ORACLE

Oracle® Streams
Advanced Queuing User's Guide

11gRelease 1 (11.1)
B28420-02

September 2007

Oracle Streams Advanced Queuing User’s Guide, 11¢g Release 1 (11.1)
B28420-02

Copyright © 1996, 2007, Oracle. All rights reserved.

Primary Author: Denis Raphaely

Contributing Authors: Neerja Bhatt, Charles Hall

Contributor: Stella Kister, Anil Madan, Abhishek Saxena, James Wilson

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City,
CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

Send Us YOUIr COMMENLES ...t eeen XXV
PUROIACE ... et eeaeen XXVii
AN S Lo T VLT PR R SRORRRRTRRRN XXVii
Documentation AcCeSSIDILItYccciiiiiiiiiiiiiiiiiic s XXVii
ReElAted DOCUIMEIEScooevveeieiiee ettt e et e et eseaae e s eaaeeeeaeeessaessseeesnneesensaeessseeeans XXViii
(@03 4 T£=3 015 (o) 4 - I TRTER O RPERUORRRRTRRRRPNY XXViii
What’s New in Oracle Streams AQ? ... XXiX
Notification ENNANCEIMENTS.........ooiiiiiiieeieeeee ettt e e e e e e s ae e e sateesaeessnaeessaeeesnnes XXX
Better Diagnosability and Manageabilitycccooviiiiiiiiiiic XXX
Transition from Job Queue Processes to Database Schedulerc.ccoeceeiiininininininineneeene XXXi
Messaging Gateway Enhancementscccoooiiiiii XXXi

Partl Oracle Streams AQ Fundamentals

1 Introduction to Oracle Streams AQ

What Is QUEUING? ... s 1-1
Oracle Streams AQ Leverages Oracle Database..............ccccccoooiiiiiiiiiiin, 1-2
Oracle Streams AQ in Integrated Application Environments...............cccccoeiiiiniiiniinnnn, 1-5
Oracle Streams AQ Client/Server COmMMUNICAtIONcoveeeveeereieireeeeeeie ettt eereeereeeeeeeveeeree s 1-6
Multiconsumer Dequeuing of the Same MeSSage...........ccowiuiiiiiiiicciicceceeeeeneeenenenes 1-7
Oracle Streams AQ Implementation of WOrkflows ..o, 1-9
Oracle Streams AQ Implementation of Publish/Subscribe...........ccccccooiiiniiiiininiinn, 1-10
Buffered MeSSaging...........ccocoiiiiiiiiiiiiiiic s 1-12
Asynchronous Notifications ... 1-16
Views on Registration..........cccoviiiiiiiiiiiiiicccc s 1-18
Event-Based NOIfICAtIONc.c.cuevviviiiiiiiriiiicrccccce s 1-18
Notification Grouping by Time.........cccccoeiiiiiiiiiiiiiii s 1-18
Enqueue Features ... 1-18
DeqUETE FEAtUTES.........cooiiiiiiiiiiiciicecreere ettt s 1-20
Propagation FEatures ... 1-26
Message Format Transformation ... 1-33
Other Oracle Streams AQ FEAtUIES.........cc.cccueiiiiiiiiiiiieeece ettt et eve e aeeve e s eveeaeenree s 1-33

Interfaces to Oracle Streams AQccooeeiiiieiiiiieeeese ettt sre e sre e b e re e s e s e e s e essessesseeseenes 1-37
Oracle Streams AQ DemoONStrationscoeviriiiiiiieiieieeeeeet ettt e ebe e eaen 1-37

Basic Components

ODBJECt INAINE.......oniiiiii bbb 2-1
TYPE NAME ...t 2-2
AQ AGENE TYPE ..o 2-2
AQ Recipient List TYPe........ccocooiiiiiiiiiiicccc s 2-3
AQ AGent List TYPE ..o 2-3
AQ Subscriber List TYPe.......ccccooviiiiiiiiiiiiiiiic s 2-3
AQ Registration Information List Type..........ccccccoviiiiiiiiiii, 2-3
AQ Post Information List TyPe.........cccoceiiiiniiiiiiiiiiii e 2-3
AQ Registration Information Type.........cccccoviviiiiiiiiiiii 2-3
AQ Notification Descriptor TYPe ... 2-5
AQ Message Properties TYPe ... 2-5
AQ Post Information TYPecccooviiiiiiiiiiiiiiii s 2-6
AQ$_NTFN_MSGID_ARRAY TYPEe.....cooriiiiiiiiiiiiiiiiiiiiiciinis s 2-6
Enumerated Constants in the Oracle Streams AQ Administrative Interface..............c.cc.c......... 2-6
Enumerated Constants in the Oracle Streams AQ Operational Interface............ccccoeeneennenennee. 2-7
AQ Background ProCesses ..o 2-8

QUEUE MONITOT PIOCESSES .ocuviievieiieiiieieeetteeieeetteeteeetee st e e eteestbeebeesteesbeesssessseeseesssaeseeseseesesseenns 2-8

JOD QUEUE PrOCESSEScuviuvenienieiieietet ettt sttt sttt b bbbt b e bbbttt ettt st ebe b e 2-8

Oracle Streams AQ: Programmatic Interfaces

Programmatic Interfaces for Accessing Oracle Streams AQ............ccooevoiiiiiiiiiiicce 3-1
Using PL/SQL to Access Oracle Streams AQc.ccocooiiiiiiiiiiiiniiiccecee e 3-2
Using OCI to Access Oracle Streams AQcccoeiiiiiiiiiiiiiiii s 3-3
Using OCCI to Access Oracle Streams AQccooouriiiiiiiiiiicc e 3-3
Using Visual Basic (0040) to Access Oracle Streams AQccooeviiiiiiiicec 3-3
Using Oracle Java Message Service (OJMS) to Access Oracle Streams AQccceeiennn. 3-4

Accessing Standard and Oracle JMS Applications...........cccceeeviiiinininiiiinnie, 3-5
Using Oracle Streams AQ XML Servlet to Access Oracle Streams AQcccoeeivinnicncnnnnee 3-6
Comparing Oracle Streams AQ Programmatic Interfaces.............cccocoeviniiini, 3-6

Oracle Streams AQ Administrative INterfaces........cccocvevvireerieiceeneeieeceee et 3-6

Oracle Streams AQ Operational INterfacescoocvuiieiieiniiciniiccc 3-7

Partll Managing and Tuning Oracle Streams AQ

4

Managing Oracle Streams AQ

Oracle Streams AQ Compatibility Parameters...............ccccccciiiiiiiiiniiiccccces 4-1
Queue Security and Access CONIOL ... 4-2
Oracle Streams AQ SECUTILYcovuiiiiiiiici e 4-2
AdminiStrator ROLEcccovieiiiiiiiiiinecie et 4-2

USET ROIE ...t 4-2

Access to Oracle Streams AQ Object TYPEScovuiiiiiiiiiiiiiiiiiiice 4-3

QUEUE SECUTILY ..viiiiiiiiiicc s 4-3

Queue Privileges and Access CONIOL.........ccocvviiiiiiiiiiiiiiiiii 4-3

OCI Applications and QUEUE ACCESScvrueueiiurieiiiicieie et 4-3
Security Required for Propagation ... 4-4
Queue Table EXPOrt-IMPOTIL.......c..ccooviriiiriinieiniccnctntetntcene ettt s e s 4-4
Exporting Queue Table Data...........cooiiiiiiiii 4-4
Importing Queue Table Datacccccciiiiiiiiiiiiiiccceeeeeee e 4-5
Data Pump Export and IMPort ... 4-6
Oracle Enterprise Manager SUPPOTt...........cccccoiiiiiiiiiiiiiiiiiiii s 4-6
Using Oracle Streams AQ with XA........ccccoiiiiii s 4-6
Restrictions on Queue Managementcceiiiiiiiiniiiiiiii e 4-7
SUDSCIIDETS ...t 4-7
DML Not Supported on Queue Tables or Associated IOTsccoevvvirrrnnnnnceene. 4-7
Propagation from Object Queues with REF Payload Attributes............cccooovoviiiiiiiiininn, 4-7
Collection Types in Message Payloadscccooiriioiiiiiiiiicccc 4-7
Synonyms on Queue Tables and QUEUESccoouvuvururiririiiiiiirircrre e 4-8
Synonyms on Object TYPeS........cceiiirieiiiicieci 4-8
Tablespace Point-in-Time ReCOVETYc.ooiiiiiiiiiiiiiiici 4-8
Virtual Private Databaseccoviiiiiiiiniiiccc 4-8
Managing Propagation ..o 4-8
EXECUTE Privileges Required for Propagation.............cccoeueuiiiiiiiiiiniiiiccicceeccee 4-8
Propagation from Object QUEUESccccuiuiuiuiiiiiiiiiiiceieieeceeeee e 4-9
Optimizing Propagation ... 4-9
Handling Failures in Propagationccccooiiiiiiiniciiicce e 4-10

Oracle Streams AQ Performance and Scalability

Persistent Messaging Performance OVeIview ..o 5-1
Oracle Streams AQ and Oracle Real Application CIUSters ... 5-1
Oracle Streams AQ in a Shared Server ENVironmentc.ecevveeveevierieerienceeseseesieseeseeseesee s 5-2

Persistent Messaging Basic Tuning Tips...........cccooviiiiiiiiiiiii s 5-2
Using Storage Parameters ... 5-2
I/0 ConfigUration.......cceuiiiiiiiiiiiiiiiiici s 5-2
Running Enqueue and Dequeue Processes Concurrently in a Single Queue Table 5-2
Running Enqueue and Dequeue Processes Serially in a Single Queue Table 5-3
Creating Indexes on a Queue Table.............cocooiiiiiii 5-3
OHheTr TIPS ..o 5-3

Propagation TUNIng TiPs..........cccoviiiiiiiniiiiii s 5-4

Buffered Messaging TUNING ..o s 5-4

Performance VIBWS ..ottt sttt 5-4

Internet Access to Oracle Streams AQ

Overview of Oracle Streams AQ Operations over the Internet...................ccccccoviiiiinninnnn 6-1
Oracle Streams AQ Internet Operations Architecture............occociiiiiiciiccecceeecceeenenes 6-1
Internet Message Payloads ... 6-2
Configuring the Web Server to Authenticate Users Sending POST Requests............ccccceuueee. 6-3
Client Requests Using HTTPccccccoiiiiiiiiiiicieeeeeieeeeeeeeeees e 6-3

User Sessions and Transactionsccceeueeiiieiiiiieiiiiieieie e 6-3

Oracle Streams AQ Servlet Responses Using HTTP...........c.cccoooiiiiiiiiiiiiiicecceenas 6-3

Oracle Streams AQ Propagation Using HTTP and HTTPScccocooiiiiiie, 6-4
Deploying the Oracle Streams AQ XML Servletccccocoiiiiiiiiniiiiis 6-4
Internet Data Access Presentation (IDAP) ... 6-7

SOAP Message SIIUCHUTEc.cuiuiiiiiiiie s 6-7

SOAP ENVEIOPE ...ttt 6-7

SOAP HeEAET ..ottt 6-7

SOAP BOAY ..ot s 6-7

SOAP Method INVOCAtIONciviiiiiiiiiciit e 6-8
HTTP HeEAdETISooviiiiiiicictciccccc s 6-8
Method Invocation BodY ... 6-8

Results from a Method ReQUESL........c.ccceuiiiiiiriiiiiiiiiccreeee e 6-9
Request and Response IDAP Documentscccciiiiiiiiiiiiicccccccnas 6-9

IDAP Client Requests for ENQUEUEcooeiiiiiiiicc e 6-9

IDAP Client Requests fOr DEQUEUEcccciiiiuiiiiiiiiiicccceeeee et 6-11

IDAP Client Requests for Registration...........cccooviiieiiiiiiiii e, 6-13

IDAP Client Requests to Commit a Transactionccoceeieiireiiiiiicccc, 6-13

IDAP Client Requests to Roll Back a Transactionccccceeeerrveniinnrnenenrreeeeeeeenes 6-14

IDAP Server Response to an Enqueue Request ..., 6-14

IDAP Server Response to a Dequeue Request ... 6-14

IDAP Server Response to a Register Requestccccviuiiiiniiiiiiiiiiiniicn 6-15

IDAP Commit RESPONSEcvvviviviiiiiiiiiicicicccc s 6-15

IDAP Rollback RESPONSEovuiuririiiiiici it 6-15

IDAP NOHFICAtION 1.oevviiiiiiic s 6-15

IDAP Response in Case Of EITOT ... 6-15
Notification of Messages by e-mailccccccooviiiiiii 6-16

Troubleshooting Oracle Streams AQ

Debugging Oracle Streams AQ Propagation Problems...............ccccooiiiiiniiinniniiiicce 7-1
Oracle Streams AQ Error MeSSages............ccccouviiuiiiiiniiiiiiiniiiiic s 7-2

Partlll Oracle Streams AQ Administrative and Operational Interfaces

8 Oracle Streams AQ Administrative Interface

vi

Managing Queue Tables ..o 8-1
Creating a Queue Table...........oo 8-1
Altering a Quete Table ... 8-8
Dropping a QuUete Table........ccccccciiiiiiiiiiicrceereeee e 8-9
Purging a Quete Table............cooooiiiii 8-9
Migrating a Queutie Tablecccciiiiiiiiiiii s 8-11

Managing QUEUESc.couiiiiiiiiiiii s 8-12
Creating @ QUEUE..........cuoviiiit e 8-12
AEring @ QUEUEovviiiiiii s 8-15
Starting @ QUEUEc.ciiiiiiic s 8-15
StOPPING @ QUEUEL......oviiiiiiiei s 8-16
Dropping @ QUEUE ..ot s 8-16

Managing Transformations ..o 8-16

Creating a Transformation...........ccoceiicc e 8-17
Modifying a Transformationcccccceeeuiiiiiiieninieiceeeeee e 8-17
Dropping a Transformation...........cccoceiiiiiiiii s 8-18
Granting and Revoking Privileges ... 8-18
Granting Oracle Streams AQ System Privilegescccocoiiiiiiiiciiiiieeciceceeeeeees 8-18
Revoking Oracle Streams AQ System Privilegesccooeoiiiioiiiiiiiiic, 8-19
Granting Queue Privileges ..o 8-19
Revoking Queue Privilegescccccociiiiiiiiiiiiiicceceee e 8-20
Managing SUbSCIIDETS.c.ccccoiiiiiiiiiiiii s 8-20
Adding @ SUDSCIIDET ...t 8-20
Atering @ SUDSCIIDET ..o 8-22
Removing a SUDSCIIDETcooiiiii 8-23
Managing Propagations ... 8-23
Scheduling a Queute Propagationc.cccccucciiiiiiiiieiiccceee e 8-24
Veritying Propagation Queue TYPe ..ot 8-26
Altering a Propagation Schedule.............ccooooiii 8-26
Enabling a Propagation Schedule............cccccciiiiiiiiiiiicceeceee s 8-27
Disabling a Propagation Schedule..............coooiiiiiiiiiiiii 8-27
Unscheduling a Queue Propagation ... 8-28
Managing Oracle Streams AQ AGeNtScccocvviiiiiiiiiiiii s 8-28
Creating an Oracle Streams AQ Agentccccovoiiiiiiiiiiiic s 8-29
Altering an Oracle Streams AQ Agent.........c.cooueiiiiiiiiiiiiic e 8-29
Dropping an Oracle Streams AQ ANtc.ccceuviiiiiiiririiiiirrcereeeeeeeee s 8-29
Enabling Database ACCeSS.........ccoeueieiiiiiiiiiiii 8-29
Disabling Database ACCESSc.ccoeueiiiiiiiiieiiccie e 8-30
Adding an Alias to the LDAP Servercccoviiiiiiniiiiiiicec s 8-30
Deleting an Alias from the LDAP Serverccccoovviiiiiiiiiiciiiicccces 8-30

Oracle Streams AQ & Messaging Gateway Views

DBA_QUEUE_TABLES: All Queue Tables in Databasec..ccccococeeeiiiiieciecciecceececeeeeeeiee 9-3
USER_QUEUE_TABLES: Queue Tables in User Schema..............ccccoevveerieiieieiiineeie e, 9-3
ALL_QUEUE_TABLES: Queue Tables Queue Accessible to the Current User 9-3
DBA_QUEUES: All Queues in Databaseccccoeiiieiiiiiiiiieneneeeeeeee ettt 9-3
USER_QUEUES: Queues In USer SChemac.coeeveiriiinininieinieinicieieteeestees e 9-3
ALL_QUEUES: Queues for Which User Has Any Privilege...........c.ccccccoonniinnnnninn 9-3
DBA_QUEUE_SCHEDULES: All Propagation Schedules................c.ccccoooiniiinniiiiin, 9-3
USER_QUEUE_SCHEDULES: Propagation Schedules in User Schemacccccccoveeiennne. 9-3
QUEUE_PRIVILEGES: Queues for Which User Has Queue Privilege ... 9-3
AQ$Queue_Table_Name: Messages in Queue Table..............ccccccccoviiiiiniiin, 9-4
AQ$Queue_Table_Name_S: Queue SubSCIIberscccooieviiiieiiiiicieeeeeeeecee et 9-6
AQ$Queue_Table_Name_R: Queue Subscribers and Their Rulesc..ccccccvevieeciienieeieeenens 9-7
DBA_QUEUE_SUBSCRIBERS: All Queue Subscribers in Database..............ccccoccveevvieiieeinenenns 9-7
USER_QUEUE_SUBSCRIBERS: Queue Subscribers in User Schema..............cccocovevveevveieneenns 9-7
ALL_QUEUE_SUBSCRIBERS: Subscribers for Queues Where User Has Queue Privileges... 9-7
DBA_TRANSFORMATIONS: All Transformations............cccccoveeviieeieecieenie e eevve e 9-8
DBA_ATTRIBUTE_TRANSFORMATIONS: All Transformation Functionsccccocovuue... 9-8

vii

10

viii

USER_TRANSFORMATIONS: User Transformations............c.cccoueevieeiiiirieciieecieeeeeecre e 9-8

USER_ATTRIBUTE_TRANSFORMATIONS: User Transformation Functions...........c.............. 9-8
DBA_SUBSCR_REGISTRATIONS: All Subscription Registrationsccccccoccoovninnnns 9-8
USER_SUBSCR_REGISTRATIONS: User Subscription Registrations................cccccoviiiinis 9-8
AQSINTERNET_USERS: Oracle Streams AQ Agents Registered for Internet Access.............. 9-8
(G)V$AQ: Number of Messages in Different States in Databaseccccooviiniiiinnnn, 9-9
(G)V$BUFFERED_QUEUES: All Buffered Queues in the Instance...........c..ccccoovvevveeiiereeennennnen. 9-9
(G)V$BUFFERED_SUBSCRIBERS: Subscribers for All Buffered Queues in the Instance 9-9
(G)V$BUFFERED_PUBLISHERS: All Buffered Publishers in the Instancecccceevvvvveennnn. 9-9
(G)VS$PERSISTENT_QUEUES: All Active Persistent Queues in the Instance............................ 9-9
(G)VS$PERSISTENT_SUBSCRIBERS: All Active Subscribers of the Persistent Queues in the
TISTATICE. ...ttt ettt ettt e sttt e e s abe e et e e st e e e bt e e e nabee e e bt e e e bt e eennbeeeeabaeesbaaean 9-9
(G)VS$PERSISTENT_PUBLISHERS: All Active Publishers of the Persistent Queues in the
4T3 3 U TR 9-9
(G)V$PROPAGATION_SENDER: Buffer Queue Propagation Schedules on the Sending
(SOUTCE) SIAE......ccuiiiieiieiieieeeeete ettt ettt e et e e st e be s st esaessaesbeesaesseessesseessasseessanseessesseessesseessensees 9-10
(G)VSPROPAGATION_RECEIVER: Buffer Queue Propagation Schedules on the Receiving
(DesStination) SIAecc.ocviiiiiiieiiciieeeec ettt ettt e e b e be e b e steeabesreenteereesseereenaeereas 9-10
(G)V$SUBSCR_REGISTRATION_STATS: Diagnosability of Notifications.............cccccoccueec. 9-10
VSMETRICGROUP: Information about the Metric Group...........ccceeeveveneeneeneencenceneennenes 9-10
(G)V$STREAMSMETRIC: Streams Metrics for the Most Recent Interval...........c...oocvveennenn. 9-10
(G)V$STREAMSMETRIC_HISTORY: Streams Metrics Over Past Hourccoeeevveveevveennen.. 9-11
(G)VSQUEUEMETRIC: Queue Metrics for the Most Recent Interval...........c.ccccvvverineennen. 9-11
(G)VSQUEUEMETRIC_HISTORY: Queue Metrics Over Past Hourcccccooeevveveieeeennnen. 9-11
DBA_HIST_STREAMSMETRIC: Streams Metric History...........ccccoeiiniiinii 9-11
DBA_HIST_QUEUEMETRIC: Queue Metric Historycccoviiiiininiiiiiice, 9-12
MGW_GATEWAY: Configuration and Status Informationccccocociniiinniinnnne. 9-13
MGW_AGENT_OPTIONS: Supplemental Options and Properties...........ccoccevueeveineenecnnnne. 9-14
MGW_LINKS: Names and Types of Messaging System Linkscccccccovinniinnnnn 9-14
MGW_MQSERIES_LINKS: WebSphere MQ Messaging System Linkscccccoevvnnnn 9-15
MGW_TIBRV_LINKS: TIB/Rendezvous Messaging System Links.............cc.ccccccceniinnni. 9-15
MGW_FOREIGN_QUEUES: Foreign Queues................cccccouniriiiininiiiiiiiicccceeeecnens 9-16
MGW_JOBS: Messaging Gateway Propagation Jobsccccccoeivninnnnnni 9-16
MGW_SUBSCRIBERS: Information for SUDSCIIDEISc..oovviiiieiiiiiiieeieeeeeeeeeeeeeeeeee e 9-18
MGW_SCHEDULES: Information about Schedulescoccuevevviiiiiiiiiieeeeeeee e 9-19

Oracle Streams AQ Operations Using PL/SQL

USING SeCULe QUEUEScooviiiiiiiiicie s 10-2
ENnqueting MeSSAZES ..ot 10-2
Enqueuing an Array of MeSSQESccccoceuiiiiiiiiiiiiiiiiiiiiicc e 10-11
Listening to One or More QUEUES..............ccoiiiiiiiiiniiiiic s serenes 10-12
Dequeuing MeSSages.ccocviiiiiiiiiiiiiiiiiiic s s 10-13
Dequeuing an Array of MeSSaZeSsccoceuiiiiiiiiiiiiiiiiiiic e 10-20
Registering for Notification ... 10-22
Unregistering for Notification ... 10-23
Posting for Subscriber Notification ... 10-23
Adding an Agent to the LDAP Server ..o 10-24
Removing an Agent from the LDAP Server..........ccccooiiiiiiiiiiiiiiicccccccceeeennas 10-25

Part IV Using Oracle JMS and Oracle Streams AQ

11 Introducing Oracle JMS

General Features of JMS and Oracle JMS ..ot 11-1
JMS ConnNection and SESSIONcecerveieieieieieirirtisestessessesessessesaeassessessassessessessessessessesassenns 11-1
ConnectionFactory ObJects.........ooiiiiiiiii e 11-2

Using AQjmsFactory to Obtain ConnectionFactory Objects..........ccccccevviviiinnninninnnne 11-2

Using JNDI to Look Up ConnectionFactory Objectsccococeucueeccueieeicieeeiieeeenes 11-2

JIMIS CONMECHION ...ttt ettt bbbttt bttt et ettt sbe et e b e 11-3

JIVIS SESSION ...ttt sttt ettt ettt ettt et sb et b et e s bt et e bt et e bt et e bt et saeenbenbean 11-5

Y 2 D] =Y T) o SRS 11-6
Using a JMS Session to Obtain Destination Objects............cccoveiiiiiiiireiiiiiecc 11-6

Using JNDI to Look Up Destination ObjJectsccccooiiieieiiiciciiiiiceecce i 11-7

JMS Destination MethodsSc.ccveiiieiriiiniiceeee et a e sse s s e 11-7
System-Level Access Control in JMS..........cccoooiiiiiiiiiic 11-7
Destination-Level Access Control in JIMS......cc.coiiiiiirieieieet et 11-8
Retention and Message History in JIMScccccciiiiiiiiiiiccerecrrereeeee s 11-8
Supporting Oracle Real Application Clusters in JMS.........ccccccocoviviiniiniiiiii, 11-8
Supporting Statistics Views in JMS ... 11-9
Structured Payload/Message Types in JMSccccccooiiiiiiininiiin 11-9
JMS Message Headers ...t 11-9
JMS Message Properties ..ot 11-10
JMS MeSSage BOTIESovviiiiiiiieccc e 11-12
SHEAMMESSAZEcecvrviiiicie ittt 11-12
BYteSIMESSAZE.......cooviiiiiii s 11-12
MAPMESSAZE ...t 11-13
TEXEMESSAZE ...t 11-13
ODJECtMESSAZE ...ttt et 11-13
AEMESSAZE ...ttt 11-13

Using Message Properties with Different Message Types.........cccooceveviiinieiiicciciiciee, 11-14
Buffered Messaging with Oracle JMS ..o 11-15
JMS Point-to-Point Model FEatures..........ccccvviiiieieriieieieeereeeeee ettt 11-16
JMS Publish/Subscribe Model FEatures............c.cocoverieiiiriiniiieininineniestesee et 11-17
JMS Publish /SUbSCIIDE OVEIVIEWc.coouieiiiieiectieeiecteeeeete ettt ettt et re e re e eaeeneereennas 11-18
DUTableSUDSCIIDETcieiiiici s 11-18
ReMOtESUDSCIIDETcoovviiiiiiiciic e 11-19
TOPICPUDLISIET ... 11-19
ReCIPIENT LAStS....viuiiiiiiiiiiciciciiiccc e 11-19
TOPICRECEIVET ..ooveiiitt et 11-19
TOPICBIOWSET ...t 11-20
Setting Up JMS Publish/Subscribe Operations...........cccccocueuvucueieieerininieienrreeesseeeeseeeseenes 11-20
JMS MessageProducer FEatures ..o 11-21
Priority and Ordering of MeSSages ... 11-21
Specifying a Message DELaycccoviiirnininir e 11-22
Specifying a Message EXPiration ... 11-22
MeSSaE GIOUPINE ...voveviiiiiiiniiieicicc et 11-22

12

JMS Message Consumer Features............cccoooiiiiiniiiiiiiiiis 11-22

Receiving MESSAZEScccueiiiiiiiiiiiieieiietc s 11-23
Message Navigation in ReCeivecocviiiiiiiiiiiiiiies 11-23
Browsing MeSSages.........cccceueiiiiiiiiiiiiiii s 11-24
RemOve NO Data ...t 11-24
Retry with Delay INterval.........ccccooiiiiiiirrre e 11-24
Asynchronously Receiving Messages Using MessageListenerc.cocooceviinieiiincnnnn. 11-25
EXCeption QUEUES.cooviiiiiiiiiiicct e 11-25
JMS Propagation............ccoouiiiiiiiiiiiiiic e 11-26
ReMOtESUDSCIIDET.......cocviiiiiiiiii 11-26
Scheduling Propagation ... 11-26
Enhanced Propagation Scheduling Capabilitiescccccovrrrininnnnnrrcreecaes 11-27
Exception Handling During Propagation............cccoeiiiieiiiiiiiccc 11-28
Message Transformation with JMS AQ ... 11-29
J2EE COMPIIATICE ...ttt ettt ne e sn s 11-29

Oracle JMS Basic Operations

EXECUTE Privilege on DBMS_AQINccccoooiiiiiiiiiiiiii s 12-1
Registering a ConnectionFactory ... 12-1
Registering Through the Database Using JDBC Connection Parameters.............cccccceueunenne. 12-1
Registering Through the Database Using a JDBC URL........cccccccccoeuviiiinnninnnnrrcecenes 12-2
Registering Through LDAP Using JDBC Connection Parameterscccooevvireieininnnen, 12-3
Registering Through LDAP Using a JDBC URLcccccooooiiiiiiiii e, 12-4
Unregistering a Queue/Topic ConnectionFactory..............ccococooivnine, 12-5
Unregistering Through the Database............ccoooo 12-5
Unregistering Through LDAP...........cooooiii 12-5
Getting a QueueConnectionFactory or TopicConnectionFactoryccccocoovivnninnnn 12-6
Getting a QueueConnectionFactory with JDBC URL.......cccccoooiiiiiiiiiiiicc, 12-6
Getting a QueueConnectionFactory with JDBC Connection Parameters..............ccccoeueunnne 12-7
Getting a TopicConnectionFactory with JDBC URL.......cccccccocoiiiiiiiiiiineccciceceeeeeees 12-7
Getting a TopicConnectionFactory with JDBC Connection Parameters...........ccccceviurunnnne. 12-8
Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP 12-8
Getting a Queue or Topic in LDAP ... 12-9
Creating a Queue Table ... 12-9
Getting a Queue Table............c.ccoooiii e 12-10
Creating @ QUEUE ..o 12-10
Creating a Point-to-Point QUEeUEe..........c.cocviiiiiiiiii 12-10
Creating a Publish/Subscribe TOPICcccovieiiiiiieiiicieeccc e 12-11
Granting and Revoking Privilegesccccooiiiiiiiiiice 12-12
Granting Oracle Streams AQ System Privileges ... 12-13
Revoking Oracle Streams AQ System Privilegescccooovvoiiniiiiciiiiicce, 12-13
Granting Publish/Subscribe Topic Privilegesc.cccccceivriiicrniirirccnreeee e 12-14
Revoking Publish/Subscribe Topic Privileges ... 12-14
Granting Point-to-Point Queue Privileges ... 12-14
Revoking Point-to-Point Queue Privileges ... 12-15
Managing Destinations..............coccooviiiiiiiiiiii e 12-16
Starting a Destination ... 12-16

13

14

Stopping a Destination ... 12-16

Altering a Destinationooiiioiiiii 12-17

Dropping a Destination...........ccoiiiiiiiiiiiiii e 12-17
Propagation Schedules ... 12-17

Scheduling a Propagation ... 12-18

Enabling a Propagation Schedule............ccccooiiiiiiiiiniiiine e 12-18

Altering a Propagation Schedule.............ccoooiiii e, 12-19

Disabling a Propagation Schedule..............c.ccoiiiiii 12-19

Unscheduling a Propagation ... nenenes 12-20

Oracle JMS Point-to-Point
Creating a Connection with Username/Passwordcccoviiiinniiniii, 13-1
Creating a Connection with Default ConnectionFactory Parameters..............cccccoeviiininnnnnns 13-2
Creating a QueueConnection with Username/Passwordcccoeiiiniiiinniinnnccne. 13-2
Creating a QueueConnection with an Open JDBC Connectioncccocoeiiiiniiiinininnnnne, 13-2
Creating a QueueConnection with Default ConnectionFactory Parameters 13-3
Creating a QueueConnection with an Open OracleOCIConnectionPoolc.cccceoee. 13-3
Creating @ SeSSIONccccoiiiiiiiiiiii s 13-3
Creating a QUeUeSeSSIiON.............coiiiiiiiiiii e 13-4
Creating a QUeUESeNder ..o 13-4
Sending Messages Using a QueueSender with Default Send Optionsccccvvinnnne 13-4
Sending Messages Using a QueueSender by Specifying Send Optionscccceeveenenninns 13-5
Creating a QueueBrowser for Standard JMS Type Messagescccoceviiuniiiiiiniciiicennns 13-6
Creating a QueueBrowser for Standard JMS Type Messages, Locking Messages................... 13-7
Creating a QueueBrowser for Oracle Object Type Messages............c.cccooeruemeieriieieieeiieiinenennns 13-7
Creating a QueueBrowser for Oracle Object Type Messages, Locking Messages 13-8
Creating a QueueReceiver for Standard JMS Type Messages............ccccccovrvviiiiinniniininninennnn, 13-9
Creating a QueueReceiver for Oracle Object Type Messagesc.cccoceveenieiiiiiiieeiiiiinenennns 13-9
Oracle JMS Publish/Subscribe

Creating a Connection with Username/Password ..o, 14-2
Creating a Connection with Default ConnectionFactory Parameters.................cccccccceciiininnes 14-2
Creating a TopicConnection with Username/Passwordccccovviiiniiiniiinninne, 14-2
Creating a TopicConnection with Open JDBC Connection.............cccoeciiniiiiinncinnnncnne, 14-3
Creating a TopicConnection with an Open OracleOCIConnectionPool..................c.cccccccenees 14-3
Creating @ SeSSIONccccciiiiiiiiiii s 14-3
Creating a TOPICSESSION ..o s 14-4
Creating a TopicPublisherccooooiiiiiiiii e 14-4
Publishing Messages with Minimal Specification...............cccccococoinii, 14-4
Publishing Messages Specifying TOPiccccoooviiiiiiiiiiiiiiiicc e 14-5
Publishing Messages Specifying Delivery Mode, Priority and TimeToLive 14-6
Publishing Messages Specifying a Recipient List..............cccconiin 14-7
Creating a DurableSubscriber for a JMS Topic Without Selector ..., 14-8
Creating a DurableSubscriber for a JMS Topic With Selectorcccccccoeiiiiiiiiiinn, 14-9
Creating a DurableSubscriber for an Oracle Object Type Topic Without Selector................ 14-10
Creating a DurableSubscriber for an Oracle Object Type Topic With Selector...................... 14-11

xi

15

Xii

Specifying Transformations for Topic Subscribers ... 14-12

Creating a Remote Subscriber for JMS Messages ..o 14-13
Creating a Remote Subscriber for Oracle Object Type Messagescccccovviinniiiiicnnnas 14-14
Specifying Transformations for Remote Subscriberscccooiiiii, 14-15
Unsubscribing a Durable Subscription for a Local Subscriber ..o, 14-16
Unsubscribing a Durable Subscription for a Remote Subscriber..............ccccoiiiinnnnn 14-17
Creating a TopicReceiver for a Topic of Standard JMS Type Messagesccccccvuvuiinnnnnns 14-17
Creating a TopicReceiver for a Topic of Oracle Object Type Messagescccccooeuiuiuiunnnnne. 14-18
Creating a TopicBrowser for Standard JMS Messagescccccovrrinniiiinniniiiiiicennnes 14-19
Creating a TopicBrowser for Standard JMS Messages, Locking Messages............cccccoceueuie. 14-20
Creating a TopicBrowser for Oracle Object Type Messages............cccccoeuiiimiiiiiiiciciiiininnn. 14-21
Creating a TopicBrowser for Oracle Object Type Messages, Locking Messages 14-21
Browsing Messages Using a TOpicBrowser ..o 14-22

Oracle JMS Shared Interfaces

Oracle Streams AQ JMS Operational Interface: Shared Interfaces...............ccccccooviiinnnnn 15-1
Starting a JMS CONNECHONouiuiviiiiiiiiiiiiiictctcttt s 15-2
Getting a JMS Connection ... 15-2
Committing All Operations in @ SESSIONcccueviiieiiciiiicicie e, 15-2
Rolling Back All Operations in @ SeSSION.......cccevieieiiiiicieiecc e 15-2
Getting the JDBC Connection from a SeSSIONccccceucueuimiueiririiicinirieieecererecereereeeecse s 15-2
Getting the OracleOCIConnectionPool from a JMS Connectionccceeeveiicieieicenuennn. 15-2
Creating a ByteSMesSage.coviiiuiiiiviiiiiiiiiciii e 15-3
Creating a MapMeSSae..........ccvuiiiiiiiiiiiiiic s 15-3
Creating a StreamMeSSage..........cocucueiiiuiiiiiiciie et 15-3
Creating an ObjJeCtMESSAZEccocueieiiruiieiiiicie et 15-3
Creating a TeXtIMESSAZEccvvveviuiiiiiiiiiiiiicc s 15-3
Creating a JMS MeSSagecceuiiuiuriiicicie ettt 15-4
Creating an AdtMESSAZEec.cuoirurieiiieie et 15-4
Setting JMS Correlation Identifier ... 15-4

Specifying JMS Message Properties.............ccccooviiiiiiiiiiiiiiiiiiccccicisce e 15-4
Setting a Boolean Message Property ...t 15-5
Setting a String Message Property ... 15-5
Setting an Integer Message Property ... 15-5
Setting a Double Message Property.........c.cccooreiiiiiieiiinicciccee e 15-6
Setting a Float Message PrOPeTtY.........ccoccciiiiiiiiiiiceceieeee e enenes 15-6
Setting a Byte Message Property ... 15-6
Setting a Long Message Property ... 15-6
Setting a Short Message PrOPErtycccccveiiiiririiiiiiirrececreee e 15-7
Setting an Object Message Property ..ot 15-7

Setting Default TimeToLive for All Messages Sent by a MessageProducer 15-7

Setting Default Priority for All Messages Sent by a MessageProducer..............ccccccoevvininnnne. 15-8

Creating an AQJMS ANtcooiiiiiiiii e 15-8

Receiving a Message Synchronously ... 15-8
Using a Message Consumer by Specifying Timeout ... 15-8
Using a Message Consumer Without Waiting..........cccooviiiiiiiniiiiiie 15-10
Receiving Messages from a Destination Using a Transformation...........ccccceeeviiiinnnnes 15-10

16

Specifying the Navigation Mode for Receiving Messages.............cccccovuiuriiiiinieiniiinennns 15-11

Receiving a Message Asynchronously ... 15-12
Specifying a Message Listener at the Message CONSUMETcovvrireeenenininineninenirceeneenens 15-12
Specifying a Message Listener at the Session.............ccoeiiiiicici 15-13

Getting Message ID ... 15-13
Getting the Correlation Identifier ... 15-13
Getting the Message Identifier ... 15-13

Getting JMS Message Properties ... 15-13
Getting a Boolean Message Property ... 15-14
Getting a String Message Property ... 15-14
Getting an Integer Message Property ... 15-14
Getting a Double Message Property ...t 15-14
Getting a Float Message Property ... 15-15
Getting a Byte Message Property.........coci 15-15
Getting a Long Message Property ... 15-15
Getting a Short Message Property ... 15-15
Getting an Object Message Property ... 15-15

Closing and Shutting DOWIN ... 15-16
Closing a MessagePTOAUCETcc.cuiiieiiiiicieieiicie s 15-16
Closing a Message CONSUIMETc.curueieiiiurieieiccie et sae e ssa et 15-16
Stopping a JMS ConNection ... 15-16
ClosSing @ JMS SESSIONcvurviiiiiieieiiitcie ettt 15-16
Closing a JMS CONNECHON «....c.cviiiiciiiicieie et 15-16

TroubleShOOting............ccccoviiiiiiiiii s 15-17
Getting a JMS EXTOr COdeuviieiiiiiiici 15-17
Getting a JMS Error NUMDEToouoiiiii 15-17
Getting an Exception Linked to a JMS EXCEPHION......ccccccuiuiiiiciiiiiciiiiiiirrccccceeecae 15-17
Printing the Stack Trace for a JMS EXCEPIONcccoviueiiriieiicicice 15-17
Setting an Exception LiStener ..o 15-17
Getting an Exception LiStener ... 15-18

Oracle JMS Types Examples

How to Run the Oracle Streams AQ JMS Type Examplescccccccrvviiiiniiiiinniiicnen, 16-1
Setting Up the EXamples ... 16-1

JMS BytesMessage Examples............ccoooiiiiiiiiiiiiiiicc e 16-5

JMS StreamMessage EXamples...........ccccoovviiiiiiiiiiiii e 16-10

JMS MapMessage EXamples ... 16-15

More Oracle Streams AQ JMS EXaMPILescccccovviiiiiiiiiiiiiiiiciccccccccceeeeennes 16-21

PartV Using Messaging Gateway

17

Introducing Oracle Messaging Gateway
Introducing Oracle Messaging GateWay ..o 17-1
Oracle Messaging Gateway Features...............ccccocooviiiiiiiiiiii 17-1
Oracle Messaging Gateway Architecture ... 17-3

Administration Package DBMS_MGWADM..........ccccccoviniiiinnniiiincicinnsessess 17-3

xiii

18

19

Xiv

Oracle Messaging Gateway AGentcccouiuriiiiiiieiiiicce 17-4

Oracle Database...........c.coiiiiiiiiiiiii s 17-4
Non-Oracle Messaging SYStEMS ..ot 17-4
Propagation Processing OVervieW ... s 17-4
Oracle Streams AQ Buffered Messages and Messaging Gatewayccccocoeiiiiiiiiinas 17-5

Getting Started with Oracle Messaging Gateway

Oracle Messaging Gateway Prerequisites..............cccccooeiiiiiiiiiiiiiiccce 18-1
Loading and Setting Up Oracle Messaging Gatewayccccocovivininiiiiiniiinniccin 18-1
Loading Database Objects into the Database..........cccouoiiiiiiiiciiieiice, 18-2
Modifying listener.ora for the External Procedurec.ccoooeiiiiiiiiiiiiiiccc, 18-2
Modifying tnsnames.ora for the External Procedure............c.ccccccceiiiiiiinniiccicicenee 18-3
Setting Up a mgw.ora Initialization File ..., 18-3
Creating an Oracle Messaging Gateway Administration Userc.cccooeeeiniiicieieicccncnnn. 18-4
Creating an Oracle Messaging Gateway Agent USeTccccceeeeeeicicnicceeeeeeeeeeeenes 18-4
Configuring Oracle Messaging Gateway Connection Information............ccccooieiiininnnnnn. 18-5
Configuring Oracle Messaging Gateway in a RAC Environment............cccoooevoiiiiinininnnnn. 18-5
Configuring Connection Information for the MGW Agent Connections........................ 18-5

Setting the RAC Instance for the Messaging Gateway Agent..........c.cocoooeriiiiiiieiiinne, 18-6

Setting Up Non-Oracle Messaging Systemsc.cocooiiiiiiiiiiiiiiiiccceeceeenas 18-6
Setting Up for TIB/ReNAEZVOUScceuimimimimiiiiiiiiiiiciciccieieieeeeteeie et senenens 18-7
Setting Up for WebSphere MQ Base Java or JMS.........cccccoceviiiiiiiiiiii 18-7
Verifying the Oracle Messaging Gateway Setupccocovvvviiniiniiiniiis 18-8
Unloading Oracle Messaging GatewWayccccocooeiiiiiiininiiiiiccs 18-8
Understanding the mgw.ora Initialization Filecccococoooiiiii 18-9
mgw.ora Initialization Parametersc.c.coooiiiiiiiiic 18-9
mgw.ora Environment Variables ... 18-10
MEW.0Ta Java PIOPETtiescovoviiiiiiieicc e 18-11
mgw.ora Comment LINeS.........cccoeiiiiiiiiiiiiiii 18-12

Working with Oracle Messaging Gateway

Configuring the Oracle Messaging Gateway Agent ..o 19-1
Creating a Messaging Gateway Agent..........ccvviiiiiiininiiiiiiiiices 19-2
Removing a Messaging Gateway Agent..........c.ccoooiueiiiiiiiiiiciccc 19-2
Database CONNECHIONc.eueuiiririeiiiiicieetete ettt es 19-2
ReSOUICE LIMILS ...ovvviieiiice s 19-3

Starting and Shutting Down the Oracle Messaging Gateway Agent............c.cccccoviriiininnnns 19-3
Starting the Oracle Messaging Gateway Agent.........c.ccoovveiiiiinieiniinecc e, 19-3
Shutting Down the Oracle Messaging Gateway Agent.........ccccccevuvurerirererreneneninnerseeeeereenes 19-3
Oracle Messaging Gateway Agent Scheduler JOb ..., 19-4
Running the Oracle Messaging Gateway Agent on RAC ..., 19-5

Configuring Messaging System Links.............cccovviiiiiiic 19-5
Creating a WebSphere MQ Base Java LinKccoooouoiiiiiiiiii 19-6
Creating a WebSphere MQ JMS LinK........cccooviiiiiiiiinieiiicce e 19-7
Creating a WebSphere MQ Link t0 Use SSL........cccccociiiiiiiiiiiccceeceeeeeeeeeeeeeeeeees 19-9
Creating a TIB/Rendezvous LinK...........ccccoiiiiiiiniiiiiiis 19-11
Altering a Messaging System LinkK...........cccccooeiiininiiiicincsses 19-11

20

Removing a Messaging System Linkcccoooriiiiiiii 19-12

Views for Messaging System Links..........coccooiiriiiiic 19-12
Configuring Non-Oracle Messaging System Queues...............ccoviiininiiiinniiiiincccns 19-12
Registering a Non-Oracle QUEUE............cccoiiiiiiiiiiic s 19-13
Registering a WebSphere MQ Base Java Queue............ccccooviiiiioiiiniceiccec 19-13
Registering a WebSphere MQ JMS Queue 0r TOPICccviiiiiiiiciiiicccccieeenenes 19-13
Registering a TIB/Rendezvous Subject ..o 19-14
Unregistering a Non-Oracle QUeUE............c.ccouoiiririiiiiciec e 19-14
View for Registered Non-Oracle QUEUEScccoviiiiiiiiiiiicccicccceeeceeeee s 19-14
Configuring Oracle Messaging Gateway Propagation Jobs...........ccccooviiiiiiiiiiiinn, 19-14
Propagation Job OVerVIEW ... 19-15
Creating an Oracle Messaging Gateway Propagation Jobccceciiiiiiiiiiiiiiccnnes 19-16
Enabling and Disabling a Propagation Job ... 19-16
Resetting a Propagation JOb........ccoiiiiiiiii 19-17
Altering a Propagation JOD ... 19-17
Removing a Propagation JOb ...t 19-17
Propagation Jobs, Subscribers, and Schedules.................ccccooiiiiiiiii, 19-18
Propagation Job, Subscriber, Schedule Interface Interoperabilitycccccceeuevvvvrnnnne. 19-19
Propagation Job, Subscriber, Schedule VIEWSc.ccccooriiiiiiiiiiiiiii 19-20
Single Consumer Queue As Propagation SOUICeccrueieiiurieieiiiciciec 19-20
Configuration Properties ... 19-20
WebSphere MQ System Properties ... 19-20
TIB/Rendezvous System Properties ... 19-22
Optional Link Configuration Properties.........cccccccoeveiierrninnnrrrrrrerssseeceee s 19-23
Optional Foreign Queue Configuration Propertiesc.ccooovevviiiiinininiiicce 19-25
Optional Job Configuration Properties..........ccccoeeiiicciniiccieececcecc 19-26
Oracle Messaging Gateway Message Conversion

Converting Oracle Messaging Gateway Non-JMS Messagesccccceveiiriiiiiiiciieninnns 20-1
Overview of the Non-JMS Message Conversion Process...........cccccoccueeueueucueueucieereueuneenenenenens 20-1
Oracle Messaging Gateway Canonical Types.........ccccceuoiiriiieiiiicicicicc e 20-2
Message Header CONVEISION.........cccuviiueiiiiiicieieiccee e 20-2
Handling Arbitrary Payload Types Using Message Transformations............cccccecevuvuvueueuneee. 20-2
Handling Logical Change Records............ccorriiiiiiieiiiiiici e 20-4
Message Conversion for WebSphere MQccccooiiviiiiiiiiiiininiiiiciiscnsess 20-6
WebSphere MQ Message Header Mappings.........ccccceueuecmeueieieieieeinieeeneieeieeieneieeeeeeeneneneeees 20-6
WebSphere MQ Outbound Propagation ... 20-9
WebSphere MQ Inbound Propagation ..., 20-9
Message Conversion for TIB/Rendezvousccccovviiiiniiiiiiniiiiicces 20-10
AQ Message Property Mapping for TIB/Rendezvous..........cccouieueieiiiiciciiiciciecie e, 20-12
TIB/Rendezvous Outbound Propagation...........cccceeeiieiiiciiiiceeceee 20-12
TIB/Rendezvous Inbound Propagation ... 20-13
JIMIS IMIESSAGES ...ttt 20-14
JMS Outbound Propagationccccccceiiiiiiiniiiiiiiiiiiicrccsss e 20-15
JMS Inbound Propagationc.cccccccceivviriiniririiiireeeeeerreee e 20-15

XV

21

Monitoring Oracle Messaging Gateway

Oracle Messaging Gateway Log Files ... 21-1
Sample Oracle Messaging Gateway Log File.........c.cccccocviiiiiiiiiiiniiierececeeeeeeeeeaes 21-1
Interpreting Exception Messages in an Oracle Messaging Gateway Log File........................ 21-3

Monitoring the Oracle Messaging Gateway Agent Status.............cccocovvviniiiiininiinn 21-3
MGW_GATEWAY VIEW ..ottt 21-3
Oracle Messaging Gateway Irrecoverable Error Messages..........cccccocoeeueiincieiciicicienecen, 21-4
Other Oracle Messaging Gateway Error Conditions.........c.cooeeerieioiiciciiiicciecceee, 21-7

Monitoring Oracle Messaging Gateway Propagation..............cccccoeiiiininiiiniiinniice, 21-8

Oracle Messaging Gateway Agent Error Messages ..o 21-9

Part VI Using Oracle Streams with Oracle Streams AQ

22 Using ANYDATA Queues for User Messages
ANYDATA Queues and User MeSSAZESccvuiuiuiiniiiiiiiiniiiiniec e 22-1
ANYDATA Wrapper for User Messages Payloadsccccoorieieiiiiiiiiiiecee, 22-2
Programmatic Interfaces for Enqueue and Dequeue of User Messages..........cccccccueueucnenenne 22-2
Enqueuing User Messages Using PL/SQLcccooooiiiiiiiin i 22-2
Enqueuing User Messages Using OCILor JMS ... 22-3
Dequeuing User Messages Using PL/SQLccccccoiiiiiiiiiiiicceceecceeeeeeeeeenes 22-4
Dequeuing User Messages Using OCI or JMS..........ccccoiiiiiiiiiiniien i 22-4
Message Propagation and ANYDATA QUEUESccccevvviiiiiiiiiiiiiiiniiiniinees 22-5
Enqueuing User Messages in ANYDATA QUeUESccccoiiiiiiiiiininiiiinicccens 22-6
Dequeuing User Messages from ANYDATA QUEUES...........ccccoeviviiiiiiiiiiiiiinininieccs 22-8
Propagating User Messages from ANYDATA Queues to Typed Queues...............cccccceunnene. 22-9
Propagating User-Enqueued LCRs from ANYDATA Queues to Typed Queues.................... 22-12
23 Oracle Streams Messaging Example
Overview of Messaging Example............cccooiiiiinii 23-1
Setting Up Users and Creating an ANYDATA Queue.............cccooiiiiiiiiiiniiieeeeeneennes 23-2
Creating Enqueue Procedures..............ccocooiiiiiiiiiniiiiicc s 23-4
Configuring an Apply Process............ccooiiiiiiiiiiniiiii s 23-6
Configuring Explicit Dequeue.............ccoooiiiiiiiiiii e 23-10
Enqueting MeSSAZEScccovuiiiiiiiiiiiiiiice e 23-13
Dequeuing Messages Explicitly and Querying for Applied Messages..............cccccevururnnnns 23-15
Enqueuing and Dequeuing Messages Using JMS.............cccoviiiiiiiicccnns 23-16
A Nonpersistent Queues
Creating Nonpersistent QUEeUEScccuiiiiiiiiiiiiiii s A-1
Managing Nonpersistent QUeUesccooeiiiiiiiiiiiii s A-2
Compatibility of Nonpersistent Queuesccoviiiniiiiiinini A-2
Nonpersistent Queue NOtIfiCationccccoevirieiiiiinieineinceeeeeeee e A-2
Restrictions on Nonpersistent Queues ... A-2
Index

XVi

xvii

List of Examples

xviii

[R
A OWON = =

_L_L_L_L_L_L_L_L_Lclom\lo)m

ooooooooooooooooooooclzooooooooooooooooooo-h
ONOO G P~,WN-—=O

Creating Objects Containing VARRAYScccooiiiiiiiiicc e 4-7
Setting Up AQ Administrative USETSccccoeueiiiiriiiniiiiiecce s 8-5
Setting Up AQ Administrative Example Typescooooeeieiiiiiioiiiicc e 8-6
Creating a Queue Table for Messages of Object Type.........ccccoorueieiiiiiiiiiiiciiccee 8-6
Creating a Queue Table for Messages of RAW Typecccccovvvvnniinnnninne, 8-6
Creating a Queue Table for Messages of LOB Type.......ccccovvviniiiinniniiine, 8-6
Creating a Queue Table for Messages of XMLTypeccccoovriiiiiiiiciiiiicecce 8-6
Creating a Queue Table for Grouped Messages............ccccoeueueirrieieiiicicieiecce e 8-7
Creating Queue Tables for Prioritized Messages and Multiple Consumers...................... 8-7
Creating a Queue Table with Commit-Time Orderingccccooooiieiniiiiiiiiceee 8-7
Creating an 8.1-Compatible Queue Table for Multiple Consumers.............cccococevviriririnnnn. 8-7
Creating a Queue Table in a Specified Tablespacecccccccevuiiiiiiiiininiiiiiiiiis 8-8
Creating a Queue Table with Freelists or Freelist Groups..........cccoocoeueieiieiiiiiciciiccne 8-8
Altering a Queue Table by Changing the Primary and Secondary Instances.................... 8-9
Altering a Queue Table by Changing the Commentccoooii 8-9
Dropping a Queue Table...........ccoooiiii e 8-9
Dropping a Queue Table with force Option ... 8-9
Purging All Messages in a Queue Table..........ccccooiiiii 8-10
Purging All Messages in a Named QUeUEccouoiiiiiiiiiciccc e 8-10
Purging All PROCESSED Messages in a Named Queue...........c.ccooieiiiiiiiiiiicicae, 8-11
Purging All Messages in a Named Queue and for a Named Consumer.............c........... 8-11
Purging All Messages from a Named Sender...........c.ccooooruiiiiiiiiiniiccc 8-11
Upgrading a Queue Table from 8.1-Compatible to 10.0-Compatibleccccceueunnenn. 8-12
Creating a Queue for Messages of Object TYpecccoevvviiiiniiiniiiici 8-13
Creating a Queue for Messages of RAW Type.......cccoooiiiiiiiiiiiiiicc e 8-14
Creating a Queue for Messages of LOB Type.......ccccooiiiiiiiiiiicccci 8-14
Creating a Queue for Grouped MeSSagescccoeueueiiricieiiiiicieiecci i 8-14
Creating a Queue for Prioritized MeSSagesccoceueviiiieiiiiiniciciccci 8-14
Creating a Queue for Prioritized Messages and Multiple Consumers..............cccccuueee. 8-14
Creating a Queue to Demonstrate Propagation ... 8-14
Creating an 8.1-Style Queue for Multiple CONSUMETScovrueieiiiicieieicce i 8-15
Altering a Queue by Changing Retention Time...........ccooooiiiiiiiiic 8-15
Starting a Queue with Both Enqueue and Dequeue Enabledcccccooviviviiiinninnnnn 8-15
Starting a Queue for Dequeue Only ... 8-16
StoppIng @ QUEUE........c.ciiiiiiiiic s 8-16
Dropping a Standard QUEUEcccucieiiiiiiiiiiiiiiiiiccc s 8-16
Creating a Transformation ... 8-17
Granting AQ System Privileges ... 8-18
Revoking AQ System Privileges.........ccccccoeuiiiiiiiiiiiiiiiiiiiiiiiiciciccccs 8-19
Granting Queue Privilege..........ccccoiiiiiiiiiiiiiii s 8-19
Revoking Dequete Privilege...........ccccccciiiiiiiiiiiiiiiicicceeees 8-20
Adding a Subscriber at a Designated Queue at a Dababase Linkcccccccccevivinininnnne. 8-21
Adding a Single Consumer Queue at a Dababase Link as a Subscriber 8-21
Adding a Subscriber with a Rule............cccccooiiiiiiiiii 8-22
Adding a Subscriber and Specifying a Transformationccccoooeveeeiniiieiicneeins 8-22
Propagating from a Multiple-Consumer Queue to a Single Consumer Queue.............. 8-22
Altering a Subscriber Rule...........ccccooooiiiiiiiiiiiiiiicc s 8-22
Removing @ SUDSCIIDET.........c.ccccuiiiiiiiiiiiiiiiiic s 8-23
Scheduling a Propagation to Queues in the Same Database.............ccccceeuviiiiiiirininiinnnne. 8-25
Scheduling a Propagation to Queues in Another Databasecccccceviiiiiiniiniinnnn 8-25
Scheduling Queue-to-Queue Propagationcccoueiviieiniiiinicceeec 8-25
Verifying a QUEUEe TYPe ..o s 8-26
Altering a Propagation Schedule to Queues in the Same Database.............cccccceuviruenee 8-27
Altering a Propagation Schedule to Queues in Another Databaseccccccevuruenennne. 8-27

8-54
8-55
8-56
8-57
8-58
8-59
10-1
10-2
10-3
104
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
10-14
10-15
10-16
10-17
10-18
10-19
10-20
10-21
10-22
121
12-2
12-3
124
12-5
12-6
127
12-8
12-9
12-10
12—-11
1212
12-13
12-14
12-15
12-16
1217
12-18
12-19
12-20
12-21
12-22
12-23
1224
12-25
12-26
12-27

Enabling a Propagation to Queues in the Same Database............cccoooeueeiiriiiinnn, 8-27

Enabling a Propagation to Queues in Another Databasecccccoouoieiiiiiiiiiicen 8-27
Disabling a Propagation to Queues in the Same Database...........c.ccoooeeieiiiieiiiinin 8-28
Disabling a Propagation to Queues in Another Database...............cocooeeiiiiiiiiiincin, 8-28
Unscheduling a Propagation to Queues in the Same Database..........c.c.ccoooeeiiiiiiiinn 8-28
Unscheduling a Propagation to Queues in Another Databasec.cccccooerieiiiirinnnnn. 8-28
Enqueuing a Message, Specifying Queue Name and Payloadccccooooiiieiiiincinnnn, 10-6
Enqueuing a Message, Specifying Priority.......c.ccocooiiiiiiiiiic 10-6
Creating an Enqueue Procedure for LOB Type Messages...........ccococcueueiininieiiiiiniciennn, 10-7
Enqueuing a LOB Type MeSSage.........ccovuiurieieiiiiciiiiccieie it 10-7
Enqueuing Multiple MESSAges.........ccovrueieiiiicieiiiecieieeie i 10-7
Adding Subscribers RED and GREEN ..o 10-8
Enqueuing Multiple Messages to a Multiconsumer Queueoceueieiiicicinincnennnes 10-9
Enqueuing Grouped MeSSagescccoceueiiiieieiniiiiicieecie i 10-9
Enqueuing a Message, Specifying Delay and Expiration ..., 10-10
Enqueuing a Message, Specifying a Transformationcccoeeviiiieieiniicicicicninnn, 10-10
Enqueuing an Array of MeSSages.........ccccceuririniiieicinininiciecie s 10-11
Listening to a Single-Consumer Queue with Zero Timeoutccccccovviiiinn 10-12
Dequeuing Object Type MeSSages..........ccceuiurieieiiiricieiicieeeice s 10-16
Creating a Dequeue Procedure for LOB Type Messages..........cccccooerueininicieiiiininiennes 10-16
Dequeuing LOB Type MeSSages.........c.ccocueuiiurieiniiiiicieiiinicie it 10-17
Dequeuing Grouped MeSSAges...........cceueueiiuiieiiiiiiinieieiccie e 10-17
Dequeuing Messages for RED from a Multiconsumer Queue...........c..ccooeurvruerrnennnnn 10-18
Dequeue in Browse Mode and Remove Specified Messagecoevvviiiriiinininnnnn 10-19
Dequeue in Locked Mode and Remove Specified Message.............cccccovvvvvvnniiinininininnes 10-20
Dequeuing an Array of MeSSageSsccocueuiiuiieiiiiinicieinci s 10-22
Registering for NOtificationscccoveiiiiieiieccc 10-23
Posting Object-Type MeSSages.........ccvvurieiiiiiiiiieiiiiieiiiieiieiiceess s 10-24
Registering Through the Database Using JDBC Connection Parameters 12-2
Registering Through the Database Using a JDBC URL..........cccoooiiiiiiiiiinicicicce, 12-3
Registering Through LDAP Using JDBC Connection Parameterscccccovvinurieinnes 12-3
Registering Through LDAP Using a JDBC URLcccooiioiiiiiiiiicc 12-4
Unregistering Through the Database............ccooooii 12-5
Unregistering Through LDAPcccoooiiiii e 12-6
Getting a QueueConnectionFactory with JDBC URL.........cccooooiiiiiiiiiiiii 12-7
Getting a QueueConnectionFactory with JDBC Connection Parameters........................ 12-7
Getting a TopicConnectionFactory with JDBC URL ..o 12-8
Getting a TopicConnectionFactory with JDBC Connection Parameters 12-8
Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP.................... 12-8
Getting a Queue or Topic in LDAP ..o 12-9
Creating a Queue Table..........cccoi e 12-10
Getting a Quete Table...........ccccoiiiiiiiii 12-10
Creating a Point-to-Point QUEUEcccoucueiiiiiiiii s 12-11
Creating a Publish/Subscribe TOPICccouiiiiiiiiiiiiiiiiiicicicicccc 12-11
Specifying Max Retries and Max Delays in Messages...........cccooevuruniruniicieicnciicieiennnns 12-12
Granting Oracle Streams AQ System Privilegesc.cccooevveiiniiciiiniicine 12-13
Revoking Oracle Streams AQ System Privilegescccocoviviiiniiiiiiiiiiccnes 12-13
Granting Publish/Subscribe Topic Privileges ..o, 12-14
Revoking Publish/Subscribe Topic Privilegescccceveiiiiiiiiiiiiie 12-14
Granting Point-to-Point Queue Privileges ..o 12-15
Revoking Point-to-Point Queue Privileges ... 12-15
Starting @ Destination. ... 12-16
Stopping a Destination..........cccceeeiiiiiiiiiii 12-16
Altering a Destinationccccveiiiiiiiiiiic 12-17
Dropping a Destination...........cooeiiiiiiiiiiceccc e 12-17

Xix

XX

12-28
12-29
12-30
12-31
12-32
131
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
1311
13-12
13-13
13-14
13-15
13-16
13-17
13-18
141
14-2
14-3
14-4
14-5
14-6
14-7
14-8
14-9
14-10
14-11
14-12
14-13
14-14
14-15
14-16
14-17
14-18
14-19
14-20
14-21
14-22
14-23
14-24
14-25
14-26
14-27
14-28
14-29
14-30
151
15-2

Scheduling a Propagation...........cccceveiiiiiiiniiiniiniiicc s 12-18

Enabling a Propagation Schedule............cccccoooiiiiiiiiiii 12-18
Altering a Propagation Schedule.............cccooviiiiiii 12-19
Disabling a Propagation Schedule.............cccccoeiiiiiiiniiiiiiicc 12-19
Unscheduling a Propagation..........c.coerueiiiciciciiicici s 12-20
Creating a QueueConnection with Username/Password...........ccccocevvvviiiiiiiniinnnnnn, 13-2
Creating a QueueConnection with an Open JDBC Connection..........c.ccceceeveveveviininiennen. 13-3
Creating a QueueConnection from a Java Procedure Inside Databasecccccuenc. 13-3
Creating a QueueConnection with an Open OracleOCIConnectionPool........................ 13-3
Creating a Transactional QUeUESESSIONcccceveviiiiiiiiiiiiiiicic s 13-4
Creating a Sender to Send Messages to Any QuUeue...........cccccevvevviiieeiiiiiiin 13-5
Creating a Sender to Send Messages to a Specific Queue...........ccccoviiiiiiiieiiiennnn, 13-5
Sending Messages Using a QueueSender by Specifying Send Options 1 13-6
Sending Messages Using a QueueSender by Specifying Send Options 2 13-6
Creating a QueueBrowser Without a Selector ... 13-6
Creating a QueueBrowser With a Specified Selector............cccccoveviiiiiiiiiiiiii 13-6
Creating a QueueBrowser Without a Selector, Locking Messages............cccoeuevviruruennnes 13-7
Creating a QueueBrowser With a Specified Selector, Locking Messages 13-7
Creating a QueueBrowser for ADTMESSaGES..........ccovuiuiriiriereieieiiieieieeeeeeeeeee s 13-8
Creating a QueueBrowser for AdtMessages, Locking Messagesccccoeuevrirucuennnes 13-9
Creating a QueueReceiver Without a Selectorcccovvviiiiiiiiii 13-9
Creating a QueueReceiver With a Specified Selector ..o, 13-9
Creating a QueueReceiver for AdtMessage Messages..........cccocvueueicniicieiciciiceicenans 13-10
Creating a TopicConnection with Username/Password..........cccccvviiiiiiicriniennnen, 14-2
Creating a TopicConnection with Open JDBC Connection............ccoceueveiirieieiinicnennnes 14-3
Creating a TopicConnection with New JDBC Connection.............ccoceviiiieieiiiiicicienne, 14-3
Creating a TopicConnection with Open OracleOCIConnectionPool...........c.ccccevvveunennn. 14-3
Creating @ TOPICSESSIONcuiviiiiiteiicctci s 14-4
Publishing Without Specifying TOPIC.......ccccevuiiiiiiiiiiiiiicccccccs 14-4
Publishing Specifying Correlation and Delaycccccoevviiiiiiiiiiiiic 14-5
Publishing Specifying TOPIC........coccviiiniiiiiiii e 14-6
Publishing Specifying Priority and TimeToLivVe..........cccoooiiiiiiiic 14-7
Publishing Specifying a Recipient List Overriding Topic Subscribersc.cccccue.... 14-7
Creating a Durable Subscriber for a JMS Topic Without Selectorccccoevviiniiiinnes 14-8
Creating a Durable Subscriber for a JMS Topic With Selectorcccooiiiiiiiinin 14-9
Creating a Durable Subscriber for an Oracle Object Type Topic Without Selector 14-10
Creating a Durable Subscriber for an Oracle Object Type Topic With Selector 14-11
Sending Messages to a Destination Using a Transformationccccccoeoveivieininnnnen 14-12
Specifying Transformations for Topic Subscribers..........c.cccocoviiniiiiiiiiiiciiee 14-12
Creating a Remote Subscriber for Topics of JMS Messages..........ccocoviiviniiniiinininnnnns 14-14
Creating a Remote Subscriber for Topics of Oracle Object Type Messages.................. 14-15
Specifying Transformations for Remote Subscribers...........ccccooevieiniiiiiniie 14-15
Unsubscribing a Durable Subscription for a Local Subscriber............cccccovviiiiiiinnnnnnn 14-16
Unsubscribing a Durable Subscription for a Remote Subscriber.............ccccoviiiviiininnnn 14-17
Creating a TopicReceiver for Standard JMS Type Messages...........ccccocovurruerrinirieicnnnns 14-18
Creating a TopicReceiver for Oracle Object Type Messagesccocovvvviiiiiviiininniiines 14-19
Creating a TopicBrowser Without a Selector.............coveiiiiiiiiiiiiiii 14-20
Creating a TopicBrowser With a Specified Selectorccooovviviviiiiiiiiiiinnn 14-20
Creating a TopicBrowser Without a Selector, Locking Messages While Browsing...... 14-20
Creating a TopicBrowser With a Specified Selector, Locking Messages 14-20
Creating a TopicBrowser for AdtMessage MeSSages ..o 14-21
Creating a TopicBrowser for AdtMessage Messages, Locking Messages.................... 14-22
Creating a TopicBrowser with a Specified Selector ... 14-22
Getting Underlying JDBC Connection from JMS SeSSion........ccccccvvviimiiviviiiiniiinininninines 15-2
Getting Underlying OracleOCIConnectionPool from JMS Connectionccocevevunee 15-3

15-3
154
15-5
15-6
15-7
15-8
15-9
15-10
15-11
15-12
15-13
15-14
16-1
162
16-3
164
16-5
16-6
16-7
16-8
16-9
18-1
18-2
18-3
18-4
18-5
18-6
19-1
19-2
19-3
19-4
19-5
19-6
19-7
19-8
19-9
19-10
19-11
19-12
19-13
19-14
19-15
19-16
19-17
19-18
19-19
19-20
19-21
19-22
19-23
19-24
201
20-2
20-3
20-4

Setting Default TimeToLive for All Messages Sent by a MessageProducer 15-7

Setting Default Priority Value for All Messages Sent by QueueSender 15-8
Setting Default Priority Value for All Messages Sent by TopicPublisher 15-8
Using a Message Consumer by Specifying Timeout ..o, 15-9
JMS: Blocking Until a MeSSage AITIVES ..ottt 15-9
JMS: Nonblocking MeSSAESccvueviuiuiiiiiiiiiiiiiiicieiiie e 15-10
JMS: Receiving Messages from a Destination Using a Transformation......................... 15-10
Specifying Navigation Mode for Receiving Messages..........cccooeveiiiiiiiniiiiniinnnnnes 15-11
Specifying Message Listener at Message CONSUMETccocvmiiiiinriininininiininenenenns 15-12
Getting Message Property as an Object...........ccocovvveiiiiniiiiiii 15-16
Specifying Exception Listener for Connectioncceeuiirieiiiicicicinicccccecien 15-18
Getting the Exception Listener for the Connection...........c.cccceeeeiiiiiniiniiiinnn 15-18
Setting Up Environment for Running JMS Types Examples..........ccccoooeveiiiiiinnennnen. 16-1
Populating and Enqueuing a BytesMessage............cccoveuiiiieiiininiiiiiieeeceeeenens 16-5
Dequeuing and Retrieving JMS BytesMessage Data..........cccooooeeiiiiieiniiiic 16-7
Populating and Enqueuing a JMS StreamMessage...........ccceueveueurieiniiinieienicice i 16-10
Dequeuing and Retrieving Data From a JMS StreamMessage...........cccceveerurvereinnninnn 16-12
Populating and Enqueuing a JMS MapMeSSageccoovvvvviiininininiiiiiiincncnencnenennes 16-15
Dequeuing and Retrieving Data From a JMS MapMessage...........cccocoeveuernirurieriinnnnennns 16-17
Enqueuing a Large TextMessage..........ccocoeueieieiiiiiiiiiiiiiiiii s 16-21
Enqueuing a Large BytesMessage ..ot 16-22
Adding Static Service Information for a Listener..........cccccocovviiiiiniiiiici, 18-3
Configuring MGW_AGENTcccocoiiiiiiiiiiicc s 18-3
Creating a Messaging Gateway Administrator User...........ccccovviiiiiniiiciinine, 18-4
Creating a Messaging Gateway Agent USer ... 18-5
Configuring Messaging Gateway Connection Informationcccccevviiiviinininnns 18-5
Setting Java Properties ..o 18-7
Creating a Messaging Gateway Agentcccoouoiiiiiiiiiiicicicc 19-2
Removing a Messaging Gateway Agentc.ccoooiueiiiiieiiiiiccec 19-2
Setting Database Connection Informationccccoeeieiiiiiiiiiiniiecc e 19-2
Setting the Resource LIMits ... 19-3
Starting the Messaging Gateway Agentcccovvveeiiiiiiiniiiiics 19-3
Shutting Down the Messaging Gateway Agent..........cccovveiiieiiiiiicniieceeenes 19-3
Configuring a WebSphere MQ Base Java Link.........ccccccoeviiiiiiiiiiiiiiin 19-7
Configuring a WebSphere MQ JMS LinkK.......ccccooiiiiiiiiiiiiiiic i 19-8
Configuring a WebSphere MQ Base Java Link for SSL.........ccocoooeiiniiiniiiniiccicciae 19-10
Configuring a TIB/Rendezvous LinKccccccoviiiiiiiininiiiiccs 19-11
Altering a WebSphere MQ Link ..o 19-11
Removing a Messaging Gateway LinKccccoooiiiiniiiciic e 19-12
Listing All Messaging Gateway Linkscccoooiiiiiii 19-12
Checking Messaging System Link Configuration Informationc.cccccoeevvinninnnnen 19-12
Registering a WebSphere MQ Base Java QuUeUe...........cccccevviviviiiiiniininininaes 19-13
Unregistering a Non-Oracle QUeUEcooiiiiiiiiiiiic e 19-14
Checking Which Queues Are Registeredc.ccoooiuiieiiiiioiiii 19-14
Creating a Messaging Gateway Propagation Job........ccccccoviins 19-16
Enabling a Messaging Gateway Propagation Job ... 19-16
Disabling a Messaging Gateway Propagation Job ..., 19-17
Resetting a Propagation JOb ... 19-17
Altering Propagation Job by Adding an Exception Queuecccccoovvvvinnnnnnnnn 19-17
Altering Propagation Job by Changing the Polling Intervalcccccocoviiiiininnn. 19-17
Removing a Propagation Job........ccciiiicc 19-18
Transformation Function Signature. ... 20-3
Creating a Transformation ... 20-4
Registering a Transformation............occooveiieiiiiiiiciic e 20-4
Outbound LCR Transformation ... 20-5

XXi

XXii

20-5
211
21-2
21-3
21-4
22-1
222
22-3
224
22-5
22-6
22-7
22-8
22-9
22-10
22-11
22-12
22-13
22-14
22-15
22-16
22-17
22-18
22-19
22-20
2221
22-22
22-23
22-24
22-25
22-26
23-1
23-2
23-3
23-4
23-5
23-6
23—7
23-8
23-9
23-10
23-11
23-12
23-13
23-14
23-15
23-16
23-17
23-18
23-19
23-20
23-21
23-22
23-23
23-24

Inbound LCR TransfOrmMation.......cceeocveeieieiieieee ettt eaeeseteeseaeessaaeesnneeeenns 20-5

Sample Messaging Gateway Log Fileccoooiiii 21-2
Sample EXCeption MESSAZE.ccovueiiimiuririeiiiicte et 21-3
No EXECUTE Privilege on Object TYpe......cccocoveueiiiiriciiiiicecic e 21-12
No EXECUTE Privilege on Transformation Function..........cccccceeeeiiiniiiinninnn, 21-13
Creating ANYDATA USEISooiuiiiiiicieiecie et 22-6
Creating an ANYDATA QUEUEoiuiiiiiieieici et 22-6
Adding a Subscriber to the ANYDATA QUeUEc.cooviiiiiiiiiic 22-6
Associating a User with an AQ_AGENT ..o 22-6
Creating an Enqueue Procedure ... 22-7
Enqueuing a VARCHAR?2 Message into an ANYDATA Queue...........ccooeeiiiinienninnes 22-7
Enqueuing a NUMBER Message into an ANYDATA Queue..........cccooooiieiiiincnennnns 22-7
Enqueuing a User-Defined Type Message into an ANYDATA Queue............cooeueunnee. 22-7
Determining the Consumer of Messages in @ QuUeueccoooeueieiiiciciiicicicc 22-8
Creating a Dequeue Procedure for an ANYDATA Queue..........cooocueiiiiiieiiiiniciennn, 22-8
Dequeuing Messages from an ANYDATA QuUeueccooueiiiiiiiiiiiccic 22-9
Granting EXECUTE Privilege on a Type......ccccoveiiiiniiiiiiiicccccccs 22-10
Creating a Typed Destination QUEUEccoeueiiiiiiiiiiici e 22-10
Creating a Database Link..........cccccooiiiii 22-10
Creating a Function to Extract a Typed Object from an ANYDATA Object................. 22-10
Creating an ANYDATA to Typed Object Transformationc.cooeevrvviricieinicinnnnn 22-11
Creating Subscriber ADDRESS_AGENT_REMOTE..........cccccccoovniiniiiii 22-11
Scheduling Propagation from an ANYDATA Queue to a Typed Queue...................... 22-11
Enqueuing a Typed Message in an ANYDATA Wrapper.........cccoovvvnnninnninnnennn 22-12
Viewing the Propagated MeSSageccoeeueieiiurieieiiiiicieicie s 22-12
Creating a Queue of Type LCR$_ROW_RECORDccccoeuvimivviniiniiiiniccciiinns 22-13
Creating an ANYDATA to LCR$_ROW_RECORD Transformationc.ccccccevuueunne 22-13
Creating Subscriber ROW_LCR_AGENT_REMOTEcccccoooviiininniiniinns 22-13
Creating a Procedure to Construct and Enqueue a Row LCR ... 22-14
Creating and Enqueuing a Row LCR.....c.cccooiiiie 22-14
Viewing the Propagated LCRcccccooviiiiiiiiiccccee s 22-15
Setting Up ANYDATA USEIS......cooiiiiiiiieiiieiecci et 23-3
Creating an ANYDATA QUEUEccoviiiiiiiiiiiiiiccecce s 23-3
Enabling Enqueue on the ANYDATA QUeUecccoevviiiiiiiiiiiiniii 23-4
Creating an Orders TYPe ... 23-4
Creating a Customers TYPe ... 23-5
Creating a Procedure to Enqueue Non-LCR Messages..........cccoceuviirieiiiiiiciciciinieees 23-5
Creating a Procedure to Construct and Enqueue Row LCR Eventsccccccevvvevninnnnn. 23-6
Creating a Function to Determine the Value of the Action Attribute..........ccccccvvinines 23-6
Creating a Message Handlerooooiiiiii 23-7
Creating an Evaluation Context for the Rule Setccooooiiiii 23-7
Creating a Rule Set for the Apply PTocess ... 23-8
Creating a Rule that Evaluates to TRUE if Action Is Applyccccvivviviiniininiiiinns 23-8
Creating a Rule that Evaluates to TRUE for Row LCR Eventsccccccooenicinicicininnes 23-8
Adding Rules to the Rule Set ... 23-9
Creating an APpPLY ProCess ... s 23-9
Granting EXECUTE Privilege on the Rule Set To oe User..........c.coocieiiiiiiieiiiicine, 23-9
Starting the APPLY Process ... 23-10
Creating an Agent for Explicit Dequeuecccccoviiiiinininiiiiiccs 23-10
Associating User oe with Agent explicit_dq........cccooeveiiniiiiiiiii 23-10
Adding a Subscriber to the oe_queue Queue. ..o 23-11
Creating a Procedure to Dequeue Messages EXplicitly........c.cccooveiiiiiiinininnnnn 23-11
Enqueuing Non-LCR Messages to Be Dequeued by an Apply Processcccoceu.e. 23-13
Enqueuing Non-LCR Messages to Be Dequeued Explicitly ..o 23-13
Enqueuing Row LCRs to Be Dequeued by an Apply Process..........ccccoovviviininnnnne 23-14

23-25
23-26
23-27
23-28
23-29
23-30
23-31
23-32
23-33
23-34
23-35

Dequeuing Messages EXPLCItLYcouieuiiiiiiiiic 23-15
Querying for Applied MeSSages.........cccoeueuiiurieiiiiiiicicci s 23-16
Granting EXECUTE on DBMS_AQIN t0o USEr 0€cccoviiiimiiiiniiicicinecceicnnnines 23-17
Enabling JMS Types on an ANYDATA QUeUE.cocoviirieiiiiciicce e 23-17
Creating Oracle Object Types address and person...........ccccceevvveiiiiniininnniiinns 23-18
Creating Java Classes That Map to Oracle Object Typescccccovvvvvvininninninnnn, 23-18
Java Code for Enqueting MeSSagesccoweueiiirieieiiecicieiicc i 23-19
Java Code for Dequeuing Messages..........cccoweueuiirieieiierieieiiseie s 23-23
Compiling StreamsEngq.java and StreamsDeq java.......c.cccoceeeviiniiiriiiniiiines 23-25
Running StreamsENg........ccocouiiiieiiiic s 23-25
Running StreamsDeq.........cocoiiiiieiiicicieeie s 23-26

xXiii

XXiv

Send Us Your Comments

Oracle Streams Advanced Queuing User’s Guide 11g Release 1 (11.1)
B28420-02

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

= Did you find any errors?

» Is the information clearly presented?

= Do you need more information? If so, where?

= Are the examples correct? Do you need more examples?

= What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

s Electronic mail: infodev_us@oracle.com
s FAX: (650) 506-7227. Attn: Server Technologies Documentation Manager
s Postal service:

Oracle Corporation

Server Technologies Documentation
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

XXV

XXVi

Audience

Preface

This guide describes features of application development and integration using Oracle
Streams Advanced Queuing (AQ). This information applies to versions of the Oracle
Database server that run on all platforms, unless otherwise specified.

This Preface contains these topics:
= Audience

= Documentation Accessibility
= Related Documents

s Conventions

This guide is intended for programmers who develop applications that use Oracle
Streams AQ.

To use this document, you need knowledge of an application development language
and object-relational database management concepts.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

XXVii

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (ITTY) access to Oracle Support Services
within the United States of America 24 hours a day, 7 days a week. For TTY support,
call 800.446.2398. Outside the United States, call +1.407.458.2479.

Related Documents
For more information, see these Oracle resources:
» Oracle Database Advanced Application Developer’s Guide
» Oracle Database PL/SQL Language Reference
» Oracle Streams Advanced Queuing Java API Reference
» Oracle Database PL/SQL Packages and Types Reference
» Oracle Streams Concepts and Administration
» Oracle XML DB Developer’s Guide

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XXViii

What’s New in Oracle Streams AQ?

This chapter describes new features of the Oracle Database 11g Release 1 (11.1) and
provides pointers to additional information:

s Notification Enhancements
= Better Diagnosability and Manageability
s Transition from Job Queue Processes to Database Scheduler

= Messaging Gateway Enhancements

XXiX

Notification Enhancements

The following notification enhancements are introduced:
= Scalability for Streams Notifications

= Notification Grouping By Time

Scalability for Streams Notifications

AQ Event Notification Infrastructure provides asynchronous communication of
database events from the suppliers/publishers of their events to the
consumers/registrations. The event monitor sends these notifications. In order to meet
the demands of increased notification use, the notification server in 11g is enhanced to
a parallel notification server consisting of a coordinator and a set of subordinate
processes. The parallel notification server offers a capability to process a greater
volume of notifications, faster notification processing and lower shared memory use
for staging notification events.

See Also: "Asynchronous Notifications" on page 1-16

Notification Grouping By Time

Sometimes a very large number of events occur in the database and it is important that
applications not be overwhelmed with notifications. The preferred strategy is for
notifications to be grouped and delivered at application-specified intervals and in
application-specified formats. Oracle Streams AQ provides the infrastructure for
notification grouping by time for AQ and DBCHANGE namespaces. Users have the
option of specifying the grouping time interval and the predefined format in which to
be notified at the end of those grouping intervals. Users can also specify when to start
sending grouping notifications and how many times to send grouping notifications.

See Also: "Asynchronous Notifications" on page 1-16

Better Diagnosability and Manageability

XXX

The following sections describe diagnosability:
s New performance views and AWR support
s Dictionary View on Subscription Registrations

s Queue Table Level Export and Import

New performance views and AWR support

This release adds new performance views for persistent messaging statistics and
notification statistics. The Automatic Workload Repository (AWR) has also been
enhanced for displaying queues with the most persistent messaging operations,
allowing for easier diagnosability of AQ performance problems.

Dictionary View on Subscription Registrations

New dictionary views are provided to simplify subscription management for Oracle
Streams Advanced Queuing. DBA_SUBSCR_REGISTRATIONS and USER_SUBSCR_
REGISTRATIONS identify registered subscriptions, as well as detail information on the
subscriptions. Runtime statistics for notifications are available with the V$SUBSCR_
REGISTRATION_STATS view.

Queue Table Level Export and Import

Export import of queues is now fully supported at queue table level granularity. The
user only needs to export the queue table. All the queues in the queue table, primary
object grants, related objects like views, IOTs, rules are automatically exported.

Transition from Job Queue Processes to Database Scheduler

EMON PL/SQL notifications are executed by background jobs. In this release these
jobs are DBMS_ SCHEDULER jobs and are no longer conducted by DBMS_JOBS.

The init.ora parameter job_queue_processes does not need to be set for
PL/SQL notifications or AQ propagations.

AQ propagation is now likewise handled by DBMS_SCHEDULER jobs rather than
DBMS_JOBS. Additionally, propagation takes advantage of the event based scheduling
features of DBMS_SCHEDULER for better scalability.

Messaging Gateway Enhancements
The following Messaging Gateway enhancements are introduced:

= Enhanced Messaging Gateway Agent in a Real Application Clusters (RAC)
Environment

= Multiple Messaging Gateway Agents
= Simplified Messaging Gateway Propagation Job Configuration

Enhanced Messaging Gateway Agent in a Real Application Clusters (RAC)
Environment

The Oracle Scheduler will be used to start Messaging Gateway agents. Messaging
Gateway will leverage the Oracle Scheduler RAC service feature so that a Messaging
Gateway agent is associated with a database service. If the instance on which a
Messaging Gateway agent is running fails or is shutdown, the Oracle Scheduler will
automatically restart the agent on another instance supporting that service.

See Also:

s "Configuring Oracle Messaging Gateway in a RAC Environment"
on page 18-5

= "Running the Oracle Messaging Gateway Agent on RAC" on
page 19-5

Multiple Messaging Gateway Agents

Messaging Gateway is enhanced to enable multiple agents per instance and database.
With this enhancement, you can now statically partition propagation jobs based on
functionality, organizations, or workload and assign them to different MGW agents
hosted by different database instances on different machines. This not only enables
MGW to scale, but also enables propagation job grouping and isolation, which is
important when MGW is used in a complicated application integration environment.

See Also:
s "Getting Started with Oracle Messaging Gateway" on page 18-1
= "Working with Oracle Messaging Gateway" on page 19-1

XXXi

XXXii

Simplified Messaging Gateway Propagation Job Configuration

An enhanced PL/SQL API consolidates the propagation subscriber and the
propagation schedule into a new propagation job. It is now easier to create and
schedule a propagation job for the messaging gateway.

See Also:
» "Getting Started with Oracle Messaging Gateway" on page 18-1
= "Working with Oracle Messaging Gateway" on page 19-1

Part |

Oracle Streams AQ Fundamentals

Part I introduces Oracle Streams Advanced Queuing (AQ) and tells you how to get
started with it. It also describes its main components and supported programming
languages.

This part contains the following chapters:
s Chapter 1, "Introduction to Oracle Streams AQ"
s Chapter 2, "Basic Components"

» Chapter 3, "Oracle Streams AQ: Programmatic Interfaces"

1

Introduction to Oracle Streams AQ

This chapter discusses Oracle Streams Advanced Queuing (AQ) and the requirements
for complex information handling in an integrated environment.

This chapter contains the following topics:

= What Is Queuing?

» Oracle Streams AQ Leverages Oracle Database
= Oracle Streams AQ in Integrated Application Environments
= Buffered Messaging

= Asynchronous Notifications

= Enqueue Features

s Dequeue Features

s Propagation Features

s Message Format Transformation

s Other Oracle Streams AQ Features

s Interfaces to Oracle Streams AQ

s Oracle Streams AQ Demonstrations

What Is Queuing?

When Web-based business applications communicate with each other, producer
applications enqueue messages and consumer applications dequeue messages. At the
most basic level of queuing, one producer enqueues one or more messages into one
queue. Each message is dequeued and processed once by one of the consumers. A
message stays in the queue until a consumer dequeues it or the message expires. A
producer may stipulate a delay before the message is available to be consumed, and a
time after which the message expires. Likewise, a consumer may wait when trying to
dequeue a message if no message is available. An agent program or application may
act as both a producer and a consumer.

Producers can enqueue messages in any sequence. Messages are not necessarily
dequeued in the order in which they are enqueued. Messages can be enqueued
without being dequeued.

At a slightly higher level of complexity, many producers enqueue messages into a
queue, all of which are processed by one consumer. Or many producers enqueue
messages, each message being processed by a different consumer depending on type
and correlation identifier.

Introduction to Oracle Streams AQ 1-1

Oracle Streams AQ Leverages Oracle Database

Enqueued messages are said to be propagated when they are reproduced on another
queue, which can be in the same database or in a remote database.

Applications often use data in different formats. A transformation defines a mapping
from one data type to another. The transformation is represented by a SQL function
that takes the source data type as input and returns an object of the target data type.
You can arrange transformations to occur when a message is enqueued, when it is
dequeued, or when it is propagated to a remote subscriber.

Oracle Streams AQ Leverages Oracle Database

Oracle Streams AQ provides database-integrated message queuing functionality. It is
built on top of Oracle Streams and leverages the functions of Oracle Database so that
messages can be stored persistently, propagated between queues on different
computers and databases, and transmitted using Oracle Net Services and HTTP(S).

Because Oracle Streams AQ is implemented in database tables, all operational benefits
of high availability, scalability, and reliability are also applicable to queue data.
Standard database features such as recovery, restart, and security are supported by
Oracle Streams AQ. You can use database development and management tools such as
Oracle Enterprise Manager to monitor queues. Like other database tables, queue tables
can be imported and exported.

Messages can be queried using standard SQL. This means that you can use SQL to
access the message properties, the message history, and the payload. With SQL access
you can also do auditing and tracking. All available SQL technology, such as indexes,
can be used to optimize access to messages.

Note: Oracle Streams AQ does not support data manipulation
language (DML) operations on a queue table or an associated
index-organized table (IOT), if any. The only supported means of
modifying queue tables is through the supplied APIs. Queue tables
and IOTs can become inconsistent and therefore effectively ruined, if
DML operations are performed on them.

System-Level Access Control

Oracle Streams AQ supports system-level access control for all queuing operations,
allowing an application designer or DBA to designate users as queue administrators.
A queue administrator can invoke Oracle Streams AQ administrative and operational
interfaces on any queue in the database. This simplifies administrative work because
all administrative scripts for the queues in a database can be managed under one
schema.

Queue-Level Access Control

Oracle Streams AQ supports queue-level access control for enqueue and dequeue
operations. This feature allows the application designer to protect queues created in
one schema from applications running in other schemas. The application designer can
grant only minimal access privileges to applications that run outside the queue
schema.

Performance

Requests for service must be decoupled from supply of services to increase efficiency
and enable complex scheduling. Oracle Streams AQ exhibits high performance as
measured by:

1-2 Oracle Streams Advanced Queuing User’s Guide

Oracle Streams AQ Leverages Oracle Database

= Number of messages enqueued and dequeued each second
s Time to evaluate a complex query on a message warehouse

s Time to recover and restart the messaging process after a failure

Scalability

Queuing systems must be scalable. Oracle Streams AQ exhibits high performance
when the number of programs using the application increases, when the number of
messages increases, and when the size of the message warehouse increases.

Persistence for Security

Messages that constitute requests for service must be stored persistently and processed
exactly once for deferred execution to work correctly in the presence of network,
computer, and application failures. Oracle Streams AQ is able to meet requirements in
the following situations:

= Applications do not have the resources to handle multiple unprocessed messages
arriving simultaneously from external clients or from programs internal to the
application.

s Communication links between databases are not available all the time or are
reserved for other purposes. If the system falls short in its capacity to deal with
these messages immediately, then the application must be able to store the
messages until they can be processed.

= External clients or internal programs are not ready to receive messages that have
been processed.

Persistence for Scheduling
Queuing systems must deal with priorities, and those priorities can change:

= Messages arriving later can be of higher priority than messages arriving earlier.
= Messages may wait for later messages before actions are taken.
= The same message may be accessed by different processes.

= Messages in a specific queue can become more important, and so must be
processed with less delay or interference from messages in other queues.

= Messages sent to some destinations can have a higher priority than others.

Persistence for Accessing and Analyzing Metadata

Queuing systems must preserve message metadata, which can be as important as the
payload data. For example, the time that a message is received or dispatched can be
crucial for business and legal reasons. With the persistence features of Oracle Streams
AQ, you can analyze periods of greatest demand or evaluate the lag between receiving
and completing an order.

Object Type Support

Oracle Streams AQ supports enqueue, dequeue, and propagation operations where
the queue type is an abstract datatype, ADT. It also supports enqueue and dequeue
operations if the types are inherited types of a base ADT. Propagation between two
queues where the types are inherited from a base ADT is not supported.

Oracle Streams AQ also supports ANYDATA queues, which enable applications to
enqueue different message types in a single queue.

Introduction to Oracle Streams AQ 1-3

Oracle Streams AQ Leverages Oracle Database

If you plan to enqueue, propagate, or dequeue user-defined type messages, then each
type used in these messages must exist at every database where the message can be
enqueued in a queue. Some environments use directed networks to route messages
through intermediate databases before they reach their destination. In such
environments, the type must exist at each intermediate database, even if the messages
of this type are never enqueued or dequeued at a particular intermediate database.

In addition, the following requirements must be met for such types:

s Type name must be the same at each database.

s Type must be in the same schema at each database.

= Shape of the type must match exactly at each database.

= Type cannot use inheritance or type evolution at any database.

= Type cannot contain varrays, nested tables, LOBs, rowids, or urowids.

The object identifier need not match at each database.

Structured and XMLType Payloads

You can use object types to structure and manage message payloads. Relational
database systems in general have a richer typing system than messaging systems.
Because Oracle Database is an object-relational database system, it supports traditional
relational and user-defined types. Many powerful features are enabled as a result of
having strongly typed content, such as content whose format is defined by an external
type system. These include:

= Content-based routing

Oracle Streams AQ can examine the content and automatically route the message
to another queue based on the content.

= Content-based subscription

A publish and subscribe system is built on top of a messaging system so that you
can create subscriptions based on content.

s Querying

The ability to run queries on the content of the message enables message
warehousing.

You can create queues that use the new opaque type, XMLType. These queues can be
used to transmit and store messages that are XML documents. Using XMLType, you
can do the following:

= Store any type of message in a queue

= Store documents internally as CLOB objects

= Store more than one type of payload in a queue

s Query XMLIype columns using the operator ExistsNode ()

» Specify the operators in subscriber rules or dequeue conditions

Integration with Oracle Internet Directory

You can register system events, user events, and notifications on queues with Oracle
Internet Directory. System events are database startup, database shutdown, and
system error events. User events include user log on and user log off, DDL statements
(create, drop, alter), and DML statement triggers. Notifications on queues include OCI
notifications, PL/SQL notifications, and e-mail notifications.

1-4 Oracle Streams Advanced Queuing User’s Guide

Oracle Streams AQ in Integrated Application Environments

You can also create aliases for Oracle Streams AQ agents in Oracle Internet Directory.
These aliases can be specified while performing Oracle Streams AQ enqueue, dequeue,
and notification operations. This is useful when you do not want to expose an internal
agent name.

Support for Oracle Real Application Clusters

Real Application Clusters can be used to improve Oracle Streams AQ performance by
allowing different queues to be managed by different instances. You do this by
specifying different instance affinities (preferences) for the queue tables that store the
queues. This allows queue operations (enqueue and dequeue) on different queues to
occur in parallel.

If compatibility is set to Oracle8i release 8.1.5 or higher, then an application can specify
the instance affinity for a queue table. When Oracle Streams AQ is used with Real
Application Clusters and multiple instances, this information is used to partition the
queue tables between instances for queue-monitor scheduling as well as for
propagation. The queue table is monitored by the queue monitors of the instance
specified by the user. If the owner of the queue table is terminated, then the secondary
instance or some available instance takes over the ownership for the queue table.

If an instance affinity is not specified, then the queue tables are arbitrarily partitioned
among the available instances. This can result in pinging between the application
accessing the queue table and the queue monitor monitoring it. Specifying the instance
affinity prevents this, but does not prevent the application from accessing the queue
table and its queues from other instances.

Oracle Streams AQ in Integrated Application Environments

Oracle Streams AQ provides the message management and communication needed for
application integration. In an integrated environment, messages travel between the
Oracle Database server, applications, and users, as shown in Figure 1-1.

Messages are exchanged between a client and the Oracle Database server or between
two Oracle Database servers using Oracle Net Services. Oracle Net Services also
propagates messages from one Oracle Database queue to another. Or, as shown in
Figure 1-1, you can perform Oracle Streams AQ operations over the Internet using
HTTP(S). In this case, the client, a user or Internet application, produces structured
XML messages. During propagation over the Internet, Oracle Database servers
communicate using structured XML also.

Application integration also involves the integration of heterogeneous messaging
systems. Oracle Streams AQ seamlessly integrates with existing non-Oracle Database
messaging systems like IBM WebSphere MQ through Messaging Gateway, thus
allowing existing WebSphere MQ-based applications to be integrated into an Oracle
Streams AQ environment.

This section contains these topics:

s Oracle Streams AQ Client/Server Communication
= Multiconsumer Dequeuing of the Same Message

s Oracle Streams AQ Implementation of Workflows

s Oracle Streams AQ Implementation of Publish/Subscribe

Introduction to Oracle Streams AQ 1-5

Oracle Streams AQ in Integrated Application Environments

Figure 1-1 Integrated Application Environment Using Oracle Streams AQ

XML-Based Internet ocCl, PL/SQL,
Internet Users Transport Java clients
(HTTP(s))

e B .
LS G &7

Rules and

‘ Transformationsh

bt PP
queues

MQ Series
Internet
Propagation
(Oracle
Net)

Internet
Propagation

Rules and
Transformations

SN

Advanced
queues

Rules and
Transformations

TN

Advanced
queues

Global Agents,
Global Subscriptions,
Global Events

Oracle Streams AQ Client/Server Communication

Client/Server applications usually run in a synchronous manner. Figure 1-2
demonstrates the asynchronous alternative using Oracle Streams AQ. In this example
Application B (a server) provides service to Application A (a client) using a
request/response queue.

Application A enqueues a request into the request queue. In a different transaction,
Application B dequeues and processes the request. Application B enqueues the result
in the response queue, and in yet another transaction, Application A dequeues it.

The client need not wait to establish a connection with the server, and the server
dequeues the message at its own pace. When the server is finished processing the
message, there is no need for the client to be waiting to receive the result. A process of
double-deferral frees both client and server.

1-6 Oracle Streams Advanced Queuing User’s Guide

Oracle Streams AQ in Integrated Application Environments

Figure 1-2 Client/Server Communication Using Oracle Streams AQ

Application A .
producer & consumerJ Client

Dequeue
Enqueue
Request Response
Queue Queue
Enqueue
Dequeue

Application B

consumer & producer Server

Multiconsumer Dequeuing of the Same Message

A message can only be enqueued into one queue at a time. If a producer had to insert
the same message into several queues in order to reach different consumers, then this
would require management of a very large number of queues. To allow multiple
consumers to dequeue the same message, Oracle Streams AQ provides for queue
subscribers and message recipients.

To allow for subscriber and recipient lists, the queue must reside in a queue table that
is created with the multiple consumer option. Each message remains in the queue until
it is consumed by all its intended consumers.

Queue Subscribers

Multiple consumers, which can be either applications or other queues, can be
associated with a queue as subscribers. This causes all messages enqueued in the
queue to be made available to be consumed by each of the queue subscribers. The
subscribers to the queue can be changed dynamically without any change to the
messages or message producers.

You cannot add subscriptions to single-consumer queues or exception queues. A
consumer that is added as a subscriber to a queue is only able to dequeue messages
that are enqueued after the subscriber is added. No two subscribers can have the same
values for name, address, and protocol. At least one of these attributes must be
different for two subscribers.

It cannot be known which subscriber will dequeue which message first, second, and so
on, because there is no priority among subscribers. More formally, the order of
dequeuing by subscribers is indeterminate.

Subscribers can also be rule-based. Similar in syntax to the WHERE clause of a SQL
query, rules are expressed in terms of attributes that represent message properties or
message content. These subscriber rules are evaluated against incoming messages, and
those rules that match are used to determine message recipients.

Introduction to Oracle Streams AQ 1-7

Oracle Streams AQ in Integrated Application Environments

In Figure 1-3, Application B and Application C each need messages produced by
Application A, so a multiconsumer queue is specially configured with Application B
and Application C as queue subscribers. Each receives every message placed in the
queue.

Figure 1-3 Communication Using a Multiconsumer Queue

Application A J

Enqueue

Multiple
Consumer
Queue

Dequeue Dequeue

Application B J ‘ Application C J

Message Recipients

A message producer can submit a list of recipients at the time a message is enqueued.
This allows for a unique set of recipients for each message in the queue. The recipient
list associated with the message overrides the subscriber list associated with the
queue, if there is one. The recipients need not be in the subscriber list. However,
recipients can be selected from among the subscribers.

A recipient can be specified only by its name, in which case the recipient must
dequeue the message from the queue in which the message was enqueued. It can be
specified by its name and an address with a protocol value of 0. The address should be
the name of another queue in the same database or another installation of Oracle
Database (identified by the database link), in which case the message is propagated to
the specified queue and can be dequeued by a consumer with the specified name. If
the recipient's name is NULL, then the message is propagated to the specified queue in
the address and can be dequeued by the subscribers of the queue specified in the
address. If the protocol field is nonzero, then the name and address are not interpreted
by the system and the message can be dequeued by a special consumer.

Subscribing to a queue is like subscribing to a magazine: each subscriber is able to
dequeue all the messages placed into a specific queue, just as each magazine
subscriber has access to all its articles. Being a recipient, on the other hand, is like
getting a letter: each recipient is a designated target of a particular message.

Figure 1-4 shows how Oracle Streams AQ can accommodate both kinds of consumers.
Application A enqueues messages. Application B and Application C are subscribers.
But messages can also be explicitly directed toward recipients like Application D,
which may or may not be subscribers to the queue. The list of such recipients for a
given message is specified in the enqueue call for that message. It overrides the list of
subscribers for that queue.

1-8 Oracle Streams Advanced Queuing User’s Guide

Oracle Streams AQ in Integrated Application Environments

Figure 1-4 Explicit and Implicit Recipients of Messages

_

Application A
producer

Enqueue

Dequeue Dequeue

Application B
consumer (subscriber)

Application C
consumer (subscriber)

Implicit Recipient

Application D
consumer (recipient)

Explicit Recipient

Implicit Recipient

Note: Multiple producers can simultaneously enqueue messages
aimed at different targeted recipients.

Oracle Streams AQ Implementation of Workflows

Figure 1-5 illustrates the use of Oracle Streams AQ for implementing a workflow, also
known as a chained application transaction:

1.
2

Application A begins a workflow by enqueuing Message 1.

Application B dequeues it, performs whatever activity is required, and enqueues
Message 2.

Application C dequeues Message 2 and generates Message 3.
Application D, the final step in the workflow, dequeues it.

Introduction to Oracle Streams AQ 1-9

Oracle Streams AQ in Integrated Application Environments

Figure 1-5 Implementing a Workflow using Oracle Streams AQ

Application A
producer

Application C
consumer & producer

Enqueue Dequeue Enqueue
(Message 1) (Message 2) (Message 3)

Dequeue Enqueue Dequeue
(Message 1) (Message 2) (Message 3)

Application B Application D
consumer & producer consumer

Note: The contents of the messages 1, 2 and 3 can be the same or
different. Even when they are different, messages can contain parts of
the contents of previous messages.

The queues are used to buffer the flow of information between different processing
stages of the business process. By specifying delay interval and expiration time for a
message, a window of execution can be provided for each of the applications.

From a workflow perspective, knowledge of the volume and timing of message flows
is a business asset quite apart from the value of the payload data. Oracle Streams AQ
helps you gain this knowledge by supporting the optional retention of messages for
analysis of historical patterns and prediction of future trends.

Oracle Streams AQ Implementation of Publish/Subscribe

A point-to-point message is aimed at a specific target. Senders and receivers decide on
a common queue in which to exchange messages. Each message is consumed by only
one receiver. Figure 1-6 shows that each application has its own message queue,
known as a single-consumer queue.

Figure 1-6 Point-to-Point Messaging

Enqueue Enqueue
Application dﬁb @@@@ ﬁ} Application
q Advanced L

queues

1-10 Oracle Streams Advanced Queuing User's Guide

Oracle Streams AQ in Integrated Application Environments

A publish/subscribe message can be consumed by multiple receivers, as shown in
Figure 1-7. Publish/subscribe messaging has a wide dissemination mode called
broadcast and a more narrowly aimed mode called multicast.

Broadcasting is like a radio station not knowing exactly who the audience is for a
given program. The dequeuers are subscribers to multiconsumer queues. In contrast,
multicast is like a magazine publisher who knows who the subscribers are. Multicast is
also referred to as point-to-multipoint, because a single publisher sends messages to
multiple receivers, called recipients, who may or may not be subscribers to the queues
that serve as exchange mechanisms.

Figure 1-7 Publish/Subscribe Mode

Publish Subscribe

Publish @@@@ Publish

Application | «— Advanced 42 | Application
queues Subscribe

Application Application

Publish/subscribe describes a situation in which a publisher application enqueues
messages to a queue anonymously (no recipients specified). The messages are then
delivered to subscriber applications based on rules specified by each application. The
rules can be defined on message properties, message data content, or both.

You can implement a publish/subscribe model of communication using Oracle
Streams AQ as follows:

1. Set up one or more queues to hold messages. These queues should represent an
area or subject of interest. For example, a queue can be used to represent billed
orders.

2. Set up a set of rule-based subscribers. Each subscriber can specify a rule which
represents a specification for the messages that the subscriber wishes to receive. A
null rule indicates that the subscriber wishes to receive all messages.

3. Publisher applications publish messages to the queue by invoking an enqueue call.

4. Subscriber applications can receive messages with a dequeue call. This retrieves
messages that match the subscription criteria.

5. Subscriber applications can also use a listen call to monitor multiple queues for
subscriptions on different queues. This is a more scalable solution in cases where a
subscriber application has subscribed to many queues and wishes to receive
messages that arrive in any of the queues.

6. Subscriber applications can also use the Oracle Call Interface (OCI) notification
mechanism. This allows a push mode of message delivery. The subscriber
application registers the queues (and subscriptions specified as subscribing agent)
from which to receive messages. This registers a callback to be invoked when
messages matching the subscriptions arrive.

Figure 1-8 illustrates the use of Oracle Streams AQ for implementing a
publish/subscribe relationship between publisher Application A and subscriber
Applications B, C, and D:

= Application B subscribes with rule "priority = 1".

= Application C subscribes with rule "priority > 1".

Introduction to Oracle Streams AQ 1-11

Buffered Messaging

= Application D subscribes with rule "priority = 3".

Figure 1-8 Implementing Publish/Subscribe using Oracle Streams AQ

Application A
producer

Enqueue
1— priority 3
J— priority 1
41— priority 2
Register
Dequeue Dequeue
Application B Application C
consumer consumer
(rule-based subscriber) (rule-based subscriber)
"priority = 1" "priority > 1"
Application D
consumer
(rule-based subscriber)
"priority = 3"

If Application A enqueues three messages with priorities 1, 2, and 3 respectively, then
the messages will be delivered as follows:

= Application B receives a single message (priority 1).
= Application C receives two messages (priority 2, 3).

= Application D receives a single message (priority 3).

Buffered Messaging

Buffered messaging, a new feature in Oracle Streams AQ 10g Release 2 (10.2),
combines the rich functionality that this product has always offered with a much faster
queuing implementation. Buffered messaging is ideal for applications that do not
require the reliability and transaction support of Oracle Streams AQ persistent
messaging.

Buffered messaging is faster than persistent messaging, because its messages reside in
shared memory. They are usually written to disk only when the total memory
consumption of buffered messages approaches the available shared memory limit.

Note: The portion of a queue that stores buffered messages in
memory is sometimes referred to as a buffered queue.

1-12 Oracle Streams Advanced Queuing User’'s Guide

Buffered Messaging

Message retention is not supported for buffered messaging.
When using buffered messaging, Oracle recommends that you do one of the following:
m Set parameter streams_pool_size

This parameter controls the size of shared memory available to Oracle Streams
AQ. If unspecified, up to 10% of the shared pool size may be allocated for the
Oracle Streams AQ pool from the database cache.

s Turn on SGA autotuning

Oracle will automatically allocate the appropriate amount of memory from the
SGA for Oracle Streams AQ, based on Oracle Streams AQ usage as well as usage
of other components that use the SGA. Examples of such other components are
buffer cache and library cache. If streams_pool_size is specified, it is used as
the lower bound.

See Also: "Setting Initialization Parameters Relevant to Streams" in
Oracle Streams Concepts and Administration

This section contains the following topics:

» Enqueuing Buffered Messages

s Dequeuing Buffered Messages

= Propagating Buffered Messages

= Flow Control

= Buffered Messaging with Real Application Clusters (RAC)

= Buffered Messaging Restrictions

s Error Handling

Enqueuing Buffered Messages

Buffered and persistent messages use the same single-consumer or multiconsumer
queues and the same administrative and operational interfaces. They are distinguished
from each other by a delivery mode parameter, set by the application when enqueuing
the message to an Oracle Streams AQ queue.

See Also: "Enqueuing Messages" on page 10-2

Recipient lists are supported for buffered messaging enqueue.

Buffered messaging is supported in all queue tables created with compatibility 8.1 or
higher. Transaction grouping queues and array enqueues are not supported for
buffered messages in this release. You can still use the array enqueue procedure to
enqueue buffered messages, but the array size must be set to one.

Buffered messages can be queried using the AQ$Queue_Table Name view. They
appear with states IN-MEMORY or SPILLED.

See Also: "AQ$Queue_Table_Name: Messages in Queue Table" on
page 9-4

The queue type for buffered messaging can be ADT, XML, ANYDATA, or RAW. For ADT

types with LOB attributes, only buffered messages with null LOB attributes can be
enqueued.

Introduction to Oracle Streams AQ 1-13

Buffered Messaging

All ordering schemes available for persistent messages are also available for buffered
messages, but only within each message class. Ordering among persistent and
buffered messages enqueued in the same session is not currently supported.

See Also: '"Priority and Ordering of Messages in Enqueuing" on
page 1-19

Both enqueue and dequeue buffered messaging operations must be with IMMEDIATE
visibility mode. Thus they cannot be part of another transaction. You cannot specify
delay when enqueuing buffered messages.

Dequeuing Buffered Messages

Rule-based subscriptions are supported with buffered messaging. The procedure for
adding subscribers is enhanced to allow an application to express interest in persistent
messages only, buffered messages only, or both.

See Also: "Adding a Subscriber" on page 8-20

Array dequeue is not supported for buffered messaging, but you can still use the array
dequeue procedure by setting array size to one message.

Dequeuing applications can choose to dequeue persistent messages only, buffered
messages only, or both types. Visibility must be set to IMMEDIATE for dequeuing
buffered messages. All of the following dequeue options are supported:

n Dequeue modes BROWSE, LOCK, REMOVE, and REMOVE_NO_DATA
= Navigation modes FIRST_MESSAGE and NEXT_MESSAGE

s Correlation identifier

s Dequeue condition

= Message identifier

See Also: "Dequeue Options" on page 10-13

Propagating Buffered Messages

Propagation of buffered messages is supported. A single propagation schedule serves
both persistent and buffered messages. The DBA_QUEUE_SCHEDULES view displays
statistics and error information.

See Also: "DBA_QUEUE_SCHEDULES: All Propagation Schedules"
on page 9-3

Oracle Streams AQ deletes buffered messages once they are propagated to the remote
sites. If the receiving site fails before these messages are consumed, then these
messages will be lost. The source site will not be able to re-send them. Duplicate
delivery of messages is also possible.

See Also: "Buffered Messaging with Real Application Clusters
(RAC)" on page 1-15

Flow Control

Oracle Streams AQ implements a flow control system that prevents applications from
flooding the shared memory with messages. If the number of unread messages
enqueued by a message sender exceeds a system-determined limit, then message

1-14 Oracle Streams Advanced Queuing User’'s Guide

Buffered Messaging

sender is blocked until one of the subscribers has read some of its messages. A
message sender is identified by sender_id.name in the enqueue options. A sender
blocked due to flow control on a queue does not affect other message senders.

Even with flow control, slow consumers of a multiconsumer queue can cause the
number of messages stored in memory to grow without limit. If this happens, older
messages are spilled to disk and removed from the Oracle Streams AQ pool to free up
memory. This ensures that the cost of disk access is paid by the slower consumers, and
faster subscribers can proceed unhindered.

Buffered Messaging with Real Application Clusters (RAC)

An application can enqueue and dequeue buffered messages from any RAC instance
as long as it uses password-based authentication to connect to the database. The
structures required for buffered messaging are implemented on one RAC instance. The
instance where the buffered messaging structures are implemented is the OWNER_
INSTANCE of the queue table containing the queue. Enqueue and dequeue requests
received at other instances are forwarded to the OWNER_ INSTANCE over the
interconnect. The REMOTE_LISTENER parameter in listener.ora must also be set
to enable forwarding of buffered messaging requests to correct instance.

See Also:

s "ALL_QUEUE_TABLES: Queue Tables Queue Accessible to the
Current User" on page 9-3 for more information on OWNER_
INSTANCE

= "REMOTE_LISTENER" in Oracle Database Reference for more
information on setting the REMOTE_LISTENER parameter

A service name is associated with each queue in RAC and displayed in the DBA_
QUEUES and USER_QUEUES views. This service name always points to the instance
with the most efficient access for buffered messaging, minimizing pinging between
instances. OCI clients can use the service name for buffered messaging operations.

See Also: "DBA_QUEUES: All Queues in Database" on page 9-3 or
"USER_QUEUES: Queues In User Schema" on page 9-3

Oracle recommends that you use buffered messaging with queue-to-queue
propagation. This results in transparent failover when propagating messages to a
destination RAC system. You do not need to re-point your database links if the
primary Oracle Streams AQ RAC instance fails.

See Also: "Support for Oracle Real Application Clusters" on
page 1-5

Buffered Messaging Restrictions

The following Oracle Streams AQ features are not currently supported for buffered
messaging:

= Message retention

= Message delay

s Transaction grouping
= Array enqueue

= Array dequeue

Introduction to Oracle Streams AQ 1-15

Asynchronous Notifications

= Message export and import
s Posting for subscriber notification

s Messaging Gateway

Error Handling

Retry count and retry delay are not supported for buffered messages. Message
expiration is supported. When a buffered message has been in the queue beyond its
expiration period, it is moved into the exception queue as a persistent message.

Asynchronous Notifications

Asynchronous notification allows clients to receive notifications of messages of
interest. The client can use these notifications to monitor multiple subscriptions. The
client need not be connected to the database to receive notifications regarding its
subscriptions. Asynchronous notification is supported for buffered messages. The
delivery mode of the message is available in the message descriptor of the notification
descriptor.

Note: In releases before Oracle Database 10g Release 2 (10.2), the
Oracle Streams AQ notification feature was not supported for queues
with names longer than 30 characters. This restriction no longer
applies. The 24-character limit on names of user-generated queues still
applies. See "Creating a Queue" on page 8-12.

The client specifies a callback function which is run for each message. Asynchronous
notification cannot be used to invoke an executable, but it is possible for the callback
function to invoke a stored procedure.

Clients can receive notifications procedurally using PL/SQL, Java Message Service
(JMS), or OCI callback functions, or clients can receive notifications through e-mail or
HTTP post. Clients can also specify the presentation for notifications as either RAW or
XML.

For JMS queues, the dequeue is accomplished as part of the notification; explicit
dequeue is not required. For RAW queues, clients can specify payload delivery; but
they still must dequeue the message in REMOVE_NO_DATA mode. For all other
persistent queues, the notification contains only the message properties; clients
explicitly dequeue to receive the message.

Payload Delivery for RAW Queues

For RAW queues, Oracle Streams AQ clients can now specify that the message payload
be delivered along with its notification.

See Also: "AQ Registration Information Type" on page 2-3

Reliable Notification

In earlier releases of Oracle Streams AQ, message notifications were stored in shared
memory and were lost if the instance failed. Clients can now specify persistent
message notification. If a RAC instance fails, its notifications are delivered by another
RAC node. If a standalone instance fails, its notifications are delivered when the
instance restarts.

1-16 Oracle Streams Advanced Queuing User’'s Guide

Asynchronous Notifications

Note: Notification reliability refers only to server failures. If Oracle
Streams AQ is unable to deliver client notifications for any other
reason, then the notifications are purged along with the client
registration.

Designated Port Notification

Oracle Streams AQ clients can now use the OCI subscription handle attribute OCI_
ATTR_SUBSCR_PORTNO to designate the port at which notifications are delivered. This
is especially useful for clients on a computer behind a firewall. The port for the listener
thread can be designated before the first registration, using an attribute in the
environment handle. The thread is started the first time an
OCISubscriptionRegister is called. If the client attempts to start another thread
on a different port using a different environment handle, then Oracle Streams AQ
returns an error.

Note: Designated port notification applies only to OCI clients.

See Also: "Publish-Subscribe Registration Functions in OCI" in
Oracle Call Interface Programmer’s Guide

Registration Timeout

In earlier releases of Oracle Streams AQ, registrations for notification persisted until
explicitly removed by the client or purged in case of extended client failure. In Oracle
Streams AQ 10g Release 2 (10.2) clients can register for a specified time, after which the
registration is automatically purged.

When the registration is purged, Oracle Streams AQ sends a notification to the client,
so the client can invoke its callback and take any necessary action.

See Also: "AQ Registration Information Type" on page 2-3 for
information on the timeout parameter

Purge on Notification

Clients can also register to receive only the first notification, after which the
registration is automatically purged.

An example where purge on notification is useful is a client waiting for enqueues to
start. In this case, only the first notification is useful; subsequent notifications provide
no additional information. Previously, this client would be required to unregister once
enqueuing started; now the registration can be configured to go away automatically.

Buffered Message Notification

Clients can register for notification of buffered messages. The registration requests
apply to both buffered and persistent messages. The message properties delivered
with the PL/SQL or OCI notification specify whether the message is buffered or
persistent.

Introduction to Oracle Streams AQ 1-17

Enqueue Features

See Also:

= "Registering for Notification" on page 10-22 for more information
on PL/SQL notification

s Appendix C, "OCI Examples", which appears only in the HTML
version of this guide, for an example of OCI notification

Reliable notification is not supported.

Views on Registration

The dictionary views DBA_SUBSCR_REGISTRATIONS and USER_SUBSCR_
REGISTRATIONS display the various registrations in the system. The diagnostic view
GV$SUBSCR_REGISTRATION_STATS may be used to monitor notification statistics
and performance.

Event-Based Notification

Event-based notifications are processed by a set of coordinator (EMNC) and subordinate
processes (EXxX). The event notification load is distributed amongst these processes.
These processes work on the system notifications in parallel, offering a capability to
process a larger volume of notifications, a faster response time and lower shared
memory use for staging notifications.

Notification Grouping by Time

Notification applications may register to receive a single notification for all events that
occur within a specified time interval. Notification Clients may specify a start time for
the notifications. Additionally, they must specify a time as the grouping class and the
time interval as the grouping value. A repeat count may be used to limit the number of
notifications delivered.

Clients can receive two types of grouping events, Summary or Last. A summary
notification is a list of Message Identifiers of all the messages for the subscription. If
last was specified as a grouping type, notification would have information about the
last message in the notification interval. A count of the number of messages in the
interval is also sent.

The registration interfaces in PLSQL and OCI allow for specification of the START__
TIME, REPEAT_COUNT, GROUPING CLASS, GROUPING VALUE, GROUPING TYPE in
the AQ$_REGISTRATION_INFO and the OCI subscription Handle.

The notification descriptor received by the AQ notification client provides information
about the group of message identifiers and the number of notifications in the group.

See Also:
» Oracle Database PL/SQL Packages and Types Reference

» Oracle Call Interface Programmer’s Guide

Enqueue Features
The following features apply to enqueuing messages:
= Enqueue an Array of Messages

m Correlation Identifiers

1-18 Oracle Streams Advanced Queuing User’'s Guide

Enqueue Features

s Priority and Ordering of Messages in Enqueuing
s Message Grouping
= Sender Identification

s Time Specification and Scheduling

Enqueue an Array of Messages

When enqueuing messages into a queue, you can operate on an array of messages
simultaneously, instead of one message at a time. This can improve the performance of
enqueue operations. When enqueuing an array of messages into a queue, each
message shares the same enqueue options, but each message can have different
message properties. You can perform array enqueue operations using PL/SQL or OCL

Array enqueuing is not supported for buffered messages in this release.

Correlation Identifiers

You can assign an identifier to each message, thus providing a means to retrieve
specific messages at a later time.

Priority and Ordering of Messages in Enqueuing

You can specify the priority of an enqueued message and its exact position in the
queue. This means that users can specify the order in which messages are consumed in
three ways:

= A priority can be assigned to each message.

= A sort order specifies which properties are used to order all messages in a queue.
This is set when the queue table is created and cannot be changed. You can choose
to sort messages by priority, enqueue time, or commit time. The commit-time
option, a new feature in Oracle Streams AQ 10g Release 2 (10.2), orders messages
by an approximate CSCN calculated for each transaction.

Commit-time ordering is useful when transactions are interdependent or when
browsing the messages in a queue must yield consistent results.

See Also:

s "Commit-Time Queues" in Oracle Streams Concepts and
Administration

s "Creating a Queue Table" on page 8-1 for more information on sort
order

= A sequence deviation positions a message in relation to other messages.

Note: The sequence deviation feature is deprecated in 10g Release 2
(10.2).

If several consumers act on the same queue, then each consumer gets the first message
that is available for immediate consumption. A message that is in the process of being
consumed by another consumer is skipped.

Priority ordering of messages is achieved by specifying priority, enqueue time as the
sort order. If priority ordering is chosen, then each message is assigned a priority at
enqueue time by the enqueuing agent. At dequeue time, the messages are dequeued in
the order of the priorities assigned. If two messages have the same priority, then the

Introduction to Oracle Streams AQ 1-19

Dequeue Features

order in which they are dequeued is determined by the enqueue time. A first-in,
tirst-out (FIFO) priority queue can also be created by specifying enqueue time, priority
as the sort order of the messages.

Message Grouping

Messages belonging to one queue can be grouped to form a set that can only be
consumed by one user at a time. This requires that the queue be created in a queue
table that is enabled for message grouping. All messages belonging to a group must be
created in the same transaction, and all messages created in one transaction belong to
the same group.

This feature allows users to segment complex messages into simple messages. For
example, messages directed to a queue containing invoices can be constructed as a
group of messages starting with a header message, followed by messages representing
details, followed by a trailer message.

Message grouping is also useful if the message payload contains complex large objects
such as images and video that can be segmented into smaller objects.

Group message properties priority, delay, and expiration are determined solely by the
message properties specified for the first message in a group, irrespective of which
properties are specified for subsequent messages in the group.

The message grouping property is preserved across propagation. However, the
destination queue where messages are propagated must also be enabled for
transactional grouping. There are also some restrictions you must keep in mind if the
message grouping property is to be preserved while dequeuing messages from a
queue enabled for transactional grouping.

Sender Identification

Applications can mark the messages they send with a custom identification. Oracle
Streams AQ also automatically identifies the queue from which a message was
dequeued. This allows applications to track the pathway of a propagated message or a
string message within the same database.

Time Specification and Scheduling

Messages can be enqueued with an expiration that specifies the interval of time the
message is available for dequeuing. The default for expiration is never. When a
message expires, it is moved to an exception queue. Expiration processing requires
that the queue monitor be running.

Dequeue Features
The following features apply to dequeuing messages:
s Concurrent Dequeues
= Dequeue Methods
s Dequeue Modes
s Dequeue an Array of Messages
= Message States
= Navigation of Messages in Dequeuing
= Waiting for Messages

» Retries with Delays

1-20 Oracle Streams Advanced Queuing User’'s Guide

Dequeue Features

= Optional Transaction Protection

= Exception Queues

Concurrent Dequeues

When there are multiple processes dequeuing from a single-consumer queue or
dequeuing for a single consumer on the multiconsumer queue, different processes skip
the messages that are being worked on by a concurrent process. This allows multiple
processes to work concurrently on different messages for the same consumer.

Dequeue Methods
A message can be dequeued using one of the following dequeue methods:

= Specifying a correlation identifier

A correlation identifier is a user-defined message property. Multiple messages
with the same correlation identifier can be present in a queue, which means that
the ordering (enqueue order) between messages might not be preserved on
dequeue calls.

= Specifying a message identifier

A message identifier is a system-assigned value (of RAW datatype). Only one
message with a given message identifier can be present in the queue.

= Specifying a dequeue condition

A dequeue condition is expressed in terms of message properties or message
content and is similar in syntax to the WHERE clause of a SQL query. Messages in
the queue are evaluated against the condition, and messages that satisfy the given
condition are returned. When a dequeue condition is used, the order of the
messages dequeued is indeterminate, and the sort order of the queue is not
honored.

s Default dequeue

A default dequeue retrieves the first available message.

Note: Dequeuing with correlation identifier, message identifier, or
dequeue condition does not preserve the message grouping property.

Dequeue Modes

A dequeue request can browse a message, remove it, or remove it with no data. If a
message is browsed, then it remains available for further processing. If a message is
removed or removed with no data, then it is no longer available for dequeue requests.
Depending on the queue properties, a removed message can be retained in the queue
table. A message is retained in the queue table after it has been consumed only if a
retention time is specified for its queue.

The browse mode has three risks. First, there is no guarantee that the message can be
dequeued again after it is browsed, because a dequeue call from a concurrent user
might have removed the message. To prevent a viewed message from being dequeued
by a concurrent user, you should view the message in the locked mode.

Second, your dequeue position in browse mode is automatically changed to the
beginning of the queue if a nonzero wait time is specified and the navigating position
reaches the end of the queue. If you repeat a dequeue call in the browse mode with the
NEXT_MESSAGE navigation option and a nonzero wait time, then you can end up

Introduction to Oracle Streams AQ 1-21

Dequeue Features

dequeuing the same message over and over again. Oracle recommends that you use a
nonzero wait time for the first dequeue call on a queue in a session, and then use a
zero wait time with the NEXT_MESSAGE navigation option for subsequent dequeue
calls. If a dequeue call gets an "end of queue" error message, then the dequeue position
can be explicitly set by the dequeue call to the beginning of the queue using the
FIRST_MESSAGE navigation option, following which the messages in the queue can
be browsed again.

Third, if the sort order of the queue is ENQ_TIME, PRIORITY, or a combination of
these two, then results may not be repeatable from one browse to the next. If you must
have consistent browse results, then you should use a commit-time queue.

See Also:

s "Commit-Time Queues" in Oracle Streams Concepts and
Administration

» "Creating a Queue Table" on page 8-1

When a message is dequeued using REMOVE_NODATA mode, the payload of the
message is not retrieved. This mode can be useful when the user has already examined
the message payload, possibly by means of a previous BROWSE dequeue.

Dequeue an Array of Messages

When dequeuing messages from a queue, you can operate on an array of messages
simultaneously, instead of one message at a time. This can improve the performance of
dequeue operations. If you are dequeuing from a transactional queue, you can
dequeue all the messages for a transaction with a single call, which makes application
programming easier.

When dequeuing an array of messages from a queue, each message shares the same
dequeue options, but each message can have different message properties. You can
perform array enqueue and array dequeue operations using PL/SQL or OCL

Array dequeuing is not supported for buffered messages in this release.

Message States

Multiple processes or operating system threads can use the same consumer name to
dequeue concurrently from a queue. In that case Oracle Streams AQ provides the first
unlocked message that is at the head of the queue and is intended for the consumer.
Unless the message identifier of a specific message is specified during dequeue,
consumers can dequeue messages that are in the READY state.

A message is considered PROCESSED only when all intended consumers have
successfully dequeued the message. A message is considered EXPIRED if one or more
consumers did not dequeue the message before the EXPTRATION time. When a
message has expired, it is moved to an exception queue.

Expired messages from multiconsumer queues cannot be dequeued by the intended
recipients of the message. However, they can be dequeued in the REMOVE mode
exactly once by specifying a NULL consumer name in the dequeue options.

1-22 Oracle Streams Advanced Queuing User's Guide

Dequeue Features

Note: If the multiconsumer exception queue was created in a queue
table with the compatible parameter set to 8. 0, then expired
messages can be dequeued only by specifying a message identifier.

Queues created in a queue table with compatible setto 8.0
(referred to in this guide as 8.0-style queues) are deprecated in Oracle
Streams AQ 10g Release 2 (10.2). Oracle recommends that any new
queues you create be 8.1-style or newer and that you migrate existing
8.0-style queues at your earliest convenience.

Beginning with Oracle Streams AQ release 8.1.6, only the queue monitor removes
messages from multiconsumer queues. This allows dequeuers to complete the
dequeue operation by not locking the message in the queue table. Because the queue
monitor removes messages that have been processed by all consumers from
multiconsumer queues approximately once every minute, users can see a delay
between when the messages have been completely processed and when they are
physically removed from the queue.

Navigation of Messages in Dequeuing

You have several options for selecting a message from a queue. You can select the first
message with the FIRST_MESSAGE navigation option. Alternatively, once you have
selected a message and established its position in the queue, you can then retrieve the
next message with the NEXT_MESSAGE navigation option.

The FIRST_MESSAGE navigation option performs a SELECT on the queue. The NEXT_
MESSAGE navigation option fetches from the results of the SELECT run in the FIRST
MESSAGE navigation. Thus performance is optimized because subsequent dequeues
need not run the entire SELECT again.

If the queue is enabled for transactional grouping, then the navigation options work in
a slightly different way. If FIRST_MESSAGE is requested, then the dequeue position is
still reset to the beginning of the queue. But if NEXT_MESSAGE is requested, then the
position is set to the next message in the same transaction. Transactional grouping also
offers a NEXT_TRANSACTION option. It sets the dequeue position to the first message
of the next transaction.

Transaction grouping has no effect if you dequeue by specifying a correlation identifier
or message identifier, or if you dequeue some of the messages of a transaction and
then commit.

If you reach the end of the queue while using the NEXT_MESSAGE or NEXT_
TRANSACTION option, and you have specified a nonzero wait time, then the
navigating position is automatically changed to the beginning of the queue. If a zero
wait time is specified, then you can get an exception when the end of the queue is
reached.

Waiting for Messages

Oracle Streams AQ allows applications to block on one or more queues waiting for the
arrival of either a newly enqueued message or a message that becomes ready. You can
use the DEQUEUE operation to wait for the arrival of a message in a single queue or the
LISTEN operation to wait for the arrival of a message in more than one queue.

Note: Applications can also perform a blocking dequeue on
exception queues to wait for arrival of EXPIRED messages.

Introduction to Oracle Streams AQ 1-23

Dequeue Features

When the blocking DEQUEUE call returns, it returns the message properties and the
message payload. When the blocking LISTEN call returns, it discloses only the name
of the queue where a message has arrived. A subsequent DEQUEUE operation is
needed to dequeue the message.

When there are messages for multiple agents in the agent list, LISTEN returns with the
first agent for whom there is a message. To prevent one agent from starving other
agents for messages, the application can change the order of the agents in the agent
list.

Note: This feature is not currently supported in Visual Basic (OO40).

Applications can optionally specify a timeout of zero or more seconds to indicate the
time that Oracle Streams AQ must wait for the arrival of a message. The default is to
wait forever until a message arrives in the queue. This removes the burden of
continually polling for messages from the application, and it saves CPU and network
resources because the application remains blocked until a new message is enqueued or
becomes READY after its DELAY time.

An application that is blocked on a dequeue is either awakened directly by the
enqueuer if the new message has no DELAY or is awakened by the queue monitor
process when the DELAY or EXPIRATION time has passed. If an application is waiting
for the arrival of a message in a remote queue, then the Oracle Streams AQ propagator
wakes up the blocked dequeuer after a message has been propagated.

Retries with Delays

If the transaction dequeuing a message from a queue fails, then it is regarded as an
unsuccessful attempt to consume the message. Oracle Streams AQ records the number
of failed attempts to consume the message in the message history. Applications can
query the RETRY_COUNT column of the queue table view to find out the number of
unsuccessful attempts on a message. In addition, Oracle Streams AQ allows the
application to specify, at the queue level, the maximum number of retries for messages
in the queue. The default value for maximum retries is 5. If the number of failed
attempts to remove a message exceeds this number, then the message is moved to the
exception queue and is no longer available to applications.

Note: If a dequeue transaction fails because the server process dies
(including ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on
the instance, then RETRY_COUNT is not incremented.

A bad condition can cause the transaction receiving a message to end. Oracle Streams
AQ allows users to hide the bad message for a specified retry delay interval, during
which it is in the WAITING state. After the retry delay, the failed message is again
available for dequeue. The Oracle Streams AQ time manager enforces the retry delay
property. The default value for retry delay is 0.

If multiple sessions are dequeuing messages from a queue simultaneously, then
RETRY_COUNT information might not always be updated correctly. If session one
dequeues a message and rolls back the transaction, then Oracle Streams AQ notes that
the RETRY_COUNT information for this message must be updated. However RETRY__
COUNT cannot be incremented until session one completes the rollback. If session two
attempts to dequeue the same message after session one has completed the rollback
but before it has incremented RETRY_COUNT, then the dequeue by session two
succeeds. When session one attempts to increment RETRY_ COUNT, it finds that the

1-24 Oracle Streams Advanced Queuing User’'s Guide

Dequeue Features

message is locked by session two and RETRY_COUNT is not incremented. A trace file is
then generated in the USER_DUMP_DESTINATION for the instance with the following
message:

Error on rollback: ORA-25263: no message in queue schema.gname with message ID ...

Note: Maximum retries and retry delay are not available with
8.0-style multiconsumer queues.

Queues created in a queue table with compatible setto 8.0
(referred to in this guide as 8.0-style queues) are deprecated in Oracle
Streams AQ 10g Release 2 (10.2). Oracle recommends that any new
queues you create be 8.1-style or newer and that you migrate existing
8.0-style queues at your earliest convenience.

Optional Transaction Protection

Enqueue and dequeue requests are usually part of a transaction that contains the
requests, thereby providing the wanted transactional action. You can, however,
specify that a specific request is a transaction by itself, making the result of that request
immediately visible to other transactions. This means that messages can be made
visible to the external world when the enqueue or dequeue statement is applied or
after the transaction is committed.

Note: Transaction protection is not supported for buffered
messaging.

Exception Queues

An exception queue is a repository for expired or unserviceable messages.
Applications cannot directly enqueue into exception queues. Also, a multiconsumer
exception queue cannot have subscribers associated with it. However, an application
that intends to handle these expired or unserviceable messages can dequeue them
exactly once from the exception queue using remove mode. The consumer name
specified while dequeuing should be null. Messages can also be dequeued from the
exception queue by specifying the message identifier.

Note: Expired or unserviceable buffered messages are moved to an
exception queue as persistent messages.

Messages intended for single-consumer queues, or for 8.0-style
multiconsumer queues, can only be dequeued by their message
identifiers once the messages have been moved to an exception queue.

Queues created in a queue table with compatible setto 8.0
(referred to in this guide as 8.0-style queues) are deprecated in Oracle
Streams AQ 10g Release 2 (10.2). Oracle recommends that any new
queues you create be 8.1-style or newer and that you migrate existing
8.0-style queues at your earliest convenience.

After a message has been moved to an exception queue, there is no way to identify
which queue the message resided in before moving to the exception queue. If this
information is important, then the application must save this information in the
message itself.

Introduction to Oracle Streams AQ 1-25

Propagation Features

The exception queue is a message property that can be specified during enqueue time.
If an exception queue is not specified, then a default exception queue is used. The
default exception queue is automatically created when the queue table is created.

A message is moved to an exception queue under the following conditions:
s It was not dequeued within the specified expiration interval.

For a message intended for multiple recipients, the message is moved to the
exception queue if one or more of the intended recipients was not able to dequeue
the message within the specified expiration interval. The default expiration
interval is never, meaning the messages does not expire.

= The message was dequeued successfully, but the application that dequeued it
rolled back the transaction because of an error that arose while processing the
message. If the message has been dequeued but rolled back more than the number
of times specified by the retry limit, then the message is moved to the exception
queue.

For a message intended for multiple recipients, a separate retry count is kept for
each recipient. The message is moved to the exception queue only when retry
counts for all recipients of the message have exceeded the specified retry limit.

The default retry limit is five for single-consumer queues and 8.1-style
multiconsumer queues. No retry limit is supported for 8.0-style multiconsumer
queues, which are deprecated in Oracle Streams AQ 10g Release 2 (10.2).

Note: If a dequeue transaction fails because the server process dies
(including ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on
the instance, then RETRY_ COUNT is not incremented.

» The statement processed by the client contains a dequeue that succeeded but the
statement itself was undone later due to an exception.

If the dequeue procedure succeeds but the PL/SQL procedure raises an exception,
then Oracle Streams AQ increments the retry count of the message returned by the
dequeue procedure.

» The client program successfully dequeued a message but terminated before
committing the transaction.

Propagation Features

Messages can be propagated from one queue to another, allowing applications to
communicate with each other without being connected to the same database or to the
same queue. The destination queue can be located in the same database or in a remote
database.

Propagation enables you to fan out messages to a large number of recipients without
requiring them all to dequeue messages from a single queue. You can also use
propagation to combine messages from different queues into a single queue. This is
known as compositing or funneling messages.

Note: You can propagate messages from a multiconsumer queue to a
single-consumer queue. Propagation from a single-consumer queue to
a multiconsumer queue is not possible.

1-26 Oracle Streams Advanced Queuing User’'s Guide

Propagation Features

A message is marked as processed in the source queue immediately after the message
has been propagated, even if the consumer has not dequeued the message at the
remote queue. Similarly, when a propagated message expires at the remote queue, the
message is moved to the exception queue of the remote queue, and not to the
exception queue of the local queue. Oracle Streams AQ does not currently propagate
the exceptions to the source queue.

To enable propagation, one or more subscribers are defined for the queue from which
messages are to be propagated and a schedule is defined for each destination where
messages are to be propagated from the queue.

Oracle Streams AQ automatically checks if the type of the remote queue is structurally
equivalent to the type of the local queue within the context of the character sets in
which they are created. Messages enqueued in the source queue are then propagated
and automatically available for dequeuing at the destination queue or queues.

When messages arrive at the destination queues, sessions based on the source queue
schema name are used for enqueuing the newly arrived messages into the destination
queues. This means that you must grant schemas of the source queues enqueue
privileges to the destination queues.

Propagation runs as an Oracle Scheduler job. A background process, the JOB_QUEUE_
PROCESS will run the job. Propagation scheduling may be a dedicated process,
running continuously and without end, or it may be event driven, in which case it
runs only if there is a message to be propagated.

Oracle Streams AQ offers two kinds of propagation:

s Queue-to-dblink propagation

= Queue-to-queue propagation

Queue-to-dblink propagation delivers messages or events from the source queue to all
subscribing queues at the destination database identified by the dblink.

A single propagation schedule is used to propagate messages to all subscribing
queues. Hence any changes made to this schedule will affect message delivery to all
the subscribing queues.

Queue-to-queue propagation delivers messages or events from the source queue to a
specific destination queue identified on the dblink. This allows the user to have
fine-grained control on the propagation schedule for message delivery.

This new propagation mode also supports transparent failover when propagating to a
destination RAC system. With queue-to-queue propagation, you are no longer
required to re-point a database link if the owner instance of the queue fails on RAC.

Oracle Streams AQ provides detailed statistics about the messages propagated and the
schedule itself. This information can be used to tune propagation schedules for best
performance.

Remote Consumers

Consumers of a message in multiconsumer queues can be local or remote. Local
consumers dequeue messages from the same queues into which the producer
enqueued the messages. Local consumers have a name but no address or protocol in
their agent descriptions.

Remote consumers dequeue from queues that are different from the queues where the
messages were enqueued. Remote consumers fall into three categories:

s The address refers to a queue in the same database.

Introduction to Oracle Streams AQ 1-27

Propagation Features

In this case the consumer dequeues the message from a different queue in the
same database. These addresses are of the form [schema].queue_name. If the
schema is not specified, then the schema of the current user is used.

s The address refers to a queue in a different database.

In this case the database must be reachable using database links and the protocol
must be either NULL or 0. These addresses are of the form [schema].queue_
name@dblink. If the schema is not specified, then the schema of the current user
is used. If the database link does not have a domain name specified, then the
default domain as specified by the DB_DOMAIN init.ora parameter is used.

s The address refers to a destination that can be reached by a third party protocol.

You must refer to the documentation of the third party software to determine how
to specify the address and the protocol database link and schedule propagation.

Propagation to Remote Subscribers

Oracle Streams AQ validates the database link specified in a propagation schedule
when the schedule runs, but not when the schedule is created. It is possible, therefore,
to create a queue-to-dblink or queue-to-queue propagation before creating its
associated database link. Also, the propagation schedule is not disabled if you remove
the database link.

Oracle Streams AQ offers two kinds of propagation:

A) Queue-to-dblink propagation - specified by providing a (source) queue and
(destination) databaselink. Messages from the source queue for any queues at the
destination specified by the dblink will be handled by this propagation.

In this scenario, we cannot have multiple propagations from a source queue, with
dblinks connecting to the same database. Thus(ql, dblink1) and (q1, dblink2) cannot
co-exist if both dblinks connect to the same database. On the other hand (q1, dblink1)
and (g2, dblink1) OR (q1, dblink1) and (q2, dblink2) can co-exist as source queues are
different.

B) Queue-to-queue propagation - specified by providing a (source) queue,
(destination) dblink and (destination) queue. Messages from the source queue for the
indicated queue at the destination dblink will be handled by this propagation. Here,
either (q1, dblink1, dql), (q1, dblink1, dgq2) OR (q1, dblink1, dql), (q1, dblink2, dq2)
succeeds. This strategy works because the destination queues are different even
though source queue is the same and dblink connects to the same database.

In this scenario, we cannot have multiple propagations between a source queue,
destination queue, even if using different dblinks: (q1, dblink1, q2) and (q1, dblink2,
g2) cannot co-exist, if dblinkl and dblink2 are pointing to the same database.

Priority and Ordering of Messages in Propagation

The delay, expiration, and priority parameters apply identically to both local and
remote consumers in both queue-to-dblink and queue-to-queue propagation. Oracle
Streams AQ accounts for any delay in propagation by adjusting the delay and
expiration parameters accordingly. For example, if expiration is set to one hour, and
the message is propagated after 15 minutes, then the expiration at the remote queue is
set to 45 minutes.

Inboxes and Outboxes

Figure 1-9 illustrates applications on different databases communicating using Oracle
Streams AQ. Each application has an inbox for handling incoming messages and an
outbox for handling outgoing messages. Whenever an application enqueues a

1-28 Oracle Streams Advanced Queuing User's Guide

Propagation Features

message, it goes into its outbox regardless of the message destination. Similarly, an
application dequeues messages from its inbox no matter where the message originates.

Figure 1-9 Message Propagation in Oracle Streams AQ

Database 1

Application A
producer & consumer

Dequeue
Enqueue

Outbox Inbox

; AQ's
J/ Message
Propagation
Infrastructure

e
Piand S

Database 2

Inbox Outbox Inbox QOutbox

Enqueue Enqueue

Dequeue Dequeue

Application B

Application C
consumer & producer

consumer & producer

Propagation Scheduling

A queue-to-dblink propagation schedule is defined for a pair of source and destination
database links. A queue-to-queue propagation schedule is defined for a pair of source
and destination queues. If a queue has messages to be propagated to several queues,
then a schedule must be defined for each of the destination queues. With
queue-to-dblink propagation, all schedules for a particular remote database have the
same frequency. With queue-to-queue propagation, the frequency of each schedule can
be adjusted independently of the others

A schedule indicates the time frame during which messages can be propagated from
the source queue. This time frame can depend on a number of factors such as network
traffic, load at the source database, and load at the destination database. If the duration

Introduction to Oracle Streams AQ 1-29

Propagation Features

is unspecified, then the time frame is an infinite single window. If a window must be
repeated periodically, then a finite duration is specified along with a NEXT_TIME
function that defines the periodic interval between successive windows.

When a schedule is created, a job is automatically submitted to the job queue facility to
handle propagation.

The propagation schedules defined for a queue can be changed or dropped at any time
during the life of the queue. You can also temporarily disable a schedule instead of
dropping it. All administrative calls can be made irrespective of whether the schedule
is active or not. If a schedule is active, then it takes a few seconds for the calls to be
processed.

Propagation of Messages with LOBs
Large Objects can be propagated using Oracle Streams AQ using two methods:

= Propagation from RAW queues

In RAW queues the message payload is stored as a BLOB. This allows users to
store up to 32KB of data when using the PL/SQL interface and as much data as
can be contiguously allocated by the client when using OCI. This method is
supported by all releases after 8.0.4 inclusive.

= Propagation from object queues with LOB attributes

The user can populate the LOB and read from the LOB using Oracle Database LOB
handling routines. The LOB attributes can be BLOBs or CLOBs (not NCLOBs). If the
attribute is a CLOB, then Oracle Streams AQ automatically performs any necessary
character set conversion between the source queue and the destination queue. This
method is supported by all releases from 8.1.3 inclusive.

Note: Payloads containing LOBs require users to grant explicit
Select, Insert and Update privileges on the queue table for doing
enqueues and dequeues.

See Also: Oracle Database SecureFiles and Large Objects Developer’s
Guide

Propagation Statistics

Detailed runtime information about propagation is gathered and stored in the DBA_
QUEUE_SCHEDULES view for each propagation schedule. This information can be used
by queue designers and administrators to fix problems or tune performance. Similarly,
errors reported by the view can be used to diagnose and fix problems. The view also
describes additional information such as the session ID of the session handling the
propagation and the process name of the job queue process handling the propagation.

For each schedule, detailed propagation statistics are maintained:
= Total number of messages propagated in a schedule

= Total number of bytes propagated in a schedule

» Maximum number of messages propagated in a window

s Maximum number of bytes propagated in a window

= Average number of messages propagated in a window

= Average size of propagated messages

1-30 Oracle Streams Advanced Queuing User’'s Guide

Propagation Features

= Average time to propagated a message

Propagation Error Handling

Propagation has built-in support for handling failures and reporting errors. For
example, if the specified database link is invalid, if the remote database is unavailable,
or if the remote queue is not enabled for enqueuing, then the appropriate error
message is reported. Propagation uses an exponential backoff scheme for retrying
propagation from a schedule that encountered a failure.

If a schedule continuously encounters failures, then the first retry happens after 30
seconds, the second after 60 seconds, the third after 120 seconds and so forth. If the
retry time is beyond the expiration time of the current window, then the next retry is
attempted at the start time of the next window. A maximum of 16 retry attempts is
made, after which the schedule is automatically disabled.

Note: Once a retry attempt slips to the next propagation window, it
will always do so; the exponential backoff scheme no longer governs
retry scheduling. If the date function specified in the next_time
parameter of DBMS_AQADM. SCHEDULE_PROPAGATION () results in a
short interval between windows, then the number of unsuccessful
retry attempts can quickly exceed 16, disabling the schedule.

When a schedule is disabled automatically due to failures, the relevant information is
written into the alert log. A check for scheduling failures indicates:

= How many successive failures were encountered
s The error message indicating the cause for the failure
s The time at which the last failure was encountered

By examining this information, a queue administrator can fix the failure and enable
the schedule. If propagation is successful during a retry, then the number of failures is
reset to 0.

In some situations that indicate application errors in queue-to-dblink propagations,
Oracle Streams AQ marks messages as UNDELIVERABLE and logs a message in
alert.log. Examples of such errors are when the remote queue does not exist or
when there is a type mismatch between the source queue and the remote queue. The
trace files in the background_dump_dest directory can provide additional
information about the error.

When a new job queue process starts, it clears the mismatched type errors so the types
can be reverified. If you have capped the number of job queue processes and
propagation remains busy, then you might not want to wait for the job queue process
to terminate and restart. Queue types can be reverified at any time using DBMS_
AQADM.VERIFY_QUEUE_TYPES.

Note: When a type mismatch is detected in queue-to-queue
propagation, propagation stops and throws an error. In such situations
you must query the DBA_SCHEDULES view to determine the last error
that occurred during propagation to a particular destination. The
message is not marked as UNDELIVERABLE.

Introduction to Oracle Streams AQ 1-31

Propagation Features

Propagation with Real Application Clusters

Propagation has support built-in for Oracle Real Application Clusters. It is transparent
to the user and the queue administrator. The job that handles propagation is submitted
to the same instance as the owner of the queue table where the queue resides.

If there is a failure at an instance and the queue table that stores the source queue is
migrated to a different instance, then the propagation job is also migrated to the new
instance. This minimizes pinging between instances and thus offers better
performance.

The destination can be identified by a database link or by destination queue name.
Specifying the destination database results in queue-to-dblink propagation. If you
propagate messages to several queues in another database, then all queue-to-dblink
propagations to that database have the same frequency. Specifying the destination
queue name results in queue-to-queue propagation, a new feature in Oracle Streams
AQ 10g Release 2 (10.2). If you propagate messages to several queues in another
database, then queue-to-queue propagation enables you to adjust the frequency of
each schedule independently of the others. You can even enable or disable individual
propagations.

This new queue-to-queue propagation mode also supports transparent failover when
propagating to a destination RAC system. With queue-to-queue propagation, you are
no longer required to re-point a database link if the owner instance of the queue fails
on RAC.

See Also: "Scheduling a Queue Propagation” on page 8-24 for more
information on queue-to-queue propagation

Propagation has been designed to handle any number of concurrent schedules. The
number of job queue processes is limited to a maximum of 1000, and some of these can
be used to handle jobs unrelated to propagation. Hence, propagation has built-in
support for multitasking and load balancing.

The propagation algorithms are designed such that multiple schedules can be handled
by a single job queue process. The propagation load on a job queue process can be
skewed based on the arrival rate of messages in the different source queues.

If one process is overburdened with several active schedules while another is less
loaded with many passive schedules, then propagation automatically redistributes the
schedules so they are loaded uniformly.

Third-Party Support

If the protocol number for a recipient is in the range 128 - 255, then the address of the
recipient is not interpreted by Oracle Streams AQ and the message is not propagated
by the Oracle Streams AQ system. Instead, a third-party propagator can dequeue the
message by specifying a reserved consumer name in the dequeue operation. The
reserved consumer names are of the form AQ$_Pprotocol_number. For example,
the consumer name AQ$_P128 can be used to dequeue messages for recipients with
protocol number 128. The list of recipients for a message with the specific protocol
number is returned in the recipient_1list message property on dequeue.

Another way for Oracle Streams AQ to propagate messages to and from third-party
messaging systems is through Messaging Gateway. Messaging Gateway dequeues
messages from an Oracle Streams AQ queue and guarantees delivery to supported
third-party messaging systems. Messaging Gateway can also dequeue messages from
these systems and enqueue them to an Oracle Streams AQ queue.

1-32 Oracle Streams Advanced Queuing User’'s Guide

Other Oracle Streams AQ Features

Propagation Using HTTP

In Oracle Database 10g you can set up Oracle Streams AQ propagation over HTTP and
HTTPS (HTTP over SSL). HTTP propagation uses the Internet access infrastructure
and requires that the Oracle Streams AQ servlet that connects to the destination
database be deployed. The database link must be created with the connect string
indicating the Web server address and port and indicating HTTP as the protocol. The
source database must be created for running Java and XML. Otherwise, the setup for
HTTP propagation is more or less the same as Oracle Net Services propagation.

Message Format Transformation

Applications often use data in different formats. A transformation defines a mapping
from one Oracle data type to another. The transformation is represented by a SQL
function that takes the source data type as input and returns an object of the target
data type. Only one-to-one message transformations are supported.

To transform a message during enqueue, specify a mapping in the enqueue options. To
transform a message during dequeue, specify a mapping either in the dequeue options
or when you add a subscriber. A dequeue mapping overrides a subscriber mapping.
To transform a message during propagation, specify a mapping when you add a
subscriber.

You can create transformations by creating a single PL/SQL function or by creating an
expression for each target type attribute. The PL/SQL function returns an object of the
target type or the constructor of the target type. This representation is preferable for
simple transformations or those not easily broken down into independent
transformations for each attribute.

Creating a separate expression specified for each attribute of the target type simplifies
transformation mapping creation and management for individual attributes of the
destination type. It is useful when the destination type has many attributes.

As Figure 1-10 shows, queuing, routing, and transformation are essential building
blocks to an integrated application architecture. The figure shows how data from the
Out queue of a CRM application is routed and transformed in the integration hub and
then propagated to the In queue of the Web application. The transformation engine
maps the message from the format of the Out queue to the format of the In queue.

Figure 1-10 Transformations in Application Integration

Integration Hub

CRM > Out Queue > Routing and > : > In Queue > Web
Application e s < Transformation Propagation e s < Application
Spoke Spoke

XML Data Transformation

You can transform XML data using the extract () method supported on XMLType
to return an object of XMLType after applying the supplied XPath expression. You can
also create a PL/SQL function that transforms the XML Type object by applying an
XSLT transformation to it, using the package XSLPROCESSOR.

Other Oracle Streams AQ Features

This section contains these topics:

s Queue Monitor Coordinator

Introduction to Oracle Streams AQ 1-33

Other Oracle Streams AQ Features

s Integration with Oracle Internet Directory

s Integration with Oracle Enterprise Manager
= Retention and Message History

s Cleaning Up Message Queues

s Tracking and Event Journals

= Non-repudiation

= Internet Integration

Queue Monitor Coordinator

Before 10g Release 1 (10.1), the Oracle Streams AQ time manager process was called
queue monitor (QMNn), a background process controlled by setting the dynamic
init.ora parameter AQ_TM_PROCESSES. Beginning with 10g Release 1 (10.1), time
management and many other background processes are automatically controlled by a
coordinator-slave architecture called Queue Monitor Coordinator (QMNC). QMNC
dynamically spawns slaves named gXXX depending on the system load. The slaves
provide mechanisms for:

= Message delay

s Message expiration

= Retry delay

= Garbage collection for the queue table

= Memory management tasks for buffered messages

Because the number of processes is determined automatically and tuned constantly,
you are saved the trouble of setting it with AQ_TM_PROCESSES.

Although it is no longer necessary to set init.ora parameter AQ_TM_PROCESSES, it
is still supported. If you do set it (up to a maximum of 10), then QMNC still autotunes
the number of processes. But you are guaranteed at least the set number of processes
for persistent queues. Processes for a buffered queue and other Oracle Streams tasks,
however, are not affected by this parameter.

Note: If you want to disable the Queue Monitor Coordinator, then
you must set AQ_TM_PROCESSES = Oinyourpfileorspfile.
Oracle strongly recommends that you do NOT set A0_TM_
PROCESSES = 0. If you are using Oracle Streams, setting this
parameter to zero (which Oracle Database respects no matter what)
can cause serious problems.

Integration with Oracle Internet Directory

Oracle Internet Directory is a native LDAPv3 directory service built on Oracle
Database that centralizes a wide variety of information, including e-mail addresses,
telephone numbers, passwords, security certificates, and configuration data for many
types of networked devices. You can look up enterprise-wide queuing
information—queues, subscriptions, and events—from one location, the Oracle
Internet Directory. Refer to the Oracle Internet Directory Administrator’s Guide for more
information.

1-34 Oracle Streams Advanced Queuing User’'s Guide

Other Oracle Streams AQ Features

Integration with Oracle Enterprise Manager
You can use Oracle Enterprise Manager to:

s Create and manage queues, queue tables, propagation schedules, and
transformations

= Monitor your Oracle Streams AQ environment using its topology at the database
and queue levels, and by viewing queue errors and queue and session statistics

Retention and Message History

The systems administrator specifies the retention duration to retain messages after
consumption. Oracle Streams AQ stores information about the history of each
message, preserving the queue and message properties of delay, expiration, and
retention for messages destined for local or remote receivers. The information contains
the enqueue and dequeue times and the identification of the transaction that executed
each request. This allows users to keep a history of relevant messages. The history can
be used for tracking, data warehouse, and data mining operations, as well as specific
auditing functions.

Message retention is not supported for buffered messaging.

Cleaning Up Message Queues

The Oracle Streams AQ retention feature can be used to automatically clean up
messages after the user-specified duration after consumption.

If messages are accidentally inserted into a queue for the wrong subscriber, you can
dequeue them with the subscriber name or by message identifier. This consumes the
messages, which are cleaned up after their retention time expires.

To clean up messages for a particular subscriber, you can remove the subscriber and
add the subscriber again. Removing the subscriber removes all the messages for that
subscriber.

Tracking and Event Journals

Retained messages can be related to each other to form sequences. These sequences
represent event journals, which are often constructed by applications. Oracle Streams
AQ is designed to let applications create event journals automatically.

Non-repudiation

Oracle Streams AQ maintains the entire history of information about a message along
with the message itself. This information serves as proof of sending and receiving of
messages and can be used for non-repudiation of the sender and non-repudiation of
the receiver.

The following information is kept at enqueue for non-repudiation of the enqueuer:
= Oracle Streams AQ agent doing the enqueue

= Database user doing the enqueue

= Enqueue time

s Transaction ID of the transaction doing enqueue

The following information is kept at dequeue for non-repudiation of the dequeuer:
= Oracle Streams AQ agent doing dequeue

= Database user doing dequeue

Introduction to Oracle Streams AQ 1-35

Other Oracle Streams AQ Features

= Dequeue time
s Transaction ID of the transaction doing dequeue

After propagation, the ORIGINAL_MSGID field in the destination queue of the
propagation corresponds to the message ID of the source message. This field can be
used to correlate the propagated messages. This is useful for non-repudiation of the
dequeuer of propagated messages.

Stronger non-repudiation can be achieved by enqueuing the digital signature of the
sender at the time of enqueue with the message and by storing the digital signature of
the dequeuer at the time of dequeue.

Internet Integration

You can access Oracle Streams AQ over the Internet by using Simple Object Access
Protocol (SOAP). Internet Data Access Presentation (IDAP) is the SOAP specification
for Oracle Streams AQ operations. IDAP defines the XML message structure for the
body of the SOAP request.

An IDAP message encapsulates the Oracle Streams AQ request and response in XML.
IDAP is used to perform Oracle Streams AQ operations such as enqueue, dequeue,
send notifications, register for notifications, and propagation over the Internet
standard transports—HTTP(s) and e-mail. In addition, IDAP encapsulates
transactions, security, transformation, and the character set ID for requests.

You can create an alias to an Oracle Streams AQ agent in Oracle Internet Directory and
then use the alias in IDAP documents sent over the Internet to perform Oracle Streams
AQ operations. Using aliases prevents exposing the internal name of the Oracle
Streams AQ agent.

Figure 1-11 shows the architecture for performing Oracle Streams AQ operations over
HTTP. The major components are:

s Oracle Streams AQ client program
» Web server/servlet runner hosting the Oracle Streams AQ servlet
s Oracle Database server

The Oracle Streams AQ client program sends XML messages (conforming to IDAP) to
the Oracle Streams AQ servlet, which understands the XML message and performs
Oracle Streams AQ operations. Any HTTP client, a Web browser for example, can be
used. The Web server/servlet runner hosting the Oracle Streams AQ servlet,
Apache/]Jserv or Tomcat for example, interprets the incoming XML messages. The
Oracle Streams AQ servlet connects to the Oracle Database server and performs
operations on user queues.

Note: This feature is certified to work with Apache, along with the
Tomcat or Jserv servlet execution engines. However, the code does not
prevent the servlet from working with other Web server and servlet
execution engines that support Java Servlet 2.0 or higher interfaces.

1-36 Oracle Streams Advanced Queuing User’'s Guide

Oracle Streams AQ Demonstrations

Figure 1-11 Architecture for Performing Oracle Streams AQ Operations Using HTTP

Oracle
Web Database
Server Server

=l

= |
Yy — 9?539

XML Message
[:. over HTTP
—
AQ Servlet
Queue

AQ Client L:'

Interfaces to Oracle Streams AQ
You can access Oracle Streams AQ functionality through the following interfaces:
= PL/SQL using DBMS_AQ, DBMS_AQADM, and DBMS_AQELM
= Visual Basic using Oracle Objects for OLE
= Java Message Service (JMS) using the oracle. jms Java package

= Internet access using HTTP(S)

Note: The oracle.AQ Java package was deprecated in Oracle
Streams AQ 10g Release 1 (10.1). Oracle recommends that you migrate
existing Java AQ applications to Oracle JMS and use Oracle JMS to
design your future Java AQ applications.

See Also:
» Oracle Database PL/SQL Packages and Types Reference
= Online Help for Oracle Objects for OLE

Oracle Streams AQ Demonstrations

Oracle Streams AQ demos can be installed from the Oracle Database Companion CD.
Once they are installed, you can find them in the SORACLE_HOME/rdbms /demo
directory. Refer to agxm1lREADME. txt and agjmsREADME. txt in the demo directory
for more information.

Table 1-1 lists and briefly describes the PL/SQL and OCI demos. Table 1-2 lists and
briefly describes the JMS demos. Table 1-3 lists and briefly describes the XML demos.

Table 1-1 Oracle Streams AQ Demonstrations

Demo and Locations Topic

agdemo00.sgl Create users, message types, and tables

agdemo01.sgl Create queue tables, queues, subscribers, and propagation schedule
agdemo02.sqgl Enqueue messages into input queue

agdemo03.sgl Install dequeue procedures

agdemo04 .sgl Perform blocking dequeues

agdemo05.sgl Perform listen for multiple agents

Introduction to Oracle Streams AQ 1-37

Oracle Streams AQ Demonstrations

Table 1-1 (Cont.) Oracle Streams AQ Demonstrations

Demo and Locations

Topic

agdemo06 .

agdemo07.

agdemo08.

agdemo09.

agdemol0.
agdemoll.

agdemol2.

sqgl

sqgl

sql

sql

sql
sqgl

sql

ociagdemo00.c

ociagdemo0l.c

ociagdemo02.c

ociagarrayendg.c

ociagarraydeq.c

Clean up users, queue tables, queues, and subscribers in
agdemo00.sgl to agdemo05.sgl

Enqueue and dequeue to XMLType queue using XPATH
expressions

Demonstrates server-to-server email notifications with default XML
presentation

Set up queues and subscribers for array enqueue and dequeue (for
OClI array demos also)

Array enqueue 10 messages
Array dequeue 10 messages

Clean up queues and subscribers for array enqueue and dequeue
(for OCI array demos also)

Enqueue messages

Perform blocking dequeues
Perform listen for multiple agents
Array enqueue 10 messages

Array dequeue 10 messages

Table 1-2 Oracle Streams AQ JMS Demonstrations

Demo and Locations

Topic

agjmsREADME. txt

agjmsdmo.sqgl

agjmsdemo01l.java

agjmsdemo02 .

agjmsdemo03.

agjmsdemo04.

agjmsdemo05.

agjmsdemo06 .

agjmsdemo07.

agjmsdemo08.

agjmsdemo09.

agjmsdemol0.

agjmsdrp.sqgl

agoradmo.sqgl

java
java
java
java
java
java
java
java

java

agorademo0l. java

agorademo02.java

agoradrp.sqgl

agjmskprb0l.java

Describes the Oracle Streams AQ Java API and JMS demos

Set up Oracle Streams AQ JMS demos

Enqueue text messages and dequeue based on message properties
Message listener demo (enqueue messages)

Message listener demo (set up listener and dequeue messages)
Oracle type payload: dequeue on payload content

Queue browser example

Schedule propagation between queues in the database

Send and receive an ADT message containing XML data

JMS 1.1 domain unification demo

JMS bulk array enqueue and dequeue

ANYDATA messaging with JMS message types and ADT messages
Clean up AQ JMS demos

Set up Oracle Streams AQ Java API demos

Enqueue and dequeue RAW messages

Enqueue and dequeue object type messages using ORAData
interface

Clean up AQ Java API demos

Enqueues and dequeues a message within the database

1-38 Oracle Streams Advanced Queuing User’'s Guide

Oracle Streams AQ Demonstrations

Table 1-2 (Cont.) Oracle Streams AQ JMS Demonstrations

Demo and Locations

Topic

agjmskprblla.sgl
agjmskprb0lb.sgl
agjmskprbl0lc.sgl

agjmskprb0ld.sgl

Set up kprb driver demo
Defines Java program agjmskprb01 . java as stored procedure
Runs agjmskprb01. java as stored procedure

Clean up AQ kprb driver demo

Table 1-3 Oracle Streams AQ XML Demonstrations

Demo and Locations

Topic

agxmlREADME. txt
agxmldmo.sqgl

agxml01.xml

agxml02.xml

agxml03.xml

agxml04.xml

agxml05.xml

agxml06.xml

agxml07.xml

agxml08.xml

agxml09.xml

agxmll10.xml
agxmlhtp.sqgl
AQDemoServlet.java
AQPropServlet.java

agxmldrp.sqgl

Describes the Internet access demos
Create users, queue tables, and queues

AQXmlSend: Enqueue three messages to an ADT single- consumer
queue with piggyback commit

AQXmlReceive: Dequeue messages from ADT single-consumer
queue with piggyback commit

AQXmIPublish: Enqueue two messages to an ADT multiconsumer
queue

AQXmlReceive: Dequeue messages from an ADT (with LOB)
multiconsumer queue

AQXmlCommit: Commit previous operation

AQXmlSend: Enqueue a message to a JMS TEXT single-consumer
queue with piggyback commit

AQXmlIReceive: Dequeue messages from a JMS TEXT
single-consumer queue with piggyback commit

AQXmIPublish: Enqueue a J]MS MAP message with recipient into
multiconsumer queue

AQXmlIReceive: Dequeue J]MS MAP messages from a
multiconsumer queue

AQXmIRollback: Roll back previous operation

HTTP propagation

Servlet to post Oracle Streams AQ XML files (for Jserv)
Servlet for Oracle Streams AQ HTTP propagation
Clean up AQ XML demo

Introduction to Oracle Streams AQ 1-39

Oracle Streams AQ Demonstrations

1-40 Oracle Streams Advanced Queuing User’s Guide

2

Basic Components

This chapter describes the Oracle Streams Advanced Queuing (AQ) basic components.

This chapter contains the following topics:

Object Name

object_name :
object_name :

Object Name

Type Name

AQ Agent Type

AQ Recipient List Type

AQ Agent List Type

AQ Subscriber List Type

AQ Registration Information List Type
AQ Post Information List Type

AQ Registration Information Type
AQ Notification Descriptor Type
AQ Message Properties Type

AQ Post Information Type
AQ$_NTFN_MSGID_ARRAY Type

Enumerated Constants in the Oracle Streams AQ Administrative Interface

Enumerated Constants in the Oracle Streams AQ Operational Interface

AQ Background Processes

See Also:

» Chapter 8, "Oracle Streams AQ Administrative Interface"
s Chapter 10, "Oracle Streams AQ Operations Using PL/SQL"

VARCHAR2
[schema_name.] name

This component names database objects. This naming convention applies to queues,
queue tables, and object types.

Names for objects are specified by an optional schema name and a name. If the schema
name is not specified, then the current schema is assumed. The name must follow the

Basic Components 2-1

Type Name

Type Name

reserved character guidelines in Oracle Database SQL Language Reference. The schema
name, agent name, and the object type name can each be up to 30 bytes long.
However, queue names and queue table names can be a maximum of 24 bytes.

type_name := VARCHAR2
type_name := object_type | "RAW"

This component defines queue types. For details on creating object types refer to Oracle
Database Concepts. The maximum number of attributes in the object type is limited to
900.

To store payloads of type RAW, Oracle Streams AQ) creates a queue table with a LOB
column as the payload repository. The size of the payload is limited to 32K bytes of
data. Because LOB columns are used for storing RAW payload, the Oracle Streams AQ
administrator can choose the LOB tablespace and configure the LOB storage by
constructing a LOB storage string in the storage_clause parameter during queue
table creation time.

Note: Payloads containing LOBs require users to grant explicit
Select, Insert and Update privileges on the queue table for doing
enqueues and dequeues.

AQ Agent Type

TYPE AQ$_AGENT IS OBJECT (

name VARCHAR2 (30),
address VARCHAR2 (1024) ,
protocol NUMBER) ;

This component identifies a producer or a consumer of a message.

All consumers that are added as subscribers to a multiconsumer queue must have
unique values for the AQ$_AGENT parameters. Two subscribers cannot have the same
values for the NAME, ADDRESS, and PROTOCOL attributes for the AQ$_AGENT type. At
least one of the three attributes must be different for two subscribers.

You can add subscribers by repeatedly using the DBMS_AQADM . ADD_SUBSCRIBER
procedure up to a maximum of 1024 subscribers for a multiconsumer queue.

This type has three attributes:
] name

This attribute specifies the name of a producer or consumer of a message. It can be
the name of an application or a name assigned by an application. A queue can
itself be an agent, enqueuing or dequeuing from another queue. The name must
follow the reserved character guidelines in Oracle Database SQL Language Reference.

m address

This attribute is interpreted in the context of protocol. If protocol is 0
(default), then address is of the form [schema.]queue[@dblink].

m protocol

This attribute specifies the protocol to interpret the address and propagate the
message. The default value is 0.

2-2 Oracle Streams Advanced Queuing User’s Guide

AQ Registration Information Type

AQ Recipient List Type

TYPE AQ$_RECIPIENT LIST T IS TABLE OF ag$_agent
INDEX BY BINARY_INTEGER;

This component identifies the list of agents that receive a message.

AQ Agent List Type

TYPE AQ$_AGENT LIST T IS TABLE OF ag$_agent
INDEX BY BINARY INTEGER;

This component identifies the list of agents for DBMS_AQ . LISTEN to listen for.

AQ Subscriber List Type

TYPE AQ$_SUBSCRIBER_LIST T IS TABLE OF ag$_agent
INDEX BY BINARY INTEGER;

This component identifies the list of subscribers that subscribe to this queue.

AQ Registration Information List Type

TYPE AQ$_REG_INFO_LIST AS VARRAY(1024) OF sys.aq$_reg_info;

This component identifies the list of registrations to a queue.

AQ Post Information List Type

TYPE AQS$S_POST_INFO_LIST AS VARRAY(1024) OF sys.ag$S_post_info;

This component identifies the list of anonymous subscriptions to which messages are
posted.

AQ Registration Information Type

TYPE SYS.AQS_REG_INFO IS OBJECT (

name VARCHAR2 (128),

namespace NUMBER,

callback VARCHAR2 (4000) ,

context RAW(2000) DEFAULT NULL,
gosflags NUMBER,

timeout NUMBER
ntfn_grouping_class NUMBER,
ntfn_grouping_value NUMBER DEFAULT 600,
ntfn_grouping_type NUMBER,
ntfn_grouping_start_time TIMESTAMP WITH TIME ZONE,

ntfn_grouping_repeat_count NUMBER) ;

This component identifies a producer or a consumer of a message. Its attributes are
described in the following list. Attributes gosflags and timeout are part of Oracle
Streams AQ 10g Release 2 (10.2) notification enhancements.

Basic Components 2-3

AQ Registration Information Type

Table 2-1 AQ$_REG_INFO Type Attributes

Attribute

Description

name

namespace

callback

context

gosflags

ntfn_grouping_class

ntfn_grouping value

ntfn_grouping_type

ntfn_grouping_start_
time

Specifies the name of the subscription. The subscription name is
of the form schema . queue if the registration is for a single
consumer queue or schema . queue : consumer_name if the
registration is for a multiconsumer queues.

Specifies the namespace of the subscription. To receive
notification from Oracle Streams AQ queues, the namespace
must be DBMS_AQ . NAMESPACE_AQ. To receive notifications
from other applications through DBMS_AQ.POST or
OCISubscriptionPost (), the namespace must be DBMS_
AQ.NAMESPACE_ANONYMOUS.

Specifies the action to be performed on message notification. For
HTTP notifications, use http: / /www.company.com: 8080. For
e-mail notifications, use mailto://xyz@company . com. For
raw message payload for the PLSQLCALLBACK procedure, use
plsqgl://schema.procedure?PR=0. For user-defined type
message payload converted to XML for the PLSQLCALLBACK
procedure, use plsqgl://schema.procedure?PR=1

Specifies the context that is to be passed to the callback function

Can be set to one or more of the following values to specify the
notification quality of service:

= NTFN_QOS_RELIABLE- This value specifies that reliable
notification is required. Reliable notifications persist across
instance and database restarts.

= NTFN_QOS_PAYLOAD - This value specifies that payload
delivery is required. It is supported only for client
notification and only for RAW queues.

= NTFN_QOS_PURGE_ON_NTFN - This value specifies that the
registration is to be purged automatically when the first
notification is delivered to this registration location.

Currently, only the following flag can be set to specify criterion
for grouping. The default value will be 0. If nt fn_grouping_
class is 0, all other notification grouping attributes must be 0.

= NTFN_GROUPING_CLASS_TIME - Notifications grouped by
time, that is, the user specifies a time value and a single
notification gets published at the end of that time.

Time-period of grouping notifications specified in seconds,
meaning the time after which grouping notification would be
sent periodically until nt fn_grouping_repeat_count is
exhausted.

= NTFN_GROUPING_TYPE_SUMMARY - Summary of all
notifications that occurred in the time interval. (Default)

s NTFN_GROUPING_TYPE_LAST - Last notification that
occurred in the interval.

Notification grouping start time. Notification grouping can start
from a user-specified time that should a valid timestamp with
time zone. If ntfn_grouping_start_time is not specified
when using grouping, the default is to current timestamp with
time zone

2-4 Oracle Streams Advanced Queuing User’s Guide

AQ Message Properties Type

Table 2-1 (Cont.) AQ$_REG_INFO Type Attributes

Attribute

Description

ntfn_grouping_
repeat_count

Grouping notifications will be sent as many times as specified by

the notification grouping repeat count and after that revert to
regular notifications. The ntfn_grouping_repeat_count, if not
specified, will default to

u NTFN_GROUPING_FOREVER - Keep sending grouping
notifications forever.

AQ Notification Descriptor Type

TYPE SYS.AQS_DESCRIPTOR IS OBJECT (

gueue_name
consumer_name
msg_id
msg_prop
gen_desc
msgid_array
ntfnsRecdInGrp

VARCHAR2 (61),

VARCHAR2 (30),

RAW(16) ,

MSG_PROP_T,
AQ$_NTFN_DESCRIPTOR,
SYS.AQ$_NTFN_MSGID_ARRAY,
NUMBER) ;

This component specifies the Oracle Streams AQ descriptor received by Oracle
Streams AQ PL/SQL callbacks upon notification. It has the following attributes:

Table 2-2 AQ$_DESCRIPTOR Attributes

Attribute

Description

queue_name

consumer_name
msg_id
msg_prop
gen_desc
msgid_array

ntfnsRecdInGrp

Name of the queue in which the message was enqueued which
resulted in the notification

Name of the consumer for the multiconsumer queue
Identification number of the message

Message properties specified by the MSG_PROP_T type
Indicates the timeout specifications

Group notification message ID list

Notifications received in group

AQ Message Properties Type

The message properties type msg_prop_t has the following components:

TYPE AQ$_MSG_PROP_T IS OBJECT (

priority

delay
expiration
correlation
attempts
recipent_list
exception_queue
enqueue_time
state

sender_id
original_misgid
delivery_mode

number,
number,
number,
varchar2 (128)
number,
ag$_recipient_list_t,
varchar2 (51),
date,

number,
ags$_agent,
raw(1l6),
number) ;

Basic Components 2-5

AQ Post Information Type

See Also: "MESSAGE_PROPERTIES_T Type" in Oracle Database
PL/SQL Packages and Types Reference

The timeout specifications type AQ$_NTFN_DESCRIPTOR has a single component:
TYPE AQ$_NTFN_DESCRIPTOR IS OBJECT(
NTFN_FLAGS number) ;

NTFN_FLAGS is set to 1 if the notifications are already removed after a stipulated
timeout; otherwise the value is 0.

AQ Post Information Type

TYPE SYS.AQ$_POST INFO IS OBJECT (
name VARCHAR2 (128),
namespace NUMBER,
payload RAW(2000)) ;

This component specifies anonymous subscriptions to which you want to post
messages. It has three attributes:
= name

This attribute specifies the name of the anonymous subscription to which you
want to post.

] namespace

This attribute specifies the namespace of the anonymous subscription. To receive
notifications from other applications using DBMS_AQ . POST or
OCISubscriptionPost (), the namespace must be DBMS_AQ.NAMESPACE_
ANONYMOUS.

s payload

This attribute specifies the payload to be posted to the anonymous subscription.
The default is NULL.

AQ$_NTFN_MSGID_ARRAY Type

TYPE SYS.AQ$_NTFN_MSGID_ARRAY
AS VARRAY (1073741824)0F RAW(16);

This component is for storing grouping notification data for AQ namespace, value 2%
which is the max varray size.

Enumerated Constants in the Oracle Streams AQ Administrative Interface

When enumerated constants such as INFINITE, TRANSACTIONAL, and NORMAL_
QUEUE are selected as values, the symbol must be specified with the scope of the
packages defining it. All types associated with the administrative interfaces must be
prepended with DBMS_AQADM. For example:

DBMS_AQADM.NORMAL_QUEUE

Table 2-3 lists the enumerated constants in the Oracle Streams AQ administrative
interface.

2-6 Oracle Streams Advanced Queuing User’s Guide

Enumerated Constants in the Oracle Streams AQ Operational Interface

Table 2-3 Enumerated Constants in the Oracle Streams AQ Administrative Interface

Parameter Options

retention 0,1,2...INFINITE

message_grouping TRANSACTIONAL, NONE
queue_type NORMAL_QUEUE, EXCEPTION_QUEUE, NON_PERSISTENT_QUEUE

delivery_mode BUFFERED, PERSISTENT, PERSISTENT_OR_BUFFERED

Note: Nonpersistent queues are deprecated in Oracle Streams AQ
10g Release 2 (10.2). Oracle recommends that you use buffered
messaging instead.

Enumerated Constants in the Oracle Streams AQ Operational Interface

When using enumerated constants such as BROWSE, LOCKED, and REMOVE, the
PL/SQL constants must be specified with the scope of the packages defining them. All
types associated with the operational interfaces must be prepended with DBMS_AQ.

For example:

DBMS_AQ.BROWSE

Table 2—4 lists the enumerated constants in the Oracle Streams AQ operational

interface.

Table 2-4 Enumerated Constants in the Oracle Streams AQ Operational Interface

Parameter

Options

visibility
dequeue mode
navigation
state

wait

delay
expiration
namespace
delivery_mode

quosflags

ntfn_grouping_class

ntfn_grouping_type

ntfn_grouping_
repeat_count

IMMEDIATE, ON_COMMIT

BROWSE, LOCKED, REMOVE, REMOVE_NODATA

FIRST MESSAGE, NEXT MESSAGE, NEXT_TRANSACTION
WAITING, READY, PROCESSED, EXPIRED

FOREVER, NO_WAIT

NO_DELAY

NEVER

NAMESPACE_AQ, NAMESPACE_ANONYMOUS

BUFFERED, PERSISTENT, PERSISTENT OR_BUFFERED

NTFN_QOS_RELIABLE, NTFN_QOS_ PAYLOAD, NTFN_QOS_
PURGE_ON_NTFN

NFTN_GROUPING_CLASS_TIME

NTFN_GROUPING_TYPE_SUMMARY, NTFN_GROUPING_TYPE_
LAST

NTFN_GROUPING_FOREVER

Basic Components 2-7

AQ Background Processes

AQ Background Processes

s Queue Monitor Processes

= Job Queue Processes

Queue Monitor Processes

A number of Streams AQ or Streams tasks are executed in the background. These
include converting messages with DELAY specified into the READY state, expiring
messages, moving messages to exception queues, spilling and recovering of buffered
messages, and similar operations.

These are executed by a set of AQ background process. These include a coordinator
process, name QMNC (link), which dynamically spawns subordinate processes Oxx as
needed. The number of subordinate processes is determined automatically and tuned
constantly.

It is no longer necessary to set AQ_TM_PROCESSES when Oracle Streams AQ or
Streams is used. If a value is specified, that value is taken into account when starting
the Oxx processes. However, the number of Qxx processes can be different from what
was specified by AQ_TM_PROCESSES.

QMNC only runs when you use queues and create new queues. It affects Streams
Replication and Messaging users.

No separate API is needed to disable or enable the background processes. This is
controlled by setting AQ_TM_PROCESSES to zero or nonzero. Oracle recommends,
however, that you leave the AQ_TM_PROCESSES parameter unspecified and let the
system autotune.

Note: If you want to disable the Queue Monitor Coordinator, then
you must set AQ_ TM_PROCESSES = 0inyourpfileor spfile.
Oracle strongly recommends that you do NOT set AQ_ TM_
PROCESSES = 0. If you are using Oracle Streams, then setting this
parameter to zero (which Oracle Database respects no matter what)
can cause serious problems.

Job Queue Processes

Propagation and PL/SQL notifications are handled by job queue (Jnnn) processes. The
parameter JOB_QUEUE_PROCESSES no longer needs to be specified. The database
scheduler automatically starts the job queue processes that are needed for the
propagation and notification jobs.

2-8 Oracle Streams Advanced Queuing User’s Guide

3

Oracle Streams AQ: Programmatic Interfaces

This chapter describes the different language options and elements you must work
with and issues to consider in preparing your Oracle Streams Advanced Queuing
(AQ) application environment.

Note: Java package oracle.AQ was deprecated in 10g Release 1
(10.1). Oracle recommends that you migrate existing Java AQ
applications to Oracle JMS (or other Java APIs) and use Oracle JMS (or
other Java APIs) to design your future Java AQ applications.

This chapter contains these topics:

Programmatic Interfaces for Accessing Oracle Streams AQ

Using PL/SQL to Access Oracle Streams AQ

Using OCI to Access Oracle Streams AQ

Using OCCI to Access Oracle Streams AQ

Using Visual Basic (O040) to Access Oracle Streams AQ

Using Oracle Java Message Service (OJMS) to Access Oracle Streams AQ
Using Oracle Streams AQ XML Servlet to Access Oracle Streams AQ

Comparing Oracle Streams AQ Programmatic Interfaces

Programmatic Interfaces for Accessing Oracle Streams AQ

Table 3-1 lists Oracle Streams AQ programmatic interfaces, functions supported in
each interface, and syntax references.

Table 3—-1 Oracle Streams AQ Programmatic Interfaces

Functions

Language Precompiler or Interface Program Supported Syntax References

PL/SQL DBMS_AQADM and DBMS_AQ Packages Administrative Oracle Database PL/SQL Packages
and operational and Types Reference

C Oracle Call Interface (OCI) Operational only ~ Oracle Call Interface

Programmer’s Guide

Oracle Streams AQ: Programmatic Interfaces 3-1

Using PL/SQL to Access Oracle Streams AQ

Table 3-1 (Cont.) Oracle Streams AQ Programmatic Interfaces

Functions
Language Precompiler or Interface Program Supported Syntax References
Visual Basic Oracle Objects for OLE (O0O40) Operational only ~ Online help available from
Application Development
submenu of Oracle installation.
Java (JMS) oracle.JMS package using JDBC API Administrative Oracle Streams Advanced Queuing
and operational Java API Reference

AQ XML servlet Internet Data Access Presentation (IDAP) Operational only =~ Chapter 6, "Internet Access to

Oracle Streams AQ"

Using PL/SQL to Access Oracle Streams AQ

The PL/SQL packages DBMS_AQADM and DBMS_AQ support access to Oracle Streams
AQ administrative and operational functions using the native Oracle Streams AQ
interface. These functions include:

Create queue, queue table, nonpersistent queue, multiconsumer queue/topic,
RAW message, or message with structured data

Get queue table, queue, or multiconsumer queue/topic
Alter queue table or queue/topic
Drop queue/topic
Start or stop queue/topic
Grant and revoke privileges
Add, remove, or alter subscriber
Add, remove, or alter an Oracle Streams AQ Internet agent
Grant or revoke privileges of database users to Oracle Streams AQ Internet agents
Enable, disable, or alter propagation schedule
Enqueue messages to single consumer queue (point-to-point model)
Publish messages to multiconsumer queue/topic (publish/subscribe model)
Subscribe for messages in multiconsumer queue
Browse messages in a queue
Receive messages from queue/topic
Register to receive messages asynchronously
Listen for messages on multiple queues/topics
Post messages to anonymous subscriptions
Bind or unbind agents in a Lightweight Directory Access Protocol (LDAP) server
Add or remove aliases to Oracle Streams AQ objects in a LDAP server
See Also: Oracle Database PL/SQL Packages and Types Reference for

detailed documentation of DBMS_AQADM and DBMS_AQ, including
syntax, parameters, parameter types, return values, and examples

Available PL/SQL DBMS_AQADM and DBMS_AQ functions are listed in detail in
Table 3-2 through Table 3-9.

3-2 Oracle Streams Advanced Queuing User’s Guide

Using Visual Basic (0040) to Access Oracle Streams AQ

Using OCI to Access Oracle Streams AQ

OCI provides an interface to Oracle Streams AQ functions using the native Oracle
Streams AQ interface.

An OCI client can perform the following actions:
= Enqueue messages

= Dequeue messages

= Listen for messages on sets of queues

= Register to receive message notifications

In addition, OCI clients can receive asynchronous notifications for new messages in a
queue using OCISubscriptionRegister.

See Also: "OCI and Advanced Queuing" and "Publish-Subscribe
Notification" in Oracle Call Interface Programmer’s Guide for syntax
details

Oracle Type Translator

For queues with user-defined payload types, the Oracle type translator must be used
to generate the OCI/OCCI mapping for the Oracle type. The OCI client is responsible
for freeing the memory of the Oracle Streams AQ descriptors and the message
payload.

See Also: Appendix C, "OCI Examples", which appears only in the
HTML version of this guide, for OCI interface examples

Using OCCI to Access Oracle Streams AQ

C++ applications can use OCCI, which has a set of Oracle Streams AQ interfaces that
enable messaging clients to access Oracle Streams AQ. OCCI AQ supports all the
operational functions required to send/receive and publish/subscribe messages in a
message-enabled database. Synchronous and asynchronous message consumption is
available, based on a message selection rule.

See Also: "Oracle Streams Advanced Queuing" in Oracle C++ Call
Interface Programmer’s Guide

Using Visual Basic (0040) to Access Oracle Streams AQ

Visual Basic (O040) supports access to Oracle Streams AQ operational functions
using the native Oracle Streams AQ interface.

These functions include the following;:

» Create a connection, RAW message, or message with structured data

» Enqueue messages to a single-consumer queue (point-to-point model)

» Publish messages to a multiconsumer queue/topic (publish/subscribe model)
= Browse messages in a queue

= Receive messages from a queue/topic

= Register to receive messages asynchronously

Oracle Streams AQ: Programmatic Interfaces 3-3

Using Oracle Java Message Service (OJMS) to Access Oracle Streams AQ

Note: Because the database handles message propagation, OO40
does not differentiate between remote and local recipients. The same
sequence of calls/steps are required to dequeue a message for local
and remote recipients.

Using Oracle Java Message Service (OJMS) to Access Oracle Streams AQ

Java Message Service (JMS) is a messaging standard defined by Sun Microsystems,
Oracle, IBM, and other vendors. JMS is a set of interfaces and associated semantics that
define how a JMS client accesses the facilities of an enterprise messaging product.

Oracle Java Message Service (OJMS) provides a Java API for Oracle Streams AQ
based on the JMS standard. OJMS supports the standard JMS interfaces and has
extensions to support administrative operations and other features that are not a part
of the standard.

Standard JMS features include:

Point-to-point model of communication using queues
Publish/subscribe model of communication using topics

ObjectMessage, StreamMessage, TextMessage, BytesMessage, and
MapMessage message types

Asynchronous and synchronous delivery of messages

Message selection based on message header fields or properties

Oracle JMS extensions include:

Administrative API to create queue tables, queues and topics
Point-to-multipoint communication using recipient lists for topics

Message propagation between destinations, which allows the application to define
remote subscribers

Support for transactional sessions, enabling JMS and SQL operations in one
transaction

Message retention after messages have been dequeued
Message delay, allowing messages to be made visible after a certain delay

Exception handling, allowing messages to be moved to exception queues if they
cannot be processed successfully

Support for AdtMessage

These are stored in the database as Oracle objects, so the payload of the message
can be queried after it is enqueued. Subscriptions can be defined on the contents of
these messages as opposed to just the message properties.

Topic browsing

This allows durable subscribers to browse through the messages in a
publish/subscribe (topic) destination. It optionally allows these subscribers to
purge the browsed messages, so they are no longer retained by Oracle Streams AQ
for that subscriber.

3-4 Oracle Streams Advanced Queuing User’s Guide

Using Oracle Java Message Service (OJMS) to Access Oracle Streams AQ

See Also:

» Java Message Service Specification, version 1.1, March 18, 2002, Sun
Microsystems, Inc.

s PartlV, "Using Oracle JMS and Oracle Streams AQ"
» Oracle Streams Advanced Queuing Java API Reference

Accessing Standard and Oracle JMS Applications

Standard JMS interfaces are in the javax. jms package. Oracle JMS interfaces are in
the oracle. jms package. You must have EXECUTE privilege on the DBMS_AQIN and
DBMS_AQJMS packages to use the Oracle JMS interfaces. You can also acquire these
rights through the AQ_ USER_ROLE or the AQ_ ADMINSTRATOR_ROLE. You also need
the appropriate system and queue or topic privileges to send or receive messages.

Because Oracle JMS uses Java Database Connectivity (JDBC) to connect to the
database, its applications can run outside the database using the JDBC OCI driver or
JDBC thin driver.

Using JDBC OCI Driver or JDBC Thin Driver

To use JMS with clients running outside the database, you must include the
appropriate JDBC driver, Java Naming and Directory Interface (JNDI) jar files, and
Oracle Streams AQ jar files in your CLASSPATH.

For JDK 1.3.x and higher, include the following in the CLASSPATH :

SORACLE_HOME/jdbc/lib/classesl2.jar
SORACLE_HOME/jdbc/lib/orail8n.jar
SORACLE_HOME/jdk/jre/lib/ext/jta.jar
SORACLE_HOME/jdk/jre/lib/ext/jta.jar
SORACLE_HOME/jlib/jndi.jar
SORACLE_HOME/lib/xmlparserv2.jar
SORACLE_HOME/rdbms/jlib/xdb.jar
SORACLE_HOME/rdbms/jlib/agapil3.jar
SORACLE_HOME/rdbms/jlib/jmscommon. jar

For JDK 1.2 include the following in the CLASSPATH:

SORACLE_HOME/jdbc/lib/classesl2.jar
SORACLE_HOME/jdbc/lib/orail8n.jar
SORACLE_HOME/jdk/jre/lib/ext/jta.jar
$ORACLE_HOME/jlib/jndi.jar
SORACLE_HOME/lib/xmlparserv2.jar
$ORACLE_HOME/rdbms/jlib/xdb.jar
$ORACLE_HOME/rdbms/jlib/agapil2.jar
SORACLE_HOME/rdbms/jlib/jmscommon. jar

Using Oracle Server Driver in JServer

If your application is running inside the JServer, then you should be able to access the
Oracle JMS classes that have been automatically loaded when the JServer was
installed. If these classes are not available, then you must load jmscommon. jar
followed by agapi. jar using the SORACLE_HOME/rdbms/admin/initjms SQL
script.

Oracle Streams AQ: Programmatic Interfaces 3-5

Using Oracle Streams AQ XML Servlet to Access Oracle Streams AQ

Using Oracle Streams AQ XML Servlet to Access Oracle Streams AQ

You can use Oracle Streams AQ XML servlet to access Oracle Streams AQ over HTTP
using Simple Object Access Protocol (SOAP) and an Oracle Streams AQ XML
message format called Internet Data Access Presentation (IDAP).

Using the Oracle Streams AQ servlet, a client can perform the following actions:
= Send messages to single-consumer queues

= Publish messages to multiconsumer queues/topics

= Receive messages from queues

= Register to receive message notifications

See Also: "Deploying the Oracle Streams AQ XML Servlet" on
page 6-4 for more information on the Oracle Streams AQ XML servlet

Comparing Oracle Streams AQ Programmatic Interfaces

Available functions for the Oracle Streams AQ programmatic interfaces are listed by
use case in Table 3-2 through Table 3-9. Use cases are described in Chapter 8 through
Chapter 10 and Chapter 12 through Chapter 15.

Oracle Streams AQ Administrative Interfaces

Table 3-2 lists the equivalent Oracle Streams AQ administrative functions for the
PL/SQL and Java (JMS) programmatic interfaces.

Table 3-2 Comparison of Oracle Streams AQ Programmatic Interfaces: Administrative Interface

Use Case PL/SQL Java (JMS)

Create a connection factory N/A AQjmsFactory.getQueue
ConnectionFactory
AQjmsFactory.getTopic
ConnectionFactory

Register a ConnectionFactory inan N/A AQjmsFactory.register

LDAP server ConnectionFactory

Create a queue table DBMS_AQADM.CREATE_QUEUE_TABLE AQjmsSession.createQueueTable

Get a queue table Use schema.queue_table_name AQjmsSession.getQueueTable

Alter a queue table DBMS_AQADM.ALTER_QUEUE_TABLE AQQueueTable.alter

Drop a queue table DBMS_AQADM.DROP_QUEUE_TABLE AQQueueTable.drop

Create a queue DBMS_AQADM.CREATE_QUEUE AQjmsSession.createQueue

Geta queue Use schema . queue_name AQjmsSession.getQueue

Create a multiconsumer queue/topic DBMS_AQADM.CREATE_QUEUE AQjmsSession.createTopic

in a queue table with multiple
consumers enabled

Get a multiconsumer queue/topic Use schema . queue_name AQjmsSession.getTopic
Alter a queue/topic DBMS_AQADM. ALTER_QUEUE AQjmsDestination.alter
Start a queue/topic DBMS_AQADM. START QUEUE AQjmsDestination.start
Stop a queue/topic DBMS_AQADM. STOP_QUEUE AQjmsDestination.stop
Drop a queue/topic DBMS_AQADM . DROP_QUEUE AQjmsDestination.drop

3-6 Oracle Streams Advanced Queuing User’s Guide

Comparing Oracle Streams AQ Programmatic Interfaces

Table 3-2 (Cont.) Comparison of Oracle Streams AQ Programmatic Interfaces: Administrative Interface

Use Case PL/SQL Java (JMS)
Grant system privileges DBMS_AQADM.GRANT_SYSTEM_ AQjmsSession.grantSystem
PRIVILEGE Privilege
Revoke system privileges DBMS_AQADM. REVOKE_SYSTEM_ AQjmsSession.revokeSystem
PRIVILEGE Privilege
Grant a queue/topic privilege DBMS_AQADM . GRANT QUEUE_ AQjmsDestination.grantQueue
PRIVILEGE Privilege
AQjmsDestination.grantTopic
Privilege
Revoke a queue/topic privilege DBMS_AQADM . REVOKE_QUEUE_ AQjmsDestination.revokeQueue
PRIVILEGE Privilege
AQjmsDestination.revokeTopic
Privilege
Verify a queue type DBMS_AQADM.VERIFY_QUEUE_TYPES Not supported
Add a subscriber DBMS_AQADM. ADD_SUBSCRIBER See Table 3-6
Alter a subscriber DBMS_AQADM.ALTER_SUBSCRIBER See Table 3-6
Remove a subscriber DBMS_AQADM. REMOVE_SUBSCRIBER See Table 3-6
Schedule propagation DBMS_AQADM . SCHEDULE_PROPAGATION AQjmsDestination.schedule
Propagation
Enable a propagation schedule DBMS_AQADM. ENABLE_PROPAGATION_ AQjmsDestination.enable
SCHEDULE PropagationSchedule
Alter a propagation schedule DBMS_AQADM. ALTER_PROPAGATION_ AQjmsDestination.alter
SCHEDULE PropagationSchedule
Disable a propagation schedule DBMS_AQADM.DISABLE_PROPAGATION_ AQjmsDestination.disable
SCHEDULE PropagationSchedule

Unschedule a propagation

Create an Oracle Streams AQ
Internet Agent

Alter an Oracle Streams AQ Internet
Agent

Drop an Oracle Streams AQ Internet
Agent

Grant database user privileges to an
Oracle Streams AQ Internet Agent

Revoke database user privileges
from an Oracle Streams AQ Internet
Agent

Add alias for queue, agent,
ConnectionFactory in a LDAP server

Delete alias for queue, agent,
ConnectionFactory in a LDAP server

DBMS_AQADM . UNSCHEDULE_

PROPAGATION

DBMS_AQADM.CREATE_AQ_AGENT

DBMS_AQADM.ALTER_AQ_AGENT

DBMS_AQADM. DROP_AQ AGENT

DBMS_AQADM. ENABLE_AQ_AGENT

DBMS_AQADM.DISABLE_AQ_AGENT

DBMS_AQADM.ADD_ALIAS_TO_LDAP

DBMS_AQADM.DEL_ALIAS_FROM_LDAP

AQjmsDestination.unschedule
Propagation

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Oracle Streams AQ Operational Interfaces

Table 3-3 through Table 3-9 list equivalent Oracle Streams AQ operational functions
for the programmatic interfaces PL/SQL, OCI, Oracle Streams AQ XML Servlet, and
JMS, for various use cases.

Oracle Streams AQ: Programmatic Interfaces 3-7

Comparing Oracle Streams AQ Programmatic Interfaces

Table 3-3 Comparison of Oracle Streams AQ Programmatic Interfaces: Operational Interface—Create

Connection, Session, Message Use Cases

Use Case PL/SQL OClI AQ XML Serviet JMS
Create a N/A OCIServer Open an HTTP connection AQjmsQueueConnectionFactory
connection Attach after authenticating with the createQueueConnection
Web server AQjmsTopicConnectionFactory
.createTopicConnection
Create a N/A OCISession An HTTP servlet session is QueueConnection.createQueue
session Begin automatically started with Session
the first SOAP request TopicConnection.createTopic
Session
Createa RAW Use SQL Use OCIRaw for Supply the hex Not supported
message RAW type for Message representation of the
message message payload in the XML
message. For example,
<raw>023f4523</raw>
Create a Use SQL Use SQL Oracle For Oracle object type queues Session.createTextMessage
message with Oracle object object type for that are not JMS queues (that Session.createObjectMessage
structured type for message is, they are not type AQ$_ Session.createMapMessage
data message JMS_*), the XML specified in gog5¢1i0n. createBytesMessage
<message payload> must Session.createStreamMessage
map to the SQL type of the . :
AQjmsSession.createAdtMessage
payload for the queue table.
For JMS queues, the XML

specified in the <message_
payload> must be one of
the following: <jms_text_
message>, <jms_map__
message>, <jms_bytes_
message>, <jms_object_

message>
Create a N/A N/A N/A
message
producer

QueueSession.createSender
TopicSession.createPublisher

3-8 Oracle Streams Advanced Queuing User’s Guide

Comparing Oracle Streams AQ Programmatic Interfaces

Table 3—-4 Comparison of Oracle Streams AQ Programmatic Interfaces: Operational Interface—Enqueue
Messages to a Single-Consumer Queue, Point-to-Point Model Use Cases

Use Case PL/SQL (o]¢]] AQ XML Servlet JMS
Enqueue a message DBMS_AQ.enqueue OCIAQENnQg <AQXmlSend> QueueSender . send
toa
single-consumer
queue
Enqueue amessage DBMS_AQ.enqueue OCIAQENng <AQXmlSend> Not supported
toa ‘,lfueu,e %nld Specify visibility in Specify OCI_ATTR_ Specify
Spi.a y visibility ENQUEUE_ OPTIONS VISIBILITY in <visibility> in
optons - OCIAQEngOptions .
<producer_options>

OCIAQEngOptions

Enqueue a message DBMS_AQ.enqueue OCIAQENg <AQXmlSend> Specify priority

toa
single-consumer
queue and specify
message properties
priority and
expiration

Enqueue a message
toa
single-consumer
queue and specify
message properties
correlationlD, delay,
and exception
queue

Enqueue a message
toa
single-consumer
queue and specify
user-defined
message properties

Enqueue a message
toa
single-consumer
queue and specify
message
transformation

Specify priority,
expiration in

MESSAGE_PROPERTIES

DBMS_AQ.enqueue

Specify correlation,
delay, exception_
queue in

MESSAGE_PROPERTIES

Not supported

Properties should be
part of payload

DBMS_AQ.enqueue

Specify
transformation in

ENQUEUE_OPTIONS

Specify OCI_ATTR_
PRIORITY, OCI_
ATTR_EXPIRATION
in

OCIAQMsgProperties

OCIAQENng

Specify OCI_ATTR_
CORRELATION, OCI_
ATTR_DELAY, OCI_
ATTR_EXCEPTION_
QUEUE in

OCIAQMsgProperties

Not supported

Properties should be
part of payload

OCIAQENng

Specify OCI_ATTR_
TRANSFORMATION in

OCIAQENngOptions

Specify <priority>,
<expiration> in

<message_header>

<AQXmlSend>

Specify
<correlation_id>,
<delay>,
<exception_gueue>
in

<message_header>

<AQXmlSend>

Specify <name> and
<int_value>,
<string_value>,
<long_value>, and
SO on in

<user_properties>

<AQXmlSend>
Specify

<transformation>
in

<producer_options>

and TimeToLive
during

QueueSender.send
or
.setTimeToLive

and

MessageProducer.
setPriority
followed by
QueueSender. send
Message.setJMS
CorrelationI

Delay and exception
queue specified as
provider specific
message properties

JMS_OracleDelay
JMS_OracleExcpQ

followed by
QueueSender. send
Message.setInt
Property
Message.setString
Property

Message.setBoolean
Property

and so forth,
followed by

QueueSender.send

AQjmsQueueSender.
setTransformation

followed by

QueueSender.send

Oracle Streams AQ: Programmatic Interfaces 3-9

Comparing Oracle Streams AQ Programmatic Interfaces

Table 3-5 Comparison of Oracle Streams AQ Programmatic Interfaces: Operational Interface—Publish
Messages to a Multiconsumer Queue/Topic, Publish/Subscribe Model Use Cases

Use Case PL/SQL OcClI AQ XML Servlet JMS
Publish a message = DBMS_AQ.enqueue OCIAQENg <AQXmlPublish> TopicPublisher.
toa m‘/li“c‘,msu,mer Set recipient_ Set OCI_ATTR_ publish
queue/iopic using 1§ o+ 4o NULL in RECIPIENT LISTto
default subscription NULL in
list MESSAGE_PROPERTIES
OCIAQMsgProperties
Publish a message = DBMS_AQ.enqueue OCIAQENg <AQXmlPublish> AQjmsTopic

to a multiconsumer
queue/topic using
specific recipient list

See footnote-1

Publish a message
to a multiconsumer
queue/topic and
specify message
properties priority
and expiration

Specify recipient list
in

MESSAGE_PROPERTIES

DBMS_AQ.enqueue

Specify priority,
expiration in

MESSAGE_PROPERTIES

Specify OCI_ATTR_
RECIPIENT_LISTin

OCIAQMsgProperties

OCIAQENng

Specify OCI_ATTR_
PRIORITY, OCI_
ATTR_EXPIRATION
in

OCIAQMsgProperties

3-10 Oracle Streams Advanced Queuing User’s Guide

Specify <recipient_

list>in

<message_header>

<AQXmlPublish>

Specify <priority>,

<expiration>in

<message_header>

Publisher.publish

Specify recipients as
an array of
AQjmsAgent

Specify priority
and TimeToLive
during

TopicPublisher.
publish

or

MessageProducer.
setTimeToLive

and

MessageProducer.
setPriority

followed by

TopicPublisher.
publish

Comparing Oracle Streams AQ Programmatic Interfaces

Table 3-5 (Cont.) Comparison of Oracle Streams AQ Programmatic Interfaces: Operational
Interface—Publish Messages to a Multiconsumer Queue/Topic, Publish/Subscribe Model Use Cases

Use Case PL/SQL oCl AQ XML Servlet JMS
Publish a message ~ DBMS_AQ.enqueue OCIAQENg <AQXmlPublish> Message.setJMS
toa rm/11t1c9nsug1er Specify correlation, Specify OCI_ATTR_ Specify CorrelationID
queqfe Opg an delay, exception_ CORRELATION,OCI_ <correlation_id>, Delay and exception
f)ﬁ;ifég;sen queue in ATTR_DELAY, OCI_ <delay>, queue specified as
. ATTR_EXCEPTION_ <exception_ provider—specific
correlatlonyD, delay, MESSAGE_PROPERTIES OUEUE in queues in message properties
and exception
queue OCIAQMsgProperties <message_header> JMS_OracleDelay
JMS_OracleExcpQ
followed by
TopicPublisher.
publish
Publish a message ~ Not supported Not supported <AQXmlPublish> Message.setInt
toa ’F(f)plc ani fined Propertiesshould be Properties should be Specify <name>and ~ Property ,
SpeCHy user-aelNed 1t of payload part of payload <int_value>, Message.setString
message properties <string_value>, Property
<long_value>, and Message.setBoolean
so on in Property
<user_properties> and so forth,
followed by
TopicPublisher.
publish
Publish a message DBMS_AQ.enqueue OCIAQENg <AQXmlPublish> AQjmsTopic
toa F(f)plc and Specify Specify OCI_ATTR_ Specify Publisher. set
specily message transformation in TRANSFORMATION in <transformation> Transformation
transformation in foll db
ENQUEUE_OPTIONS OCIAQEngOptions ollowed by
<producer_options> TgpicPublisher.
publish

Table 3-6 Comparison of Oracle Streams AQ Programmatic Interfaces: Operational

Interface—Subscribing for Messages in a Multiconsumer Queue/Topic, Publish/Subscribe Model Use Cases

Use Case

PL/SQL

(o]0}

AQ XML Servlet

JMS

Add a subscriber

Alter a subscriber

Remove a subscriber

See administrative
interfaces

See administrative
interfaces

See administrative
interfaces

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

TopicSession.
createDurable
Subscriber
AQjmsSession.
createDurable
Subscriber

TopicSession.
createDurable
Subscriber
AQjmsSession.
createDurable
Subscriber

using the new
selector

AQjmsSession.
unsubscribe

Oracle Streams AQ: Programmatic Interfaces 3-11

Comparing Oracle Streams AQ Programmatic Interfaces

Table 3-7 Comparison of Oracle Streams AQ Programmatic Interfaces: Operational Interface—Browse

Messages in a Queue Use Cases

Use Case PL/SQL OcClI AQ XML Servlet JMS
Browse DBMS_AQ. OCIAQDeq <AQXmlReceive> QueueSession.createBrowser
messafi(tfs m a dequeue Set OCT_ATTR_ Specify <dequeue_ QueueBrowser.getEnumeration
qUEUE/TOPIC get gequeue DEQ_MODE to mode> BROWSE in Not supported on topics
1 BROWSE in .
mode to BROWSE in <consumer_options> oracle.jms.AQjmsSession.
DEQUEUE_OPTIONS OCIAQDeqOptions createBrowser
oracle.jms.TopicBrowser.
getEnumeration
Browse DBMS_AQ.dequeue OCIAQDeq <AQXmlReceive> AQjmsSession.createBrowser
messag/;fs Ma Set dequeue_ Set OCI_ATTR_ Specify <dequeue_ set locked to TRUE.
queue/opic pode to LOCKED in DEQ_MODE to mode> LOCKED in .
and lock LOCKED in QueueBrowser.getEnumeration
me§sages DEQUEUE_OPTIONS . <consumer_options> Not supported on topics
while OCIAQDeqOptions
browsing oracle.jms.AQjmsSession.

createBrowser
oracle.jms.TopicBrowser.
getEnumeration

Table 3-8 Comparison of Oracle Streams AQ Programmatic Interfaces: Operational Interface—Receive
Messages from a Queue/Topic Use Cases

Use Case PL/SQL OoCl AQ XML Servlet JMS
Start a N/A N/A N/A Connection.start
connection for
receiving
messages
Create a N/A N/A N/A QueueSession.
message createQueueReceiver
consumer TopicSession.create
DurableSubscriber
AQjmsSession.create
TopicReceiver
Dequeue a DBMS_AQ.dequeue OCIAQDeq <AQXmlReceive> Not supported
ghe:zz%f Of;)én a Specify visibility in Specify OCI_ATTR_ Specify
. cvisibilityus i
and specify DEQUEUE_OPTTONS VISIBILITY in visibility> iIn
visibility OCIAQDegOptions <consumer_options>
Dequeue a DBMS_AQ.dequeue OCIAQDeq <AQXmlReceive> AQjmsQueueReceiver.
message from a Specify Specify OCI_ATTR_ Specify setTransformation
queue/tqplc transformation in TRANSFORMATIONIin <transformation> AQjmsTopicSubscriber.
and specify)) in setTransformation
transformation DEQUEUE_OPTIONS OCIAQDeqOptions AQ3jmsTopicReceiver
<consumer_options> i :
setTransformation
Dequeue a DBMS_AQ.dequeue OCIAQDeq <AQXmlReceive> AQjmsQueueReceiver.
message from a Specify navigationin Specify OCI_ATTR_ Specify setNavigationiode
queue/topic NAVIGATION in <navigation>in AQjmsTopicSubscriber.
and.spe.afy DEQUEUE_OPTIONS OCTAODEGODL . tionss setNavigationMode
rr;;lavégatlon QDeqOptions consumer_options AQjmsTopicReceiver .
ode setNavigationMode

3-12 Oracle Streams Advanced Queuing User’s Guide

Comparing Oracle Streams AQ Programmatic Interfaces

Table 3-8 (Cont.) Comparison of Oracle Streams AQ Programmatic Interfaces: Operational
Interface—Receive Messages from a Queue/Topic Use Cases

Use Case PL/SQL o] ¢ AQ XML Servlet JMS
Dequeue a DBMS_AQ.dequeue OCIAQDeq <AQXmlReceive> QueueReceiver.receive
n}es?age froma Set dequeue_mode Set OCI_ATTR_DEQ or
SINGIE-CONSUME ¢y REMOVE in MODE to REMOVE in . .
r queue QueueReceiver.receive
DEQUEUE_OPTIONS OCIAQDeqgOptions NoWait
or
AQjmsQueueReceiver.
receiveNoData
Dequeue a DBMS_AQ.dequeue OCIAQDeq <AQXmlReceive> Create a durable
meif_age froma g dequeue_mode Set OCI_ATTR_DEQ_ Specify <consumer_ EoplcSubscT}l:er on the
MUINCONSUMEL ¢, pEMOVE and set ~ MODE to REMOVE and name> in OpiC using the
queue/topic consumer name to set OCT ATTR subscription name, then
i e . . — — < i >
:jg;%rip tion subscrlptlon name in CONSUMER_NAME to consumer_options TopicSubscriber.
name DEQUEUE_OPTIONS subscription name in receive
OCIAQDeqOptions or
TopicSubscriber.
receiveNoWait
or
AQjmsTopicSubscriber.
receiveNoData
Dequeue a DBMS_AQ.dequeue OCIAQDeq <AQXmlReceive> Create a TopicReceiver
meslf'age from a Set dequeue_mode Set OCI_ATTR_DEQ_ Specify <consumer_ on t h'e t(ip 1C us1rilg1 the
MUIICONSUMET pEMOVE and set MODE to REMOVE and name> in recipient name, then
queue/ toplc consumer_name to set OCI_ATTR_

using recipient
name

recipient name in

DEQUEUE_OPTIONS

CONSUMER_NAME to
recipient name in

OCIAQDeqOptions

<consumer_options>

AQjmsSession.create
TopicReceiver
AQjmsTopicReceiver.
receive

or

AQjmsTopicReceiver.
receiveNoWait

or

AQjmsTopicReceiver.
receiveNoData

Oracle Streams AQ: Programmatic Interfaces 3-13

Comparing Oracle Streams AQ Programmatic Interfaces

Table 3-9 Comparison of Oracle Streams AQ Programmatic Interfaces: Operational Interface—Register to
Receive Messages Asynchronously from a Queue/Topic Use Cases

Use Case PL/SQL (o]¢]] AQ XML Servlet JMS
Receive messages Define a PL/SQL OCISubscription <AQXmlRegister> Create a
asynchronously from callback procedure Register QueueReceiver on

a single-consumer
queue

Receive messages
asynchronously from
a multiconsumer
queue/topic

Listen for messages
on multiple
queues/topics

Listen for messages
on one (many)
single-consumer
queues

Listen for messages
on one (many)
multiconsumer
queues/ Topics

Register it using

DBMS_AQ.REGISTER

Define a PL/SQL
callback procedure

Register it using

DBMS_AQ.REGISTER

DBMS_AQ.LISTEN

Use agent_name as
NULL for all agents in
agent_list

DBMS_AQ.LISTEN

Specify agent_name
for all agents in
agent_list

Specify queue_name
as subscription name

OCISubscription
Enable

OCISubscription
Register

Specify queue: 0CI_

ATTR_CONSUMER__
NAME as subscription
name

0OCISubscription
Enable

OCIAQListen

Use agent_name as
NULL for all agents in
agent_list

OCIAQListen

Specify agent_name
for all agents in
agent_list

Specify queue name
in <destination>
and notification
mechanism in

<notify_url>

<AQXmlRegister>

Specify queue name
in <destination>,
consumer in
<consumer_name>
and notification
mechanism in
<notify_url>

Not supported

Not supported

the queue, then

QueueReceiver.set
MessagelListener

Create a
TopicSubscriber
or TopicReceiver
on the topic, then

TopicSubscriber.
setMessageListener

Create multiple
QueueReceivers
onaQueueSession,
then

QueueSession.set
MessagelListener

Create multiple
TopicSubscribers
or TopicReceivers
onaTopicSession,
then

TopicSession.set
MessagelListener

3-14 Oracle Streams Advanced Queuing User’s Guide

Part li

Managing and Tuning Oracle Streams AQ

Part II describes how to manage and tune your Oracle Streams Advanced Queuing
(AQ) application.

This part contains the following chapters:

» Chapter 4, "Managing Oracle Streams AQ"

» Chapter 5, "Oracle Streams AQ Performance and Scalability"
» Chapter 6, "Internet Access to Oracle Streams AQ"

» Chapter 7, "Troubleshooting Oracle Streams AQ"

4

Managing Oracle Streams AQ

This chapter discusses topics related to managing Oracle Streams Advanced Queuing

(AQ).

This chapter contains these topics:

s Oracle Streams AQ Compatibility Parameters
= Queue Security and Access Control

= Queue Table Export-Import

s Oracle Enterprise Manager Support

= Using Oracle Streams AQ with XA

= Restrictions on Queue Management

= Managing Propagation

Oracle Streams AQ Compatibility Parameters

The queues in which buffered messages are stored must be created with compatibility
set to 8.1 or higher.

The compatible parameter of init.ora and the compatible parameter of the
queue table should be set to 8.1 or higher to use the following features:

s Queue-level access control

= Support for Real Application Clusters environments
= Rule-based subscribers for publish/subscribe

= Asynchronous notification

= Sender identification

= Separate storage of history management information

= Secure queues

See Also: Oracle Streams Concepts and Administration for more
information on secure queues

Mixed case (upper and lower case together) queue names, queue table names, and
subscriber names are supported if database compatibility is 10.0, but the names must
be enclosed in double quote marks. So abc . efg means the schema is ABC and the
name is EFG, but "abc" . "efg" means the schema is abc and the name is efg.

Managing Oracle Streams AQ 4-1

Queue Security and Access Control

Queue Security and Access Control
This section contains these topics:
= Oracle Streams AQ Security
= Queue Security
= Queue Privileges and Access Control
s OCI Applications and Queue Access

= Security Required for Propagation

Oracle Streams AQ Security

Configuration information can be managed through procedures in the DBMS_AQADM
package. Initially, only SYS and SYSTEM have execution privilege for the procedures in
DBMS_AQADM and DBMS_AQ. Users who have been granted EXECUTE rights to these
two packages are able to create, manage, and use queues in their own schemas. The
MANAGE_ANY AQ system privilege is used to create and manage queues in other
schemas.

See Also: "Granting Oracle Streams AQ System Privileges" on
page 8-18 for more information on AQ system privileges

Users of the Java Message Service (JMS) API need EXECUTE privileges on DBMS_
AQJIMS and DBMS_AQIN.

This section contains these topics:

= Administrator Role

= User Role

= Access to Oracle Streams AQ Object Types

Administrator Role

The AQ_ADMINISTRATOR_ROLE has all the required privileges to administer queues.
The privileges granted to the role let the grantee:

s Perform any queue administrative operation, including create queues and queue
tables on any schema in the database

» Perform enqueue and dequeue operations on any queues in the database
» Access statistics views used for monitoring the queue workload

s Create transformations using DBMS_TRANSFORM

= Run all procedures in DBMS_AQELM

= Run all procedures in DBMS_AQJIMS

User Role

You should avoid granting A0 USER_ROLE, because this role does not provide
sufficient privileges for enqueuing or dequeuing.

Your database administrator has the option of granting the system privileges
ENQUEUE_ANY and DEQUEUE_ANY, exercising DBMS_AQADM . GRANT_SYSTEM_
PRIVILEGE and DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE directly to a database
user, if you want the user to have this level of control.

4-2 Oracle Streams Advanced Queuing User’s Guide

Queue Security and Access Control

You as the application developer give rights to a queue by granting and revoking
privileges at the object level by exercising DBMS_AQADM . GRANT_QUEUE_PRIVILEGE
and DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE.

As a database user, you do not need any explicit object-level or system-level privileges
to enqueue or dequeue to queues in your own schema other than the EXECUTE right
on DBMS_AQ.

Access to Oracle Streams AQ Object Types
All internal Oracle Streams AQ objects are now accessible to PUBLIC.

Queue Security

Oracle Streams AQ administrators of Oracle Database can create queues. When you
create queues, the default value of the compatible parameter in DBMS_
AQADM.CREATE_QUEUE_TABLE is that of the compatible parameter.

To enqueue or dequeue, users need EXECUTE rights on DBMS_AQ and either enqueue
or dequeue privileges on target queues, or ENQUEUE_ANY/DEQUEUE_ANY system
privileges.

Queue Privileges and Access Control

You can grant or revoke privileges at the object level on queues. You can also grant or
revoke various system-level privileges. Table 4-1 lists all common Oracle Streams AQ
operations and the privileges needed to perform these operations.

Table 4-1 Operations and Required Privileges

Operation(s) Privileges Required
CREATE/DROP/MONITOR Must be granted EXECUTE rights on DBMS_AQADM. No other
own queues privileges needed.

CREATE/DROP/MONITOR any Must be granted EXECUTE rights on DBMS_AQADM and be

queues granted AQ_ ADMINISTRATOR_ROLE by another user who has
been granted this role (SYS and SYSTEM are the first granters
of AQ_ ADMINISTRATOR_ROLE)

ENQUEUE/ DEQUEUE to own Must be granted EXECUTE rights on DBMS_AQ. No other

queues privileges needed.

ENQUEUE/ DEQUEUE to Must be granted EXECUTE rights on DBMS_AQ and be granted

another's queues privileges by the owner using DBMS_AQADM.GRANT_QUEUE_
PRIVILEGE.

ENQUEUE/ DEQUEUE to any ~ Must be granted EXECUTE rights on DBMS_AQ and be granted

queues ENQUEUE ANY QUEUE or DEQUEUE ANY QUEUE system
privileges by an Oracle Streams AQ administrator using
DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE.

OCI Applications and Queue Access

For an Oracle Call Interface (OCI) application to access a queue, the session user must
be granted either the object privilege of the queue he intends to access or the ENQUEUE
ANY QUEUE or DEQUEUE ANY QUEUE system privileges. The EXECUTE right of DBMS_
AQ is not checked against the session user's rights.

Managing Oracle Streams AQ 4-3

Queue Table Export-Import

Security Required for Propagation

Oracle Streams AQ propagates messages through database links. The propagation
driver dequeues from the source queue as owner of the source queue; hence, no
explicit access rights need be granted on the source queue. At the destination, the login
user in the database link should either be granted ENQUEUE ANY QUEUE privilege or be
granted the right to enqueue to the destination queue. However, if the login user in the
database link also owns the queue tables at the destination, then no explicit Oracle
Streams AQ privileges must be granted.

See Also: "Propagation from Object Queues" on page 4-9

Queue Table Export-Import

When a queue table is exported, the queue table data and anonymous blocks of
PL/SQL code are written to the export dump file. When a queue table is imported, the
import utility executes these PL/SQL anonymous blocks to write the metadata to the
data dictionary.

Oracle AQ does not export registrations with a user export. All applications that make
use of client registrations should take this into account as the client may not be present
in the imported database.

Note: You cannot export or import buffered messages.

If there exists a queue table with the same name in the same schema in
the database as in the export dump, then ensure that the database
queue table is empty before importing a queue table with queues.
Failing to do so has a possibility of ruining the metadata for the
imported queue.

This section contains these topics:
= Exporting Queue Table Data

s Importing Queue Table Data

s Data Pump Export and Import

Exporting Queue Table Data

The export of queues entails the export of the underlying queue tables and related
dictionary tables. Export of queues can also be accomplished at queue-table
granularity.

Exporting Queue Tables with Multiple Recipients
A queue table that supports multiple recipients is associated with the following tables:

= Dequeue index-organized table (I0T)

s Time-management index-organized table
= Subscriber table

= Ahistory 10T

These tables are exported automatically during full database mode, user mode and
table mode exports. See "Export Modes" on page 4-5.

4-4 Oracle Streams Advanced Queuing User’s Guide

Queue Table Export-Import

Because the metadata tables contain ROWIDs of some rows in the queue table, the
import process generates a note about the ROWIDs being made obsolete when
importing the metadata tables. This message can be ignored, because the queuing
system automatically corrects the obsolete ROWIDs as a part of the import operation.
However, if another problem is encountered while doing the import (such as running
out of rollback segment space), then you should correct the problem and repeat the
import.

Export Modes

Exporting operates in full database mode, user mode, and table mode. Incremental
exports on queue tables are not supported.

In full database mode, queue tables, all related tables, system-level grants, and
primary and secondary object grants are exported automatically.

In user mode, queue tables, all related tables, and primary object grants are exported
automatically. However, doing a user-level export from one schema to another using
the FROMUSER TOUSER clause is not supported.

In table mode, queue tables, all related tables, and primary object grants are exported
automatically. For example, when exporting a multiconsumer queue table, the
following tables are automatically exported:

s AQS_qgueue_table_I (the dequeue IOT)
= AQS_queue_table_T (the time-management IOT)
s AQS$S_qgueue_table_S (the subscriber table)

= AQS_queue_table_H (the history IOT)

Importing Queue Table Data

Similar to exporting queues, importing queues entails importing the underlying queue
tables and related dictionary data. After the queue table data is imported, the import
utility executes the PL/SQL anonymous blocks in the dump file to write the metadata
to the data dictionary.

Importing Queue Tables with Multiple Recipients
A queue table that supports multiple recipients is associated with the following tables:

= Adequeue IOT

= A time-management IOT
= A subscriber table

= A history IOT

These tables must be imported as well as the queue table itself.

Import IGNORE Parameter

You must not import queue data into a queue table that already contains data. The
IGNORE parameter of the import utility must always be set to NO when importing
queue tables. If the IGNORE parameter is set to YES, and the queue table that already
exists is compatible with the table definition in the dump file, then the rows are loaded
from the dump file into the existing table. At the same time, the old queue table
definition is lost and re-created. Queue table definition prior to the import is lost and
duplicate rows appear in the queue table.

Managing Oracle Streams AQ 4-5

Oracle Enterprise Manager Support

Data Pump Export and Import

The Data Pump replace and skip modes are supported for queue tables. In the replace
mode an existing queue table is dropped and replaced by the new queue table from
the export dump file. In the skip mode, a queue table that already exists is not
imported.

The truncate and append modes are not supported for queue tables. The behavior in
this case is the same as the replace mode.

See Also: Oracle Database Utilities for more information on Data
Pump Export and Data Pump Import

Oracle Enterprise Manager Support

Oracle Enterprise Manager supports most of the administrative functions of Oracle
Streams AQ. Oracle Streams AQ functions are found under the Distributed node in the
navigation tree of the Enterprise Manager console. Functions available through Oracle
Enterprise Manager include:

= Using queues as part of the schema manager to view properties
» Creating, starting, stopping, and dropping queues

= Scheduling and unscheduling propagation

= Adding and removing subscribers

= Viewing propagation schedules for all queues in the database

= Viewing errors for all queues in the database

= Viewing the message queue

= Granting and revoking privileges

s Creating, modifying, or removing transformations

Using Oracle Streams AQ with XA

You must specify "Objects=T"in the xa_open string if you want to use the Oracle
Streams AQ OCI interface. This forces XA to initialize the client-side cache in Objects
mode. You are not required to do this if you plan to use Oracle Streams AQ through
PL/SQL wrappers from OCI or Pro*C.

The large object (LOB) memory management concepts from the Pro* documentation
are not relevant for Oracle Streams AQ raw messages because Oracle Streams AQ
provides a simple RAW buffer abstraction (although they are stored as LOBs).

When using the Oracle Streams AQ navigation option, you must reset the dequeue
position by using the FIRST_MESSAGE option if you want to continue dequeuing
between services (such as xa_start and xa_end boundaries). This is because XA
cancels the cursor fetch state after an xa_end. If you do not reset, then you get an
error message stating that the navigation is used out of sequence (ORA-25237).

See Also:

= "Working with Transaction Monitors with Oracle XA" in Oracle
Database Advanced Application Developer’s Guide for more
information on XA

= "Large Objects (LOBs)" in Pro*C/C++ Programmer’s Guide

4-6 Oracle Streams Advanced Queuing User’s Guide

Restrictions on Queue Management

Restrictions on Queue Management
This section discusses restrictions on queue management.
This section contains these topics:
= Subscribers
= DML Not Supported on Queue Tables or Associated I0Ts
= Propagation from Object Queues with REF Payload Attributes
» Collection Types in Message Payloads
= Synonyms on Queue Tables and Queues
= Synonyms on Object Types
= Tablespace Point-in-Time Recovery

m Virtual Private Database

Note: Mixed case (upper and lower case together) queue names,
queue table names, and subscriber names are supported if database
compatibility is 10.0, but the names must be enclosed in double quote
marks. So abc . efg means the schema is ABC and the name is EFG,
but "abc" . "efg" means the schema is abc and the name is efg.

Subscribers

You cannot have more than 1,000 local subscribers for each queue. Also, only 32
remote subscribers are allowed for each remote destination database.

DML Not Supported on Queue Tables or Associated I0Ts

Oracle Streams AQ does not support data manipulation language (DML)
operations on queue tables or associated index-organized tables (IOTs), if any. The
only supported means of modifying queue tables is through the supplied APIs. Queue
tables and IOTs can become inconsistent and therefore effectively ruined, if DML
operations are performed on them.

Propagation from Object Queues with REF Payload Attributes

Oracle Streams AQ does not support propagation from object queues that have REF
attributes in the payload.

Collection Types in Message Payloads

You cannot construct a message payload using a VARRAY that is not itself contained
within an object. You also cannot currently use a NESTED Table even as an embedded
object within a message payload. However, you can create an object type that contains
one or more VARRAYSs, and create a queue table that is founded on this object type, as
shown in Example 4-1.

Example 4-1 Creating Objects Containing VARRAYs

CREATE TYPE number_varray AS VARRAY(32) OF NUMBER;
CREATE TYPE embedded_varray AS OBJECT (coll number_varray);
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (

queue_table => "QT',

Managing Oracle Streams AQ 4-7

Managing Propagation

queue_payload_type => 'embedded_varray') ;

Synonyms on Queue Tables and Queues

No Oracle Streams AQ PL/SQL calls resolve synonyms on queues and queue tables.
Although you can create synonyms, you should not apply them to the Oracle Streams
AQ interface.

Synonyms on Object Types

If you have created synonyms on object types, you cannot use them in DBMS_
AQADM.CREATE_QUEUE_TABLE. Error ORA-24015 results.

Tablespace Point-in-Time Recovery

Oracle Streams AQ currently does not support tablespace point-in-time recovery.
Creating a queue table in a tablespace disables that particular tablespace for
point-in-time recovery. Oracle Streams AQ does support regular point-in-time
recovery.

Virtual Private Database

You can use Oracle Streams AQ with Virtual Private Database by specifying a
security policy with Oracle Streams AQ queue tables. While dequeuing, use the
dequeue condition (deq_cond) or the correlation identifier for the policy to be
applied. You can use "1=1" as the dequeue condition. If you do not use a dequeue
condition or correlation ID, then the dequeue results in an error.

Note: When a dequeue condition or correlation identifier is used, the
order of the messages dequeued is indeterminate, and the sort order
of the queue is not honored.

Managing Propagation
This section contains these topics:
» EXECUTE Privileges Required for Propagation
= Propagation from Object Queues
s Optimizing Propagation

» Handling Failures in Propagation

Caution: For propagation to work correctly, the queue ag$_prop_
notify_ X should never be stopped or dropped and the table ag$_
prop_table_X should never be dropped.

EXECUTE Privileges Required for Propagation

Propagation jobs are owned by SYS, but the propagation occurs in the security context
of the queue table owner. Previously propagation jobs were owned by the user
scheduling propagation, and propagation occurred in the security context of the user
setting up the propagation schedule. The queue table owner must be granted
EXECUTE privileges on the DBMS_AQADM package. Otherwise, the Oracle Database
snapshot processes do not propagate and generate trace files with the error identifier

4-8 Oracle Streams Advanced Queuing User’s Guide

Managing Propagation

SYS.DBMS_AQADM not defined. Private database links owned by the queue table
owner can be used for propagation. The username specified in the connection string
must have EXECUTE access on the DBMS_AQ and DBMS_AQADM packages on the remote
database.

Propagation from Object Queues

Propagation from object queues with BFILE objects is supported. To be able to
propagate object queues with BFILE objects, the source queue owner must have read
privileges on the directory object corresponding to the directory in which the BFILE is
stored. The database link user must have write privileges on the directory object
corresponding to the directory of the BFILE at the destination database.

AQ propagation does not support non-final types. Propagation of BFILE objects from
object queues without specifying a database link is not supported.

See Also: "CREATE DIRECTORY" in Oracle Database SQL Language
Reference for more information on directory objects

Optimizing Propagation

AQ propagation jobs are run by the Oracle Scheduler. Propagation may be scheduled
in the following ways:

» A dedicated schedule in which the propagation runs forever or for a specified
duration. This mode provides the lowest propagation latencies.

= A periodic schedule in which the propagation runs periodically for a specified
interval. This may be used when propagation can be run in a batched mode.

= Anevent based system in which propagation is started when there are messages
to be propagated. This mode makes more efficient use of available resources,
while still providing a fast response time.

The administrator may choose a schedule that best meets the application performance
requirements.

Oracle Scheduler will start the required number of job queue processes for the
propagation schedules. Since the scheduler optimizes for throughput, if the system is
heavily loaded, it may not run some propagation jobs. The resource manager may be
used to have better control over the scheduling decisions. In particular, associating
propagation jobs with different resource groups can allow for fairness in scheduling
which may be important in heavy load situations.

In setting the number of JOB_QUEUE_PROCESSES, DBAs should be aware that this
number is determined by the number of queues from which the messages must be
propagated and the number of destinations (rather than queues) to which messages
must be propagated.

A scheduling algorithm handles propagation. The algorithm optimizes available job
queue processes and minimizes the time it takes for a message to show up at a
destination after it has been enqueued into the source queue, thereby providing
near-OLTP action. The algorithm can handle an unlimited number of schedules and
various types of failures. While propagation tries to make the optimal use of the
available job queue processes, the number of job queue processes to be started also
depends on the existence of jobs unrelated to propagation, such as replication jobs.
Hence, it is important to use the following guidelines to get the best results from the
scheduling algorithm.

Managing Oracle Streams AQ 4-9

Managing Propagation

The scheduling algorithm uses the job queue processes as follows (for this discussion,
an active schedule is one that has a valid current window):

» If the number of active schedules is fewer than half the number of job queue
processes, then the number of job queue processes acquired corresponds to the
number of active schedules.

» If the number of active schedules is more than half the number of job queue
processes, after acquiring half the number of job queue processes, then multiple
active schedules are assigned to an acquired job queue process.

» If the system is overloaded (all schedules are busy propagating), depending on
availability, then additional job queue processes are acquired up to one fewer than
the total number of job queue processes.

= If none of the active schedules handled by a process has messages to be
propagated, then that job queue process is released.

s The algorithm performs automatic load balancing by transferring schedules from a
heavily loaded process to a lightly load process such that no process is excessively
loaded.

Handling Failures in Propagation

The scheduling algorithm has robust support for handling failures. Common failures
that prevent message propagation include the following:

s Database link failed

= Remote database is not available

= Remote queue does not exist

= Remote queue was not started

= Security violation while trying to enqueue messages into remote queue

Under all these circumstances the appropriate error messages are reported in the DBA_
QUEUE_SCHEDULES view.

When an error occurs in a schedule, propagation of messages in that schedule is
attempted again after a retry period of 30*(number of failures) seconds, with an upper
bound of ten minutes. After sixteen consecutive retries, the schedule is disabled.

If the problem causing the error is fixed and the schedule is enabled, then the error
fields that indicate the last error date, time, and message continue to show the error
information. These fields are reset only when messages are successfully propagated in
that schedule.

See Also: Chapter 7, "Troubleshooting Oracle Streams AQ"

4-10 Oracle Streams Advanced Queuing User’s Guide

O

Oracle Streams AQ Performance and
Scalability

This chapter discusses performance and scalability issues relating to Oracle Streams
Advanced Queuing (AQ).

This chapter contains the following topics:

» Persistent Messaging Performance Overview
» Persistent Messaging Basic Tuning Tips

= Propagation Tuning Tips

» Buffered Messaging Tuning

Persistent Messaging Performance Overview

When persistent messages are enqueued, they are stored in database tables. The
performance characteristics of queue operations on persistent messages are similar to
underlying database operations. The code path of an enqueue operation is comparable
to SELECT and INSERT into a multicolumn queue table with three index-organized
tables. The code path of a dequeue operation is comparable to SELECT, DELETE, and
UPDATE operations on similar tables.

Note: Performance is not affected by the number of queues in a table.

Oracle Streams AQ and Oracle Real Application Clusters

Real Application Clusters (RAC) can be used to ensure highly available access to
queue data. The entry and exit points of a queue, commonly called its tail and head
respectively, can be extreme hot spots. Because RAC may not scale well in the presence
of hot spots, limit usual access to a queue from one instance only. If an instance failure
occurs, then messages managed by the failed instance can be processed immediately
by one of the surviving instances.

You can associate RAC instance affinities with 8.1-compatible queue tables. If you are
using gl and g2 in different instances, then you can use ALTER_QUEUE_TABLE or
CREATE_QUEUE_TABLE on the queue table and set primary_instance to the
appropriate instance_id.

See Also:
» "Creating a Queue Table" on page 8-1
= "Altering a Queue Table" on page 8-8

Oracle Streams AQ Performance and Scalability 5-1

Persistent Messaging Basic Tuning Tips

Oracle Streams AQ in a Shared Server Environment

Queue operation scalability is similar to the underlying database operation scalability.
If a dequeue operation with wait option is applied, then it does not return until it is
successful or the wait period has expired. In a shared server environment, the shared
server process is dedicated to the dequeue operation for the duration of the call,
including the wait time. The presence of many such processes can cause severe
performance and scalability problems and can result in deadlocking the shared server
processes. For this reason, Oracle recommends that dequeue requests with wait option
be applied using dedicated server processes. This restriction is not enforced.

See Also: "DEQUEUE_OPTIONS_T Type" in Oracle Database PL/SQL
Packages and Types Reference for more information on the wait option

Persistent Messaging Basic Tuning Tips

Oracle Streams AQ table layout is similar to a layout with ordinary database tables
and indexes.

See Also: Oracle Database Performance Tuning Guide for tuning
recommendations

Using Storage Parameters

Storage parameters can be specified when creating a queue table using the storage_
clause parameter. Storage parameters are inherited by other IOTs and tables created
with the queue table. The tablespace of the queue table should have sufficient space to
accommodate data from all the objects associated with the queue table. With retention
specified, the history table as well as the queue table can grow to be quite big.

Oracle recommends you use automatic segment-space management (ASSM).
Otherwise initrans, freelists and freelist groups must be tuned for AQ performance
under high concurrency.

Increasing PCTFREE will reduce the number of messages in a queue table/IOT block.
This will reduce block level contention when there is concurrency.

Storage parameters specified at queue table creation are shared by the queue table,
IOTs and indexes. These may be individually altered by an online redefinition using
DBMS_REDEFINTION.

I/0 Configuration

Because Oracle Streams AQ is very 1/0 intensive, you will usually need to tune I/O to
remove any bottlenecks.

See Also: "I/O Configuration and Design" in Oracle Database
Performance Tuning Guide

Running Enqueue and Dequeue Processes Concurrently in a Single Queue Table

Some environments must process messages in a constant flow, requiring that enqueue
and dequeue processes run concurrently. If the message delivery system has only one
queue table and one queue, then all processes must work on the same segment area at
the same time. This precludes reasonable performance levels when delivering a high
number of messages.

5-2 Oracle Streams Advanced Queuing User’s Guide

Persistent Messaging Basic Tuning Tips

The best number for concurrent processes depends on available system resources. For
example, on a four-CPU system, it is reasonable to start with two concurrent enqueue
and two concurrent dequeue processes. If the system cannot deliver the wanted
number of messages, then use several subscribers for load balancing rather than
increasing the number of processes.

Tune the enqueue and dequeue rates on the queue so that in the common case the
queue size remains small and bounded. A queue that grows and shrinks considerably
will have indexes and IOTs that are out of balance, which will affect performance.

With multi-consumer queues, using several subscribers for load balancing rather than
increasing the number of processes will reduce contention. Multiple queue tables may
be used garnering horizontal scalability.

Running Enqueue and Dequeue Processes Serially in a Single Queue Table

When enqueue and dequeue processes are running serially, contention on the same
data segment is lower than in the case of concurrent processes. The total time taken to
deliver messages by the system, however, is longer than when they run concurrently.
Increasing the number of processes helps both enqueuing and dequeuing. The
message throughput rate is higher for enqueuers than for dequeuers when the number
of processes is increased. Usually, the dequeue operations throughput is much less
than the enqueue operation (INSERT) throughput, because dequeue operations
perform SELECT, DELETE, and UPDATE.

Creating Indexes on a Queue Table

Other Tips

Creating an index on a queue table is useful if you:
= Dequeue using correlation ID

An index created on the column corr_id of the underlying queue table 20$_
QueueTableName expedites dequeues.

= Dequeue using a condition

This is like adding the condition to the where-clause for the SELECT on the
underlying queue table. An index on QueueTableName expedites performance
on this SELECT statement.

= Ensure that statistics are being gathered so that the optimal query plans for
retrieving messages are being chosen. By default, queue tables are locked out from
automatic gathering of statistics. The recommended use is to gather statistics with
a representative queue message load and lock them.

= The queue table indexes and IOTs must be coalesced periodically. In 10.2 with
automatic space segment management (ASSM), or an online shrink operation may
be used for the same purpose. This reduces queue monitor CPU consumption and
ensures optimal enqueue dequeue performance.

= Ensure that there are enough queue monitor processes running to perform the
background tasks. The queue monitor must also be running for other crucial
background activity. Multiple gmn processes share the load; make sure that there
are enough of them. These are auto-tuned, but can be forced to a minimum
number, if needed.

s Itis recommended that dequeue with a wait time is only used with dedicated
server processes. In a shared server environment, the shared server process is

Oracle Streams AQ Performance and Scalability 5-3

Propagation Tuning Tips

dedicated to the dequeue operation for the duration of the call, including the wait
time. The presence of many such processes can cause severe performance and
scalability problems and can result in deadlocking the shared server processes.

s Long running dequeue transactions worsen dequeue contention on the queue, and
must be avoided.

= Dequeue operations are typically slower than enqueue. Overall dequeue/enqueue
rates also depend on application design.

= Use NEXT as navigation mode, if not using message priorities. This offers the same
semantics but improved performance.

= Use the REMOVE_NODATA dequeue mode if dequeuing in BROWSE mode followed
by a REMOVE.

Propagation Tuning Tips

Propagation can be considered a special kind of dequeue operation with an additional
INSERT at the remote (or local) queue table. Propagation from a single schedule is not
parallelized across multiple job queue processes. Rather, they are load balanced. For
better scalability, configure the number of propagation schedules according to the
available system resources (CPUs).

Propagation rates from transactional and nontransactional (default) queue tables vary
to some extent because Oracle Streams AQ determines the batching size for
nontransactional queues, whereas for transactional queues, batch size is mainly
determined by the user application.

Optimized propagation happens in batches. If the remote queue is in a different
database, then Oracle Streams AQ uses a sequencing algorithm to avoid the need for a
two-phase commit. When a message must be sent to multiple queues in the same
destination, it is sent multiple times. If the message must be sent to multiple
consumers in the same queue at the destination, then it is sent only once.

Buffered Messaging Tuning

Buffered messaging operations in a Real Application Clusters environment will be
fastest on the OWNER_INSTANCE of the queue.

Performance Views
Oracle provides views to monitor system performance and troubleshooting:
s (G)VS$PERSISTENT_QUEUES: All Active Persistent Queues in the Instance

s (G)VSPERSISTENT_SUBSCRIBERS: All Active Subscribers of the Persistent
Queues in the Instance

s (G)VS$PERSISTENT_PUBLISHERS: All Active Publishers of the Persistent Queues
in the Instance

» (G)V$BUFFERED_QUEUES: All Buffered Queues in the Instance.

s (G)V$BUFFERED_SUBSCRIBERS: Subscribers for All Buffered Queues in the
Instance

s (G)V$BUFFERED_PUBLISHERS: All Buffered Publishers in the Instance

5-4 Oracle Streams Advanced Queuing User’s Guide

Performance Views

These views are integrated with the Automatic Workload Repository (AWR). Users
can generate a report based on two AWR snapshots to compute enqueue rate, dequeue
rate, and other statistics per queue/subscriber.

Oracle Streams AQ Performance and Scalability 5-5

Performance Views

5-6 Oracle Streams Advanced Queuing User’s Guide

6

Internet Access to Oracle Streams AQ

You can access Oracle Streams Advanced Queuing (AQ) over the Internet by using
Simple Object Access Protocol (SOAP). Internet Data Access Presentation (IDAP) is
the SOAP specification for Oracle Streams AQ operations. IDAP defines XML message
structure for the body of the SOAP request. An IDAP-structured message is
transmitted over the Internet using HTTP.

Users can register for notifications using the IDAP interface.

This chapter contains these topics:

Overview of Oracle Streams AQ Operations over the Internet
Deploying the Oracle Streams AQ XML Servlet

Internet Data Access Presentation (IDAP)

Request and Response IDAP Documents

Notification of Messages by e-mail

See Also:

s Appendix B, "SOAP and Oracle Streams AQ XML Schemas",
which appears only in the HTML version of this guide

s Table 1-3, " Oracle Streams AQ XML Demonstrations" on
page 1-39 for the locations of AQ XML demonstrations

Overview of Oracle Streams AQ Operations over the Internet

This section contains these topics:

Oracle Streams AQ Internet Operations Architecture

Internet Message Payloads

Configuring the Web Server to Authenticate Users Sending POST Requests
Client Requests Using HTTP

Oracle Streams AQ Servlet Responses Using HTTP

Oracle Streams AQ Propagation Using HTTP and HTTPS

Oracle Streams AQ Internet Operations Architecture

Figure 6-1 shows the architecture for performing Oracle Streams AQ operations over
HTTP. The major components are:

Oracle Streams AQ client program

Internet Access to Oracle Streams AQ 6-1

Overview of Oracle Streams AQ Operations over the Internet

= Web server/servlet runner hosting the Oracle Streams AQ servlet
= Oracle Database server

A Web browser or any other HTTP client can serve as an Oracle Streams AQ client
program, sending XML messages conforming to IDAP to the Oracle Streams AQ
servlet, which interprets the incoming XML messages. The Oracle Streams AQ servlet
connects to the Oracle Database server and performs operations on user queues.

Figure 6—1 Architecture for Performing Oracle Streams AQ Operations Using HTTP

viavie
Web Database
Server Server

D XML Message @@
——l

AQ Serviet E
AQ Client g;

Internet Message Payloads

Oracle Streams AQ supports messages of three types: RAW, Oracle object, and Java
Message Service (JMS). All these message types can be accessed using SOAP and Web
services. If the queue holds messages in RAW, Oracle object, or JMS format, then XML
payloads are transformed to the appropriate internal format during enqueue and
stored in the queue. During dequeue, when messages are obtained from queues
containing messages in any of the preceding formats, they are converted to XML
before being sent to the client.

Queue

[l

The message payload type depends on the queue type on which the operation is being
performed:

RAW Queues

The contents of RAW queues are raw bytes. You must supply the hex representation of
the message payload in the XML message. For example, <raw>023£4523</raw>.

Oracle Object Type Queues

For Oracle object type queues that are not JMS queues (that is, they are not type AQ$_
JMS_*), the type of the payload depends on the type specified while creating the
queue table that holds the queue. The content of the XML elements must map to the
attributes of the object type of the queue table.

JMS Type Queues/Topics

For queues with JMS types (that is, those with payloads of type AQs_JMS_ *), there are
four XML elements, depending on the JMS type. IDAP supports queues or topics with
the following JMS types:

n TextMessage

m MapMessage

n BytesMessage
s ObjectMessage

JMS queues with payload type StreamMessage are not supported through IDAP.

6-2 Oracle Streams Advanced Queuing User’s Guide

Overview of Oracle Streams AQ Operations over the Internet

Configuring the Web Server to Authenticate Users Sending POST Requests

After the servlet is installed, the Web server must be configured to authenticate all
users that send POST requests to the Oracle Streams AQ servlet. The Oracle Streams
AQ servlet allows only authenticated users to access the servlet. If the user is not
authenticated, then an error is returned by the servlet.

The Web server can be configured in multiple ways to restrict access. Some of the
common techniques are basic authentication (username/password) over SSL and
client certificates. Consult your Web server documentation to see how you can restrict
access to servlets.

In the context of the Oracle Streams AQ servlet, the username that is used to connect to
the Web server is known as the Oracle Streams AQ HTTP agent or Oracle Streams AQ
Internet user.

Client Requests Using HTTP

An Oracle Streams AQ client begins a request to the Oracle Streams AQ servlet using
HTTP by opening a connection to the server. The client logs in to the server using
HTTP basic authentication (with or without SSL) or SSL certificate-based client
authentication. The client constructs an XML message representing the send, publish,
receive or register request.

See Also: "Request and Response IDAP Documents" on page 6-9

The client sends an HTTP POST to the servlet at the remote server.

See Also: Table 1-3, " Oracle Streams AQ XML Demonstrations" on
page 1-39 for the locations of AQ XML demonstrations illustrating
POST requests using HTTP

User Sessions and Transactions

After a client is authenticated and connects to the Oracle Streams AQ servlet, an HTTP
session is created on behalf of the user. The first request in the session also implicitly
starts a new database transaction. This transaction remains open until it is explicitly
committed or terminated. The responses from the servlet includes the session ID in the
HTTP headers as cookies.

If the client wishes to continue work in the same transaction, then it must include this
HTTP header containing the session ID cookie in subsequent requests. This is
automatically accomplished by most Web browsers. However, if the client is using a
Java or C client to post requests, then this must be accomplished programmatically.

See Also: Table 1-3, " Oracle Streams AQ XML Demonstrations" on
page 1-39 for the locations of AQ XML demonstrations illustrating a
Java program used to post requests as part of the same session

An explicit commit or rollback must be applied to end the transaction. The commit or
rollback requests can also be included as part of other Oracle Streams AQ operations.

Oracle Streams AQ Servlet Responses Using HTTP

The server accepts the client HTTP(S) connection and authenticates the user (Oracle
Streams AQ agent) specified by the client. The server receives the POST request and
invokes the Oracle Streams AQ servlet.

Internet Access to Oracle Streams AQ 6-3

Deploying the Oracle Streams AQ XML Servlet

If this is the first request from this client, then a new HTTP session is created. The XML
message is parsed and its contents are validated. If a session ID is passed by the client
in the HTTP headers, then this operation is performed in the context of that session.

See Also: "User Sessions and Transactions" on page 6-3

The servlet determines which object (queue/topic) the agent is trying to perform
operations on. The servlet looks through the list of database users that map to this
Oracle Streams AQ agent. If any one of these users has privileges to access the
queue/topic specified in the request, then the Oracle Streams AQ servlet superuser
creates a session on behalf of this user.

If no transaction is active in the HTTP session, then a new database transaction is
started. Subsequent requests in the session are part of the same transaction until an
explicit COMMIT or ROLLBACK request is made. The effects of the transaction are
visible only after it is committed. If the transaction remains inactive for 120 seconds,
then it is automatically terminated.

The requested operation is performed. The response is formatted as an XML message
and sent back the client. The response also includes the session ID in the HTTP
headers as a cookie.

Oracle Streams AQ Propagation Using HTTP and HTTPS

You can propagate over HITTP and HTTPS (HTTP over SSL) instead of Oracle Net
Services. HTTP, unlike Oracle Net Services, is easy to configure for firewalls. The
background process doing propagation pushes messages to an Oracle Streams AQ
servlet that enqueues them into the destination database, as shown in Figure 6-2.

Figure 62 HTTP Oracle Streams AQ Propagation

Oracle Web Oracle
Server Server Server

Destination
Database
AQ Queue
[\
L/

Source
Database

[
[»)

Job queue
process

AQQ
Q Q Queue

L/

Servlet

;

You can set up any application to use Oracle Streams AQ HTTP propagation without
any change to the existing code. An application using Oracle Streams AQ HTTP
propagation can easily switch back to Net Services propagation just by re-creating the
database link with a Net Services connection string, without any other changes.

Deploying the Oracle Streams AQ XML Servlet
Follow these steps to deploy the AQ XML servlet using OC4]J:
1. For JDK1.2.x or JDK1.3.x, include the following in your CLASSPATH:

ORACLE_HOME/jdbc/lib/classesl2.zip
ORACLE_HOME/jdbc/lib/nls_charsetl2.zip
ORACLE_HOME/jlib/javax-ssl-1_1.jar
ORACLE_HOME/3jlib/jndi.jar
ORACLE_HOME/jlib/jssl-1_1.jar
ORACLE_HOME/jlib/jta.jar
ORACLE_HOME/jlib/orail8n.jar

6-4 Oracle Streams Advanced Queuing User’s Guide

Deploying the Oracle Streams AQ XML Servlet

ORACLE_HOME/jlib/orail8n-collation.jar
ORACLE_HOME/jlib/orail8n-mapping.jar
ORACLE_HOME/jlib/orail8n-utility.jar
ORACLE_HOME/1ib/http_client.jar
ORACLE_HOME/1lib/lclassesl2.zip
ORACLE_HOME/lib/servlet.jar
ORACLE_HOME/1ib/xmlparserv2.jar
ORACLE_HOME/1ib/xschema.jar
ORACLE_HOME/1ib/xsul2.jar
ORACLE_HOME/rdbms/jlib/agapi.jar
ORACLE_HOME/rdbms/jlib/agxml.jar
ORACLE_HOME/rdbms/jlib/jmscommon. jar
ORACLE_HOME/rdbms/jlib/xdb.jar
ORACLE_HOME/rdbms/jlib/xsul2.jar

For JDK1.4.x, include the following in your CLASSPATH:

ORACLE_HOME/jdbc/1lib/ojdbcl4. jar
ORACLE_HOME/jlib/javax-ssl-1_1.jar
ORACLE_HOME/3jlib/jndi.jar
ORACLE_HOME/jlib/jssl-1_1.jar
ORACLE_HOME/jlib/jta.jar
ORACLE_HOME/jlib/orail8n.jar
ORACLE_HOME/jlib/orail8n-collation.jar
ORACLE_HOME/jlib/orail8n-mapping.jar
ORACLE_HOME/jlib/orail8n-utility.jar
ORACLE_HOME/1ib/http_client.jar
ORACLE_HOME/1ib/lclassesl2.zip
ORACLE_HOME/1lib/servlet.jar
ORACLE_HOME/1ib/xmlparserv2.jar
ORACLE_HOME/lib/xschema.jar
ORACLE_HOME/1ib/xsul2.jar
ORACLE_HOME/rdbms/jlib/agapi.jar
ORACLE_HOME/rdbms/jlib/agxml.jar
ORACLE_HOME/rdbms/jlib/jmscommon. jar
ORACLE_HOME/rdbms/jlib/xdb.jar

Note: http_client.jar, jssl-1_1.jar,and javax-ssl-1_
1.jar are required by HTTPClient used in AQHttp. java and
AQHttpRg. java.

Compile AQHttpRqg. java:

cd ORACLE_HOME/rdbms/demo
javac AQHttpRqg.java AQHttp.java

Set the following database initialization parameters to the indicated values:

job_queue_processes=2
compatible=10.2.0

Restart the database and listener.

Set up queues and authenticate users for restricted access.

See Also: agxmlREADME. txt and agxmldmo . sqgl in ORACLE_
HOME/rdbms /demo for additional information.

Deploy the servlet and start the OC4] instance:

Internet Access to Oracle Streams AQ

Deploying the Oracle Streams AQ XML Servlet

cd ORACLE_HOME/bin
sh agxmlctl deploy
sh agxmlctl start

Note: Use sh agxmlctl stop to stop the OC4J instance. The
deploy servlet and start OC4J instance steps might have been done
during your Oracle Database installation. You can verify this in the
following steps.

8. Check the status of the servlet and information on the protocol and port number
used for deploying the servlet in the following files:

ORACLE_HOME/rdbms/demo/agxml . ini
ORACLE_HOME/oc4j/j2ee/0C4J_AQ/config/rmi.xml
ORACLE_HOME/oc4j/j2ee/0C4J_AQ/config/http-web-site.xml

9. Point a web browser to the following URL:
https://hostname: portnumber/agserv/servlet/AQDemoServlet
where hostname is the server name, and portnumber is the value discovered in

the previous step. After you respond to a username/password prompt, the servlet
displays:

Sample AQ Servlet
AQxmlServlet is working!

10. Create an SSL Certificate and generate a keystore. The following files provide
examples:

ORACLE_HOME/rdbms /demo/agxmlocdj.cert
ORACLE_HOME/rdbms/demo/keystore

See Also: Keytool documentation at
http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris
/keytool.html

The following tags in ORACLE_HOME/oc43j/j2ee/0C4J_
AQ/config/http-web-site.xml indicate that the Web site is secure and
keystore is used for SSL authentication:

<web-site port="443" secure="true">
<ssl-config
keystore="0ORACLE_HOME/oc4j/j2ee/home/keystore"

keystore-password="welcome" />
</web-site>

To make the site access only HTTP requests, remove secure="true" and
<ssl-config> from http-web-site.xml.

11. Stop and restart the AQ XML servlet:

sh agxmlctl stop
sh agxmlctl start

6-6 Oracle Streams Advanced Queuing User’s Guide

Internet Data Access Presentation (IDAP)

Internet Data Access Presentation (IDAP)

Internet Data Access Presentation (IDAP) uses the Content-Type of text /xml to
specify the body of the SOAP request. XML provides the presentation for IDAP
request and response messages as follows:

= All request and response tags are scoped in the SOAP namespace.
= Oracle Streams AQ operations are scoped in the IDAP namespace.

= The sender includes namespaces in IDAP elements and attributes in the SOAP
body.

» The receiver processes SOAP messages that have correct namespaces and returns
an invalid request error for requests with incorrect namespaces.

s The SOAP namespace has the value
http://schemas.xmlsoap.org/soap/envelope/

s The IDAP namespace has the value
http://ns.oracle.com/AQ/schemas/access

SOAP Message Structure

SOAP structures a message request or response as follows:
= SOAP Envelope

s SOAP Header

= SOAP Body

SOAP Envelope

This is the root or top element in an XML tree. Its tag is SOAP : Envelope. SOAP
defines a global attribute SOAP: encodingStyle that indicates serialization rules
used instead of those described by the SOAP specification. This attribute can appear
on any element and is scoped to that element and all child elements not themselves
containing such an attribute. Omitting this attribute means that type specification has
been followed unless overridden by a parent element.

The SOAP envelope also contains namespace declarations and additional attributes,
provided they are namespace-qualified. Additional namespace-qualified subelements
can follow the body.

SOAP Header

This is the first element under the root. Its tag is SOAP : Header. A SOAP header
passes necessary information, such as the transaction identifier. The header is encoded
as a child of the SOAP: Envelope XML element. Headers are identified by the name
element and are namespace-qualified. A header entry is encoded as an embedded
element.

SOAP Body

This is the Oracle Streams AQ XML document. Its tag is SOAP: Body, and it contains a
first subelement whose name is the method name. This method request element
contains elements for each input and output parameter. The element names are the
parameter names. The body also contains SOAP: Fault, indicating information about
an error. The Oracle Streams AQ XML document has the namespace
http://ns.oracle.com/AQ/schemas/access

Internet Access to Oracle Streams AQ 6-7

Internet Data Access Presentation (IDAP)

SOAP Method Invocation

A method invocation is performed by creating the request header and body and
processing the returned response header and body. The request and response headers
can consist of standard transport protocol-specific and extended headers.

HTTP Headers

The POST method within the HTTP request header performs the SOAP method
invocation. The request should include the header SOAPMethodName, whose value
indicates the method to be invoked on the target. The value is of the form
URI#method name. For example:

SOAPMethodName: http://ns.oracle.com/AQ/schemas/access#AQXmlSend

The URI used for the interface must match the implied or specified namespace
qualification of the method name element in the SOAP : Body part of the payload. The
method name must not include the "#" character.

Method Invocation Body

SOAP method invocation consists of a method request and optionally a method
response. The SOAP method request and method response are an HTTP request and
response, respectively, whose contents are XML documents consisting of the root and
mandatory body elements. These XML documents are referred to as SOAP payloads in
the rest of this chapter.

A SOAP payload is defined as follows:
s The SOAP root element is the top element in the XML tree.

s The SOAP payload headers contain additional information that must travel with
the request.

s The method request is represented as an XML element with additional elements
for parameters. It is the first child of the SOAP: Body element. This request can be
one of the Oracle Streams AQ XML client requests described in the next section.

= The response is the return value or an error or exception that is passed back to the
client.

At the receiving site, a request can have one of the following outcomes:

s The HTTP infrastructure on the receiving site is able to receive and process the
request. In this case, the HTTP infrastructure passes the headers and body to the
SOAP infrastructure.

s The HTTP infrastructure on the receiving site cannot receive and process the
request. In this case, the result is an HTTP response containing an HTTP error in
the status field and no XML body.

s The SOAP infrastructure on the receiving site is able to decode the input
parameters, dispatch to an appropriate server indicated by the server address, and
invoke an application-level function corresponding semantically to the method
indicated in the method request. In this case, the result of the method request
consists of a response or error.

s The SOAP infrastructure on the receiving site cannot decode the input parameters,
dispatch to an appropriate server indicated by the server address, and invoke an
application-level function corresponding semantically to the interface or method
indicated in the method request. In this case, the result of the method is an error

6-8 Oracle Streams Advanced Queuing User’s Guide

Request and Response IDAP Documents

that prevented the dispatching infrastructure on the receiving side from successful
completion.

In the last two cases, additional message headers can be present in the results of the
request for extensibility.

Results from a Method Request

The results of the request are to be provided in the form of a request response. The
HTTP response must be of Content-Type text/xml. A SOAP result indicates success
and an error indicates failure. The method response never contains both a result and
an error.

Request and Response IDAP Documents

The body of a SOAP message is an IDAP message. This XML document has the
namespace http://ns.oracle.com/AQ/schemas/access. The body represents:

» Client requests for enqueue, dequeue, and registration
= Server responses to client requests for enqueue, dequeue, and registration

= Notifications from the server to the client

Note: Oracle Streams AQ Internet access is supported only for 8.1or
higher style queues.

This section contains these topics:

» IDAP Client Requests for Enqueue

» IDAP Client Requests for Dequeue

= IDAP Client Requests for Registration

= IDAP Client Requests to Commit a Transaction
= IDAP Client Requests to Roll Back a Transaction
s IDAP Server Response to an Enqueue Request
s IDAP Server Response to a Dequeue Request

s IDAP Server Response to a Register Request

s IDAP Commit Response

= IDAP Rollback Response

= IDAP Notification

= IDAP Response in Case of Error

IDAP Client Requests for Enqueue

Client send and publish requests use AQXm1Send to enqueue to a single-consumer
queue and AQXm1Publish to enqueue to multiconsumer queues/topics

AQXmlSend and AQXm1Publish contain the following elements:
= producer_options

= message_set

Internet Access to Oracle Streams AQ 6-9

Request and Response IDAP Documents

message_header
message_payload

AQXmICommit

producer_options
This is a required element. It contains the following child elements:

destination

This element is required. It specifies the queue/topic to which messages are to be
sent. It has an optional lookup_type attribute, which determines how the
destination value is interpreted. If lookup_type is DATABASE, which is the default,
then the destination is interpreted as schema . queue_name. If lookup_type is
LDAP, then the LDAP server is used to resolve the destination.

visibility

This element is optional. It determines when an enqueue becomes visible. The
default is ON_COMMIT, which makes the enqueue visible when the current
transaction commits. If IMMEDIATE is specified, then the effects of the enqueue are

visible immediately after the request is completed. The enqueue is not part of the
current transaction. The operation constitutes a transaction on its own.

transformation

This element is optional. It specifies the PL/SQL transformation to be invoked
before the message is enqueued.

message_set

This is a required element and contains one or more messages. Each message consists
of a message_header and a message_payload.

message_header
This element is optional. It contains the following child elements:

sender_id

If amessage_header element is included, then it must contain a sender_id
element, which specifies an application-specific identifier. The sender_id
element can contain agent_name, address, protocol, and agent_alias
elements. The agent_alias element resolves to a name, address, and protocol
using LDAP.

message_id

This element is optional. It is a unique identifier of the message, supplied during
dequeue.

correlation
This element is optional. It is the correlation identifier of the message.
delay

This element is optional. It specifies the duration in seconds after which a message
is available for processing.

explration

This element is optional. It specifies the duration in seconds that a message is
available for dequeuing. This parameter is an offset from the delay. By default

6-10 Oracle Streams Advanced Queuing User’s Guide

Request and Response IDAP Documents

messages never expire. If a message is not dequeued before it expires, then it is
moved to an exception queue in the EXPIRED state.

m Dpriority

This element is optional. It specifies the priority of the message. The priority can
be any number, including negative numbers. A smaller number indicates higher
priority.

m recipient_list

This element is optional. It is a list of recipients which overrides the default
subscriber list. Each recipient is represented in recipient_list bya
recipient element, which can contain agent_name, address, protocol, and
agent_alias elements. The agent_alias element resolves to a name, address,
and protocol using LDAP.

n message_state

This element is optional. It specifies the state of the message. It is filled in
automatically during dequeue. If message_state is 0, then the message is ready
to be processed. If it is 1, then the message delay has not yet been reached. If it is 2,
then the message has been processed and is retained. If it is 3, then the message
has been moved to an exception queue.

m exception_gueue

This element is optional. It specifies the name of the queue to which the message is
moved if the number of unsuccessful dequeue attempts has exceeded max_
retries or the message has expired. All messages in the exception queue are in
the EXPIRED state.

If the exception queue specified does not exist at the time of the move, then the
message is moved to the default exception queue associated with the queue table,
and a warning is logged in the alert log. If the default exception queue is used,
then the parameter returns a NULL value at dequeue time.

message_payload

This is a required element. It can contain different elements based on the payload type
of the destination queue/topic. The different payload types are described in "IDAP
Client Requests for Dequeue" on page 6-11.

AQXmICommit
This is an optional empty element. If it is included, then the transaction is committed
at the end of the request.

See Also: "Internet Message Payloads" on page 6-2 for an
explanation of IDAP message payloads

IDAP Client Requests for Dequeue

Client requests for dequeue use AQXm1Receive, which contains the following
elements:

= consumer_options

s AQXmICommit

consumer_options
This is a required element. It contains the following child elements:

Internet Access to Oracle Streams AQ 6-11

Request and Response IDAP Documents

s destination

This element is required. It specifies the queue/topic from which messages are to
be received. The destination element has an optional lookup_type attribute,
which determines how the destination value is interpreted. If lookup_type is
DATABASE, which is the default, then the destination is interpreted as

schema .queue_name. If lookup_type is LDAP, then the LDAP server is used to
resolve the destination.

] consumer_name

This element is optional. It specifies the name of the consumer. Only those
messages matching the consumer name are accessed. If a queue is not set up for
multiple consumers, then this field should not be specified.

s walt_time

This element is optional. It specifies the number of seconds to wait if there is no
message currently available which matches the search criteria.

n selector

This element is optional. It specifies criteria used to select the message. It can
contain child elements correlation, message_id, or condition.

A dequeue condition element is a Boolean expression using syntax similar to
the WHERE clause of a SQL query. This Boolean expression can include conditions
on message properties, user object payload data properties, and PL/SQL or SQL
functions. Message properties include priority, corrid and other columns in
the queue table.

To specify dequeue conditions on a message payload, use attributes of the object
type in clauses. You must prefix each attribute with tab.user_data as a qualifier
to indicate the specific column of the queue table that stores the payload.

A dequeue condition element cannot exceed 4000 characters.

Note: When a dequeue condition or correlation identifier is used, the
order of the messages dequeued is indeterminate, and the sort order
of the queue is not honored.

s visibility
This element is optional. It determines when a dequeue becomes visible. The
default is ON_COMMIT, which makes the dequeue visible when the current
transaction commits. If IMMEDIATE is specified, then the effects of the dequeue are

visible immediately after the request is completed. The dequeue is not part of the
current transaction. The operation constitutes a transaction on its own.

s dequeue_mode

This element is optional. It specifies the locking action associated with the
dequeue. The possible values are REMOVE, BROWSE, and LOCKED.

REMOVE is the default and causes the message to be read and deleted. The message
can be retained in the queue table based on the retention properties. BROWSE reads
the message without acquiring any lock on it. This is equivalent to a select
statement. LOCKED reads the message and obtains a write lock on it. The lock lasts
for the duration of the transaction. This is equivalent to a select for update
statement.

6-12 Oracle Streams Advanced Queuing User’s Guide

Request and Response IDAP Documents

navigation_mode

This element is optional. It specifies the position of the message that is retrieved.
First, the position is determined. Second, the search criterion is applied. Finally,
the message is retrieved. Possible values are FIRST_MESSAGE, NEXT_MESSAGE,
and NEXT_TRANSACTION.

FIRST_MESSAGE retrieves the first message which is available and which matches
the search criteria. This resets the position to the beginning of the queue. NEXT__
MESSAGE is the default and retrieves the next message which is available and
which matches the search criteria. If the previous message belongs to a message
group, then Oracle Streams AQ retrieves the next available message which
matches the search criteria and which belongs to the message group.NEXT_
TRANSACTION skips the remainder of the current transaction group and retrieves
the first message of the next transaction group. This option can only be used if
message grouping is enabled for the current queue.

transformation

This element is optional. It specifies the PL/SQL transformation to be invoked
after the message is dequeued.

AQXmICommit

This is an optional empty element. If it is included, then the transaction is committed
at the end of the request.

IDAP Client Requests for Registration

Client requests for registration use AQXm1Register, which must contain a
register_options element. The register_options element contains the
following child elements:

destination

This element is required. It specifies the queue/topic on which notifications are
registered. The destination element has an optional lookup_type attribute,
which determines how the destination value is interpreted. If lookup_type is
DATABASE, which is the default, then the destination is interpreted as

schema .queue_name. If lookup_type is LDAP, then the LDAP server is used to
resolve the destination.

consumer_name

This element is optional. It specifies the consumer name for multiconsumer queues
or topics. This parameter must not be specified for single-consumer queues.

notify url

This element is required. It specifies where notification is sent when a message is
enqueued. The form can be http://url, mailto://email address or
plsqgl://pl/sgl procedure.

IDAP Client Requests to Commit a Transaction

A request to commit all actions performed by the user in a session uses AQXmlCommi t.
A commit request has the following format:

<?xml version="1.0"?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

<Body>
<AQXmlCommit xmlns="http://ns.oracle.com/AQ/schemas/access"/>

Internet Access to Oracle Streams AQ 6-13

Request and Response IDAP Documents

</Body>
</Envelope>

IDAP Client Requests to Roll Back a Transaction

A request to roll back all actions performed by the user in a session uses
AQxmlRollback. Actions performed with IMMEDIATE visibility are not rolled back.
An IDAP client rollback request has the following format:

<?xml version="1.0"?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
<Body>
<AQXmlRollback xmlns="http://ns.oracle.com/AQ/schemas/access"/>
</Body>
</Envelope>

IDAP Server Response to an Enqueue Request

The response to an enqueue request to a single-consumer queue uses
AQxmlSendResponse. It contains the following elements:

n status_response

This element contains child elements status_code, error_code, and error_
message. The status_code element takes value 0 for success or -1 for failure.
The error_code element contains an Oracle error code. The error_message
element contains a description of the error.

m send_result

This element contains child elements destination and message_id. The
destination element specifies where the message was sent. The message_id
element uniquely identifies every message sent.

The response to an enqueue request to a multiconsumer queue or topic uses
AQXmlPublishResponse. It contains the following elements:

n status_response

This element contains child elements status_code, error_code, and error_
message. The status_code element takes value 0 for success or -1 for failure.
The error_code element contains an Oracle error code. The error_message
element contains a description of the error.

m publish result

This element contains child elements destination and message_id. The
destination element specifies where the message was sent. The message_id
element uniquely identifies every message sent.

IDAP Server Response to a Dequeue Request

The response to a dequeue request uses AQXmlReceiveResponse. It contains the
following elements:

n status_response

This element contains child elements status_code, error_code, and error_
message. The status_code element takes value 0 for success or -1 for failure.
The error_code element contains an Oracle error code. The error_message
element contains a description of the error.

6-14 Oracle Streams Advanced Queuing User’'s Guide

Request and Response IDAP Documents

m receive_result

This element contains child elements destination and message_set. The
destination element specifies where the message was sent. The message_set
element specifies the set of messages dequeued.

IDAP Server Response to a Register Request

The response to a register request uses AQXmlRegisterResponse. It contains the
status_response element described in "IDAP Server Response to a Dequeue
Request" on page 6-14.

IDAP Commit Response

The response to a commit request uses AQXmlCommitResponse. It contains the
status_response element described in "IDAP Server Response to a Dequeue
Request" on page 6-14. The response to a commit request has the following format:

<?xml version = '1.0'?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
<Body>

<AQXmlCommitResponse xmlns="http://ns.oracle.com/AQ/schemas/access">
<status_response>
<status_code>0</status_code>
</status_response>
</AQXmlCommitResponse>
</Body>
</Envelope>

IDAP Rollback Response

The response to a rollback request uses A0Xm1RollbackResponse. It contains the
status_response element described in "IDAP Server Response to a Dequeue
Request" on page 6-14.

IDAP Notification

When an event for which a client has registered occurs, a notification is sent to the
client at the URL specified in the REGISTER request using AQXm1Notification. It
contains the following elements:

m notification_options

This element has child elements destination and consumer_name. The
destination element specifies the destination queue/topic on which the event
occurred. The consumer_name element specifies the consumer name for which the
even occurred. It applies only to multiconsumer queues/topics.

n message_set

This element specifies the set of message properties.

IDAP Response in Case of Error

In case of an error in any of the preceding requests, a FAULT is generated. The FAULT
element contains the following elements:

n faultcode

This element specifies the error code for the fault.

Internet Access to Oracle Streams AQ 6-15

Notification of Messages by e-mail

faultstring

This element indicates a client error or a server error. A client error means that the
request is not valid. A server error indicates that the Oracle Streams AQ servlet
has not been set up correctly.

detail

This element contains the status_response element, which is described in
"IDAP Server Response to a Dequeue Request" on page 6-14.

Notification of Messages by e-mail

Here are the steps for setting up your database for e-mail notifications:

1.

Set the SMTP mail host by invoking DBMS_AQELM. SET_MAILHOST as an Oracle
Streams AQ administrator.

Set the SMTP mail port by invoking DBMS_AQELM. SET_MAILPORT as an Oracle
Streams AQ administrator. If not explicit, set defaults to 25.

Set the SendFrom address by invoking DBMS_AQELM. SET_SENDFROM.

After setup, you can register for e-mail notifications using the Oracle Call Interface
(OCI) or PL/SQL API.

6-16 Oracle Streams Advanced Queuing User’s Guide

7

Troubleshooting Oracle Streams AQ

This chapter describes how to troubleshoot Oracle Streams Advanced Queuing (AQ).

The chapter contains these topics:

Debugging Oracle Streams AQ Propagation Problems

Oracle Streams AQ Error Messages

Debugging Oracle Streams AQ Propagation Problems

The following tips should help with debugging propagation problems. This discussion
assumes that you have created queue tables and queues in source and target databases
and defined a database link for the destination database. The notation assumes that
you supply the actual name of the entity (without the brackets).

See Also: "Optimizing Propagation” on page 4-9

To begin debugging, do the following:

1.

Check that the propagation schedule has been created and that a job queue process
has been assigned.

Look for the entry in the DBA_QUEUE_SCHEDULES view and make sure that the
status of the schedule is enabled. SCHEDULE_DISABLED must be set to 'N'. Check
that it has a nonzero entry for JOBNO in table AQ$_ SCHEDULES, and that there is
an entry in table JOB$ with that JOBNO.

To check if propagation is occurring, monitor the DBA_QUEUE_SCHEDULES view
for the number of messages propagated (TOTAL_NUMBER).

If propagation is not occurring, check the view for any errors. Also check the
NEXT_RUN_DATE and NEXT_RUN_TIME in DBA_QUEUE_SCHEDULES to see if
propagation is scheduled for a later time, perhaps due to errors or the way it is set

up.
Check if the database link to the destination database has been set up properly.
Make sure that the queue owner can use the database link. You can do this with:

select count (*) from table name@dblink_name;

Make sure that at least two job queue processes are running.
Check for messages in the source queue with:

select count (*) from AQS$S<source_qgueue_table>
where g name = 'source_queue_name';

Troubleshooting Oracle Streams AQ 7-1

Oracle Streams AQ Error Messages

5. Check for messages in the destination queue with:

select count (*) from AQ$<destination_gqueue_table>
where g name = 'destination_queue_name';

6. Check to see who is using job queue processes.

Check which jobs are being run by querying dba_jobs_running. It is possible
that other jobs are starving the propagation jobs.

7. Check to see that the queue table sys.aqg$_prop_table_instno exists in DBA_
QUEUE_TABLES. The queue sys.aqg$_prop_notify queue_instno must also
exist in DBA_QUEUES and must be enabled for enqueue and dequeue.

In case of Real Application Clusters (RAC), this queue table and queue pair must
exist for each RAC node in the system. They are used for communication between
job queue processes and are automatically created.

8. Check that the consumer attempting to dequeue a message from the destination
queue is a recipient of the propagated messages.

For 8.1-style queues, you can do the following:

select consumer_name, deq txn_id, deg_time, deqg user_id,
propagated_msgid from ag$<destination_queue_table>
where queue = 'queue_name';

For 8.0-style queues, you can obtain the same information from the history column
of the queue table:

select h.consumer, h.transaction_id, h.deg time, h.deq user,
h.propagated_msgid from ag$<destination_queue_table> t, table(t.history) h
where t.g _name = 'queue_name';

Note: Queues created in a queue table with compatible setto 8.0
(referrred to in this guide as 8.0-style queues) are deprecated in Oracle
Streams AQ 10g Release 2 (10.2). Oracle recommends that any new
queues you create be 8.1-style or newer and that you migrate existing
8.0-style queues at your earliest convenience.

9. Turn on propagation tracing at the highest level using event 24040, level 10.

Debugging information is logged to job queue trace files as propagation takes
place. You can check the trace file for errors and for statements indicating that
messages have been sent.

Oracle Streams AQ Error Messages

ORA-1555

You might get this error when using the NEXT_MESSAGE navigation option for
dequeue. NEXT_MESSAGE uses the snapshot created during the first dequeue call.
After that, undo information may not be retained.

The workaround is to use the FIRST_MESSAGE option to dequeue the message. This
reexecutes the cursor and gets a new snapshot. FIRST_MESSAGE does not perform as
well as NEXT_MESSAGE, so Oracle recommends that you dequeue messages in
batches: FIRST_MESSAGE for one, NEXT_MESSAGE for the next 1000 messages, then
FIRST_ MESSAGE again, and so on.

7-2 Oracle Streams Advanced Queuing User’s Guide

Oracle Streams AQ Error Messages

ORA-24033

This error is raised if a message is enqueued to a multiconsumer queue with no
recipient and the queue has no subscribers (or rule-based subscribers that match this
message). This is a warning that the message will be discarded because there are no
recipients or subscribers to whom it can be delivered.

ORA-25237

When using the Oracle Streams AQ navigation option, you must reset the dequeue
position by using the FIRST_MESSAGE option if you want to continue dequeuing
between services (such as xa_start and xa_end boundaries). This is because XA
cancels the cursor fetch state after an xa_end. If you do not reset, then you get an
error message stating that the navigation is used out of sequence.

ORA-25307

Flow control has been enabled for the message sender. This means that the fastest
subscriber of the sender's message is not able to keep pace with the rate at which
messages are enqueued. The buffered messaging application must handle this error
and attempt again to enqueue messages after waiting for some time.

Troubleshooting Oracle Streams AQ 7-3

Oracle Streams AQ Error Messages

7-4 Oracle Streams Advanced Queuing User’s Guide

Part Il

Oracle Streams AQ Administrative and
Operational Interfaces

Part IV describes Oracle Streams Advanced Queuing (AQ) administrative and
operational interfaces.

This part contains the following chapters:

» Chapter 8, "Oracle Streams AQ Administrative Interface"

s Chapter 9, "Oracle Streams AQ & Messaging Gateway Views"
» Chapter 10, "Oracle Streams AQ Operations Using PL/SQL"

8

Oracle Streams AQ Administrative Interface

This chapter describes the Oracle Streams Advanced Queuing (AQ) administrative
interface.

This chapter contains these topics:

= Managing Queue Tables

= Managing Queues

» Managing Transformations

s Granting and Revoking Privileges

» Managing Subscribers

= Managing Propagations

= Managing Oracle Streams AQ Agents

= Adding an Alias to the LDAP Server

s Deleting an Alias from the LDAP Server

See Also:

» Chapter 3, "Oracle Streams AQ: Programmatic Interfaces" for a list
of available functions in each programmatic interface

» Oracle Database PL/SQL Packages and Types Reference for
information on the DBMS_AQADM Package

Managing Queue Tables
This section contains these topics:
» Creating a Queue Table
= Altering a Queue Table
= Dropping a Queue Table
s Purging a Queue Table
» Migrating a Queue Table

Creating a Queue Table

DBMS_AQADM.CREATE_QUEUE_TABLE (
queue_table IN VARCHAR?2,
queue_payload_type IN VARCHAR2,

Oracle Streams AQ Administrative Interface 8-1

Managing Queue Tables

[storage_clause
sort_list
multiple_consumers
message_grouping
comment
primary_instance
secondary_instance
compatible

secure

IN VARCHAR2 DEFAULT NULL,]
IN VARCHAR2 DEFAULT NULL,
IN BOOLEAN DEFAULT FALSE,
IN BINARY_INTEGER DEFAULT NONE,
IN VARCHAR2 DEFAULT NULL,
IN BINARY_INTEGER DEFAULT O,

IN BINARY_INTEGER DEFAULT O,

IN VARCHAR2 DEFAULT NULL,
IN BOOLEAN DEFAULT FALSE) ;

This procedure creates a queue table for messages of a predefined type. It has the
following required and optional parameters:

Parameter

Description

queue_table

This required parameter specifies the queue table name.

Mixed case (upper and lower case together) queue table names are
supported if database compatibility is 10.0, but the names must be
enclosed in double quote marks. So abc . efg means the schema is
ABC and the name is EFG, but "abc" . "efg" means the schema is
abc and the name is efg.

Queue table names must not be longer than 24 characters. If you
attempt to create a queue table with a longer name, error ORA-24019
results.

queue_payload_type

This required parameter specifies the payload type as RAW or an
object type. See "Payload Type" on page 8-3 for more information.

storage_clause

This optional parameter specifies a tablespace for the queue table.
See "Storage Clause" on page 8-3 for more information.

sort_list

This optional parameter specifies one or two columns to be used as
sort keys in ascending order. It has the format sort_

columnl, sort_column2. See "Sort Key" on page 8-4 for more
information.

multiple_consumers

This optional parameter specifies the queue table as
single-consumer or multiconsumer. The default FALSE means
queues created in the table can have only one consumer for each
message. TRUE means queues created in the table can have multiple
consumers for each message.

message_grouping

This optional parameter specifies whether messages are grouped or
not. The default NONE means each message is treated individually.
TRANSACTIONAL means all messages enqueued in one transaction
are considered part of the same group and can be dequeued as a
group of related messages.

comment

This optional parameter is a user-specified description of the queue
table. This user comment is added to the queue catalog.

primary_ instance

This optional parameter specifies the primary owner of the queue
table. Queue monitor scheduling and propagation for the queues in
the queue table are done in this instance. The default value 0 means
queue monitor scheduling and propagation is done in any available
instance.

You can specify and modify this parameter only if compatible is
8.1 or higher.

secondary_instance

This optional parameter specifies the owner of the queue table if the
primary instance is not available. The default value 0 means that the
queue table will fail over to any available instance.

You can specify and modify this parameter only if primary_
instance is also specified and compatibleis 8.1 or higher.

8-2 Oracle Streams Advanced Queuing User’s Guide

Managing Queue Tables

Parameter Description

compatible This optional parameter specifies the lowest database version with
which the queue table is compatible. The possible values are 8.0,
8.1,and 10. 0. If the database is in 10.1-compatible mode, then the
default value is 10. 0. If the database is in 8.1-compatible or
9.2-compatible mode, then the default value is 8. 1. If the database
is in 8.0-compatible mode, then the default value is 8.0. The 8.0
value is deprecated in Oracle Streams AQ 10g Release 2 (10.2).

For more information on compatibility, see "Oracle Streams AQ
Compatibility Parameters" on page 4-1.

secure This optional parameter must be set to TRUE if you want to use the
queue table for secure queues. Secure queues are queues for which
AQ agents must be associated explicitly with one or more database
users who can perform queue operations, such as enqueue and
dequeue. The owner of a secure queue can perform all queue
operations on the queue, but other users cannot unless they are
configured as secure queue users

Payload Type
To specify the payload type as an object type, you must define the object type.

Note: If you have created synonyms on object types, then you cannot
use them in DBMS_ AQADM . CREATE_QUEUE_TABLE. Error ORA-24015
results.

CLOB, BLOB, and BFILE objects are valid in an Oracle Streams AQ message. You can
propagate these object types using Oracle Streams AQ propagation with Oracle
software since Oracle8i release 8.1.x. To enqueue an object type that has a LOB, you
must first set the LOB_attribute to EMPTY_BLOB() and perform the enqueue. You
can then select the LOB locator that was generated from the queue table's view and use
the standard LOB operations.

Note: Payloads containing LOBs require users to grant explicit
Select, Insert and Update privileges on the queue table for doing
enqueues and dequeues.

Storage Clause
The storage_clause argument can take any text that can be used in a standard
CREATE TABLE storage_clause argument.

Once you pick the tablespace, any index-organized table (IOT) or index created for
that queue table goes to the specified tablespace. You do not currently have a choice to
split them between different tablespaces.

Oracle Streams AQ Administrative Interface 8-3

Managing Queue Tables

Note: If you choose to create the queue table in a locally managed
tablespace or with freelist groups > 1, then Queue Monitor
Coordinator will skip the cleanup of those blocks. This can cause a
decline in performance over time.

The workaround is to coalesce the dequeue IOT by running

ALTER TABLE AQ$_gueue_table I COALESCE;

You can run this command while there are concurrent dequeuers and
enqueuers of the queue, but these concurrent users might see a slight
decline in performance while the command is running.

Sort Key

The sort_list parameter determines the order in which messages are dequeued. You
cannot change the message sort order after you have created the queue table. Your
choices are:

= ENQ_TIME

s ENQ_TIME, PRIORITY

s PRIORITY

s PRIORITY,ENQ TIME

s PRIORITY,COMMIT_TIME
= COMMIT_TIME

The COMMIT_TIME choice is a new feature in Oracle Streams AQ 10¢ Release 2 (10.2).
If it is specified, then any queue that uses the queue table is a commit-time queue, and
Oracle Streams AQ computes an approximate CSCN for each enqueued message
when its transaction commits.

If you specify COMMIT_TIME as the sort key, then you must also specify the following:
s multiple_consumers = TRUE

m message_grouping = TRANSACTIONAL

= compatible = 8.1 or higher

Commit-time ordering is useful when transactions are interdependent or when
browsing the messages in a queue must yield consistent results.

See Also:

s "Commit-Time Queues" in Oracle Streams Concepts and
Administration

s "Dequeue Modes" on page 1-21

Other Tables and Views
The following objects are created at table creation time:

» AQSQUEUE_TABLE_NAME, a read-only view which is used by Oracle Streams AQ
applications for querying queue data

= AQS$_QUEUE_TABLE_NAME_E, the default exception queue associated with the
queue table

8-4 Oracle Streams Advanced Queuing User’s Guide

Managing Queue Tables

s AQS$_QUEUE_TABLE_NAME_I,an index or an index-organized table (IOT) in the
case of multiple consumer queues for dequeue operations

s AQS$_QUEUE_TABLE_NAME_T, an index for the queue monitor operations
The following objects are created only for 8.1-compatible multiconsumer queue tables:
s AQS$S_queue_table name_sS, a table for storing information about subscribers

s AQS$_queue_table name_ H, an index organized table (IOT) for storing dequeue
history data

Note: Oracle Streams AQ does not support the use of triggers on
these internal AQ queue tables.

See Also: Oracle Database SecureFiles and Large Objects Developer’s
Guide

If you do not specify a schema, then you default to the user's schema.

If GLOBAL_TOPIC_ENABLED = TRUE when a queue table is created, then a
corresponding Lightweight Directory Access Protocol (LDAP) entry is also created.

If the queue type is ANYDATA, then a buffered queue and two additional objects are
created. The buffered queue stores logical change records created by a capture process.
The logical change records are staged in a memory buffer associated with the queue;
they are not ordinarily written to disk.

If they have been staged in the buffer for a period of time without being dequeued, or
if there is not enough space in memory to hold all of the captured events, then they are
spilled to:

s AQS$_QUEUE_TABLE_NAME_P, a table for storing the captured events that spill
from memory

s AQS$_QUEUE_TABLE_NAME_d, a table for storing information about the
propagations and apply processes that are eligible for processing each event

See Also: Chapter 3, "Streams Staging and Propagation" in Oracle
Streams Concepts and Administration

Examples

The following examples assume you are in a SQL*Plus testing environment. In
Example 8-1, you create users in preparation for the other examples in this chapter.
For this example, you must connect as a user with administrative privileges. For most
of the other examples in this chapter, you can connect as user test_adm. A few
examples must be run as test with EXECUTE privileges on DBMS_AQADM.

Example 8—1 Setting Up AQ Administrative Users

CREATE USER test_adm IDENTIFIED BY test_adm DEFAULT TABLESPACE example;
GRANT DBA, CREATE ANY TYPE TO test_adm;
GRANT EXECUTE ON DBMS_AQADM TO test_adm;
GRANT ag_administrator_role TO test_adm;

BEGIN
DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE (
privilege => 'MANAGE_ANY',
grantee => "test_adm',
admin_option => FALSE) ;

Oracle Streams AQ Administrative Interface 8-5

Managing Queue Tables

END;

/

CREATE USER test IDENTIFIED BY test;
GRANT DBA TO test;

GRANT EXECUTE ON dbms_ag TO test;

Example 8-2 Setting Up AQ Administrative Example Types
CREATE TYPE test.message_typ AS object(

sender_id NUMBER,
subject VARCHAR2 (30),
text VARCHAR2 (1000)) ;

/

CREATE TYPE test.msg_table AS TABLE OF test.message_typ;
/

CREATE TYPE test.order_typ AS object(

custno NUMBER,
item VARCHAR2 (30),
description VARCHAR2 (1000)) ;

/
CREATE TYPE test.lob_typ AS object(

id NUMBER,
subject VARCHAR2 (100)
data BLOB,

trailer NUMBER) ;

Example 8-3 Creating a Queue Table for Messages of Object Type

BEGIN
DBMS_AQADM. CREATE_QUEUE_TABLE (
queue_table => 'test.obj_gtab',
queue_payload_type => 'test.message_typ');
END;

/

Example 8-4 Creating a Queue Table for Messages of RAW Type

BEGIN
DBMS_AQADM. CREATE_QUEUE_TABLE (
queue_table => 'test.raw_gtab',
queue_payload_type => 'RAW');
END;

/

Example 8-5 Creating a Queue Table for Messages of LOB Type

BEGIN
DBMS_AQADM.CREATE_QUEUE_TABLE (
queue_table => 'test.lob_gtab"',
queue_payload_type => 'test.lob_typ');
END;

/

Example 8-6 Creating a Queue Table for Messages of XMLType

BEGIN
DBMS_AQADM.CREATE_QUEUE_TABLE (
queue_table => 'test.xml_gtab',
queue_payload_type => 'SYS.XMLType',

8-6 Oracle Streams Advanced Queuing User’s Guide

Managing Queue Tables

multiple_consumers => TRUE,

compatible = '8.1",

comment => 'Overseas Shipping multiconsumer orders queue table');
END;
/

Example 8-7 Creating a Queue Table for Grouped Messages

BEGIN
DBMS_AQADM.CREATE_QUEUE_TABLE (
queue_table => 'test.group_gtab',
queue_payload_type => 'test.message_typ',
message_grouping => DBMS_AQADM.TRANSACTIONAL) ;
END;
/

Example 8-8 Creating Queue Tables for Prioritized Messages and Multiple Consumers

BEGIN
DBMS_AQADM. CREATE_QUEUE_TABLE (
queue_table => 'test.priority gtab',
queue_payload_type => 'test.order_typ',
sort_list => 'PRIORITY,ENQ TIME',
multiple_consumers => TRUE) ;
DBMS_AQADM. CREATE_QUEUE_TABLE (
queue_table => 'test.multiconsumer_gtab',
queue_payload_type => 'test.message_typ',
sort_list => 'PRIORITY,ENQ TIME',
multiple_consumers => TRUE) ;
END;
/

Example 8-9 Creating a Queue Table with Commit-Time Ordering

BEGIN
DBMS_AQADM.CREATE_QUEUE_TABLE (
queue_table => 'test.commit_time_qgtab',

queue_payload_type

=> 'test.message_typ',

sort_list => 'COMMIT_TIME',
multiple consumers => TRUE,
message_grouping => DBMS_AQADM.TRANSACTIONAL,
compatible => '10.0");
END;
/

Example 8-10 Creating an 8.1-Compatible Queue Table for Multiple Consumers

BEGIN
DBMS_AQADM. CREATE_QUEUE_TABLE (

queue_table => 'test.multiconsumer_81_gtab',
queue_payload_type => 'test.message_typ',
multiple_ consumers => TRUE,
compatible = '8.1");

END;

/

Oracle Streams AQ Administrative Interface 8-7

Managing Queue Tables

Example 8-11 Creating a Queue Table in a Specified Tablespace

BEGIN
DBMS_AQADM. CREATE_QUEUE_TABLE (
queue_table => 'test.example_gtab',
queue_payload_type => 'test.message_typ',
storage_clause => 'tablespace example');
END;
/

Example 8-12 Creating a Queue Table with Freelists or Freelist Groups

BEGIN
DBMS_AQADM. CREATE_QUEUE_TABLE (

queue_table => 'test.freelist_qgtab',
queue_payload_type => 'RAW',
storage_clause => 'STORAGE (FREELISTS 4 FREELIST GROUPS 2)',
compatible = '8.1");

END;

/

Altering a Queue Table

DBMS_AQADM. ALTER_QUEUE_TABLE (

queue_table IN VARCHAR2,
comment IN VARCHAR2 DEFAULT NULL,
primary_instance IN BINARY_INTEGER DEFAULT NULL,

secondary_instance IN BINARY_INTEGER DEFAULT NULL) ;

This procedure alters the existing properties of a queue table.

Parameter Description
queue_table This required parameter specifies the queue table name.
comment This optional parameter is a user-specified description of the queue

table. This user comment is added to the queue catalog.

primary_instance This optional parameter specifies the primary owner of the queue
table. Queue monitor scheduling and propagation for the queues in
the queue table are done in this instance.

You can specify and modify this parameter only if compatible is
8.1 or higher.

secondary_instance This optional parameter specifies the owner of the queue table if the
primary instance is not available.

You can specify and modify this parameter only if primary_
instance is also specified and compatibleis 8.1 or higher.

Note: In general, DDL statements are not supported on queue tables
and may even render them inoperable. For example, issuing an ALTER
TABLE ... SHRINK statement against a queue table results in an
internal error, and all subsequent attempts to use the queue table will
also result in errors. Oracle recommends that you not use DDL
statements on queue tables.

If GLOBAL_TOPIC_ENABLED = TRUE when a queue table is modified, then a
corresponding LDAP entry is also altered.

8-8 Oracle Streams Advanced Queuing User’'s Guide

Managing Queue Tables

Example 8-13 Altering a Queue Table by Changing the Primary and Secondary

Instances
BEGIN
DBMS_AQADM.ALTER_QUEUE_TABLE (
queue_table => 'test.obj_gtab',
primary_instance => 3,
secondary_instance => 2);
END;

/

Example 8-14 Altering a Queue Table by Changing the Comment

BEGIN
DBMS_AQADM. ALTER_QUEUE_TABLE (
queue_table => 'test.obj_gtab',
comment => 'revised usage for queue table');
END;
/
Dropping a Queue Table
DBMS_AQADM. DROP_QUEUE_TABLE (
queue_table IN VARCHAR2,
force IN BOOLEAN DEFAULT FALSE,

This procedure drops an existing queue table. You must stop and drop all the queues

in a queue table before the queue table can be dropped. You must do this explicitly if

forceis set to FALSE. If force is set to TRUE, then all queues in the queue table and
their associated propagation schedules are dropped automatically.

If GLOBAL_TOPIC_ENABLED = TRUE when a queue table is dropped, then a
corresponding LDAP entry is also dropped.

Example 8-15 Dropping a Queue Table

BEGIN
DBMS_AQADM.DROP_QUEUE_TABLE (
queue_table => 'test.obj_gtab');
END;
/

Example 8-16 Dropping a Queue Table with force Option

BEGIN
DBMS_AQADM.DROP_QUEUE_TABLE (
queue_table => 'test.raw_gtab',
force => TRUE) ;
END;

/

Purging a Queue Table
DBMS_AQADM. PURGE_QUEUE_TABLE (

queue_table IN VARCHAR2,
purge_condition IN VARCHAR2,
purge_options IN ag$_purge_options_t);

This procedure purges messages from a queue table. It has the following parameters:

Oracle Streams AQ Administrative Interface 8-9

Managing Queue Tables

Parameter Description
queue_table This required parameter specifies the queue table name.
purge_condition The purge condition must be in the format of a SQL WHERE clause,

and it is case-sensitive. The condition is based on the columns of
aqg$queue_table_name view. Each column name in the purge
condition must be prefixed with "gtview."

All purge conditions supported for persistent messages are also
supported for buffered messages.

To purge all queues in a queue table, set purge_condition to
either NULL (a bare null word, no quotes) or ' ' (two single quotes).

purge_options Type aq$_purge_options_t contains a block parameter. If
block is TRUE, then an exclusive lock on all the queues in the queue
table is held while purging the queue table. This will cause
concurrent enqueuers and dequeuers to block while the queue table
is purged. The purge call always succeeds if block is TRUE. The
default for block is FALSE. This will not block enqueuers and
dequeuers, but it can cause the purge to fail with an error during
high concurrency times.

Type ag$_purge_options_t also contains a delivery_mode
parameter. If it is the default PERSISTENT, then only persistent
messages are purged. If it is set to BUFFERED, then only buffered
messages are purged. If it is set to PERSISTENT_OR_BUFFERED,
then both types are purged.

A trace file is generated in the udump destination when you run this procedure. It
details what the procedure is doing. The procedure commits after it has processed all
the messages.

See Also: "DBMS_AQADM" in Oracle Database PL/SQL Packages and
Types Reference for more information on DBMS_AQADM . PURGE_
QUEUE_TABLE

Example 8-17 Purging All Messages in a Queue Table

DECLARE
po dbms_agadm.aq$_purge_options_t;
BEGIN

po.block := FALSE;

DBMS_AQADM. PURGE_QUEUE_TABLE (

queue_table => 'test.obj_gtab',
purge_condition => NULL,
purge_options => po);

END;

/

Example 8-18 Purging All Messages in a Named Queue

DECLARE
po dbms_agadm.aq$_purge_options_t;
BEGIN
po.block := TRUE;
DBMS_AQADM . PURGE_QUEUE_TABLE (

queue_table => 'test.obj_gtab',
purge_condition => 'gtview.queue = ''TEST.OBJ_QUEUE''"',
purge_options => po);

END;

/

8-10 Oracle Streams Advanced Queuing User’s Guide

Managing Queue Tables

Example 8-19 Purging All PROCESSED Messages in a Named Queue

DECLARE
po dbms_agadm.aq$_purge_options_t;
BEGIN

po.block := TRUE;

DBMS_ AQADM . PURGE_QUEUE_TABLE (

queue_table => 'test.obj_gtab',
purge_condition => 'gtview.queue = ''TEST.OBJ_QUEUE''
and gtview.msg_state = ''PROCESSED''',
purge_options => po);
END;
/

Example 8-20 Purging All Messages in a Named Queue and for a Named Consumer

DECLARE
po dbms_agadm.agS$_purge_options_t;
BEGIN

po.block := TRUE;

DBMS_AQADM. PURGE_QUEUE_TABLE (

queue_table => 'test.multiconsumer_81_gtab',
purge_condition => 'gtview.queue = ''TEST.MULTICONSUMER_81_QUEUE''
and gtview.consumer_name = ''PAYROLL_APP''',
purge_options => po);
END;
/

Note: Some purge conditions, such as consumer_name in
Example 8-20 and sender_name in Example 8-21, are supported
only in 8.1-compatible queue tables. For more information, see
Table 9-1, " AQ$Queue_Table_Name View" on page 9-4.

Example 8-21 Purging All Messages from a Named Sender

DECLARE
po dbms_agadm.aq$_purge_options_t;
BEGIN

po.block := TRUE;

DBMS_AQADM. PURGE_QUEUE_TABLE (

queue_table => 'test.multiconsumer_81_gtab',
purge_condition => 'gtview.sender_name = ''TEST.OBJ_QUEUE''',
purge_options => po);

END;

/

Migrating a Queue Table

DBMS_AQADM.MIGRATE_QUEUE_TABLE (
queue_table IN VARCHAR2,
compatible IN VARCHAR2) ;

This procedure migrates a queue table from 8.0, 8.1, or 10.0 to 8.0, 8.1, or 10.0. Only the
owner of the queue table can migrate it.

Oracle Streams AQ Administrative Interface 8-11

Managing Queues

Caution: This procedure requires that the EXECUTE privilege on
DBMS_AQADM be granted to the queue table owner, who is probably an
ordinary queue user. If you do not want ordinary queue users to be
able to create and drop queues and queue tables, add and delete
subscribers, and so forth, then you must revoke the EXECUTE
privilege as soon as the migration is done.

Note: Queues created in a queue table with compatible setto 8.0
(referred to in this guide as 8.0-style queues) are deprecated in Oracle
Streams AQ 10¢ Release 2 (10.2). Oracle recommends that any new
queues you create be 8.1-style or newer and that you migrate existing
8.0-style queues at your earliest convenience.

If a schema was created by an import of an export dump from a lower release or has
Oracle Streams AQ queues upgraded from a lower release, then attempts to drop it
with DROP USER CASCADE will fail with ORA-24005. To drop such schemas:

1. Event 10851 should be set to level 1.

2. Drop all tables of the form AQ$_queue_table_name_NR from the schema.
3. Turn off event 10851.
4

Drop the schema.

Example 8-22 Upgrading a Queue Table from 8.1-Compatible to 10.0-Compatible

BEGIN
DBMS_AQADM.MIGRATE_QUEUE_TABLE (
queue_table => 'test.xml_gtab"',
compatible => '10.0");
END;

Managing Queues
This section contains these topics:
s Creating a Queue
= Altering a Queue
= Starting a Queue
= Stopping a Queue
= Dropping a Queue

Creating a Queue
DBMS_AQADM. CREATE_QUEUE (

queue_name IN VARCHAR2,

queue_table IN VARCHAR2,

queue_type IN BINARY_ INTEGER DEFAULT NORMAL_QUEUE,
max_retries IN NUMBER DEFAULT NULL,
retry_delay IN NUMBER DEFAULT O,
retention_time IN NUMBER DEFAULT O,
dependency_tracking IN BOOLEAN DEFAULT FALSE,

8-12 Oracle Streams Advanced Queuing User’s Guide

Managing Queues

comment

IN

VARCHAR2 DEFAULT NULL,

This procedure creates a queue. It has the following parameters:

Parameter

Description

Jqueue_name

This required parameter specifies the name of the new queue.

Mixed case (upper and lower case together) queue names are
supported if database compatibility is 10.0, but the names must be
enclosed in double quote marks. So abc . efg means the schema
is ABC and the name is EFG, but "abc" . "efg" means the schema
is abc and the name is efg.

User-generated queue names must not be longer than 24
characters. If you attempt to create a queue with a longer name,
error ORA-24019 results. Queue names generated by Oracle
Streams AQ, such as those listed in "Other Tables and Views" on
page 8-4, cannot be longer than 30 characters.

queue_table

This required parameter specifies the queue table in which the
queue is created.

queue_type

This parameter specifies what type of queue to create. The default
NORMAL_QUEUE produces a normal queue. EXCEPTION_QUEUE
produces an exception queue.

max_retries

This parameter limits the number of times a dequeue with the
REMOVE mode can be attempted on a message. The maximum
value of max_retries is 2**31 -1.

retry_delay

This parameter specifies the number of seconds after which this
message is scheduled for processing again after an application
rollback. The default is 0, which means the message can be retried
as soon as possible. This parameter has no effect if max_retries
is set to 0.

This parameter is supported for single-consumer queues and
8.1-style or higher multiconsumer queues but not for 8.0-style
multiconsumer queues, which are deprecated in Oracle Streams
AQ 10g Release 2 (10.2).

retention_time

This parameter specifies the number of seconds a message is
retained in the queue table after being dequeued from the queue.
When retention_time expires, messages are removed by the
time manager process. INFINITE means the message is retained
forever. The default is 0, no retention.

dependency_tracking

This parameter is reserved for future use. FALSE is the default.
TRUE is not permitted in this release.

comment

This optional parameter is a user-specified description of the
queue. This user comment is added to the queue catalog.

All queue names must be unique within a schema. Once a queue is created with
CREATE_QUEUE, it can be enabled by calling START_QUEUE. By default, the queue is
created with both enqueue and dequeue disabled. To view retained messages, you can
either dequeue by message ID or use SQL. If GLOBAL_TOPIC_ENABLED = TRUE
when a queue is created, then a corresponding LDAP entry is also created.

The following examples (Example 8-23 through Example 8-30) use data structures
created in Example 8-1 through Example 8-12.

Example 8-23 Creating a Queue for Messages of Object Type

BEGIN

DBMS_AQADM. CREATE_QUEUE (

Oracle Streams AQ Administrative Interface 8-13

Managing Queues

queue_name => 'test.obj_queue',
queue_table => 'test.obj_gtab');
END;
/

Example 8-24 Creating a Queue for Messages of RAW Type

BEGIN
DBMS_AQADM. CREATE_QUEUE (
queue_name => 'test.raw_queue',
queue_table => 'test.raw_gtab');
END;
/

Example 8-25 Creating a Queue for Messages of LOB Type

BEGIN
DBMS_AQADM.CREATE_QUEUE (
queue_name => 'test.lob_qgueue',
queue_table => 'test.lob_gtab');
END;
/

Example 8-26 Creating a Queue for Grouped Messages

BEGIN
DBMS_AQADM. CREATE_QUEUE (
queue_name => 'test.group_queue',
queue_table => 'test.group_gtab');
END;
/

Example 8-27 Creating a Queue for Prioritized Messages

BEGIN
DBMS_AQADM.CREATE_QUEUE (
queue_name => 'test.priority_gqueue',
queue_table => 'test.priority_gtab');
END;
/

Example 8-28 Creating a Queue for Prioritized Messages and Multiple Consumers

BEGIN
DBMS_AQADM.CREATE_QUEUE (
queue_name => 'test.multiconsumer_gqueue',
queue_table => 'test.multiconsumer_gtab');
END;
/

Example 8-29 Creating a Queue to Demonstrate Propagation

BEGIN
DBMS_AQADM. CREATE_QUEUE (
gueue_name => 'test.another_queue',
queue_table => 'test.multiconsumer_gtab');
END;
/

8-14 Oracle Streams Advanced Queuing User’s Guide

Managing Queues

Example 8-30 Creating an 8.1-Style Queue for Multiple Consumers

BEGIN
DBMS_AQADM . CREATE_QUEUE (
queue_name => 'test.multiconsumer_81_queue',
queue_table => 'test.multiconsumer_81_gtab');
END;

/

Altering a Queue
DBMS_AQADM.ALTER_QUEUE (

queue_name IN VARCHAR2,

max_retries IN NUMBER DEFAULT NULL,
retry_delay IN NUMBER DEFAULT NULL,
retention_time IN NUMBER DEFAULT NULL,
comment IN VARCHAR2 DEFAULT NULL) ;

This procedure alters existing properties of a queue.

Only max_retries, comment, retry_delay, and retention_time can be altered.
To view retained messages, you can either dequeue by message ID or use SQL. If
GLOBAL_TOPIC_ENABLED = TRUE when a queue is modified, then a corresponding
LDAP entry is also altered.

Example 8-31 changes retention time, saving messages for 1 day after dequeuing.

Example 8-31 Altering a Queue by Changing Retention Time

BEGIN
DBMS_AQADM. ALTER_QUEUE (
queue_name => 'test.another_queue',
retention_time => 86400) ;
END;

/

Starting a Queue
DBMS_AQADM. START_QUEUE (

queue_name IN VARCHAR2,
enqueue IN BOOLEAN DEFAULT TRUE,
dequeue IN BOOLEAN DEFAULT TRUE) ;

This procedure enables the specified queue for enqueuing or dequeuing.

After creating a queue, the administrator must use START_QUEUE to enable the queue.
The default is to enable it for both enqueue and dequeue. Only dequeue operations are
allowed on an exception queue. This operation takes effect when the call completes
and does not have any transactional characteristics.

Example 8-32 Starting a Queue with Both Enqueue and Dequeue Enabled

BEGIN
DBMS_AQADM.START_QUEUE (
queue_name => 'test.obj_queue');
END;
/

Oracle Streams AQ Administrative Interface 8-15

Managing Transformations

Example 8-33 Starting a Queue for Dequeue Only

BEGIN
DBMS_AQADM. START_QUEUE (
queue_name => 'test.raw_queue',
dequeue => TRUE,
enqueue => FALSE) ;
END;
/
Stopping a Queue
DBMS_AQADM. STOP_QUEUE (
queue_name IN VARCHAR2,
enqueue IN BOOLEAN DEFAULT TRUE,
dequeue IN BOOLEAN DEFAULT TRUE,
wait IN BOOLEAN DEFAULT TRUE) ;

This procedure disables enqueuing, dequeuing, or both on the specified queue.

By default, this call disables both enqueue and dequeue. A queue cannot be stopped if
there are outstanding transactions against the queue. This operation takes effect when
the call completes and does not have any transactional characteristics.

Example 8-34 Stopping a Queue

BEGIN

DBMS_AQADM. STOP_QUEUE (

gueue_name => 'test.obj_queue');
END;
/
Dropping a Queue

DBMS_AQADM. DROP_QUEUE (

queue_name IN VARCHAR2,

This procedure drops an existing queue. DROP_QUEUE is not allowed unless STOP_
QUEUE has been called to disable the queue for both enqueuing and dequeuing. All the
queue data is deleted as part of the drop operation.

If GLOBAL_TOPIC_ENABLED = TRUE when a queue is dropped, then a
corresponding LDAP entry is also dropped.

Example 8-35 Dropping a Standard Queue

BEGIN
DBMS_AQADM. DROP_QUEUE (
queue_name => 'test.obj_queue');
END;
/

Managing Transformations

Transformations change the format of a message, so that a message created by one
application can be understood by another application. You can use transformations on
both persistent and buffered messages.

This section contains these topics:

s Creating a Transformation

8-16 Oracle Streams Advanced Queuing User’s Guide

Managing Transformations

= Modifying a Transformation

= Dropping a Transformation

Creating a Transformation
DBMS_TRANSFORM.CREATE_TRANSFORMATION

(
schema VARCHAR2 (30) ,
name VARCHAR2 (30) ,
from_schema VARCHAR2 (30) ,
from_type VARCHAR2 (30),
to_schema VARCHAR2 (30),
to_type VARCHAR2 (30) ,
transformation VARCHAR2 (4000)) ;

This procedure creates a message format transformation. The transformation must be
a SQL function with input type from_type, returning an object of type to_type. It
can also be a SQL expression of type to_type, referring to from_type. All references
to from_type must be of the form source.user_data.

You must be granted EXECUTE privilege on dbms_transform to use this feature. This
privilege is included in the AQ_ADMINISTRATOR_ROLE.

See Also: "Oracle Streams AQ Security" on page 4-2 for more
information on administrator and user roles

You must also have EXECUTE privilege on the user-defined types that are the source
and destination types of the transformation, and have EXECUTE privileges on any
PL/SQL function being used in the transformation function. The transformation
cannot write the database state (that is, perform DML operations) or commit or
rollback the current transaction.

Example 8-36 Creating a Transformation

BEGIN
DBMS_TRANSFORM.CREATE_TRANSFORMATION (

schema => 'test',
name => 'message_order_transform',
from_schema => 'test',
from_type => 'message_typ',
to_schema => 'test',
to_type => 'order_typ',

transformation => 'test.order_typ(
source.user_data.sender_id,
source.user_data.subject,
source.user_data.text)');
END;

Modifying a Transformation

DBMS_TRANSFORM.MODIFY_TRANSFORMATION (
schema VARCHAR2 (30),
name VARCHAR2 (30),
attribute_number INTEGER,
transformation VARCHAR2 (4000)) ;

This procedure changes the transformation function and specifies transformations for
each attribute of the target type. If the attribute number 0 is specified, then the

Oracle Streams AQ Administrative Interface 8-17

Granting and Revoking Privileges

transformation expression singularly defines the transformation from the source to
target types.

All references to from_type must be of the form source.user_data. All references
to the attributes of the source type must be prefixed by source.user_data.

You must be granted EXECUTE privileges on dbms_transform to use this feature.
You must also have EXECUTE privileges on the user-defined types that are the source
and destination types of the transformation, and have EXECUTE privileges on any
PL/SQL function being used in the transformation function.

Dropping a Transformation

DBMS_TRANSFORM . DROP_TRANSFORMATION (
schema VARCHAR2 (30),
name VARCHAR2 (30)) ;

This procedure drops a transformation.

You must be granted EXECUTE privileges on dbms_transform to use this feature.
You must also have EXECUTE privileges on the user-defined types that are the source
and destination types of the transformation, and have EXECUTE privileges on any
PL/SQL function being used in the transformation function.

Granting and Revoking Privileges
This section contains these topics:
s Granting Oracle Streams AQ System Privileges
= Revoking Oracle Streams AQ System Privileges
s Granting Queue Privileges

= Revoking Queue Privileges

Granting Oracle Streams AQ System Privileges
DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE (

privilege IN VARCHAR2,
grantee IN VARCHAR2,
admin_option IN BOOLEAN := FALSE);

This procedure grants Oracle Streams AQ system privileges to users and roles. The
privileges are ENQUEUE_ANY, DEQUEUE_ANY, MANAGE_ANY. Initially, only SYS and
SYSTEM can use this procedure successfully.

Users granted the ENQUEUE_ANY privilege are allowed to enqueue messages to any
queues in the database. Users granted the DEQUEUE_ANY privilege are allowed to
dequeue messages from any queues in the database. Users granted the MANAGE_ANY
privilege are allowed to run DBMS_AQADM calls on any schemas in the database.

Example 8-37 Granting AQ System Privileges

BEGIN

DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE (
privilege => 'ENQUEUE_ANY ',
grantee => 'test',
admin_option => FALSE) ;

DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE (
privilege => 'DEQUEUE_ANY ',
grantee => 'test’,

8-18 Oracle Streams Advanced Queuing User’s Guide

Granting and Revoking Privileges

admin_option => FALSE) ;
END;
/

Revoking Oracle Streams AQ System Privileges

DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE (
privilege IN VARCHAR2,
grantee IN VARCHAR2) ;

This procedure revokes Oracle Streams AQ system privileges from users and roles.
The privileges are ENQUEUE_ANY, DEQUEUE_ANY and MANAGE_ANY. The ADMIN
option for a system privilege cannot be selectively revoked.

Users granted the ENQUEUE_ANY privilege are allowed to enqueue messages to any
queues in the database. Users granted the DEQUEUE_ANY privilege are allowed to
dequeue messages from any queues in the database. Users granted the MANAGE_ANY
privilege are allowed to run DBMS_AQADM calls on any schemas in the database.

Example 8-38 Revoking AQ System Privileges

BEGIN
DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE (
privilege => 'DEQUEUE_ANY ',
grantee => "test');
END;

/

Granting Queue Privileges
DBMS_AQADM.GRANT_QUEUE_PRIVILEGE (

privilege IN VARCHAR2,
queue_name IN VARCHAR2,
grantee IN VARCHARZ,
grant_option IN BOOLEAN := FALSE);

This procedure grants privileges on a queue to users and roles. The privileges are
ENQUEUE, DEQUEUE, or ALL. Initially, only the queue table owner can use this
procedure to grant privileges on the queues.

Caution: This procedure requires that EXECUTE privileges on DBMS_
AQADM be granted to the queue table owner, who is probably an
ordinary queue user. If you do not want ordinary queue users to be
able to create and drop queues and queue tables, add and delete
subscribers, and so forth, then you must revoke the EXECUTE
privilege as soon as the initial GRANT_QUEUE_PRIVILEGE is done.

Example 8-39 Granting Queue Privilege

BEGIN
DBMS_AQADM.GRANT_QUEUE_PRIVILEGE (
privilege => 'ALL',
queue_name => 'test.multiconsumer_81_queue',
grantee => 'test_adm',
grant_option => TRUE) ;
END;

Oracle Streams AQ Administrative Interface 8-19

Managing Subscribers

Revoking Queue Privileges

DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE (

privilege IN
queue_name IN
grantee IN

VARCHAR2,
VARCHAR2,
VARCHAR2) ;

This procedure revokes privileges on a queue from users and roles. The privileges are

ENQUEUE or DEQUEUE.

To revoke a privilege, the revoker must be the original grantor of the privilege. The

privileges propagated through the GRANT option are revoked if the grantor's privileges

are revoked.

You can revoke the dequeue right of a grantee on a specific queue, leaving the grantee
with only the enqueue right as in Example 8—40.

Example 8-40 Revoking Dequeue Privilege

'DEQUEUE ',
'test.multiconsumer_81_gueue',

BEGIN
DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE (
privilege =>
queue_name =>
grantee =>

END;

Managing Subscribers

"test_adm');

This section contains these topics:

= Adding a Subscriber

= Altering a Subscriber

= Removing a Subscriber

VARCHAR2,
sys.ag$_agent,

Adding a Subscriber
DBMS_AQADM.ADD_SUBSCRIBER (
queue_name IN
subscriber IN
rule IN

transformation IN
queue_to_queue IN
delivery_mode IN

VARCHAR2 DEFAULT NULL,
VARCHAR2 DEFAULT NULL,
BOOLEAN DEFAULT FALSE,
PLS_INTEGER DEFAULT PERSISTENT) ;

This procedure adds a default subscriber to a queue.

An application can enqueue messages to a specific list of recipients or to the default
list of subscribers. This operation succeeds only on queues that allow multiple

consumers, and the total

number of subscribers must be 1024 or less. This operation

takes effect immediately and the containing transaction is committed. Enqueue
requests that are executed after the completion of this call reflect the new action. Any
string within the rule must be quoted (with single quotation marks) as follows:

rule => 'PRIORITY <= 3 AND CORRID = ''FROM JAPAN'''

User data properties or attributes apply only to object payloads and must be prefixed
with tab.userdata in all cases.

8-20 Oracle Streams Advanced Queuing User’s Guide

Managing Subscribers

If GLOBAL_TOPIC_ENABLED is set to true when a subscriber is created, then a
corresponding LDAP entry is also created.

Specify the name of the transformation to be applied during dequeue or propagation.
The transformation must be created using the DBMS_TRANSFORM package.

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information on the DBMS_TRANSFORM package

For queues that contain payloads with XMLType attributes, you can specify rules that
contain operators such as XMLType . existsNode () and XMLType.extract ().

If parameter queue_to_queue is set to TRUE, then the added subscriber is a
queue-to-queue subscriber. When queue-to-queue propagation is set up between a
source queue and a destination queue, queue-to-queue subscribers receive messages
through that propagation schedule.

See Also: "Scheduling a Queue Propagation” on page 8-24

If the delivery_mode parameter is the default PERSISTENT, then the subscriber
receives only persistent messages. If it is set to BUFFERED, then the subscriber receives
only buffered messages. If it is set to PERSISTENT_OR_BUFFERED, then the subscriber
receives both types. You cannot alter this parameter with ALTER_SUBSCRIBER.

The agent name should be NULL if the destination queue is a single consumer queue.

Note: ADD_SUBSCRIBER is an administrative operation on a queue.
Although Oracle Streams AQ does not prevent applications from
issuing administrative and operational calls concurrently, they are
executed serially. ADD_SUBSCRIBER blocks until pending calls that
are enqueuing or dequeuing messages complete. It will not wait for
the pending transactions to complete.

Example 8-41 Adding a Subscriber at a Designated Queue at a Dababase Link

DECLARE
subscriber sys.aqg$_agent;
BEGIN
subscriber := sys.aq$_agent ('subscriberl', 'test2.msg_queue2@london', null);
DBMS_AQADM.ADD_SUBSCRIBER (
gueue_name => 'test.multiconsumer_81_queue',
subscriber => subscriber) ;
END;

/

Example 8-42 Adding a Single Consumer Queue at a Dababase Link as a Subscriber

DECLARE
subscriber sys.ag$_agent;
BEGIN
subscriber := sys.ag$_agent ('subscriberl', 'test2.msg_queue2@london', null);
DBMS_AQADM. ADD_SUBSCRIBER (
queue_name => 'test.multiconsumer_81_queue',
subscriber => subscriber);
END;

/

Oracle Streams AQ Administrative Interface 8-21

Managing Subscribers

Example 8-43 Adding a Subscriber with a Rule

DECLARE
subscriber sys.aqg$_agent;
BEGIN
subscriber := sys.aq$_agent('subscriber2', 'test2.msg_queue2@london', null);

DBMS_AQADM.ADD SUBSCRIBER (
queue_name => 'test.multiconsumer_81_queue',
subscriber => subscriber,
rule => ‘'priority < 2');
END;
/

Example 8-44 Adding a Subscriber and Specifying a Transformation

DECLARE
subscriber sys.agS$S_agent;
BEGIN
subscriber := sys.ag$_agent ('subscriber3', 'test2.msg_queue2@london', null);
DBMS_AQADM.ADD_SUBSCRIBER (
gueue_name => 'test.multiconsumer_81_queue',
subscriber => subscriber,
transformation => 'test.message_order_transform');
END;
/

Example 8-45 Propagating from a Multiple-Consumer Queue to a Single Consumer

Queue
DECLARE
subscriber SYS.AQS$_AGENT;
BEGIN
subscriber := SYS.AQS$_AGENT (NULL, 'test2.single_consumer__ queue@london',
null);
DBMS_AQADM.ADD_SUBSCRIBER (
gueue_name => 'test.multiconsumer_81_queue',
subscriber => subscriber);
END;

Altering a Subscriber

DBMS_AQADM.ALTER_SUBSCRIBER (

queue_name IN VARCHAR2,
subscriber IN sys.ag$_agent,
rule IN VARCHAR2

transformation IN VARCHAR2) ;

This procedure alters existing properties of a subscriber to a specified queue.

The rule, the transformation, or both can be altered. If you alter only one of these
attributes, then specify the existing value of the other attribute to the alter call. If
GLOBAL_TOPIC_ENABLED = TRUE when a subscriber is modified, then a
corresponding LDAP entry is created.

Example 8-46 Altering a Subscriber Rule

DECLARE
subscriber sys.agS$_agent;
BEGIN
subscriber := sys.agS$_agent ('subscriber2', 'test2.msg_queue2@london', null);

DBMS_AQADM.ALTER_SUBSCRIBER (

8-22 Oracle Streams Advanced Queuing User’s Guide

Managing Propagations

queue_name => 'test.multiconsumer_81_gueue',
subscriber => subscriber,
rule => 'priority = 1');

END;

/

Removing a Subscriber

DBMS_AQADM.REMOVE_SUBSCRIBER (
queue_name IN VARCHAR?Z,
subscriber IN sys.ag$_agent) ;

This procedure removes a default subscriber from a queue.

This operation takes effect immediately and the containing transaction is committed.
All references to the subscriber in existing messages are removed as part of the
operation. If GLOBAL_TOPIC_ENABLED = TRUE when a subscriber is dropped, then
a corresponding LDAP entry is also dropped.

It is not an error to run the REMOVE_SUBSCRIBER procedure even when there are
pending messages that are available for dequeue by the consumer. These messages are
automatically made unavailable for dequeue when the REMOVE_SUBSCRIBER
procedure finishes.

Note: REMOVE_SUBSCRIBER is an administrative operation on a
queue. Although Oracle Streams AQ does not prevent applications
from issuing administrative and operational calls concurrently, they
are executed serially. REMOVE_SUBSCRIBER blocks until pending
calls that are enqueuing or dequeuing messages complete. It will not
wait for the pending transactions to complete.

Example 8-47 Removing a Subscriber

DECLARE
subscriber sys.aqg$_agent;
BEGIN
subscriber := sys.ag$_agent ('subscriber2', 'test2.msg_queue2@london', null);

DBMS_AQADM . REMOVE_SUBSCRIBER (
queue_name => 'test.multiconsumer_81_qgueue',
subscriber => subscriber);
END;
/

Managing Propagations

The propagation schedules defined for a queue can be changed or dropped at any time
during the life of the queue. You can also temporarily disable a schedule instead of
dropping it. All administrative calls can be made irrespective of whether the schedule
is active or not. If a schedule is active, then it takes a few seconds for the calls to be
processed.

This section contains these topics:

= Scheduling a Queue Propagation

= Verifying Propagation Queue Type
= Altering a Propagation Schedule

Oracle Streams AQ Administrative Interface 8-23

Managing Propagations

= Enabling a Propagation Schedule
= Disabling a Propagation Schedule

s Unscheduling a Queue Propagation

Scheduling a Queue Propagation
DBMS_AQADM. SCHEDULE_PROPAGATION (

queue_name IN VARCHAR2,

destination IN VARCHAR2 DEFAULT NULL,
start_time IN DATE DEFAULT SYSDATE,
duration IN NUMBER DEFAULT NULL,
next_time IN VARCHAR2 DEFAULT NULL,
latency IN NUMBER DEFAULT 60,

destination_queue IN VARCHAR2 DEFAULT NULL);

This procedure schedules propagation of messages.

The destination can be identified by a database link in the destination parameter, a
queue name in the destination_qgueue parameter, or both. Specifying only a
database link results in queue-to-dblink propagation. If you propagate messages to
several queues in another database, then all propagations have the same frequency.

If a private database link in the schema of the queue table owner has the same name as
a public database link, AQ always uses the private database link.

Specifying the destination queue name results in queue-to-queue propagation was
introduce in Oracle Streams AQ 10g Release 2 (10.2). If you propagate messages to
several queues in another database, queue-to-queue propagation enables you to
configure each schedule independently of the others. You can enable or disable
individual propagations.

Note: If you want queue-to-queue propagation to a queue in another
database, then you must specify parameters destination and
destination_gueue.

Queue-to-queue propagation mode supports transparent failover when propagating to
a destination Real Application Clusters (RAC) system. With queue-to-queue
propagation, it is not required to repoint a database link if the owner instance of the
queue fails on RAC.

Messages can also be propagated to other queues in the same database by specifying a
NULL destination. If a message has multiple recipients at the same destination in either
the same or different queues, then the message is propagated to all of them at the same
time.

The source queue must be in a queue table meant for multiple consumers. If you
specify a single-consumer queue, than error ORA-24039 results. Oracle Streams AQ
does not support the use of synonyms to refer to queues or database links.

If you specify a propagation next_time and duration, propagation will run
periodically for the specified duration.

If you specify a latency of zero with no next_time or duration, the resulting
propagation will run forever, propagating messages as they appear in the queue, and
idling otherwise.

If a non-zero latency is specified, with no next_time or duration (default), the
propagation schedule will be event-based. It will be scheduled to run when there are

8-24 Oracle Streams Advanced Queuing User’s Guide

Managing Propagations

messages in the queue to be propagated. When there are no more messages for a
system-defined period of time, the job will stop running until there are new messages
to be propagated.

The time at which the job runs depends on other factors, such as the number of ready
jobs and the number of job queue processes.

See Also:

= "Managing Job Queues" in Oracle Database Administrator’s Guide
for more information on job queues and Jnnn background
processes

» Chapter 6, "Internet Access to Oracle Streams AQ"

Propagation uses a linear backoff scheme for retrying propagation from a schedule
that encountered a failure. If a schedule continuously encounters failures, then the first
retry happens after 30 seconds, the second after 60 seconds, the third after 120 seconds
and so forth. If the retry time is beyond the expiration time of the current window,
then the next retry is attempted at the start time of the next window. A maximum of 16
retry attempts are made after which the schedule is automatically disabled.

Note: Once a retry attempt slips to the next propagation window, it
will always do so; the exponential backoff scheme no longer governs
retry scheduling. If the date function specified in the next_time
parameter of DBMS_AQADM. SCHEDULE_PROPAGATION () resultsina
short interval between windows, then the number of unsuccessful
retry attempts can quickly exceed 16, disabling the schedule.

If you specify a value for destination that does not exist, then this procedure still
runs without throwing an error. You can query runtime propagation errors in the
LAST_ERROR_MSG column of the USER_QUEUE_SCHEDULES view.

See Also: "USER_QUEUE_SCHEDULES: Propagation Schedules in
User Schema" on page 9-3

Example 8-48 Scheduling a Propagation to Queues in the Same Database

BEGIN
DBMS_AQADM. SCHEDULE_PROPAGATION (
queue_name => 'test.multiconsumer_queue');
END;
/

Example 8-49 Scheduling a Propagation to Queues in Another Database

BEGIN
DBMS_AQADM. SCHEDULE_PROPAGATION (
queue_name => 'test.multiconsumer_queue',
destination => 'another_db.world');
END;

/

Example 8-50 Scheduling Queue-to-Queue Propagation

BEGIN
DBMS_AQADM. SCHEDULE_PROPAGATION (

Oracle Streams AQ Administrative Interface 8-25

Managing Propagations

queue_name => 'test.multiconsumer_queue',
destination => 'another db.world'
destination_queue => 'target_queue') ;

END;
/

Verifying Propagation Queue Type
DBMS_AQADM.VERIFY_QUEUE_TYPES (
SrcC_queue_name IN VARCHAR2,
dest_queue_name IN VARCHAR2,
destination IN VARCHAR2 DEFAULT NULL,
rc ouT BINARY_INTEGER) ;

This procedure verifies that the source and destination queues have identical types.
The result of the verification is stored in the dictionary table SYS.AQ$_MESSAGE_
TYPES, overwriting all previous output of this command.

If the source and destination queues do not have identical types and a transformation
was specified, then the transformation must map the source queue type to the
destination queue type.

Note: SYS.AQS_MESSAGE_TYPES can have multiple entries for the
same source queue, destination queue, and database link, but with
different transformations.

Example 8-51 Verifying a Queue Type

SET SERVEROUTPUT ON
DECLARE
rc BINARY_INTEGER;
BEGIN
DBMS_AQADM.VERIFY_QUEUE_TYPES (
src_gueue_name => 'test.multiconsumer_gueue',
dest_queue_name => 'test.another_queue',
rc => rc);
DBMS_OUTPUT. PUT_LINE ('Compatible: '||rc);
END;
/

Example 8-51 involves two queues of the same type. It returns:

VQT: new style queue
Compatible: 1
If the same example is run with test . raw_qgueue (a queue of type RAW) in place of

test.another_queue, then it returns:

VQT: new style queue
Compatible: 0

Altering a Propagation Schedule
DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE (

queue_name IN VARCHAR2,

destination IN VARCHAR2 DEFAULT NULL,
duration IN NUMBER DEFAULT NULL,
next_time IN VARCHAR2 DEFAULT NULL,

8-26 Oracle Streams Advanced Queuing User’s Guide

Managing Propagations

latency IN NUMBER DEFAULT 60,
destination_queue IN VARCHAR2 DEFAULT NULL);

This procedure alters parameters for a propagation schedule. The destination_
queue parameter for queue-to-queue propagation cannot be altered.

Example 8-52 Altering a Propagation Schedule to Queues in the Same Database

BEGIN
DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE (
queue_name => 'test.multiconsumer_queue',
duration => 12000,
next_time => 'SYSDATE + 3600/86400',
latency => '32');
END;

Example 8-53 Altering a Propagation Schedule to Queues in Another Database

BEGIN
DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE (

queue_name => 'test.multiconsumer_queue',
destination => 'another_db.world"',
duration => 12000,
next_time => 'SYSDATE + 3600/86400"',
latency => '32');

END;

Enabling a Propagation Schedule

DBMS_AQADM. ENABLE_PROPAGATION_SCHEDULE (
queue_name IN VARCHAR2,
destination IN VARCHAR2 DEFAULT NULL,
destination_queue IN VARCHAR2 DEFAULT NULL) ;

This procedure enables a previously disabled propagation schedule.

Example 8-54 Enabling a Propagation to Queues in the Same Database

BEGIN
DBMS_AQADM. ENABLE_PROPAGATION_SCHEDULE (
queue_name => 'test.multiconsumer_gqueue') ;
END;
/

Example 8-55 Enabling a Propagation to Queues in Another Database

BEGIN
DBMS_AQADM. ENABLE_PROPAGATION_SCHEDULE (
queue_name => 'test.multiconsumer_queue',
destination => 'another_db.world');
END;

/

Disabling a Propagation Schedule

DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE (
queue_name IN VARCHAR?2,
destination IN VARCHAR2 DEFAULT NULL,

Oracle Streams AQ Administrative Interface 8-27

Managing Oracle Streams AQ Agents

destination_gqueue IN VARCHAR2 DEFAULT NULL);

This procedure disables a previously enabled propagation schedule.

Example 8-56 Disabling a Propagation to Queues in the Same Database

BEGIN
DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE (
queue_name => 'test.multiconsumer_gqueue') ;
END;
/

Example 8-57 Disabling a Propagation to Queues in Another Database

BEGIN
DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE (
queue_name => 'test.multiconsumer_queue',
destination => 'another_db.world');
END;

/

Unscheduling a Queue Propagation

DBMS_AQADM.UNSCHEDULE_PROPAGATION (
queue_name IN VARCHAR2,
destination IN VARCHAR2 DEFAULT NULL,
destination_queue IN VARCHAR2 DEFAULT NULL) ;

This procedure unschedules a previously scheduled propagation of messages from a
queue to a destination. The destination is identified by a specific database link in the
destination parameter or by name in the destination_gqueue parameter.

Example 8-58 Unscheduling a Propagation to Queues in the Same Database

BEGIN
DBMS_AQADM . UNSCHEDULE_PROPAGATION (
queue_name => 'test.multiconsumer_gueue');
END;
/

Example 8-59 Unscheduling a Propagation to Queues in Another Database

BEGIN
DBMS_AQADM . UNSCHEDULE_PROPAGATION (
queue_name => 'test.multiconsumer_gueue',
destination => 'another_db.world');
END;

/

Managing Oracle Streams AQ Agents
This section contains these topics:
s Creating an Oracle Streams AQ Agent
= Altering an Oracle Streams AQ Agent
= Dropping an Oracle Streams AQ Agent
= Enabling Database Access

8-28 Oracle Streams Advanced Queuing User’s Guide

Managing Oracle Streams AQ Agents

= Disabling Database Access

Creating an Oracle Streams AQ Agent
DBMS_AQADM.CREATE_AQ AGENT (

agent_name IN VARCHAR2,
certificate_location IN VARCHAR2 DEFAULT NULL,
enable_http IN BOOLEAN DEFAULT FALSE,
enable_anyp IN BOOLEAN DEFAULT FALSE) ;

This procedure registers an agent for Oracle Streams AQ Internet access using HTTP
protocols.

The SYS.AQSINTERNET_USERS view has a list of all Oracle Streams AQ Internet
agents. When an agent is created, altered, or dropped, an LDAP entry is created for the
agent if the following are true:

s GLOBAL_TOPIC_ENABLED = TRUE

m certificate_location is specified

Altering an Oracle Streams AQ Agent

DBMS_AQADM.ALTER_AQ_AGENT (

agent_name IN VARCHAR2,
certificate_location IN VARCHAR2 DEFAULT NULL,
enable_http IN BOOLEAN DEFAULT FALSE,
enable_anyp IN BOOLEAN DEFAULT FALSE) ;

This procedure alters an agent registered for Oracle Streams AQ Internet access.

When an Oracle Streams AQ agent is created, altered, or dropped, an LDAP entry is
created for the agent if the following are true:

= GLOBAL_TOPIC_ENABLED = TRUE

s certificate_location is specified

Dropping an Oracle Streams AQ Agent

DBMS_AQADM.DROP_AQ AGENT (
agent_name IN VARCHAR2) ;

This procedure drops an agent that was previously registered for Oracle Streams AQ
Internet access.

When an Oracle Streams AQ agent is created, altered, or dropped, an LDAP entry is
created for the agent if the following are true:

s GLOBAL_TOPIC_ENABLED = TRUE

» certificate_location is specified

Enabling Database Access

DBMS_AQADM. ENABLE_DB_ACCESS (
agent_name IN VARCHAR2,
db_username IN VARCHAR2)

Oracle Streams AQ Administrative Interface 8-29

Adding an Alias to the LDAP Server

This procedure grants an Oracle Streams AQ Internet agent the privileges of a specific
database user. The agent should have been previously created using the CREATE_AQ_
AGENT procedure.

The SYS.AQSINTERNET_USERS view has a list of all Oracle Streams AQ Internet
agents and the names of the database users whose privileges are granted to them.

See Also: Oracle Streams Concepts and Administration for information
about secure queues

Disabling Database Access

DBMS_AQADM.DISABLE_DB_ACCESS (
agent_name IN VARCHAR2,
db_username IN VARCHAR2)

This procedure revokes the privileges of a specific database user from an Oracle
Streams AQ Internet agent. The agent should have been previously granted those
privileges using the ENABLE_DB_ACCESS procedure.

See Also: Oracle Streams Concepts and Administration for information
about secure queues

Adding an Alias to the LDAP Server

DBMS_AQADM.ADD_ALIAS_TO_LDAP (
alias IN VARCHAR2,
obj_location IN VARCHAR2) ;

This procedure adds an alias to the LDAP server.

This call takes the name of an alias and the distinguished name of an Oracle Streams
AQ object in LDAP, and creates the alias that points to the Oracle Streams AQ object.
The alias is placed immediately under the distinguished name of the database server.
The object to which the alias points can be a queue, an agent, or a ConnectionFactory.

See Also: Oracle Streams Concepts and Administration for information
about secure queues

Deleting an Alias from the LDAP Server

DBMS_AQADM. DEL_ALIAS_FROM_LDAP (
alias IN VARCHAR2);

This procedure removes an alias from the LDAP server.

This call takes the name of an alias as the argument, and removes the alias entry in the
LDAP server. It is assumed that the alias is placed immediately under the database
server in the LDAP directory.

8-30 Oracle Streams Advanced Queuing User’s Guide

9

Oracle Streams AQ & Messaging Gateway
Views

This chapter describes the Oracle Streams Advanced Queuing (AQ) administrative
interface views and Oracle Messaging Gateway (MGW) views.

Note: All views not detailed in this chapter are described in the
Oracle Database Reference.

This chapter contains these topics:

Oracle AQ Views
» DBA_QUEUE_TABLES: All Queue Tables in Database

s USER_QUEUE_TABLES: Queue Tables in User Schema

s ALL_QUEUE_TABLES: Queue Tables Queue Accessible to the Current User
s DBA_QUEUES: All Queues in Database

s USER_QUEUES: Queues In User Schema

s ALL_QUEUES: Queues for Which User Has Any Privilege

= DBA_QUEUE_SCHEDULES: All Propagation Schedules

s USER_QUEUE_SCHEDULES: Propagation Schedules in User Schema
s QUEUE_PRIVILEGES: Queues for Which User Has Queue Privilege

s AQ$Queue_Table_Name: Messages in Queue Table

. AQ$Queue_Table_Name_S: Queue Subscribers

s AQ$Queue_Table_Name_R: Queue Subscribers and Their Rules

s DBA_QUEUE_SUBSCRIBERS: All Queue Subscribers in Database

s USER_QUEUE_SUBSCRIBERS: Queue Subscribers in User Schema

s ALL_QUEUE_SUBSCRIBERS: Subscribers for Queues Where User Has Queue
Privileges

s DBA_TRANSFORMATIONS: All Transformations

s DBA_ATTRIBUTE_TRANSFORMATIONS: All Transformation Functions

s USER_TRANSFORMATIONS: User Transformations

s USER_ATTRIBUTE_TRANSFORMATIONS: User Transformation Functions

Oracle Streams AQ & Messaging Gateway Views 9-1

DBA_SUBSCR_REGISTRATIONS: All Subscription Registrations
USER_SUBSCR_REGISTRATIONS: User Subscription Registrations
AQSINTERNET_USERS: Oracle Streams AQ Agents Registered for Internet Access
(G)V$AQ: Number of Messages in Different States in Database
(G)V$BUFFERED_QUEUES: All Buffered Queues in the Instance.

(G)V$BUFFERED_SUBSCRIBERS: Subscribers for All Buffered Queues in the
Instance

(G)V$BUFFERED_PUBLISHERS: All Buffered Publishers in the Instance
(G)V$PERSISTENT_QUEUES: All Active Persistent Queues in the Instance

(G)V$PERSISTENT_SUBSCRIBERS: All Active Subscribers of the Persistent
Queues in the Instance

(G)V$PERSISTENT_PUBLISHERS: All Active Publishers of the Persistent Queues
in the Instance

(G)V$PROPAGATION_SENDER: Buffer Queue Propagation Schedules on the
Sending (Source) Side

(G)V$PROPAGATION_RECEIVER: Buffer Queue Propagation Schedules on the
Receiving (Destination) Side

(G)V$SUBSCR_REGISTRATION_STATS: Diagnosability of Notifications
V$METRICGROUP: Information about the Metric Group
(G)V$STREAMSMETRIC: Streams Metrics for the Most Recent Interval
(G)V$STREAMSMETRIC_HISTORY: Streams Metrics Over Past Hour
(G)V$QUEUEMETRIC: Queue Metrics for the Most Recent Interval
(G)V$QUEUEMETRIC_HISTORY: Queue Metrics Over Past Hour
DBA_HIST_STREAMSMETRIC: Streams Metric History
DBA_HIST_QUEUEMETRIC: Queue Metric History

Oracle Messaging Gateway Views

MGW_GATEWAY: Configuration and Status Information
MGW_AGENT_OPTIONS: Supplemental Options and Properties
MGW_LINKS: Names and Types of Messaging System Links
MGW_MQSERIES_LINKS: WebSphere MQ Messaging System Links
MGW_TIBRV_LINKS: TIB/Rendezvous Messaging System Links
MGW_FOREIGN_QUEUES: Foreign Queues

MGW_]JOBS: Messaging Gateway Propagation Jobs
MGW_SUBSCRIBERS: Information for Subscribers
MGW_SCHEDULES: Information about Schedules

9-2 Oracle Streams Advanced Queuing User’s Guide

QUEUE_PRIVILEGES: Queues for Which User Has Queue Privilege

DBA_QUEUE_TABLES: All Queue Tables in Database

The DBA_QUEUE_TABLES view contains information about the owner instance for a
queue table. A queue table can contain multiple queues. In this case, each queue in a
queue table has the same owner instance as the queue table. Its columns are the same
as those in ALL,_QUEUE_TABLES.

USER_QUEUE_TABLES: Queue Tables in User Schema

The USER_QUEUE_TABLES view is the same as DBA_QUEUE_TABLES with the
exception that it only shows queue tables in the user's schema. It does not contain a
column for OWNER.

ALL QUEUE_TABLES: Queue Tables Queue Accessible to the Current
User

The ALL_QUEUE_TABLES view describes queue tables accessible to the current user.

DBA_QUEUES: All Queues in Database

The DBA_QUEUES view specifies operational characteristics for every queue in a
database. Its columns are the same as those ALL_QUEUES.

USER_QUEUES: Queues In User Schema

The USER_QUEUES view is the same as DBA_QUEUES with the exception that it only
shows queues in the user's schema.

ALL_QUEUES: Queues for Which User Has Any Privilege

The ALL_QUEUES view describes all queues on which the current user has enqueue or
dequeue privileges. If the user has any Advanced Queuing system privileges, like
MANAGE ANY QUEUE, ENQUEUE ANY QUEUE or DEQUEUE ANY QUEUE, this view
describes all queues in the database.

DBA_QUEUE_SCHEDULES: All Propagation Schedules

The DBA_QUEUE_SCHEDULES view describes all the current schedules in the database
for propagating messages.

USER_QUEUE_SCHEDULES: Propagation Schedules in User Schema

The USER_QUEUE_SCHEDULES view is the same as DBA_QUEUE_ SCHEDULES with the
exception that it only shows queue schedules in the user's schema.

QUEUE_PRIVILEGES: Queues for Which User Has Queue Privilege

The QUEUE_PRIVILEGES view describes queues for which the user is the grantor,
grantee, or owner. It also shows queues for which an enabled role on the queue is
granted to PUBLIC.

Oracle Streams AQ & Messaging Gateway Views 9-3

AQ$Queue_Table_Name: Messages in Queue Table

AQ$Queue_Table_Name: Messages in Queue Table

The AQ$Queue_Table Name view describes the queue table in which message data is
stored. This view is automatically created with each queue table and should be used
for querying the queue data. The dequeue history data (time, user identification and
transaction identification) is only valid for single-consumer queues.

In a queue table that is created with the compatible parameter set to '8.1' or higher,
messages that were not dequeued by the consumer are shown as "UNDELIVERABLE".
You can dequeue these messages by msgid. If the Oracle Streams AQ queue process
monitor is running, then the messages are eventually moved to an exception queue.
You can dequeue these messages from the exception queue with an ordinary dequeue.

A multiconsumer queue table created without the compatible parameter, or with the
compatible parameter set to '8.0', does not display the state of a message on a
consumer basis, but only displays the global state of the message.

Note: Queues created in a queue table with compatible setto 8.0
(referred to in this guide as 8.0-style queues) are deprecated in Oracle
Streams AQ 10g Release 2 (10.2). Oracle recommends that any new
queues you create be 8.1-style or newer and that you migrate existing
8.0-style queues at your earliest convenience.

When a message is dequeued using the REMOVE mode, DEQ_TIME, DEQ_USER_ID,
and DEQ_TXN_ID are updated for the consumer that dequeued the message.

You can use MSGID and ORIGINAL_MSGID to chain propagated messages. When a
message with message identifier m1 is propagated to a remote queue, m1 is stored in
the ORIGINAL_MSGID column of the remote queue.

Beginning with Oracle Database 10g, AQ$ Queue_Table Name includes buffered
messages. For buffered messages, the value of MSG_STATE is one of the following;:

s IN MEMORY
Buffered messages enqueued by a user
s DEFERRED
Buffered messages enqueued by a capture process
s SPILLED
User-enqueued buffered messages that have been spilled to disk
s DEFERRED SPILLED
Capture-enqueued buffered messages that have been spilled to disk
s BUFFERED EXPIRED

Expired buffered messages

Table 9-1 AQ$Queue_Table_Name View

Column Datatype NULL Description

QUEUE VARCHAR2 (30) - Queue name

MSG_ID RAW (16) NOT Unique identifier of the message
NULL

CORR_ID VARCHAR?2 (128) - User-provided correlation identifier

9-4 Oracle Streams Advanced Queuing User’s Guide

AQ$Queue_Table_Name: Messages in Queue Table

Table 9-1 (Cont.) AQ$Queue_Table_Name View

Column

Datatype

NULL Description

MSG_PRIORITY
MSG_STATE

DELAY

DELAY_TIMESTAMP

EXPIRATION

ENQ_TIME
ENQ_TIMESTAMP
ENQ_USER_ID

ENQ_USER_ID (10.1
queue tables)

ENQ_TXN_ID
DEQ_TIME
DEQ_TIMESTAMP
DEQ_USER_ID

DEQ_USER_1ID (10.1
queue tables)

DEQ_TXN_ID

RETRY_COUNT

EXCEPTION_QUEUE_

OWNER
EXCEPTION_QUEUE
USER_DATA

SENDER_NAME

SENDER_ADDRESS

SENDER_PROTOCOL

ORIGINAL_MSGID

CONSUMER_NAME

ADDRESS

NUMBER
VARCHAR2 (16)

DATE

TIMESTAMP

NUMBER

DATE
TIMESTAMP
NUMBER

VARCHAR2 (30)

VARCHAR2 (30)
DATE
TIMESTAMP
NUMBER

VARCHAR2 (30)

VARCHAR2 (30)
NUMBER

VARCHAR2 (30)

VARCHAR2 (30)

VARCHAR2 (30)

VARCHAR2 (1024)

NUMBER

RAW (16)

VARCHAR2 (30)

VARCHAR2 (1024)

Message priority
Message state

Time in date format at which the message in waiting
state would become ready. Equals ENQUEUE_TIME +
user specified DELAY

Time as a timestamp format at which the message in
waiting state would become ready. Equals ENQUEUE_
TIMESTAMP + user specified DELAY

Number of seconds in which the message expires after
being READY

Enqueue time
Enqueue time
Enqueue user ID

Enqueue user name

Enqueue transaction ID
Dequeue time
Dequeue time
Dequeue user ID

Dequeue user name

Dequeue transaction ID
Number of retries

Exception queue schema

Exception queue name
User data

Name of the agent enqueuing the message (valid only
for 8.1-compatible queue tables)

Queue name and database name of the source (last
propagating) queue (valid only for 8.1-compatible queue
tables). The database name is not specified if the source
queue is in the local database.

Protocol for sender address (reserved for future use and
valid only for 8.1-compatible queue tables)

Message ID of the message in the source queue (valid
only for 8.1-compatible queue tables)

Name of the agent receiving the message (valid only for
8.1-compatible multiconsumer queue tables)

Queue name and database link name of the agent
receiving the message.The database link name is not
specified if the address is in the local database. The
address is NULL if the receiving agent is local to the
queue (valid only for 8.1-compatible multiconsumer
queue tables)

Oracle Streams AQ & Messaging Gateway Views 9-5

AQ$Queue_Table_Name_S: Queue Subscribers

Table 9-1 (Cont.) AQ$Queue_Table_Name View

Column Datatype NULL Description

PROTOCOL NUMBER - Protocol for address of receiving agent (valid only for
8.1-compatible queue tables)

PROPAGATED_MSGID RAW(16) - Message ID of the message in the queue of the receiving

ORIGINAL_QUEUE_
NAME

VARCHAR2 (30) -

ORIGINAL_QUEUE_
OWNER

VARCHAR2 (30) -

EXPIRATION_REASON VARCHAR2 (19) -

agent (valid only for 8.1-compatible queue tables)

Name of the queue the message came from
Owner of the queue the message came from

Reason the message came into exception queue. Possible
values are TIME_EXPIRATION (message expired after
the specified expired time), MAX_RETRY_EXCEEDED
(maximum retry count exceeded), and PROPAGATION_
FAILURE (message became undeliverable during
propagation).

Note:

A message is moved to an exception queue if RETRY_COUNT is

greater than MAX_RETRIES. If a dequeue transaction fails because the
server process dies (including ALTER SYSTEM KILL SESSION) or
SHUTDOWN ABORT on the instance, then RETRY_COUNT is not

incremented.

AQ$Queue Table Name S: Queue Subscribers

The AQSQueue_Table_Name_S view provides information about subscribers for all
the queues in any given queue table. It shows subscribers created by users with DBMS_
AQADM.ADD_SUBSCRIBER and subscribers created for the apply process to apply
user-created events. It also displays the transformation for the subscriber, if it was
created with one. It is generated when the queue table is created.

This view provides functionality that is equivalent to the DBMS_AQADM . QUEUE_
SUBSCRIBERS () procedure. For these queues, Oracle recommends that the view be
used instead of this procedure to view queue subscribers. This view is created only for

8.1-compatible queue tables.

Table 9-2 AQ$Queue_Table_Name_S View

Column Datatype NULL Description

QUEUE VARCHAR?2 (30) NOT Name of queue for which subscriber is defined
NULL

NAME VARCHAR2 (30) - Name of agent

ADDRESS VARCHAR2 (1024) - Address of agent

PROTOCOL NUMBER - Protocol of agent

TRANSFORMATION VARCHAR2 (61) - Name of the transformation (can be null)

9-6 Oracle Streams Advanced Queuing User’s Guide

ALL_QUEUE_SUBSCRIBERS: Subscribers for Queues Where User Has Queue Privileges

AQS$Queue Table Name_ R: Queue Subscribers and Their Rules

The AQ$Queue_Table Name_R view displays only the subscribers based on rules for
all queues in a given queue table, including the text of the rule defined by each
subscriber. It also displays the transformation for the subscriber, if one was specified. It
is generated when the queue table is created.

This view is created only for 8.1-compatible queue tables.

Table 9-3 AQ$Queue_Table_Name_R View

Column Datatype NULL Description

QUEUE VARCHAR2 (30) NOT Name of queue for which subscriber is defined
NULL

NAME VARCHAR2 (30) - Name of agent

ADDRESS VARCHAR2 (1024) - Address of agent

PROTOCOL NUMBER - Protocol of agent

RULE CLOB - Text of defined rule

RULE_SET VARCHAR2 (65) - Set of rules

TRANSFORMATION VARCHAR2 (61)

Name of the transformation (can be null)

DBA_QUEUE_SUBSCRIBERS: All Queue Subscribers in Database

The DBA_QUEUE_SUBSCRIBERS view returns a list of all subscribers on all queues in
the database. Its columns are the same as those in ALL._QUEUE_SUBSCRIBERS.

USER_QUEUE_SUBSCRIBERS: Queue Subscribers in User Schema

The USER_QUEUE_SUBSCRIBERS view returns a list of subscribers on queues in the
schema of the current user. Its columns are the same as those in ALL_QUEUE_
SUBSCRIBERS except that it does not contain the OWNER column.

ALL QUEUE_SUBSCRIBERS: Subscribers for Queues Where User Has
Queue Privileges

The ALL_QUEUE_SUBSCRIBERS view returns a list of subscribers to queues that the
current user has privileges to dequeue from.

Oracle Streams AQ & Messaging Gateway Views 9-7

DBA_TRANSFORMATIONS: All Transformations

DBA_TRANSFORMATIONS: All Transformations

The DBA_TRANSFORMATIONS view displays all the transformations in the database.
These transformations can be specified with Advanced Queue operations like
enqueue, dequeue and subscribe to automatically integrate transformations in
messaging. This view is accessible only to users having DBA privileges.

DBA_ATTRIBUTE_TRANSFORMATIONS: All Transformation Functions

The DBA_ATTRIBUTE_TRANSFORMATIONS view displays the transformation
functions for all the transformations in the database.

USER_TRANSFORMATIONS: User Transformations

The USER_TRANSFORMATIONS view displays all the transformations owned by the
user. To view the transformation definition, query USER_ATTRIBUTE_
TRANSFORMATIONS.

USER_ATTRIBUTE_TRANSFORMATIONS: User Transformation Functions

The USER_ATTRIBUTE_TRANSFORMATIONS view displays the transformation
functions for all the transformations of the user.

DBA_SUBSCR_REGISTRATIONS: All Subscription Registrations

The DBA_SUBSCR_REGISTRATIONS view lists all the subscription registrations in the
database.

USER_SUBSCR_REGISTRATIONS: User Subscription Registrations

The USER_SUBSCR_REGISTRATIONS view lists the subscription registrations in the
database for the current user. Its columns are the same as those in DBA_SUBSCR__
REGISTRATIONS.

AQSINTERNET_USERS: Oracle Streams AQ Agents Registered for
Internet Access

The AQ$INTERNET_USERS view provides information about the agents registered for
Internet access to Oracle Streams AQ. It also provides the list of database users that
each Internet agent maps to.

Table 9-4 AQ$INTERNET_USERS View

Column Datatype NULL Description

AGENT_NAME VARCHAR2 (30) - Name of the Oracle Streams AQ Internet agent
DB_USERNAME VARCHAR2 (30) - Name of database user that this Internet agent maps to
HTTP_ENABLED VARCHAR2 (4) - Indicates whether this agent is allowed to access Oracle

Streams AQ through HTTP (YES or NO)

FTP_ENABLED VARCHAR2 (4) - Indicates whether this agent is allowed to access Oracle
Streams AQ through FTP (always NO in current release)

9-8 Oracle Streams Advanced Queuing User’s Guide

(G)VSPERSISTENT_PUBLISHERS: All Active Publishers of the Persistent Queues in the Instance

(G)VSAQ: Number of Messages in Different States in Database

The (G) V$AQ view provides information about the number of messages in different
states for the whole database.

In a Real Application Clusters environment, each instance keeps its own Oracle
Streams AQ statistics information in its own System Global Area (SGA), and does not
have knowledge of the statistics gathered by other instances. When a GV$AQ view is
queried by an instance, all other instances funnel their Oracle Streams AQ statistics
information to the instance issuing the query.

(G)V$SBUFFERED_QUEUES: All Buffered Queues in the Instance.

The V$BUFFERED_QUEUES view displays information about all buffered queues in the
instance. There is one row per queue.

(G)V$SBUFFERED_SUBSCRIBERS: Subscribers for All Buffered Queues in
the Instance

The V$BUFFERED_SUBSCRIBERS view displays information about the subscribers for
all buffered queues in the instance. There is one row per subscriber per queue.

(G)VSBUFFERED_PUBLISHERS: All Buffered Publishers in the Instance

The V$BUFFERED_PUBLISHERS view displays information about all buffered
publishers in the instance. There is one row per queue per sender. The values are reset
to zero when the database (or instance in an Oracle RAC environment) restarts.

(G)VSPERSISTENT_QUEUES: All Active Persistent Queues in the Instance

The V$PERSISTENT_QUEUES view displays information about all active persistent
queues in the database since the queues' first activity time. There is one row per queue.
The rows are deleted when the database (or instance in an Oracle RAC environment)
restarts.

(G)VSPERSISTENT_SUBSCRIBERS: All Active Subscribers of the
Persistent Queues in the Instance

The V$PERSISTENT_SUBSCRIBERS view displays information about all active
subscribers of the persistent queues in the database. There is one row per instance per
queue per subscriber. The rows are deleted when the database (or instance in an
Oracle RAC environment) restarts.

(G)VSPERSISTENT_PUBLISHERS: All Active Publishers of the Persistent
Queues in the Instance

The V$ PERSISTENT_PUBLISHERS view displays information about all active
publishers of the persistent queues in the database. There is one row per instance per
queue per publisher. The rows are deleted when the database (or instance in an Oracle
RAC environment) restarts.

Oracle Streams AQ & Messaging Gateway Views 9-9

(G)V$PROPAGATION_SENDER: Buffer Queue Propagation Schedules on the Sending (Source) Side

(G)VSPROPAGATION_SENDER: Buffer Queue Propagation Schedules on
the Sending (Source) Side

The V$PROPAGATION_SENDER view displays information about buffer queue
propagation schedules on the sending (source) side. The values are reset to zero when
the database (or instance in a Real Application Clusters (RAC) environment) restarts,
when propagation migrates to another instance, or when an unscheduled propagation
is attempted.

(G)V$PROPAGATION_RECEIVER: Buffer Queue Propagation Schedules
on the Receiving (Destination) Side

The V$PROPAGATION_RECEIVER view displays information about buffer queue
propagation schedules on the receiving (destination) side. The values are reset to zero
when the database (or instance in a Real Application Clusters (RAC) environment)
restarts, when propagation migrates to another instance, or when an unscheduled
propagation is attempted.

(G)V$SUBSCR_REGISTRATION_STATS: Diagnosability of Notifications

The V$SUBSCR_REGISTRATION_STATS view provides information for diagnosability
of notifications.

VSMETRICGROUP: Information about the Metric Group

This VSMETRICGROUP view displays information about the metric group for each of
the four major Streams components: capture, propagation, apply, and queue.

(G)VSSTREAMSMETRIC: Streams Metrics for the Most Recent Interval

This view displays the capture, propagation, and apply metrics for the most recent
interval.

Table 9-5 GV$STREAMSMETRIC View

Column Datatype Description

INST_ID Instance ID (GV$ only)

BEGIN_TIME DATE Begin time of interval

END_TIME DATE End time of interval

INTSIZE_CSEC NUMBER Interval size (centi-seconds)

COMPONENT_TYPE VARCHAR?2 (32) Type of the component (either ‘CAPTURE’, “PROPAGATION’, or
‘APPLY’)

COMPONENT_NAME VARCHAR2 (32) Name of streams component

COMPONENT_START _ DATE Time that component started

TIME

RATE1_VALUE NUMBER Value of rate 1

RATE1_NAME VARCHAR2 (64) Name of ratel

RATELl_UNIT VARCHAR? (64) Unit of measurement of ratel

RATE2_VALUE NUMBER Value of rate 2

9-10 Oracle Streams Advanced Queuing User’s Guide

DBA_HIST_STREAMSMETRIC: Streams Metric History

Table 9-5 (Cont.) GV$STREAMSMETRIC View

Column Datatype Description

RATE2_NAME VARCHAR2 (64) Name of rate2

RATE2_UNIT VARCHAR2 (64) Unit of measurement of rate2

LATENCY NUMBER Latency from time last message processed by component was

written to redo to time the message was processed by this
component

(G)VSSTREAMSMETRIC_HISTORY: Streams Metrics Over Past Hour

This view returns all metric values for streams messages over the past hour. It has the
same form as (G)V$STREAMSMETRIC: Streams Metrics for the Most Recent Interval.

(G)VSQUEUEMETRIC: Queue Metrics for the Most Recent Interval

This view displays the queue metrics for the most recent interval.

Table 9-6 GV$STREAMSMETRIC View

Column Datatype Description

INST_ID Instance ID (GV$ only)
BEGIN_TIME DATE Begin time of interval
END_TIME DATE End time of interval
INTSIZE_CSEC NUMBER Interval size (centi-seconds)
QUEUE_NAME VARCHAR2 (32) Name of queue

QUEUE_START_TIME DATE

ENQUEUED_PER__ NUMBER
SECOND
SPILLED_PER__ NUMBER
SECOND
NUM_MESSAGES NUMBER

Time when queue started

Number of messages enqueue per second
Number of messages spilled per second

Current number of messages in the queue

(G)VSQUEUEMETRIC_HISTORY: Queue Metrics Over Past Hour

This view returns all queue metric values over the past hour. It has the same shape as
(G)V$QUEUEMETRIC: Queue Metrics for the Most Recent Interval.

DBA_HIST_STREAMSMETRIC: Streams Metric History

This view displays view provides catalog access to streams metric history.

Table 9-7 DBA_HIST_STREAMSMETRIC View

Column Datatype Description

SNAP_ID NUMBER Required by AWR, snapshot ID
DBID NUMBER Required by AWR, database ID
INSTANCE_NUMBER NUMBER Required by AWR, instance number
BEGIN_TIME DATE Begin time of interval

Oracle Streams AQ & Messaging Gateway Views 9-11

DBA_HIST_QUEUEMETRIC: Queue Metric History

Table 9-7 (Cont.) DBA_HIST_STREAMSMETRIC View

Column Datatype Description

END_TIME DATE End time of interval

INTSIZE NUMBER Interval size (centi-seconds)

COMPONENT_TYPE VARCHAR2 (32) Type of the component (either ‘CAPTURE’,
‘"PROPAGATION’, or ‘APPLY’)

COMPONENT_NAME VARCHAR2 (32) Name of streams component

COMPONENT_START_TIME DATE Time that component started

RATE1_VALUE NUMBER Value of rate 1

RATE2_VALUE NUMBER Value of rate 2

LATENCY NUMBER Latency from time last message processed by

component was written to redo to time the
message was processed by this component

DBA_HIST_QUEUEMETRIC: Queue Metric History

This view displays view provides catalog access to queue metric history.

Table 9-8 DBA_ATTRIBUTE_TRANSFORMATIONS View

Column Datatype Description

SNAP_ID NUMBER Required by AWR, snapshot ID
DBID NUMBER Required by AWR, database ID
INSTANCE_NUMBER NUMBER Required by AWR, instance number
QUEUE_NAME VARCHAR2 (32) Name of queue process
QUEUE_START_TIME DATE Time when queue started
BEGIN_TIME DATE Begin time of interval

END_TIME DATE End time of interval

INTSIZE NUMBER Interval size (centi-seconds)
ENQUEUED_PER_SECOND NUMBER Messages enqueue per second
SPILLED_PER_SECOND NUMBER Messages spilled per second
NUMMESSAGES NUMBER Number of messages in the queue

9-12 Oracle Streams Advanced Queuing User’s Guide

MGW_GATEWAY: Configuration and Status Information

MGW_GATEWAY: Configuration and Status Information

This view lists configuration and status information for Messaging Gateway.

Table 9-9 MGW_GATEWAY View Properties

Name Type Description

AGENT_DATABASE VARCHAR2 The database connect string used by the Messaging Gateway agent.
NULL indicates that a local connection is used.

AGENT_INSTANCE NUMBER The database instance on which the Messaging Gateway agent is
currently running. This should be NULL if the agent is not running.

AGENT_JOB NUMBER [Deprecated] Job number of the queued job used to start the
Messaging Gateway agent process. The job number is set when
Messaging Gateway is started and cleared when it shuts down.

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent

AGENT_PING VARCHAR2 Gateway agent ping status. Values:
= NULL means no ping attempt was made.
= REACHABLE means ping attempt was successful.
= UNREACHABLE means ping attempt failed.

AGENT_PING attempts to contact the Messaging Gateway agent.
There is a short delay (up to 5 seconds) if the ping attempt fails. No
ping is attempted if the AGENT_STATUS is NOT_STARTED or START_
SCHEDULED.

AGENT_START_ TIME TIMESTAMP The time when the Messaging Gateway agent job currently running
was started. This should be NULL if the agent is not running.

AGENT_STATUS VARCHAR2 Status of the Messaging Gateway agent. Values:

= NOT_STARTED means the Messaging Gateway agent has not
been started

= START_SCHEDULED means Messaging Gateway agent has been
scheduled to start. That is, Messaging Gateway has been started
using DBMS_MGWADM . STARTUP, but the queued job used to start
the Messaging Gateway agent has not yet run.

. STARTING means Messaging Gateway agent is starting. That is,
Messaging Gateway has been started using DBMS_
MGWADM . STARTUP, the queued job has run, and the Messaging
Gateway agent is starting up.

= INITIALIZING means the Messaging Gateway agent has
started and is initializing

= RUNNING means the Messaging Gateway agent is running

= SHUTTING_DOWN means the Messaging Gateway agent is
shutting down

= BROKEN means an unexpected condition has been encountered
that prevents the Messaging Gateway agent from starting.
DBMS_MGWADM . CLEANUP_GATEWAY must be called before the
agent can be started.

AGENT_USER VARCHAR2 Database username used by the Messaging Gateway agent to connect
to the database

COMMENTS VARCHAR2 Comments for the agent

CONNTYPE VARCHAR2 Connection type used by the agent:

= JDBC_OCI if the JDBC OCI driver is used
s JDBC_THIN if the JDBC Thin driver is used

Oracle Streams AQ & Messaging Gateway Views 9-13

MGW_AGENT_OPTIONS: Supplemental Options and Properties

Table 9-9 (Cont.) MGW_GATEWAY View Properties

Name Type Description

INITFILE VARCHAR2 Name of the Messaging Gateway initialization file used by the agent.
NULL indicates that the default initialization file is used.

LAST_ ERROR_DATE DATE Date of last Messaging Gateway agent error. The last error
information is cleared when Messaging Gateway is started. It is set if
the Messaging Gateway agent fails to start or terminates due to an
abnormal condition.

LAST ERROR_MSG VARCHAR2 Message for last Messaging Gateway agent error

LAST_ERROR_TIME VARCHAR2 Time of last Messaging Gateway agent error

MAX_CONNECTIONS NUMBER [Deprecated] Maximum number of messaging connections to Oracle
Database

MAX_MEMORY NUMBER Maximum heap size used by the Messaging Gateway agent (in MB)

MAX_THREADS NUMBER Maximum number of messaging threads created by the Messaging

Gateway agent

SERVICE VARCHAR?2 Name of the database service that is associated with an Oracle
Scheduler job class used by the agent

MGW_AGENT_OPTIONS: Supplemental Options and Properties

This view lists supplemental options and properties for a Messaging Gateway agent.

Table 9-10 MGW_AGENT_OPTIONS View

Column Type Description
AGENT_NAME VARCHAR?2 Name of the Messaging Gateway agent
ENCRYPTED VARCHAR?2 Indicates whether the value is stored as encrypted:

= TRUE if the value is stored encrypted
s FALSE if the value is stored as cleartext
NAME VARCHAR?2 Name of the option

TYPE VARCHAR2 Option type or usage: JAVA_SYSTEM_PROP if the option is used to
set a Java System property

VALUE VARCHAR?2 Value for the option. This will be <<ENCRYPTED>> if the value is
stored in an encrypted form.

MGW_LINKS: Names and Types of Messaging System Links

This view lists the names and types of messaging system links currently defined.

Table 9-11 MGW_LINKS View Properties

Name Type Description
AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent that will process propagation
jobs for this link

9-14 Oracle Streams Advanced Queuing User’s Guide

MGW_TIBRV_LINKS: TIB/Rendezvous Messaging System Links

Table 9-11 (Cont.) MGW_LINKS View Properties

Name Type Description

LINK_COMMENT VARCHAR2 User comment for the link
LINK_NAME VARCHAR2 Name of the messaging system link
LINK_TYPE VARCHAR?2 Type of messaging system link. Values

MQOSERIES is for WebSphere MQ links.
TIBRV is for TIB/Rendezvous links.

MGW_MQSERIES_LINKS: WebSphere MQ Messaging System Links

This view lists information for the WebSphere MQ messaging system links. The view
includes most of the messaging system properties specified when the link is created.

Table 9-12 MGW_MQSERIES_LINKS View Properties

Name Type Description

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent that will process
propagation jobs for this link

CHANNEL VARCHAR2 Connection channel

HOSTNAME VARCHAR?2 Name of the WebSphere MQ host

INBOUND_LOG_QUEUE VARCHAR?2

INTERFACE_TYPE VARCHAR2
LINK_COMMENT VARCHAR2
LINK_NAME VARCHAR2
MAX_CONNECTIONS NUMBER
OPTIONS SYS .MGW_
PROPERTIES

OUTBOUND_LOG_QUEUE VARCHAR2
PORT NUMBER

QUEUE_MANAGER VARCHAR2

Inbound propagation log queue

Messaging interface type. Values:
= BASE_JAVA is for WebSphere MQ Base Java interface

= JMS_CONNECTION is for WebSphere MQ JMS unified,
domain-independent connections

= JMS_QUEUE_CONNECTION is for WebSphere MQ JMS
queue connections

= JMS_TOPIC_CONNECTION is for WebSphere MQ JMS
topic connections

User comment for the link
Name of the messaging system link
Maximum number of messaging connections

Link options

Outbound propagation log queue
Port number

Name of the WebSphere MQ queue manager

MGW_TIBRV_LINKS: TIB/Rendezvous Messaging System Links

This view lists information for TIB/Rendezvous messaging system links. The view
includes most of the messaging system properties specified when the link was created.

Oracle Streams AQ & Messaging Gateway Views 9-15

MGW_FOREIGN_QUEUES: Foreign Queues

Table 9-13 MGW_TIBRV_LINKS View Properties

Property Name Type Description
AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent that will process
propagation jobs for this link
CM_LEDGER VARCHAR2 TIB/Rendezvous CM ledger file name
CM_NAME VARCHAR2 TIB/Rendezvous CM correspondent name
DAEMON VARCHAR2 TIB/Rendezvous daemon parameter for RVD transport
LINK_COMMENT VARCHAR2 User comment for the link
LINK_NAME VARCHAR2 Name of the messaging system link
NETWORK VARCHAR2 TIB/Rendezvous network parameter for rvd transport
OPTIONS SYS.MGW_ Link options
PROPERTIES
SERVICE VARCHAR?2 TIB/Rendezvous service parameter for rvd transport

MGW_FOREIGN_QUEUES: Foreign Queues

This view lists information for foreign queues. The view includes most of the queue
properties specified when the queue is registered.

Table 9-14 MGW_FOREIGN_QUEUES View Properties

Name Type Description

DOMAIN VARCHAR2 Queue domain type. Values:

= NULL means the queue domain type is automatically
determined by the messaging system

= QUEUE is for a queue (point-to-point) model
= TOPIC is for a topic (publish-subscribe) model

LINK_NAME VARCHAR2 Name of the messaging system link

NAME VARCHAR2 Name of the registered queue

OPTIONS SYS.MGW_ Optional queue properties
PROPERTIES

PROVIDER_QUEUE VARCHAR2 Message provider (native) queue name

QUEUE_COMMENT VARCHAR?2 User comment for the foreign queue

MGW_JOBS: Messaging Gateway Propagation Jobs

This view lists information for Messaging Gateway propagation jobs. The view
includes most of the job properties specified when the propagation job was created, as
well as other status and statistical information.

Table 9-15 MGW_JOBS View

Column Type Description

AGENT_NAME VARCHAR?2 Name of the Messaging Gateway agent that processes this job
COMMENTS VARCHAR?2 Comments for the propagation job

DESTINATION VARCHAR?2 Destination queue to which messages are propagated

9-16 Oracle Streams Advanced Queuing User’s Guide

MGW_JOBS: Messaging Gateway Propagation Jobs

Table 9-15 (Cont.) MGW_JOBS View

Column Type Description
ENABLED VARCHAR?2 Indicates whether the job is enabled or not:
= TRUE if the job is enabled
= FALSE if the job is disabled
EXCEPTION_QUEUE VARCHAR2 Exception queue used for propagation logging purposes
EXCEPTIONQ_MSGS NUMBER Option type or usage: JAVA_SYSTEM_PROP if the option is used to
set a Java System property
FAILURES NUMBER Number of messages moved to exception queue since the last time
the agent was started
JOB_NAME VARCHAR?2 Name of the propagation job
LAST_ERROR_MSG VARCHAR2 Message for the last propagation error
LAST_ ERROR_DATE DATE Date of the last propagation error
LAST_ERROR_TIME VARCHAR2 Time of the last propagation error
LINK_NAME VARCHAR2 Name of the Messaging Gateway link used by this job
OPTIONS SYS .MGW_ Job options
PROPERTIES
POLL_INTERVAL INTEGER Propagation poll interval (in seconds)
PROPAGATED_MSGS NUMBER Number of messages propagated since the last time the agent was
started
PROP_STYLE VARCHAR2 Message propagation style:
= NATIVE for native message propagation
= JMS for JMS message propagation
PROPAGATION_TYPE VARCHAR2 Propagation type:
= OUTBOUND is for Oracle Streams AQ to non-Oracle propagation
= INBOUND is for non-Oracle to Oracle Streams AQ propagation
RULE VARCHAR2 Subscription rule used for the propagation source

Oracle Streams AQ & Messaging Gateway Views 9-17

MGW_SUBSCRIBERS: Information for Subscribers

Table 9-15 (Cont.) MGW_JOBS View

Column

Type

Description

SOURCE

STATUS

TRANSFORMATION

VARCHAR2

VARCHAR2

VARCHAR2

Source queue from which messages are propagated

Job status:

= READY means the job is ready for propagation. The job must be
enabled and the Messaging Gateway agent running before
messages are actually propagated.

= RETRY means the agent encountered errors when attempting to
propagate messages for the job and will retry the operation

= FAILED means the job has failed and agent has stopped trying
to propagate messages. Usually this is due to an unrecoverable
error or the propagation failure limit being reached. The job
must be reset before the agent will attempt to propagate
messages. The job is automatically reset each time the agent is
started and can be manually reset by DBMS_MGWADM.RESET_
JOB.

= DELETE_PENDING means that job removal is pending. DBMS_
MGWADM . REMOVE_JOB has been called but certain cleanup
tasks for this job are still outstanding.

s SUBSCRIBER_DELETE_PENDING means that removal is
pending for the subscriber associated with the job. DBMS_
MGWADM . REMOVE_ SUBSCRIBER has been called but certain
cleanup tasks are still outstanding.

Transformation used for message conversion

MGW_SUBSCRIBERS: Information for Subscribers

This view lists configuration and status information for Messaging Gateway
subscribers. The view includes most of the subscriber properties specified when the
subscriber is added, as well as other status and statistical information.

Table 9-16 MGW_SUBSCRIBERS View Properties

Name Type Description
DESTINATION VARCHAR2 Destination queue to which messages are propagated
EXCEPTIONQ_MSGS NUMBER Number of messages moved to the propagation exception queue
since the last time the agent was started
EXCEPTION_QUEUE VARCHAR2 Exception queue used for logging purposes
FAILURES NUMBER Number of propagation failures
LAST_ERROR_DATE DATE Date of last propagation error
LAST_ERROR_MSG VARCHAR2 Message for last propagation error
LAST_ERROR_TIME VARCHAR2 Time of last propagation error
OPTIONS SYS.MGW_ Subscriber options
PROPERTIES
PROP_STYLE VARCHAR2 Message propagation style. Values:
= NATIVE is for native message propagation
= JMS is for JMS message propagation
PROPAGATED_MSGS NUMBER Number of messages propagated to the destination queue since the

last time the agent was started

9-18 Oracle Streams Advanced Queuing User’s Guide

MGW_SCHEDULES: Information about Schedules

Table 9-16 (Cont.) MGW_SUBSCRIBERS View Properties

Name Type

Description

PROPAGATION_TYPE VARCHAR2

QUEUE_NAME VARCHAR2
RULE VARCHAR2
STATUS VARCHAR2
SUBSCRIBER_ID VARCHAR2
TRANSFORMATION VARCHAR2

Propagation type. Values:

s OUTBOUND is for Oracle Streams AQ to non-Oracle
propagation

= INBOUND is for non-Oracle to Oracle Streams AQ propagation
Subscriber source queue

Subscription rule

Subscriber status. Values:

= ENABLED means the subscriber is enabled

= DELETE_PENDING means subscriber removal is pending,
usually because DBMS_MGWADM. REMOVE_SUBSCRIBER has
been called but certain cleanup tasks pertaining to this
subscriber are still outstanding

Propagation subscriber identifier

Transformation used for message conversion

MGW_SCHEDULES: Information about Schedules

This view lists configuration and status information for Messaging Gateway
schedules. The view includes most of the schedule properties specified when the
schedule is created, as well as other status information.

Table 9-17 MGW_SCHEDULES View Properties

Name Type Description

DESTINATION VARCHAR2 Propagation destination

LATENCY NUMBER Propagation window latency (in seconds)
NEXT_ TIME VARCHAR?2 Reserved for future use

PROPAGATION_TYPE VARCHAR2

PROPAGATION_WINDOW NUMBER

SCHEDULE_DISABLED VARCHAR2

SCHEDULE_ID VARCHAR2
SOURCE VARCHAR2
START_DATE DATE

START_TIME VARCHAR2

Propagation type. Values:

s OUTBOUND is for Oracle Streams AQ to non-Oracle
propagation

= INBOUND is for non-Oracle to Oracle Streams AQ propagation
Reserved for future use

Indicates whether the schedule is disabled. Y means the schedule
is disabled. N means the schedule is enabled.

Propagation schedule identifier
Propagation source
Reserved for future use

Reserved for future use

Oracle Streams AQ & Messaging Gateway Views 9-19

MGW_SCHEDULES: Information about Schedules

9-20 Oracle Streams Advanced Queuing User’s Guide

10

Oracle Streams AQ Operations Using
PL/SQL

This chapter describes the Oracle Streams Advanced Queuing (AQ) PL/SQL
operational interface.

This chapter contains these topics:

s Using Secure Queues

= Enqueuing Messages

» Enqueuing an Array of Messages

= Listening to One or More Queues

s Dequeuing Messages

s Dequeuing an Array of Messages

= Registering for Notification

= Posting for Subscriber Notification

= Adding an Agent to the LDAP Server
= Removing an Agent from the LDAP Server

See Also:

s Chapter 3, "Oracle Streams AQ: Programmatic Interfaces" for a list
of available functions in each programmatic interface

s "DBMS_AQ" in Oracle Database PL/SQL Packages and Types
Reference for more information on the PL/SQL interface

= Oracle Objects for OLE Online Help > Contents tab > 0040
Automation Server > OBJECTS > OraAQ Object for more
information on the Visual Basic (O040) interface

» Oracle Streams Advanced Queuing Java API Reference for more
information on the Java interface

= "More OCI Relational Functions" and "OCI Programming
Advanced Topics" in Oracle Call Interface Programmer’s Guide for
more information on the Oracle Call Interface (OCI)

Oracle Streams AQ Operations Using PL/SQL 10-1

Using Secure Queues

Using Secure Queues

For secure queues, you must specify the sender_id in the messages_properties
parameter. See "MESSAGE_PROPERTIES_T Type" in Oracle Database PL/SQL Packages
and Types Reference for more information about sender_id.

When you use secure queues, the following are required:

= You must have created a valid Oracle Streams AQ agent using DBMS_
AQADM.CREATE_AQ_AGENT.

= You must map sender_id to a database user with enqueue privileges on the
secure queue. Use DBMS_AQADM. ENABLE_DB_ACCESS to do this.

See Also:
s "Creating an Oracle Streams AQ Agent" on page 8-29
= "Enabling Database Access" on page 8-29

» Oracle Streams Concepts and Administration for information about
secure queues

Enqueuing Messages

DBMS_AQ . ENQUEUE (

queue_name IN VARCHAR2,
enqueue_options IN enqueue_options_t,
message_properties IN message_properties_t,
payload IN "type_name",

msgid ouT RAW) ;

This procedure adds a message to the specified queue.

It is not possible to update the message payload after a message has been enqueued. If
you want to change the message payload, then you must dequeue the message and
enqueue a new message.

To store a payload of type RAW, Oracle Streams AQ creates a queue table with LOB
column as the payload repository. The maximum size of the payload is determined by
which programmatic interface you use to access Oracle Streams AQ. For PL/SQL, Java
and precompilers the limit is 32K; for the OCI the limit is 4G.

If a message is enqueued to a multiconsumer queue with no recipient and the queue
has no subscribers (or rule-based subscribers that match this message), then Oracle
error ORA 24033 is raised. This is a warning that the message will be discarded
because there are no recipients or subscribers to whom it can be delivered.

If several messages are enqueued in the same second, then they all have the same
eng_time. In this case the order in which messages are dequeued depends on step_
no, a variable that is monotonically increasing for each message that has the same
eng_time. There is no situation when both eng_time and step_no are the same for
two messages enqueued in the same session.

Enqueue Options

The enqueue_options parameter specifies the options available for the enqueue
operation. It has the following attributes:

s visibility
The visibility attribute specifies the transactional behavior of the enqueue
request. ON_COMMIT (the default) makes the enqueue is part of the current

10-2 Oracle Streams Advanced Queuing User’'s Guide

Enqueuing Messages

transaction. IMMEDIATE makes the enqueue operation an autonomous transaction
which commits at the end of the operation.

Do not use the IMMEDIATE option when you want to use LOB locators. LOB
locators are valid only for the duration of the transaction. Your locator will not be
valid, because the immediate option automatically commits the transaction.

You must set the visibility attribute to IMMEDIATE to use buffered messaging.
relative_msgid

The relative_msgid attribute specifies the message identifier of the message
referenced in the sequence deviation operation. This parameter is ignored unless
sequence_deviation is specified with the BEFORE attribute.

sequence_deviation

The sequence_deviation attribute specifies when the message should be
dequeued, relative to other messages already in the queue. BEFORE puts the
message ahead of the message specified by relative_msgid. TOP puts the
message ahead of any other messages.

Specifying sequence_deviation for a message introduces some restrictions for
the delay and priority values that can be specified for this message. The delay of
this message must be less than or equal to the delay of the message before which
this message is to be enqueued. The priority of this message must be greater than
or equal to the priority of the message before which this message is to be
enqueued.

Note: The sequence_deviation attribute has no effect in releases
prior to Oracle Streams AQ 10g Release 1 (10.1) if message_
grouping is set to TRANSACTIONAL.

The sequence deviation feature is deprecated in Oracle Streams AQ
10g Release 2 (10.2).

transformation

The transformation attribute specifies a transformation that will be applied
before enqueuing the message. The return type of the transformation function
must match the type of the queue.

delivery mode

If the delivery_mode attribute is the default PERSISTENT, then the message is
enqueued as a persistent message. If it is set to BUFFERED, then the message is
enqueued as an buffered message. Null values are not allowed.

Message Properties

The message_properties parameter contains the information that Oracle Streams
AQ uses to manage individual messages. It has the following attributes:

priority

The priority attribute specifies the priority of the message. It can be any
number, including negative numbers. A smaller number indicates higher priority.

delay

The delay attribute specifies the number of seconds during which a message is in
the WAITING state. After this number of seconds, the message is in the READY

Oracle Streams AQ Operations Using PL/SQL 10-3

Enqueuing Messages

state and available for dequeuing. If you specify NO_DELAY, then the message is
available for immediate dequeuing. Dequeuing by msgid overrides the delay
specification.

Note: Delay is not supported with buffered messaging.

expiration

The expiration attribute specifies the number of seconds during which the
message is available for dequeuing, starting from when the message reaches the
READY state. If the message is not dequeued before it expires, then it is moved to
the exception queue in the EXPIRED state. If you specify NEVER, then the message
does not expire.

Note: Message delay and expiration are enforced by the queue
monitor (QMN) background processes. You must start the QMN
processes for the database if you intend to use the delay and
expiration features of Oracle Streams AQ.

correlation

The correlation attribute is an identifier supplied by the producer of the
message at enqueue time.

attempts

The at temps attribute specifies the number of attempts that have been made to
dequeue the message. This parameter cannot be set at enqueue time.

recipient_1list

The recipient_list parameter is valid only for queues that allow multiple
consumers. The default recipients are the queue subscribers.

exception_gueue

The exception_queue attribute specifies the name of the queue into which the
message is moved if it cannot be processed successfully. If the exception queue
specified does not exist at the time of the move, then the message is moved to the
default exception queue associated with the queue table, and a warning is logged
in the alert log.

delivery_mode

Any value for delivery_mode specified in message properties at enqueue time is
ignored. The value specified in enqueue options is used to set the delivery mode of
the message. If the delivery mode in enqueue options is left unspecified, then it
defaults to persistent.

engueue_time

The enqueue_time attribute specifies the time the message was enqueued. This
value is determined by the system and cannot be set by the user at enqueue time.

10-4 Oracle Streams Advanced Queuing User’'s Guide

Enqueuing Messages

Note: Because information about seasonal changes in the system
clock (switching between standard time and daylight-saving time, for
example) is stored with each queue table, seasonal changes are
automatically reflected in enqueue_time. If the system clock is
changed for some other reason, then you must restart the database for
Oracle Streams AQ to pick up the changed time.

n state

The state attribute specifies the state of the message at the time of the dequeue.
This parameter cannot be set at enqueue time.

s sender_id

The sender_id attribute is an identifier of type ag$_agent specified at enqueue
time by the message producer.

m original_msgid

The original_msgid attribute is used by Oracle Streams AQ for propagating
messages.

n transaction_group

The transaction_group attribute specifies the transaction group for the
message. This attribute is set only by DBMS_AQ . DEQUEUE_ARRAY. This attribute
cannot be used to set the transaction group of a message through DBMS_
AQ.ENQUEUE or DBMS_AQ . ENQUEUE_ARRAY.

n user_property

The user_property attribute is optional. It is used to store additional
information about the payload.

The examples in this chapter use the same users, message types, queue tables, and
queues as do the examples in Chapter 8, "Oracle Streams AQ Administrative
Interface". If you have not already created these structures in your test environment,
then you must run the following examples:

= Example 8-1, "Setting Up AQ Administrative Users" on page 8-5

= Example 8-2, "Setting Up AQ Administrative Example Types" on page 8-6

= Example 8-3, "Creating a Queue Table for Messages of Object Type" on page 8-6
= Example 8-5, "Creating a Queue Table for Messages of LOB Type" on page 8-6

= Example 8-7, "Creating a Queue Table for Grouped Messages" on page 8-7

= Example 8-8, "Creating Queue Tables for Prioritized Messages and Multiple
Consumers" on page 8-7

= Example 8-23, "Creating a Queue for Messages of Object Type" on page 8-13
= Example 8-25, "Creating a Queue for Messages of LOB Type" on page 8-14

= Example 8-26, "Creating a Queue for Grouped Messages" on page 8-14

= Example 8-27, "Creating a Queue for Prioritized Messages" on page 8-14

= Example 8-28, "Creating a Queue for Prioritized Messages and Multiple
Consumers" on page 8-14

= Example 8-36, "Creating a Transformation" on page 8-17

Oracle Streams AQ Operations Using PL/SQL 10-5

Enqueuing Messages

For Example 8-1, you must connect as a user with administrative privileges. For the
other examples in the preceding list, you can connect as user test_adm. After you
have created the queues, you must start them as shown in "Starting a Queue" on

page 8-15. Except as noted otherwise, you can connect as ordinary queue user 'test"'
to run all examples appearing in this chapter.

Example 10-1 Enqueuing a Message, Specifying Queue Name and Payload

DECLARE
enqueue_options DBMS_AQ.enqueue_options_t;
message_properties DBMS_AQ.message_properties_t;
message_handle RAW (16) ;
message test.message_typ;

BEGIN

message := test.message_typ (001, 'TEST MESSAGE', 'First message to obj_queue');
DBMS_AQ.ENQUEUE (

queue_name => 'test.obj_queue',
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle) ;
COMMIT;
END;
/

Example 10-2 Enqueuing a Message, Specifying Priority

DECLARE
enqueue_options DBMS_AQ.enqueue_options_t;
message_properties DBMS_AQ.message_properties_t;
message_handle RAW(16) ;
message test.order_typ;
BEGIN
message := test.order_typ (002, 'PRIORITY MESSAGE', 'priority 30');
message_properties.priority := 30;
DBMS_AQ . ENQUEUE (
queue_name => 'test.priority_queue',
engueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle) ;
COMMIT;
END;
/

Enqueuing a LOB Type Message

Example 10-3 creates procedure blobenqueue () using the test.lob_type
message payload object type created in Example 8-1 on page 8-5. On enqueue, the
LOB attribute is set to EMPTY_BLOB. After the enqueue completes, but before the
transaction is committed, the LOB attribute is selected from the user_data column of
the test.lob_gtab queue table. The LOB data is written to the queue using the LOB
interfaces (which are available through both OCI and PL/SQL). The actual enqueue
operation is shown in

On dequeue, the message payload will contain the LOB locator. You can use this LOB
locator after the dequeue, but before the transaction is committed, to read the LOB
data. This is shown in Example 10-14 on page 10-16.

10-6 Oracle Streams Advanced Queuing User’'s Guide

Enqueuing Messages

Example 10-3 Creating an Enqueue Procedure for LOB Type Messages

CREATE OR REPLACE PROCEDURE blobenqueue (msgno IN NUMBER) AS

eng_userdata test.lob_typ;
eng msgid RAW(16) ;
enqueue_options DBMS_AQ.enqueue_options_t;
message_properties DBMS_AQ.message_properties_t;
lob_loc BLOB;
buffer RAW (4096) ;
BEGIN
buffer = HEXTORAW(RPAD('FF', 4096, 'FF'));

eng userdata := test.lob_typ(msgno, 'Large Lob data', EMPTY_BLOB(), msgno);
DBMS_AQ. ENQUEUE (

queue_name => 'test.lob_queue',
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => eng userdata,
msgid => enqg msgid) ;

SELECT t.user_data.data INTO lob_loc
FROM lob_gtab t
WHERE t.msgid = eng msgid;
DBMS_LOB.WRITE (lob_loc, 2000, 1, buffer);
COMMIT;
END;
/

Example 10-4 Enqueuing a LOB Type Message

BEGIN
FOR i IN 1..5 LOOP
blobenqueue (i) ;
END LOOP;
END;
/

Enqueuing Multiple Messages to a Single-Consumer Queue

Example 10-5 enqueues six messages to test . obj_gqueue. These messages are
dequeued in Example 10-17 on page 10-18.

Example 10-5 Enqueuing Multiple Messages
SET SERVEROUTPUT ON

DECLARE
enqueue_options DBMS_AQ.enqueue_options_t;
message_properties DBMS_AQ.message_properties_t;
message_handle RAW (16) ;
message test.message_typ;

BEGIN

message := test.message_typ (001, 'ORANGE', 'ORANGE enqueued first.');
DBMS_AQ . ENQUEUE (

gueue_name => 'test.obj_queue',
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,

msgid => message_handle) ;

message := test.message_typ(001, 'ORANGE', 'ORANGE also enqueued second.');
DBMS_AQ.ENQUEUE (

queue_name => 'test.obj_queue',
enqueue_options => enqueue_options,
message_properties => message_properties,

Oracle Streams AQ Operations Using PL/SQL 10-7

Enqueuing Messages

payload => message,

msgid => message_handle) ;
message := test.message_typ (001, 'YELLOW', 'YELLOW enqueued third.');
DBMS_AQ . ENQUEUE (

queue_name => 'test.obj_queue',
engueue_options => enqueue_options,
message_properties => message_properties,
payload => message,

msgid => message_handle) ;

message := test.message_typ(001, 'VIOLET', 'VIOLET enqueued fourth.');
DBMS_AQ . ENQUEUE (

queue_name => 'test.obj_queue',
engueue_options => enqueue_options,
message_properties => message_properties,
payload => message,

msgid => message_handle) ;

message := test.message_typ (001, 'PURPLE', 'PURPLE enqueued fifth.');
DBMS_AQ . ENQUEUE (

queue_name => 'test.obj_queue',
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,

msgid => message_handle) ;

message := test.message_typ (001, 'PINK', 'PINK enqueued sixth.');
DBMS_AQ . ENQUEUE (

queue_name => 'test.obj_queue',
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle) ;
COMMIT;
END;
/

Enqueuing Multiple Messages to a Multiconsumer Queue

Example 10-6 requires that you connect as user ' test_adm' to add subscribers RED
and GREEN to queue test .multiconsumer_gueue. The subscribers are required for
Example 10-7.

Example 10-6 Adding Subscribers RED and GREEN

DECLARE
subscriber sys.aq$_agent;
BEGIN
subscriber := gys.aqg$_agent ('RED', NULL, NULL);

DBMS_AQADM.ADD_SUBSCRIBER (
queue_name => 'test.multiconsumer_gueue',
subscriber => subscriber);

subscriber := sys.aqg$_agent ('GREEN', NULL, NULL);
DBMS_AQADM.ADD SUBSCRIBER (
queue_name => 'test.multiconsumer_gueue',
subscriber => subscriber);
END;
/

10-8 Oracle Streams Advanced Queuing User’'s Guide

Enqueuing Messages

Example 10-7 enqueues multiple messages from sender 001. MESSAGE 1 is intended
for all queue subscribers. MESSAGE 2 is intended for RED and BLUE. These messages
are dequeued in Example 10-17 on page 10-18.

Example 10-7 Enqueuing Multiple Messages to a Multiconsumer Queue

DECLARE
enqueue_options
message_properties
recipients
message_handle
message

BEGIN

DBMS_AQ.enqueue_options_t;
DBMS_AQ.message_properties_t;
DBMS_AQ.aq$_recipient_list_t;
RAW(16) ;

test.message_typ;

message := test.message_typ (001, 'MESSAGE 1', 'For queue subscribers');

DBMS_AQ.ENQUEUE (
queue_name
enqueue_options

=> 'test.multiconsumer_queue',
=> enqueue_options,

message_properties => message_properties,

payload
msgid

=> message,
=> message_handle) ;

message := test.message_typ (001, 'MESSAGE 2', 'For two recipients');

recipients(l) := sys.ag$S_agent('RED', NULL, NULL);
recipients(2) := sys.aq$_agent('BLUE', NULL, NULL);
message_properties.recipient_list := recipients;

DBMS_AQ.ENQUEUE (
queue_name
enqueue_options

=> 'test.multiconsumer_gueue',
=> enqueue_options,

message_properties => message_properties,

payload
msgid
COMMIT;
END;
/

=> message,
=> message_handle) ;

Enqueuing Grouped Messages
Example 10-8 enqueues three groups of messages, with three messages in each group.
These messages are dequeued in Example 10-16 on page 10-17.

Example 10-8 Enqueuing Grouped Messages

DECLARE
enqueue_options
message_properties
message_handle
message

BEGIN

DBMS_AQ.enqueue_options_t;
DBMS_AQ.message_properties_t;
RAW(16) ;

test.message_typ;

FOR groupno in 1..3 LOOP
FOR msgno in 1..3 LOOP

message := test.message_typ |
001,
"GROUP ' || groupno,
'Message ' || msgno || ' in group ' || groupno);

DBMS_AQ . ENQUEUE (

queue_name

=> 'test.group_queue',

enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,

msgid => message_handle) ;

Oracle Streams AQ Operations Using PL/SQL 10-9

Enqueuing Messages

END LOOP;
COMMIT;
END LOOP;
END;
/

Enqueuing a Message with Delay and Expiration

In Example 10-9, an application wants a message to be dequeued no earlier than a
week from now, but no later than three weeks from now. Because expiration is
calculated from the earliest dequeue time, this requires setting the expiration time for

two weeks.

Example 10-9 Enqueuing a Message, Specifying Delay and Expiration

DECLARE
enqueue_options DBMS_AQ.enqueue_options_t;
message_properties DBMS_AQ.message_properties_t;
message_handle RAW (16) ;
message test.message_typ;

BEGIN
message := test.message_typ (001, 'DELAYED', 'Message is delayed one week.');
message_properties.delay := 7*%24%60%60;
message_properties.expiration := 2*7*24*60%60;
DBMS_AQ.ENQUEUE (

queue_name => 'test.obj_queue',
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle) ;
COMMIT;
END;
/

Example 10-10 Enqueuing a Message, Specifying a Transformation

DECLARE
enqueue_options DBMS_AQ.enqueue_options_t;
message_properties DBMS_AQ.message_properties_t;
message_handle RAW(16) ;
message test.message_typ;
BEGIN
message := test.message_typ (001, 'NORMAL MESSAGE', 'enqueued to obj_queue');
enqueue_options.transformation := 'message_order_transform';
DBMS_AQ. ENQUEUE (
queue_name => 'test.priority_queue',
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle) ;
COMMIT;
END;
/

See Also: "Using Advanced Queuing Interfaces" in Oracle Objects for
OLE Developer’s Guide for OO40 message-enqueuing examples

10-10 Oracle Streams Advanced Queuing User’s Guide

Enqueuing an Array of Messages

Enqueuing an Array of Messages

DBMS_AQ . ENQUEUE_ARRAY (

queue_name IN VARCHAR2,

enqueue_options IN enqueue_options_t,
array_size IN PLS_INTEGER,
message_properties_array IN message_properties_array_t,
payload_array IN VARRAY,

msid_array OUT msgid_array_t)

RETURN PLS_INTEGER;

Use the ENQUEUE_ARRAY function to enqueue an array of payloads using a
corresponding array of message properties. The output is an array of message
identifiers of the enqueued messages. The function returns the number of messages
successfully enqueued.

Array enqueuing is not supported for buffered messages, but you can still use DBMS_
AQ.ENQUEUE_ARRAY () to enqueue buffered messages by setting array_size to 1.

See Also: "Enqueue Options" on page 10-2

The message_properties_array parameter is an array of message properties.
Each element in the payload array must have a corresponding element in this record.
All messages in an array have the same delivery mode.

See Also: "Message Properties” on page 10-3

The payload structure can be a VARRAY or nested table. The message IDs are returned
into an array of RAW(16) entries of type DBMS_AQ.msgid_array._t.

As with array operations in the relational world, it is not possible to provide a single
optimum array size that will be correct in all circumstances. Application developers
must experiment with different array sizes to determine the optimal value for their
particular applications.

Example 10-11 Enqueuing an Array of Messages

DECLARE
enqueue_options DBMS_AQ.enqueue_options_t;
msg_prop_array DBMS_AQ.message_properties_array_t;
msg_prop DBMS_AQ.message_properties_t;
payload_array test.msg_table;
msgid_array DBMS_AQ.msgid_array_t;
retval PLS_INTEGER;

BEGIN
payload_array := msg_table(

message_typ (001, 'MESSAGE 1', 'array enqueued to obj_queue')
message_typ (001, 'MESSAGE 2', 'array enqueued to obj_queue'));
msg_prop_array := DBMS_AQ.message_properties_array_t (msg_prop, msg_prop);

retval := DBMS_AQ.ENQUEUE_ARRAY (

queue_name => 'test.obj_queue',
enqueue_options => enqueue_options,
array_size = 2,
message_properties_array => msg_prop_array,
payload_array => payload_array,
msgid_array => msgid_array) ;
COMMIT;
END;

Oracle Streams AQ Operations Using PL/SQL 10-11

Listening to One or More Queues

Listening to One or More Queues

DBMS_AQ.LISTEN (

agent_list IN agS_agent_list_t,

wait IN BINARY_INTEGER DEFAULT FOREVER,
listen_delivery_mode IN PLS_INTEGER DEFAULT PERSISTENT,
agent OUT sys.ag$_agent

message_delivery_mode OUT PLS_INTEGER) ;
TYPE ag$_agent_list_t IS TABLE of ag$_agent INDEXED BY BINARY_INTEGER;

This procedure specifies which queue or queues to monitor.

This call takes a list of agents as an argument. Each agent is identified by a unique
combination of name, address, and protocol.

See Also: "AQ Agent Type" on page 2-2

You specify the queue to be monitored in the address field of each agent listed. Agents
must have dequeue privileges on each monitored queue. You must specify the name of
the agent when monitoring multiconsumer queues; but you must not specify an agent
name for single-consumer queues. Only local queues are supported as addresses.
Protocol is reserved for future use.

Note: Listening to multiconsumer queues is not supported in the
Java APIL.

The listen_delivery_mode parameter specifies what types of message interest the
agent. If it is the default PERSISTENT, then the agent is informed about persistent
messages only. If it is set to BUFFERED, then the agent is informed about buffered
messages only. If it is set to PERSISTENT_OR_BUFFERED, then the agent is informed
about both types.

This is a blocking call that returns the agent and message type when there is a message
ready for consumption for an agent in the list. If there are messages for more than one

agent, then only the first agent listed is returned. If there are no messages found when

the wait time expires, then an error is raised.

A successful return from the 1isten call is only an indication that there is a message
for one of the listed agents in one of the specified queues. The interested agent must
still dequeue the relevant message.

Note: You cannot call LISTEN on nonpersistent queues.

Example 10-12 Listening to a Single-Consumer Queue with Zero Timeout
SET SERVEROUTPUT ON

DECLARE
agent sys.ag$_agent;
test_agent_list DBMS_AQ.agS$_agent_list_t;
BEGIN
test_agent_list(l) := sys.agS$S_agent (NULL, 'test.obj_queue', NULL);

test_agent_list(2)
DBMS_AQ.LISTEN (

sys.aq$_agent (NULL, 'test.priority queue', NULL);

agent_list => test_agent_list,
wait => 0,
agent => agent);

10-12 Oracle Streams Advanced Queuing User’s Guide

Dequeuing Messages

DBMS_OUTPUT.PUT_LINE('Message in Queue: ' || agent.address);
END;
/

Even though both test.obj_qgueue and test.priority_gueue contain messages
(enqueued in Example 10-1 and Example 10-2 respectively) Example 10-12 returns
only:

Message in Queue: "TEST"."OBJ_QUEUE"

If the order of agents in test_agent_1list isreversed, so test.priority_queue
appears before test . obj_queue, then the example returns:

Message in Queue: "TEST"."PRIORITY_QUEUE"

Dequeuing Messages

DBUMS_AQ . DEQUEUE (

queue_name IN VARCHAR2,
dequeue_options IN dequeue_options_t,
message_properties OUT message_properties_t,
payload ouT "type_name",

msgid ouT RAW) ;

This procedure dequeues a message from the specified queue. Beginning with Oracle
Streams AQ 10g Release 2 (10.2), you can choose to dequeue only persistent messages,
only buffered messages, or both. See delivery_mode in the following list of dequeue
options.

See Also: "Message Properties" on page 10-3

Dequeue Options

The dequeue_options parameter specifies the options available for the dequeue
operation. It has the following attributes:

] consumer_name

A consumer can dequeue a message from a queue by supplying the name that was
used in the AQ$_AGENT type of the DBMS_AQADM.ADD_ SUBSCRIBER procedure or
the recipient list of the message properties. If a value is specified, then only those
messages matching consumer_name are accessed. If a queue is not set up for
multiple consumers, then this field must be set to NULL (the default).

s dequeue_mode

The dequeue_mode attribute specifies the locking behavior associated with the
dequeue. If BROWSE is specified, then the message is dequeued without acquiring
any lock. If LOCKED is specified, then the message is dequeued with a write lock
that lasts for the duration of the transaction. If REMOVE is specified, then the
message is dequeued and deleted (the default). The message can be retained in the
queue table based on the retention properties. If REMOVE_NO_DATA is specified,
then the message is marked as updated or deleted.

s navigation

The navigation attribute specifies the position of the dequeued message. If
FIRST_MESSAGE is specified, then the first available message matching the search
criteria is dequeued. If NEXT_MESSAGE is specified, then the next available
message matching the search criteria is dequeued (the default). If the previous

Oracle Streams AQ Operations Using PL/SQL 10-13

Dequeuing Messages

message belongs to a message group, then the next available message matching
the search criteria in the message group is dequeued.

If NEXT_TRANSACTION is specified, then any messages in the current transaction
group are skipped and the first message of the next transaction group is dequeued.
This setting can only be used if message grouping is enabled for the queue.

visibility

The visibility attribute specifies when the new message is dequeued. If ON_
COMMIT is specified, then the dequeue is part of the current transaction (the
default). If IMMEDIATE is specified, then the dequeue operation is an autonomous

transaction that commits at the end of the operation. The visibility attribute is
ignored in BROWSE dequeue mode.

Visibility must always be IMMEDIATE when dequeuing messages with delivery
mode DBMS_AQ.BUFFERED or DBMS_AQ.PERSISTENT_OR_BUFFERED.

wait

The wait attribute specifies the wait time if there is currently no message
available matching the search criteria. If a number is specified, then the operation
waits that number of seconds. If FOREVER is specified, then the operation waits
forever (the default). If NO_WATIT is specified, then the operation does not wait.

msgid

The msgid attribute specifies the message identifier of the dequeued message.
Only messages in the READY state are dequeued unless msgid is specified.

correlation

The correlation attribute specifies the correlation identifier of the dequeued
message. The correlation identifier cannot be changed between successive
dequeue calls without specifying the FIRST_MESSAGE navigation option.

Correlation identifiers are application-defined identifiers that are not interpreted
by Oracle Streams AQ. You can use special pattern matching characters, such as
the percent sign and the underscore. If more than one message satisfies the
pattern, then the order of dequeuing is indeterminate, and the sort order of the
queue is not honored.

Note: Although dequeue options correlation and deq
condition are both supported for buffered messages, it is not
possible to create indexes to optimize these queries.

deqg_condition

The deq_condition attribute is a Boolean expression similar to the WHERE
clause of a SQL query. This Boolean expression can include conditions on message
properties, user data properties (object payloads only), and PL/SQL or SQL
functions.

To specify dequeue conditions on a message payload (object payload), use
attributes of the object type in clauses. You must prefix each attribute with
tab.user_data as a qualifier to indicate the specific column of the queue table
that stores the payload.

The deq_condition attribute cannot exceed 4000 characters. If more than one
message satisfies the dequeue condition, then the order of dequeuing is
indeterminate, and the sort order of the queue is not honored.

10-14 Oracle Streams Advanced Queuing User’s Guide

Dequeuing Messages

s transformation

The transformation attribute specifies a transformation that will be applied
after the message is dequeued but before returning the message to the caller.

s delivery_mode

The delivery_mode attribute specifies what types of messages to dequeue. If it
is set to DBMS_AQ . PERSISTENT, then only persistent messages are dequeued. If it
is set to DBMS_AQ . BUFFERED, then only buffered messages are dequeued.

If it is the default DBMS_AQ.PERSISTENT_OR_BUFFERED, then both persistent
and buffered messages are dequeued. The delivery_mode attribute in the
message properties of the dequeued message indicates whether the dequeued
message was buffered or persistent.

The dequeue order is determined by the values specified at the time the queue table is
created unless overridden by the message identifier and correlation identifier in
dequeue options.

The database consistent read mechanism is applicable for queue operations. For
example, a BROWSE call may not see a message that is enqueued after the beginning of
the browsing transaction.

In a commit-time queue, a new feature of Oracle Streams AQ 10g Release 2 (10.2),
messages are not visible to BROWSE or DEQUEUE calls until a deterministic order can be
established among them based on an approximate CSCN.

See Also:

s "Commit-Time Queues" in Oracle Streams Concepts and
Administration

s "Dequeue Modes" on page 1-21

If the navigation attribute of the dequeue_conditions parameter is NEXT_
MESSAGE (the default), then subsequent dequeues retrieve messages from the queue
based on the snapshot obtained in the first dequeue. A message enqueued after the
first dequeue command, therefore, will be processed only after processing all
remaining messages in the queue. This is not a problem if all the messages have
already been enqueued or if the queue does not have priority-based ordering. But if an
application must process the highest-priority message in the queue, then it must use
the FIRST_MESSAGE navigation option.

Note: It can also be more efficient to use the FIRST MESSAGE
navigation option when there are messages being concurrently
enqueued. If the FIRST_MESSAGE option is not specified, then Oracle
Streams AQ continually generates the snapshot as of the first dequeue
command, leading to poor performance. If the FIRST_MESSAGE
option is specified, then Oracle Streams AQ uses a new snapshot for
every dequeue command.

Messages enqueued in the same transaction into a queue that has been enabled for
message grouping form a group. If only one message is enqueued in the transaction,
then this effectively forms a group of one message. There is no upper limit to the
number of messages that can be grouped in a single transaction.

In queues that have not been enabled for message grouping, a dequeue in LOCKED or
REMOVE mode locks only a single message. By contrast, a dequeue operation that seeks

Oracle Streams AQ Operations Using PL/SQL 10-15

Dequeuing Messages

to dequeue a message that is part of a group locks the entire group. This is useful
when all the messages in a group must be processed as a unit.

When all the messages in a group have been dequeued, the dequeue returns an error
indicating that all messages in the group have been processed. The application can
then use NEXT_TRANSACTION to start dequeuing messages from the next available
group. In the event that no groups are available, the dequeue times out after the period
specified in the wait attribute of dequeue_options.

Typically, you expect the consumer of messages to access messages using the dequeue
interface. You can view processed messages or messages still to be processed by
browsing by message ID or by using SELECT commands.

Example 10-13 returns the message enqueued in Example 10-1 on page 10-6. It
returns:

From Sender No.l
Subject: TEST MESSAGE
Text: First message to obj_gueue

Example 10-13 Dequeuing Object Type Messages
SET SERVEROUTPUT ON

DECLARE

dequeue_options DBMS_AQ.dequeue_options_t;
message_properties DBMS_AQ.message_properties_t;
message_handle RAW (16) ;

message test.message_typ;

BEGIN

dequeue_options.navigation := DBMS_AQ.FIRST_MESSAGE;
DBMS_AQ.DEQUEUE (

queue_name => 'test.obj_queue',
dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle) ;
DBMS_OUTPUT.PUT_LINE('From Sender No.'|| message.sender_id);
DBMS_OUTPUT. PUT_LINE('Subject: '||message.subject);
DBMS_OUTPUT.PUT_LINE('Text: '||message.text);
COMMIT;
END;
/

Dequeuing LOB Type Messages

Example 10-14 creates procedure blobdequeue () to dequeue the LOB type
messages enqueued in Example 104 on page 10-7. The actual dequeue is shown in
Example 10-15. It returns:

Amount of data read: 2000
Amount of data read: 2000
Amount of data read: 2000
Amount of data read: 2000
Amount of data read: 2000

Example 10-14 Creating a Dequeue Procedure for LOB Type Messages
CREATE OR REPLACE PROCEDURE blobdequeue (msgno IN NUMBER) AS

dequeue_options DBMS_AQ.dequeue_options_t;
message_properties DBMS_AQ.message_properties_t;
msgid RAW(16) ;

10-16 Oracle Streams Advanced Queuing User’s Guide

Dequeuing Messages

payload test.lob_typ;
lob_loc BLOB;
amount BINARY_INTEGER;
buffer RAW (4096) ;
BEGIN
DBMS_AQ . DEQUEUE (
queue_name => ‘'test.lob_queue',
dequeue_options => dequeue_options,
message_properties => message_properties,
payload => payload,
msgid => msgid);
lob_loc i = payload.data;
amount 1= 2000;
DBMS_LOB.READ(lob_loc, amount, 1, buffer);
DBMS_OUTPUT. PUT_LINE('Amount of data read: '|| amount);
COMMIT;
END;

/

Example 10-15 Dequeuing LOB Type Messages

BEGIN
FOR 1 IN 1..5 LOOP
blobdequeue (i) ;
END LOOP;
END;
/

Dequeuing Grouped Messages
You can dequeue the grouped messages enqueued in Example 10-8 on page 10-9 by
running Example 10-16. It returns:

GROUP 1: Message 1 in group 1
GROUP 1: Message 2 in group 1
GROUP 1: Message 3 in group 1
Finished GROUP 1
GROUP 2: Message 1 in group 2
GROUP 2: Message 2 in group 2
GROUP 2: Message 3 in group 2
Finished GROUP 2
GROUP 3: Message 1 in group 3
GROUP 3: Message 2 in group 3
GROUP 3: Message 3 in group 3
Finished GROUP 3
No more messages

Example 10-16 Dequeuing Grouped Messages
SET SERVEROUTPUT ON

DECLARE
dequeue_options DBMS_AQ.dequeue_options_t;
message_properties DBMS_AQ.message_properties_t;
message_handle RAW(16) ;
message test.message_typ;
no_messages exception;
end_of_group exception;

PRAGMA EXCEPTION_INIT (no_messages, -25228);

PRAGMA EXCEPTION_INIT (end_of_group, -25235);
BEGIN

dequeue_options.wait := DBMS_AQ.NO_WAIT;

Oracle Streams AQ Operations Using PL/SQL 10-17

Dequeuing Messages

dequeue_options.navigation := DBMS_AQ.FIRST MESSAGE;

LOOP
BEGIN
DBMS_AQ . DEQUEUE (
queue_name => 'test.group_queue',
dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle) ;
DBMS_OUTPUT.PUT_LINE (message.subject || ': ' || message.text);
dequeue_options.navigation := DBMS_AQ.NEXT MESSAGE;
EXCEPTION
WHEN end_of_group THEN
DBMS_OUTPUT.PUT_LINE ('Finished ' || message.subject);
COMMIT;
dequeue_options.navigation := DBMS_AQ.NEXT_TRANSACTION;
END;
END LOOP;
EXCEPTION

WHEN no_messages THEN
DBMS_OUTPUT.PUT_LINE ('No more messages');
END;
/

Dequeuing from a Multiconsumer Queue

You can dequeue the messages enqueued for RED in Example 10-7 on page 10-9 by
running Example 10-17. If you change RED to GREEN and then to BLUE, you can use it
to dequeue their messages as well. The output of the example will be different in each
case.

RED is a subscriber to the multiconsumer queue and is also a specified recipient of
MESSAGE 2, so it gets both messages:

Message: MESSAGE 1 .. For queue subscribers
Message: MESSAGE 2 .. For two recipients
No more messages for RED

GREEN is only a subscriber, so it gets only those messages in the queue for which no
recipients have been specified (in this case, MESSAGE 1):

Message: MESSAGE 1 .. For queue subscribers
No more messages for GREEN

BLUE, while not a subscriber to the queue, is nevertheless specified to receive
MESSAGE 2.

Message: MESSAGE 2 .. For two recipients

No more messages for BLUE

Example 10-17 Dequeuing Messages for RED from a Multiconsumer Queue
SET SERVEROUTPUT ON

DECLARE
dequeue_options DBMS_AQ.dequeue_options_t;
message_properties DBMS_AQ.message_properties_t;
message_handle RAW(16) ;
message test.message_typ;
no_messages exception;
PRAGMA EXCEPTION_INIT (no_messages, -25228);
BEGIN
dequeue_options.wait := DBMS_AQ.NO_WAIT;

10-18 Oracle Streams Advanced Queuing User’s Guide

Dequeuing Messages

dequeue_options .consumer_name :=

dequeue_options.navigation :=

'RED';
DBMS_AQ.FIRST_MESSAGE;

LOOP
BEGIN
DBMS_AQ . DEQUEUE (
gueue_name => 'test.multiconsumer_queue',
dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle) ;
DBMS_OUTPUT.PUT_LINE('Message: '|| message.subject ||' .. '|| message.text);
dequeue_options.navigation := DBMS_AQ.NEXT MESSAGE;
END;
END LOOP;
EXCEPTION

WHEN no_messages THEN
DBMS_OUTPUT.PUT LINE ('No more messages for RED');

COMMIT
END;
/

i

Example 10-18 browses messages enqueued in Example 10-5 until it finds PINK,
which it removes. The example returns:

Browsed
Browsed
Browsed
Browsed
Browsed
Browsed
Removed

Dequeu

Message Text: ORANGE enqueued first.
Message Text: ORANGE also enqueued second.
Message Text: YELLOW enqgueued third.
Message Text: VIOLET enqueued fourth.
Message Text: PURPLE enqueued fifth.
Message Text: PINK enqueued sixth.
Message Text: PINK enqueued sixth.

e Modes

Example 10-18 Dequeue in Browse Mode and Remove Specified Message

SET SERVEROUTPUT ON

DECLARE

dequeue_options

DBMS_AQ.dequeue_options_t;
DBMS_AQ.message_properties_t;

message_properties

message_handle RAW(16) ;

message test.message_typ;
BEGIN

dequeue_options.dequeue_mode :=

LOOP

DBMS_AQ . DEQUEUE (

DBMS_AQ. BROWSE;

queue_name => 'test.obj_queue',

dequeue_options => dequeue_options,

message_properties => message_properties,

payload => message,

msgid => message_handle) ;
DBMS_OUTPUT.PUT_LINE ('Browsed Message Text: ' || message.text);
EXIT WHEN message.subject = 'PINK';

END LOOP;

dequeue_options.dequeue_mode :=

dequeue_options.msgid

DBMS_AQ . DEQUEUE (

queue_name =>
dequeue_options =>
message_properties =>

DBMS_AQ.REMOVE;
message_handle;

'test.obj_queue',

dequeue_options,
message_properties,

Oracle Streams AQ Operations Using PL/SQL 10-19

Dequeuing an Array of Messages

payload => message,
msgid => message_handle) ;
DBMS_OUTPUT . PUT_LINE ('Removed Message Text: ' || message.text);
COMMIT;
END;

/

Example 10-19 previews in locked mode the messages enqueued in Example 10-5
until it finds PURPLE, which it removes. The example returns:

Locked Message Text: ORANGE enqueued first.
Locked Message Text: ORANGE also enqueued second.
Locked Message Text: YELLOW enqueued third.
Locked Message Text: VIOLET enqueued fourth.
Locked Message Text: PURPLE enqueued fifth.
Removed Message Text: PURPLE enqueued fifth.

Example 10-19 Dequeue in Locked Mode and Remove Specified Message
SET SERVEROUTPUT ON

DECLARE
dequeue_options DBMS_AQ.dequeue_options_t;
message_properties DBMS_AQ.message_properties_t;
message_handle RAW(16) ;
message test.message_typ;
BEGIN
dequeue_options.dequeue_mode := DBMS_AQ.LOCKED;
LOOP
DBMS_AQ.dequeue (
queue_name => 'test.obj_queue',
dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle) ;
DBMS_OUTPUT.PUT_LINE('Locked Message Text: ' || message.text);
EXIT WHEN message.subject = 'PURPLE';
END LOOP;
dequeue_options.dequeue_mode := DBMS_AQ.REMOVE;
dequeue_options.msgid := message_handle;
DBMS_AQ . DEQUEUE (
queue_name => 'test.obj_queue',
dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle) ;
DBMS_OUTPUT. PUT_LINE ('Removed Message Text: ' || message.text);
COMMIT;
END;
/

See Also: "Using Advanced Queuing Interfaces" in Oracle Objects for
OLE Developer's Guide for OO40 message-dequeuing examples

Dequeuing an Array of Messages

DBMS_AQ . DEQUEUE_ARRAY (

queue_name IN VARCHAR2,
dequeue_options IN dequeue_options_t,
array_size IN PLS_INTEGER,

10-20 Oracle Streams Advanced Queuing User’s Guide

Dequeuing an Array of Messages

message_properties_array OUT message_properties_array_t,
payload_array ouT VARRAY,
msgid_array ouT msgid_array_t)

RETURN PLS_INTEGER;

Use the DEQUEUE_ARRAY function to dequeue an array of payloads and a
corresponding array of message properties. The output is an array of payloads,
message IDs, and message properties of the dequeued messages. The function returns
the number of messages successfully dequeued.

Array dequeuing is not supported for buffered messages, but you can still use DBMS_
AQ.DEQUEUE_ARRAY () to dequeue buffered messages by setting array_sizeto 1.

The payload structure can be a VARRAY or nested table. The message identifiers are
returned into an array of RAW(16) entries of type DBMS_AQ.msgid_array_t. The
message properties are returned into an array of type DBMS_AQ.message_
properties_array_t.

As with array operations in the relational world, it is not possible to provide a single
optimum array size that will be correct in all circumstances. Application developers
must experiment with different array sizes to determine the optimal value for their
particular applications.

All dequeue options available with DBMS_AQ . DEQUEUE are also available with DBMS_
AQ.DEQUEUE_ARRAY. Beginning with Oracle Streams AQ 10g Release 2 (10.2), you can
choose to dequeue only persistent messages, only buffered messages, or both. In
addition, the navigation attribute of dequeue_options offers two options specific
to DBMS_AQ . DEQUEUE_ARRAY.

See Also: "Dequeuing Messages" on page 10-13

When dequeuing messages, you might want to dequeue all the messages for a
transaction group with a single call. You might also want to dequeue messages that
span multiple transaction groups. You can specify either of these methods by using
one of the following navigation methods:

s NEXT_MESSAGE_ONE_GROUP

m FIRST MESSAGE_ONE_GROUP

s NEXT_MESSAGE_MULTI_GROUP
s FIRST MESSAGE_MULTI_GROUP

Navigation method NEXT_MESSAGE_ONE_GROUP dequeues messages that match the
search criteria from the next available transaction group into an array. Navigation
method FIRST_MESSAGE_ONE_GROUP resets the position to the beginning of the
queue and dequeues all the messages in a single transaction group that are available
and match the search criteria.

The number of messages dequeued is determined by an array size limit. If the number
of messages in the transaction group exceeds array_size, then multiple calls to
DEQUEUE_ARRAY must be made to dequeue all the messages for the transaction group.

Navigation methods NEXT_MESSAGE_MULTI_GROUP and FIRST _MESSAGE_MULTI_
GROUP work like their ONE_GROUP counterparts, but they are not limited to a single
transaction group. Each message that is dequeued into the array has an associated set
of message properties. Message property transaction_group determines which
messages belong to the same transaction group.

Example 10-20 dequeues the messages enqueued in Example 10-11 on page 10-11. It
returns:

Oracle Streams AQ Operations Using PL/SQL 10-21

Registering for Notification

Number of messages dequeued: 2

Example 10-20 Dequeuing an Array of Messages
SET SERVEROUTPUT ON

DECLARE
dequeue_options DBMS_AQ.dequeue_options_t;
msg_prop_array DBMS_AQ.message_properties_array t :=
DBMS_AQ.message_properties_array t();
payload_array test.msg_table;
msgid_array DBMS_AQ.msgid_array_t;
retval PLS_INTEGER;
BEGIN
retval := DBMS_AQ.DEQUEUE_ARRAY (
queue_name => 'test.obj_queue',
dequeue_options => dequeue_options,
array_size = 2,
message_properties_array => msSg_prop_array,
payload_array => payload_array,
msgid_array => msgid_array) ;
DBMS_OUTPUT.PUT_LINE ('Number of messages dequeued: ' || retval);
END;
/

Registering for Notification

DBMS_AQ.REGISTER (
reg_list IN SYS.AQS_REG_INFO_LIST,
reg_count IN NUMBER) ;

This procedure registers an e-mail address, user-defined PL/SQL procedure, or HTTP
URL for message notification.

Note: In releases before Oracle Database 10g Release 2 (10.2), the
Oracle Streams AQ notification feature was not supported for queues
with names longer than 30 characters. This restriction no longer
applies. The 24-character limit on names of user-generated queues still
applies. See "Creating a Queue" on page 8-12.

The reg_list parameter is a list of SYS.AQ$_REG_INFO objects. You can specify
notification quality of service, a new feature in Oracle Streams AQ 10g Release 2 (10.2),
with the gosflags attribute of SYS.AQS$_REG_INFO.

See Also: "AQ Registration Information Type" on page 2-3 for more
information on SYS.2AQ$_REG_INFO objects

The reg_count parameter specifies the number of entries in the reg_list. Each
subscription requires its own reg_1list entry. Interest in several subscriptions can be
registered at one time.

When PL/SQL notification is received, the Oracle Streams AQ message properties
descriptor that the callback is invoked with specifies the delivery_mode of the
message notified as DBMS_AQ . PERSISTENT or DBMS_AQ . BUFFERED.

See Also: "AQ Notification Descriptor Type" on page 2-5 for more
information on the message properties descriptor

10-22 Oracle Streams Advanced Queuing User’s Guide

Posting for Subscriber Notification

If you register for e-mail notifications, then you must set the host name and port name
for the SMTP server that will be used by the database to send e-mail notifications. If
required, you should set the send-from e-mail address, which is set by the database as
the sent from field. You need a Java-enabled database to use this feature.

If you register for HTTP notifications, then you might want to set the host name and
port number for the proxy server and a list of no-proxy domains that will be used by
the database to post HTTP notifications.

An internal queue called SYS.AQ_SRVNTFN_TABLE_Q stores the notifications to be
processed by the job queue processes. If notification fails, then Oracle Streams AQ
retries the failed notification up to MAX_RETRIES attempts.

Note: You can change the MAX_RETRIES and RETRY_DELAY
properties of SYS.AQ_SRVNTFN_TABLE_Q. The new settings are
applied across all notifications.

Example 10-21 Registering for Notifications

DECLARE
reginfo sys.aq$_reg_info;
reg_list sys.aq$_reg_info_list;
BEGIN
reginfo := sys.ag$S_reg_info(
'test.obj_queue',
DBMS_AQ.NAMESPACE_ANONYMOUS,
'http://www.company.com:8080",
HEXTORAW('FF'));
reg_list := sys.aqgS$S_reg_info_list(reginfo);
DBMS_AQ.REGISTER (
reg_list => reg_list,
reg_count = 1);
COMMIT;
END;
/

Unregistering for Notification

DBMS_AQ.UNREGISTER (
reg_list IN SYS.AQS$_REG_INFO_LIST,
reg_count IN NUMBER) ;

This procedure unregisters an e-mail address, user-defined PL/SQL procedure, or
HTTP URL for message notification.

Posting for Subscriber Notification

DBMS_AQ.POST (
post_list IN SYS.AQS$_POST INFO_LIST,
post_count IN NUMBER) ;

This procedure posts to a list of anonymous subscriptions, allowing all clients who are

registered for the subscriptions to get notifications of persistent messages. This feature
is not supported with buffered messages.

Oracle Streams AQ Operations Using PL/SQL 10-23

Adding an Agent to the LDAP Server

The count parameter specifies the number of entries in the post_1ist. Each posted
subscription must have its own entry in the post_1ist. Several subscriptions can be
posted to at one time.

The post_1list parameter specifies the list of anonymous subscriptions to which you
want to post. It has three attributes:

] name

The name attribute specifies the name of the anonymous subscription to which
you want to post.

] namespace

The namespace attribute specifies the namespace of the subscription. To receive
notifications from other applications through DBMS_AQ . POST the namespace
must be DBMS_AQ . NAMESPACE_ANONYMOUS.

s payload

The payload attribute specifies the payload to be posted to the anonymous
subscription. It is possible for no payload to be associated with this call.

This call provides a best-effort guarantee. A notification goes to registered clients at
most once. This call is primarily used for lightweight notification. If an application
needs more rigid guarantees, then it can enqueue to a queue.

Example 10-22 Posting Object-Type Messages

DECLARE
postinfo sys.aq$_post_info;
post_list sys.aq$_post_info_list;
BEGIN
postinfo := sys.ag$_post_info('test.obj_queue',0,HEXTORAW('FF'));

post_list := sys.ag$_post_info_list (postinfo);
DBMS_AQ.POST (

post_list => post_list,
post_count = 1);
COMMIT;
END;

/

Adding an Agent to the LDAP Server

DBMS_AQ.BIND_AGENT (
agent IN SYS.AQS$S_AGENT,
certificate IN VARCHAR2 default NULL);

This procedure creates an entry for an Oracle Streams AQ agent in the Lightweight
Directory Access Protocol (LDAP) server.

The agent parameter specifies the Oracle Streams AQ Agent that is to be registered in
LDAP server.
See Also: "AQ Agent Type" on page 2-2

The certificate parameter specifies the location (LDAP distinguished name) of the
OrganizationalPerson entry in LDAP whose digital certificate (attribute
usercertificate)is to be used for this agent. For example, "cn=0E, cn=ACME,
cn=com" is a distinguished name for a OrganizationalPerson OE whose certificate

10-24 Oracle Streams Advanced Queuing User’s Guide

Removing an Agent from the LDAP Server

will be used with the specified agent. If the agent does not have a digital certificate,
then this parameter is defaulted to null.

Removing an Agent from the LDAP Server

DBMS_AQ.UNBIND_AGENT (
agent IN SYS.AQ$_AGENT) ;

This procedure removes the entry for an Oracle Streams AQ agent from the LDAP
server.

Oracle Streams AQ Operations Using PL/SQL 10-25

Removing an Agent from the LDAP Server

10-26 Oracle Streams Advanced Queuing User's Guide

Part IV

Using Oracle JMS and Oracle Streams AQ

Part V describes how to use Oracle JMS and Oracle Streams Advanced Queuing (AQ).
This part contains the following chapters:

» Chapter 11, "Introducing Oracle JMS"

= Chapter 12, "Oracle JMS Basic Operations"

» Chapter 13, "Oracle JMS Point-to-Point"

» Chapter 14, "Oracle JMS Publish/Subscribe"

s Chapter 15, "Oracle JMS Shared Interfaces"

s Chapter 16, "Oracle JMS Types Examples"

See Also:
» Oracle9iAS Containers for [2EE Enterprise JavaBeans Guide
» Oracle9iAS Containers for [2EE Services Guide

11

Introducing Oracle JMS

This chapter describes the Oracle Java Message Service (JMS) interface to Oracle
Streams Advanced Queuing (AQ).

This chapter contains these topics:

s General Features of JMS and Oracle JMS

» Structured Payload/Message Types in JMS
= JMS Point-to-Point Model Features

» JMS Publish/Subscribe Model Features

= JMS MessageProducer Features

s JMS Message Consumer Features

= JMS Propagation

= Message Transformation with J]MS AQ

= J2EE Compliance

General Features of JMS and Oracle JMS

This section contains these topics:

s JMS Connection and Session

s JMS Destination

= System-Level Access Control in JMS

s Destination-Level Access Control in JMS

= Retention and Message History in J]MS

= Supporting Oracle Real Application Clusters in J]MS
= Supporting Statistics Views in JMS

JMS Connection and Session

This section contains these topics:

s ConnectionFactory Objects

= Using AQjmsFactory to Obtain ConnectionFactory Objects
s Using JNDI to Look Up ConnectionFactory Objects

s JMS Connection

Introducing Oracle JMS 11-1

General Features of JMS and Oracle JMS

s JMS Session

ConnectionFactory Objects

A ConnectionFactory encapsulates a set of connection configuration parameters
that has been defined by an administrator. A client uses it to create a connection with a
JMS provider. In this case Oracle JMS, part of Oracle Database, is the JMS provider.

The three types of ConnectionFactory objects are:
s ConnectionFactory
n QueueConnectionFactory

s TopicConnectionFactory

Using AQjmsFactory to Obtain ConnectionFactory Objects

You can use the AQjmsFactory class to obtain a handle to a ConnectionFactory,
QueueConnectionFactory, or TopicConnectionFactory object.

To obtain a ConnectionFactory, which supports both point-to-point and
publish/subscribe operations, use AQjmsFactory.getConnectionFactory (). To
obtain a QueueConnectionFactory, use
AQjmsFactory.getQueueConnectionFactory (). To obtain a
TopicConnectionFactory, use
AQjmsFactory.getTopicConnectionFactory ().

The ConnectionFactory, QueueConnectionFactory, or
TopicConnectionFactory can be created using hostname, port number, and SID
driver or by using JDBC URL and properties.

Using JNDI to Look Up ConnectionFactory Objects

A JMS administrator can register ConnectionFactory objects in a Lightweight
Directory Access Protocol (LDAP) server. The following setup is required to enable
Java Naming and Directory Interface (JNDI) lookup in JMS:

1. Register Database

When the Oracle Database server is installed, the database must be registered with
the LDAP server. This can be accomplished using the Database Configuration
Assistant (DBCA). Figure 11-1 shows the structure of Oracle Streams AQ entries
in the LDAP server. ConnectionFactory information is stored under
<cn=0racleDBConnections>, while topics and queues are stored under
<cn=0racleDBQueues>

11-2 Oracle Streams Advanced Queuing User’'s Guide

General Features of JMS and Oracle JMS

Figure 11-1 Structure of Oracle Streams AQ Entries in LDAP Server

<cn=acme, cn=com> | (administrative context)

<cn=OracleContext> | (root of oracle RDBMS schema)
|

<cn=db1> (database)
<cn=0racleDBConnections> <cn=0OracleDBQueue> <cn=...>
(Connection Factories) (Queues / Topics) (Other db objects)

2. Set Parameter GLOBAL_TOPIC_ENABLED.

The GLOBAL_TOPIC_ENABLED system parameter for the database must be set to
TRUE. This ensures that all queues and topics created in Oracle Streams AQ are
automatically registered with the LDAP server. This parameter can be set by using
ALTER SYSTEM SET GLOBAL_TOPIC_ENABLED = TRUE.

3. Register ConnectionFactory Objects

After the database has been set up to use an LDAP server, the JMS administrator
can register ConnectionFactory, QueueConnectionFactory, and
TopicConnectionFactory objects in LDAP by using
AQjmsFactory.registerConnectionFactory ().

The registration can be accomplished in one of the following ways:
s Connect directly to the LDAP server

The user must have the GLOBAL_AQ_USER_ROLE to register connection
factories in LDAP.

To connect directly to LDAP, the parameters for the
registerConnectionFactory method include the LDAP context, the
name of the ConnectionFactory, QueueConnectionFactory, or
TopicConnectionFactory, hostname, database SID, port number, JDBC
driver (thin or oci8) and factory type (queue or topic).

= Connect to LDAP through the database server

The user can log on to Oracle Database first and then have the database
update the LDAP entry. The user that logs on to the database must have the
AQ_ADMINISTRATOR_ROLE to perform this operation.

To connect to LDAP through the database server, the parameters for the
registerConnectionFactory method include a JDBC connection (to a
user having AQ_ ADMINISTRATOR_ROLE), the name of the
ConnectionFactory, QueueConnectionFactory, or
TopicConnectionFactory, hostname, database SID, port number, JDBC
driver (thin or oci8) and factory type (queue or topic).

JMS Connection

A JMS Connection is an active connection between a client and its JMS provider. A
JMS Connection performs several critical services:

Introducing Oracle JMS 11-3

General Features of JMS and Oracle JMS

= Encapsulates either an open connection or a pool of connections with a JMS
provider

s Typically represents an open TCP/IP socket (or a set of open sockets) between a
client and a provider's service daemon

= Provides a structure for authenticating clients at the time of its creation
s Creates Sessions

= Provides connection metadata

= Supports an optional ExceptionListener

A JMS Connection to the database can be created by invoking

createConnection (), createQueueConnection(), or
createTopicConnection () and passing the parameters username and password
on the ConnectionFactory, QueueConnectionFactory, or
TopicConnectionFactory object respectively.

Some of the methods that are supported on the Connection object are
s start()

This method starts or restart delivery of incoming messages.
m stop()

This method temporarily stops delivery of incoming messages. When a
Connection object is stopped, delivery to all of its message consumers is
inhibited. Also, synchronous receive's block and messages are not delivered to
message listener.

m close()

This method closes the JMS session and releases all associated resources.
m cCcreateSession(true, 0)

This method creates a JMS Session using a JMS Connection instance.
m createQueueSession(true, 0)

This method creates a QueueSession.
m createTopicSession(true, 0)

This method creates a TopicSession.
m setExceptionlListener (ExceptionListener)

This method sets an exception listener for the Connection. This allows a client to
be notified of a problem asynchronously. If a Connection only consumes
messages, then it has no other way to learn it has failed.

s getExceptionListener ()
This method gets the ExceptionListener for this Connection.

A JMS client typically creates a Connection, a Session and a number of
MessageProducer and MessageConsumer objects. In the current version only one
open Session for each Connection is allowed, except in the following cases:

n If the JDBC oci8 driver is used to create the JMS connection

» If the user provides an OracleOCIConnectionPool instance during JMS
connection creation

11-4 Oracle Streams Advanced Queuing User’'s Guide

General Features of JMS and Oracle JMS

When a Connection is created it is in stopped mode. In this state no messages can be
delivered to it. It is typical to leave the Connection in stopped mode until setup is
complete. At that point the Connection start () method is called and messages
begin arriving at the Connection consumers. This setup convention minimizes any
client confusion that can result from asynchronous message delivery while the client is
still in the process of setup.

It is possible to start a Connection and to perform setup subsequently. Clients that
do this must be prepared to handle asynchronous message delivery while they are still
in the process of setting up. A MessageProducer can send messages while a
Connection is stopped.

JMS Session

A JMS sessionis a single threaded context for producing and consuming messages.
Although it can allocate provider resources outside the Java Virtual Machine (JVM), it
is considered a lightweight JMS object.

A Session serves several purposes:

s Constitutes a factory for MessageProducer and MessageConsumer objects
= Provides a way to get a handle to destination objects (queues/topics)

= Supplies provider-optimized message factories

= Supports a single series of transactions that combines work spanning session
MessageProducer and MessageConsumer objects, organizing these into units

= Defines a serial order for the messages it consumes and the messages it produces
» Serializes execution of MessageListener objects registered with it

In Oracle Database 10g, you can create as many JMS Sessions as resources allow
using a single JMS Connection, when using either JDBC thin or JDBC thick (OCI)
drivers.

Because a provider can allocate some resources on behalf of a Session outside the
JVM, clients should close them when they are not needed. Relying on garbage
collection to eventually reclaim these resources may not be timely enough. The same is
true for MessageProducer and MessageConsumer objects created by a Session.

Methods on the Session object include:
= commit ()

This method commits all messages performed in the transaction and releases locks
currently held.

m rollback()

This method rolls back any messages accomplished in the transaction and release
locks currently held.

m close()
This method closes the Session.
m getDBConnection()

This method gets a handle to the underlying JDBC connection. This handle can be
used to perform other SQL DML operations as part of the same Session. The
method is specific to Oracle JMS.

m acknowledge ()

Introducing Oracle JMS 11-5

General Features of JMS and Oracle JMS

This method acknowledges message receipt in a nontransactional session.
recover ()

This method restarts message delivery in a nontransactional session. In effect, the
series of delivered messages in the session is reset to the point after the last
acknowledged message.

The following are some Oracle JMS extensions:

createQueueTable ()

This method creates a queue table.
getQueueTable ()

This method gets a handle to an existing queue table.
createQueue ()

This method creates a queue.

getQueue ()

This method gets a handle to an existing queue.
createTopic ()

This method creates a topic.

getTopic ()

This method gets a handle to an existing topic.

The Session object must be cast to AQjmsSession to use any of the extensions.

JMS Destination

Note: The JMS specification expects providers to return null
messages when receives are accomplished on a JMS Connection
instance that has not been started.

After you create a javax. jms . Connection instance, you must call
the start () method on it before you can receive messages. If you

add a line like t_conn.start () ; any time after the connection has
been created, but before the actual receive, then you can receive your
messages.

A Destination is an object a client uses to specify the destination where it sends
messages, and the source from which it receives messages. A Destination object can
be a Queue or a Topic. In Oracle Streams AQ), these map to a schema. queue ata
specific database. Queue maps to a single-consumer queue, and Topic maps to a
multiconsumer queue.

Using a JMS Session to Obtain Destination Objects

Destination objects are created from a Session object using the following
domain-specific Session methods:

AQjmsSession.getQueue (queue_owner, gueue_name)
This method gets a handle to a JMS queue.

AQjmsSession.getTopic (topic_owner, topic_name)

11-6 Oracle Streams Advanced Queuing User’'s Guide

General Features of JMS and Oracle JMS

This method gets a handle to a JMS topic.

Using JNDI to Look Up Destination Objects

The database can be configured to register schema objects with an LDAP server. If a
database has been configured to use LDAP and the GLOBAL_TOPIC_ENABLED
parameter has been set to TRUE, then all JMS queues and topics are automatically
registered with the LDAP server when they are created. The administrator can also
create aliases to the queues and topics registered in LDAP. Queues and topics that are
registered in LDAP can be looked up through JNDI using the name or alias of the
queue or topic.

See Also: "Adding an Alias to the LDAP Server" on page 8-30

JMS Destination Methods

Methods on the Destination object include:
m alter()
This method alters a Queue or a Topic.
s schedulePropagation ()
This method schedules propagation from a source to a destination.
s unschedulePropagation/()
This method unschedules a previously scheduled propagation.
s enablePropagationSchedule ()
This method enables a propagation schedule.
s disablePropagationSchedule ()
This method disables a propagation schedule.
s start()

This method starts a Queue or a Topic. The queue can be started for enqueue or
dequeue. The topic can be started for publish or subscribe.

m stop()

This method stops a Queue or a Topic. The queue is stopped for enqueue or
dequeue. The topic is stopped for publish or subscribe.

s drop()

This method drops a Queue or a Topic.

System-Level Access Control in JMS

Oracle8i or higher supports system-level access control for all queuing operations. This
feature allows an application designer or DBA to create users as queue administrators.
A queue administrator can invoke administrative and operational JMS interfaces on
any queue in the database. This simplifies administrative work, because all
administrative scripts for the queues in a database can be managed under one schema.

See Also: "Oracle Enterprise Manager Support" on page 4-6

When messages arrive at the destination queues, sessions based on the source queue
schema name are used for enqueuing the newly arrived messages into the destination

Introducing Oracle JMS 11-7

General Features of JMS and Oracle JMS

queues. This means that you must grant enqueue privileges for the destination queues
to schemas of the source queues.

To propagate to a remote destination queue, the login user (specified in the database
link in the address field of the agent structure) should either be granted the ENQUEUE_
ANY privilege, or be granted the rights to enqueue to the destination queue. However,
you are not required to grant any explicit privileges if the login user in the database
link also owns the queue tables at the destination.

Destination-Level Access Control in JMS

Oracle8i or higher supports access control for enqueue and dequeue operations at the
queue or topic level. This feature allows the application designer to protect queues and
topics created in one schema from applications running in other schemas. You can
grant only minimal access privileges to the applications that run outside the schema of
the queue or topic. The supported access privileges on a queue or topic are ENQUEUE,
DEQUEUE and ALL.

See Also: "Oracle Enterprise Manager Support" on page 4-6

Retention and Message History in JMS

Messages are often related to each other. For example, if a message is produced as a
result of the consumption of another message, then the two are related. As the
application designer, you may want to keep track of such relationships. Oracle Streams
AQ allows users to retain messages in the queue table, which can then be queried in
SQL for analysis.

Along with retention and message identifiers, Oracle Streams AQ lets you
automatically create message journals, also called tracking journals or event journals.
Taken together, retention, message identifiers and SQL queries make it possible to
build powerful message warehouses.

Supporting Oracle Real Application Clusters in JMS

Oracle Real Application Clusters (RAC) can be used to improve Oracle Streams AQ
performance by allowing different queues to be managed by different instances. You
do this by specifying different instance affinities (preferences) for the queue tables that
store the queues. This allows queue operations (enqueue/dequeue) or topic operations
(publish/subscribe) on different queues or topics to occur in parallel.

The Oracle Streams AQ queue monitor process continuously monitors the instance
affinities of the queue tables. The queue monitor assigns ownership of a queue table to
the specified primary instance if it is available, failing which it assigns it to the
specified secondary instance.

If the owner instance of a queue table terminates, then the queue monitor changes
ownership to a suitable instance such as the secondary instance.

Oracle Streams AQ propagation is able to make use of Real Application Clusters,
although it is transparent to the user. The affinities for jobs submitted on behalf of the
propagation schedules are set to the same values as that of the affinities of the
respective queue tables. Thus, a job_queue_process associated with the owner
instance of a queue table is handling the propagation from queues stored in that queue
table, thereby minimizing pinging.

11-8 Oracle Streams Advanced Queuing User’'s Guide

Structured Payload/Message Types in JMS

See Also:
= "Scheduling a Queue Propagation” on page 8-24

» Oracle Real Application Clusters Administration and Deployment
Guide

Supporting Statistics Views in JMS

Each instance keeps its own Oracle Streams AQ statistics information in its own
System Global Area (SGA), and does not have knowledge of the statistics gathered by
other instances. Then, when a GV$AQ view is queried by an instance, all other
instances funnel their statistics information to the instance issuing the query.

The GV$AQ view can be queried at any time to see the number of messages in waiting,
ready or expired state. The view also displays the average number of seconds
messages have been waiting to be processed.

See Also: "(G)V$AQ: Number of Messages in Different States in
Database" on page 9-9

Structured Payload/Message Types in JMS
JMS messages are composed of a header, properties, and a body.

The header consists of header fields, which contain values used by both clients and
providers to identify and route messages. All messages support the same set of header
fields.

Properties are optional header fields. In addition to standard properties defined by
JMS, there can be provider-specific and application-specific properties.

The body is the message payload. JMS defines various types of message payloads, and
a type that can store J]MS messages of any or all J]MS-specified message types.

This section contains these topics:

= JMS Message Headers

= JMS Message Properties

= JMS Message Bodies

s Using Message Properties with Different Message Types
= Buffered Messaging with Oracle JMS

JMS Message Headers

A JMS message header contains the following fields:
m JMSDestination

This field contains the destination to which the message is sent. In Oracle Streams
AQ this corresponds to the destination queue/topic. It is a Destination type set
by JMS after the Send method has completed.

s JMSDeliveryMode

This field determines whether the message is logged or not. JMS supports
PERSISTENT delivery (where messages are logged to stable storage) and
NONPERSISTENT delivery (messages not logged). It is a INTEGER set by JMS after

Introducing Oracle JMS 11-9

Structured Payload/Message Types in JMS

the Send method has completed. JMS permits an administrator to configure J]MS
to override the client-specified value for JMSDeliveryMode.

n JMSMessagelID

This field uniquely identifies a message in a provider. All message IDs must begin
with the string ID:. Itis a String type set by JMS after the Send method has
completed.

s JMSTimeStamp

This field contains the time the message was handed over to the provider to be
sent. This maps to Oracle Streams AQ message enqueue time. It is a Long type set
by JMS after the Send method has completed.

m JMSCorrelationID

This field can be used by a client to link one message with another. Itisa String
type set by the JMS client.

s JMSReplyTo

This field contains a Destination type supplied by a client when a message is
sent. Clients can use oracle.jms.AQjmsAgent; javax. jms.Queue; Or
javax.jms.Topic.

n JMSType

This field contains a message type identifier supplied by a client at send time. It is
a String type. For portability Oracle recommends that the JMSType be symbolic
values.

s JMSExpiration

This field is the sum of the enqueue time and the TimeToLive in non-J2EE
compliance mode. In compliant mode, the JMSExpiration header value in a
dequeued message is the sum of JMSTimeStamp when the message was
enqueued (Greenwich Mean Time, in milliseconds) and the TimeToLive (in
milliseconds). It is a Long type set by JMS after the Send method has completed.
JMS permits an administrator to configure JMS to override the client-specified
value for IMSExpiration.

s JMSPriority

This field contains the priority of the message. It is a INTEGER set by JMS after the
Send method has completed. In J2EE-compliance mode, the permitted values for
priority are 0-9, with 9 the highest priority and 4 the default, in conformance with
the Sun Microsystem JMS 1.1 standard. Noncompliant mode is the default. J]MS
permits an administrator to configure JMS to override the client-specified value for
JMSPriority.

s JMSRedelivered

This field is a Boolean set by the JMS provider.
See Also: "J2EE Compliance" on page 11-29

JMS Message Properties

JMS properties are set either explicitly by the client or automatically by the JMS
provider (these are generally read-only). Some JMS properties are set using the
parameters specified in Send and Receive operations.

11-10 Oracle Streams Advanced Queuing User’s Guide

Structured Payload/Message Types in JMS

Properties add optional header fields to a message. Properties allow a client, using a
messageSelector, to have a JMS provider select messages on its behalf using
application-specific criteria. Property names are strings and values can be: Boolean,
byte, short, int, long, float, double, and string.

JMS-defined properties, which all begin with "JMSX", include the following:

JMSXUserID

This field is the identity of the user sending the message. It is a String type set by
JMS after the Send method has completed.

JMSXAppID

This field is the identity of the application sending the message. Itisa String
type set by JMS after the Send method has completed.

JMSXDeliveryCount

This field is the number of message delivery attempts. It is an Integer set by JMS
after the Send method has completed.

JMSXGroupid

This field is the identity of the message group that this message belongs to. It is a
String type set by the JMS client.

JMSXGroupSeq

This field is the sequence number of a message within a group. It is an Integer
set by the JMS client.

JMSXRcvTimeStamp

This field is the time the message was delivered to the consumer (dequeue time). It
is a String type set by JMS after the Receive method has completed.

JMSXState

This field is the message state, set by the provider. The message state can be
WAITING, READY, EXPIRED, or RETAINED.

Oracle-specific JMS properties, which all begin with JMS_Oracle, include the
following:

JMS_OracleExcpQ

This field is the queue name to send the message to if it cannot be delivered to the
original destination. It is a String type set by the JMS client. Only destinations of
type EXCEPTION can be specified in the JMS_OracleExcpQ property.

JMS_OracleDelay

This field is the time in seconds to delay the delivery of the message. It is an
Integer set by the JMS client. This can affect the order of message delivery.

JMS_OracleOriginalMessageId

This field is set to the message identifier of the message in the source if the
message is propagated from one destination to another. It is a String type set by
the JMS provider. If the message is not propagated, then this property has the
same value as JMSMessageId.

A client can add additional header fields to a message by defining properties. These
properties can then be used in a messageSelector to select specific messages.

Introducing Oracle JMS 11-11

Structured Payload/Message Types in JMS

JMS Message Bodies

JMS provides five forms of message body:
= StreamMessage

= BytesMessage

= MapMessage

s TextMessage

s ObjectMessage

s AdtMessage

StreamMessage

A streamMessage object is used to send a stream of Java primitives. It is filled and
read sequentially. It inherits from Message and adds a StreamMessage body. Its
methods are based largely on those found in java.io.DataInputStreamand
java.io.DataOutputStream.

The primitive types can be read or written explicitly using methods for each type.
They can also be read or written generically as objects. To use StreamMessage
objects, create the queue table with the SYS.AQ$_JMS_STREAM MESSAGE or AQS_
JMS_MESSAGE payload types.

StreamMessage objects support the conversions shown in Table 11-1. A value
written as the row type can be read as the column type.

Table 11-1 StreamMessage Conversion

Input Boolean byte short char int long float double String byte[]

Boolean X - - - - - - X -

byte - X - - - -

X
X

x X
x X

short - -

<

char - -

int - - - - X

x X

long - - - - -

<

float - - - - -
double - - - - - - -
string X X X X X X X

X X X
X X X X X X X X

=<

bytel] - - - - - - -

BytesMessage

A BytesMessage object is used to send a message containing a stream of
uninterpreted bytes. It inherits Message and adds a BytesMessage body. The
receiver of the message interprets the bytes. Its methods are based largely on those
found in java.io.DataInputStreamand java.io.DataOutputStream.

This message type is for client encoding of existing message formats. If possible, one of
the other self-defining message types should be used instead.

The primitive types can be written explicitly using methods for each type. They can
also be written generically as objects. To use BytesMessage objects, create the queue
table with SYS.AQ$_JMS_BYTES_MESSAGE or AQ$_JMS_MESSAGE payload types.

11-12 Oracle Streams Advanced Queuing User’s Guide

Structured Payload/Message Types in JMS

MapMessage

A MapMessage object is used to send a set of name-value pairs where the names are
String types, and the values are Java primitive types. The entries can be accessed
sequentially or randomly by name. The order of the entries is undefined. It inherits
from Message and adds a MapMessage body. The primitive types can be read or
written explicitly using methods for each type. They can also be read or written
generically as objects.

To use MapMessage objects, create the queue table with the SYS.AQ$_JMS_MAP_
MESSAGE or AQ$_JMS_MESSAGE payload types. MapMessage objects support the
conversions shown in Table 11-2. An "X" in the table means that a value written as the
row type can be read as the column type.

Table 11-2 MapMessage Conversion

Input Boolean byte short char int long float double String byte[]
Boolean X - - - - - - - X -
byte - X X - X X - - X 3
short - - X - X X - - X -
char - - - X - - - - X _
int - - - - X X - X -
long - - - - - X - - X -
float - - - - - - X X X -
double - - - - - - - X X -
string X X X X X X X X X -
bytel[] - - - - - - - - - X
TextMessage

A TextMessage object is used to send a message containing a
java.lang.StringBuf fer. It inherits from Message and adds a TextMessage
body. The text information can be read or written using methods getText () and
setText (...). To use TextMessage objects, create the queue table with the
SYS.AQS$_JMS_TEXT_MESSAGE or AQ$_JMS_MESSAGE payload types.

ObjectMessage

An ObjectMessage object is used to send a message that contains a serializable Java
object. It inherits from Message and adds a body containing a single Java reference.
Only serializable Java objects can be used. If a collection of Java objects must be sent,
then one of the collection classes provided in JDK 1.4 can be used. The objects can be
read or written using the methods getObject () and setObject (...).To use
ObjectMessage objects, create the queue table with the SYS.AQ$_JMS_OBJECT_
MESSAGE or AQ$_JMS_MESSAGE payload types.

AdtMessage

An AdtMessage object is used to send a message that contains a Java object that maps
to an Oracle object type. These objects inherit from Message and add a body
containing a Java object that implements the CustomDatum or ORAData interface.

See Also: Oracle Database Java Developer’s Guide for information
about the CustombDatum and ORAData interfaces

Introducing Oracle JMS 11-13

Structured Payload/Message Types in JMS

To use AdtMessage objects, create the queue table with payload type as the Oracle
object type. The AdtMessage payload can be read and written using the
getAdtPayload and setAdtPayload methods.

You can also use an AdtMessage object to send messages to queues of type
SYS.XMLType. You must use the oracle.xdb.XMLType class to create the message.

For AdtMessage objects, the client can get:

JMSXDeliveryCount
JMSXRecvTimeStamp
JMSXState
JMS_OracleExcpQ

JMS_OracleDelay

Using Message Properties with Different Message Types

The following message properties can be set by the client using the set Property call.
For StreamMessage, BytesMessage, ObjectMessage, TextMessage, and
MapMessage objects, the client can set:

JMSXAppID
JMSXGroupID
JMSXGroupSeq
JMS_OracleExcpQ

JMS_OracleDelay

For AdtMessage objects, the client can set:

JMS_OracleExcpQ

JMS_OracleDelay

The following message properties can be obtained by the client using the
getProperty call. For StreamMessage, BytesMessage, ObjectMessage,
TextMessage, and MapMessage objects, the client can get:

JMSXuserID
JMSXAppID
JMSXDeliveryCount
JMSXGroupID
JMSXGroupSeq
JMSXRecvTimeStamp
JMSXState
JMS_OracleExcpQ
JMS_OracleDelay

JMS_OracleOriginalMessageID

11-14 Oracle Streams Advanced Queuing User’s Guide

Structured Payload/Message Types in JMS

Buffered Messaging with Oracle JMS

Users can send a nonpersistent JMS message by specifying the deliveryMode to be
NON_PERSISTENT when sending a message. JMS nonpersistent messages are not
required to be logged to stable storage, so they can be lost after a JMS system failure.
JMS nonpersistent messages are similar to the buffered messages now available in
Oracle Streams AQ, but there are also important differences between the two.

Note: Do not confuse Oracle JMS nonpersistent messages with
Oracle Streams AQ nonpersistent queues, which are deprecated in
Oracle Database 10g Release 2 (10.2).

See Also:
= 'Buffered Messaging" on page 1-12
= Appendix A, "Nonpersistent Queues"

Transaction Commits and Client Acknowledgments

The JMS deliveryMode is orthogonal to the transaction attribute of a message. J]MS
nonpersistent messages can be sent and received by either a transacted session or a
nontransacted session. If a JMS nonpersistent message is sent and received by a
transacted session, then the effect of the JMS operation is only visible after the
transacted session commits. If it is received by a nontransacted session with CLIENT_
ACKNOWLEDGE acknowledgment mode, then the effect of receiving this message is
only visible after the client acknowledges the message. Without the acknowledgment,
the message is not removed and will be redelivered if the client calls
Session.recover.

Oracle Streams AQ buffered messages, on the other hand, do not support these
transaction or acknowledgment concepts. Both sending and receiving a buffered
message must be in the IMMEDIATE visibility mode. The effects of the sending and
receiving operations are therefore visible to the user immediately, no matter whether
the session is committed or the messages are acknowledged.

Different APIs

Messages sent with the regular JMS send and publish methods are treated by Oracle
Streams AQ as persistent messages. The regular JMS receive methods receive only AQ
persistent messages. To send and receive buffered messages, you must use the Oracle
extension APIs buf ferSend, buf ferPublish, and buf ferReceive.

See Also: Oracle Streams Advanced Queuing Java API Reference for
more information on bufferSend, bufferPublish, and
bufferReceive

Payload Limits

The Oracle Streams AQ implementation of buffered messages does not support LOB
attributes. This places limits on the payloads for the five types of standard JMS
messages:

s JMS TextMessage payloads cannot exceed 4000 bytes.

This limit might be even lower with some database character sets, because during
the Oracle JMS character set conversion, Oracle JMS sometimes must make a
conservative choice of using CLOB instead of VARCHAR to store the text payload in
the database.

Introducing Oracle JMS 11-15

JMS Point-to-Point Model Features

= JMS BytesMessage payloads cannot exceed 2000 bytes.

s JMSObjectMessage, StreamMessage, and MapMessage data serialized by
JAVA cannot exceed 2000 bytes.

= For all other Oracle JMS ADT messages, the corresponding Oracle database ADT

cannot contain LOB attributes.

Different Constants

The Oracle Streams AQ and Oracle JMS APIs use different numerical values to
designate buffered and persistent messages, as shown in Table 11-3.

Table 11-3 Oracle Streams AQ and Oracle JMS Buffered Messaging Constants

API Persistent Message Buffered Message
Oracle Streams AQ PERSISTENT := 1 BUFFERED :=2
Oracle]MS PERSISTENT := 2 NON_PERSISTENT := 1

JMS Point-to-Point Model Features

In the point-to-point model, clients exchange messages from one point to another.
Message producers and consumers send and receive messages using single-consumer
queues. An administrator creates the single-consumer queues with the createQueue
method in AQjmsSession. Before they can be used, the queues must be enabled for
enqueue/dequeue using the start call in AQjmsDestination. Clients obtain a
handle to a previously created queue using the getQueue method on
AQjmsSession.

In a single-consumer queue, a message can be consumed exactly once by a single
consumer. If there are multiple processes or operating system threads concurrently
dequeuing from the same queue, then each process dequeues the first unlocked
message at the head of the queue. A locked message cannot be dequeued by a process
other than the one that has created the lock.

After processing, the message is removed if the retention time of the queue is 0, or it is
retained for a specified retention time. As long as the message is retained, it can be
either queried using SQL on the queue table view or dequeued by specifying the
message identifier of the processed message in a QueueBrowser.

QueueSender

A client uses a QueueSender to send messages to a queue. It is created by passing a
queue to the createSender method in a client Session. A client also has the option
of creating a QueueSender without supplying a queue. In that case a queue must be
specified on every send operation.

A client can specify a default delivery mode, priority and TimeToLive for all
messages sent by the QueueSender. Alternatively, the client can define these options
for each message.

QueueReceiver

A client uses a QueueReceiver to receive messages from a queue. It is created using
the createQueueReceiver method in a client Session. It can be created with or
without a messageSelector.

11-16 Oracle Streams Advanced Queuing User’s Guide

JMS Publish/Subscribe Model Features

QueueBrowser

A client uses a QueueBrowser to view messages on a queue without removing them.
The browser method returns a java.util.Enumeration thatis used to scan
messages in the queue. The first call to nextElement gets a snapshot of the queue. A
QueueBrowser can be created with or without a messageSelector.

A QueueBrowser can also optionally lock messages as it is scanning them. This is
similar to a "SELECT... for UPDATE" command on the message. This prevents other
consumers from removing the message while they are being scanned.

MessageSelector

A messageSelector allows the client to restrict messages delivered to the consumer
to those that match the messageSelector expression. A messageSelector for
queues containing payloads of type TextMessage, StreamMessage,
BytesMessage, ObjectMessage, or MapMessage can contain any expression that
has one or more of the following:

= JMS message identifier prefixed with "ID:"

JMSMessageID ='ID:23452345"

= JMS message header fields or properties

JMSPriority < 3 AND JMSCorrelationID = 'Fiction'
JMSCorrelationID LIKE 'RE%'

» User-defined message properties

color IN ('RED', BLUE', 'GREEN') AND price < 30000

The messageSelector for queues containing payloads of type AdtMessage can
contain any expression that has one or more of the following;:

= Message identifier without the "ID:" prefix

msgid = '23434556566767676"

» Priority, correlation identifier, or both

priority < 3 AND corrid = 'Fiction'

= Message payload

tab.user_data.color = 'GREEN' AND tab.user_data.price < 30000

JMS Publish/Subscribe Model Features

This section contains these topics:

»s JMS Publish/Subscribe Overview
= DurableSubscriber

= RemoteSubscriber

s TopicPublisher

= Recipient Lists

s TopicReceiver

Introducing Oracle JMS 11-17

JMS Publish/Subscribe Model Features

s TopicBrowser

s Setting Up JMS Publish/Subscribe Operations

JMS Publish/Subscribe Overview

JMS enables flexible and dynamic communication between applications functioning as
publishers and applications playing the role of subscribers. The applications are not
coupled together; they interact based on messages and message content.

In distributing messages, publisher applications are not required to handle or manage
message recipients explicitly. This allows new subscriber applications to be added
dynamically without changing any publisher application logic.

Similarly, subscriber applications receive messages based on message content without
regard to which publisher applications are sending messages. This allows new
publisher applications to be added dynamically without changing any subscriber
application logic.

Subscriber applications specify interest by defining a rule-based subscription on
message properties or the message content of a topic. The system automatically routes
messages by computing recipients for published messages using the rule-based
subscriptions.

In the publish/subscribe model, messages are published to and received from topics.
A topic is created using the CreateTopic () method in an AQjmsSession. A client
can obtain a handle to a previously-created topic using the getTopic () method in
AQjmsSession.

DurableSubscriber

A client creates a DurableSubscriber with the createDurableSubscriber ()
method in a client Session. It can be created with or without a messageSelector.

A messageSelector allows the client to restrict messages delivered to the subscriber
to those that match the selector. The syntax for the selector is described in detail in
createDurableSubscriber in Oracle Streams Advanced Queuing Java API Reference.

See Also: "MessageSelector" on page 11-17

When subscribers use the same name, durable subscriber action depends on the J2EE
compliance mode set for an Oracle Java Message Service (OJMS) client at runtime.

See Also: "J2EE Compliance" on page 11-29

In noncompliant mode, two durable TopicSubscriber objects with the same name
can be active against two different topics. In compliant mode, durable subscribers with
the same name are not allowed. If two subscribers use the same name and are created
against the same topic, but the selector used for each subscriber is different, then the
underlying Oracle Streams AQ subscription is altered using the internal DBMS_
AQJMS.ALTER_SUBSCRIBER () call.

If two subscribers use the same name and are created against two different topics, and
if the client that uses the same subscription name also originally created the
subscription name, then the existing subscription is dropped and the new subscription
is created.

If two subscribers use the same name and are created against two different topics, and
if a different client (a client that did not originate the subscription name) uses an

11-18 Oracle Streams Advanced Queuing User’s Guide

JMS Publish/Subscribe Model Features

existing subscription name, then the subscription is not dropped and an error is
thrown. Because it is not known if the subscription was created by JMS or PL/SQL, the
subscription on the other topic should not be dropped.

RemoteSubscriber

Remote subscribers are defined using the createRemoteSubscriber call. The
remote subscriber can be a specific consumer at the remote topic or all subscribers at
the remote topic

A remote subscriber is defined using the AQjmsAgent structure. An AQjmsAgent
consists of a name and address. The name refers to the consumer_name at the remote
topic. The address refers to the remote topic:

schema. topic_name[@dblink]

To publish messages to a particular consumer at the remote topic, the
subscription_name of the recipient at the remote topic must be specified in the
name field of AQjmsAgent. The remote topic must be specified in the address field of
AQjmsAgent.

To publish messages to all subscribers of the remote topic, the name field of
AQjmsAgent must be set to null. The remote topic must be specified in the address
field of AQjmsAgent.

TopicPublisher

Messages are published using TopicPublisher, which is created by passing a
Topic toa createPublisher method. A client also has the option of creating a
TopicPublisher without supplying a Topic. In this case, a Topic must be
specified on every publish operation. A client can specify a default delivery mode,
priority and TimeToLive for all messages sent by the TopicPublisher. It can also
specify these options for each message.

Recipient Lists

In the JMS publish/subscribe model, clients can specify explicit recipient lists instead
of having messages sent to all the subscribers of the topic. These recipients may or
may not be existing subscribers of the topic. The recipient list overrides the
subscription list on the topic for this message. Recipient lists functionality is an Oracle
extension to JMS.

TopicReceiver

If the recipient name is explicitly specified in the recipient list, but that recipient is not
a subscriber to the queue, then messages sent to it can be received by creating a
TopicReceiver. If the subscriber name is not specified, then clients must use
durable subscribers at the remote site to receive messages. TopicReceiver is an
Oracle extension to JMS.

A TopicReceiver can be created with a messageSelector. This allows the client
to restrict messages delivered to the recipient to those that match the selector.

See Also: "MessageSelector” on page 11-17

Introducing Oracle JMS 11-19

JMS Publish/Subscribe Model Features

TopicBrowser

A client uses a TopicBrowser to view messages on a topic without removing them.
The browser method returns a java.util.Enumeration that is used to scan topic
messages. Only durable subscribers are allowed to create a TopicBrowser. The first
call to nextElement gets a snapshot of the topic.

See Also: "Creating a TopicBrowser for Standard JMS Messages" on
page 14-19

A TopicBrowser can optionally lock messages as it is scanning them. This is similar
to a SELECT... for UPDATE command on the message. This prevents other consumers
from removing the message while it is being scanned.

See Also: "Creating a TopicBrowser for Standard JMS Messages,
Locking Messages" on page 14-20

A TopicBrowser can be created with a messageSelector. This allows the client to
restrict messages delivered to the browser to those that match the selector.

See Also: "MessageSelector" on page 11-17

TopicBrowser supports a purge feature. This allows a client using a TopicBrowser
to discard all messages that have been seen during the current browse operation on
the topic. A purge is equivalent to a destructive receive of all of the seen messages (as
if performed using a TopicSubscriber).

For a purge, a message is considered seen if it has been returned to the client using a
call to the nextElement () operation on the java.lang.Enumeration for the
TopicBrowser. Messages that have not yet been seen by the client are not discarded
during a purge. A purge operation can be performed multiple times on the same
TopicBrowser.

The effect of a purge becomes stable when the J]MS Session used to create the
TopicBrowser is committed. If the operations on the session are rolled back, then the
effects of the purge operation are also undone.

See Also: "Browsing Messages Using a TopicBrowser" on page 14-22

Setting Up JMS Publish/Subscribe Operations

Follow these steps to use the publish/subscribe model of communication in JMS:

1. Set up one or more topics to hold messages. These topics represent an area or
subject of interest. For example, a topic can represent billed orders.

2. Enable enqueue/dequeue on the topic using the start call in
AQjmsDestination.

3. Create a set of durable subscribers. Each subscriber can specify a
messageSelector that selects the messages that the subscriber wishes to receive.
A null messageSelector indicates that the subscriber wishes to receive all
messages published on the topic.

Subscribers can be local or remote. Local subscribers are durable subscribers
defined on the same topic on which the message is published. Remote subscribers
are other topics, or recipients on other topics that are defined as subscribers to a
particular queue. In order to use remote subscribers, you must set up propagation

11-20 Oracle Streams Advanced Queuing User’s Guide

JMS MessageProducer Features

between the source and destination topics. Remote subscribers and propagation
are Oracle extensions to JMS.

See Also: "Managing Propagations" on page 8-23

Create TopicPublisher objects using the createPublisher () method in the
publisher Session. Messages are published using the publish call. Messages
can be published to all subscribers to the topic or to a specified subset of recipients
on the topic.

Subscribers receive messages on the topic by using the receive method.

Subscribers can also receive messages asynchronously by using message
listeners.

See Also: "Listening to One or More Queues" on page 10-12

JMS MessageProducer Features

Priority and Ordering of Messages
Specifying a Message Delay
Specifying a Message Expiration
Message Grouping

Priority and Ordering of Messages

Message ordering dictates the order in which messages are received from a queue or
topic. The ordering method is specified when the queue table for the queue or topic is
created. Currently, Oracle Streams AQ supports ordering on message priority and
enqueue time, producing four possible ways of ordering:

First-In, First-Out (FIFO)

If enqueue time was chosen as the ordering criteria, then messages are received in
the order of the enqueue time. The enqueue time is assigned to the message by
Oracle Streams AQ at message publish/send time. This is also the default
ordering.

Priority Ordering

If priority ordering was chosen, then each message is assigned a priority. Priority
can be specified as a message property at publish/send time by the
MessageProducer. The messages are received in the order of the priorities
assigned.

FIFO Priority

If FIFO priority ordering was chosen, then the topic/queue acts like a priority
queue. If two messages are assigned the same priority, then they are received in
the order of their enqueue time.

Enqueue Time Followed by Priority

Messages with the same enqueue time are received according to their priorities. If
the ordering criteria of two message is the same, then the order they are received is
indeterminate. However, Oracle Streams AQ does ensure that messages produced
in one session with a particular ordering criteria are received in the order they
were sent.

Introducing Oracle JMS 11-21

JMS Message Consumer Features

Specifying a Message Delay
Messages can be sent/published to a queue/topic with delay. The delay represents a
time interval after which the message becomes available to the message consumer. A
message specified with a delay is in a waiting state until the delay expires. Receiving
by message identifier overrides the delay specification.

Delay is an Oracle Streams AQ extension to JMS message properties. It requires the
Oracle Streams AQ background process queue monitor to be started.

Specifying a Message Expiration
Producers of messages can specify expiration limits, or TimeToLive for messages.
This defines the period of time the message is available for a Message Consumer.

TimeToLive can be specified at send/publish time or using the set TimeToLive
method of a MessageProducer, with the former overriding the latter. The Oracle
Streams AQ background process queue monitor must be running to implement
TimeToLive.

Message Grouping

Messages belonging to a queue/topic can be grouped to form a set that can be
consumed by only one consumer at a time. This requires the queue/topic be created in
a queue table that is enabled for transactional message grouping. All messages
belonging to a group must be created in the same transaction, and all messages created
in one transaction belong to the same group.

Message grouping is an Oracle Streams AQ extension to the JMS specification.

You can use this feature to divide a complex message into a linked series of simple
messages. For example, an invoice directed to an invoices queue could be divided into
a header message, followed by several messages representing details, followed by the
trailer message.

Message grouping is also very useful if the message payload contains complex large
objects such as images and video that can be segmented into smaller objects.

The priority, delay, and expiration properties for the messages in a group are
determined solely by the message properties specified for the first message (head) of
the group. Properties specified for subsequent messages in the group are ignored.

Message grouping is preserved during propagation. The destination topic must be
enabled for transactional grouping.

See Also: "Dequeue Features" on page 1-20 for a discussion of
restrictions you must keep in mind if message grouping is to be
preserved while dequeuing messages from a queue enabled for
transactional grouping

JMS Message Consumer Features
This section contains these topics:
= Receiving Messages
= Message Navigation in Receive
= Browsing Messages

s Remove No Data

11-22 Oracle Streams Advanced Queuing User’s Guide

JMS Message Consumer Features

s Retry with Delay Interval
= Asynchronously Receiving Messages Using MessageListener

= Exception Queues

Receiving Messages

A JMS application can receive messages by creating a message consumer. Messages
can be received synchronously using the receive call or asynchronously using a
message listener.

There are three modes of receive:
= Block until a message arrives for a consumer
= Block for a maximum of the specified time

= Nonblocking

Message Navigation in Receive

If a consumer does not specify a navigation mode, then its first receive in a session
retrieves the first message in the queue or topic, its second receive gets the next
message, and so on. If a high priority message arrives for the consumer, then the
consumer does not receive the message until it has cleared the messages that were
already there before it.

To provide the consumer better control in navigating the queue for its messages,
Oracle Streams AQ offers several navigation modes as JMS extensions. These modes
can be set at the TopicSubscriber, QueueReceiver or the TopicReceiver.

Two modes are available for ungrouped messages:
m FIRST_MESSAGE

This mode resets the position to the beginning of the queue. It is useful for priority
ordered queues, because it allows the consumer to remove the message on the top
of the queue.

s NEXT_MESSAGE

This mode gets whatever message follows the established position of the
consumer. For example, a NEXT_MESSAGE applied when the position is at the
fourth message will get the fifth message in the queue. This is the default action.

Three modes are available for grouped messages:
m FIRST_MESSAGE
This mode resets the position to the beginning of the queue.
s NEXT_MESSAGE
This mode sets the position to the next message in the same transaction.
s NEXT_TRANSACTION
This mode sets the position to the first message in the next transaction.

The transaction grouping property can be negated if messages are received in the
following ways:

= Receive by specifying a correlation identifier in the selector

= Receive by specifying a message identifier in the selector

Introducing Oracle JMS 11-23

JMS Message Consumer Features

s Committing before all the messages of a transaction group have been received

If the consumer reaches the end of the queue while using the NEXT_MESSAGE or
NEXT_TRANSACTION option, and you have specified a blocking receive (), then the
navigating position is automatically changed to the beginning of the queue.

By default, a QueueReceiver, TopicReceiver, or TopicSubscriber uses
FIRST_MESSAGE for the first receive call, and NEXT_MESSAGE for subsequent
receive () calls.

Browsing Messages

Aside from the usual receive, which allows the dequeuing client to delete the
message from the queue, JMS provides an interface that allows the JMS client to
browse its messages in the queue. A QueueBrowser can be created using the
createBrowser method from QueueSession.

If a message is browsed, then it remains available for further processing. That does not
necessarily mean that the message will remain available to the JMS session after it is
browsed, because a receive call from a concurrent session might remove it.

To prevent a viewed message from being removed by a concurrent JMS client, you can
view the message in the locked mode. To do this, you must create a QueueBrowser
with the locked mode using the Oracle Streams AQ extension to the JMS interface. The
lock on the message is released when the session performs a commit or a rollback.

To remove a message viewed by a QueueBrowser, the session must create a
QueueReceiver and use the JMSmesssageID as the selector.

Remove No Data

The consumer can remove a message from a queue or topic without retrieving it using
the receiveNoData call. This is useful when the application has already examined
the message, perhaps using a QueueBrowser. This mode allows the JMS client to
avoid the overhead of retrieving a payload from the database, which can be substantial
for a large message.

Retry with Delay Interval

If a transaction receiving a message from a queue/topic fails, then it is regarded as an
unsuccessful attempt to remove the message. Oracle Streams AQ records the number
of failed attempts to remove the message in the message history.

An application can specify the maximum number of retries supported on messages at
the queue/topic level. If the number of failed attempts to remove a message exceeds
this maximum, then the message is moved to an exception queue.

Oracle Streams AQ allows users to specify a retry_delay along withmax_retries.
This means that a message that has undergone a failed attempt at retrieving remains
visible in the queue for dequeue after retry_delay interval. Until then it is in the
WAITING state. The Oracle Streams AQ background process time manager enforces
the retry delay property.

The maximum retries and retry delay are properties of the queue/topic. They can be
set when the queue/topic is created or by using the alter method on the queue/topic.
The default value for MAX_RETRIES is 5.

11-24 Oracle Streams Advanced Queuing User’s Guide

JMS Message Consumer Features

Asynchronously Receiving Messages Using MessageListener

The JMS client can receive messages asynchronously by setting the
MessageListener using the setMessageListener method.

When a message arrives for the consumer, the onMessage method of the message
listener is invoked with the message. The message listener can commit or terminate
the receipt of the message. The message listener does not receive messages if the J]MS
Connection has been stopped. The receive call must not be used to receive
messages once the message listener has been set for the consumer.

The JMS client can receive messages asynchronously for all consumers in the session
by setting the MessageListener at the session. No other mode for receiving
messages must be used in the session once the message listener has been set.

Exception Queues

An exception queue is a repository for all expired or unserviceable messages.
Applications cannot directly enqueue into exception queues. However, an application
that intends to handle these expired or unserviceable messages can receive/remove
them from the exception queue.

To retrieve messages from exception queues, the JMS client must use the point-to-point
interface. The exception queue for messages intended for a topic must be created in a
queue table with multiple consumers enabled. Like any other queue, the exception
queue must be enabled for receiving messages using the start method in the
AQOracleQueue class. You get an exception if you try to enable it for enqueue.

The exception queue is an Oracle-specific message property called "JMS_
OracleExcpQ" that can be set with the message before sending/publishing it. If an
exception queue is not specified, then the default exception queue is used. The default
exception queue is automatically created when the queue table is created and is named
AQS_qgueue_table_name_E.

Messages are moved to the exception queue under the following conditions:
= The message was not dequeued within the specified timeToLive.

For messages intended for more than one subscriber, the message is moved to the
exception queue if one or more of the intended recipients is not able to dequeue
the message within the specified timeToLive.

= The message was received successfully, but the application terminated the
transaction that performed the receive because of an error while processing the
message. The message is returned to the queue/topic and is available for any
applications that are waiting to receive messages.

A receive is considered rolled back or undone if the application terminates the
entire transaction, or if it rolls back to a savepoint that was taken before the
receive.

Because this was a failed attempt to receive the message, its retry count is updated.
If the retry count of the message exceeds the maximum value specified for the
queue/topic where it resides, then it is moved to the exception queue.

If a message has multiple subscribers, then the message is moved to the exception
queue only when all the recipients of the message have exceeded the retry limit.

Introducing Oracle JMS 11-25

JMS Propagation

Note: If a dequeue transaction failed because the server process died
(including ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on
the instance, then RETRY_COUNT is not incremented.

JMS Propagation
This section contains these topics:
= RemoteSubscriber
s Scheduling Propagation
= Enhanced Propagation Scheduling Capabilities
= Exception Handling During Propagation

RemoteSubscriber

Oracle Streams AQ allows a subscriber at another database to subscribe to a topic. If a
message published to the topic meets the criterion of the remote subscriber, then it is
automatically propagated to the queue/topic at the remote database specified for the
remote subscriber. Propagation is performed using database links and Oracle Net
Services. This enables applications to communicate with each other without having to
be connected to the same database.

There are two ways to implement remote subscribers:

s The createRemoteSubscriber method can be used to create a remote
subscriber to/on the topic. The remote subscriber is specified as an instance of the
class AQjmsAgent.

s The AQjmsAgent has a name and an address. The address consists of a
queue/topic and the database link to the database of the subscriber.

There are two kinds of remote subscribers:
» The remote subscriber is a topic.

This occurs when no name is specified for the remote subscriber in the
AQjmsAgent object and the address is a topic. The message satisfying the
subscriber's subscription is propagated to the remote topic. The propagated
message is now available to all the subscriptions of the remote topic that it
satisfies.

= A specific remote recipient is specified for the message.

The remote subscription can be for a particular consumer at the remote database.
If the name of the remote recipient is specified (in the AQjmsAgent object), then
the message satisfying the subscription is propagated to the remote database for
that recipient only. The recipient at the remote database uses the TopicReceiver
interface to retrieve its messages. The remote subscription can also be for a
point-to-point queue.

Scheduling Propagation

Propagation must be scheduled using the schedule_propagation method for
every topic from which messages are propagated to target destination databases.

A schedule indicates the time frame during which messages can be propagated from
the source topic. This time frame can depend on a number of factors such as network

11-26 Oracle Streams Advanced Queuing User’s Guide

JMS Propagation

traffic, the load at the source database, the load at the destination database, and so on.
The schedule therefore must be tailored for the specific source and destination. When a
schedule is created, a job is automatically submitted to the job_queue facility to
handle propagation.

The administrative calls for propagation scheduling provide great flexibility for
managing the schedules. The duration or propagation window parameter of a
schedule specifies the time frame during which propagation must take place. If the
duration is unspecified, then the time frame is an infinite single window. If a window
must be repeated periodically, then a finite duration is specified along with a next_
time function that defines the periodic interval between successive windows.

See Also: "Scheduling a Propagation” on page 12-18

The propagation schedules defined for a queue can be changed or dropped at any time
during the life of the queue. In addition there are calls for temporarily disabling a
schedule (instead of dropping the schedule) and enabling a disabled schedule. A
schedule is active when messages are being propagated in that schedule. All the
administrative calls can be made irrespective of whether the schedule is active or not.
If a schedule is active, then it takes a few seconds for the calls to be executed.

Job queue processes must be started for propagation to take place. At least 2 job queue
processes must be started. The database links to the destination database must also be
valid. The source and destination topics of the propagation must be of the same
message type. The remote topic must be enabled for enqueue. The user of the database
link must also have enqueue privileges to the remote topic.

Enhanced Propagation Scheduling Capabilities

Catalog views defined for propagation provide the following information about active
schedules:

= Name of the background process handling the schedule

= SID (session and serial number) for the session handling the propagation
= Instance handling a schedule (if using RAC)

= Previous successful execution of a schedule

= Next planned execution of a schedule

The following propagation statistics are maintained for each schedule, providing
useful information to queue administrators for tuning:

= The total number of messages propagated in a schedule
s Total number of bytes propagated in a schedule

= Maximum number of messages propagated in a window
= Maximum number of bytes propagated in a window

= Average number of messages propagated in a window

» Average size of propagated messages

= Average time to propagated a message

Propagation has built-in support for handling failures and reporting errors. For
example, if the database link specified is invalid, or if the remote database is

unavailable, or if the remote topic/queue is not enabled for enqueuing, then the
appropriate error message is reported. Propagation uses an exponential backoff

Introducing Oracle JMS 11-27

JMS Propagation

scheme for retrying propagation from a schedule that encountered a failure. If a
schedule continuously encounters failures, then the first retry happens after 30
seconds, the second after 60 seconds, the third after 120 seconds and so forth. If the
retry time is beyond the expiration time of the current window, then the next retry is
attempted at the start time of the next window. A maximum of 16 retry attempts are
made after which the schedule is automatically disabled.

Note: Once a retry attempt slips to the next propagation window, it
will always do so; the exponential backoff scheme no longer governs
retry scheduling. If the date function specified in the next_time
parameter of DBMS_AQADM. SCHEDULE_PROPAGATION () resultsina
short interval between windows, then the number of unsuccessful
retry attempts can quickly exceed 16, disabling the schedule.

When a schedule is disabled automatically due to failures, the relevant information is
written into the alert log. It is possible to check at any time if there were failures
encountered by a schedule and if so how many successive failures were encountered,
the error message indicating the cause for the failure and the time at which the last
failure was encountered. By examining this information, an administrator can fix the
failure and enable the schedule.

If propagation is successful during a retry, then the number of failures is reset to 0.

Propagation has built-in support for Real Application Clusters and is transparent to
the user and the administrator. The job that handles propagation is submitted to the
same instance as the owner of the queue table where the source topic resides. If at any
time there is a failure at an instance and the queue table that stores the topic is
migrated to a different instance, then the propagation job is also automatically
migrated to the new instance. This minimizes the pinging between instances and thus
offers better performance. Propagation has been designed to handle any number of
concurrent schedules.

The number of job_gueue_processes is limited to a maximum of 1000 and some of
these can be used to handle jobs unrelated to propagation. Hence, propagation has
built in support for multitasking and load balancing. The propagation algorithms are
designed such that multiple schedules can be handled by a single snapshot (job_
queue) process. The propagation load on a job_qgueue processes can be skewed
based on the arrival rate of messages in the different source topics. If one process is
overburdened with several active schedules while another is less loaded with many
passive schedules, then propagation automatically redistributes the schedules among
the processes such that they are loaded uniformly.

Exception Handling During Propagation

When a system error such as a network failure occurs, Oracle Streams AQ continues to
attempt to propagate messages using an exponential back-off algorithm. In some
situations that indicate application errors in queue-to-dblink propagations, Oracle
Streams AQ marks messages as UNDELIVERABLE and logs a message in alert.log.
Examples of such errors are when the remote queue does not exist or when there is a
type mismatch between the source queue and the remote queue. The trace files in the
background_dump_dest directory can provide additional information about the
error.

When a new job queue process starts, it clears the mismatched type errors so the types
can be reverified. If you have capped the number of job queue processes and
propagation remains busy, then you might not want to wait for the job queue process

11-28 Oracle Streams Advanced Queuing User’s Guide

J2EE Compliance

to terminate and restart. Queue types can be reverified at any time using DBMS_
AQADM.VERIFY_QUEUE_TYPES.

Note: When a type mismatch is detected in queue-to-queue
propagation, propagation stops and throws an error. In such situations
you must query the DBA_SCHEDULES view to determine the last error
that occurred during propagation to a particular destination. The
message is not marked as UNDELIVERABLE.

Message Transformation with JMS AQ

A transformation can be defined to map messages of one format to another.
Transformations are useful when applications that use different formats to represent
the same information must be integrated. Transformations can be SQL expressions and
PL/SQL functions. Message transformation is an Oracle Streams AQ extension to the
standard JMS interface.

The transformations can be created using the DBMS_TRANSFORM.create_
transformation procedure. Transformation can be specified for the following
operations:

= Sending a message to a queue or topic
= Receiving a message from a queue or topic
s Creating a TopicSubscriber

» Creating a RemoteSubscriber. This enables propagation of messages between
topics of different formats.

J2EE Compliance

In Oracle Database 10g, Oracle JMS conforms to the Sun Microsystems JMS 1.1
standard. You can define the J2EE compliance mode for an Oracle Java Message
Service (OJMS) client at runtime. For compliance, set the Java property
oracle.jms.j2eeCompliant to TRUE as a command line option. For
noncompliance, do nothing. FALSE is the default value.

Features in Oracle Streams AQ that support J2EE compliance (and are also available in
the noncompliant mode) include:

= Nontransactional sessions

s Durable subscribers

s Temporary queues and topics
= Nonpersistent delivery mode

= Multiple JMS messages types on a single JMS queue or topic (using Oracle
Streams AQ queues of the AQ$_JIMS_MESSAGE type)

s ThenoLocal option for durable subscribers

Introducing Oracle JMS 11-29

J2EE Compliance

See Also:

» Java Message Service Specification, version 1.1, March 18, 2002, Sun
Microsystems, Inc.

= "JMS Message Headers" on page 11-9 for information on how the
Java property oracle.jms.j2eeCompliant affects JMSPriority
and JMSExpiration

s "DurableSubscriber" on page 11-18 for information on how the
Java property oracle.jms.j2eeCompliant affects durable
subscribers

11-30 Oracle Streams Advanced Queuing User’s Guide

12

Oracle JMS Basic Operations

This chapter describes the basic operational Java Message Service (JMS)
administrative interface to Oracle Streams Advanced Queuing (AQ).

This chapter contains these topics:

EXECUTE Privilege on DBMS_AQIN

Registering a ConnectionFactory

Unregistering a Queue/Topic ConnectionFactory

Getting a QueueConnectionFactory or TopicConnectionFactory
Getting a Queue or Topic in LDAP

Creating a Queue Table

Getting a Queue Table

Creating a Queue

Granting and Revoking Privileges

Managing Destinations

Propagation Schedules

EXECUTE Privilege on DBMS_AQIN

Users should never directly call methods in the DBMS_AQIN package, but they do need
the EXECUTE privilege on DBMS_AQIN. Use the following syntax to accomplish this:

GRANT EXECUTE ON DBMS_AQIN to user;

Registering a ConnectionFactory

You can register a ConnectionFactory four ways:

Registering Through the Database Using JDBC Connection Parameters
Registering Through the Database Using a JDBC URL

Registering Through LDAP Using JDBC Connection Parameters
Registering Through LDAP Using a JDBC URL

Registering Through the Database Using JDBC Connection Parameters

public static int registerConnectionFactory(java.sgl.Connection connection,

java.lang.String conn_name,

Oracle JMS Basic Operations 12-1

Registering a ConnectionFactory

java.lang.String hostname,

java.lang.String oracle_sid,

int portno,

java.lang.String driver,

java.lang.String type)
throws JMSException

This method registers a QueueConnectionFactory or TopicConnectionFactory
through the database to a Lightweight Directory Access Protocol (LDAP) server with
JDBC connection parameters. This method is static and has the following parameters:

Parameter Description

connection JDBC connection used in registration
conn_name Name of the connection to be registered
hostname Name of the host running Oracle Streams AQ
oracle_sid Oracle system identifier

portno Port number

driver JDBC driver type

type Connection factory type (QUEUE or TOPIC)

The database connection passed to registerConnectionFactory must be granted
AQ_ADMINISTRATOR_ROLE. After registration, you can look up the connection
factory using Java Naming and Directory Interface (JNDI).

Example 12-1 Registering Through the Database Using JDBC Connection Parameters

String url;
java.sqgl.connection db_conn;

url = "jdbc:oracle:thin:@sun-123:1521:dbl";
db_conn = DriverManager.getConnection (url, "scott", "tiger");
AQjmsFactory.registerConnectionFactory (

db_conn, "queue_connl", "sun-123", "dbl", 1521, "thin", "queue");

Registering Through the Database Using a JDBC URL

public static int registerConnectionFactory(java.sqgl.Connection connection,
java.lang.String conn_name,
java.lang.String jdbc_url,
java.util.Properties info,
java.lang.String type)
throws JMSException

This method registers a QueueConnectionFactory or TopicConnectionFactory
through the database with a JDBC URL to LDAP. It is static and has the following
parameters:

Parameter Description

connection JDBC connection used in registration
conn_name Name of the connection to be registered
jdbc_url URL to connect to

12-2 Oracle Streams Advanced Queuing User’'s Guide

Registering a ConnectionFactory

Parameter Description

info Properties information

portno Port number

type Connection factory type (QUEUE or TOPIC)

The database connection passed to registerConnectionFactory must be granted
AQ_ADMINISTRATOR_ROLE. After registration, you can look up the connection
factory using JNDL.

Example 12-2 Registering Through the Database Using a JDBC URL

String url;
java.sql.connection db_conn;

url = "jdbc:oracle:thin:@sun-123:1521:dbl";
db_conn = DriverManager.getConnection(url, "scott", "tiger");
AQjmsFactory.registerConnectionFactory (

db_conn, "topic_connl", url, null, "topic");

Registering Through LDAP Using JDBC Connection Parameters

public static int registerConnectionFactory(java.util.Hashtable env,
java.lang.String conn_name,
java.lang.String hostname,
java.lang.String oracle_sid,
int portno,
java.lang.String driver,
java.lang.String type)

throws JMSException

This method registers a QueueConnectionFactory or TopicConnectionFactory
through LDAP with JDBC connection parameters to LDAP. It is static and has the
following parameters:

Parameter Description

env Environment of LDAP connection
conn_name Name of the connection to be registered
hostname Name of the host running Oracle Streams AQ
oracle_sid Oracle system identifier

portno Port number

driver JDBC driver type

type Connection factory type (QUEUE or TOPIC)

The hash table passed to registerConnectionFactory () must contain all the
information to establish a valid connection to the LDAP server. Furthermore, the
connection must have write access to the connection factory entries in the LDAP server
(which requires the LDAP user to be either the database itself or be granted GLOBAL_
AQ_USER_ROLE). After registration, look up the connection factory using JNDI.

Example 12-3 Registering Through LDAP Using JDBC Connection Parameters
Hashtable env = new Hashtable(5, 0.75f);

Oracle JMS Basic Operations 12-3

Registering a ConnectionFactory

/* the following statements set in hashtable env:

* gservice provider package

* the URL of the ldap server

* the distinguished name of the database server

* the authentication method (simple)

* the LDAP username

* the LDAP user password
*/
env.put (Context.INITIAL_CONTEXT FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put (Context.PROVIDER_URL, "ldap://sun-456:389");
env.put ("searchbase", "cn=dbl,cn=0raclecontext,cn=acme,cn=com") ;
env.put (Context.SECURITY_AUTHENTICATION, "simple");
env.put (Context.SECURITY_ PRINCIPAL, "cn=dblagadmin,cn=acme,cn=com");
env.put (Context.SECURITY_CREDENTIALS, "welcome");

AQjmsFactory.registerConnectionFactory (env,
"queue_connl",
"sun-123",
"dbl",
1521,
"thin",
"queue") ;

Registering Through LDAP Using a JDBC URL

public static int registerConnectionFactory(java.util.Hashtable env,
java.lang.String conn_name,
java.lang.String jdbc_url,
java.util.Properties info,
java.lang.String type)
throws JMSException

This method registers a QueueConnectionFactory or TopicConnectionFactory
through LDAP with JDBC connection parameters to LDAP. It is static and has the
following parameters:

Parameter Description

env Environment of LDAP connection
conn_name Name of the connection to be registered
jdbc_url URL to connect to

info Properties information

type Connection factory type (QUEUE or TOPIC)

The hash table passed to registerConnectionFactory () must contain all the
information to establish a valid connection to the LDAP server. Furthermore, the
connection must have write access to the connection factory entries in the LDAP server
(which requires the LDAP user to be either the database itself or be granted GLOBAL_
AQ_USER_ROLE) . After registration, look up the connection factory using JNDI.

Example 12-4 Registering Through LDAP Using a JDBC URL

String url;
Hashtable env = new Hashtable(5, 0.75f);

/* the following statements set in hashtable env:
* gervice provider package

12-4 Oracle Streams Advanced Queuing User’'s Guide

Unregistering a Queue/Topic ConnectionFactory

* the URL of the ldap server
* the distinguished name of the database server
* the authentication method (simple)
* the LDAP username
* the LDAP user password
*/
env.put (Context.INITIAL_CONTEXT FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put (Context.PROVIDER_URL, "ldap://sun-456:389");
env.put ("searchbase", "cn=dbl,cn=0Oraclecontext,cn=acme,cn=com") ;
env.put (Context.SECURITY_AUTHENTICATION, "simple");
env.put (Context.SECURITY_PRINCIPAL, "cn=dblagadmin,cn=acme,cn=com");
env.put (Context.SECURITY_CREDENTIALS, "welcome");
url = "jdbc:oracle:thin:@sun-123:1521:dbl";
AQjmsFactory.registerConnectionFactory(env, "topic_connl", url, null, "topic");

Unregistering a Queue/Topic ConnectionFactory
You can unregister a queue/topic ConnectionFactory in LDAP two ways:
= Unregistering Through the Database
= Unregistering Through LDAP

Unregistering Through the Database

public static int unregisterConnectionFactory(java.sqgl.Connection connection,
java.lang.String conn_name)
throws JMSException

This method unregisters a QueueConnectionFactory or
TopicConnectionFactory in LDAP. It is static and has the following parameters:

Parameter Description
connection JDBC connection used in registration
conn_name Name of the connection to be registered

The database connection passed to unregisterConnectionFactory () must be
granted AQ_ADMINISTRATOR_ROLE.

Example 12-5 Unregistering Through the Database
String url;

java.sgl.connection db_conn;

url = "jdbc:oracle:thin:@sun-123:1521:dbl";
db_conn = DriverManager.getConnection(url, "scott", "tiger");
AQjmsFactory.unregisterConnectionFactory (db_conn, "topic_connl");

Unregistering Through LDAP

public static int unregisterConnectionFactory(java.util.Hashtable env,
java.lang.String conn_name)
throws JMSException

This method unregisters a QueueConnectionFactory or TopicConnectionFactory in
LDAP. It is static and has the following parameters:

Oracle JMS Basic Operations 12-5

Getting a QueueConnectionFactory or TopicConnectionFactory

Parameter Description
env Environment of LDAP connection
conn_name Name of the connection to be registered

The hash table passed to unregisterConnectionFactory () must contain all the
information to establish a valid connection to the LDAP server. Furthermore, the
connection must have write access to the connection factory entries in the LDAP server
(which requires the LDAP user to be either the database itself or be granted GLOBAL_
AQ USER_ROLE).

Example 12-6 Unregistering Through LDAP
Hashtable env = new Hashtable(5, 0.75f);

/* the following statements set in hashtable env:

* gservice provider package

* the distinguished name of the database server

* the authentication method (simple)

* the LDAP username

* the LDAP user password
*/
env.put (Context.INITIAL_CONTEXT FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put (Context.PROVIDER_URL, "ldap://sun-456:389");
env.put ("searchbase", "cn=dbl,cn=0raclecontext,cn=acme,cn=com") ;
env.put (Context.SECURITY_AUTHENTICATION, "simple");
env.put (Context.SECURITY_PRINCIPAL, "cn=dblagadmin,cn=acme,cn=com");
env.put (Context.SECURITY_CREDENTIALS, "welcome");
url = "jdbc:oracle:thin:@sun-123:1521:dbl";
AQjmsFactory.unregisterConnectionFactory(env, "queue_connl");

Getting a QueueConnectionFactory or TopicConnectionFactory
This section contains these topics:
» Getting a QueueConnectionFactory with JDBC URL
s Getting a QueueConnectionFactory with JDBC Connection Parameters
= Getting a TopicConnectionFactory with JDBC URL
s Getting a TopicConnectionFactory with JDBC Connection Parameters

s Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP

Getting a QueueConnectionFactory with JDBC URL

public static javax.jms.QueueConnectionFactory getQueueConnectionFactory (
java.lang.String jdbc_url,
java.util.Properties info)
throws JMSException

This method gets a QueueConnectionFactory with JDBC URL. It is static and has
the following parameters:

Parameter Description

jdbc_url URL to connect to

12-6 Oracle Streams Advanced Queuing User’'s Guide

Getting a QueueConnectionFactory or TopicConnectionFactory

Parameter Description

info Properties information

Example 12-7 Getting a QueueConnectionFactory with JDBC URL

String url = "jdbc:oracle:ocil0:internal/oracle"
Properties info = new Properties();
QueueConnectionFactory gc_fact;

info.put("internal_logon", "sysdba");
gc_fact = AQjmsFactory.getQueueConnectionFactory(url, info);

Getting a QueueConnectionFactory with JDBC Connection Parameters

public static javax.jms.QueueConnectionFactory getQueueConnectionFactory (
java.lang.String hostname,
java.lang.String oracle_sid,
int portno,
java.lang.String driver)
throws JMSException

This method gets a QueueConnectionFactory with JDBC connection parameters. It
is static and has the following parameters:

Parameter Description

hostname Name of the host running Oracle Streams AQ
oracle_sid Oracle system identifier

portno Port number

driver JDBC driver type

Example 12-8 Getting a QueueConnectionFactory with JDBC Connection Parameters

String host = "dlsun";
String ora_sid = "rdbmsl10i"
String driver = "thin";
int port = 5521;

QueueConnectionFactory qgc_fact;

gc_fact = AQjmsFactory.getQueueConnectionFactory (host, ora_sid, port, driver);

Getting a TopicConnectionFactory with JDBC URL

public static javax.jms.QueueConnectionFactory getQueueConnectionFactory (
java.lang.String jdbc_url,
java.util.Properties info)
throws JMSException

This method gets a TopicConnectionFactory with a JDBC URL. It is static and has
the following parameters:

Parameter Description
jdbc_url URL to connect to
info Properties information

Oracle JMS Basic Operations 12-7

Getting a QueueConnectionFactory or TopicConnectionFactory

Example 12-9 Getting a TopicConnectionFactory with JDBC URL

String url = "jdbc:oracle:ocil0O:internal/oracle"
Properties info = new Properties();
TopicConnectionFactory tc_fact;

info.put("internal_logon", "sysdba");
tc_fact = AQjmsFactory.getTopicConnectionFactory(url, info);

Getting a TopicConnectionFactory with JDBC Connection Parameters

public static javax.jms.TopicConnectionFactory getTopicConnectionFactory (
java.lang.String hostname,
java.lang.String oracle_sid,
int portno,
java.lang.String driver)
throws JMSException

This method gets a TopicConnectionFactory with JDBC connection parameters. It
is static and has the following parameters:

Parameter Description

hostname Name of the host running Oracle Streams AQ
oracle_sid Oracle system identifier

portno Port number

driver JDBC driver type

Example 12-10 Getting a TopicConnectionFactory with JDBC Connection Parameters

String host = "dlsun";
String ora_sid = "rdbms101i"
String driver = "thin";
int port = 5521;

TopicConnectionFactory tc_fact;

tc_fact = AQjmsFactory.getTopicConnectionFactory (host, ora_sid, port, driver);

Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP

This method gets a QueueConnectionFactory or TopicConnectionFactory
from LDAP.

Example 12-11 Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP

Hashtable env = new Hashtable(5, 0.75f);
DirContext ctx;
queueConnectionFactory gc_fact;

/* the following statements set in hashtable env:
* gervice provider package
* the URL of the ldap server
* the distinguished name of the database server
* the authentication method (simple)
* the LDAP username
* the LDAP user password
*/
env.put (Context.INITIAL_CONTEXT FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put (Context.PROVIDER_URL, "ldap://sun-456:389");

12-8 Oracle Streams Advanced Queuing User’'s Guide

Creating a Queue Table

env.put (Context.SECURITY_AUTHENTICATION, "simple");
env.put (Context.SECURITY_PRINCIPAL, "cn=dblaquserl,cn=acme,cn=com");
env.put (Context .SECURITY_CREDENTIALS, "welcome");

ctx = new InitialDirContext (env);

ctx =

(DirContext)ctx.lookup ("cn=0racleDBConnections, cn=dbl, cn=Oraclecontext, cn=acme, cn=
com") ;

gc_fact = (queueConnectionFactory)ctx.lookup ("cn=queue_connl");

Getting a Queue or Topic in LDAP

This method gets a queue or topic from LDAP.

Example 12-12 Getting a Queue or Topic in LDAP

Hashtable env = new Hashtable(5, 0.75f);
DirContext ctx;
topic topic_1;

/* the following statements set in hashtable env:
* gervice provider package
* the URL of the ldap server
* the distinguished name of the database server
* the authentication method (simple)
* the LDAP username
* the LDAP user password
*/
env.put (Context.INITIAL_CONTEXT FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put (Context .PROVIDER_URL, "ldap://sun-456:389");
env.put (Context.SECURITY_AUTHENTICATION, "simple");
env.put (Context.SECURITY_PRINCIPAL, "cn=dblaquserl,cn=acme,cn=com");
env.put (Context.SECURITY_CREDENTIALS, "welcome");

ctx = new InitialDirContext (env);
ctx =
(DirContext)ctx.lookup ("cn=0racleDBQueues, cn=dbl, cn=0raclecontext, cn=acme, cn=com")

topic_1 = (topic)ctx.lookup("cn=topic_1");

Creating a Queue Table

public oracle.AQ.AQQueueTable createQueueTable (
java.lang.String owner,
java.lang.String name,
oracle.AQ.AQQueueTableProperty property)
throws JMSException

This method creates a queue table. It has the following parameters:

Parameter Description

owner Queue table owner (schema)
name Queue table name

property Queue table properties

Oracle JMS Basic Operations 12-9

Getting a Queue Table

If the queue table is used to hold queues, then the queue table must not be
multiconsumer enabled (default). If the queue table is used to hold topics, then the
queue table must be multiconsumer enabled.

CLOB, BLOB, and BFILE objects are valid attributes for an Oracle Streams AQ object
type load. However, only CLOB and BLOB can be propagated using Oracle Streams
AQ propagation in Oracle8i and after.

Example 12-13 Creating a Queue Table

QueueSession g_sess = null;
AQQueueTable g _table = null;
AQQueueTableProperty gt_prop = null;

gt_prop = new AQQueueTableProperty ("SYS.AQS$S_JMS_BYTES_MESSAGE") ;
g _table = ((AQjmsSession)qg sess).createQueueTable (
"boluser", "bol_ship_queue_table", gt_prop);

Getting a Queue Table

public oracle.AQ.AQQueueTable getQueueTable(java.lang.String owner,
java.lang.String name)
throws JMSException

This method gets a queue table. It has the following parameters:

Parameter Description
owner Queue table owner (schema)
name Queue table name

If the caller that opened the connection is not the owner of the queue table, then the
caller must have Oracle Streams AQ enqueue/dequeue privileges on queues/topics
in the queue table. Otherwise the queue table is not returned.

Example 12-14 Getting a Queue Table

QueueSession q_sess;
AQQueueTable q_table;
g _table = ((AQjmsSession)qg sess).getQueueTable (

"boluser", "bol_ship_queue_table");

Creating a Queue
This section contains these topics:
»s Creating a Point-to-Point Queue

» Creating a Publish/Subscribe Topic

Creating a Point-to-Point Queue

public javax.jms.Queue createQueue (
oracle.AQ.AQQueueTable g table,
java.lang.String queue_name,
oracle.jms.AQjmsDestinationProperty dest_property)
throws JMSException

12-10 Oracle Streams Advanced Queuing User’s Guide

Creating a Queue

This method creates a queue in a specified queue table. It has the following

parameters:

Parameter Description

g_table Queue table in which the queue is to be created. The queue table must
be single-consumer.

gueue_name Name of the queue to be created

dest_property Queue properties

This method is specific to OJMS. You cannot use standard Java javax.jms.Session
objects with it. Instead, you must cast the standard type to the OJMS concrete class
oracle.jms.AQjmsSession.

Example 12-15 Creating a Point-to-Point Queue

QueueSession q_sess;
AQQueueTable q_table;
AgjmsDestinationProperty dest_prop;
Queue queue;

queue = ((AQjmsSession)qg sess).createQueue(qg table, "jms_qgl", dest_prop);

Creating a Publish/Subscribe Topic

public javax.jms.Topic createTopic (
oracle.AQ.AQQueueTable g table,
java.lang.String topic_name,
oracle.jms.AQjmsDestinationProperty dest_property)
throws JMSException

This method creates a topic in the publish/subscribe model. It has the following

parameters:

Parameter Description

q_table Queue table in which the queue is to be created. The queue table must
be multiconsumer.

queue_name Name of the queue to be created

dest_property Queue properties

This method is specific to OJMS. You cannot use standard Java javax.jms.Session
objects with it. Instead, you must cast the standard type to the OJMS concrete class
oracle.jms.AQjmsSession.

Example 12-16 Creating a Publish/Subscribe Topic

TopicSession t_sess;
AQQueueTable g _table;
AgjmsDestinationProperty dest_prop;
Topic topic;

topic = ((AQjmsSessa)t_sess).createTopic(qg table, "jms_tl", dest_prop);

Oracle JMS Basic Operations 12-11

Granting and Revoking Privileges

In Example 12-17, if an order cannot be filled because of insufficient inventory, then
the transaction processing the order is terminated. The bookedorders topic is set up
withmax_retries =4 and retry_delay = 12 hours.Thus, if an order is not filled
up in two days, then it is moved to an exception queue.

Example 12-17 Specifying Max Retries and Max Delays in Messages

public BolOrder process_booked_order (TopicSession jms_session)
{

Topic topic;
TopicSubscriber tsubs;

ObjectMessage obj_message;
BolCustomer customer;

BolOrder booked_order = null;
String country;

int i=0;

try

{
/* get a handle to the OE_bookedorders_topic */
topic = ((AQjmsSession)jms_session) .getTopic("WS",
"WS_bookedorders_topic") ;

/* Create local subscriber - to track messages for Western Region */
tsubs = jms_session.createDurableSubscriber (topic, "SUBS1",
"Region = 'Western' ",
false);

/* wait for a message to show up in the topic */
obj_message = (ObjectMessage)tsubs.receive(10);

booked_order = (BolOrder)obj_message.getObject();

customer = booked_order.getCustomer() ;
country = customer.getCountry () ;

if (country == "US")

jms_session.commit () ;
}

else

{
jms_session.rollback() ;
booked_order = null;

}
}catch (JMSException ex)
{ System.out.println("Exception " + ex) ;}

return booked_order;

Granting and Revoking Privileges
This section contains these topics:
= Granting Oracle Streams AQ System Privileges
= Revoking Oracle Streams AQ System Privileges
= Granting Publish/Subscribe Topic Privileges

12-12 Oracle Streams Advanced Queuing User’s Guide

Granting and Revoking Privileges

= Revoking Publish/Subscribe Topic Privileges
s Granting Point-to-Point Queue Privileges

= Revoking Point-to-Point Queue Privileges

Granting Oracle Streams AQ System Privileges

public void grantSystemPrivilege(java.lang.String privilege,
java.lang.String grantee,
boolean admin_option)
throws JMSException

This method grants Oracle Streams AQ system privileges to a user or role.

Parameter Description

privilege ENQUEUE_ANY, DEQUEUE_ANY or MANAGE_ANY

grantee Grantee (user, role, or PUBLIC)

admin_option If this is set to true, then the grantee is allowed to use this procedure to

grant the system privilege to other users or roles

Initially only SYS and SYSTEM can use this procedure successfully. Users granted the
ENQUEUE_ANY privilege are allowed to enqueue messages to any queues in the
database. Users granted the DEQUEUE_ANY privilege are allowed to dequeue messages
from any queues in the database. Users granted the MANAGE_ANY privilege are
allowed to run DBMS_AQADM calls on any schemas in the database.

Example 12-18 Granting Oracle Streams AQ System Privileges

TopicSession t_sess;

((AQjmsSession)t_sess) .grantSystemPrivilege ("ENQUEUE_ANY", "scott", false);

Revoking Oracle Streams AQ System Privileges

public void revokeSystemPrivilege(java.lang.String privilege,
java.lang.String grantee)
throws JMSException

This method revokes Oracle Streams AQ system privileges from a user or role. It has
the following parameters:

Parameter Description
privilege ENQUEUE_ANY, DEQUEUE_ANY or MANAGE_ANY
grantee Grantee (user, role, or PUBLIC)

Users granted the ENQUEUE_ANY privilege are allowed to enqueue messages to any
queues in the database. Users granted the DEQUEUE_ANY privilege are allowed to
dequeue messages from any queues in the database. Users granted the MANAGE_ANY
privilege are allowed to run DBMS_AQADM calls on any schemas in the database.

Example 12-19 Revoking Oracle Streams AQ System Privileges

TopicSession t_sess;

Oracle JMS Basic Operations 12-13

Granting and Revoking Privileges

((AQjmsSession)t_sess) .revokeSystemPrivilege ("ENQUEUE_ANY", "scott");

Granting Publish/Subscribe Topic Privileges

public void grantTopicPrivilege(javax.jms.Session session,
java.lang.String privilege,
java.lang.String grantee,
boolean grant_option)
throws JMSException

This method grants a topic privilege in the publish/subscribe model. Initially only the
queue table owner can use this procedure to grant privileges on the topic. It has the
following parameters:

Parameter Description

session JMS session

privilege ENQUEUE, DEQUEUE, or ALL (ALL means both.)

grantee Grantee (user, role, or PUBLIC)

grant_option If this is set to true, then the grantee is allowed to use this procedure to

grant the system privilege to other users or roles

Example 12-20 Granting Publish/Subscribe Topic Privileges

TopicSession t_sess;
Topic topic;

((AQjmsDestination) topic) .grantTopicPrivilege (
t_sess, "ENQUEUE", "scott", false);

Revoking Publish/Subscribe Topic Privileges

public void revokeTopicPrivilege (javax.jms.Session session,
java.lang.String privilege,
java.lang.String grantee)
throws JMSException

This method revokes a topic privilege in the publish/subscribe model. It has the
following parameters:

Parameter Description

session JMS session

privilege ENQUEUE, DEQUEUE, or ALL (ALL means both.)
grantee Revoked grantee (uset, role, or PUBLIC)

Example 12-21 Revoking Publish/Subscribe Topic Privileges

TopicSession t_sess;
Topic topic;
((AQjmsDestination) topic) .revokeTopicPrivilege (t_sess, "ENQUEUE", "scott");

Granting Point-to-Point Queue Privileges

public void grantQueuePrivilege(javax.jms.Session session,

12-14 Oracle Streams Advanced Queuing User’s Guide

Granting and Revoking Privileges

java.lang.String privilege,

java.lang.String grantee,

boolean grant_option)
throws JMSException

This method grants a queue privilege in the point-to-point model. Initially only the
queue table owner can use this procedure to grant privileges on the queue. It has the
following parameters:

Parameter Description

session JMS session

privilege ENQUEUE, DEQUEUE, or ALL (ALL means both.)

grantee Grantee (user, role, or PUBLIC)

grant_option If this is set to true, then the grantee is allowed to use this procedure to

grant the system privilege to other users or roles

Example 12-22 Granting Point-to-Point Queue Privileges

QueueSession g_sess;
Queue queue;

((AQjmsDestination)queue) .grantQueuePrivilege (
g _sess, "ENQUEUE", "scott", false);

Revoking Point-to-Point Queue Privileges

public void revokeQueuePrivilege(javax.jms.Session session,
java.lang.String privilege,
java.lang.String grantee)
throws JMSException

This method revokes queue privileges in the point-to-point model. Initially only the
queue table owner can use this procedure to grant privileges on the queue. It has the
following parameters:

Parameter Description

session JMS session

privilege ENQUEUE, DEQUEUE, or ALL (ALL means both.)
grantee Revoked grantee (user, role, or PUBLIC)

To revoke a privilege, the revoker must be the original grantor of the privilege.
Privileges propagated through the GRANT option are revoked if the grantor privilege is
also revoked.

Example 12-23 Revoking Point-to-Point Queue Privileges

QueueSession g_sess;
Queue queue;
((AQjmsDestination)queue) .revokeQueuePrivilege (g _sess, "ENQUEUE", "scott");

Oracle JMS Basic Operations 12-15

Managing Destinations

Managing Destinations

This section contains these topics:
= Starting a Destination

= Stopping a Destination

= Altering a Destination

= Dropping a Destination

Starting a Destination

public void start(javax.jms.Session session,
boolean enqueue,
boolean dequeue)
throws JMSException

This method starts a destination. It has the following parameters:

Parameter Description
session JMS session
enqueue If set to TRUE, then enqueue is enabled
dequeue If set to TRUE, then dequeue is enabled

Example 12-24 Starting a Destination

TopicSession t_sess;
QueueSession g sess;
Topic topic;
Queue queue;

(AQjmsDestination) topic.start (t_sess, true, true);
(AQjmsDestination)queue.start (q_sess, true, true);

Stopping a Destination

public void stop(javax.jms.Session session,
boolean enqueue,
boolean dequeue,
boolean wait)
throws JMSException

This method stops a destination. It has the following parameters:

Parameter Description

session JMS session

enqueue If set to TRUE, then enqueue is disabled

dequeue If set to TRUE, then dequeue is disabled

wait If set to true, then pending transactions on the queue/topic are allowed

to complete before the destination is stopped

Example 12-25 Stopping a Destination

TopicSession t_sess;

12-16 Oracle Streams Advanced Queuing User’s Guide

Propagation Schedules

Topic topic;

((AQjmsDestination)topic) .stop(t_sess, true, false);

Altering a Destination

public void alter(javax.jms.Session session,
oracle.jms.AQjmsDestinationProperty dest_property)
throws JMSException

This method alters a destination. It has the following properties:

Parameter Description
session JMS session
dest_property New properties of the queue or topic

Example 12-26 Altering a Destination

QueueSession g _sess;

Queue queue;
TopicSession t_sess;
Topic topic;

AQjmsDestionationProperty dest_propl, dest_prop2;

((AQjmsDestination)queue) .alter (dest_propl) ;
((AQjmsDestination)topic).alter (dest_prop2);

Dropping a Destination

public void drop(javax.jms.Session session)
throws JMSException

This method drops a destination. It has the following parameter:

Parameter Description

session JMS session

Example 12-27 Dropping a Destination

QueueSession g _sess;

Queue queue;
TopicSession t_sess;
Topic topic;

((AQjmsDestionation)queue) .drop (g _sess) ;
((AQjmsDestionation)topic) .drop(t_sess);

Propagation Schedules
This section contains these topics:
= Scheduling a Propagation
= Enabling a Propagation Schedule
= Altering a Propagation Schedule
= Disabling a Propagation Schedule

Oracle JMS Basic Operations 12-17

Propagation Schedules

s Unscheduling a Propagation

Scheduling a Propagation

public void schedulePropagation(javax.jms.Session session,
java.lang.String destination,
java.util.Date start_time,
java.lang.Double duration,
java.lang.String next_time,
java.lang.Double latency)
throws JMSException

This method schedules a propagation. It has the following parameters:

Parameter Description
session JMS session
destination Database link of the remote database for which propagation is being

scheduled. A null string means that propagation is scheduled for all
subscribers in the database of the topic.

start_time Time propagation starts

duration Duration of propagation

next_time Next time propagation starts

latency Latency in seconds that can be tolerated. Latency is the difference
between the time a message was enqueued and the time it was
propagated.

If a message has multiple recipients at the same destination in either the same or
different queues, then it is propagated to all of them at the same time.

Example 12-28 Scheduling a Propagation
TopicSession t_sess;

Topic topic;

((AQjmsDestination) topic) .schedulePropagation (
t_sess, null, null, null, null, new Double(0));

Enabling a Propagation Schedule

public void enablePropagationSchedule(javax.jms.Session session,
java.lang.String destination)
throws JMSException

This method enables a propagation schedule. It has the following parameters:

Parameter Description
session JMS session
destination Database link of the destination database. A null string means that

propagation is to the local database.

Example 12-29 Enabling a Propagation Schedule

TopicSession t_sess;
Topic topic;

12-18 Oracle Streams Advanced Queuing User’s Guide

Propagation Schedules

((AQjmsDestination) topic) .enablePropagationSchedule (t_sess, "dbsl");

Altering a Propagation Schedule

public void alterPropagationSchedule(javax.jms.Session session,
java.lang.String destination,
java.lang.Double duration,
java.lang.String next_time,
java.lang.Double latency)
throws JMSException

This method alters a propagation schedule. It has the following parameters:

Parameter Description
session JMS session
destination Database link of the remote database for which propagation is being

scheduled. A null string means that propagation is scheduled for all
subscribers in the database of the topic.

duration Duration of propagation

next_time Next time propagation starts

latency Latency in seconds that can be tolerated. Latency is the difference
between the time a message was enqueued and the time it was
propagated.

Example 12-30 Altering a Propagation Schedule
TopicSession t_sess;

Topic topic;

((AQjmsDestination)topic) .alterPropagationSchedule (
t_sess, null, 30, null, new Double(30));

Disabling a Propagation Schedule

public void disablePropagationSchedule(javax.jms.Session session,
java.lang.String destination)
throws JMSException

This method disables a propagation schedule. It has the following parameters:

Parameter Description
session JMS session
destination Database link of the destination database. A null string means that

propagation is to the local database.

Example 12-31 Disabling a Propagation Schedule

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic) .disablePropagationSchedule (t_sess, "dbsl");

Oracle JMS Basic Operations 12-19

Propagation Schedules

Unscheduling a Propagation

public void unschedulePropagation(javax.jms.Session session,
java.lang.String destination)
throws JMSException

This method unschedules a previously scheduled propagation. It has the following

parameters:

Parameter Description

session JMS session

destination Database link of the destination database. A null string means that

propagation is to the local database.

Example 12-32 Unscheduling a Propagation

TopicSession t_sess;
Topic topic;

((AQjmsDestination) topic) .unschedulePropagation(t_sess, "dbsl");

12-20 Oracle Streams Advanced Queuing User’s Guide

13

Oracle JMS Point-to-Point

This chapter describes the components of the Oracle Streams Advanced Queuing (AQ)
Java Message Service (JMS) operational interface that are specific to point-to-point
operations. Components that are shared by point-to-point and publish/subscribe are
described in Chapter 15, "Oracle JMS Shared Interfaces".

This chapter contains these topics:

s Creating a Connection with Username/Password

s Creating a Connection with Default ConnectionFactory Parameters

s Creating a QueueConnection with Username /Password

s Creating a QueueConnection with an Open JDBC Connection

s Creating a QueueConnection with Default ConnectionFactory Parameters

s Creating a QueueConnection with an Open OracleOCIConnectionPool

s Creating a Session

s Creating a QueueSession

» Creating a QueueSender

= Sending Messages Using a QueueSender with Default Send Options

= Sending Messages Using a QueueSender by Specifying Send Options

» Creating a QueueBrowser for Standard JMS Type Messages

» Creating a QueueBrowser for Standard JMS Type Messages, Locking Messages
» Creating a QueueBrowser for Oracle Object Type Messages

s Creating a QueueBrowser for Oracle Object Type Messages, Locking Messages
» Creating a QueueReceiver for Standard JMS Type Messages

» Creating a QueueReceiver for Oracle Object Type Messages

Creating a Connection with Username/Password

public javax.jms.Connection createConnection (
java.lang.String username,
java.lang.String password)
throws JMSException

This method creates a connection supporting both point-to-point and
publish/subscribe operations with the specified username and password. This method
is new and supports JMS version 1.1 specifications. It has the following parameters:

Oracle JMS Point-to-Point 13-1

Creating a Connection with Default ConnectionFactory Parameters

Parameter Description
username Name of the user connecting to the database for queuing
password Password for creating the connection to the server

Creating a Connection with Default ConnectionFactory Parameters

public javax.jms.Connection createConnection ()
throws JMSException

This method creates a connection supporting both point-to-point and
publish/subscribe operations with default ConnectionFactory parameters. This
method is new and supports JMS version 1.1 specifications. If the
ConnectionFactory properties do not contain a default username and password,
then it throws a JMSException.

Creating a QueueConnection with Username/Password

public javax.jms.QueueConnection createQueueConnection (
java.lang.String username,
java.lang.String password)
throws JMSException

This method creates a queue connection with the specified username and password. It
has the following parameters:

Parameter Description
username Name of the user connecting to the database for queuing
password Password for creating the connection to the server

Example 13-1 Creating a QueueConnection with Username/Password

QueueConnectionFactory gc_fact = AQjmsFactory.getQueueConnectionFactory (
"sunl23", "oratest", 5521, "thin");
QueueConnection gc_conn = gc_fact.createQueueConnection ("jmsuser", "jmsuser");

Creating a QueueConnection with an Open JDBC Connection

public static javax.jms.QueueConnection createQueueConnection (
java.sqgl.Connection jdbc_connection)
throws JMSException

This method creates a queue connection with an open JDBC connection. It is static and
has the following parameter:

Parameter Description

jdbc_connection Valid open connection to the database

The method in Example 13-2 can be used if the user wants to use an existing JDBC
connection (say from a connection pool) for JMS operations. In this case JMS does not
open a new connection, but instead uses the supplied JDBC connection to create the
JMS QueueConnection object.

13-2 Oracle Streams Advanced Queuing User’'s Guide

Creating a Session

Example 13-2 Creating a QueueConnection with an Open JDBC Connection

Connection db_conn; /* previously opened JDBC connection */
QueueConnection gc_conn = AQjmsQueueConnectionFactory.createQueueConnection (
db_conn) ;

The method in Example 13-3 is the only way to create a JMS QueueConnection
when using JMS from a Java stored procedures inside the database (JDBC Server
driver)

Example 13-3 Creating a QueueConnection from a Java Procedure Inside Database

OracleDriver ora = new OracleDriver();
QueueConnection gc_conn =
AQjmsQueueConnectionFactory.createQueueConnection (ora.defaultConnection());

Creating a QueueConnection with Default ConnectionFactory Parameters

public javax.jms.QueueConnection createQueueConnection()
throws JMSException

This method creates a queue connection with default ConnectionFactory parameters.
If the queue connection factory properties do not contain a default username and
password, then it throws a JMSException.

Creating a QueueConnection with an Open OracleOCIConnectionPool

public static javax.jms.QueueConnection createQueueConnection (
oracle. jdbc.pool.OracleOCIConnectionPool cpool)
throws JMSException

This method creates a queue connection with an open OracleOCIConnectionPool.
It is static and has the following parameter:

Parameter Description

cpool Valid open OCI connection pool to the database

The method in Example 13—4 can be used if the user wants to use an existing
OracleOCIConnectionPool instance for JMS operations. In this case JMS does not
open an new OracleOCIConnectionPool instance, but instead uses the supplied
OracleOCIConnectionPool instance to create the J]MS QueueConnection object.

Example 13-4 Creating a QueueConnection with an Open OracleOCIConnectionPool

OracleOCIConnectionPool cpool; /* previously created OracleOCIConnectionPool */
QueueConnection gc_conn =
AQjmsQueueConnectionFactory.createQueueConnection (cpool) ;

Creating a Session

public javax.jms.Session createSession(boolean transacted,
int ack_mode)
throws JMSException

This method creates a Session, which supports both point-to-point and
publish/subscribe operations. This method is new and supports JMS version 1.1

Oracle JMS Point-to-Point 13-3

Creating a QueueSession

specifications. Transactional and nontransactional sessions are supported. It has the
following parameters:

Parameter Description
transacted If set to true, then the session is transactional
ack_mode Indicates whether the consumer or the client will acknowledge any

messages it receives. It is ignored if the session is transactional. Legal
values are Session.AUTO_ACKNOWLEDGE, Session.CLIENT_
ACKNOWLEDGE, and Session.DUPS_OK_ACKNOWLEDGE.

Creating a QueueSession

public javax.jms.QueueSession createQueueSession (
boolean transacted, int ack_mode)
throws JMSException

This method creates a QueueSession. Transactional and nontransactional sessions
are supported. It has the following parameters:

Parameter Description
transacted If set to true, then the session is transactional
ack_mode Indicates whether the consumer or the client will acknowledge any

messages it receives. It is ignored if the session is transactional. Legal
values are Session.AUTO_ACKNOWLEDGE, Session.CLIENT_
ACKNOWLEDGE, and Session.DUPS_OK_ACKNOWLEDGE.

Example 13-5 Creating a Transactional QueueSession

QueueConnection gc_conn;
QueueSession ¢ _sess = gc_conn.createQueueSession(true, 0);

Creating a QueueSender

public javax.jms.QueueSender createSender (javax.jms.Queue queue)
throws JMSException

This method creates a QueueSender. If a sender is created without a default queue,
then the destination queue must be specified on every send operation. It has the
following parameter:

Parameter Description

queue Name of destination queue

Sending Messages Using a QueueSender with Default Send Options

13-4

public void send(javax.jms.Queue queue,
javax.jms.Message message)
throws JMSException

This method sends a message using a QueueSender with default send options. This
operation uses default values for message priority (1) and timeToLive
(infinite). It has the following parameters:

Oracle Streams Advanced Queuing User’s Guide

Sending Messages Using a QueueSender by Specifying Send Options

Parameter Description
queue Queue to send this message to
message Message to send

If the QueueSender has been created with a default queue, then the queue parameter
may not necessarily be supplied in the send () call. If a queue is specified in the
send () operation, then this value overrides the default queue of the QueueSender.

If the QueueSender has been created without a default queue, then the queue
parameter must be specified in every send () call.

Example 13-6 Creating a Sender to Send Messages to Any Queue

/* Create a sender to send messages to any queue */
QueueSession Jjms_sess;

QueueSender senderl;

TextMessage message;

senderl = jms_sess.createSender (null);
senderl.send(queue, message);

Example 13-7 Creating a Sender to Send Messages to a Specific Queue

/* Create a sender to send messages to a specific queue */
QueueSession jms_sess;

QueueSender sender?2;

Queue billed_orders_que;

TextMessage message;

sender2 = jms_sess.createSender (billed_orders_gque) ;
sender?.send(queue, message);

Sending Messages Using a QueueSender by Specifying Send Options

public void send(javax.jms.Queue queue,
javax.jms.Message message,
int deliveryMode,
int priority,
long timeToLive)
throws JMSException

This method sends messages using a QueueSender by specifying send options. It has
the following parameters:

Parameter Description

queue Queue to send this message to

message Message to send

deliveryMode Delivery mode to use

priority Priority for this message

timeToLive Message lifetime in milliseconds (zero is unlimited)

If the QueueSender has been created with a default queue, then the queue parameter
may not necessarily be supplied in the send () call. If a queue is specified in the
send () operation, then this value overrides the default queue of the QueueSender.

Oracle JMS Point-to-Point 13-5

Creating a QueueBrowser for Standard JMS Type Messages

If the QueueSender has been created without a default queue, then the queue
parameter must be specified in every send () call.

Example 13-8 Sending Messages Using a QueueSender by Specifying Send Options 1

/* Create a sender to send messages to any queue */

/* Send a message to new_orders_gue with priority 2 and timetoLive 100000
milliseconds */

QueueSession Jjms_sess;

QueueSender senderl;

TextMessage mesg;

Queue new_orders_que

senderl = jms_sess.createSender (null);

senderl.send (new_orders_que, mesg, DeliveryMode.PERSISTENT, 2, 100000);

Example 13-9 Sending Messages Using a QueueSender by Specifying Send Options 2

/* Create a sender to send messages to a specific queue */

/* Send a message with priority 1 and timetoLive 400000 milliseconds */
QueueSession jms_sess;

QueueSender sender?2;

Queue billed_orders_que;

TextMessage mesg;

sender2 = jms_sess.createSender (billed_orders_gque) ;

sender?.send(mesg, DeliveryMode.PERSISTENT, 1, 400000);

Creating a QueueBrowser for Standard JMS Type Messages

public javax.jms.QueueBrowser createBrowser (javax.jms.Queue queue,
java.lang.String messageSelector)
throws JMSException

This method creates a QueueBrowser for queues with text, stream, objects, bytes or
MapMessage message bodies. It has the following parameters:

Parameter Description

queue Queue to access

messageSelector Only messages with properties matching the messageSelector
expression are delivered

See Also: "MessageSelector” on page 11-17

Use methods in java.util.Enumeration to go through list of messages.

Example 13-10 Creating a QueueBrowser Without a Selector

/* Create a browser without a selector */

QueueSession jms_session;
QueueBrowser browser;
Queue queue;

browser = jms_session.createBrowser (queue) ;

Example 13-11 Creating a QueueBrowser With a Specified Selector

/* Create a browser for queues with a specified selector */
QueueSession jms_session;
QueueBrowser browser;

13-6 Oracle Streams Advanced Queuing User's Guide

Creating a QueueBrowser for Oracle Object Type Messages

Queue queue;
/* create a Browser to look at messages with correlationID = RUSH */
browser = jms_session.createBrowser (queue, "JMSCorrelationID = 'RUSH'");

Creating a QueueBrowser for Standard JMS Type Messages, Locking
Messages

public javax.jms.QueueBrowser createBrowser (javax.jms.Queue queue,
java.lang.String messageSelector,
boolean locked)
throws JMSException

This method creates a QueueBrowser for queues with TextMessage, StreamMessage,
ObjectMessage, BytesMessage, or MapMessage message bodies, locking messages
while browsing. Locked messages cannot be removed by other consumers until the
browsing session ends the transaction. It has the following parameters:

Parameter Description

queue Queue to access

messageSelector Only messages with properties matching the messageSelector
expression are delivered

locked If set to true, then messages are locked as they are browsed (similar to a
SELECT for UPDATE)

Example 13-12 Creating a QueueBrowser Without a Selector, Locking Messages

/* Create a browser without a selector */

QueueSession jms_session;
QueueBrowser browser;
Queue queue;

browser = jms_session.createBrowser (queue, null, true);

Example 13—-13 Creating a QueueBrowser With a Specified Selector, Locking Messages

/* Create a browser for queues with a specified selector */

QueueSession jms_session;
QueueBrowser browser;
Queue queue;

/* create a Browser to look at messages with
correlationID = RUSH in lock mode */
browser = jms_session.createBrowser (queue, "JMSCorrelationID = 'RUSH'", true);

Creating a QueueBrowser for Oracle Object Type Messages

public javax.jms.QueueBrowser createBrowser (javax.jms.Queue queue,
java.lang.String messageSelector,
java.lang.Object payload_factory)
throws JMSException

This method creates a QueueBrowser for queues of Oracle object type messages. It
has the following parameters:

Parameter Description

queue Queue to access

Oracle JMS Point-to-Point 13-7

Creating a QueueBrowser for Oracle Object Type Messages, Locking Messages

Parameter Description

messageSelector Only messages with properties matching the messageSelector
expression are delivered

payload_factory CustomDatumFactory or ORADataFactory for the java class that
maps to the Oracle ADT

See Also: "MessageSelector” on page 11-17

The CustomDatumFactory for a particular java class that maps to the SQL object
payload can be obtained using the getFactory static method.

Note: CustomDatum support will be deprecated in a future release.
Use ORADataFactory payload factories instead.

Assume the queue test_queue has payload of type SCOTT . EMPLOYEE and the java
class that is generated by Jpublisher for this Oracle object type is called Employee. The
Employee class implements the CustomDatum interface. The CustomDatumFactory
for this class can be obtained by using the Employee.getFactory () method.

Example 13-14 Creating a QueueBrowser for ADTMessages

/* Create a browser for a Queue with AdtMessage messages of type EMPLOYEE*/

QueueSession jms_session

QueueBrowser browser;

Queue test_queue;

browser = ((AQjmsSession)jms_session).createBrowser (test_queue,
"corrid='EXPRESS'",
Employee.getFactory());

Creating a QueueBrowser for Oracle Object Type Messages, Locking
Messages

public javax.jms.QueueBrowser createBrowser (javax.jms.Queue queue,
java.lang.String messageSelector,
java.lang.Object payload_factory,
boolean locked)
throws JMSException

This method creates a QueueBrowser for queues of Oracle object type messages,
locking messages while browsing. It has the following parameters:

Parameter Description

queue Queue to access

messageSelector Only messages with properties matching the messageSelector
expression are delivered

payload_factory CustomDatumFactory or ORADataFactory for the java class that
maps to the Oracle ADT

locked If set to true, then messages are locked as they are browsed (similar to a
SELECT for UPDATE)

13-8 Oracle Streams Advanced Queuing User’'s Guide

Creating a QueueReceiver for Oracle Object Type Messages

Note: CustombDatum support will be deprecated in a future release.
Use ORADataFactory payload factories instead.

Example 13-15 Creating a QueueBrowser for AdtMessages, Locking Messages

/* Create a browser for a Queue with AdtMessage messagess of type EMPLOYEE* in
lock mode/

QueueSession jms_session

QueueBrowser browser;

Queue test_queue;

browser = ((AQjmsSession)jms_session).createBrowser (test_queue,
null,
Employee.getFactory(),
true) ;

Creating a QueueReceiver for Standard JMS Type Messages

public javax.jms.QueueReceiver createReceiver (javax.jms.Queue queue,
java.lang.String messageSelector)
throws JMSException

This method creates a QueueReceiver for queues of standard JMS type messages. It
has the following parameters:

Parameter Description

queue Queue to access

messageSelector Only messages with properties matching the messageSelector
expression are delivered

See Also: "MessageSelector" on page 11-17

Example 13-16 Creating a QueueReceiver Without a Selector

/* Create a receiver without a selector */

QueueSession jms_session
QueueReceiver receiver;
Queue queue;

receiver = jms_session.createReceiver (queue);

Example 13-17 Creating a QueueReceiver With a Specified Selector

/* Create a receiver for queues with a specified selector */

QueueSession jms_session;
QueueReceiver receiver;
Queue queue;

/* create Receiver to receive messages with correlationID starting with EXP */
browser = jms_session.createReceiver (queue, "JMSCorrelationID LIKE 'EXP%'");

Creating a QueueReceiver for Oracle Object Type Messages

public javax.jms.QueueReceiver createReceiver (javax.jms.Queue queue,
java.lang.String messageSelector,
java.lang.Object payload_factory)
throws JMSException

Oracle JMS Point-to-Point 13-9

Creating a QueueReceiver for Oracle Object Type Messages

This method creates a QueueReceiver for queues of Oracle object type messages. It
has the following parameters:

Parameter Description

queue Queue to access

messageSelector Only messages with properties matching the messageSelector
expression are delivered

payload_factory CustomDatumFactory or ORADataFactory for the java class that
maps to the Oracle ADT

See Also: "MessageSelector” on page 11-17

The CustomDatumFactory for a particular java class that maps to the SQL object
type payload can be obtained using the getFactory static method.

Note: CustomDatum support will be deprecated in a future release.
Use ORADataFactory payload factories instead.

Assume the queue test_queue has payload of type SCOTT . EMPLOYEE and the java
class that is generated by Jpublisher for this Oracle object type is called Employee. The
Employee class implements the CustomDatum interface. The ORADataFactory for
this class can be obtained by using the Employee.getFactory() method.

Example 13-18 Creating a QueueReceiver for AdtMessage Messages

/* Create a receiver for a Queue with AdtMessage messages of type EMPLOYEE*/
QueueSession jms_session
QueueReceiver receiver;
Queue test_queue;
browser = ((AQjmsSession)jms_session).createReceiver (
test_queue,
"JMSCorrelationID = 'MANAGER',
Employee.getFactory());

13-10 Oracle Streams Advanced Queuing User’s Guide

14

Oracle JMS Publish/Subscribe

This chapter describes the components of the Oracle Streams Advanced Queuing (AQ)
Java Message Service (JMS) operational interface that are specific to
publish/subscribe operations. Components that are shared by point-to-point and
publish/subscribe are described in Chapter 15, "Oracle JMS Shared Interfaces".

This chapter contains these topics:

s Creating a Connection with Username/Password

s Creating a Connection with Default ConnectionFactory Parameters

s Creating a TopicConnection with Username/Password

s Creating a TopicConnection with Open JDBC Connection

s Creating a TopicConnection with an Open OracleOCIConnectionPool

s Creating a Session

s Creating a TopicSession

= Creating a TopicPublisher

= Publishing Messages with Minimal Specification

= Publishing Messages Specifying Topic

» Publishing Messages Specifying Delivery Mode, Priority and TimeToLive
= Publishing Messages Specifying a Recipient List

s Creating a DurableSubscriber for a JMS Topic Without Selector

s Creating a DurableSubscriber for a JMS Topic With Selector

» Creating a DurableSubscriber for an Oracle Object Type Topic Without Selector
» Creating a DurableSubscriber for an Oracle Object Type Topic With Selector
= Specifying Transformations for Topic Subscribers

= Creating a Remote Subscriber for JMS Messages

» Creating a Remote Subscriber for Oracle Object Type Messages

= Specifying Transformations for Remote Subscribers

= Unsubscribing a Durable Subscription for a Local Subscriber

= Unsubscribing a Durable Subscription for a Remote Subscriber

» Creating a TopicReceiver for a Topic of Standard JMS Type Messages

» Creating a TopicReceiver for a Topic of Oracle Object Type Messages

Oracle JMS Publish/Subscribe 14-1

Creating a Connection with Username/Password

s Creating a TopicBrowser for Standard JMS Messages

s Creating a TopicBrowser for Standard JMS Messages, Locking Messages

s Creating a TopicBrowser for Oracle Object Type Messages

s Creating a TopicBrowser for Oracle Object Type Messages, Locking Messages

s Browsing Messages Using a TopicBrowser

Creating a Connection with Username/Password

public javax.jms.Connection createConnection (
java.lang.String username,
java.lang.String password)
throws JMSException

This method creates a connection supporting both point-to-point and
publish/subscribe operations with the specified username and password. This method
is new and supports JMS version 1.1 specifications. It has the following parameters:

Parameter Description
username Name of the user connecting to the database for queuing
password Password for creating the connection to the server

Creating a Connection with Default ConnectionFactory Parameters

public javax.jms.Connection createConnection ()
throws JMSException

This method creates a connection supporting both point-to-point and
publish/subscribe operations with default ConnectionFactory parameters. This
method is new and supports JMS version 1.1 specifications. If the
ConnectionFactory properties do not contain a default username and password,
then it throws a JMSException.

Creating a TopicConnection with Username/Password

public javax.jms.TopicConnection createTopicConnection (
java.lang.String username,
java.lang.String password)
throws JMSException

This method creates a TopicConnection with the specified username/password. It
has the following parameters:

Parameter Description
username Name of the user connecting to the database for queuing
password Password for creating the connection to the server

Example 14-1 Creating a TopicConnection with Username/Password

TopicConnectionFactory tc_fact = AQjmsFactory.getTopicConnectionFactory("sunl23",
"oratest", 5521, "thin");

/* Create a TopicConnection using a username/password */

TopicConnection tc_conn = tc_fact.createTopicConnection ("jmsuser", "jmsuser");

14-2 Oracle Streams Advanced Queuing User’'s Guide

Creating a Session

Creating a TopicConnection with Open JDBC Connection

public static javax.jms.TopicConnection createTopicConnection (
java.sgl.Connection jdbc_connection)
throws JMSException

This method creates a TopicConnection with open JDBC connection. It has the
following parameter:

Parameter Description

jdbc_connection Valid open connection to database

Example 14-2 Creating a TopicConnection with Open JDBC Connection

Connection db_conn; /*previously opened JDBC connection */
TopicConnection tc_conn =
AQjmsTopicConnectionFactory createTopicConnection(db_conn);

Example 14-3 Creating a TopicConnection with New JDBC Connection

OracleDriver ora = new OracleDriver();
TopicConnection tc_conn =
AQjmsTopicConnectionFactory.createTopicConnection (ora.defaultConnection());

Creating a TopicConnection with an Open OracleOCIConnectionPool

public static javax.jms.TopicConnection createTopicConnection (
oracle.jdbc.pool.OracleOCIConnectionPool cpool)
throws JMSException

This method creates a TopicConnection with an open
OracleOCIConnectionPool. It is static and has the following parameter:

Parameter Description

cpool Valid open OCI connection pool to the database

Example 14-4 Creating a TopicConnection with Open OracleOCIConnectionPool

OracleOCIConnectionPool cpool; /* previously created OracleOCIConnectionPool */
TopicConnection tc_conn =
AQjmsTopicConnectionFactory.createTopicConnection (cpool) ;

Creating a Session

public javax.jms.Session createSession(boolean transacted,
int ack_mode)
throws JMSException

This method creates a Session supporting both point-to-point and publish/subscribe
operations. It is new and supports JMS version 1.1 specifications. It has the following

parameters:
Parameter Description
transacted If set to true, then the session is transactional

Oracle JMS Publish/Subscribe 14-3

Creating a TopicSession

Parameter Description

ack_mode Indicates whether the consumer or the client will acknowledge any
messages it receives. It is ignored if the session is transactional. Legal
values are Session.AUTO_ACKNOWLEDGE, Session.CLIENT_
ACKNOWLEDGE, and Session.DUPS_OK_ACKNOWLEDGE.

Creating a TopicSession

public javax.jms.TopicSession createTopicSession(boolean transacted,
int ack_mode)
throws JMSException

This method creates a TopicSession. It has the following parameters:

Parameter Description
transacted If set to true, then the session is transactional
ack_mode Indicates whether the consumer or the client will acknowledge any

messages it receives. It is ignored if the session is transactional. Legal
values are Session.AUTO_ACKNOWLEDGE, Session.CLIENT_
ACKNOWLEDGE, and Session.DUPS_OK_ACKNOWLEDGE.

Example 14-5 Creating a TopicSession

TopicConnection tc_conn;
TopicSession t_sess = tc_conn.createTopicSession(true,0);

Creating a TopicPublisher

public javax.jms.TopicPublisher createPublisher (javax.jms.Topic topic)
throws JMSException

This method creates a TopicPublisher. It has the following parameter:

Parameter Description

topic Topic to publish to, or null if this is an unidentified producer

Publishing Messages with Minimal Specification

public void publish(javax.jms.Message message)
throws JMSException

This method publishes a message with minimal specification. It has the following

parameter:
Parameter Description
message Message to send

The TopicPublisher uses the default values for message priority (1) and
timeToLive (infinite).

Example 14-6 Publishing Without Specifying Topic
/* Publish without specifying topic */

14-4 Oracle Streams Advanced Queuing User’'s Guide

Publishing Messages Specifying Topic

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisherl;

Topic shipped_orders;
int myport = 5521;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory (
"MYHOSTNAME" ,
"MYSID",
myport,
"oci8");
t_conn = tc_fact.createTopicConnection("jmstopic",
/* create TopicSession */
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE) ;
/* get shipped orders topic */
shipped_orders =
"OE",
"Shipped_Orders_Topic") ;
publisherl = jms_sess.createPublisher (shipped_orders) ;
/* create TextMessage */
TextMessage jms_sess.createTextMessage() ;
/* publish without specifying the topic */
publisherl.publish (text_message) ;

"jmstopic") ;

((AQjmsSession)jms_sess) .getTopic (

Example 14-7 Publishing Specifying Correlation and Delay

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisherl;

Topic shipped_orders;
int myport = 5521;

/* create connection and session */

tc_fact = AQjmsFactory.getTopicConnectionFactory (

"MYHOSTNAME" ,

"MYSID",

myport,

"oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE) ;
shipped_orders = ((AQjmsSession)jms_sess).getTopic (

"OE",

"Shipped_Orders_Topic");
publisherl = jms_sess.createPublisher (shipped_orders) ;

/* Create TextMessage */

TextMessage jms_sess.createTextMessage () ;

/* Set correlation and delay */

/* Set correlation */
jms_sess.setJMSCorrelationID("FOO") ;

/* Set delay of 30 seconds */
jms_sess.setLongProperty ("IJMS_OracleDelay", 30);
/* Publish */

publisherl.publish (text_message);

Publishing Messages Specifying Topic

public void publish(javax.jms.Topic topic, javax.jms.Message message)
throws JMSException

Oracle JMS Publish/Subscribe 14-5

Publishing Messages Specifying Delivery Mode, Priority and TimeToLive

This method publishes a message specifying the topic. It has the following parameters:

Parameter Description
topic Topic to publish to
message Message to send

If the TopicPublisher has been created with a default topic, then the topic
parameter may not be specified in the publish () call. If a topic is specified, then that
value overrides the default in the TopicPublisher. If the TopicPublisher has
been created without a default topic, then the topic must be specified with the
publish () call.

Example 14-8 Publishing Specifying Topic
/* Publish specifying topic */

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisherl;

Topic shipped_orders;
int myport = 5521;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory (
'MYHOSTNAME', 'MYSID', myport, 'oci8');
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE) ;
/* create TopicPublisher */
publisherl = jms_sess.createPublisher (null);
/* get topic object */
shipped_orders = ((AQjmsSession)jms_sess) .getTopic(
'WS', 'Shipped_Orders_Topic');
/* create text message */
TextMessage jms_sess.createTextMessage () ;
/* publish specifying the topic */
publisherl.publish(shipped_orders, text_message);

Publishing Messages Specifying Delivery Mode, Priority and TimeToLive

public void publish(javax.jms.Topic topic,
javax.jms.Message message,
oracle.jms.AQjmsAgent[] recipient_list,
int deliveryMode,
int priority,
long timeToLive)
throws JMSException

This method publishes a message specifying delivery mode, priority and
TimeToLive. It has the following parameters:

Parameter Description

topic Topic to which to publish the message (overrides the default topic of
the MessageProducer)

message Message to publish

14-6 Oracle Streams Advanced Queuing User’'s Guide

Publishing Messages Specifying a Recipient List

Parameter

Description

recipient_list

List of recipients to which the message is published. Recipients are of
type AQjmsAgent.

deliveryMode PERSISTENT or NON_PERSISTENT (only PERSISTENT is supported in
this release)

priority Priority for this message

timeToLive Message lifetime in milliseconds (zero is unlimited)

Example 14-9 Publishing Specifying Priority and TimeToLive

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisherl;

Topic shipped_orders;
int myport = 5521;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory (
"MYHOSTNAME", "MYSID", myport, "oci8");

t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT ACKNOWLEDGE) ;
shipped_orders = ((AQjmsSession)jms_sess) .getTopic(

"OE", "Shipped_Orders_Topic");
publisherl = jms_sess.createPublisher (shipped_orders) ;
/* Create TextMessage */
TextMessage jms_sess.createTextMessage () ;
/* Publish message with priority 1 and time to live 200 seconds */
publisherl.publish(text_message, DeliveryMode.PERSISTENT, 1, 200000);

Publishing Messages Specifying a Recipient List

public void publish(javax.jms.Message message,
oracle.jms.AQjmsAgent[] recipient_list)
throws JMSException

This method publishes a message specifying a recipient list overriding topic
subscribers. It has the following parameters:

Parameter Description

message Message to publish

List of recipients to which the message is published. Recipients are of
type AQjmsAgent.

recipient_list

Example 14-10 Publishing Specifying a Recipient List Overriding Topic Subscribers

/* Publish specifying priority and timeToLive */

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisherl;

Topic shipped_orders;
int myport = 5521;
AQjmsAgent [] recipList;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory (

Oracle JMS Publish/Subscribe 14-7

Creating a DurableSubscriber for a JMS Topic Without Selector

"MYHOSTNAME", "MYSID", myport, "oci8");

t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT ACKNOWLEDGE) ;

shipped_orders = ((AQjmsSession)jms_sess) .getTopic (
"OE", "Shipped_Orders_Topic");

publisherl = jms_sess.createPublisher (shipped_orders) ;

/* create TextMessage */

TextMessage jms_sess.createTextMessage () ;

/* create two receivers */

recipList = new AQjmsAgent[2];

recipList[0] = new AQjmsAgent (

"ES", "ES.shipped_orders_topic", AQAgent.DEFAULT_AGENT_ PROTOCOL) ;

recipList[1l] = new AQjmsAgent (

"WS", "WS.shipped_orders_topic", AQAgent.DEFAULT AGENT_PROTOCOL) ;

/* publish message specifying a recipient list */
publisherl.publish(text_message, recipList);

Creating a DurableSubscriber for a JMS Topic Without Selector

public javax.jms.TopicSubscriber createDurableSubscriber (
javax.jms.Topic topic,
java.lang.String subs_name)
throws JMSException

This method creates a DurableSubscriber for a JMS topic without selector. It has the

following parameters:

Parameter Description

topic Non-temporary topic to subscribe to

subs_name Name used to identify this subscription

Exclusive Access to Topics

CreateDurableSubscriber () and Unsubscribe () both require exclusive access
to their target topics. If there are pending JMS send (), publish (), or receive ()
operations on the same topic when these calls are applied, then exception ORA - 4020
is raised. There are two solutions to the problem:

s Limit calls to createDurableSubscriber () and Unsubscribe () to the setup
or cleanup phase when there are no other JMS operations pending on the topic.
That makes sure that the required resources are not held by other JMS operational

calls.

s Call TopicSession.commit before calling createDurableSubscriber () or

Unsubscribe ().

Example 14-11 Creating a Durable Subscriber for a JMS Topic Without Selector

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicSubscriber subscriberl;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent [] recipList;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory (

14-8 Oracle Streams Advanced Queuing User’'s Guide

Creating a DurableSubscriber for a JMS Topic With Selector

"MYHOSTNAME" ,

"MYSID",

myport,

"oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE) ;
shipped_orders = ((AQjmsSession)jms_sess).getTopic (

"OE",

"Shipped_Orders_Topic") ;
/* create a durable subscriber on the shipped_orders topic*/
subscriberl = jms_sess.createDurableSubscriber (
shipped_orders,
'WesternShipping') ;

Creating a DurableSubscriber for a JMS Topic With Selector

public javax.jms.TopicSubscriber createDurableSubscriber (
javax.jms.Topic topic,
java.lang.String subs_name,
java.lang.String messageSelector,
boolean noLocal)
throws JMSException

This method creates a durable subscriber for a JMS topic with selector. It has the
following parameters:

Parameter Description
topic Non-temporary topic to subscribe to
subs_name Name used to identify this subscription

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

noLocal If set to true, then it inhibits the delivery of messages published by its
own connection

See Also: "Exclusive Access to Topics" on page 14-8

A client can change an existing durable subscription by creating a durable
TopicSubscriber with the same name and a different messageSelector. An
unsubscribe call is needed to end the subscription to the topic.

See Also: "MessageSelector” on page 11-17

Example 14-12 Creating a Durable Subscriber for a JUS Topic With Selector

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicSubscriber subscriberl;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent [] recipList;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory (
"MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");

Oracle JMS Publish/Subscribe 14-9

Creating a DurableSubscriber for an Oracle Object Type Topic Without Selector

jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE) ;
shipped_orders = ((AQjmsSession)jms_sess).getTopic (

"OE", "Shipped_Orders_Topic");
/* create a subscriber */
/* with condition on JMSPriority and user property 'Region' */
subscriberl = jms_sess.createDurableSubscriber (

shipped_orders, 'WesternShipping',

"JMSPriority > 2 and Region like 'Western%'", false);

Creating a DurableSubscriber for an Oracle Object Type Topic Without

Selector

public javax.jms.TopicSubscriber createDurableSubscriber (
javax.jms.Topic topic,
java.lang.String subs_name,
java.lang.Object payload_factory)
throws JMSException

This method creates a durable subscriber for an Oracle object type topic without
selector. It has the following parameters:

Parameter Description
topic Non-temporary topic to subscribe to
subs_name Name used to identify this subscription

payload_factory CustomDatumFactory or ORADataFactory for the Java class that
maps to the Oracle ADT

Note: CustombDatum support will be deprecated in a future release.
Use ORADataFactory payload factories instead.

See Also: "Exclusive Access to Topics" on page 14-8

Example 14-13 Creating a Durable Subscriber for an Oracle Object Type Topic Without
Selector

/* Subscribe to an ADT queue */

TopicConnectionFactory tc_fact = null;

TopicConnection t_conn = null;

TopicSession t_sess = null;

TopicSession jms_sess;

TopicSubscriber subscriberl;

Topic shipped_orders;

int my[port = 5521;

AQjmsAgent [] recipList;

/* the java mapping of the oracle object type created by J Publisher */
ADTMessage message;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory (
"MYHOSTNAME", "MYSID", myport, "oci8");

t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE) ;
shipped_orders = ((AQjmsSession)jms_sess).getTopic (

"OE", "Shipped_ Orders_Topic");
/* create a subscriber, specifying the correct CustomDatumFactory */

14-10 Oracle Streams Advanced Queuing User’s Guide

Creating a DurableSubscriber for an Oracle Object Type Topic With Selector

subscriberl = jms_sess.createDurableSubscriber (
shipped_orders, 'WesternShipping', AQjmsAgent.getFactory());

Creating a DurableSubscriber for an Oracle Object Type Topic With

Selector

public javax.jms.TopicSubscriber createDurableSubscriber (
javax.jms.Topic topic,
java.lang.String subs_name,
java.lang.String messageSelector,
boolean noLocal,
java.lang.Object payload_factory)
throws JMSException

This method creates a durable subscriber for an Oracle object type topic with selector.
It has the following parameters:

Parameter Description
topic Non-temporary topic to subscribe to
subs_name Name used to identify this subscription

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

noLocal If set to true, then it inhibits the delivery of messages published by its
own connection

payload_factory CustomDatumFactory or ORADataFactory for the Java class that
maps to the Oracle ADT

Note: CustomDatum support will be deprecated in a future release.
Use ORADataFactory payload factories instead.

See Also: "Exclusive Access to Topics" on page 14-8

Example 14-14 Creating a Durable Subscriber for an Oracle Object Type Topic With
Selector

TopicConnectionFactory tc_fact = null;

TopicConnection t_conn = null;

TopicSession jms_sess;

TopicSubscriber subscriberl;

Topic shipped_orders;

int myport = 5521;

AQjmsAgent [] recipList;

/* the java mapping of the oracle object type created by J Publisher */
ADTMessage message;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory (
"MYHOSTNAME", "MYSID", myport, "oci8");

t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE) ;
shipped_orders = ((AQjmsSession)jms_sess) .getTopic (

"OE", "Shipped_Orders_Topic");
/* create a subscriber, specifying correct CustomDatumFactory and selector */
subscriberl = jms_sess.createDurableSubscriber (

Oracle JMS Publish/Subscribe 14-11

Specifying Transformations for Topic Subscribers

shipped_orders, "WesternShipping",
"priority > 1 and tab.user_data.region like 'WESTERN %'", false,
ADTMessage.getFactory());

Specifying Transformations for Topic Subscribers

A transformation can be supplied when sending/publishing a message to a
queue/topic. The transformation is applied before putting the message into the
queue/ topic.

The application can specify a transformation using the setTransformation
interface in the AQjmsQueueSender and AQjmsTopicPublisher interfaces.

Example 14-15 Sending Messages to a Destination Using a Transformation

Suppose that the orders that are processed by the order entry application should be
published to WS_bookedorders_topic. The transformation OE2WS (defined in the
previous section) is supplied so that the messages are inserted into the topic in the
correct format.

public void ship_bookedorders (
TopicSession jms_session,
AQjmsADTMessage adt_message)

TopicPublisher publisher;
Topic topic;

try

{
/* get a handle to the WS_bookedorders_topic */
topic = ((AQjmsSession)jms_session).getTopic("WS", "WS_bookedorders_topic");
publisher = jms_session.createPublisher (topic);

/* set the transformation in the publisher */
((AQjmsTopicPublisher)publisher) .setTransformation ("OE2WS") ;
publisher.publish(topic, adt_message);

}

catch (JMSException ex)

{

System.out.println("Exception :" ex);

}

A transformation can also be specified when creating topic subscribers using the
CreateDurableSubscriber () call. The transformation is applied to the retrieved
message before returning it to the subscriber. If the subscriber specified in the
CreateDurableSubscriber () call already exists, then its transformation is set to
the specified transformation.

Example 14-16 Specifying Transformations for Topic Subscribers

The Western Shipping application subscribes to the OE_bookedorders_topic with the
transformation OE2WS. This transformation is applied to the messages and the
returned message is of Oracle object type WS .WS_orders.

Suppose that the WSOrder java class has been generated by Jpublisher to map to the
Oracle object WS .WS_order:

public AQjmsAdtMessage retrieve_bookedorders (TopicSession jms_session)

{

14-12 Oracle Streams Advanced Queuing User’s Guide

Creating a Remote Subscriber for JMS Messages

TopicSubscriber subscriber;
Topic topic;
AQjmsAdtMessage msg = null;
try

{
/* get a handle to the OE_bookedorders_topic */
topic = ((AQjmsSession)jms_session).getTopic("OE", "OE_bookedorders_topic");

/* create a subscriber with the transformation OE2WS */
subs = ((AQjmsSession)jms_session).createDurableSubscriber (
topic, 'WShip', null, false, WSOrder.getFactory(), "OE2WS");
msg = subscriber.receive(10);
}
catch (JMSException ex)
{
System.out.println("Exception :" ex);

}
return (AQjmsAdtMessage)msg;

Creating a Remote Subscriber for JMS Messages

public void createRemoteSubscriber (javax.jms.Topic topic,
oracle.jms.AQjmsAgent remote_subscriber,
java.lang.String messageSelector)
throws JMSException

This method creates a remote subscriber for topics of JMS messages. It has the
following parameters:

Parameter Description

topic Topic to subscribe to

remote_subscriber AQjmsAgent that refers to the remote subscriber

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

See Also: "MessageSelector" on page 11-17

Oracle Streams AQ allows topics to have remote subscribers, for example, subscribers
at other topics in the same or different database. In order to use remote subscribers,
you must set up propagation between the local and remote topic.

Remote subscribers can be a specific consumer at the remote topic or all subscribers at
the remote topic. A remote subscriber is defined using the AQjmsAgent structure. An
AQjmsAgent consists of a name and address. The name refers to the consumer_name
at the remote topic. The address refers to the remote topic. Its syntax is
schema.topic_name[@dblink].

To publish messages to a particular consumer at the remote topic, the
subscription_name of the recipient at the remote topic must be specified in the
name field of AQjmsAgent, and the remote topic must be specified in the address
field. To publish messages to all subscribers of the remote topic, the name field of
AQjmsAgent must be set to null.

Oracle JMS Publish/Subscribe 14-13

Creating a Remote Subscriber for Oracle Object Type Messages

Example 14-17 Creating a Remote Subscriber for Topics of JMS Messages

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
TopicSubscriber subscriberl;
Topic shipped_orders;
int my [port = 5521;
AQjmsAgent remoteAgent;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory (
"MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT ACKNOWLEDGE) ;
shipped_orders = ((AQjmsSession)jms_sess) .getTopic (
"OE", "Shipped_Orders_Topic");
remoteAgent = new AQjmsAgent ("WesternRegion", "WS.shipped_orders_topic", null);
/* create a remote subscriber (selector is null)*/
subscriberl = ((AQjmsSession)jms_sess) .createRemoteSubscriber (
shipped_orders, remoteAgent, null);

Creating a Remote Subscriber for Oracle Object Type Messages

public void createRemoteSubscriber (javax.Jjms.Topic topic,
oracle.jms.AQjmsAgent remote_subscriber,
java.lang.String messageSelector,
java.lang.Object payload_factory)
throws JMSException

This method creates a remote subscriber for topics of Oracle object type messages. It
has the following parameters:

Parameter Description

topic Topic to subscribe to

remote_subscriber AQjmsAgent that refers to the remote subscriber

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

payload_factory CustomDatumFactory or ORADataFactory for the Java class that
maps to the Oracle ADT

Note: CustomDatum support will be deprecated in a future release.
Use ORADataFactory payload factories instead.

See Also: "MessageSelector” on page 11-17

Oracle Streams AQ allows topics to have remote subscribers, for example, subscribers
at other topics in the same or different database. In order to use remote subscribers,
you must set up propagation between the local and remote topic.

Remote subscribers can be a specific consumer at the remote topic or all subscribers at
the remote topic. A remote subscriber is defined using the AQjmsAgent structure. An
AQjmsAgent consists of a name and address. The name refers to the consumer_name

14-14 Oracle Streams Advanced Queuing User’s Guide

Specifying Transformations for Remote Subscribers

at the remote topic. The address refers to the remote topic. Its syntax is
schema. topic_name[@dblink].

To publish messages to a particular consumer at the remote topic, the
subscription_name of the recipient at the remote topic must be specified in the
name field of AQjmsAgent, and the remote topic must be specified in the address
field. To publish messages to all subscribers of the remote topic, the name field of
AQjmsAgent must be set to null.

Example 14-18 Creating a Remote Subscriber for Topics of Oracle Object Type

Messages

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
TopicSubscriber subscriberl;
Topic shipped_orders;
int my [port = 5521;
AQjmsAgent remoteAgent;
ADTMessage message;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory (
"MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
/* create TopicSession */
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE) ;
/* get the Shipped order topic */
shipped_orders = ((AQjmsSession)jms_sess).getTopic (
"OE", "Shipped_ Orders_Topic");
/* create a remote agent */

remoteAgent = new AQjmsAgent ("WesternRegion", "WS.shipped_orders_topic", null);
/* create a remote subscriber with null selector*/
subscriberl = ((AQjmsSession)jms_sess).createRemoteSubscriber (

shipped_orders, remoteAgent, null, message.getFactory);

Note: AQ does not support the use of multiple dblink to the same
destination. As a workaround, use a single database link for each
destination.

Specifying Transformations for Remote Subscribers

Oracle Streams AQ allows a remote subscriber, that is a subscriber at another database,
to subscribe to a topic.

Transformations can be specified when creating remote subscribers using the
createRemoteSubscriber () call. This enables propagation of messages between
topics of different formats. When a message published at a topic meets the criterion of
a remote subscriber, Oracle Streams AQ automatically propagates the message to the
queue/topic at the remote database specified for the remote subscriber. If a
transformation is also specified, then Oracle Streams AQ applies the transformation to
the message before propagating it to the queue/topic at the remote database.

Example 14-19 Specifying Transformations for Remote Subscribers

A remote subscriber is created at the OE.OE_bookedorders_topic so that messages are
automatically propagated to the WS.WS_bookedorders_topic. The transformation

Oracle JMS Publish/Subscribe 14-15

Unsubscribing a Durable Subscription for a Local Subscriber

OE2WS is specified when creating the remote subscriber so that the messages reaching
the WS_bookedorders_topic have the correct format.

Suppose that the WSOrder java class has been generated by Jpublisher to map to the
Oracle object WS.WS_order

public void create_remote_sub(TopicSession jms_session)

{

AQjmsAgent subscriber;
Topic topic;
try

{
/* get a handle to the OE_bookedorders_topic */
topic = ((AQjmsSession)jms_session).getTopic("OE", "OE_bookedorders_topic");
subscriber = new AQjmsAgent ("WShip", "WS.WS_bookedorders_topic");

((AQjmsSession)jms_session).createRemoteSubscriber (
topic, subscriber, null, WSOrder.getFactory(), "OE2WS");
}
catch (JMSException ex)

{

System.out.println("Exception :" ex);

Unsubscribing a Durable Subscription for a Local Subscriber

public void unsubscribe (javax.jms.Topic topic,
java.lang.String subs_name)
throws JMSException

This method unsubscribes a durable subscription for a local subscriber. It has the
following parameters:

Parameter Description
topic Non-temporary topic to unsubscribe
subs_name Name used to identify this subscription

See Also: "Exclusive Access to Topics" on page 14-8

Example 14-20 Unsubscribing a Durable Subscription for a Local Subscriber

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicSubscriber subscriberl;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent [] recipList;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory (
"MYHOSTNAME", "MYSID", myport, "oci8");

t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE) ;
shipped_orders = ((AQjmsSession)jms_sess).getTopic (

"OE", "Shipped_Orders_Topic");
/* unsusbcribe "WesternShipping" from shipped_orders */

14-16 Oracle Streams Advanced Queuing User’s Guide

Creating a TopicReceiver for a Topic of Standard JMS Type Messages

jms_sess.unsubscribe (shipped_orders, "WesternShipping");

Unsubscribing a Durable Subscription for a Remote Subscriber

public void unsubscribe (javax.jms.Topic topic,
oracle.jms.AQjmsAgent remote_subscriber)
throws JMSException

This method unsubscribes a durable subscription for a remote subscriber. It has the
following parameters:

Parameter Description

topic Non-temporary topic to unsubscribe

remote_subscriber AQjmsAgent that refers to the remote subscriber. The address field of
the AQjmsAgent cannot be null.

See Also: "Exclusive Access to Topics" on page 14-8

Example 14-21 Unsubscribing a Durable Subscription for a Remote Subscriber

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;

Topic shipped_orders;
int myport = 5521;
AQjmsAgent remoteAgent;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory (
"MYHOSTNAME", "MYSID", myport, "oci8");

t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE) ;
shipped_orders = ((AQjmsSession)jms_sess) .getTopic (

"OE", "Shipped_Orders_Topic");
remoteAgent = new AQjmsAgent ("WS", "WS.Shipped_Orders_Topic", null);
/* unsubscribe the remote agent from shipped_orders */
((AQjmsSession)jms_sess) .unsubscribe (shipped_orders, remoteAgent);

Creating a TopicReceiver for a Topic of Standard JMS Type Messages

public oracle.jms.AQjmsTopicReceiver createTopicReceiver (
javax.jms.Topic topic,
java.lang.String receiver_name,
java.lang.String messageSelector)
throws JMSException

This method creates a TopicReceiver for a topic of standard JMS type messages. It
has the following parameters:

Parameter Description
topic Topic to access
receiver_name Name of message receiver

Oracle JMS Publish/Subscribe 14-17

Creating a TopicReceiver for a Topic of Oracle Object Type Messages

Parameter Description

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

See Also: "MessageSelector” on page 11-17

Oracle Streams AQ allows messages to be sent to specified recipients. These receivers
may or may not be subscribers of the topic. If the receiver is not a subscriber to the
topic, then it receives only those messages that are explicitly addressed to it. This
method must be used order to create a TopicReceiver object for consumers that are
not durable subscribers.

Example 14-22 Creating a TopicReceiver for Standard JUS Type Messages

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = ull;
TopicSession jms_sess;

Topic shipped_orders;
int myport = 5521;
TopicReceiver receiver;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory (
"MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE) ;
shipped_orders = ((AQjmsSession)jms_sess).getTopic (
"WS", "Shipped Orders_Topic");
receiver = ((AQjmsSession)jms_sess).createTopicReceiver (
shipped_orders, "WesternRegion", null);

Creating a TopicReceiver for a Topic of Oracle Object Type Messages

public oracle.jms.AQjmsTopicReceiver createTopicReceiver (
javax.jms.Topic topic,
java.lang.String receiver_name,
java.lang.String messageSelector,
java.lang.Object payload_factory)
throws JMSException

This method creates a TopicReceiver for a topic of Oracle object type messages with
selector. It has the following parameters:

Parameter Description

topic Topic to access

receiver_name Name of message receiver

messageSelector Only messages with properties matching the messageSelector

expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

payload_factory CustomDatumFactory or ORADataFactory for the Java class that
maps to the Oracle ADT

14-18 Oracle Streams Advanced Queuing User’s Guide

Creating a TopicBrowser for Standard JMS Messages

Note: CustombDatum support will be deprecated in a future release.
Use ORADataFactory payload factories instead.

See Also: "MessageSelector" on page 11-17

Oracle Streams AQ allows messages to be sent to all subscribers of a topic or to
specified recipients. These receivers may or may not be subscribers of the topic. If the
receiver is not a subscriber to the topic, then it receives only those messages that are
explicitly addressed to it. This method must be used order to create a
TopicReceiver object for consumers that are not durable subscribers.

Example 14-23 Creating a TopicReceiver for Oracle Object Type Messages

TopicConnectionFactory tc_fact = null;

TopicConnection t_conn = null;

TopicSession t_sess = null;

TopicSession jms_sess;

Topic shipped_orders;

int myport = 5521;

TopicReceiver receiver;

/* create connection and session */

tc_fact = AQjmsFactory.getTopicConnectionFactory (
"MYHOSTNAME", "MYSID", myport, "oci8");

t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");

jms_sess = t_conn.createTopicSession(true, Session.CLIENT ACKNOWLEDGE) ;
shipped_orders = ((AQjmsSession)jms_sess).getTopic (

"WS", "Shipped Orders_Topic");

receiver = ((AQjmsSession)jms_sess).createTopicReceiver (

shipped_orders, "WesternRegion", null);

Creating a TopicBrowser for Standard JMS Messages

public oracle.jms.TopicBrowser createBrowser (javax.jms.Topic topic,

java.lang.String cons_name,
java.lang.String messageSelector)
throws JMSException

This method creates a TopicBrowser for topics with TextMessage,
StreamMessage, ObjectMessage, BytesMessage, or MapMessage message
bodies. It has the following parameters:

Parameter Description

topic Topic to access

cons_name Name of the durable subscriber or consumer
messageSelector Only messages with properties matching the messageSelector

expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

payload_factory CustomDatumFactory or ORADataFactory for the Java class that

maps to the Oracle ADT

See Also: "MessageSelector” on page 11-17

Oracle JMS Publish/Subscribe 14-19

Creating a TopicBrowser for Standard JMS Messages, Locking Messages

Example 14-24 Creating a TopicBrowser Without a Selector

/* Create a browser without a selector */

TopicSession jms_session;

TopicBrowser browser;

Topic topic;

browser = ((AQjmsSession) jms_session).createBrowser (topic, "SUBS1");

Example 14-25 Creating a TopicBrowser With a Specified Selector

/* Create a browser for topics with a specified selector */

TopicSession jms_session;

TopicBrowser browser;

Topic topic;

/* create a Browser to look at messages with correlationID = RUSH */
browser = ((AQjmsSession) jms_session).createBrowser (

topic, "SUBS1", "JMSCorrelationID = 'RUSH'");

Creating a TopicBrowser for Standard JMS Messages, Locking Messages

public oracle.jms.TopicBrowser createBrowser (javax.jms.Topic topic,
java.lang.String cons_name,
java.lang.String messageSelector,
boolean locked)
throws JMSException

This method creates a TopicBrowser for topics with text, stream, objects, bytes or
map messages, locking messages while browsing. It has the following parameters:

Parameter Description

topic Topic to access

cons_name Name of the durable subscriber or consumer
messageSelector Only messages with properties matching the messageSelector

expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

locked If set to true, then messages are locked as they are browsed (similar to
a SELECT for UPDATE)

Example 14-26 Creating a TopicBrowser Without a Selector, Locking Messages While

Browsing

/* Create a browser without a selector */
TopicSession jms_session;

TopicBrowser browser;

Topic topic;

browser = ((AQjmsSession) jms_session).createBrowser (

topic, "SUBS1", true);

Example 14-27 Creating a TopicBrowser With a Specified Selector, Locking Messages

/* Create a browser for topics with a specified selector */

TopicSession jms_session;
TopicBrowser browser;
Topic topic;

/* create a Browser to look at messages with correlationID = RUSH in
lock mode */
browser = ((AQjmsSession) jms_session).createBrowser (

14-20 Oracle Streams Advanced Queuing User’s Guide

Creating a TopicBrowser for Oracle Object Type Messages, Locking Messages

topic, "SUBS1", "JMSCorrelationID = 'RUSH'", true);

Creating a TopicBrowser for Oracle Object Type Messages

public oracle.jms.TopicBrowser createBrowser (javax.jms.Topic topic,
java.lang.String cons_name,
java.lang.String messageSelector,
java.lang.Object payload_factory)
throws JMSException

This method creates a TopicBrowser for topics of Oracle object type messages. It has
the following parameters:

Parameter Description

topic Topic to access

cons_name Name of the durable subscriber or consumer
messageSelector Only messages with properties matching the messageSelector

expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

payload_factory CustomDatumFactory or ORADataFactory for the Java class that
maps to the Oracle ADT

Note: CustomDatum support will be deprecated in a future release.
Use ORADataFactory payload factories instead.

See Also: "MessageSelector” on page 11-17

The CustombDatumFactory for a particular Java class that maps to the SQL object
type payload can be obtained using the getFactory static method. Assume the topic
test_topic has payload of type SCOTT . EMPLOYEE and the Java class that is
generated by Jpublisher for this Oracle object type is called Employee. The Employee
class implements the CustomDatum interface. The CustomDatumFactory for this
class can be obtained by using the Employee.getFactory () method.

Example 14-28 Creating a TopicBrowser for AdtMessage Messages

/* Create a browser for a Topic with AdtMessage messages of type EMPLOYEE*/
TopicSession jms_session
TopicBrowser browser;
Topic test_topic;
browser = ((AQjmsSession) jms_session).createBrowser (
test_topic, "SUBS1", Employee.getFactory());

Creating a TopicBrowser for Oracle Object Type Messages, Locking
Messages

public oracle.jms.TopicBrowser createBrowser (javax.jms.Topic topic,
java.lang.String cons_name,
java.lang.String messageSelector,
java.lang.Object payload_factory,
boolean locked)
throws JMSException

Oracle JMS Publish/Subscribe 14-21

Browsing Messages Using a TopicBrowser

This method creates a TopicBrowser for topics of Oracle object type messages,
locking messages while browsing. It has the following parameters:

Parameter Description

topic Topic to access

cons_name Name of the durable subscriber or consumer
messageSelector Only messages with properties matching the messageSelector

expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

payload_factory CustomDatumFactory or ORADataFactory for the Java class that
maps to the Oracle ADT

locked If set to true, then messages are locked as they are browsed (similar to
a SELECT for UPDATE)

Note: CustomDatum support will be deprecated in a future release.
Use ORADataFactory payload factories instead.

See Also: "MessageSelector" on page 11-17

Example 14-29 Creating a TopicBrowser for AdtMessage Messages, Locking Messages

/* Create a browser for a Topic with AdtMessage messages of type EMPLOYEE* in
lock mode/
TopicSession jms_session
TopicBrowser browser;
Topic test_topic;
browser = ((AQjmsSession) jms_session).createBrowser (
test_topic, "SUBS1", Employee.getFactory(), true);

Browsing Messages Using a TopicBrowser

public void purgeSeen()
throws JMSException

This method browses messages using a TopicBrowser. Use methods in
java.util.Enumeration to go through the list of messages. Use the method
purgeSeen in TopicBrowser to purge messages that have been seen during the
current browse.

Example 14-30 Creating a TopicBrowser with a Specified Selector

/* Create a browser for topics with a specified selector */
public void browse_rush_orders (TopicSession jms_session)

TopicBrowser browser;

Topic topic;

ObjectMessage obj_message

BolOrder new_order;

Enumeration messages;

/* get a handle to the new_orders topic */

topic = ((AQjmsSession) jms_session).getTopic("OE", "OE_bookedorders_topic");
/* create a Browser to look at RUSH orders */

browser = ((AQjmsSession) jms_session).createBrowser (

topic, "SUBS1", "JMSCorrelationID = 'RUSH'");

14-22 Oracle Streams Advanced Queuing User’s Guide

Browsing Messages Using a TopicBrowser

/* Browse through the messages */

for (messages = browser.elements() ; message.hasMoreElements() ;)
{obj_message = (ObjectMessage)message.nextElement();}

/* Purge messages seen during this browse */

browser.purgeSeen ()

Oracle JMS Publish/Subscribe 14-23

Browsing Messages Using a TopicBrowser

14-24 Oracle Streams Advanced Queuing User's Guide

15

Oracle JMS Shared Interfaces

This chapter describes the Java Message Service (JMS) operational interface (shared
interfaces) to Oracle Streams Advanced Queuing (AQ).

This chapter contains these topics:
= Oracle Streams AQ JMS Operational Interface: Shared Interfaces
Specifying JMS Message Properties

» Setting Default TimeToLive for All Messages Sent by a MessageProducer
» Setting Default Priority for All Messages Sent by a MessageProducer

s Creating an AQjms Agent

» Receiving a Message Synchronously

= Specifying the Navigation Mode for Receiving Messages

= Receiving a Message Asynchronously

s Getting Message ID

s Getting J]MS Message Properties

s Closing and Shutting Down

s Troubleshooting

Oracle Streams AQ JMS Operational Interface: Shared Interfaces
This section discusses Oracle Streams AQ shared interfaces for JMS operations.
This section contains these topics:
= Starting a JMS Connection
s Getting a J]MS Connection
s Committing All Operations in a Session
= Rolling Back All Operations in a Session
= Getting the JDBC Connection from a Session
s Getting the OracleOCIConnectionPool from a JMS Connection
s Creating a BytesMessage
s Creating a MapMessage

s Creating a StreamMessage

Oracle JMS Shared Interfaces 15-1

Oracle Streams AQ JMS Operational Interface: Shared Interfaces

s Creating an ObjectMessage

s Creating a TextMessage

s Creating a JMS Message

s Creating an AdtMessage

s Setting JMS Correlation Identifier

Starting a JMS Connection

public void start()
throws JMSException

AQjmsConnection.start () starts a JMS connection for receiving messages.

Getting a JMS Connection

public oracle.jms.AQjmsConnection getJmsConnection()
throws JMSException

AQjmsSession.getJmsConnection () gets a JMS connection from a session.

Committing All Operations in a Session

public void commit ()
throws JMSException

AQjmsSession.commit () commits all JMS and SQL operations performed in a
session.

Rolling Back All Operations in a Session

public void rollback()
throws JMSException

AQjmsSession.rollback () terminates all JMS and SQL operations performed in a
session.

Getting the JDBC Connection from a Session

public java.sqgl.Connection getDBConnection()
throws JMSException

AQjmsSession.getDBConnection () gets the underlying JDBC connection from a
JMS session. The JDBC connection can be used to perform SQL operations as part of
the same transaction in which the JMS operations are accomplished.

Example 15-1 Getting Underlying JDBC Connection from JMS Session

java.sqgl.Connection db_conn;
QueueSession jms_sess;
db_conn = ((AQjmsSession)jms_sess).getDBConnection();

Getting the OracleOCIConnectionPool from a JMS Connection

public oracle.jdbc.pool.OracleOCIConnectionPool getOCIConnectionPool ()

15-2 Oracle Streams Advanced Queuing User’'s Guide

Oracle Streams AQ JMS Operational Interface: Shared Interfaces

AQjmsConnection.getOCIConnectionPool () gets the underlying
OracleOCIConnectionPool from a JMS connection. The settings of the
OracleOCIConnectionPool instance can be tuned by the user depending on the
connection usage, for example, the number of sessions the user wants to create using
the given connection. The user should not, however, close the
OracleOCIConnectionPool instance being used by the JMS connection.

Example 15-2 Getting Underlying OracleOCIConnectionPool from JMS Connection

oracle. jdbc.pool.OracleOCIConnectionPool cpool;
QueueConnection jms_conn;
cpool = ((AQjmsConnection)jms_conn) .getOCIConnectionPool () ;

Creating a BytesMessage

public javax.jms.BytesMessage createBytesMessage()
throws JMSException

AQjmsSession.createBytesMessage () creates a bytes message. It can be used
only if the queue table that contains the destination queue/topic was created with the
SYS.AQ$_JMS_BYTES_MESSAGE(MTAQ$_JMS_MESSAGEqudoadtype&

Creating a MapMessage

public javax.jms.MapMessage createMapMessage ()
throws JMSException

AQjmsSession.createMapMessage () creates a map message. It can be used only
if the queue table that contains the destination queue/topic was created with the
SYS.AQ$_JMS_MAP_MESSAGE or AQS_JMS_MESSAGE payload types.

Creating a StreamMessage

public javax.jms.StreamMessage createStreamMessage()
throws JMSException

AQjmsSession.createStreamMessage () creates a stream message. It can be used
only if the queue table that contains the destination queue/topic was created with the
SYS.AQ$_JMS_STREAM_MESSAGEOrAQ$_JMS_MESSAGEpaykmdtype&

Creating an ObjectMessage

public javax.jms.ObjectMessage createObjectMessage(java.io.Serializable object)
throws JMSException

AQjmsSession.createObjectMessage () creates an object message. It can be
used only if the queue table that contains the destination queue/topic was created
with the SYS.AQ$_JMS_OBJECT_MESSAGE or AQ$_JMS_MESSAGE payload types.

Creating a TextMessage

public javax.jms.TextMessage createTextMessage ()
throws JMSException

AQjmsSession.createTextMessage () creates a text message. It can be used only
if the queue table that contains the destination queue/topic was created with the
SYS.AQS$S _JMS_TEXT MESSAGE or AQS_JMS_MESSAGE payload types.

Oracle JMS Shared Interfaces 15-3

Specifying JMS Message Properties

Creating a JMS Message

public javax.jms.Message createMessage()
throws JMSException

AQjmsSession.createMessage () creates a JMS message. You can use the AQ$_
JMS_MESSAGE construct message to construct messages of different types. The
message type must be one of the following:

s DBMS_AQ.JMS_TEXT_MESSAGE

s DBMS_AQ.JMS_OBJECT_MESSAGE
= DBMS_AQ.JMS_MAP_MESSAGE

s DBMS_AQ.JMS_BYTES_MESSAGE
s DBMS_AQ.JMS_STREAM MESSAGE

You can also use this ADT to create a header-only J]MS message.

Creating an AdtMessage

public oracle.jms.AdtMessage createAdtMessage ()
throws JMSException

AQjmsSession.createAdtMessage () creates an AdtMessage. It can be used only
if the queue table that contains the queue/topic was created with an Oracle ADT
payload type. An AdtMessage must be populated with an object that implements the
CustombDatum interface. This object must be the Java mapping of the SQL ADT
defined as the payload for the queue/topic. Java classes corresponding to SQL ADT
types can be generated using the Jpublisher tool.

Setting JMS Correlation Identifier

public void setJMSCorrelationID(java.lang.String correlationID)
throws JMSException

AQjmsMessage.setJMSCorrelationID () specifies the message correlation
identifier.

Specifying JMS Message Properties

Property names starting with JMS are provider-specific. User-defined properties
cannot start with JMS.

The following provider properties can be set by clients using text, stream, object, bytes
Or map messages:

s JMSXAppID (string)
m JMSXGroupID (string)
s JMSXGroupSeq (int)
m JMS_OracleExcpQ (string)
This message property specifies the exception queue.
m JMS_OracleDelay (int)
This message property specifies the message delay in seconds.

The following properties can be set on AdtMessage

15-4 Oracle Streams Advanced Queuing User’'s Guide

Specifying JMS Message Properties

JMS_OracleExcpQ (String)

This message property specifies the exception queue as "schema . queue_name"

JMS_OracleDelay (int)

This message property specifies the message delay in seconds.

This section contains these topics:

Setting a Boolean Message Property
Setting a String Message Property
Setting an Integer Message Property
Setting a Double Message Property
Setting a Float Message Property
Setting a Byte Message Property
Setting a Long Message Property
Setting a Short Message Property
Getting an Object Message Property

Setting a Boolean Message Property

public void setBooleanProperty(java.lang.String name,

boolean value)
throws JMSException

AQjmsMessage.setBooleanProperty () specifies a message property as Boolean.
It has the following parameters:

Parameter Description
name Name of the Boolean property
value Boolean property value to set in the message

Setting a String Message Property

public void setStringProperty(java.lang.String name,

java.lang.String value)
throws JMSException

AQjmsMessage.setStringProperty () specifies a message property as string. It
has the following parameters:

Parameter Description
name Name of the string property
value String property value to set in the message

Setting an Integer Message Property

public void setIntProperty(java.lang.String name,

int value)
throws JMSException

Oracle JMS Shared Interfaces

15-5

Specifying JMS Message Properties

AQjmsMessage.setIntProperty () specifies a message property as integer. It has
the following parameters:

Parameter Description
name Name of the integer property
value Integer property value to set in the message

Setting a Double Message Property

public void setDoubleProperty(java.lang.String name,
double value)
throws JMSException

AQjmsMessage.setDoubleProperty () specifies a message property as double. It
has the following parameters:

Parameter Description
name Name of the double property
value Double property value to set in the message

Setting a Float Message Property

public void setFloatProperty(java.lang.String name,
float value)
throws JMSException

AQjmsMessage.setFloatProperty () specifies a message property as float. It has
the following parameters:

Parameter Description
name Name of the float property
value Float property value to set in the message

Setting a Byte Message Property

public void setByteProperty(java.lang.String name,
byte value)
throws JMSException

AQjmsMessage.setByteProperty () specifies a message property as byte. It has
the following parameters:

Parameter Description
name Name of the byte property
value Byte property value to set in the message

Setting a Long Message Property

public void setLongProperty(java.lang.String name,
long value)
throws JMSException

15-6 Oracle Streams Advanced Queuing User’'s Guide

Setting Default TimeToLive for All Messages Sent by a MessageProducer

AQjmsMessage.setLongProperty () specifies a message property as long. It has
the following parameters:

Parameter Description
name Name of the long property
value Long property value to set in the message

Setting a Short Message Property

public void setShortProperty(java.lang.String name,
short value)
throws JMSException

AQjmsMessage.setShortProperty () specifies a message property as short. It has
the following parameters:

Parameter Description
name Name of the short property
value Short property value to set in the message

Setting an Object Message Property

public void setObjectProperty(java.lang.String name,
java.lang.Object value)
throws JMSException

AQjmsMessage.setObjectProperty () specifies a message property as object.
Only objectified primitive values are supported: Boolean, byte, short, integer, long,
float, double and string. It has the following parameters:

Parameter Description
name Name of the Java object property
value Java object property value to set in the message

Setting Default TimeToLive for All Messages Sent by a MessageProducer

public void setTimeToLive (long timeToLive)
throws JMSException

This method sets the default TimeToLive for all messages sent by a
MessageProducer. It is calculated after message delay has taken effect. This method
has the following parameter:

Parameter Description

timeToLive Message time to live in milliseconds (zero is unlimited)

Example 15-3 Setting Default TimeToLive for All Messages Sent by a MessageProducer

/* Set default timeToLive value to 100000 milliseconds for all messages sent by
the QueueSender*/

QueueSender sender;

sender.setTimeToLive (100000) ;

Oracle JMS Shared Interfaces 15-7

Setting Default Priority for All Messages Sent by a MessageProducer

Setting Default Priority for All Messages Sent by a MessageProducer

public void setPriority(int priority)
throws JMSException

This method sets the default Priority for all messages sent by a
MessageProducer. It has the following parameter:

Parameter Description

priority Message priority for this message producer. The default is 4.

Priority values can be any integer. A smaller number indicates higher priority. If a
priority value is explicitly specified during a send () operation, then it overrides the
default value set by this method.

Example 15-4 Setting Default Priority Value for All Messages Sent by QueueSender

/* Set default priority value to 2 for all messages sent by the QueueSender*/
QueueSender sender;
sender.setPriority(2);

Example 15-5 Setting Default Priority Value for All Messages Sent by TopicPublisher

/* Set default priority value to 2 for all messages sent by the TopicPublisher*/
TopicPublisher publisher;
publisher.setPriority(1);

Creating an AQjms Agent

public void createAQAgent (java.lang.String agent_name,
boolean enable_http,
throws JMSException

This method creates an AQjmsAgent. It has the following parameters:

Parameter Description
agent_name Name of the AQ agent
enable_http If set to true, then this agent is allowed to access AQ through HTTP

Receiving a Message Synchronously

You can receive a message synchronously by specifying Timeout or without waiting.
You can also receive a message using a transformation:

= Using a Message Consumer by Specifying Timeout
= Using a Message Consumer Without Waiting

= Receiving Messages from a Destination Using a Transformation

Using a Message Consumer by Specifying Timeout

public javax.jms.Message receive(long timeout)
throws JMSException

15-8 Oracle Streams Advanced Queuing User’'s Guide

Receiving a Message Synchronously

This method receives a message using a message consumer by specifying timeout.

Parameter Description

timeout Timeout value in milliseconds

Example 15-6 Using a Message Consumer by Specifying Timeout

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;

Topic shipped_orders;
int myport = 5521;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory (
"MYHOSTNAME", "MYSID", myport, "oci8");

t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT ACKNOWLEDGE) ;
shipped_orders = ((AQjmsSession)jms_sess) .getTopic (

"WS", "Shipped_ Orders_Topic");

/* create a subscriber, specifying the correct CustomDatumFactory and
selector */
subscriberl = jms_sess.createDurableSubscriber (

shipped_orders, 'WesternShipping',

" priority > 1 and tab.user_data.region like 'WESTERN %'",

false, AQjmsAgent.getFactory());
/* receive, blocking for 30 seconds if there were no messages */
Message = subscriber.receive(30000);

Example 15-7 JMS: Blocking Until a Message Arrives

public BolOrder get_new_orderl (QueueSession jms_session)

{
Queue queue;
QueueReceiver grec;
ObjectMessage obj_message;
BolCustomer customer;
BolOrder new_order = null;
String state;
try

{

/* get a handle to the new_orders queue */

queue = ((AQjmsSession) jms_session).getQueue("OE", "OE_neworders_que");
grec = jms_session.createReceiver (queue);

/* wait for a message to show up in the queue */

obj_message = (ObjectMessage)qrec.receive();
new_order = (BolOrder)obj_message.getObject();
customer = new_order.getCustomer () ;

state = customer.getState();

System.out.println("Order: for customer " + customer.getName());
}

catch (JMSException ex)
{

System.out.println("Exception: " + ex);

Oracle JMS Shared Interfaces 15-9

Receiving a Message Synchronously

return new_order;

Using a Message Consumer Without Waiting

public javax.jms.Message receiveNoWait ()
throws JMSException

This method receives a message using a message consumer without waiting.

Example 15-8 JMS: Nonblocking Messages

public BolOrder poll_new order3 (QueueSession jms_session)

{

Queue queue;
QueueReceiver grec;
ObjectMessage obj_message;
BolCustomer customer;
BolOrder new_order = null;
String state;

try

{

/* get a handle to the new_orders queue */

queue = ((AQjmsSession) jms_session).getQueue("OE", "OE_neworders_que");
grec = jms_session.createReceiver (queue) ;

/* check for a message to show in the queue */
obj_message = (ObjectMessage)qrec.receiveNoWait();
new_order = (BolOrder)obj_message.getObject();
customer = new_order.getCustomer () ;

state = customer.getState();

System.out.println("Order: for customer " + customer.getName());

}
catch (JMSException ex)
{
System.out.println("Exception: " + ex);
}

return new_order;

Receiving Messages from a Destination Using a Transformation

A transformation can be applied when receiving a message from a queue or topic. The
transformation is applied to the message before returning it to JMS application.

The transformation can be specified using the setTransformation () interface of
the AQjmsQueueReceiver, AQjmsTopicSubscriber or AQjmsTopicReceiver.

Example 15-9 JMS: Receiving Messages from a Destination Using a Transformation

Assume that the Western Shipping application retrieves messages from the OE_
bookedorders_topic. It specifies the transformation OE2WS to retrieve the message as
the Oracle object type WS_order. Assume that the WSOrder Java class has been
generated by Jpublisher to map to the Oracle object WS .WS_order:

public AQjmsAdtMessage retrieve_bookedorders (TopicSession jms_session)
AQjmsTopicReceiver receiver;
Topic topic;

15-10 Oracle Streams Advanced Queuing User’s Guide

Specifying the Navigation Mode for Receiving Messages

Message msg = null;

try
{
/* get a handle to the OE_bookedorders_topic */
topic = ((AQjmsSession)jms_session).getTopic("OE", "OE_bookedorders_topic");

/* Create a receiver for WShip */
receiver = ((AQjmsSession)jms_session).createTopicReceiver (
topic, "WShip, null, WSOrder.getFactory());

/* set the transformation in the publisher */
receiver.setTransformation ("OE2WS") ;
msg = receiver.receive(10);

}
catch (JMSException ex)
{

System.out.println("Exception :", ex);

return (AQjmsAdtMessage)msg;

Specifying the Navigation Mode for Receiving Messages

public void setNavigationMode (int mode)
throws JMSException

This method specifies the navigation mode for receiving messages. It has the following

parameter:
Parameter Description
mode New value of the navigation mode

Example 15-10 Specifying Navigation Mode for Receiving Messages

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;

Topic shipped_orders;
int myport = 5521;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory (
"MYHOSTNAME", "MYSID", myport, "oci8");

t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE) ;
shipped_orders = ((AQjmsSession)jms_sess).getTopic("WS", "Shipped_Orders_Topic");

/* create a subscriber, specifying the correct CustomDatumFactory and selector */
subscriberl = jms_sess.createDurableSubscriber (

shipped_orders, 'WesternShipping',

"priority > 1 and tab.user_data.region like 'WESTERN %'", false,

AQjmsAgent .getFactory()) ;
subscriberl.setNavigationMode (AQjmsConstants.NAVIGATION_FIRST MESSAGE) ;

/* get message for the subscriber, returning immediately if there was nomessage */
Message = subscriber.receive();

Oracle JMS Shared Interfaces 15-11

Receiving a Message Asynchronously

Receiving a Message Asynchronously

You can receive a message asynchronously two ways:
= Specifying a Message Listener at the Message Consumer

= Specifying a Message Listener at the Session

Specifying a Message Listener at the Message Consumer

public void setMessageListener (javax.jms.MessageListener myListener)
throws JMSException

This method specifies a message listener at the message consumer. It has the following
parameter:

Parameter Description

myListener Sets the consumer message listener

Example 15-11 Specifying Message Listener at Message Consumer

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;

Topic shipped_orders;
int myport = 5521;
MessageListener mLis = null;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory (
"MYHOSTNAME", "MYSID", myport, "oci8");

t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT ACKNOWLEDGE) ;
shipped_orders = ((AQjmsSession)jms_sess).getTopic (

"WS", "Shipped_ Orders_Topic");

/* create a subscriber, specifying the correct CustomDatumFactory and selector */
subscriberl = jms_sess.createDurableSubscriber (

shipped_orders, 'WesternShipping',

"priority > 1 and tab.user_data.region like 'WESTERN %'",

false, AQjmsAgent.getFactory());
mLis = new myListener (jms_sess, "foo");

/* get message for the subscriber, returning immediately if there was nomessage */
subscriber.setMessagelListener (mLis) ;
The definition of the myListener class
import oracle.AQ.*;
import oracle.jms.*;
import javax.jms.*;
import java.lang.*;
import java.util.*;
public class myListener implements MessageListener
{
TopicSession mySess;
String myName ;
/* constructor */
myListener (TopicSession t_sess, String t_name)
{
mySess = t_sess;

15-12 Oracle Streams Advanced Queuing User’s Guide

Getting JMS Message Properties

myName = t_name;
}
public onMessage (Message m)
{
System.out.println("Retrieved message with correlation: " ||
m.getIMSCorrelationID());
try{
/* commit the dequeue */
mySession.commit () ;
} catch (java.sqgl.SQLException e)
{System.out.println("SQL Exception on commit"); }

Specifying a Message Listener at the Session

public void setMessagelListener (javax.jms.MessageListener listener)
throws JMSException

This method specifies a message listener at the session.

Parameter Description

listener Message listener to associate with this session

Getting Message ID
This section contains these topics:
s Getting the Correlation Identifier
» Getting the Message Identifier

Getting the Correlation Identifier

public java.lang.String getJMSCorrelationID()
throws JMSException

AQjmsMessage.getIMSCorrelationID() gets the correlation identifier of a
message.

Getting the Message Identifier

public byte[] getdMSCorrelationIDAsBytes ()
throws JMSException

AQjmsMessage.getIMSMessagelID () gets the message identifier of a message as
bytes or a string.

Getting JMS Message Properties
This section contains these topics:
= Getting a Boolean Message Property
s Getting a String Message Property
s Getting an Integer Message Property
= Getting a Double Message Property

Oracle JMS Shared Interfaces 15-13

Getting JMS Message Properties

= Getting a Float Message Property

s Getting a Byte Message Property

s Getting a Long Message Property

s Getting a Short Message Property

= Getting an Object Message Property

Getting a Boolean Message Property

public boolean getBooleanProperty(java.lang.String name)
throws JMSException

AQjmsMessage.getBooleanProperty () gets a message property as Boolean. It
has the following parameter:

Parameter Description

name Name of the Boolean property

Getting a String Message Property

public java.lang.String getStringProperty(java.lang.String name)
throws JMSException

AQjmsMessage.getStringProperty () gets a message property as string. It has
the following parameter:

Parameter Description

name Name of the string property

Getting an Integer Message Property

public int getIntProperty(java.lang.String name)
throws JMSException

AQjmsMessage.getIntProperty () gets a message property as integer. It has the
following parameter:

Parameter Description

name Name of the integer property

Getting a Double Message Property

public double getDoubleProperty(java.lang.String name)
throws JMSException

AQjmsMessage.getDoubleProperty () gets a message property as double. It has
the following parameter:

Parameter Description

name Name of the double property

15-14 Oracle Streams Advanced Queuing User’s Guide

Getting JMS Message Properties

Getting a Float Message Property

public float getFloatProperty(java.lang.String name)
throws JMSException

AQjmsMessage.getFloatProperty () gets a message property as float. It has the
following parameter:

Parameter Description

name Name of the float property

Getting a Byte Message Property

public byte getByteProperty(java.lang.String name)
throws JMSException

AQjmsMessage.getByteProperty () gets a message property as byte. It has the
following parameter:

Parameter Description

name Name of the byte property

Getting a Long Message Property

public long getLongProperty(java.lang.String name)
throws JMSException

AQjmsMessage.getLongProperty () gets a message property as long. It has the
following parameter:

Parameter Description

name Name of the long property

Getting a Short Message Property

public short getShortProperty(java.lang.String name)
throws JMSException

AQjmsMessage.getShortProperty() gets a message property as short. It has the

following parameter:
Parameter Description
name Name of the short property

Getting an Object Message Property

public java.lang.Object getObjectProperty(java.lang.String name)
throws JMSException

AQjmsMessage.getObjectProperty () gets a message property as object. It has
the following parameter:

Oracle JMS Shared Interfaces 15-15

Closing and Shutting Down

Parameter Description

name Name of the object property

Example 15-12 Getting Message Property as an Object

TextMessage message;
message.getObjectProperty ("empid", new Integer (1000);

Closing and Shutting Down
This section contains these topics:
s Closing a MessageProducer
s Closing a Message Consumer
= Stopping a JMS Connection
» Closing a JMS Session

s Closing a JMS Connection

Closing a MessageProducer

public void close()
throws JMSException

AQjmsProducer.close () closes a MessageProducer.

Closing a Message Consumer

public void close()
throws JMSException

AQjmsConsumer.close () closes a message consumer.

Stopping a JMS Connection

public void stop()
throws JMSException

AQjmsConnection.stop () stops a JMS connection.

Closing a JMS Session

public void close()
throws JMSException

AQjmsSession.close () closes a JMS session.

Closing a JMS Connection

public void close()
throws JMSException

AQjmsConnection.close () closes a JMS connection and releases all resources
allocated on behalf of the connection. Because the JMS provider typically allocates
significant resources outside the JVM on behalf of a connection, clients should close

15-16 Oracle Streams Advanced Queuing User’s Guide

Troubleshooting

them when they are not needed. Relying on garbage collection to eventually reclaim
these resources may not be timely enough.

Troubleshooting
This section contains these topics:
s Getting a JMS Error Code
»s Getting a JMS Error Number
= Getting an Exception Linked to a JMS Exception
» Printing the Stack Trace for a JMS Exception
m Setting an Exception Listener

s Getting an Exception Listener
Getting a JMS Error Code

public java.lang.String getErrorCode ()

AQjmsException.getErrorCode () gets the error code for a JMS exception.
Getting a JMS Error Number

public int getErrorNumber ()

AQjmsException.getErrorNumber () gets the error number for a JMS exception.

Note: This method will be deprecated in a future release. Use
getErrorCode () instead.

Getting an Exception Linked to a JMS Exception

public java.lang.String getLinkString()

AQjmsException.getLinkString () gets the exception linked to a JMS exception.
In general, this contains the SQL exception raised by the database.

Printing the Stack Trace for a JMS Exception

public void printStackTrace(java.io.PrintStream s)

AQjmsException.printStackTrace () prints the stack trace for a JMS exception.

Setting an Exception Listener

public void setExceptionListener (javax.jms.ExceptionListener listener)
throws JMSException

AQjmsConnection.setExceptionListener () specifies an exception listener for
a connection. It has the following parameter:

Parameter Description

listener Exception listener

Oracle JMS Shared Interfaces 15-17

Troubleshooting

If an exception listener has been registered, then it is informed of any serious problem
detected for a connection. This is accomplished by calling the listener

onException () method, passing it a JMS exception describing the problem. This
allows a JMS client to be notified of a problem asynchronously. Some connections only
consume messages, so they have no other way to learn the connection has failed.

Example 15-13 Specifying Exception Listener for Connection

//register an exception listener
Connection jms_connection;
jms_connection.setExceptionListener (
new ExceptionListener() {
public void onException (JMSException jmsException) {
System.out.println("JMS-EXCEPTION: " + jmsException.toString());

Y
)

Getting an Exception Listener

public javax.jms.ExceptionListener getExceptionListener ()
throws JMSException

AQjmsConnection.getExceptionListener () gets the exception listener for the
connection.

Example 15-14 Getting the Exception Listener for the Connection

//Get the exception listener
Connection jms_connection;
ExceptionListener el = jms_connection.getExceptionListener () ;

15-18 Oracle Streams Advanced Queuing User’s Guide

16

Oracle JMS Types Examples

This chapter provides examples that illustrate how to use Oracle JMS Types to
dequeue and enqueue Oracle Streams Advanced Queuing (AQ) messages.

The chapter contains the following topics:

= How to Run the Oracle Streams AQ JMS Type Examples
= JMS BytesMessage Examples

= JMS StreamMessage Examples

= JMS MapMessage Examples

= More Oracle Streams AQ JMS Examples

How to Run the Oracle Streams AQ JMS Type Examples
To run Example 16-2 through Example 167 follow these steps:
1. Copy and save Example 16-1 as setup. sql.
2. Run setup.sql as follows:

sglplus /NOLOG @setup.sqgl

3. Login to SQL*Plus as jmsuser/jmsuser.
4. Run the corresponding pair of SQL scripts for each type of message.

For JMS BytesMessage, for example, run Example 16-2 on page 16-5 and
Example 16-3 on page 16-7.

5. Ensure that your database parameter java_pool-size is large enough. For
example, you can use java_pool_size=20M.

Setting Up the Examples

Example 16-1 performs the necessary setup for the JMS types examples. Copy and
save it as setup.sql.

Example 16-1 Setting Up Environment for Running JMS Types Examples
connect sys;

enter password: password

Rem
Rem Create the JMS user: jmsuser
Rem

Oracle JMS Types Examples 16-1

How to Run the Oracle Streams AQ JMS Type Examples

DROP USER jmsuser CASCADE;

CREATE USER jmsuser IDENTIFIED BY jmsuser;

GRANT DBA, AQ_ADMINISTRATOR_ROLE, AQ USER_ROLE to jmsuser;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;

GRANT EXECUTE ON DBMS_AQ TO jmsuser;

GRANT EXECUTE ON DBMS_LOB TO jmsuser;

GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;

set echo off
set verify off

connect sys
DROP USER jmsuser CASCADE;
ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

CREATE USER jmsuser IDENTIFIED BY &password;

GRANT DBA, AQ ADMINISTRATOR_ROLE, AQ USER_ROLE to jmsuser;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;

GRANT EXECUTE ON DBMS_AQ TO jmsuser;

GRANT EXECUTE ON DBMS_LOB TO jmsuser;

GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;

connect jmsuser/&password

Rem

Rem Creating five AQ queue tables and five queues for five payloads:
Rem SYS.AQ$_JMS_TEXT MESSAGE

Rem SYS.AQ$_JMS_BYTES_MESSAGE

Rem SYS.AQ$_JMS_STREAM MESSAG

Rem SYS.AQ$_JMS_MAP MESSAGE

Rem SYS.AQS_JMS_MESSAGE

Rem

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (Queue_table => 'jmsuser.jms_gtt_text',
Queue_payload_type => 'SYS.AQ$S_JIMS_TEXT MESSAGE', compatible => '8.1.0');

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (Queue_table => 'jmsuser.jms_gtt_bytes',
Queue_payload_type => 'SYS.AQS_JMS_BYTES_MESSAGE', compatible => '8.1.0');

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (Queue_table => 'jmsuser.jms_gtt_stream',
Queue_payload_type => 'SYS.AQ$_JIMS_STREAM MESSAGE', compatible => '8.1.0');

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (Queue_table => 'jmsuser.jms_gtt_map',
Queue_payload_type => 'SYS.AQS_JMS_MAP_MESSAGE', compatible => '8.1.0');

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (Queue_table => 'jmsuser.jms_gtt_general',
Queue_payload_type => 'SYS.AQS_JMS_MESSAGE', compatible => '8.1.0');

EXECUTE DBMS_AQADM.CREATE_QUEUE (Queue_name => 'jmsuser.jms_text_que',
Queue_table => 'jmsuser.jms_gtt_text');

EXECUTE DBMS_AQADM.CREATE_QUEUE (Queue_name => 'jmsuser.jms_bytes_que',
Queue_table => 'jmsuser.jms_gtt_bytes');

EXECUTE DBMS_AQADM.CREATE_QUEUE (Queue_name => 'jmsuser.jms_stream que',
Queue_table => 'jmsuser.jms_gtt_stream');

EXECUTE DBMS_AQADM.CREATE_QUEUE (Queue_name => 'jmsuser.jms_map_que',
Queue_table => 'jmsuser.jms_gtt_map');

EXECUTE DBMS_AQADM.CREATE_QUEUE (Queue_name => 'jmsuser.jms_general_que',
Queue_table => 'jmsuser.jms_gtt_general');

Rem

Rem Starting the queues and enable both enqueue and dequeue
Rem

16-2 Oracle Streams Advanced Queuing User’'s Guide

How to Run the Oracle Streams AQ JMS Type Examples

EXECUTE DBMS_AQADM.START_QUEUE (Queue_name => 'jmsuser.jms_text_que');
EXECUTE DBMS_AQADM.START_QUEUE (Queue_name => 'jmsuser.jms_bytes_que');
EXECUTE DBMS_AQADM.START_QUEUE (Queue_name => 'jmsuser.jms_stream_que');
EXECUTE DBMS_AQADM.START_QUEUE (Queue_name => 'jmsuser.jms_map_que');
EXECUTE DBMS_AQADM.START_QUEUE (Queue_name => 'jmsuser.jms_general_que');

Rem The supporting utility used in the example to help display results in SQLPLUS
enviroment

Rem
Rem Display a RAW data in SQLPLUS
Rem
create or replace procedure display raw(rdata raw)
IS
pos pls_integer;
length pls_integer;
BEGIN
pos := 1;

length := UTL_RAW.LENGTH(rdata) ;

WHILE pos <= length LOOP
IF pos+20 > length+l THEN
dbms_output.put_line (UTL_RAW.SUBSTR (rdata, pos, length-pos+l));
ELSE
dbms_output.put_line (UTL_RAW.SUBSTR (rdata, pos, 20));
END IF;
pos := pos+20;
END LOOP;

END display_ raw;
/

show errors;

Rem
Rem Display a BLOB data in SQLPLUS
Rem
create or replace procedure display blob(bdata blob)
IS
pos pls_integer;
length pls_integer;
BEGIN
length := dbms_lob.getlength(bdata);
pos := 1;

WHILE pos <= length LOOP
display_raw(DBMS_LOB.SUBSTR (bdata, 2000, pos));
pos := pos+2000;

END LOOP;

END display_blob;
/

show errors;

Rem
Rem Display a VARCHAR data in SQLPLUS
Rem
create or replace procedure display_ varchar (vdata varchar)
IS
pos pls_integer;
text_len pls_integer;

Oracle JMS Types Examples 16-3

How to Run the Oracle Streams AQ JMS Type Examples

BEGIN
text_len := length(vdata);
pos := 1;

END
/

WHILE pos <= text_len LOOP
IF pos+20 > text_len+l THEN
dbms_output.put_line (SUBSTR(vdata, pos, text_len-pos+l));
ELSE
dbms_output.put_line (SUBSTR(vdata, pos, 20));
END IF;
pos := pos+20;
END LOOP;

display_varchar;

show errors;

Rem
Rem
Rem

Display a CLOB data in SQLPLUS

create or replace procedure display_clob(cdata clob)

IS

pos pls_integer;
length pls_integer;

BEGIN

END
/

length := dbms_lob.getlength(cdata);

pos := 1;

WHILE pos <= length LOOP
display_varchar (DBMS_LOB.SUBSTR (cdata, 2000, pos));
pos := pos+2000;

END LOOP;

display_clob;

show errors;

Rem
Rem
Rem
Rem
Rem
Rem
Rem
Rem

Display a SYS.AQS_JMS_EXCEPTION data in SQLPLUS

When application receives an ORA-24197 error, It means the JAVA stored
procedures has thrown some exceptions that could not be catergorized. The
user can use GET_EXCEPTION procedure of SYS.AQS_JMS_BYTES_MESSAGE,
SYS.AQ$_JMS_STREAM MESSAG or SYS.AQ$_JMS_MAP_MESSAGE

to retrieve a SYS.AQS_JMS_EXCEPTION object which contains more detailed

Rem information on this JAVA exception including the exception name, JAVA error
Rem message and stack trace.
Rem
Rem This utility function is to help display the SYS.AQS_JMS_EXCEPTION object in
Rem SQLPLUS
Rem
create or replace procedure display_exp(exp SYS.AQS_JMS_EXCEPTION)
IS
posl pls_integer;
pos2 pls_integer;
text_data varchar (2000) ;
BEGIN
dbms_output.put_line('exception:'||exp.exp_name);
dbms_output.put_line('err_msg:'||exp.err_msg);

dbms_output.put_line('stack:'||length(exp.stack));

16-4 Oracle Streams Advanced Queuing User’'s Guide

JMS BytesMessage Examples

posl := 1;
LOOP
pos2 := INSTR(exp.stack, chr(10), posl);
IF pos2 = 0 THEN
pos2 := length(exp.stack)+1;
END IF;

dbms_output.put_line (SUBSTR (exp.stack, posl, pos2-posl));

IF pos2 > length(exp.stack) THEN
EXIT;
END IF;

posl := pos2+l;
END LOOP;

END display_exp;
/

show errors;

EXIT;

JMS BytesMessage Examples

This section includes examples that illustrate enqueuing and dequeuing of a JMS
BytesMessage.

Example 16-2 shows how to use JMS type member functions with DBMS_AQ functions
to populate and enqueue a JMS BytesMessage represented as sys.ag$_jms_
bytes_message type in the database. This message later can be dequeued by a JAVA
Oracle Java Message Service (OJMS) client.

Example 16-2 Populating and Enqueuing a BytesMessage

set echo off
set verify off

connect sys
DROP USER jmsuser CASCADE;
ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

CREATE USER jmsuser IDENTIFIED BY &password;

GRANT DBA, AQ_ADMINISTRATOR_ROLE, AQ USER_ROLE to jmsuser;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;

GRANT EXECUTE ON DBMS_AQ TO jmsuser;

GRANT EXECUTE ON DBMS_LOB TO jmsuser;

GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;

connect jmsuser/&password

SET ECHO ON
set serveroutput on

DECLARE
id pls_integer;
agent sys.ag$S_agent := sys.aqgS$S_agent(' ', null, 0);
message sys.aq$_jms_bytes_message;

Oracle JMS Types Examples 16-5

JMS BytesMessage Examples

enqueue_options dbms_aq.enqueue_options_t;
message_properties dbms_ag.message_properties_t;
msgid raw(16);

java_exp exception;
pragma EXCEPTION_INIT(java_exp, -24197);
BEGIN

-- Consturct a empty BytesMessage object
message := sys.agS_jms_bytes_message.construct;

-- Shows how to set the JMS header
message.set_replyto(agent) ;
message.set_type('tkagpetl');
message.set_userid('jmsuser');
message.set_appid('plsgl_eng');
message.set_groupid('st');
message.set_groupseq (1) ;

-- Shows how to set JMS user properties
message.set_string property('color', 'RED');
message.set_int_property('year', 1999);
message.set_float_property('price', 16999.99);
message.set_long_property('mileage', 300000);
message.set_boolean_property ('import', True);
message.set_byte_property ('password', -127);

-- Shows how to populate the message payload of ag$_jms_bytes_message

-- Passing -1 reserve a new slot within the message store of sys.ag$_jms_
bytes_message.

-- The maximum number of sys.aq$_jms_bytes_message type of messges to be
operated at

-- the same time within a session is 20. Calling clean_body function with
parameter -1

-- might result a ORA-24199 error if the messages currently operated is
already 20.

-- The user is responsible to call clean or clean_all function to clean up
message store.

id := message.clear_body(-1);

-- Write data into the BytesMessage paylaod. These functions are analogy of
JMS JAVA api's.
-- See the document for detail.

-- Write a byte to the BytesMessage payload
message.write_byte(id, 10);

-- Write a RAW data as byte array to the BytesMessage payload
message.write_bytes(id, UTL_RAW.XRANGE (HEXTORAW('00'), HEXTORAW('FF')));

-- Write a portion of the RAW data as byte array to BytesMessage payload

-- Note the offset follows JAVA convention, starting from 0

message.write_bytes(id, UTL_RAW.XRANGE (HEXTORAW('00'), HEXTORAW('FF')), 0,
16);

-- Write a char to the BytesMessage payload
message.write_char(id, 'A');

-- Write a double to the BytesMessage payload

16-6 Oracle Streams Advanced Queuing User's Guide

JMS BytesMessage Examples

message.write_double(id, 9999.99);

-- Write a float to the BytesMessage payload
message.write_float(id, 99.99);

-- Write a int to the BytesMessage payload
message.write_int (id, 12345);

-- Write a long to the BytesMessage payload
message.write_long(id, 1234567);

-- Write a short to the BytesMessage payload
message.write_short (id, 123);

-- Write a String to the BytesMessage payload,
-- the String is encoded in UTF8 in the message payload
message.write_utf(id, 'Hello World!');

-- Flush the data from JAVA stored procedure (JServ) to PL/SQL side
-- Without doing this, the PL/SQL message is still empty.
message.flush(id);

-- Use either clean_all or clean to clean up the message store when the user
-- do not plan to do paylaod population on this message anymore
sys.ag$_jms_bytes_message.clean_all();

--message.clean(id);

-- Enqueue this message into AQ queue using DBMS_AQ package
dbms_ag.enqueue (queue_name => 'jmsuser.jms_bytes_que',
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => msgid);

EXCEPTION

WHEN java_exp THEN
dbms_output.put_line('exception information:');
display_exp(sys.ag$S_jms_stream_message.get_exception());

END;

commit;

Example 16-3 illustrates how to use JMS type member functions with DBMS_AQ
functions to dequeue and retrieve data from a JMS BytesMessage represented as
sys.aqg$_jms_bytes_message type in the database. This message might be
enqueued by a Java OJMS client.

Example 16-3 Dequeuing and Retrieving JUS BytesMessage Data

set echo off
set verify off

connect sys
DROP USER jmsuser CASCADE;

ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

Oracle JMS Types Examples 16-7

JMS BytesMessage Examples

CREATE USER jmsuser IDENTIFIED BY &password;

GRANT DBA, AQ_ADMINISTRATOR_ROLE, AQ USER_ROLE to jmsuser;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;

GRANT EXECUTE ON DBMS_AQ TO jmsuser;

GRANT EXECUTE ON DBMS_LOB TO jmsuser;

GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;

connect jmsuser/&password

set echo on

set serveroutput on size 20000

DECLARE
id pls_integer;
blob_data blob;
clob_data clob;
blob_len pls_integer;
message sys.aq$_jms_bytes_message;
agent sys.agS$_agent;
dequeue_options dbms_aqg.dequeue_options_t;

message_properties dbms_ag.message_properties_t;
msgid raw(16);

gdata sys.ag$_jms_value;

java_exp exception;

pragma EXCEPTION_INIT(java_exp, -24197);
BEGIN

DBMS_OUTPUT.ENABLE (20000) ;

-- Dequeue this message from AQ queue using DBMS_AQ package
dbms_ag.dequeue (queue_name => 'jmsuser.jms_bytes_que',
dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => msgid);

-- Retrieve the header

agent := message.get_replyto;
dbms_output.put_line('Type: ' || message.get_type |
' UserId: ' || message.get_userid |
" AppId: ' || message.get_appid |
' GroupId: ' || message.get_groupid |
' GroupSeq: ' || message.get_groupseq);

-- Retrieve the user properties
dbms_output.put_line('price:
dbms_output.put_line('color:

\ message.get_float_property('price'));
\ message.get_string_property('color'));

IF message.get_boolean_property('import') = TRUE THEN
dbms_output.put_line('import: Yes');

ELSIF message.get_boolean_property('import') = FALSE THEN
dbms_output.put_line('import: No');

END IF;

dbms_output.put_line('year: ' || message.get_int_property('year'));

dbms_output.put_line('mileage: ' || message.get_long property('mileage'));

dbms_output.put_line('password: ' || message.get_byte property('password'));

-- Shows how to retrieve the message payload of ag$_jms_bytes_message

-- Prepare call, send the content in the PL/SQL ag$_jms_bytes_message object to

16-8 Oracle Streams Advanced Queuing User’'s Guide

JMS BytesMessage Examples

-- Java stored procedure(Jserv) in the form of a byte array.

-- Passing -1 reserves a new slot in msg store of sys.ag$_jms_bytes_message.
-- Max number of sys.aqg$_jms_bytes_message type of messges to be operated at
-- the same time in a session is 20. Call clean_body fn. with parameter -1
-- might result in ORA-24199 error if messages operated on are already 20.
-- You must call clean or clean_all function to clean up message store.

id := message.prepare(-1);

-- Read data from BytesMessage paylaod. These fns. are analogy of JMS Java
-- API's. See the JMS Types chapter for detail.
dbms_output.put_line('Payload:');

-- read a byte from the BytesMessage payload
dbms_output.put_line('read _byte:' || message.read_byte(id));

-- read a byte array into a blob object from the BytesMessage payload
dbms_output.put_line('read_bytes:');

blob_len := message.read_bytes(id, blob_data, 272);
display_blob(blob_data) ;

-- read a char from the BytesMessage payload
dbms_output.put_line('read_char:‘|| message.read_char(id));

-- read a double from the BytesMessage payload
dbms_output.put_line('read_double:'|| message.read_double(id));

-- read a float from the BytesMessage payload
dbms_output.put_line('read_float:'|\ message.read_float(id));

-- read a int from the BytesMessage payload
dbms_output.put_line('read_int:'|| message.read_int(id));

-- read a long from the BytesMessage payload
dbms_output.put_line('read_long:‘|| message.read_long(id));

-- read a short from the BytesMessage payload
dbms_output.put_line('read_short:'|| message.read_short (id));

-- read a String from the BytesMessage payload.

-- the String is in UTF8 encoding in the message payload
dbms_output.put_line('read_utf:');

message.read_utf(id, clob_data);
display_clob(clob_data);

-- Use either clean_all or clean to clean up the message store when the user
-- do not plan to do paylaod retrieving on this message anymore
message.clean (id) ;

-- sys.aqgS$S_jms_bytes_message.clean_all();

EXCEPTION
WHEN java_exp THEN
dbms_output.put_line('exception information:');

display_exp(sys.aqgS_jms_bytes_message.get_exception());

END;

commit;

Oracle JMS Types Examples 16-9

JMS StreamMessage Examples

JMS StreamMessage Examples

This section includes examples that illustrate enqueuing and dequeuing of a JMS
StreamMessage.

Example 16-4 shows how to use JMS type member functions with DBMS_AQ functions
to populate and enqueue a JMS StreamMessage represented as sys.aqg$_jms_
stream_message type in the database. This message later can be dequeued by a
JAVA OJMS client.

Example 16-4 Populating and Enqueuing a JUS StreamMessage

set echo off
set verify off

connect sys
DROP USER jmsuser CASCADE;
ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

CREATE USER jmsuser IDENTIFIED BY &password;

GRANT DBA, AQ ADMINISTRATOR_ROLE, AQ USER_ROLE to jmsuser;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;

GRANT EXECUTE ON DBMS_AQ TO jmsuser;

GRANT EXECUTE ON DBMS_LOB TO jmsuser;

GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;

connect jmsuser/&password

SET ECHO ON

set serveroutput on

DECLARE
id pls_integer;
agent sys.ag$_agent := sys.ag$_agent(' ', null, 0);
message sys.ag$_jms_stream_message;
enqueue_options dbms_aqg.enqueue_options_t;

message_properties dbms_ag.message_properties_t;
msgid raw(16);

java_exp exception;
pragma EXCEPTION_INIT(java_exp, -24197);
BEGIN

-- Consturct a empty StreamMessage object
message := sys.aq$_jms_stream message.construct;

-- Shows how to set the JMS header
message.set_replyto(agent) ;
message.set_type('tkagpetl');
message.set_userid('jmsuser');
message.set_appid('plsgl_eng');
message.set_groupid('st');
message.set_groupseq(l) ;

-- Shows how to set JMS user properties
message.set_string_property('color', 'RED');
message.set_int_property('year', 1999);
message.set_float_property('price', 16999.99);
message.set_long property('mileage', 300000);

16-10 Oracle Streams Advanced Queuing User’s Guide

JMS StreamMessage Examples

message.set_boolean_property ('import', True);
message.set_byte_property('password', -127);

-- Shows how to populate the message payload of ag$_jms_stream_message

-- Passing -1 reserve a new slot within the message store of sys.ag$_jms_

stream_message.

-- The maximum number of sys.aq$_jms_stream message type of messges to be

operated at

-- the same time within a session is 20. Calling clean_body function with

parameter -1

-- might result a ORA-24199 error if the messages currently operated is

already 20.

-- The user is responsible to call clean or clean_all function to clean up

message store.

id := message.clear_body(-1);

-- Write data into the message paylaod. These functions are analogy of JMS

JAVA api's.

16);

-- See the document for detail.

-- Write a byte to the StreamMessage payload
message.write_byte(id, 10);

-- Write a RAW data as byte array to the StreamMessage payload
message.write_bytes(id, UTL_RAW.XRANGE (HEXTORAW('00'), HEXTORAW('FF')));

-- Write a portion of the RAW data as byte array to the StreamMessage payload
-- Note the offset follows JAVA convention, starting from 0
message.write_bytes(id, UTL_RAW.XRANGE (HEXTORAW('00'), HEXTORAW('FF')), 0,

-- Write a char to the StreamMessage payload
message.write_char(id, 'A');

-- Write a double to the StreamMessage payload
message.write_double(id, 9999.99);

-- Write a float to the StreamMessage payload
message.write_float(id, 99.99);

-- Write a int to the StreamMessage payload
message.write_int (id, 12345);

-- Write a long to the StreamMessage payload
message.write_long(id, 1234567);

-- Write a short to the StreamMessage payload
message.write_short (id, 123);

-- Write a String to the StreamMessage payload
message.write_string(id, 'Hello World!');

-- Flush the data from JAVA stored procedure (JServ) to PL/SQL side
-- Without doing this, the PL/SQL message is still empty.
message.flush(id);

-- Use either clean_all or clean to clean up the message store when the user

-- do not plan to do paylaod population on this message anymore
sys.aqg$_jms_stream_message.clean_all();

Oracle JMS Types Examples 16-11

JMS StreamMessage Examples

--message.clean(id);

-- Enqueue this message into AQ queue using DBMS_AQ package
dbms_aqg.enqueue (queue_name => 'jmsuser.jms_stream_que',
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => msgid);

EXCEPTION

WHEN java_exp THEN
dbms_output.put_line('exception information:');
display_exp(sys.ag$S_jms_stream_message.get_exception());

END;

commit;

Example 16-5 shows how to use JMS type member functions with DBMS_AQ functions
to dequeue and retrieve data from a JMS StreamMessage represented as sys.ags$_
jms_stream_message type in the database. This message might be enqueued by a
JAVA OJMS client.

Example 16-5 Dequeuing and Retrieving Data From a JMS StreamMessage

set echo off
set verify off

connect sys
DROP USER jmsuser CASCADE;
ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

CREATE USER jmsuser IDENTIFIED BY &password;

GRANT DBA, AQ ADMINISTRATOR_ROLE, AQ USER_ROLE to jmsuser;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;

GRANT EXECUTE ON DBMS_AQ TO jmsuser;

GRANT EXECUTE ON DBMS_LOB TO jmsuser;

GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;

connect jmsuser/&password

set echo on

set serveroutput on

DECLARE
id pls_integer;
blob_data blob;
clob_data clob;
message sys.ag$_jms_stream_message;
agent sys.agS$_agent;
dequeue_options dbms_ag.dequeue_options_t;

message_properties dbms_ag.message_properties_t;
msgid raw(16);
gdata sys.ag$_jms_value;

java_exp exception;
pragma EXCEPTION_INIT (java_exp, -24197);

16-12 Oracle Streams Advanced Queuing User’s Guide

JMS StreamMessage Examples

BEGIN
DBMS_OUTPUT.ENABLE (20000) ;

-- Dequeue this message from AQ queue using DBMS_AQ package
dbms_aqg.dequeue (queue_name => 'jmsuser.jms_stream_que',
dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => msgid);

-- Retrieve the header

agent := message.get_replyto;
dbms_output.put_line('Type: ' || message.get_type |
" UserId: ' || message.get_userid |
" AppId: ' || message.get_appid |
' GroupId: ' || message.get_groupid |
' GroupSeq: ' || message.get_groupseq);

-- Retrieve the user properties
dbms_output.put_line('price: ' || message.get_float_property('price'));
dbms_output.put_line('color: ' || message.get_string_property('color'));

IF message.get_boolean_ property('import') = TRUE THEN
dbms_output.put_line('import: Yes');

ELSIF message.get_boolean_property('import') = FALSE THEN
dbms_output.put_line('import: No');

END IF;

dbms_output.put_line('year: ' || message.get_int_property('year'));

dbms_output.put_line('mileage: ' || message.get_long_property('mileage'));

dbms_output.put_line('password: ' |\ message.get_byte_property('password'));

-- Shows how to retrieve the message payload of ag$_jms_stream message

-- The prepare call send the content in the PL/SQL ag$_jms_stream_message
object to

-- JAVA stored procedure(Jserv) in the form of byte array.

-- Passing -1 reserve a new slot within the message store of sys.ag$_jms_
stream_message.

-- The maximum number of sys.aq$_jms_stream message type of messges to be
operated at

-- the same time within a session is 20. Calling clean_body function with
parameter -1

-- might result a ORA-24199 error if the messages currently operated is
already 20.

-- The user is responsible to call clean or clean_all function to clean up
message store.

id := message.prepare(-1);

-- Assume the users know the types of data in the StreamMessage payload.

-- The user can use the specific read function corresponding with the data
type.

-- These functions are analogy of JMS JAVA api's. See the document for detail.

dbms_output.put_line('Retrieve payload by Type:');

-- Read a byte from the StreamMessage payload
dbms_output.put_line('read byte:' || message.read_byte(id));

-- Read a byte array into a blob object from the StreamMessage payload
dbms_output.put_line('read_bytes:');

Oracle JMS Types Examples 16-13

JMS StreamMessage Examples

message.read_bytes(id, blob_data);
display_blob(blob_data) ;

-- Read another byte array into a blob object from the StreamMessage payload
dbms_output.put_line('read_bytes:');

message.read_bytes(id, blob_data);

display_blob(blob_data) ;

-- Read a char from the StreamMessage payload
dbms_output.put_line('read_char:'|| message.read_char(id));

-- Read a double from the StreamMessage payload
dbms_output.put_line('read_double:'|| message.read_double(id));

-- Read a float from the StreamMessage payload
dbms_output.put_line('read_float:'|\ message.read_float(id));

-- Read a int from the StreamMessage payload
dbms_output.put_line('read_int:'|| message.read_int (id));

-- Read a long from the StreamMessage payload
dbms_output.put_line('read_long:'|| message.read_long(id));

-- Read a short from the StreamMessage payload
dbms_output.put_line('read_short:'|| message.read_short (id));

-- Read a String into a clob data from the StreamMessage payload
dbms_output.put_line('read_string:');

message.read_string(id, clob_data);

display _clob(clob_data);

-- Assume the users do not know the types of data in the StreamMessage
payload.

-- The user can use read_object method to read the data into a sys.ag$_jms_
value object

-- These functions are analogy of JMS JAVA api's. See the document for detail.

-- Reset the stream pointer to the begining of the message so that we can read
throught

-- the message payload again.

message.reset (id) ;

LOOP
message.read_object(id, gdata);
IF gdata IS NULL THEN
EXIT;
END IF;

CASE gdata.type

WHEN sys.dbms_jms_plsgl.DATA_TYPE_BYTE THEN
dbms_output.put_line('read object/byte:' || gdata.num val);
WHEN sys.dbms_jms_plsqgl.DATA_TYPE_SHORT THEN
dbms_output.put_line('read_object/short:' \| gdata.num_val) ;
WHEN sys.dbms_jms_plsql.DATA TYPE_INTEGER THEN
dbms_output.put_line('read object/int:' || gdata.num_val);
WHEN sys.dbms_jms_plsgl.DATA_TYPE_LONG THEN
dbms_output.put_line('read_object/long:"' |\ gdata.num_val) ;
WHEN sys.dbms_jms_plsqgl.DATA_TYPE_FLOAT THEN
dbms_output.put_line('read_object/float:' \| gdata.num_val) ;

16-14 Oracle Streams Advanced Queuing User’s Guide

JMS MapMessage Examples

WHEN sys

WHEN sys.

WHEN sys.

WHEN sys.

WHEN sys.

.dbms_jms_plsql.DATA_TYPE_DOUBLE THEN

dbms_output.put_line('read_object/double:' || gdata.num_val);
dbms_jms_plsqgl.DATA_TYPE_BOOLEAN THEN
dbms_output.put_line('read_object/boolean:' |\ gdata.num_val) ;
dbms_jms_plsqgl.DATA TYPE CHARACTER THEN
dbms_output.put_line('read object/char:' || gdata.char_val);

dbms_jms_plsgl.DATA_TYPE_STRING THEN
dbms_output.put_line('read_object/string:');
display_clob(gdata.text_val);
dbms_jms_plsqgl.DATA_TYPE_BYTES THEN
dbms_output.put_line('read_object/bytes:');
display_blob(gdata.bytes_val);

ELSE dbms_output.put_line('No such data type');

END CASE;

END LOOP;

-- Use either clean_all or clean to clean up the message store when the user
-- do not plan to do paylaod retrieving on this message anymore
message.clean(id) ;

-- sys.aqgS$S_jms_stream_message.clean_all();

EXCEPTION

WHEN java_exp THEN
dbms_output.put_line('exception information:');
display_exp(sys.ag$S_jms_stream_message.get_exception());

END;

commit;

JMS MapMessage Examples

This section includes examples that illustrate enqueuing and dequeuing of a JMS

MapMessage.

Example 16-6 shows how to use JMS type member functions with DBMS_AQ functions
to populate and enqueue a JMS MapMessage represented as sys.aq$_jms_map_
message type in the database. This message later can be dequeued by a JAVA OJMS

client.

Example 16—6 Populating and Enqueuing a JMS MapMessage

set echo off
set verify off

connect sys

DROP USER jmsuser CASCADE;

ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

CREATE USER jmsuser IDENTIFIED BY &password;

GRANT DBA, AQ ADMINISTRATOR_ROLE, AQ USER_ROLE to jmsuser;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;

GRANT EXECUTE ON DBMS_AQ TO jmsuser;

GRANT EXECUTE ON DBMS_LOB TO jmsuser;

GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;

connect jmsuser/&password

Oracle JMS Types Examples 16-15

JMS MapMessage Examples

SET ECHO ON
set serveroutput on

DECLARE
id pls_integer;
agent sys.ag$_agent := sys.ag$_agent(' ', null, 0);
message sys.ag$_jms_map_message;
enqueue_options dbms_ag.enqueue_options_t;

message_properties dbms_ag.message_properties_t;
msgid raw(16);

java_exp exception;
pragma EXCEPTION_INIT(java_exp, -24197);
BEGIN

-- Consturct a empty map message object
message := Sys.agS_jms_map_message.construct;

-- Shows how to set the JMS header
message.set_replyto(agent) ;
message.set_type('tkagpetl');
message.set_userid('jmsuser');
message.set_appid('plsqgl_eng');
message.set_groupid('st');
message.set_groupseq(l) ;

-- Shows how to set JMS user properties
message.set_string_property('color', 'RED');
message.set_int_property('year', 1999);
message.set_float_property('price', 16999.99);
message.set_long_property('mileage', 300000);
message.set_boolean_property ('import', True);
message.set_byte_property('password', -127);

-- Shows how to populate the message payload of ag$_jms_map_message

-- Passing -1 reserve a new slot within the message store of sys.ag$_jms_map_
message.

-- The maximum number of sys.aq$_jms_map_message type of messges to be
operated at

-- the same time within a session is 20. Calling clean_body function with
parameter -1

-- might result a ORA-24199 error if the messages currently operated is
already 20.

-- The user is responsible to call clean or clean_all function to clean up
message store.

id := message.clear_body(-1);

-- Write data into the message paylaod. These functions are analogy of JMS
JAVA api's.
-- See the document for detail.

-- Set a byte entry in map message payload
message.set_byte(id, 'BYTE', 10);

-- Set a byte array entry using RAW data in map message payload

message.set_bytes(id, 'BYTES', UTL_RAW.XRANGE (HEXTORAW('00'),
HEXTORAW ('FF')));

16-16 Oracle Streams Advanced Queuing User’s Guide

JMS MapMessage Examples

-- Set a byte array entry using only a portion of the RAW data in map message
payload

-- Note the offset follows JAVA convention, starting from 0

message.set_bytes(id, 'BYTES_PART', UTL_RAW.XRANGE (HEXTORAW('00'"),
HEXTORAW('FF')), 0, 16);

-- Set a char entry in map message payload
message.set_char(id, 'CHAR', 'A');

-- Set a double entry in map message payload
message.set_double(id, 'DOUBLE', 9999.99);

-- Set a float entry in map message payload
message.set_float(id, 'FLOAT', 99.99);

-- Set a int entry in map message payload
message.set_int (id, 'INT', 12345);

-- Set a long entry in map message payload
message.set_long(id, 'LONG', 1234567);

-- Set a short entry in map message payload
message.set_short (id, 'SHORT', 123);

-- Set a String entry in map message payload
message.set_string(id, 'STRING', 'Hello World!');

-- Flush the data from JAVA stored procedure (JServ) to PL/SQL side
-- Without doing this, the PL/SQL message is still empty.
message.flush(id);

-- Use either clean_all or clean to clean up the message store when the user
-- do not plan to do paylaod population on this message anymore
sys.aqg$_jms_map_message.clean_all();

--message.clean(id);

-- Enqueue this message into AQ queue using DBMS_AQ package
dbms_ag.enqueue (queue_name => 'jmsuser.jms_map_que',
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => msgid);

END;

commit;

Example 16-7 illustrates how to use JMS type member functions with DBMS_AQ
functions to dequeue and retrieve data from a JMS MapMessage represented as
sys.aq$_jms_map_message type in the database. This message can be enqueued by
a Java OJMS client.

Example 16-7 Dequeuing and Retrieving Data From a JMS MapMessage

set echo off
set verify off

connect sys

Oracle JMS Types Examples 16-17

JMS MapMessage Examples

DROP USER jmsuser CASCADE;
ACCEPT password CHAR PROMPT 'Enter the password for JMSU