
[image: Oracle Corporation]

Oracle® Database

VLDB and Partitioning Guide

11g Release 1 (11.1)

B32024-01

July 2007

Oracle Database VLDB and Partitioning Guide, 11g Release 1 (11.1)

B32024-01

Copyright © 2007, Oracle. All rights reserved.

Primary Author: Tony Morales

Contributors: Hermann Baer, Steve Fogel, Lilian Hobbs, Paul Lane, Diana Lorentz, Valarie Moore, Mark Van de Wiel

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party.

Contents

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

1 Introduction to Very Large Databases

	Introduction to Partitioning
	VLDB and Partitioning
	Partitioning As the Foundation for Information Lifecycle Management
	Partitioning for Every Database

2 Partitioning Concepts

	Basics of Partitioning
	Partitioning Key
	Partitioned Tables
	When to Partition a Table
	When to Partition an Index

	Partitioned Index-Organized Tables
	System Partitioning
	Partitioning for Information Lifecycle Management
	Partitioning and LOB Data

	Benefits of Partitioning
	Partitioning for Performance
	Partition Pruning
	Partition-Wise Joins

	Partitioning for Manageability
	Partitioning for Availability

	Partitioning Strategies
	Single-Level Partitioning
	Range Partitioning
	Hash Partitioning
	List Partitioning

	Composite Partitioning
	Composite Range-Range Partitioning
	Composite Range-Hash Partitioning
	Composite Range-List Partitioning
	Composite List-Range Partitioning
	Composite List-Hash Partitioning
	Composite List-List Partitioning

	Partitioning Extensions
	Manageability Extensions
	Interval Partitioning
	Partition Advisor

	Partitioning Key Extensions
	Reference Partitioning
	Virtual Column-Based Partitioning

	Overview of Partitioned Indexes
	Local Partitioned Indexes
	Global Partitioned Indexes
	Global Range Partitioned Indexes
	Global Hash Partitioned Indexes
	Maintenance of Global Partitioned Indexes

	Global Non-Partitioned Indexes
	Miscellaneous Information about Creating Indexes on Partitioned Tables
	Partitioned Indexes on Composite Partitions

3 Partition Administration

	Creating Partitions
	Creating Range-Partitioned Tables and Global Indexes
	Creating a Range Partitioned Table
	Creating a Range-Partitioned Global Index

	Creating Interval-Partitioned Tables
	Creating Hash-Partitioned Tables and Global Indexes
	Creating a Hash Partitioned Table
	Creating a Hash-Partitioned Global Index

	Creating List-Partitioned Tables
	Creating Reference-Partitioned Tables
	Creating Composite Partitioned Tables
	Creating Composite Range-Hash Partitioned Tables
	Creating Composite Range-List Partitioned Tables
	Creating Composite Range-Range Partitioned Tables
	Creating Composite List-* Partitioned Tables
	Creating Composite Interval-* Partitioned Tables

	Using Subpartition Templates to Describe Composite Partitioned Tables
	Specifying a Subpartition Template for a *-Hash Partitioned Table
	Specifying a Subpartition Template for a *-List Partitioned Table

	Using Multicolumn Partitioning Keys
	Using Virtual Column-Based Partitioning
	Using Table Compression with Partitioned Tables
	Using Key Compression with Partitioned Indexes
	Creating Partitioned Index-Organized Tables
	Creating Range-Partitioned Index-Organized Tables
	Creating Hash-Partitioned Index-Organized Tables
	Creating List-Partitioned Index-Organized Tables

	Partitioning Restrictions for Multiple Block Sizes

	Maintaining Partitions
	Updating Indexes Automatically
	Adding Partitions
	Adding a Partition to a Range-Partitioned Table
	Adding a Partition to a Hash-Partitioned Table
	Adding a Partition to a List-Partitioned Table
	Adding a Partition to an Interval-Partitioned Table
	Adding Partitions to a Composite [Range | List | Interval]-Hash Partitioned Table
	Adding Partitions to a Composite [Range | List | Interval]-List Partitioned Table
	Adding Partitions to a Composite [Range | List | Interval]-Range Partitioned Table
	Adding a Partition or Subpartition to a Reference-Partitioned Table
	Adding Index Partitions

	Coalescing Partitions
	Coalescing a Partition in a Hash-Partitioned Table
	Coalescing a Subpartition in a *-Hash Partitioned Table
	Coalescing Hash-partitioned Global Indexes

	Dropping Partitions
	Dropping Table Partitions
	Dropping Interval Partitions
	Dropping Index Partitions

	Exchanging Partitions
	Exchanging a Range, Hash, or List Partition
	Exchanging a Partition of an Interval Partitioned Table
	Exchanging a Partition of a Reference Partitioned Table
	Exchanging a Partition of a Table with Virtual Columns
	Exchanging a Hash-Partitioned Table with a *-Hash Partition
	Exchanging a Subpartition of a *-Hash Partitioned Table
	Exchanging a List-Partitioned Table with a *-List Partition
	Exchanging a Subpartition of a *-List Partitioned Table
	Exchanging a Range-Partitioned Table with a *-Range Partition
	Exchanging a Subpartition of a *-Range Partitioned Table

	Merging Partitions
	Merging Range Partitions
	Merging Interval Partitions
	Merging List Partitions
	Merging *-Hash Partitions
	Merging *-List Partitions
	Merging *-Range Partitions

	Modifying Default Attributes
	Modifying Default Attributes of a Table
	Modifying Default Attributes of a Partition
	Modifying Default Attributes of Index Partitions

	Modifying Real Attributes of Partitions
	Modifying Real Attributes for a Range or List Partition
	Modifying Real Attributes for a Hash Partition
	Modifying Real Attributes of a Subpartition
	Modifying Real Attributes of Index Partitions

	Modifying List Partitions: Adding Values
	Adding Values for a List Partition
	Adding Values for a List Subpartition

	Modifying List Partitions: Dropping Values
	Dropping Values from a List Partition
	Dropping Values from a List Subpartition

	Modifying a Subpartition Template
	Moving Partitions
	Moving Table Partitions
	Moving Subpartitions
	Moving Index Partitions

	Redefining Partitions Online
	Rebuilding Index Partitions
	Rebuilding Global Index Partitions
	Rebuilding Local Index Partitions

	Renaming Partitions
	Renaming a Table Partition
	Renaming a Table Subpartition
	Renaming Index Partitions

	Splitting Partitions
	Splitting a Partition of a Range-Partitioned Table
	Splitting a Partition of a List-Partitioned Table
	Splitting a Partition of an Interval-Partitioned Table
	Splitting a *-Hash Partition
	Splitting Partitions in a *-List Partitioned Table
	Splitting a *-Range Partition
	Splitting Index Partitions
	Optimizing SPLIT PARTITION and SPLIT SUBPARTITION Operations

	Truncating Partitions
	Truncating a Table Partition
	Truncating a Subpartition

	Dropping Partitioned Tables
	Partitioned Tables and Indexes Example
	Viewing Information About Partitioned Tables and Indexes

4 Partitioning for Availability, Manageability, and Performance

	Partition Pruning
	Information that can be Used for Partition Pruning
	How to Identify Whether Partition Pruning has been Used
	Static Partition Pruning
	Dynamic Partition Pruning
	Dynamic Pruning with Bind Variables
	Dynamic Pruning with Subqueries
	Dynamic Pruning with Star Transformation
	Dynamic Pruning with Nested Loop Joins

	Partition Pruning Tips
	Datatype Conversions
	Function Calls

	Partition-Wise Joins
	Full Partition-Wise Joins
	Full Partition-Wise Joins: Single-Level - Single-Level
	Full Partition-Wise Joins: Composite - Single-Level
	Full Partition-Wise Joins: Composite - Composite

	Partial Partition-Wise Joins
	Partial Partition-Wise Joins: Single-Level Partitioning
	Partial Partition-Wise Joins: Composite

	Index Partitioning
	Local Partitioned Indexes
	Local Prefixed Indexes
	Local Nonprefixed Indexes

	Global Partitioned Indexes
	Prefixed and Nonprefixed Global Partitioned Indexes
	Management of Global Partitioned Indexes

	Summary of Partitioned Index Types
	The Importance of Nonprefixed Indexes
	Performance Implications of Prefixed and Nonprefixed Indexes
	Guidelines for Partitioning Indexes
	Physical Attributes of Index Partitions

	Partitioning and Table Compression
	Table Compression and Bitmap Indexes
	Example of Table Compression and Partitioning

	Recommendations for Choosing a Partitioning Strategy
	When to Use Range or Interval Partitioning
	When to Use Hash Partitioning
	When to Use List Partitioning
	When to Use Composite Partitioning
	When to Use Composite Range-Hash Partitioning
	When to Use Composite Range-List Partitioning
	When to Use Composite Range-Range Partitioning
	When to Use Composite List-Hash Partitioning
	When to Use Composite List-List Partitioning
	When to Use Composite List-Range Partitioning

	When to Use Interval Partitioning
	When to Use Reference Partitioning
	When to Partition on Virtual Columns

5 Using Partitioning for Information Lifecycle Management

	What Is ILM?
	Oracle Database for ILM
	Oracle Database Manages All Types of Data

	Regulatory Requirements

	Implementing ILM Using Oracle Database
	Step 1: Define the Data Classes
	Partitioning
	The Lifecycle of Data

	Step 2: Create Storage Tiers for the Data Classes
	Assigning Classes to Storage Tiers
	The Costs Savings of using Tiered Storage

	Step 3: Create Data Access and Migration Policies
	Controlling Access to Data
	Moving Data using Partitioning

	Step 4: Define and Enforce Compliance Policies
	Data Retention
	Immutability
	Privacy
	Auditing
	Expiration

	The Benefits of an Online Archive
	Oracle ILM Assistant
	Lifecycle Setup
	Logical Storage Tiers
	Lifecycle Definitions
	Lifecycle Tables
	Preferences

	Lifecycle Management
	Lifecycle Events Calendar
	Lifecycle Events
	Event Scan History

	Compliance & Security
	Current Status
	Digital Signatures and Immutability
	Privacy & Security
	Auditing

	Reports

	Implementing an ILM System Manually

6 Using Partitioning in a Data Warehouse Environment

	What Is a Data Warehouse?
	Scalability
	Bigger Databases
	Bigger Individual tables: More Rows in Tables
	More Users Querying the System
	More Complex Queries

	Performance
	Partition Pruning
	Basic Partition Pruning Techniques
	Advanced Partition Pruning Techniques

	Partition-Wise Joins
	Full Partition-Wise Joins
	Partial Partition-Wise Joins
	Benefits of Partition-Wise Joins
	Performance Considerations for Parallel Partition-Wise Joins

	Indexes and Partitioned Indexes
	Local Partitioned Indexes
	Non-Partitioned Indexes
	Global Partitioned Indexes
	Partitioning and Data Compression
	Materialized Views and Partitioning

	Manageability
	Partition Exchange Load
	Partitioning and Indexes
	Partitioning and Materialized View Refresh Strategies
	Removing Data from Tables
	Partitioning and Data Compression
	Gathering Statistics on Large Partitioned Tables

7 Using Partitioning in an Online Transaction Processing Environment

	What is an OLTP System?
	Performance
	Deciding Whether or not to Partition Indexes
	Using Index-Organized Tables

	Manageability
	Impact of a Partition Maintenance Operation on a Partitioned Table with Local Indexes
	Impact of a Partition Maintenance Operation on Global Indexes
	Common Partition Maintenance Operations in OLTP Environments
	Removing (Purging) Old Data
	Moving and/or Merging Older Partitions to a Low Cost Storage Tier Device

8 Backing Up and Recovering VLDBs

	Data Warehousing
	Data Warehouse Characteristics

	Oracle Backup and Recovery
	Physical Database Structures Used in Recovering Data
	Datafiles
	Redo Logs
	Control Files

	Backup Type
	Backup Tools
	Recovery Manager (RMAN)
	Oracle Enterprise Manager
	Oracle Data Pump
	User-Managed Backups

	Data Warehouse Backup and Recovery
	Recovery Time Objective (RTO)
	Recovery Point Objective (RPO)
	More Data Means a Longer Backup Window
	Divide and Conquer

	The Data Warehouse Recovery Methodology
	Best Practice 1: Use ARCHIVELOG Mode
	Is Downtime Acceptable?

	Best Practice 2: Use RMAN
	Best Practice 3: Use Block Change Tracking
	Best Practice 4: Use RMAN Multi-Section Backups
	Best Practice 5: Leverage Read-Only Tablespaces
	Best Practice 6: Plan for NOLOGGING Operations in Your Backup/Recovery Strategy
	Extract, Transform, and Load
	The ETL Strategy
	Incremental Backup
	The Incremental Approach
	Flashback Database and Guaranteed Restore Points

	Best Practice 7: Not All Tablespaces Are Created Equal

9 Storage Management for VLDBs

	High Availability
	Hardware-Based Mirroring
	RAID 1 Mirroring
	RAID 5 Mirroring

	Mirroring using ASM

	Performance
	Hardware-Based Striping
	RAID 0 Striping
	RAID 5 Striping

	Striping Using ASM
	ILM
	Partition Placement
	Bigfile Tablespaces

	Scalability and Manageability
	Stripe and Mirror Everything (S.A.M.E.)
	S.A.M.E. and Manageability

	ASM Settings Specific to VLDBs
	Monitoring Database Storage Using Database Control

Index

Preface

This book contains an overview of very large database (VLDB) topics, with emphasis on partitioning as a key component of the VLDB strategy. Partitioning enhances the performance, manageability, and availability of a wide variety of applications and helps reduce the total cost of ownership for storing large amounts of data.

Audience

This document is intended for DBAs and developers who create, manage, and write applications for very large databases (VLDB).

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, seven days a week. For TTY support, call 800.446.2398.

Related Documents

For more information, see the following documents in the Oracle Database documentation set:

	
Oracle Database Concepts

	
Oracle Database Administrator's Guide

	
Oracle Database SQL Language Reference

	
Oracle Database Data Warehousing Guide

	
Oracle Database Performance Tuning Guide

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

1 Introduction to Very Large Databases

Modern enterprises frequently run mission-critical databases containing upwards of several hundred gigabytes and, in many cases, several terabytes of data. These enterprises are challenged by the support and maintenance requirements of very large databases (VLDB), and must devise methods to meet those challenges.

This chapter contains an overview of VLDB topics, with emphasis on partitioning as a key component of the VLDB strategy.

	
Introduction to Partitioning

	
VLDB and Partitioning

	
Partitioning As the Foundation for Information Lifecycle Management

	
Partitioning for Every Database

	
Note:

Partitioning functionality is available only if you purchase the Partitioning option.

Introduction to Partitioning

Partitioning addresses key issues in supporting very large tables and indexes by letting you decompose them into smaller and more manageable pieces called partitions, which are entirely transparent to an application. SQL queries and DML statements do not need to be modified in order to access partitioned tables. However, after partitions are defined, DDL statements can access and manipulate individual partitions rather than entire tables or indexes. This is how partitioning can simplify the manageability of large database objects.

Each partition of a table or index must have the same logical attributes, such as column names, datatypes, and constraints, but each partition can have separate physical attributes such as compression enabled or disabled, physical storage settings, and tablespaces.

Partitioning is useful for many different types of applications, particularly applications that manage large volumes of data. OLTP systems often benefit from improvements in manageability and availability, while data warehousing systems benefit from performance and manageability.

Partitioning offers these advantages:

	
It enables data management operations such as data loads, index creation and rebuilding, and backup/recovery at the partition level, rather than on the entire table. This results in significantly reduced times for these operations.

	
It improves query performance. In many cases, the results of a query can be achieved by accessing a subset of partitions, rather than the entire table. For some queries, this technique (called partition pruning) can provide order-of-magnitude gains in performance.

	
It significantly reduces the impact of scheduled downtime for maintenance operations.

Partition independence for partition maintenance operations lets you perform concurrent maintenance operations on different partitions of the same table or index. You can also run concurrent SELECT and DML operations against partitions that are unaffected by maintenance operations.

	
It increases the availability of mission-critical databases if critical tables and indexes are divided into partitions to reduce the maintenance windows, recovery times, and impact of failures.

	
Parallel execution provides specific advantages to optimize resource utilization, and minimize execution time. Parallel execution against partitioned objects is key for scalability in a clustered environment. Parallel execution is supported for queries as well as for DML and DDL.

Partitioning enables faster data access within an Oracle database. Whether a database has 10 GB or 10 TB of data, partitioning can improve data access by orders of magnitude. Partitioning can be implemented without requiring any modifications to your applications. For example, you could convert a nonpartitioned table to a partitioned table without needing to modify any of the SELECT statements or DML statements which access that table. You do not need to rewrite your application code to take advantage of partitioning.

VLDB and Partitioning

A very large database has no minimum absolute size. Although a VLDB is a database like smaller databases, there are specific challenges in managing a VLDB. These challenges are related to the sheer size, and the cost-effectiveness of performing operations against a system that size, taken for granted on smaller databases.

Several trends have been responsible for the steady growth in database size:

	
For a long time, systems have been developed in isolation. Companies have started to see the benefits of combining these systems to enable cross-departmental analysis while reducing system maintenance costs. Consolidation of databases and applications is a key factor in the ongoing growth of database size.

	
Many companies face regulations that set specific requirements for storing data for a minimum amount of time. The regulations generally result in more data being stored for longer periods of time.

	
Companies grow organically and through mergers and acquisitions, causing the amount of generated and processed data to increase. At the same time, the user population that relies on the database for daily activities increases.

Partitioning is a critical feature for managing very large databases. Growth is the basic challenge that partitioning addresses for very large databases, and partitioning enables a "divide and conquer" technique for managing the tables and indexes in the database, especially as those tables and indexes grow. Partitioning is the feature that allows a database to scale for very large datasets while maintaining consistent performance, without unduly increasing administrative or hardware resources. Chapter 4 provides availability, manageability, and performance considerations for partitioning implementations.

Chapter 8 addresses the challenges surrounding backup and recovery for a VLDB.

Storage is a key component of a very large database. Chapter 9 focuses on best practices for storage in a VLDB.

Partitioning As the Foundation for Information Lifecycle Management

Information Lifecycle Management (ILM) is a set of processes and policies for managing data throughout its useful life. One important component of an ILM strategy is determining the most appropriate and cost-effective medium for storing data at any point during its life time: newer data used in day-to-day operations is stored on the fastest, most highly-available storage tier, while older data which is accessed infrequently may be stored on a less-expensive and less-performant storage tier. Older data may also be updated less frequently in which case it makes sense to compress and store the data as read-only.

Oracle Database provides the ideal environment for implementing your ILM solution. Oracle supports multiple storage tiers, and since all of the data remains in the Oracle database, the use of multiple storage tiers is completely transparent to the application and the data continues to be completely secure. Partitioning provides the fundamental technology that enables data in tables to be stored in different partitions.

Although multiple storage tiers and sophisticated ILM policies are most often found in enterprise-level systems, most companies and most databases need some degree of information lifecycle management. The most basic of ILM operations, archiving older data and purging or removing that data from the database, can be orders of magnitude faster when using partitioning.

	
See Also:

Chapter 5, "Using Partitioning for Information Lifecycle Management" for more details on ILM

Partitioning for Every Database

The benefits of partitioning are not just for very large databases; every database, even small databases, can benefit from partitioning. While partitioning is a necessity for the largest databases in the world, partitioning is obviously beneficial for the smaller database as well. Even a database whose size is measured in megabytes will see the same type of performance and manageability benefits from partitioning as the largest multi-terabyte systems.

	
See Also:

	
Chapter 6, "Using Partitioning in a Data Warehouse Environment" for more details on how partitioning can provide benefits in a data warehouse environment

	
Chapter 7, "Using Partitioning in an Online Transaction Processing Environment" for more details on how partitioning can provide benefits in an OLTP environment

2 Partitioning Concepts

Partitioning enhances the performance, manageability, and availability of a wide variety of applications and helps reduce the total cost of ownership for storing large amounts of data. Partitioning allows tables, indexes, and index-organized tables to be subdivided into smaller pieces, enabling these database objects to be managed and accessed at a finer level of granularity. Oracle provides a rich variety of partitioning strategies and extensions to address every business requirement. Moreover, since it is entirely transparent, partitioning can be applied to almost any application without the need for potentially expensive and time consuming application changes.

This chapter contains the following topics:

	
Basics of Partitioning

	
Benefits of Partitioning

	
Partitioning Strategies

	
Overview of Partitioned Indexes

Basics of Partitioning

Partitioning allows a table, index, or index-organized table to be subdivided into smaller pieces, where each piece of such a database object is called a partition. Each partition has its own name, and may optionally have its own storage characteristics.

From the perspective of a database administrator, a partitioned object has multiple pieces that can be managed either collectively or individually. This gives the administrator considerable flexibility in managing partitioned objects. However, from the perspective of the application, a partitioned table is identical to a non-partitioned table; no modifications are necessary when accessing a partitioned table using SQL queries and DML statements.

Figure 2-1 offers a graphical view of how partitioned tables differ from non-partitioned tables.

Figure 2-1 A View of Partitioned Tables

[image: Description of Figure 2-1 follows]

	
Note:

All partitions of a partitioned object must reside in tablespaces of a single block size.

	
See Also:

Oracle Database Concepts for more information about multiple block sizes

Partitioning Key

Each row in a partitioned table is unambiguously assigned to a single partition. The partitioning key is comprised of one or more columns that determine the partition where each row will be stored. Oracle automatically directs insert, update, and delete operations to the appropriate partition through the use of the partitioning key.

Partitioned Tables

Any table can be partitioned into a million separate partitions except those tables containing columns with LONG or LONG RAW datatypes. You can, however, use tables containing columns with CLOB or BLOB datatypes.

	
Note:

To reduce disk usage and memory usage (specifically, the buffer cache), you can store tables and partitions of a partitioned table in a compressed format inside the database. This often leads to a better scaleup for read-only operations. Table compression can also speed up query execution. There is, however, a slight cost in CPU overhead.

	
See Also:

Oracle Database Concepts for more information about table compression

When to Partition a Table

Here are some suggestions for when to partition a table:

	
Tables greater than 2 GB should always be considered as candidates for partitioning.

	
Tables containing historical data, in which new data is added into the newest partition. A typical example is a historical table where only the current month's data is updatable and the other 11 months are read only.

	
When the contents of a table need to be distributed across different types of storage devices.

When to Partition an Index

Here are some suggestions for when to consider partitioning an index:

	
Avoid rebuilding the entire index when data is removed.

	
Perform maintenance on parts of the data without invalidating the entire index.

	
Reduce the impact of index skew caused by an index on a column with a monotonically increasing value.

Partitioned Index-Organized Tables

Partitioned index-organized tables are very useful for providing improved performance, manageability, and availability for index-organized tables.

For partitioning an index-organized table:

	
Partition columns must be a subset of the primary key columns

	
Secondary indexes can be partitioned (both locally and globally)

	
OVERFLOW data segments are always equi-partitioned with the table partitions

	
See Also:

Oracle Database Concepts for more information about index-organized tables

System Partitioning

System partitioning enables application-controlled partitioning without having the database controlling the data placement. The database simply provides the ability to break down a table into partitions without knowing what the individual partitions are going to be used for. All aspects of partitioning have to be controlled by the application. For example, an insertion into a system partitioned table without the explicit specification of a partition will fail.

System partitioning provides the well-known benefits of partitioning (scalability, availability, and manageability), but the partitioning and actual data placement are controlled by the application.

	
See Also:

Oracle Database Data Cartridge Developer's Guide for more information about system partitioning

Partitioning for Information Lifecycle Management

Information Lifecycle Management (ILM) is concerned with managing data during its lifetime. Partitioning plays a key role in ILM because it enables groups of data (that is, partitions) to be distributed across different types of storage devices and managed individually.

	
See Also:

Chapter 5, "Using Partitioning for Information Lifecycle Management" for more information about Information Lifecycle Management

Partitioning and LOB Data

Unstructured data (such as images and documents) which is stored in a LOB column in the database can also be partitioned. When a table is partitioned, all the columns will reside in the tablespace for that partition, with the exception of LOB columns, which can be stored in their own tablespace.

This technique is very useful when a table is comprised of large LOBs because they can be stored separately from the main data. This can be beneficial if the main data is being frequently updated but the LOB data isn't. For example, an employee record may contain a photo which is unlikely to change frequently. However, the employee personnel details (such as address, department, manager, and so on) could change. This approach also means that cheaper storage can be used for storing the LOB data and more expensive, faster storage used for the employee record.

Benefits of Partitioning

Partitioning can provide tremendous benefit to a wide variety of applications by improving performance, manageability, and availability. It is not unusual for partitioning to improve the performance of certain queries or maintenance operations by an order of magnitude. Moreover, partitioning can greatly simplify common administration tasks.

Partitioning also enables database designers and administrators to tackle some of the toughest problems posed by cutting-edge applications. Partitioning is a key tool for building multi-terabyte systems or systems with extremely high availability requirements.

Partitioning for Performance

By limiting the amount of data to be examined or operated on, and by providing data distribution for parallel execution, partitioning provides a number of performance benefits. These features include:

	
Partition Pruning

	
Partition-Wise Joins

Partition Pruning

Partition pruning is the simplest and also the most substantial means to improve performance using partitioning. Partition pruning can often improve query performance by several orders of magnitude. For example, suppose an application contains an Orders table containing a historical record of orders, and that this table has been partitioned by week. A query requesting orders for a single week would only access a single partition of the Orders table. If the Orders table had 2 years of historical data, then this query would access one partition instead of 104 partitions. This query could potentially execute 100 times faster simply because of partition pruning.

Partition pruning works with all of Oracle's other performance features. Oracle will utilize partition pruning in conjunction with any indexing technique, join technique, or parallel access method.

Partition-Wise Joins

Partitioning can also improve the performance of multi-table joins by using a technique known as partition-wise joins. Partition-wise joins can be applied when two tables are being joined together and both tables are partitioned on the join key, or when a reference partitioned table is joined with its parent table. Partition-wise joins break a large join into smaller joins that occur between each of the partitions, completing the overall join in less time. This offers significant performance benefits both for serial and parallel execution.

Partitioning for Manageability

Partitioning allows tables and indexes to be partitioned into smaller, more manageable units, providing database administrators with the ability to pursue a "divide and conquer" approach to data management. With partitioning, maintenance operations can be focused on particular portions of tables. For example, a database administrator could back up a single partition of a table, rather than backing up the entire table. For maintenance operations across an entire database object, it is possible to perform these operations on a per-partition basis, thus dividing the maintenance process into more manageable chunks.

A typical usage of partitioning for manageability is to support a "rolling window" load process in a data warehouse. Suppose that a DBA loads new data into a table on a weekly basis. That table could be partitioned so that each partition contains one week of data. The load process is simply the addition of a new partition using a partition exchange load. Adding a single partition is much more efficient than modifying the entire table, since the DBA does not need to modify any other partitions.

Partitioning for Availability

Partitioned database objects provide partition independence. This characteristic of partition independence can be an important part of a high-availability strategy. For example, if one partition of a partitioned table is unavailable, then all of the other partitions of the table remain online and available. The application can continue to execute queries and transactions against the available partitions for the table, and these database operations will run successfully, provided they do not need to access the unavailable partition.

The database administrator can specify that each partition be stored in a separate tablespace; the most common scenario is having these tablespaces stored on different storage tiers. Storing different partitions in different tablespaces allows the database administrator to do backup and recovery operations on each individual partition, independent of the other partitions in the table. Thus allowing the active parts of the database to be made available sooner so access to the system can continue, while the inactive data is still being restored. Moreover, partitioning can reduce scheduled downtime. The performance gains provided by partitioning may enable database administrators to complete maintenance operations on large database objects in relatively small batch windows.

Partitioning Strategies

Oracle Partitioning offers three fundamental data distribution methods as basic partitioning strategies that control how data is placed into individual partitions:

	
Range

	
Hash

	
List

Using these data distribution methods, a table can either be partitioned as a single list or as a composite partitioned table:

	
Single-Level Partitioning

	
Composite Partitioning

Each partitioning strategy has different advantages and design considerations. Thus, each strategy is more appropriate for a particular situation.

Single-Level Partitioning

A table is defined by specifying one of the following data distribution methodologies, using one or more columns as the partitioning key:

	
Range Partitioning

	
Hash Partitioning

	
List Partitioning

For example, consider a table with a column of type NUMBER as the partitioning key and two partitions less_than_five_hundred and less_than_one_thousand. The less_than_one_thousand partition contains rows where the following condition is true:

500 <= partitioning key < 1000

Figure 2-2 offers a graphical view of the basic partitioning strategies for a single-level partitioned table.

Figure 2-2 List, Range, and Hash Partitioning

[image: Description of Figure 2-2 follows]

Range Partitioning

Range partitioning maps data to partitions based on ranges of values of the partitioning key that you establish for each partition. It is the most common type of partitioning and is often used with dates. For a table with a date column as the partitioning key, the January-2005 partition would contain rows with partitioning key values from 01-Jan-2005 to 31-Jan-2005.

Each partition has a VALUES LESS THAN clause, which specifies a non-inclusive upper bound for the partitions. Any values of the partitioning key equal to or higher than this literal are added to the next higher partition. All partitions, except the first, have an implicit lower bound specified by the VALUES LESS THAN clause of the previous partition.

A MAXVALUE literal can be defined for the highest partition. MAXVALUE represents a virtual infinite value that sorts higher than any other possible value for the partitioning key, including the NULL value.

Hash Partitioning

Hash partitioning maps data to partitions based on a hashing algorithm that Oracle applies to the partitioning key that you identify. The hashing algorithm evenly distributes rows among partitions, giving partitions approximately the same size.

Hash partitioning is the ideal method for distributing data evenly across devices. Hash partitioning is also an easy-to-use alternative to range partitioning, especially when the data to be partitioned is not historical or has no obvious partitioning key.

	
Note:

You cannot change the hashing algorithms used by partitioning.

List Partitioning

List partitioning enables you to explicitly control how rows map to partitions by specifying a list of discrete values for the partitioning key in the description for each partition. The advantage of list partitioning is that you can group and organize unordered and unrelated sets of data in a natural way. For a table with a region column as the partitioning key, the North America partition might contain values Canada, USA, and Mexico.

The DEFAULT partition enables you to avoid specifying all possible values for a list-partitioned table by using a default partition, so that all rows that do not map to any other partition do not generate an error.

Composite Partitioning

Composite partitioning is a combination of the basic data distribution methods; a table is partitioned by one data distribution method and then each partition is further subdivided into subpartitions using a second data distribution method. All subpartitions for a given partition together represent a logical subset of the data.

Composite partitioning supports historical operations, such as adding new range partitions, but also provides higher degrees of potential partition pruning and finer granularity of data placement through subpartitioning. Figure 2-3 offers a graphical view of range-hash and range-list composite partitioning, as an example.

Figure 2-3 Composite Partitioning

[image: Description of Figure 2-3 follows]

	
Composite Range-Range Partitioning

	
Composite Range-Hash Partitioning

	
Composite Range-List Partitioning

	
Composite List-Range Partitioning

	
Composite List-Hash Partitioning

	
Composite List-List Partitioning

Composite Range-Range Partitioning

Composite range-range partitioning enables logical range partitioning along two dimensions; for example, partition by order_date and range subpartition by shipping_date.

Composite Range-Hash Partitioning

Composite range-hash partitioning partitions data using the range method, and within each partition, subpartitions it using the hash method. Composite range-hash partitioning provides the improved manageability of range partitioning and the data placement, striping, and parallelism advantages of hash partitioning.

Composite Range-List Partitioning

Composite range-list partitioning partitions data using the range method, and within each partition, subpartitions it using the list method. Composite range-list partitioning provides the manageability of range partitioning and the explicit control of list partitioning for the subpartitions.

Composite List-Range Partitioning

Composite list-range partitioning enables logical range subpartitioning within a given list partitioning strategy; for example, list partition by country_id and range subpartition by order_date.

Composite List-Hash Partitioning

Composite list-hash partitioning enables hash subpartitioning of a list-partitioned object; for example, to enable partition-wise joins.

Composite List-List Partitioning

Composite list-list partitioning enables logical list partitioning along two dimensions; for example, list partition by country_id and list subpartition by sales_channel.

Partitioning Extensions

In addition to the basic partitioning strategies, Oracle Database provides partitioning extensions:

	
Manageability Extensions

	
Partitioning Key Extensions

Manageability Extensions

These extensions significantly enhance the manageability of partitioned tables:

	
Interval Partitioning

	
Partition Advisor

Interval Partitioning

Interval partitioning is an extension of range partitioning which instructs the database to automatically create partitions of a specified interval when data inserted into the table exceeds all of the existing range partitions. You must specify at least one range partition. The range partitioning key value determines the high value of the range partitions, which is called the transition point, and the database creates interval partitions for data beyond that transition point. The lower boundary of every interval partition is the non-inclusive upper boundary of the previous range or interval partition.

For example, if you create an interval partitioned table with monthly intervals and the transition point at January 1, 2007, then the lower boundary for the January 2007 interval is January 1, 2007. The lower boundary for the July 2007 interval is July 1, 2007, regardless of whether the June 2007 partition was already created.

When using interval partitioning, consider the following restrictions:

	
You can only specify one partitioning key column, and it must be of NUMBER or DATE type.

	
Interval partitioning is not supported for index-organized tables.

	
You cannot create a domain index on an interval-partitioned table.

You can create single-level interval partitioned tables as well as the following composite partitioned tables:

	
Interval-range

	
Interval-hash

	
Interval-list

Partition Advisor

The Partition Advisor is part of the SQL Access Advisor. The Partition Advisor can recommend a partitioning strategy for a table based on a supplied workload of SQL statements which can be supplied by the SQL Cache, a SQL Tuning set, or be defined by the user.

Partitioning Key Extensions

These extensions extend the flexibility in defining partitioning keys:

	
Reference Partitioning

	
Virtual Column-Based Partitioning

Reference Partitioning

Reference partitioning allows the partitioning of two tables related to one another by referential constraints. The partitioning key is resolved through an existing parent-child relationship, enforced by enabled and active primary key and foreign key constraints.

The benefit of this extension is that tables with a parent-child relationship can be logically equi-partitioned by inheriting the partitioning key from the parent table without duplicating the key columns. The logical dependency will also automatically cascade partition maintenance operations, thus making application development easier and less error-prone.

An example of reference partitioning is the Orders and OrderItems tables related to each other by a referential constraint orderid_refconstraint. Namely, OrderItems.OrderID references Orders.OrderID. The Orders table is range partitioned on OrderDate. Reference partitioning on orderid_refconstraint for OrderItems leads to creation of the following partitioned table, which is equi-partitioned with respect to the Orders table, as shown in Figure 2-4 and Figure 2-5.

Figure 2-4 Before Reference Partitioning

[image: Description of Figure 2-4 follows]

Figure 2-5 With Reference Partitioning

[image: Description of Figure 2-5 follows]

All basic partitioning strategies are available for reference Partitioning. Interval partitioning cannot be used with reference partitioning.

Virtual Column-Based Partitioning

In previous releases of the Oracle Database, a table could only be partitioned if the partitioning key physically existed in the table. In Oracle Database 11g, virtual columns remove that restriction and allow the partitioning key to be defined by an expression, using one or more existing columns of a table. The expression is stored as metadata only.

Oracle Partitioning has been enhanced to allow a partitioning strategy to be defined on virtual columns. For example, a 10 digit account ID can include account branch information as the leading 3 digits. With the extension of virtual column based Partitioning, an ACCOUNTS table containing an ACCOUNT_ID column can be extended with a virtual (derived) column ACCOUNT_BRANCH that is derived from the first three digits of the ACCOUNT_ID column, which becomes the partitioning key for this table.

Virtual column-based Partitioning is supported with all basic partitioning strategies, including interval and interval-* composite partitioning.

Overview of Partitioned Indexes

Just like partitioned tables, partitioned indexes improve manageability, availability, performance, and scalability. They can either be partitioned independently (global indexes) or automatically linked to a table's partitioning method (local indexes). In general, you should use global indexes for OLTP applications and local indexes for data warehousing or DSS applications. Also, whenever possible, you should try to use local indexes because they are easier to manage. When deciding what kind of partitioned index to use, you should consider the following guidelines in order:

	
If the table partitioning column is a subset of the index keys, use a local index. If this is the case, you are finished. If this is not the case, continue to guideline 2.

	
If the index is unique and does not include the partitioning key columns, then use a global index. If this is the case, then you are finished. Otherwise, continue to guideline 3.

	
If your priority is manageability, use a local index. If this is the case, you are finished. If this is not the case, continue to guideline 4.

	
If the application is an OLTP one and users need quick response times, use a global index. If the application is a DSS one and users are more interested in throughput, use a local index.

	
See Also:

Chapter 6, "Using Partitioning in a Data Warehouse Environment" and Chapter 7, "Using Partitioning in an Online Transaction Processing Environment" for more information about partitioned indexes and how to decide which type to use

Local Partitioned Indexes

Local partitioned indexes are easier to manage than other types of partitioned indexes. They also offer greater availability and are common in DSS environments. The reason for this is equipartitioning: each partition of a local index is associated with exactly one partition of the table. This enables Oracle to automatically keep the index partitions in sync with the table partitions, and makes each table-index pair independent. Any actions that make one partition's data invalid or unavailable only affect a single partition.

Local partitioned indexes support more availability when there are partition or subpartition maintenance operations on the table. A type of index called a local nonprefixed index is very useful for historical databases. In this type of index, the partitioning is not on the left prefix of the index columns.

	
See Also:

Chapter 4 for more information about prefixed indexes

You cannot explicitly add a partition to a local index. Instead, new partitions are added to local indexes only when you add a partition to the underlying table. Likewise, you cannot explicitly drop a partition from a local index. Instead, local index partitions are dropped only when you drop a partition from the underlying table.

A local index can be unique. However, in order for a local index to be unique, the partitioning key of the table must be part of the index's key columns.

Figure 2-6 offers a graphical view of local partitioned indexes.

Figure 2-6 Local Partitioned Index

[image: Description of Figure 2-6 follows]

Global Partitioned Indexes

Oracle offers two types of global partitioned indexes: range partitioned and hash partitioned.

Global Range Partitioned Indexes

Global range partitioned indexes are flexible in that the degree of partitioning and the partitioning key are independent from the table's partitioning method.

The highest partition of a global index must have a partition bound, all of whose values are MAXVALUE. This ensures that all rows in the underlying table can be represented in the index. Global prefixed indexes can be unique or nonunique.

You cannot add a partition to a global index because the highest partition always has a partition bound of MAXVALUE. If you wish to add a new highest partition, use the ALTER INDEX SPLIT PARTITION statement. If a global index partition is empty, you can explicitly drop it by issuing the ALTER INDEX DROP PARTITION statement. If a global index partition contains data, dropping the partition causes the next highest partition to be marked unusable. You cannot drop the highest partition in a global index.

Global Hash Partitioned Indexes

Global hash partitioned indexes improve performance by spreading out contention when the index is monotonically growing. In other words, most of the index insertions occur only on the right edge of an index.

Maintenance of Global Partitioned Indexes

By default, the following operations on partitions on a heap-organized table mark all global indexes as unusable:

ADD (HASH)

COALESCE (HASH)

DROP

EXCHANGE

MERGE

MOVE

SPLIT

TRUNCATE

These indexes can be maintained by appending the clause UPDATE INDEXES to the SQL statements for the operation. The two advantages to maintaining global indexes:

	
The index remains available and online throughout the operation. Hence no other applications are affected by this operation.

	
The index doesn't have to be rebuilt after the operation.

	
Note:

This feature is supported only for heap-organized tables.

Figure 2-7 offers a graphical view of global partitioned indexes.

Figure 2-7 Global Partitioned Index

[image: Description of Figure 2-7 follows]

Global Non-Partitioned Indexes

Global non-partitioned indexes behave just like a non-partitioned inde