operating system

PL/SQL

Oracle's procedural language extension to SQL

progID

A descriptive string that maps to a GUID

tnsnames.ora

A file that contains connect descriptors mapped to net service names. The file may be maintained centrally or locally, for use by all or individual clients

Index

A B C D E G H I J L M O P R S T U W

A

	APIs
	
	Java, 3.7
	PL/SQL, 3.6

	application programming interfaces (APIs), 3.5
	
	Java, 3.7
	PL/SQL, 3.6

	Architecture
	
	Java, 1.3.2
	PL/SQL, 1.3.1

	architecture
	
	Oracle COM Automation, 1.3

	Automation
	
	Java API, 3.7.1

B

	benefits
	
	Oracle COM Automation, 1.2

C

	call spec, 5.2.1
	COM automation
	
	invoking, 1.3.1.1
	PL/SQL errors, A.1

	COM objects
	
	program ID, 3.4.1
	properties and methods, 3.4.1
	required information, 3.4.1
	viewing, 3.4.2

	comwrap.sql, 2.1.1, 2.4, 2.5.1
	configuration
	
	Java, 2.5.2
	PL/SQL, 2.5.1

	configuring
	
	listener for Oracle COM Automation for PL/SQL, 2.6
	Oracle COM Automation, 2.5

	constructor, 3.7.1
	core functionality
	
	Oracle COM Automation, 1.1.1

	Create
	
	Java API, 3.7.2

	CreateObject
	
	PL/SQL API, 3.6.1

	Currency
	
	Java API, 3.7.9

D

	data types
	
	conversion, 3.1.1, 3.1.2
	Java to COM Automation data types, 3.1.2
	PL/SQL to COM Automation data types, 3.1.1

	dcomcnfg.exe tool, 2.8.2
	demos
	
	installing MAPI demo, 4.5.3
	installing Microsoft Excel demo, 4.3.1
	installing Microsoft PowerPoint demo, 4.4.1
	installing Microsoft Word demo, 4.2.1
	MAPI, 4.5
	Microsoft Excel, 4.3
	Microsoft PowerPoint, 4.4
	Microsoft Word, 4.2
	Oracle COM Automation, 4.1
	Oracle COM Automation for Java, 5.1
	PL/SQL, 4.1

	Destroy
	
	Java API, 3.7.3

	DestroyObject
	
	PL/SQL API, 3.6.2

	Distributed Component Object Model (DCOM)
	
	configuration, 2.8
	definition, 2.7

E

	errors
	
	codes, 3.2
	HRESULT, 3.2
	messages, A.2
	Microsoft COM automation, A.2
	Oracle COM automation, A.1

	examples
	
	MAPI, 4.5
	Microsoft Excel, 4.3
	Microsoft PowerPoint, 4.4
	Microsoft Word, 4.2
	Microsoft Word Java, 5.2

	Exchange Server, 4.5.1
	EXTPROC
	
	extproc.exe, 1.3.1.1

G

	GetArg
	
	PL/SQL API, 3.6.8

	GetLastError
	
	PL/SQL API, 3.6.3

	GetProperty
	
	Java API, 3.7.4
	PL/SQL API, 3.6.4

	Globally Unique Identifier (GUID), 3.4.1
	grant.sql, 2.1.2, 2.5.2

H

	HRESULT
	
	return codes, 3.2

I

	IDispatch interface, 3.6.1, 3.7, 3.7.1
	IDL, 3.4.1
	InitArg
	
	Java API, 3.7.6
	PL/SQL API, 3.6.6

	InitOutArg
	
	PL/SQL API, 3.6.7

	installation
	
	Oracle COM Automation, 2.1

	installing PL/SQL MAPI demo
	
	preparation, 4.5.2

	Installing the Microsoft Word Java Demo, 5.2.1
	Interface Definition Language, 3.4.1
	Internet Explorer, 4.5.1
	Invoke
	
	Java API, 3.7.8
	PL/SQL API, 3.6.10

J

	Java
	
	configuration, 2.5.2

	Java API
	
	Automation, 3.7.1
	Create, 3.7.2
	Currency, 3.7.9
	Destroy, 3.7.3
	GetProperty, 3.7.4
	InitArg, 3.7.6
	Invoke, 3.7.8
	SetArg, 3.7.7
	SetProperty, 3.7.5

	Java APIs, 3.7
	
	CreateWordObject, 5.2.4
	DestroyWordObject, 5.2.4
	FileClose, 5.2.4
	FileLoad, 5.2.4
	FileNew, 5.2.4
	FileSave, 5.2.4
	FileSaveAs, 5.2.4
	FormatFontSize, 5.2.4
	InsertNewLine, 5.2.4
	InsertText, 5.2.4
	TestWORD, 5.2.4

	Java Automation constructor, 3.7.1
	Java Components, 2.1.2
	Java Currency constructor, 3.7.9

L

	listener
	
	configuring for Oracle COM Automation, 2.6

	loadjava, 5.2.1

M

	MAPI
	
	demo script mapidem.sql, 4.5
	PL/SQL example, 4.5

	MAPI demo, 4.5.2
	Messaging Application Programming Interface. See MAPI
	Microsoft Excel
	
	demo script exceldem.sql, 4.3, 4.3, 4.3
	PL/SQL example, 4.3

	Microsoft Outlook, 4.5.1
	Microsoft PowerPoint
	
	demo script pptdem.sql, 4.4
	demo script pptsol.sql, 4.4
	PL/SQL example, 4.4

	Microsoft Word
	
	demo script worddem.sql, 4.2
	example, 4.2

	Microsoft Word Java Demo, 5.2

O

	OLE/COM Object Viewer, 3.4.2
	ORA-04043 error message, 2.5.1
	ORA-28575 error message, 2.6.1
	Oracle COM Automation
	
	architecture, 1.3
	benefits, 1.2
	components, 2.1
	configuring, 2.5
	core functionality, 1.1.1
	demos, 4.1
	installing, 2.1
	introduction, 1.1
	Java demos, 5.1

	Oracle COM Automation Feature Developer's Guide, Preface
	orawcom.dll, 2.3, 2.4
	orawcomVER.dll, 1.3.2, 1.3.2, 2.1.2, 2.4
	orawpcomVER.dll, 1.3.1.1, 1.3.1.1, 2.1.1
	ORDExcel
	
	PL/SQL package, 4.3

	ORDMAPI
	
	PL/SQL package, 4.5

	ORDPPT
	
	PL/SQL package, 4.4

	ORDWord
	
	PL/SQL package, 4.2

	Outlook Client, 4.5.1

P

	PL/SQL
	
	configuration, 2.5.1
	ORDExcel package, 4.3
	ORDMAPI package, 4.5
	ORDPPT package, 4.4
	ORDWord package, 4.2

	PL/SQL API
	
	CreateObject, 3.6.1
	DestroyObject, 3.6.2
	GetArg, 3.6.8
	GetLastError, 3.6.3
	GetProperty, 3.6.4
	InitArg, 3.6.6
	InitOutArg, 3.6.7
	Invoke, 3.6.10
	SetArg, 3.6.9
	SetProperty, 3.6.5

	PL/SQL APIs
	
	AddRecipient, 4.5.5
	AddSlide, 4.4.3
	CreateExcelWorkSheet, 4.3.3
	CreateMAPISession, 4.5.5
	CreatePresentation, 4.4.3
	CreateWordObject, 4.2.3
	EndMAPISession, 4.5.5
	Exit, 4.4.3
	ExitExcel, 4.3.3
	FileClose, 4.2.3
	FileLoad, 4.2.3
	FileNew, 4.2.3
	FileSave, 4.2.3
	FileSaveAs, 4.2.3
	FormatFontSize, 4.2.3
	InsertChart, 4.3.3
	InsertData, 4.3.3
	InsertNewLine, 4.2.3
	InsertText, 4.2.3, 4.4.3
	NewMessage, 4.5.5
	PresentationClose, 4.4.3
	PresentationSave, 4.4.3
	PresentationSaveAs, 4.4.3
	SaveExcelFile, 4.3.3
	SendMessage, 4.5.5
	SetBody, 4.5.5
	SetSubject, 4.5.5
	SetTitle, 4.4.3

	PL/SQL Architecture, 1.3.1
	PL/SQL Components, 2.1.1
	preparing to install, 4.5.2
	privileges granting, 2.5.1
	progID
	
	COM objects, 3.4.1

	program ID
	
	COM objects, 3.4.1

R

	return codes
	
	HRESULT, 3.2

S

	sample schema, 4.1, 5.1
	SERVEROUTPUT, 5.2.2
	SetArg
	
	Java API, 3.7.7
	PL/SQL API, 3.6.9

	SetProperty
	
	Java API, 3.7.5
	PL/SQL API, 3.6.5

	system requirements
	
	Oracle COM Automation, 2.2

T

	TestWORD, 5.2.3
	TestWORD.class, 5.2
	TestWORD.java, 5.2
	TestWORD.sql, 5.2, 5.2.1
	troubleshooting
	
	Oracle COM automation PL/SQL errors, A.1

U

	Upgrade from Oracle9i to Oracle Database 10g, 2.4
	Using the Microsoft Word Demo, 5.2.2

W

	worddemoj.doc, 5.2.2

Oracle Legal Notices
Copyright Notice
Copyright © 1994-2016, Oracle and/or its affiliates. All rights reserved.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
Third-Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.
Alpha and Beta Draft Documentation Notice
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.
Private Alpha and Beta Draft Documentation Notice
If this document is in private preproduction status:
The information contained in this document is for
informational sharing purposes only and should be considered in your
capacity as a customer advisory board member or pursuant to your beta
trial agreement only. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making
purchasing decisions. The development, release, and timing of any
features or functionality described in this document remains at the
sole discretion of Oracle.
This document in any form, software or printed matter, contains proprietary information that is the exclusive property
of Oracle. Your access to and use of this confidential material is
subject to the terms and conditions of your Oracle Master Agreement, Oracle License and Services Agreement, Oracle PartnerNetwork Agreement, Oracle distribution agreement, or other license agreement which has been executed by you and Oracle and with which you agree to
comply. This document and information contained herein may not be
disclosed, copied, reproduced, or distributed to anyone outside Oracle
without prior written consent of Oracle. This document is not part of
your license agreement nor can it be incorporated into any contractual
agreement with Oracle or its subsidiaries or affiliates.
Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.
Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.
[image: Oracle Logo]

