
Oracle® Streams
Advanced Queuing User's Guide

11g Release 1 (11.1)

B28420-02

September 2007

Oracle Streams Advanced Queuing User’s Guide, 11g Release 1 (11.1)

B28420-02

Copyright © 1996, 2007, Oracle. All rights reserved.

Primary Author: Denis Raphaely

Contributing Authors: Neerja Bhatt, Charles Hall

Contributor: Stella Kister, Anil Madan, Abhishek Saxena, James Wilson

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City,
CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

List of Examples

Send Us Your Comments .. xxv

Preface .. xxvii

Audience.. xxvii
Documentation Accessibility .. xxvii
Related Documents ... xxviii
Conventions ... xxviii

 What’s New in Oracle Streams AQ?... xxix

Notification Enhancements.. xxx
Better Diagnosability and Manageability .. xxx
Transition from Job Queue Processes to Database Scheduler .. xxxi
Messaging Gateway Enhancements ... xxxi

Part I Oracle Streams AQ Fundamentals

1 Introduction to Oracle Streams AQ

What Is Queuing?... 1-1
Oracle Streams AQ Leverages Oracle Database... 1-2
Oracle Streams AQ in Integrated Application Environments... 1-5

Oracle Streams AQ Client/Server Communication ... 1-6
Multiconsumer Dequeuing of the Same Message... 1-7
Oracle Streams AQ Implementation of Workflows .. 1-9
Oracle Streams AQ Implementation of Publish/Subscribe.. 1-10

Buffered Messaging .. 1-12
Asynchronous Notifications ... 1-16

Views on Registration... 1-18
Event-Based Notification ... 1-18
Notification Grouping by Time... 1-18

Enqueue Features .. 1-18
Dequeue Features .. 1-20
Propagation Features .. 1-26
Message Format Transformation .. 1-33
Other Oracle Streams AQ Features.. 1-33

iv

Interfaces to Oracle Streams AQ .. 1-37
Oracle Streams AQ Demonstrations ... 1-37

2 Basic Components

Object Name.. 2-1
Type Name ... 2-2
AQ Agent Type ... 2-2
AQ Recipient List Type ... 2-3
AQ Agent List Type ... 2-3
AQ Subscriber List Type ... 2-3
AQ Registration Information List Type ... 2-3
AQ Post Information List Type.. 2-3
AQ Registration Information Type... 2-3
AQ Notification Descriptor Type .. 2-5
AQ Message Properties Type ... 2-5
AQ Post Information Type ... 2-6
AQ$_NTFN_MSGID_ARRAY Type ... 2-6
Enumerated Constants in the Oracle Streams AQ Administrative Interface 2-6
Enumerated Constants in the Oracle Streams AQ Operational Interface..................................... 2-7
AQ Background Processes .. 2-8

Queue Monitor Processes ... 2-8
Job Queue Processes .. 2-8

3 Oracle Streams AQ: Programmatic Interfaces

Programmatic Interfaces for Accessing Oracle Streams AQ.. 3-1
Using PL/SQL to Access Oracle Streams AQ .. 3-2
Using OCI to Access Oracle Streams AQ .. 3-3
Using OCCI to Access Oracle Streams AQ ... 3-3
Using Visual Basic (OO4O) to Access Oracle Streams AQ .. 3-3
Using Oracle Java Message Service (OJMS) to Access Oracle Streams AQ 3-4

Accessing Standard and Oracle JMS Applications.. 3-5
Using Oracle Streams AQ XML Servlet to Access Oracle Streams AQ ... 3-6
Comparing Oracle Streams AQ Programmatic Interfaces.. 3-6

Oracle Streams AQ Administrative Interfaces... 3-6
Oracle Streams AQ Operational Interfaces .. 3-7

Part II Managing and Tuning Oracle Streams AQ

4 Managing Oracle Streams AQ

Oracle Streams AQ Compatibility Parameters... 4-1
Queue Security and Access Control ... 4-2

Oracle Streams AQ Security ... 4-2
Administrator Role ... 4-2
User Role .. 4-2
Access to Oracle Streams AQ Object Types .. 4-3

Queue Security ... 4-3

v

Queue Privileges and Access Control ... 4-3
OCI Applications and Queue Access .. 4-3
Security Required for Propagation .. 4-4

Queue Table Export-Import.. 4-4
Exporting Queue Table Data .. 4-4
Importing Queue Table Data ... 4-5
Data Pump Export and Import .. 4-6

Oracle Enterprise Manager Support ... 4-6
Using Oracle Streams AQ with XA... 4-6
Restrictions on Queue Management .. 4-7

Subscribers .. 4-7
DML Not Supported on Queue Tables or Associated IOTs .. 4-7
Propagation from Object Queues with REF Payload Attributes... 4-7
Collection Types in Message Payloads .. 4-7
Synonyms on Queue Tables and Queues ... 4-8
Synonyms on Object Types... 4-8
Tablespace Point-in-Time Recovery ... 4-8
Virtual Private Database ... 4-8

Managing Propagation .. 4-8
EXECUTE Privileges Required for Propagation.. 4-8
Propagation from Object Queues .. 4-9
Optimizing Propagation ... 4-9
Handling Failures in Propagation .. 4-10

5 Oracle Streams AQ Performance and Scalability

Persistent Messaging Performance Overview .. 5-1
Oracle Streams AQ and Oracle Real Application Clusters .. 5-1
Oracle Streams AQ in a Shared Server Environment ... 5-2

Persistent Messaging Basic Tuning Tips.. 5-2
Using Storage Parameters ... 5-2
I/O Configuration.. 5-2
Running Enqueue and Dequeue Processes Concurrently in a Single Queue Table 5-2
Running Enqueue and Dequeue Processes Serially in a Single Queue Table 5-3
Creating Indexes on a Queue Table... 5-3
Other Tips.. 5-3

Propagation Tuning Tips... 5-4
Buffered Messaging Tuning ... 5-4
Performance Views .. 5-4

6 Internet Access to Oracle Streams AQ

Overview of Oracle Streams AQ Operations over the Internet .. 6-1
Oracle Streams AQ Internet Operations Architecture.. 6-1
Internet Message Payloads ... 6-2
Configuring the Web Server to Authenticate Users Sending POST Requests 6-3
Client Requests Using HTTP.. 6-3

User Sessions and Transactions .. 6-3

vi

Oracle Streams AQ Servlet Responses Using HTTP... 6-3
Oracle Streams AQ Propagation Using HTTP and HTTPS ... 6-4

Deploying the Oracle Streams AQ XML Servlet ... 6-4
Internet Data Access Presentation (IDAP) .. 6-7

SOAP Message Structure .. 6-7
SOAP Envelope ... 6-7
SOAP Header... 6-7
SOAP Body .. 6-7

SOAP Method Invocation ... 6-8
HTTP Headers ... 6-8
Method Invocation Body ... 6-8
Results from a Method Request.. 6-9

Request and Response IDAP Documents ... 6-9
IDAP Client Requests for Enqueue ... 6-9
IDAP Client Requests for Dequeue .. 6-11
IDAP Client Requests for Registration... 6-13
IDAP Client Requests to Commit a Transaction .. 6-13
IDAP Client Requests to Roll Back a Transaction ... 6-14
IDAP Server Response to an Enqueue Request .. 6-14
IDAP Server Response to a Dequeue Request .. 6-14
IDAP Server Response to a Register Request ... 6-15
IDAP Commit Response .. 6-15
IDAP Rollback Response ... 6-15
IDAP Notification ... 6-15
IDAP Response in Case of Error ... 6-15

Notification of Messages by e-mail ... 6-16

7 Troubleshooting Oracle Streams AQ

Debugging Oracle Streams AQ Propagation Problems.. 7-1
Oracle Streams AQ Error Messages .. 7-2

Part III Oracle Streams AQ Administrative and Operational Interfaces

8 Oracle Streams AQ Administrative Interface

Managing Queue Tables ... 8-1
Creating a Queue Table... 8-1
Altering a Queue Table ... 8-8
Dropping a Queue Table... 8-9
Purging a Queue Table.. 8-9
Migrating a Queue Table ... 8-11

Managing Queues ... 8-12
Creating a Queue... 8-12
Altering a Queue ... 8-15
Starting a Queue.. 8-15
Stopping a Queue.. 8-16
Dropping a Queue .. 8-16

vii

Managing Transformations ... 8-16
Creating a Transformation... 8-17
Modifying a Transformation ... 8-17
Dropping a Transformation... 8-18

Granting and Revoking Privileges .. 8-18
Granting Oracle Streams AQ System Privileges .. 8-18
Revoking Oracle Streams AQ System Privileges ... 8-19
Granting Queue Privileges .. 8-19
Revoking Queue Privileges ... 8-20

Managing Subscribers.. 8-20
Adding a Subscriber ... 8-20
Altering a Subscriber .. 8-22
Removing a Subscriber... 8-23

Managing Propagations ... 8-23
Scheduling a Queue Propagation ... 8-24
Verifying Propagation Queue Type ... 8-26
Altering a Propagation Schedule .. 8-26
Enabling a Propagation Schedule ... 8-27
Disabling a Propagation Schedule.. 8-27
Unscheduling a Queue Propagation .. 8-28

Managing Oracle Streams AQ Agents .. 8-28
Creating an Oracle Streams AQ Agent .. 8-29
Altering an Oracle Streams AQ Agent... 8-29
Dropping an Oracle Streams AQ Agent .. 8-29
Enabling Database Access.. 8-29
Disabling Database Access .. 8-30

Adding an Alias to the LDAP Server .. 8-30
Deleting an Alias from the LDAP Server ... 8-30

9 Oracle Streams AQ & Messaging Gateway Views

DBA_QUEUE_TABLES: All Queue Tables in Database .. 9-3
USER_QUEUE_TABLES: Queue Tables in User Schema... 9-3
ALL_QUEUE_TABLES: Queue Tables Queue Accessible to the Current User 9-3
DBA_QUEUES: All Queues in Database .. 9-3
USER_QUEUES: Queues In User Schema .. 9-3
ALL_QUEUES: Queues for Which User Has Any Privilege .. 9-3
DBA_QUEUE_SCHEDULES: All Propagation Schedules... 9-3
USER_QUEUE_SCHEDULES: Propagation Schedules in User Schema 9-3
QUEUE_PRIVILEGES: Queues for Which User Has Queue Privilege ... 9-3
AQ$Queue_Table_Name: Messages in Queue Table .. 9-4
AQ$Queue_Table_Name_S: Queue Subscribers ... 9-6
AQ$Queue_Table_Name_R: Queue Subscribers and Their Rules .. 9-7
DBA_QUEUE_SUBSCRIBERS: All Queue Subscribers in Database.. 9-7
USER_QUEUE_SUBSCRIBERS: Queue Subscribers in User Schema .. 9-7
ALL_QUEUE_SUBSCRIBERS: Subscribers for Queues Where User Has Queue Privileges ... 9-7
DBA_TRANSFORMATIONS: All Transformations ... 9-8
DBA_ATTRIBUTE_TRANSFORMATIONS: All Transformation Functions 9-8

viii

USER_TRANSFORMATIONS: User Transformations... 9-8
USER_ATTRIBUTE_TRANSFORMATIONS: User Transformation Functions 9-8
DBA_SUBSCR_REGISTRATIONS: All Subscription Registrations .. 9-8
USER_SUBSCR_REGISTRATIONS: User Subscription Registrations .. 9-8
AQ$INTERNET_USERS: Oracle Streams AQ Agents Registered for Internet Access 9-8
(G)V$AQ: Number of Messages in Different States in Database .. 9-9
(G)V$BUFFERED_QUEUES: All Buffered Queues in the Instance... 9-9
(G)V$BUFFERED_SUBSCRIBERS: Subscribers for All Buffered Queues in the Instance 9-9
(G)V$BUFFERED_PUBLISHERS: All Buffered Publishers in the Instance 9-9
(G)V$PERSISTENT_QUEUES: All Active Persistent Queues in the Instance 9-9
(G)V$PERSISTENT_SUBSCRIBERS: All Active Subscribers of the Persistent Queues in the
Instance... 9-9
(G)V$PERSISTENT_PUBLISHERS: All Active Publishers of the Persistent Queues in the
Instance... 9-9
(G)V$PROPAGATION_SENDER: Buffer Queue Propagation Schedules on the Sending
(Source) Side... 9-10
(G)V$PROPAGATION_RECEIVER: Buffer Queue Propagation Schedules on the Receiving
(Destination) Side ... 9-10
(G)V$SUBSCR_REGISTRATION_STATS: Diagnosability of Notifications 9-10
V$METRICGROUP: Information about the Metric Group .. 9-10
(G)V$STREAMSMETRIC: Streams Metrics for the Most Recent Interval................................ 9-10
(G)V$STREAMSMETRIC_HISTORY: Streams Metrics Over Past Hour 9-11
(G)V$QUEUEMETRIC: Queue Metrics for the Most Recent Interval.. 9-11
(G)V$QUEUEMETRIC_HISTORY: Queue Metrics Over Past Hour .. 9-11
DBA_HIST_STREAMSMETRIC: Streams Metric History ... 9-11
DBA_HIST_QUEUEMETRIC: Queue Metric History ... 9-12
MGW_GATEWAY: Configuration and Status Information .. 9-13
MGW_AGENT_OPTIONS: Supplemental Options and Properties... 9-14
MGW_LINKS: Names and Types of Messaging System Links ... 9-14
MGW_MQSERIES_LINKS: WebSphere MQ Messaging System Links 9-15
MGW_TIBRV_LINKS: TIB/Rendezvous Messaging System Links ... 9-15
MGW_FOREIGN_QUEUES: Foreign Queues... 9-16
MGW_JOBS: Messaging Gateway Propagation Jobs .. 9-16
MGW_SUBSCRIBERS: Information for Subscribers .. 9-18
MGW_SCHEDULES: Information about Schedules ... 9-19

10 Oracle Streams AQ Operations Using PL/SQL

Using Secure Queues .. 10-2
Enqueuing Messages .. 10-2
Enqueuing an Array of Messages .. 10-11
Listening to One or More Queues.. 10-12
Dequeuing Messages.. 10-13
Dequeuing an Array of Messages .. 10-20
Registering for Notification .. 10-22
Unregistering for Notification .. 10-23
Posting for Subscriber Notification... 10-23
Adding an Agent to the LDAP Server ... 10-24
Removing an Agent from the LDAP Server... 10-25

ix

Part IV Using Oracle JMS and Oracle Streams AQ

11 Introducing Oracle JMS

General Features of JMS and Oracle JMS .. 11-1
JMS Connection and Session ... 11-1

ConnectionFactory Objects... 11-2
Using AQjmsFactory to Obtain ConnectionFactory Objects ... 11-2
Using JNDI to Look Up ConnectionFactory Objects .. 11-2
JMS Connection.. 11-3
JMS Session ... 11-5

JMS Destination ... 11-6
Using a JMS Session to Obtain Destination Objects.. 11-6
Using JNDI to Look Up Destination Objects ... 11-7
JMS Destination Methods ... 11-7

System-Level Access Control in JMS.. 11-7
Destination-Level Access Control in JMS.. 11-8
Retention and Message History in JMS ... 11-8
Supporting Oracle Real Application Clusters in JMS.. 11-8
Supporting Statistics Views in JMS .. 11-9

Structured Payload/Message Types in JMS ... 11-9
JMS Message Headers .. 11-9
JMS Message Properties ... 11-10
JMS Message Bodies ... 11-12

StreamMessage... 11-12
BytesMessage.. 11-12
MapMessage ... 11-13
TextMessage ... 11-13
ObjectMessage .. 11-13
AdtMessage .. 11-13

Using Message Properties with Different Message Types.. 11-14
Buffered Messaging with Oracle JMS .. 11-15

JMS Point-to-Point Model Features... 11-16
JMS Publish/Subscribe Model Features ... 11-17

JMS Publish/Subscribe Overview .. 11-18
DurableSubscriber... 11-18
RemoteSubscriber ... 11-19
TopicPublisher... 11-19
Recipient Lists.. 11-19
TopicReceiver .. 11-19
TopicBrowser ... 11-20
Setting Up JMS Publish/Subscribe Operations .. 11-20

JMS MessageProducer Features ... 11-21
Priority and Ordering of Messages ... 11-21
Specifying a Message Delay .. 11-22
Specifying a Message Expiration ... 11-22
Message Grouping ... 11-22

x

JMS Message Consumer Features .. 11-22
Receiving Messages ... 11-23
Message Navigation in Receive ... 11-23
Browsing Messages... 11-24
Remove No Data ... 11-24
Retry with Delay Interval... 11-24
Asynchronously Receiving Messages Using MessageListener .. 11-25
Exception Queues.. 11-25

JMS Propagation.. 11-26
RemoteSubscriber.. 11-26
Scheduling Propagation ... 11-26
Enhanced Propagation Scheduling Capabilities ... 11-27
Exception Handling During Propagation.. 11-28

Message Transformation with JMS AQ .. 11-29
J2EE Compliance ... 11-29

12 Oracle JMS Basic Operations

EXECUTE Privilege on DBMS_AQIN .. 12-1
Registering a ConnectionFactory ... 12-1

Registering Through the Database Using JDBC Connection Parameters............................... 12-1
Registering Through the Database Using a JDBC URL... 12-2
Registering Through LDAP Using JDBC Connection Parameters ... 12-3
Registering Through LDAP Using a JDBC URL .. 12-4

Unregistering a Queue/Topic ConnectionFactory... 12-5
Unregistering Through the Database... 12-5
Unregistering Through LDAP... 12-5

Getting a QueueConnectionFactory or TopicConnectionFactory .. 12-6
Getting a QueueConnectionFactory with JDBC URL.. 12-6
Getting a QueueConnectionFactory with JDBC Connection Parameters............................... 12-7
Getting a TopicConnectionFactory with JDBC URL.. 12-7
Getting a TopicConnectionFactory with JDBC Connection Parameters................................. 12-8
Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP 12-8

Getting a Queue or Topic in LDAP.. 12-9
Creating a Queue Table .. 12-9
Getting a Queue Table.. 12-10
Creating a Queue ... 12-10

Creating a Point-to-Point Queue... 12-10
Creating a Publish/Subscribe Topic .. 12-11

Granting and Revoking Privileges .. 12-12
Granting Oracle Streams AQ System Privileges .. 12-13
Revoking Oracle Streams AQ System Privileges ... 12-13
Granting Publish/Subscribe Topic Privileges .. 12-14
Revoking Publish/Subscribe Topic Privileges ... 12-14
Granting Point-to-Point Queue Privileges .. 12-14
Revoking Point-to-Point Queue Privileges ... 12-15

Managing Destinations .. 12-16
Starting a Destination ... 12-16

xi

Stopping a Destination ... 12-16
Altering a Destination ... 12-17
Dropping a Destination.. 12-17

Propagation Schedules ... 12-17
Scheduling a Propagation .. 12-18
Enabling a Propagation Schedule ... 12-18
Altering a Propagation Schedule .. 12-19
Disabling a Propagation Schedule.. 12-19
Unscheduling a Propagation ... 12-20

13 Oracle JMS Point-to-Point

Creating a Connection with Username/Password .. 13-1
Creating a Connection with Default ConnectionFactory Parameters ... 13-2
Creating a QueueConnection with Username/Password .. 13-2
Creating a QueueConnection with an Open JDBC Connection ... 13-2
Creating a QueueConnection with Default ConnectionFactory Parameters 13-3
Creating a QueueConnection with an Open OracleOCIConnectionPool 13-3
Creating a Session ... 13-3
Creating a QueueSession ... 13-4
Creating a QueueSender .. 13-4
Sending Messages Using a QueueSender with Default Send Options 13-4
Sending Messages Using a QueueSender by Specifying Send Options 13-5
Creating a QueueBrowser for Standard JMS Type Messages .. 13-6
Creating a QueueBrowser for Standard JMS Type Messages, Locking Messages 13-7
Creating a QueueBrowser for Oracle Object Type Messages... 13-7
Creating a QueueBrowser for Oracle Object Type Messages, Locking Messages 13-8
Creating a QueueReceiver for Standard JMS Type Messages.. 13-9
Creating a QueueReceiver for Oracle Object Type Messages .. 13-9

14 Oracle JMS Publish/Subscribe

Creating a Connection with Username/Password .. 14-2
Creating a Connection with Default ConnectionFactory Parameters ... 14-2
Creating a TopicConnection with Username/Password .. 14-2
Creating a TopicConnection with Open JDBC Connection.. 14-3
Creating a TopicConnection with an Open OracleOCIConnectionPool 14-3
Creating a Session ... 14-3
Creating a TopicSession ... 14-4
Creating a TopicPublisher ... 14-4
Publishing Messages with Minimal Specification... 14-4
Publishing Messages Specifying Topic .. 14-5
Publishing Messages Specifying Delivery Mode, Priority and TimeToLive 14-6
Publishing Messages Specifying a Recipient List .. 14-7
Creating a DurableSubscriber for a JMS Topic Without Selector .. 14-8
Creating a DurableSubscriber for a JMS Topic With Selector .. 14-9
Creating a DurableSubscriber for an Oracle Object Type Topic Without Selector................ 14-10
Creating a DurableSubscriber for an Oracle Object Type Topic With Selector...................... 14-11

xii

Specifying Transformations for Topic Subscribers .. 14-12
Creating a Remote Subscriber for JMS Messages .. 14-13
Creating a Remote Subscriber for Oracle Object Type Messages .. 14-14
Specifying Transformations for Remote Subscribers .. 14-15
Unsubscribing a Durable Subscription for a Local Subscriber .. 14-16
Unsubscribing a Durable Subscription for a Remote Subscriber ... 14-17
Creating a TopicReceiver for a Topic of Standard JMS Type Messages 14-17
Creating a TopicReceiver for a Topic of Oracle Object Type Messages 14-18
Creating a TopicBrowser for Standard JMS Messages .. 14-19
Creating a TopicBrowser for Standard JMS Messages, Locking Messages 14-20
Creating a TopicBrowser for Oracle Object Type Messages ... 14-21
Creating a TopicBrowser for Oracle Object Type Messages, Locking Messages 14-21
Browsing Messages Using a TopicBrowser.. 14-22

15 Oracle JMS Shared Interfaces

Oracle Streams AQ JMS Operational Interface: Shared Interfaces... 15-1
Starting a JMS Connection ... 15-2
Getting a JMS Connection.. 15-2
Committing All Operations in a Session ... 15-2
Rolling Back All Operations in a Session... 15-2
Getting the JDBC Connection from a Session ... 15-2
Getting the OracleOCIConnectionPool from a JMS Connection ... 15-2
Creating a BytesMessage.. 15-3
Creating a MapMessage... 15-3
Creating a StreamMessage... 15-3
Creating an ObjectMessage ... 15-3
Creating a TextMessage ... 15-3
Creating a JMS Message... 15-4
Creating an AdtMessage.. 15-4
Setting JMS Correlation Identifier .. 15-4

Specifying JMS Message Properties.. 15-4
Setting a Boolean Message Property .. 15-5
Setting a String Message Property.. 15-5
Setting an Integer Message Property.. 15-5
Setting a Double Message Property.. 15-6
Setting a Float Message Property.. 15-6
Setting a Byte Message Property... 15-6
Setting a Long Message Property ... 15-6
Setting a Short Message Property ... 15-7
Setting an Object Message Property... 15-7

Setting Default TimeToLive for All Messages Sent by a MessageProducer 15-7
Setting Default Priority for All Messages Sent by a MessageProducer 15-8
Creating an AQjms Agent ... 15-8
Receiving a Message Synchronously .. 15-8

Using a Message Consumer by Specifying Timeout ... 15-8
Using a Message Consumer Without Waiting.. 15-10
Receiving Messages from a Destination Using a Transformation ... 15-10

xiii

Specifying the Navigation Mode for Receiving Messages ... 15-11
Receiving a Message Asynchronously .. 15-12

Specifying a Message Listener at the Message Consumer.. 15-12
Specifying a Message Listener at the Session.. 15-13

Getting Message ID .. 15-13
Getting the Correlation Identifier .. 15-13
Getting the Message Identifier ... 15-13

Getting JMS Message Properties ... 15-13
Getting a Boolean Message Property ... 15-14
Getting a String Message Property... 15-14
Getting an Integer Message Property... 15-14
Getting a Double Message Property... 15-14
Getting a Float Message Property... 15-15
Getting a Byte Message Property.. 15-15
Getting a Long Message Property .. 15-15
Getting a Short Message Property .. 15-15
Getting an Object Message Property.. 15-15

Closing and Shutting Down ... 15-16
Closing a MessageProducer .. 15-16
Closing a Message Consumer ... 15-16
Stopping a JMS Connection ... 15-16
Closing a JMS Session .. 15-16
Closing a JMS Connection ... 15-16

Troubleshooting... 15-17
Getting a JMS Error Code .. 15-17
Getting a JMS Error Number .. 15-17
Getting an Exception Linked to a JMS Exception... 15-17
Printing the Stack Trace for a JMS Exception ... 15-17
Setting an Exception Listener .. 15-17
Getting an Exception Listener ... 15-18

16 Oracle JMS Types Examples

How to Run the Oracle Streams AQ JMS Type Examples .. 16-1
Setting Up the Examples .. 16-1

JMS BytesMessage Examples.. 16-5
JMS StreamMessage Examples... 16-10
JMS MapMessage Examples ... 16-15
More Oracle Streams AQ JMS Examples ... 16-21

Part V Using Messaging Gateway

17 Introducing Oracle Messaging Gateway

Introducing Oracle Messaging Gateway .. 17-1
Oracle Messaging Gateway Features... 17-1
Oracle Messaging Gateway Architecture ... 17-3

Administration Package DBMS_MGWADM.. 17-3

xiv

Oracle Messaging Gateway Agent ... 17-4
Oracle Database... 17-4
Non-Oracle Messaging Systems ... 17-4

Propagation Processing Overview ... 17-4
Oracle Streams AQ Buffered Messages and Messaging Gateway .. 17-5

18 Getting Started with Oracle Messaging Gateway

Oracle Messaging Gateway Prerequisites .. 18-1
Loading and Setting Up Oracle Messaging Gateway .. 18-1

Loading Database Objects into the Database .. 18-2
Modifying listener.ora for the External Procedure .. 18-2
Modifying tnsnames.ora for the External Procedure... 18-3
Setting Up a mgw.ora Initialization File.. 18-3
Creating an Oracle Messaging Gateway Administration User .. 18-4
Creating an Oracle Messaging Gateway Agent User .. 18-4
Configuring Oracle Messaging Gateway Connection Information... 18-5
Configuring Oracle Messaging Gateway in a RAC Environment ... 18-5

Configuring Connection Information for the MGW Agent Connections........................ 18-5
Setting the RAC Instance for the Messaging Gateway Agent... 18-6

Setting Up Non-Oracle Messaging Systems .. 18-6
Setting Up for TIB/Rendezvous ... 18-7
Setting Up for WebSphere MQ Base Java or JMS... 18-7

Verifying the Oracle Messaging Gateway Setup .. 18-8
Unloading Oracle Messaging Gateway .. 18-8
Understanding the mgw.ora Initialization File ... 18-9

mgw.ora Initialization Parameters ... 18-9
mgw.ora Environment Variables ... 18-10
mgw.ora Java Properties ... 18-11
mgw.ora Comment Lines... 18-12

19 Working with Oracle Messaging Gateway

Configuring the Oracle Messaging Gateway Agent .. 19-1
Creating a Messaging Gateway Agent... 19-2
Removing a Messaging Gateway Agent.. 19-2
Database Connection .. 19-2
Resource Limits ... 19-3

Starting and Shutting Down the Oracle Messaging Gateway Agent ... 19-3
Starting the Oracle Messaging Gateway Agent.. 19-3
Shutting Down the Oracle Messaging Gateway Agent... 19-3
Oracle Messaging Gateway Agent Scheduler Job .. 19-4
Running the Oracle Messaging Gateway Agent on RAC ... 19-5

Configuring Messaging System Links.. 19-5
Creating a WebSphere MQ Base Java Link ... 19-6
Creating a WebSphere MQ JMS Link... 19-7
Creating a WebSphere MQ Link to Use SSL ... 19-9
Creating a TIB/Rendezvous Link... 19-11
Altering a Messaging System Link... 19-11

xv

Removing a Messaging System Link ... 19-12
Views for Messaging System Links.. 19-12

Configuring Non-Oracle Messaging System Queues.. 19-12
Registering a Non-Oracle Queue.. 19-13

Registering a WebSphere MQ Base Java Queue.. 19-13
Registering a WebSphere MQ JMS Queue or Topic ... 19-13
Registering a TIB/Rendezvous Subject .. 19-14

Unregistering a Non-Oracle Queue.. 19-14
View for Registered Non-Oracle Queues .. 19-14

Configuring Oracle Messaging Gateway Propagation Jobs ... 19-14
Propagation Job Overview... 19-15
Creating an Oracle Messaging Gateway Propagation Job .. 19-16
Enabling and Disabling a Propagation Job ... 19-16
Resetting a Propagation Job... 19-17
Altering a Propagation Job .. 19-17
Removing a Propagation Job... 19-17

Propagation Jobs, Subscribers, and Schedules.. 19-18
Propagation Job, Subscriber, Schedule Interface Interoperability ... 19-19
Propagation Job, Subscriber, Schedule Views .. 19-20
Single Consumer Queue As Propagation Source ... 19-20

Configuration Properties ... 19-20
WebSphere MQ System Properties .. 19-20
TIB/Rendezvous System Properties .. 19-22
Optional Link Configuration Properties.. 19-23
Optional Foreign Queue Configuration Properties ... 19-25
Optional Job Configuration Properties .. 19-26

20 Oracle Messaging Gateway Message Conversion

Converting Oracle Messaging Gateway Non-JMS Messages .. 20-1
Overview of the Non-JMS Message Conversion Process.. 20-1
Oracle Messaging Gateway Canonical Types... 20-2
Message Header Conversion... 20-2
Handling Arbitrary Payload Types Using Message Transformations.................................... 20-2
Handling Logical Change Records... 20-4

Message Conversion for WebSphere MQ .. 20-6
WebSphere MQ Message Header Mappings .. 20-6
WebSphere MQ Outbound Propagation ... 20-9
WebSphere MQ Inbound Propagation .. 20-9

Message Conversion for TIB/Rendezvous ... 20-10
AQ Message Property Mapping for TIB/Rendezvous.. 20-12
TIB/Rendezvous Outbound Propagation... 20-12
TIB/Rendezvous Inbound Propagation .. 20-13

JMS Messages .. 20-14
JMS Outbound Propagation .. 20-15
JMS Inbound Propagation ... 20-15

xvi

21 Monitoring Oracle Messaging Gateway

Oracle Messaging Gateway Log Files ... 21-1
Sample Oracle Messaging Gateway Log File.. 21-1
Interpreting Exception Messages in an Oracle Messaging Gateway Log File 21-3

Monitoring the Oracle Messaging Gateway Agent Status.. 21-3
MGW_GATEWAY View.. 21-3
Oracle Messaging Gateway Irrecoverable Error Messages... 21-4
Other Oracle Messaging Gateway Error Conditions ... 21-7

Monitoring Oracle Messaging Gateway Propagation.. 21-8
Oracle Messaging Gateway Agent Error Messages .. 21-9

Part VI Using Oracle Streams with Oracle Streams AQ

22 Using ANYDATA Queues for User Messages

ANYDATA Queues and User Messages ... 22-1
ANYDATA Wrapper for User Messages Payloads ... 22-2
Programmatic Interfaces for Enqueue and Dequeue of User Messages 22-2

Enqueuing User Messages Using PL/SQL .. 22-2
Enqueuing User Messages Using OCI or JMS... 22-3
Dequeuing User Messages Using PL/SQL .. 22-4
Dequeuing User Messages Using OCI or JMS... 22-4

Message Propagation and ANYDATA Queues ... 22-5
Enqueuing User Messages in ANYDATA Queues ... 22-6
Dequeuing User Messages from ANYDATA Queues.. 22-8
Propagating User Messages from ANYDATA Queues to Typed Queues 22-9
Propagating User-Enqueued LCRs from ANYDATA Queues to Typed Queues 22-12

23 Oracle Streams Messaging Example

Overview of Messaging Example... 23-1
Setting Up Users and Creating an ANYDATA Queue ... 23-2
Creating Enqueue Procedures... 23-4
Configuring an Apply Process.. 23-6
Configuring Explicit Dequeue.. 23-10
Enqueuing Messages .. 23-13
Dequeuing Messages Explicitly and Querying for Applied Messages.................................... 23-15
Enqueuing and Dequeuing Messages Using JMS.. 23-16

A Nonpersistent Queues

Creating Nonpersistent Queues ... A-1
Managing Nonpersistent Queues .. A-2
Compatibility of Nonpersistent Queues .. A-2
Nonpersistent Queue Notification .. A-2
Restrictions on Nonpersistent Queues ... A-2

Index

xvii

xviii

List of Examples

4–1 Creating Objects Containing VARRAYs ... 4-7
8–1 Setting Up AQ Administrative Users .. 8-5
8–2 Setting Up AQ Administrative Example Types ... 8-6
8–3 Creating a Queue Table for Messages of Object Type... 8-6
8–4 Creating a Queue Table for Messages of RAW Type .. 8-6
8–5 Creating a Queue Table for Messages of LOB Type .. 8-6
8–6 Creating a Queue Table for Messages of XMLType .. 8-6
8–7 Creating a Queue Table for Grouped Messages... 8-7
8–8 Creating Queue Tables for Prioritized Messages and Multiple Consumers...................... 8-7
8–9 Creating a Queue Table with Commit-Time Ordering ... 8-7
8–10 Creating an 8.1-Compatible Queue Table for Multiple Consumers.................................... 8-7
8–11 Creating a Queue Table in a Specified Tablespace .. 8-8
8–12 Creating a Queue Table with Freelists or Freelist Groups.. 8-8
8–13 Altering a Queue Table by Changing the Primary and Secondary Instances.................... 8-9
8–14 Altering a Queue Table by Changing the Comment ... 8-9
8–15 Dropping a Queue Table.. 8-9
8–16 Dropping a Queue Table with force Option ... 8-9
8–17 Purging All Messages in a Queue Table... 8-10
8–18 Purging All Messages in a Named Queue ... 8-10
8–19 Purging All PROCESSED Messages in a Named Queue ... 8-11
8–20 Purging All Messages in a Named Queue and for a Named Consumer......................... 8-11
8–21 Purging All Messages from a Named Sender.. 8-11
8–22 Upgrading a Queue Table from 8.1-Compatible to 10.0-Compatible 8-12
8–23 Creating a Queue for Messages of Object Type .. 8-13
8–24 Creating a Queue for Messages of RAW Type .. 8-14
8–25 Creating a Queue for Messages of LOB Type.. 8-14
8–26 Creating a Queue for Grouped Messages .. 8-14
8–27 Creating a Queue for Prioritized Messages ... 8-14
8–28 Creating a Queue for Prioritized Messages and Multiple Consumers 8-14
8–29 Creating a Queue to Demonstrate Propagation .. 8-14
8–30 Creating an 8.1-Style Queue for Multiple Consumers ... 8-15
8–31 Altering a Queue by Changing Retention Time.. 8-15
8–32 Starting a Queue with Both Enqueue and Dequeue Enabled ... 8-15
8–33 Starting a Queue for Dequeue Only.. 8-16
8–34 Stopping a Queue... 8-16
8–35 Dropping a Standard Queue .. 8-16
8–36 Creating a Transformation ... 8-17
8–37 Granting AQ System Privileges ... 8-18
8–38 Revoking AQ System Privileges .. 8-19
8–39 Granting Queue Privilege... 8-19
8–40 Revoking Dequeue Privilege.. 8-20
8–41 Adding a Subscriber at a Designated Queue at a Dababase Link 8-21
8–42 Adding a Single Consumer Queue at a Dababase Link as a Subscriber 8-21
8–43 Adding a Subscriber with a Rule... 8-22
8–44 Adding a Subscriber and Specifying a Transformation ... 8-22
8–45 Propagating from a Multiple-Consumer Queue to a Single Consumer Queue 8-22
8–46 Altering a Subscriber Rule.. 8-22
8–47 Removing a Subscriber.. 8-23
8–48 Scheduling a Propagation to Queues in the Same Database ... 8-25
8–49 Scheduling a Propagation to Queues in Another Database .. 8-25
8–50 Scheduling Queue-to-Queue Propagation ... 8-25
8–51 Verifying a Queue Type.. 8-26
8–52 Altering a Propagation Schedule to Queues in the Same Database 8-27
8–53 Altering a Propagation Schedule to Queues in Another Database 8-27

xix

8–54 Enabling a Propagation to Queues in the Same Database ... 8-27
8–55 Enabling a Propagation to Queues in Another Database .. 8-27
8–56 Disabling a Propagation to Queues in the Same Database.. 8-28
8–57 Disabling a Propagation to Queues in Another Database ... 8-28
8–58 Unscheduling a Propagation to Queues in the Same Database .. 8-28
8–59 Unscheduling a Propagation to Queues in Another Database ... 8-28
10–1 Enqueuing a Message, Specifying Queue Name and Payload ... 10-6
10–2 Enqueuing a Message, Specifying Priority... 10-6
10–3 Creating an Enqueue Procedure for LOB Type Messages... 10-7
10–4 Enqueuing a LOB Type Message... 10-7
10–5 Enqueuing Multiple Messages... 10-7
10–6 Adding Subscribers RED and GREEN ... 10-8
10–7 Enqueuing Multiple Messages to a Multiconsumer Queue .. 10-9
10–8 Enqueuing Grouped Messages .. 10-9
10–9 Enqueuing a Message, Specifying Delay and Expiration .. 10-10
10–10 Enqueuing a Message, Specifying a Transformation ... 10-10
10–11 Enqueuing an Array of Messages.. 10-11
10–12 Listening to a Single-Consumer Queue with Zero Timeout ... 10-12
10–13 Dequeuing Object Type Messages... 10-16
10–14 Creating a Dequeue Procedure for LOB Type Messages ... 10-16
10–15 Dequeuing LOB Type Messages.. 10-17
10–16 Dequeuing Grouped Messages.. 10-17
10–17 Dequeuing Messages for RED from a Multiconsumer Queue.. 10-18
10–18 Dequeue in Browse Mode and Remove Specified Message ... 10-19
10–19 Dequeue in Locked Mode and Remove Specified Message .. 10-20
10–20 Dequeuing an Array of Messages ... 10-22
10–21 Registering for Notifications .. 10-23
10–22 Posting Object-Type Messages... 10-24
12–1 Registering Through the Database Using JDBC Connection Parameters 12-2
12–2 Registering Through the Database Using a JDBC URL.. 12-3
12–3 Registering Through LDAP Using JDBC Connection Parameters 12-3
12–4 Registering Through LDAP Using a JDBC URL ... 12-4
12–5 Unregistering Through the Database.. 12-5
12–6 Unregistering Through LDAP ... 12-6
12–7 Getting a QueueConnectionFactory with JDBC URL... 12-7
12–8 Getting a QueueConnectionFactory with JDBC Connection Parameters........................ 12-7
12–9 Getting a TopicConnectionFactory with JDBC URL .. 12-8
12–10 Getting a TopicConnectionFactory with JDBC Connection Parameters 12-8
12–11 Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP.................... 12-8
12–12 Getting a Queue or Topic in LDAP ... 12-9
12–13 Creating a Queue Table... 12-10
12–14 Getting a Queue Table... 12-10
12–15 Creating a Point-to-Point Queue ... 12-11
12–16 Creating a Publish/Subscribe Topic ... 12-11
12–17 Specifying Max Retries and Max Delays in Messages.. 12-12
12–18 Granting Oracle Streams AQ System Privileges ... 12-13
12–19 Revoking Oracle Streams AQ System Privileges .. 12-13
12–20 Granting Publish/Subscribe Topic Privileges ... 12-14
12–21 Revoking Publish/Subscribe Topic Privileges .. 12-14
12–22 Granting Point-to-Point Queue Privileges ... 12-15
12–23 Revoking Point-to-Point Queue Privileges .. 12-15
12–24 Starting a Destination .. 12-16
12–25 Stopping a Destination.. 12-16
12–26 Altering a Destination ... 12-17
12–27 Dropping a Destination... 12-17

xx

12–28 Scheduling a Propagation... 12-18
12–29 Enabling a Propagation Schedule.. 12-18
12–30 Altering a Propagation Schedule... 12-19
12–31 Disabling a Propagation Schedule... 12-19
12–32 Unscheduling a Propagation.. 12-20
13–1 Creating a QueueConnection with Username/Password ... 13-2
13–2 Creating a QueueConnection with an Open JDBC Connection.. 13-3
13–3 Creating a QueueConnection from a Java Procedure Inside Database 13-3
13–4 Creating a QueueConnection with an Open OracleOCIConnectionPool........................ 13-3
13–5 Creating a Transactional QueueSession ... 13-4
13–6 Creating a Sender to Send Messages to Any Queue... 13-5
13–7 Creating a Sender to Send Messages to a Specific Queue.. 13-5
13–8 Sending Messages Using a QueueSender by Specifying Send Options 1 13-6
13–9 Sending Messages Using a QueueSender by Specifying Send Options 2 13-6
13–10 Creating a QueueBrowser Without a Selector ... 13-6
13–11 Creating a QueueBrowser With a Specified Selector.. 13-6
13–12 Creating a QueueBrowser Without a Selector, Locking Messages................................... 13-7
13–13 Creating a QueueBrowser With a Specified Selector, Locking Messages 13-7
13–14 Creating a QueueBrowser for ADTMessages.. 13-8
13–15 Creating a QueueBrowser for AdtMessages, Locking Messages 13-9
13–16 Creating a QueueReceiver Without a Selector .. 13-9
13–17 Creating a QueueReceiver With a Specified Selector ... 13-9
13–18 Creating a QueueReceiver for AdtMessage Messages ... 13-10
14–1 Creating a TopicConnection with Username/Password... 14-2
14–2 Creating a TopicConnection with Open JDBC Connection... 14-3
14–3 Creating a TopicConnection with New JDBC Connection .. 14-3
14–4 Creating a TopicConnection with Open OracleOCIConnectionPool............................... 14-3
14–5 Creating a TopicSession .. 14-4
14–6 Publishing Without Specifying Topic ... 14-4
14–7 Publishing Specifying Correlation and Delay ... 14-5
14–8 Publishing Specifying Topic... 14-6
14–9 Publishing Specifying Priority and TimeToLive... 14-7
14–10 Publishing Specifying a Recipient List Overriding Topic Subscribers 14-7
14–11 Creating a Durable Subscriber for a JMS Topic Without Selector 14-8
14–12 Creating a Durable Subscriber for a JMS Topic With Selector .. 14-9
14–13 Creating a Durable Subscriber for an Oracle Object Type Topic Without Selector 14-10
14–14 Creating a Durable Subscriber for an Oracle Object Type Topic With Selector 14-11
14–15 Sending Messages to a Destination Using a Transformation ... 14-12
14–16 Specifying Transformations for Topic Subscribers ... 14-12
14–17 Creating a Remote Subscriber for Topics of JMS Messages... 14-14
14–18 Creating a Remote Subscriber for Topics of Oracle Object Type Messages.................. 14-15
14–19 Specifying Transformations for Remote Subscribers.. 14-15
14–20 Unsubscribing a Durable Subscription for a Local Subscriber.. 14-16
14–21 Unsubscribing a Durable Subscription for a Remote Subscriber.................................... 14-17
14–22 Creating a TopicReceiver for Standard JMS Type Messages... 14-18
14–23 Creating a TopicReceiver for Oracle Object Type Messages ... 14-19
14–24 Creating a TopicBrowser Without a Selector... 14-20
14–25 Creating a TopicBrowser With a Specified Selector ... 14-20
14–26 Creating a TopicBrowser Without a Selector, Locking Messages While Browsing 14-20
14–27 Creating a TopicBrowser With a Specified Selector, Locking Messages 14-20
14–28 Creating a TopicBrowser for AdtMessage Messages ... 14-21
14–29 Creating a TopicBrowser for AdtMessage Messages, Locking Messages 14-22
14–30 Creating a TopicBrowser with a Specified Selector .. 14-22
15–1 Getting Underlying JDBC Connection from JMS Session.. 15-2
15–2 Getting Underlying OracleOCIConnectionPool from JMS Connection 15-3

xxi

15–3 Setting Default TimeToLive for All Messages Sent by a MessageProducer 15-7
15–4 Setting Default Priority Value for All Messages Sent by QueueSender 15-8
15–5 Setting Default Priority Value for All Messages Sent by TopicPublisher 15-8
15–6 Using a Message Consumer by Specifying Timeout .. 15-9
15–7 JMS: Blocking Until a Message Arrives .. 15-9
15–8 JMS: Nonblocking Messages .. 15-10
15–9 JMS: Receiving Messages from a Destination Using a Transformation......................... 15-10
15–10 Specifying Navigation Mode for Receiving Messages ... 15-11
15–11 Specifying Message Listener at Message Consumer .. 15-12
15–12 Getting Message Property as an Object .. 15-16
15–13 Specifying Exception Listener for Connection .. 15-18
15–14 Getting the Exception Listener for the Connection... 15-18
16–1 Setting Up Environment for Running JMS Types Examples... 16-1
16–2 Populating and Enqueuing a BytesMessage.. 16-5
16–3 Dequeuing and Retrieving JMS BytesMessage Data .. 16-7
16–4 Populating and Enqueuing a JMS StreamMessage... 16-10
16–5 Dequeuing and Retrieving Data From a JMS StreamMessage.. 16-12
16–6 Populating and Enqueuing a JMS MapMessage ... 16-15
16–7 Dequeuing and Retrieving Data From a JMS MapMessage.. 16-17
16–8 Enqueuing a Large TextMessage... 16-21
16–9 Enqueuing a Large BytesMessage .. 16-22
18–1 Adding Static Service Information for a Listener.. 18-3
18–2 Configuring MGW_AGENT .. 18-3
18–3 Creating a Messaging Gateway Administrator User.. 18-4
18–4 Creating a Messaging Gateway Agent User .. 18-5
18–5 Configuring Messaging Gateway Connection Information .. 18-5
18–6 Setting Java Properties .. 18-7
19–1 Creating a Messaging Gateway Agent ... 19-2
19–2 Removing a Messaging Gateway Agent .. 19-2
19–3 Setting Database Connection Information ... 19-2
19–4 Setting the Resource Limits .. 19-3
19–5 Starting the Messaging Gateway Agent ... 19-3
19–6 Shutting Down the Messaging Gateway Agent .. 19-3
19–7 Configuring a WebSphere MQ Base Java Link.. 19-7
19–8 Configuring a WebSphere MQ JMS Link ... 19-8
19–9 Configuring a WebSphere MQ Base Java Link for SSL.. 19-10
19–10 Configuring a TIB/Rendezvous Link ... 19-11
19–11 Altering a WebSphere MQ Link .. 19-11
19–12 Removing a Messaging Gateway Link ... 19-12
19–13 Listing All Messaging Gateway Links .. 19-12
19–14 Checking Messaging System Link Configuration Information 19-12
19–15 Registering a WebSphere MQ Base Java Queue.. 19-13
19–16 Unregistering a Non-Oracle Queue .. 19-14
19–17 Checking Which Queues Are Registered ... 19-14
19–18 Creating a Messaging Gateway Propagation Job.. 19-16
19–19 Enabling a Messaging Gateway Propagation Job ... 19-16
19–20 Disabling a Messaging Gateway Propagation Job .. 19-17
19–21 Resetting a Propagation Job ... 19-17
19–22 Altering Propagation Job by Adding an Exception Queue ... 19-17
19–23 Altering Propagation Job by Changing the Polling Interval ... 19-17
19–24 Removing a Propagation Job.. 19-18
20–1 Transformation Function Signature .. 20-3
20–2 Creating a Transformation ... 20-4
20–3 Registering a Transformation... 20-4
20–4 Outbound LCR Transformation .. 20-5

xxii

20–5 Inbound LCR Transformation.. 20-5
21–1 Sample Messaging Gateway Log File ... 21-2
21–2 Sample Exception Message... 21-3
21–3 No EXECUTE Privilege on Object Type ... 21-12
21–4 No EXECUTE Privilege on Transformation Function.. 21-13
22–1 Creating ANYDATA Users .. 22-6
22–2 Creating an ANYDATA Queue ... 22-6
22–3 Adding a Subscriber to the ANYDATA Queue .. 22-6
22–4 Associating a User with an AQ_AGENT ... 22-6
22–5 Creating an Enqueue Procedure.. 22-7
22–6 Enqueuing a VARCHAR2 Message into an ANYDATA Queue 22-7
22–7 Enqueuing a NUMBER Message into an ANYDATA Queue ... 22-7
22–8 Enqueuing a User-Defined Type Message into an ANYDATA Queue 22-7
22–9 Determining the Consumer of Messages in a Queue ... 22-8
22–10 Creating a Dequeue Procedure for an ANYDATA Queue.. 22-8
22–11 Dequeuing Messages from an ANYDATA Queue ... 22-9
22–12 Granting EXECUTE Privilege on a Type.. 22-10
22–13 Creating a Typed Destination Queue ... 22-10
22–14 Creating a Database Link.. 22-10
22–15 Creating a Function to Extract a Typed Object from an ANYDATA Object................. 22-10
22–16 Creating an ANYDATA to Typed Object Transformation ... 22-11
22–17 Creating Subscriber ADDRESS_AGENT_REMOTE... 22-11
22–18 Scheduling Propagation from an ANYDATA Queue to a Typed Queue 22-11
22–19 Enqueuing a Typed Message in an ANYDATA Wrapper... 22-12
22–20 Viewing the Propagated Message ... 22-12
22–21 Creating a Queue of Type LCR$_ROW_RECORD ... 22-13
22–22 Creating an ANYDATA to LCR$_ROW_RECORD Transformation 22-13
22–23 Creating Subscriber ROW_LCR_AGENT_REMOTE ... 22-13
22–24 Creating a Procedure to Construct and Enqueue a Row LCR .. 22-14
22–25 Creating and Enqueuing a Row LCR.. 22-14
22–26 Viewing the Propagated LCR .. 22-15
23–1 Setting Up ANYDATA Users... 23-3
23–2 Creating an ANYDATA Queue ... 23-3
23–3 Enabling Enqueue on the ANYDATA Queue ... 23-4
23–4 Creating an Orders Type .. 23-4
23–5 Creating a Customers Type .. 23-5
23–6 Creating a Procedure to Enqueue Non-LCR Messages.. 23-5
23–7 Creating a Procedure to Construct and Enqueue Row LCR Events 23-6
23–8 Creating a Function to Determine the Value of the Action Attribute 23-6
23–9 Creating a Message Handler .. 23-7
23–10 Creating an Evaluation Context for the Rule Set .. 23-7
23–11 Creating a Rule Set for the Apply Process ... 23-8
23–12 Creating a Rule that Evaluates to TRUE if Action Is Apply .. 23-8
23–13 Creating a Rule that Evaluates to TRUE for Row LCR Events ... 23-8
23–14 Adding Rules to the Rule Set ... 23-9
23–15 Creating an Apply Process ... 23-9
23–16 Granting EXECUTE Privilege on the Rule Set To oe User... 23-9
23–17 Starting the Apply Process ... 23-10
23–18 Creating an Agent for Explicit Dequeue .. 23-10
23–19 Associating User oe with Agent explicit_dq.. 23-10
23–20 Adding a Subscriber to the oe_queue Queue .. 23-11
23–21 Creating a Procedure to Dequeue Messages Explicitly.. 23-11
23–22 Enqueuing Non-LCR Messages to Be Dequeued by an Apply Process 23-13
23–23 Enqueuing Non-LCR Messages to Be Dequeued Explicitly.. 23-13
23–24 Enqueuing Row LCRs to Be Dequeued by an Apply Process... 23-14

xxiii

23–25 Dequeuing Messages Explicitly ... 23-15
23–26 Querying for Applied Messages.. 23-16
23–27 Granting EXECUTE on DBMS_AQIN to User oe ... 23-17
23–28 Enabling JMS Types on an ANYDATA Queue ... 23-17
23–29 Creating Oracle Object Types address and person... 23-18
23–30 Creating Java Classes That Map to Oracle Object Types ... 23-18
23–31 Java Code for Enqueuing Messages .. 23-19
23–32 Java Code for Dequeuing Messages.. 23-23
23–33 Compiling StreamsEnq.java and StreamsDeq.java... 23-25
23–34 Running StreamsEnq... 23-25
23–35 Running StreamsDeq... 23-26

xxiv

xxv

Send Us Your Comments

Oracle Streams Advanced Queuing User’s Guide 11g Release 1 (11.1)

B28420-02

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227. Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation
Server Technologies Documentation
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

xxvi

xxvii

Preface

This guide describes features of application development and integration using Oracle
Streams Advanced Queuing (AQ). This information applies to versions of the Oracle
Database server that run on all platforms, unless otherwise specified.

This Preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This guide is intended for programmers who develop applications that use Oracle
Streams AQ.

To use this document, you need knowledge of an application development language
and object-relational database management concepts.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

xxviii

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, 7 days a week. For TTY support,
call 800.446.2398. Outside the United States, call +1.407.458.2479.

Related Documents
For more information, see these Oracle resources:

■ Oracle Database Advanced Application Developer's Guide

■ Oracle Database PL/SQL Language Reference

■ Oracle Streams Advanced Queuing Java API Reference

■ Oracle Database PL/SQL Packages and Types Reference

■ Oracle Streams Concepts and Administration

■ Oracle XML DB Developer's Guide

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xxix

 What’s New in Oracle Streams AQ?

This chapter describes new features of the Oracle Database 11g Release 1 (11.1) and
provides pointers to additional information:

■ Notification Enhancements

■ Better Diagnosability and Manageability

■ Transition from Job Queue Processes to Database Scheduler

■ Messaging Gateway Enhancements

xxx

Notification Enhancements
The following notification enhancements are introduced:

■ Scalability for Streams Notifications

■ Notification Grouping By Time

Scalability for Streams Notifications
AQ Event Notification Infrastructure provides asynchronous communication of
database events from the suppliers/publishers of their events to the
consumers/registrations. The event monitor sends these notifications. In order to meet
the demands of increased notification use, the notification server in 11g is enhanced to
a parallel notification server consisting of a coordinator and a set of subordinate
processes. The parallel notification server offers a capability to process a greater
volume of notifications, faster notification processing and lower shared memory use
for staging notification events.

Notification Grouping By Time
Sometimes a very large number of events occur in the database and it is important that
applications not be overwhelmed with notifications. The preferred strategy is for
notifications to be grouped and delivered at application-specified intervals and in
application-specified formats. Oracle Streams AQ provides the infrastructure for
notification grouping by time for AQ and DBCHANGE namespaces. Users have the
option of specifying the grouping time interval and the predefined format in which to
be notified at the end of those grouping intervals. Users can also specify when to start
sending grouping notifications and how many times to send grouping notifications.

Better Diagnosability and Manageability
The following sections describe diagnosability:

■ New performance views and AWR support

■ Dictionary View on Subscription Registrations

■ Queue Table Level Export and Import

New performance views and AWR support
This release adds new performance views for persistent messaging statistics and
notification statistics. The Automatic Workload Repository (AWR) has also been
enhanced for displaying queues with the most persistent messaging operations,
allowing for easier diagnosability of AQ performance problems.

Dictionary View on Subscription Registrations
New dictionary views are provided to simplify subscription management for Oracle
Streams Advanced Queuing. DBA_SUBSCR_REGISTRATIONS and USER_SUBSCR_
REGISTRATIONS identify registered subscriptions, as well as detail information on the
subscriptions. Runtime statistics for notifications are available with the V$SUBSCR_
REGISTRATION_STATS view.

See Also: "Asynchronous Notifications" on page 1-16

See Also: "Asynchronous Notifications" on page 1-16

xxxi

Queue Table Level Export and Import
Export import of queues is now fully supported at queue table level granularity. The
user only needs to export the queue table. All the queues in the queue table, primary
object grants, related objects like views, IOTs, rules are automatically exported.

Transition from Job Queue Processes to Database Scheduler
EMON PL/SQL notifications are executed by background jobs. In this release these
jobs are DBMS_SCHEDULER jobs and are no longer conducted by DBMS_JOBS.

The init.ora parameter job_queue_processes does not need to be set for
PL/SQL notifications or AQ propagations.

AQ propagation is now likewise handled by DBMS_SCHEDULER jobs rather than
DBMS_JOBS. Additionally, propagation takes advantage of the event based scheduling
features of DBMS_SCHEDULER for better scalability.

Messaging Gateway Enhancements
The following Messaging Gateway enhancements are introduced:

■ Enhanced Messaging Gateway Agent in a Real Application Clusters (RAC)
Environment

■ Multiple Messaging Gateway Agents

■ Simplified Messaging Gateway Propagation Job Configuration

Enhanced Messaging Gateway Agent in a Real Application Clusters (RAC)
Environment
The Oracle Scheduler will be used to start Messaging Gateway agents. Messaging
Gateway will leverage the Oracle Scheduler RAC service feature so that a Messaging
Gateway agent is associated with a database service. If the instance on which a
Messaging Gateway agent is running fails or is shutdown, the Oracle Scheduler will
automatically restart the agent on another instance supporting that service.

Multiple Messaging Gateway Agents
Messaging Gateway is enhanced to enable multiple agents per instance and database.
With this enhancement, you can now statically partition propagation jobs based on
functionality, organizations, or workload and assign them to different MGW agents
hosted by different database instances on different machines. This not only enables
MGW to scale, but also enables propagation job grouping and isolation, which is
important when MGW is used in a complicated application integration environment.

See Also:

■ "Configuring Oracle Messaging Gateway in a RAC Environment"
on page 18-5

■ "Running the Oracle Messaging Gateway Agent on RAC" on
page 19-5

See Also:

■ "Getting Started with Oracle Messaging Gateway" on page 18-1

■ "Working with Oracle Messaging Gateway" on page 19-1

xxxii

Simplified Messaging Gateway Propagation Job Configuration
An enhanced PL/SQL API consolidates the propagation subscriber and the
propagation schedule into a new propagation job. It is now easier to create and
schedule a propagation job for the messaging gateway.

See Also:

■ "Getting Started with Oracle Messaging Gateway" on page 18-1

■ "Working with Oracle Messaging Gateway" on page 19-1

Part I
Oracle Streams AQ Fundamentals

Part I introduces Oracle Streams Advanced Queuing (AQ) and tells you how to get
started with it. It also describes its main components and supported programming
languages.

This part contains the following chapters:

■ Chapter 1, "Introduction to Oracle Streams AQ"

■ Chapter 2, "Basic Components"

■ Chapter 3, "Oracle Streams AQ: Programmatic Interfaces"

Introduction to Oracle Streams AQ 1-1

1
Introduction to Oracle Streams AQ

This chapter discusses Oracle Streams Advanced Queuing (AQ) and the requirements
for complex information handling in an integrated environment.

This chapter contains the following topics:

■ What Is Queuing?

■ Oracle Streams AQ Leverages Oracle Database

■ Oracle Streams AQ in Integrated Application Environments

■ Buffered Messaging

■ Asynchronous Notifications

■ Enqueue Features

■ Dequeue Features

■ Propagation Features

■ Message Format Transformation

■ Other Oracle Streams AQ Features

■ Interfaces to Oracle Streams AQ

■ Oracle Streams AQ Demonstrations

What Is Queuing?
When Web-based business applications communicate with each other, producer
applications enqueue messages and consumer applications dequeue messages. At the
most basic level of queuing, one producer enqueues one or more messages into one
queue. Each message is dequeued and processed once by one of the consumers. A
message stays in the queue until a consumer dequeues it or the message expires. A
producer may stipulate a delay before the message is available to be consumed, and a
time after which the message expires. Likewise, a consumer may wait when trying to
dequeue a message if no message is available. An agent program or application may
act as both a producer and a consumer.

Producers can enqueue messages in any sequence. Messages are not necessarily
dequeued in the order in which they are enqueued. Messages can be enqueued
without being dequeued.

At a slightly higher level of complexity, many producers enqueue messages into a
queue, all of which are processed by one consumer. Or many producers enqueue
messages, each message being processed by a different consumer depending on type
and correlation identifier.

Oracle Streams AQ Leverages Oracle Database

1-2 Oracle Streams Advanced Queuing User’s Guide

Enqueued messages are said to be propagated when they are reproduced on another
queue, which can be in the same database or in a remote database.

Applications often use data in different formats. A transformation defines a mapping
from one data type to another. The transformation is represented by a SQL function
that takes the source data type as input and returns an object of the target data type.
You can arrange transformations to occur when a message is enqueued, when it is
dequeued, or when it is propagated to a remote subscriber.

Oracle Streams AQ Leverages Oracle Database
Oracle Streams AQ provides database-integrated message queuing functionality. It is
built on top of Oracle Streams and leverages the functions of Oracle Database so that
messages can be stored persistently, propagated between queues on different
computers and databases, and transmitted using Oracle Net Services and HTTP(S).

Because Oracle Streams AQ is implemented in database tables, all operational benefits
of high availability, scalability, and reliability are also applicable to queue data.
Standard database features such as recovery, restart, and security are supported by
Oracle Streams AQ. You can use database development and management tools such as
Oracle Enterprise Manager to monitor queues. Like other database tables, queue tables
can be imported and exported.

Messages can be queried using standard SQL. This means that you can use SQL to
access the message properties, the message history, and the payload. With SQL access
you can also do auditing and tracking. All available SQL technology, such as indexes,
can be used to optimize access to messages.

System-Level Access Control
Oracle Streams AQ supports system-level access control for all queuing operations,
allowing an application designer or DBA to designate users as queue administrators.
A queue administrator can invoke Oracle Streams AQ administrative and operational
interfaces on any queue in the database. This simplifies administrative work because
all administrative scripts for the queues in a database can be managed under one
schema.

Queue-Level Access Control
Oracle Streams AQ supports queue-level access control for enqueue and dequeue
operations. This feature allows the application designer to protect queues created in
one schema from applications running in other schemas. The application designer can
grant only minimal access privileges to applications that run outside the queue
schema.

Performance
Requests for service must be decoupled from supply of services to increase efficiency
and enable complex scheduling. Oracle Streams AQ exhibits high performance as
measured by:

Note: Oracle Streams AQ does not support data manipulation
language (DML) operations on a queue table or an associated
index-organized table (IOT), if any. The only supported means of
modifying queue tables is through the supplied APIs. Queue tables
and IOTs can become inconsistent and therefore effectively ruined, if
DML operations are performed on them.

Oracle Streams AQ Leverages Oracle Database

Introduction to Oracle Streams AQ 1-3

■ Number of messages enqueued and dequeued each second

■ Time to evaluate a complex query on a message warehouse

■ Time to recover and restart the messaging process after a failure

Scalability
Queuing systems must be scalable. Oracle Streams AQ exhibits high performance
when the number of programs using the application increases, when the number of
messages increases, and when the size of the message warehouse increases.

Persistence for Security
Messages that constitute requests for service must be stored persistently and processed
exactly once for deferred execution to work correctly in the presence of network,
computer, and application failures. Oracle Streams AQ is able to meet requirements in
the following situations:

■ Applications do not have the resources to handle multiple unprocessed messages
arriving simultaneously from external clients or from programs internal to the
application.

■ Communication links between databases are not available all the time or are
reserved for other purposes. If the system falls short in its capacity to deal with
these messages immediately, then the application must be able to store the
messages until they can be processed.

■ External clients or internal programs are not ready to receive messages that have
been processed.

Persistence for Scheduling
Queuing systems must deal with priorities, and those priorities can change:

■ Messages arriving later can be of higher priority than messages arriving earlier.

■ Messages may wait for later messages before actions are taken.

■ The same message may be accessed by different processes.

■ Messages in a specific queue can become more important, and so must be
processed with less delay or interference from messages in other queues.

■ Messages sent to some destinations can have a higher priority than others.

Persistence for Accessing and Analyzing Metadata
Queuing systems must preserve message metadata, which can be as important as the
payload data. For example, the time that a message is received or dispatched can be
crucial for business and legal reasons. With the persistence features of Oracle Streams
AQ, you can analyze periods of greatest demand or evaluate the lag between receiving
and completing an order.

Object Type Support
Oracle Streams AQ supports enqueue, dequeue, and propagation operations where
the queue type is an abstract datatype, ADT. It also supports enqueue and dequeue
operations if the types are inherited types of a base ADT. Propagation between two
queues where the types are inherited from a base ADT is not supported.

Oracle Streams AQ also supports ANYDATA queues, which enable applications to
enqueue different message types in a single queue.

Oracle Streams AQ Leverages Oracle Database

1-4 Oracle Streams Advanced Queuing User’s Guide

If you plan to enqueue, propagate, or dequeue user-defined type messages, then each
type used in these messages must exist at every database where the message can be
enqueued in a queue. Some environments use directed networks to route messages
through intermediate databases before they reach their destination. In such
environments, the type must exist at each intermediate database, even if the messages
of this type are never enqueued or dequeued at a particular intermediate database.

In addition, the following requirements must be met for such types:

■ Type name must be the same at each database.

■ Type must be in the same schema at each database.

■ Shape of the type must match exactly at each database.

■ Type cannot use inheritance or type evolution at any database.

■ Type cannot contain varrays, nested tables, LOBs, rowids, or urowids.

The object identifier need not match at each database.

Structured and XMLType Payloads
You can use object types to structure and manage message payloads. Relational
database systems in general have a richer typing system than messaging systems.
Because Oracle Database is an object-relational database system, it supports traditional
relational and user-defined types. Many powerful features are enabled as a result of
having strongly typed content, such as content whose format is defined by an external
type system. These include:

■ Content-based routing

Oracle Streams AQ can examine the content and automatically route the message
to another queue based on the content.

■ Content-based subscription

A publish and subscribe system is built on top of a messaging system so that you
can create subscriptions based on content.

■ Querying

The ability to run queries on the content of the message enables message
warehousing.

You can create queues that use the new opaque type, XMLType. These queues can be
used to transmit and store messages that are XML documents. Using XMLType, you
can do the following:

■ Store any type of message in a queue

■ Store documents internally as CLOB objects

■ Store more than one type of payload in a queue

■ Query XMLType columns using the operator ExistsNode()

■ Specify the operators in subscriber rules or dequeue conditions

Integration with Oracle Internet Directory
You can register system events, user events, and notifications on queues with Oracle
Internet Directory. System events are database startup, database shutdown, and
system error events. User events include user log on and user log off, DDL statements
(create, drop, alter), and DML statement triggers. Notifications on queues include OCI
notifications, PL/SQL notifications, and e-mail notifications.

Oracle Streams AQ in Integrated Application Environments

Introduction to Oracle Streams AQ 1-5

You can also create aliases for Oracle Streams AQ agents in Oracle Internet Directory.
These aliases can be specified while performing Oracle Streams AQ enqueue, dequeue,
and notification operations. This is useful when you do not want to expose an internal
agent name.

Support for Oracle Real Application Clusters
Real Application Clusters can be used to improve Oracle Streams AQ performance by
allowing different queues to be managed by different instances. You do this by
specifying different instance affinities (preferences) for the queue tables that store the
queues. This allows queue operations (enqueue and dequeue) on different queues to
occur in parallel.

If compatibility is set to Oracle8i release 8.1.5 or higher, then an application can specify
the instance affinity for a queue table. When Oracle Streams AQ is used with Real
Application Clusters and multiple instances, this information is used to partition the
queue tables between instances for queue-monitor scheduling as well as for
propagation. The queue table is monitored by the queue monitors of the instance
specified by the user. If the owner of the queue table is terminated, then the secondary
instance or some available instance takes over the ownership for the queue table.

If an instance affinity is not specified, then the queue tables are arbitrarily partitioned
among the available instances. This can result in pinging between the application
accessing the queue table and the queue monitor monitoring it. Specifying the instance
affinity prevents this, but does not prevent the application from accessing the queue
table and its queues from other instances.

Oracle Streams AQ in Integrated Application Environments
Oracle Streams AQ provides the message management and communication needed for
application integration. In an integrated environment, messages travel between the
Oracle Database server, applications, and users, as shown in Figure 1–1.

Messages are exchanged between a client and the Oracle Database server or between
two Oracle Database servers using Oracle Net Services. Oracle Net Services also
propagates messages from one Oracle Database queue to another. Or, as shown in
Figure 1–1, you can perform Oracle Streams AQ operations over the Internet using
HTTP(S). In this case, the client, a user or Internet application, produces structured
XML messages. During propagation over the Internet, Oracle Database servers
communicate using structured XML also.

Application integration also involves the integration of heterogeneous messaging
systems. Oracle Streams AQ seamlessly integrates with existing non-Oracle Database
messaging systems like IBM WebSphere MQ through Messaging Gateway, thus
allowing existing WebSphere MQ-based applications to be integrated into an Oracle
Streams AQ environment.

This section contains these topics:

■ Oracle Streams AQ Client/Server Communication

■ Multiconsumer Dequeuing of the Same Message

■ Oracle Streams AQ Implementation of Workflows

■ Oracle Streams AQ Implementation of Publish/Subscribe

Oracle Streams AQ in Integrated Application Environments

1-6 Oracle Streams Advanced Queuing User’s Guide

Figure 1–1 Integrated Application Environment Using Oracle Streams AQ

Oracle Streams AQ Client/Server Communication
Client/Server applications usually run in a synchronous manner. Figure 1–2
demonstrates the asynchronous alternative using Oracle Streams AQ. In this example
Application B (a server) provides service to Application A (a client) using a
request/response queue.

Application A enqueues a request into the request queue. In a different transaction,
Application B dequeues and processes the request. Application B enqueues the result
in the response queue, and in yet another transaction, Application A dequeues it.

The client need not wait to establish a connection with the server, and the server
dequeues the message at its own pace. When the server is finished processing the
message, there is no need for the client to be waiting to receive the result. A process of
double-deferral frees both client and server.

Internet Users

Advanced
queues

Internet Access

XML-Based Internet
Transport
(HTTP(s))

Internet
Propagation

Internet
Propagation

(Oracle
Net)

OCI, PL/SQL,
Java clients

Global Agents,
Global Subscriptions,

Global Events

MQ Series

Rules and
Transformations

Advanced
queues

Rules and
Transformations

Advanced
queues

Rules and
Transformations

Oracle

Oracle Streams AQ in Integrated Application Environments

Introduction to Oracle Streams AQ 1-7

Figure 1–2 Client/Server Communication Using Oracle Streams AQ

Multiconsumer Dequeuing of the Same Message
A message can only be enqueued into one queue at a time. If a producer had to insert
the same message into several queues in order to reach different consumers, then this
would require management of a very large number of queues. To allow multiple
consumers to dequeue the same message, Oracle Streams AQ provides for queue
subscribers and message recipients.

To allow for subscriber and recipient lists, the queue must reside in a queue table that
is created with the multiple consumer option. Each message remains in the queue until
it is consumed by all its intended consumers.

Queue Subscribers
Multiple consumers, which can be either applications or other queues, can be
associated with a queue as subscribers. This causes all messages enqueued in the
queue to be made available to be consumed by each of the queue subscribers. The
subscribers to the queue can be changed dynamically without any change to the
messages or message producers.

You cannot add subscriptions to single-consumer queues or exception queues. A
consumer that is added as a subscriber to a queue is only able to dequeue messages
that are enqueued after the subscriber is added. No two subscribers can have the same
values for name, address, and protocol. At least one of these attributes must be
different for two subscribers.

It cannot be known which subscriber will dequeue which message first, second, and so
on, because there is no priority among subscribers. More formally, the order of
dequeuing by subscribers is indeterminate.

Subscribers can also be rule-based. Similar in syntax to the WHERE clause of a SQL
query, rules are expressed in terms of attributes that represent message properties or
message content. These subscriber rules are evaluated against incoming messages, and
those rules that match are used to determine message recipients.

Application B
consumer & producer

Enqueue
Dequeue

Application A
producer & consumer

Server

Client

Response
Queue

Dequeue
Enqueue

Request
Queue

Oracle Streams AQ in Integrated Application Environments

1-8 Oracle Streams Advanced Queuing User’s Guide

In Figure 1–3, Application B and Application C each need messages produced by
Application A, so a multiconsumer queue is specially configured with Application B
and Application C as queue subscribers. Each receives every message placed in the
queue.

Figure 1–3 Communication Using a Multiconsumer Queue

Message Recipients
A message producer can submit a list of recipients at the time a message is enqueued.
This allows for a unique set of recipients for each message in the queue. The recipient
list associated with the message overrides the subscriber list associated with the
queue, if there is one. The recipients need not be in the subscriber list. However,
recipients can be selected from among the subscribers.

A recipient can be specified only by its name, in which case the recipient must
dequeue the message from the queue in which the message was enqueued. It can be
specified by its name and an address with a protocol value of 0. The address should be
the name of another queue in the same database or another installation of Oracle
Database (identified by the database link), in which case the message is propagated to
the specified queue and can be dequeued by a consumer with the specified name. If
the recipient's name is NULL, then the message is propagated to the specified queue in
the address and can be dequeued by the subscribers of the queue specified in the
address. If the protocol field is nonzero, then the name and address are not interpreted
by the system and the message can be dequeued by a special consumer.

Subscribing to a queue is like subscribing to a magazine: each subscriber is able to
dequeue all the messages placed into a specific queue, just as each magazine
subscriber has access to all its articles. Being a recipient, on the other hand, is like
getting a letter: each recipient is a designated target of a particular message.

Figure 1–4 shows how Oracle Streams AQ can accommodate both kinds of consumers.
Application A enqueues messages. Application B and Application C are subscribers.
But messages can also be explicitly directed toward recipients like Application D,
which may or may not be subscribers to the queue. The list of such recipients for a
given message is specified in the enqueue call for that message. It overrides the list of
subscribers for that queue.

Application B

Dequeue

Application C

Dequeue

Application A

Enqueue

Multiple
Consumer

Queue

Oracle Streams AQ in Integrated Application Environments

Introduction to Oracle Streams AQ 1-9

Figure 1–4 Explicit and Implicit Recipients of Messages

Oracle Streams AQ Implementation of Workflows
Figure 1–5 illustrates the use of Oracle Streams AQ for implementing a workflow, also
known as a chained application transaction:

1. Application A begins a workflow by enqueuing Message 1.

2. Application B dequeues it, performs whatever activity is required, and enqueues
Message 2.

3. Application C dequeues Message 2 and generates Message 3.

4. Application D, the final step in the workflow, dequeues it.

Note: Multiple producers can simultaneously enqueue messages
aimed at different targeted recipients.

Application B
consumer (subscriber)

Dequeue

Application C
consumer (subscriber)

Dequeue

Application A
producer

Enqueue

Application D
consumer (recipient)

Implicit RecipientImplicit Recipient

Explicit Recipient

Oracle Streams AQ in Integrated Application Environments

1-10 Oracle Streams Advanced Queuing User’s Guide

Figure 1–5 Implementing a Workflow using Oracle Streams AQ

The queues are used to buffer the flow of information between different processing
stages of the business process. By specifying delay interval and expiration time for a
message, a window of execution can be provided for each of the applications.

From a workflow perspective, knowledge of the volume and timing of message flows
is a business asset quite apart from the value of the payload data. Oracle Streams AQ
helps you gain this knowledge by supporting the optional retention of messages for
analysis of historical patterns and prediction of future trends.

Oracle Streams AQ Implementation of Publish/Subscribe
A point-to-point message is aimed at a specific target. Senders and receivers decide on
a common queue in which to exchange messages. Each message is consumed by only
one receiver. Figure 1–6 shows that each application has its own message queue,
known as a single-consumer queue.

Figure 1–6 Point-to-Point Messaging

Note: The contents of the messages 1, 2 and 3 can be the same or
different. Even when they are different, messages can contain parts of
the contents of previous messages.

Application A
producer

Enqueue
(Message 1)

Enqueue
(Message 3)

Application B
consumer & producer

Enqueue
(Message 2)

Dequeue
(Message 1)

Application C
consumer & producer

Dequeue
(Message 2)

Application D
consumer

Dequeue
(Message 3)

Oracle

Advanced
queues

Application Application
Dequeue

Enqueue

Dequeue

Enqueue

Oracle Streams AQ in Integrated Application Environments

Introduction to Oracle Streams AQ 1-11

A publish/subscribe message can be consumed by multiple receivers, as shown in
Figure 1–7. Publish/subscribe messaging has a wide dissemination mode called
broadcast and a more narrowly aimed mode called multicast.

Broadcasting is like a radio station not knowing exactly who the audience is for a
given program. The dequeuers are subscribers to multiconsumer queues. In contrast,
multicast is like a magazine publisher who knows who the subscribers are. Multicast is
also referred to as point-to-multipoint, because a single publisher sends messages to
multiple receivers, called recipients, who may or may not be subscribers to the queues
that serve as exchange mechanisms.

Figure 1–7 Publish/Subscribe Mode

Publish/subscribe describes a situation in which a publisher application enqueues
messages to a queue anonymously (no recipients specified). The messages are then
delivered to subscriber applications based on rules specified by each application. The
rules can be defined on message properties, message data content, or both.

You can implement a publish/subscribe model of communication using Oracle
Streams AQ as follows:

1. Set up one or more queues to hold messages. These queues should represent an
area or subject of interest. For example, a queue can be used to represent billed
orders.

2. Set up a set of rule-based subscribers. Each subscriber can specify a rule which
represents a specification for the messages that the subscriber wishes to receive. A
null rule indicates that the subscriber wishes to receive all messages.

3. Publisher applications publish messages to the queue by invoking an enqueue call.

4. Subscriber applications can receive messages with a dequeue call. This retrieves
messages that match the subscription criteria.

5. Subscriber applications can also use a listen call to monitor multiple queues for
subscriptions on different queues. This is a more scalable solution in cases where a
subscriber application has subscribed to many queues and wishes to receive
messages that arrive in any of the queues.

6. Subscriber applications can also use the Oracle Call Interface (OCI) notification
mechanism. This allows a push mode of message delivery. The subscriber
application registers the queues (and subscriptions specified as subscribing agent)
from which to receive messages. This registers a callback to be invoked when
messages matching the subscriptions arrive.

Figure 1–8 illustrates the use of Oracle Streams AQ for implementing a
publish/subscribe relationship between publisher Application A and subscriber
Applications B, C, and D:

■ Application B subscribes with rule "priority = 1".

■ Application C subscribes with rule "priority > 1".

Oracle

Advanced
queues

Application

Application

Application

Application

Publish

Publish

Subscribe

Subscribe

Publish

Buffered Messaging

1-12 Oracle Streams Advanced Queuing User’s Guide

■ Application D subscribes with rule "priority = 3".

Figure 1–8 Implementing Publish/Subscribe using Oracle Streams AQ

If Application A enqueues three messages with priorities 1, 2, and 3 respectively, then
the messages will be delivered as follows:

■ Application B receives a single message (priority 1).

■ Application C receives two messages (priority 2, 3).

■ Application D receives a single message (priority 3).

Buffered Messaging
Buffered messaging, a new feature in Oracle Streams AQ 10g Release 2 (10.2),
combines the rich functionality that this product has always offered with a much faster
queuing implementation. Buffered messaging is ideal for applications that do not
require the reliability and transaction support of Oracle Streams AQ persistent
messaging.

Buffered messaging is faster than persistent messaging, because its messages reside in
shared memory. They are usually written to disk only when the total memory
consumption of buffered messages approaches the available shared memory limit.

Note: The portion of a queue that stores buffered messages in
memory is sometimes referred to as a buffered queue.

Application B
consumer

(rule-based subscriber)

Dequeue

Application C
consumer

(rule-based subscriber)

Dequeue

Register

Application A
producer

Enqueue

Application D
consumer

(rule-based subscriber)

"priority > 1""priority = 1"

"priority = 3"

priority 3
priority 1
priority 2

Buffered Messaging

Introduction to Oracle Streams AQ 1-13

Message retention is not supported for buffered messaging.

When using buffered messaging, Oracle recommends that you do one of the following:

■ Set parameter streams_pool_size

This parameter controls the size of shared memory available to Oracle Streams
AQ. If unspecified, up to 10% of the shared pool size may be allocated for the
Oracle Streams AQ pool from the database cache.

■ Turn on SGA autotuning

Oracle will automatically allocate the appropriate amount of memory from the
SGA for Oracle Streams AQ, based on Oracle Streams AQ usage as well as usage
of other components that use the SGA. Examples of such other components are
buffer cache and library cache. If streams_pool_size is specified, it is used as
the lower bound.

This section contains the following topics:

■ Enqueuing Buffered Messages

■ Dequeuing Buffered Messages

■ Propagating Buffered Messages

■ Flow Control

■ Buffered Messaging with Real Application Clusters (RAC)

■ Buffered Messaging Restrictions

■ Error Handling

Enqueuing Buffered Messages
Buffered and persistent messages use the same single-consumer or multiconsumer
queues and the same administrative and operational interfaces. They are distinguished
from each other by a delivery mode parameter, set by the application when enqueuing
the message to an Oracle Streams AQ queue.

Recipient lists are supported for buffered messaging enqueue.

Buffered messaging is supported in all queue tables created with compatibility 8.1 or
higher. Transaction grouping queues and array enqueues are not supported for
buffered messages in this release. You can still use the array enqueue procedure to
enqueue buffered messages, but the array size must be set to one.

Buffered messages can be queried using the AQ$Queue_Table_Name view. They
appear with states IN-MEMORY or SPILLED.

The queue type for buffered messaging can be ADT, XML, ANYDATA, or RAW. For ADT
types with LOB attributes, only buffered messages with null LOB attributes can be
enqueued.

See Also: "Setting Initialization Parameters Relevant to Streams" in
Oracle Streams Concepts and Administration

See Also: "Enqueuing Messages" on page 10-2

See Also: "AQ$Queue_Table_Name: Messages in Queue Table" on
page 9-4

Buffered Messaging

1-14 Oracle Streams Advanced Queuing User’s Guide

All ordering schemes available for persistent messages are also available for buffered
messages, but only within each message class. Ordering among persistent and
buffered messages enqueued in the same session is not currently supported.

Both enqueue and dequeue buffered messaging operations must be with IMMEDIATE
visibility mode. Thus they cannot be part of another transaction. You cannot specify
delay when enqueuing buffered messages.

Dequeuing Buffered Messages
Rule-based subscriptions are supported with buffered messaging. The procedure for
adding subscribers is enhanced to allow an application to express interest in persistent
messages only, buffered messages only, or both.

Array dequeue is not supported for buffered messaging, but you can still use the array
dequeue procedure by setting array size to one message.

Dequeuing applications can choose to dequeue persistent messages only, buffered
messages only, or both types. Visibility must be set to IMMEDIATE for dequeuing
buffered messages. All of the following dequeue options are supported:

■ Dequeue modes BROWSE, LOCK, REMOVE, and REMOVE_NO_DATA

■ Navigation modes FIRST_MESSAGE and NEXT_MESSAGE

■ Correlation identifier

■ Dequeue condition

■ Message identifier

Propagating Buffered Messages
Propagation of buffered messages is supported. A single propagation schedule serves
both persistent and buffered messages. The DBA_QUEUE_SCHEDULES view displays
statistics and error information.

Oracle Streams AQ deletes buffered messages once they are propagated to the remote
sites. If the receiving site fails before these messages are consumed, then these
messages will be lost. The source site will not be able to re-send them. Duplicate
delivery of messages is also possible.

Flow Control
Oracle Streams AQ implements a flow control system that prevents applications from
flooding the shared memory with messages. If the number of unread messages
enqueued by a message sender exceeds a system-determined limit, then message

See Also: "Priority and Ordering of Messages in Enqueuing" on
page 1-19

See Also: "Adding a Subscriber" on page 8-20

See Also: "Dequeue Options" on page 10-13

See Also: "DBA_QUEUE_SCHEDULES: All Propagation Schedules"
on page 9-3

See Also: "Buffered Messaging with Real Application Clusters
(RAC)" on page 1-15

Buffered Messaging

Introduction to Oracle Streams AQ 1-15

sender is blocked until one of the subscribers has read some of its messages. A
message sender is identified by sender_id.name in the enqueue options. A sender
blocked due to flow control on a queue does not affect other message senders.

Even with flow control, slow consumers of a multiconsumer queue can cause the
number of messages stored in memory to grow without limit. If this happens, older
messages are spilled to disk and removed from the Oracle Streams AQ pool to free up
memory. This ensures that the cost of disk access is paid by the slower consumers, and
faster subscribers can proceed unhindered.

Buffered Messaging with Real Application Clusters (RAC)
An application can enqueue and dequeue buffered messages from any RAC instance
as long as it uses password-based authentication to connect to the database. The
structures required for buffered messaging are implemented on one RAC instance. The
instance where the buffered messaging structures are implemented is the OWNER_
INSTANCE of the queue table containing the queue. Enqueue and dequeue requests
received at other instances are forwarded to the OWNER_INSTANCE over the
interconnect. The REMOTE_LISTENER parameter in listener.ora must also be set
to enable forwarding of buffered messaging requests to correct instance.

A service name is associated with each queue in RAC and displayed in the DBA_
QUEUES and USER_QUEUES views. This service name always points to the instance
with the most efficient access for buffered messaging, minimizing pinging between
instances. OCI clients can use the service name for buffered messaging operations.

Oracle recommends that you use buffered messaging with queue-to-queue
propagation. This results in transparent failover when propagating messages to a
destination RAC system. You do not need to re-point your database links if the
primary Oracle Streams AQ RAC instance fails.

Buffered Messaging Restrictions
The following Oracle Streams AQ features are not currently supported for buffered
messaging:

■ Message retention

■ Message delay

■ Transaction grouping

■ Array enqueue

■ Array dequeue

See Also:

■ "ALL_QUEUE_TABLES: Queue Tables Queue Accessible to the
Current User" on page 9-3 for more information on OWNER_
INSTANCE

■ "REMOTE_LISTENER" in Oracle Database Reference for more
information on setting the REMOTE_LISTENER parameter

See Also: "DBA_QUEUES: All Queues in Database" on page 9-3 or
"USER_QUEUES: Queues In User Schema" on page 9-3

See Also: "Support for Oracle Real Application Clusters" on
page 1-5

Asynchronous Notifications

1-16 Oracle Streams Advanced Queuing User’s Guide

■ Message export and import

■ Posting for subscriber notification

■ Messaging Gateway

Error Handling
Retry count and retry delay are not supported for buffered messages. Message
expiration is supported. When a buffered message has been in the queue beyond its
expiration period, it is moved into the exception queue as a persistent message.

Asynchronous Notifications
Asynchronous notification allows clients to receive notifications of messages of
interest. The client can use these notifications to monitor multiple subscriptions. The
client need not be connected to the database to receive notifications regarding its
subscriptions. Asynchronous notification is supported for buffered messages. The
delivery mode of the message is available in the message descriptor of the notification
descriptor.

The client specifies a callback function which is run for each message. Asynchronous
notification cannot be used to invoke an executable, but it is possible for the callback
function to invoke a stored procedure.

Clients can receive notifications procedurally using PL/SQL, Java Message Service
(JMS), or OCI callback functions, or clients can receive notifications through e-mail or
HTTP post. Clients can also specify the presentation for notifications as either RAW or
XML.

For JMS queues, the dequeue is accomplished as part of the notification; explicit
dequeue is not required. For RAW queues, clients can specify payload delivery; but
they still must dequeue the message in REMOVE_NO_DATA mode. For all other
persistent queues, the notification contains only the message properties; clients
explicitly dequeue to receive the message.

Payload Delivery for RAW Queues
For RAW queues, Oracle Streams AQ clients can now specify that the message payload
be delivered along with its notification.

Reliable Notification
In earlier releases of Oracle Streams AQ, message notifications were stored in shared
memory and were lost if the instance failed. Clients can now specify persistent
message notification. If a RAC instance fails, its notifications are delivered by another
RAC node. If a standalone instance fails, its notifications are delivered when the
instance restarts.

Note: In releases before Oracle Database 10g Release 2 (10.2), the
Oracle Streams AQ notification feature was not supported for queues
with names longer than 30 characters. This restriction no longer
applies. The 24-character limit on names of user-generated queues still
applies. See "Creating a Queue" on page 8-12.

See Also: "AQ Registration Information Type" on page 2-3

Asynchronous Notifications

Introduction to Oracle Streams AQ 1-17

Designated Port Notification
Oracle Streams AQ clients can now use the OCI subscription handle attribute OCI_
ATTR_SUBSCR_PORTNO to designate the port at which notifications are delivered. This
is especially useful for clients on a computer behind a firewall. The port for the listener
thread can be designated before the first registration, using an attribute in the
environment handle. The thread is started the first time an
OCISubscriptionRegister is called. If the client attempts to start another thread
on a different port using a different environment handle, then Oracle Streams AQ
returns an error.

Registration Timeout
In earlier releases of Oracle Streams AQ, registrations for notification persisted until
explicitly removed by the client or purged in case of extended client failure. In Oracle
Streams AQ 10g Release 2 (10.2) clients can register for a specified time, after which the
registration is automatically purged.

When the registration is purged, Oracle Streams AQ sends a notification to the client,
so the client can invoke its callback and take any necessary action.

Purge on Notification
Clients can also register to receive only the first notification, after which the
registration is automatically purged.

An example where purge on notification is useful is a client waiting for enqueues to
start. In this case, only the first notification is useful; subsequent notifications provide
no additional information. Previously, this client would be required to unregister once
enqueuing started; now the registration can be configured to go away automatically.

Buffered Message Notification
Clients can register for notification of buffered messages. The registration requests
apply to both buffered and persistent messages. The message properties delivered
with the PL/SQL or OCI notification specify whether the message is buffered or
persistent.

Note: Notification reliability refers only to server failures. If Oracle
Streams AQ is unable to deliver client notifications for any other
reason, then the notifications are purged along with the client
registration.

Note: Designated port notification applies only to OCI clients.

See Also: "Publish-Subscribe Registration Functions in OCI" in
Oracle Call Interface Programmer's Guide

See Also: "AQ Registration Information Type" on page 2-3 for
information on the timeout parameter

Enqueue Features

1-18 Oracle Streams Advanced Queuing User’s Guide

Reliable notification is not supported.

Views on Registration
The dictionary views DBA_SUBSCR_REGISTRATIONS and USER_SUBSCR_
REGISTRATIONS display the various registrations in the system. The diagnostic view
GV$SUBSCR_REGISTRATION_STATS may be used to monitor notification statistics
and performance.

Event-Based Notification
Event-based notifications are processed by a set of coordinator (EMNC) and subordinate
processes (EXXX). The event notification load is distributed amongst these processes.
These processes work on the system notifications in parallel, offering a capability to
process a larger volume of notifications, a faster response time and lower shared
memory use for staging notifications.

Notification Grouping by Time
Notification applications may register to receive a single notification for all events that
occur within a specified time interval. Notification Clients may specify a start time for
the notifications. Additionally, they must specify a time as the grouping class and the
time interval as the grouping value. A repeat count may be used to limit the number of
notifications delivered.

Clients can receive two types of grouping events, Summary or Last. A summary
notification is a list of Message Identifiers of all the messages for the subscription. If
last was specified as a grouping type, notification would have information about the
last message in the notification interval. A count of the number of messages in the
interval is also sent.

The registration interfaces in PLSQL and OCI allow for specification of the START_
TIME, REPEAT_COUNT, GROUPING CLASS, GROUPING VALUE, GROUPING TYPE in
the AQ$_REGISTRATION_INFO and the OCI subscription Handle.

The notification descriptor received by the AQ notification client provides information
about the group of message identifiers and the number of notifications in the group.

Enqueue Features
The following features apply to enqueuing messages:

■ Enqueue an Array of Messages

■ Correlation Identifiers

See Also:

■ "Registering for Notification" on page 10-22 for more information
on PL/SQL notification

■ Appendix C, "OCI Examples", which appears only in the HTML
version of this guide, for an example of OCI notification

See Also:

■ Oracle Database PL/SQL Packages and Types Reference

■ Oracle Call Interface Programmer's Guide

Enqueue Features

Introduction to Oracle Streams AQ 1-19

■ Priority and Ordering of Messages in Enqueuing

■ Message Grouping

■ Sender Identification

■ Time Specification and Scheduling

Enqueue an Array of Messages
When enqueuing messages into a queue, you can operate on an array of messages
simultaneously, instead of one message at a time. This can improve the performance of
enqueue operations. When enqueuing an array of messages into a queue, each
message shares the same enqueue options, but each message can have different
message properties. You can perform array enqueue operations using PL/SQL or OCI.

Array enqueuing is not supported for buffered messages in this release.

Correlation Identifiers
You can assign an identifier to each message, thus providing a means to retrieve
specific messages at a later time.

Priority and Ordering of Messages in Enqueuing
You can specify the priority of an enqueued message and its exact position in the
queue. This means that users can specify the order in which messages are consumed in
three ways:

■ A priority can be assigned to each message.

■ A sort order specifies which properties are used to order all messages in a queue.
This is set when the queue table is created and cannot be changed. You can choose
to sort messages by priority, enqueue time, or commit time. The commit-time
option, a new feature in Oracle Streams AQ 10g Release 2 (10.2), orders messages
by an approximate CSCN calculated for each transaction.

Commit-time ordering is useful when transactions are interdependent or when
browsing the messages in a queue must yield consistent results.

■ A sequence deviation positions a message in relation to other messages.

If several consumers act on the same queue, then each consumer gets the first message
that is available for immediate consumption. A message that is in the process of being
consumed by another consumer is skipped.

Priority ordering of messages is achieved by specifying priority, enqueue time as the
sort order. If priority ordering is chosen, then each message is assigned a priority at
enqueue time by the enqueuing agent. At dequeue time, the messages are dequeued in
the order of the priorities assigned. If two messages have the same priority, then the

See Also:

■ "Commit-Time Queues" in Oracle Streams Concepts and
Administration

■ "Creating a Queue Table" on page 8-1 for more information on sort
order

Note: The sequence deviation feature is deprecated in 10g Release 2
(10.2).

Dequeue Features

1-20 Oracle Streams Advanced Queuing User’s Guide

order in which they are dequeued is determined by the enqueue time. A first-in,
first-out (FIFO) priority queue can also be created by specifying enqueue time, priority
as the sort order of the messages.

Message Grouping
Messages belonging to one queue can be grouped to form a set that can only be
consumed by one user at a time. This requires that the queue be created in a queue
table that is enabled for message grouping. All messages belonging to a group must be
created in the same transaction, and all messages created in one transaction belong to
the same group.

This feature allows users to segment complex messages into simple messages. For
example, messages directed to a queue containing invoices can be constructed as a
group of messages starting with a header message, followed by messages representing
details, followed by a trailer message.

Message grouping is also useful if the message payload contains complex large objects
such as images and video that can be segmented into smaller objects.

Group message properties priority, delay, and expiration are determined solely by the
message properties specified for the first message in a group, irrespective of which
properties are specified for subsequent messages in the group.

The message grouping property is preserved across propagation. However, the
destination queue where messages are propagated must also be enabled for
transactional grouping. There are also some restrictions you must keep in mind if the
message grouping property is to be preserved while dequeuing messages from a
queue enabled for transactional grouping.

Sender Identification
Applications can mark the messages they send with a custom identification. Oracle
Streams AQ also automatically identifies the queue from which a message was
dequeued. This allows applications to track the pathway of a propagated message or a
string message within the same database.

Time Specification and Scheduling
Messages can be enqueued with an expiration that specifies the interval of time the
message is available for dequeuing. The default for expiration is never. When a
message expires, it is moved to an exception queue. Expiration processing requires
that the queue monitor be running.

Dequeue Features
The following features apply to dequeuing messages:

■ Concurrent Dequeues

■ Dequeue Methods

■ Dequeue Modes

■ Dequeue an Array of Messages

■ Message States

■ Navigation of Messages in Dequeuing

■ Waiting for Messages

■ Retries with Delays

Dequeue Features

Introduction to Oracle Streams AQ 1-21

■ Optional Transaction Protection

■ Exception Queues

Concurrent Dequeues
When there are multiple processes dequeuing from a single-consumer queue or
dequeuing for a single consumer on the multiconsumer queue, different processes skip
the messages that are being worked on by a concurrent process. This allows multiple
processes to work concurrently on different messages for the same consumer.

Dequeue Methods
A message can be dequeued using one of the following dequeue methods:

■ Specifying a correlation identifier

A correlation identifier is a user-defined message property. Multiple messages
with the same correlation identifier can be present in a queue, which means that
the ordering (enqueue order) between messages might not be preserved on
dequeue calls.

■ Specifying a message identifier

A message identifier is a system-assigned value (of RAW datatype). Only one
message with a given message identifier can be present in the queue.

■ Specifying a dequeue condition

A dequeue condition is expressed in terms of message properties or message
content and is similar in syntax to the WHERE clause of a SQL query. Messages in
the queue are evaluated against the condition, and messages that satisfy the given
condition are returned. When a dequeue condition is used, the order of the
messages dequeued is indeterminate, and the sort order of the queue is not
honored.

■ Default dequeue

A default dequeue retrieves the first available message.

Dequeue Modes
A dequeue request can browse a message, remove it, or remove it with no data. If a
message is browsed, then it remains available for further processing. If a message is
removed or removed with no data, then it is no longer available for dequeue requests.
Depending on the queue properties, a removed message can be retained in the queue
table. A message is retained in the queue table after it has been consumed only if a
retention time is specified for its queue.

The browse mode has three risks. First, there is no guarantee that the message can be
dequeued again after it is browsed, because a dequeue call from a concurrent user
might have removed the message. To prevent a viewed message from being dequeued
by a concurrent user, you should view the message in the locked mode.

Second, your dequeue position in browse mode is automatically changed to the
beginning of the queue if a nonzero wait time is specified and the navigating position
reaches the end of the queue. If you repeat a dequeue call in the browse mode with the
NEXT_MESSAGE navigation option and a nonzero wait time, then you can end up

Note: Dequeuing with correlation identifier, message identifier, or
dequeue condition does not preserve the message grouping property.

Dequeue Features

1-22 Oracle Streams Advanced Queuing User’s Guide

dequeuing the same message over and over again. Oracle recommends that you use a
nonzero wait time for the first dequeue call on a queue in a session, and then use a
zero wait time with the NEXT_MESSAGE navigation option for subsequent dequeue
calls. If a dequeue call gets an "end of queue" error message, then the dequeue position
can be explicitly set by the dequeue call to the beginning of the queue using the
FIRST_MESSAGE navigation option, following which the messages in the queue can
be browsed again.

Third, if the sort order of the queue is ENQ_TIME, PRIORITY, or a combination of
these two, then results may not be repeatable from one browse to the next. If you must
have consistent browse results, then you should use a commit-time queue.

When a message is dequeued using REMOVE_NODATA mode, the payload of the
message is not retrieved. This mode can be useful when the user has already examined
the message payload, possibly by means of a previous BROWSE dequeue.

Dequeue an Array of Messages
When dequeuing messages from a queue, you can operate on an array of messages
simultaneously, instead of one message at a time. This can improve the performance of
dequeue operations. If you are dequeuing from a transactional queue, you can
dequeue all the messages for a transaction with a single call, which makes application
programming easier.

When dequeuing an array of messages from a queue, each message shares the same
dequeue options, but each message can have different message properties. You can
perform array enqueue and array dequeue operations using PL/SQL or OCI.

Array dequeuing is not supported for buffered messages in this release.

Message States
Multiple processes or operating system threads can use the same consumer name to
dequeue concurrently from a queue. In that case Oracle Streams AQ provides the first
unlocked message that is at the head of the queue and is intended for the consumer.
Unless the message identifier of a specific message is specified during dequeue,
consumers can dequeue messages that are in the READY state.

A message is considered PROCESSED only when all intended consumers have
successfully dequeued the message. A message is considered EXPIRED if one or more
consumers did not dequeue the message before the EXPIRATION time. When a
message has expired, it is moved to an exception queue.

Expired messages from multiconsumer queues cannot be dequeued by the intended
recipients of the message. However, they can be dequeued in the REMOVE mode
exactly once by specifying a NULL consumer name in the dequeue options.

See Also:

■ "Commit-Time Queues" in Oracle Streams Concepts and
Administration

■ "Creating a Queue Table" on page 8-1

Dequeue Features

Introduction to Oracle Streams AQ 1-23

Beginning with Oracle Streams AQ release 8.1.6, only the queue monitor removes
messages from multiconsumer queues. This allows dequeuers to complete the
dequeue operation by not locking the message in the queue table. Because the queue
monitor removes messages that have been processed by all consumers from
multiconsumer queues approximately once every minute, users can see a delay
between when the messages have been completely processed and when they are
physically removed from the queue.

Navigation of Messages in Dequeuing
You have several options for selecting a message from a queue. You can select the first
message with the FIRST_MESSAGE navigation option. Alternatively, once you have
selected a message and established its position in the queue, you can then retrieve the
next message with the NEXT_MESSAGE navigation option.

The FIRST_MESSAGE navigation option performs a SELECT on the queue. The NEXT_
MESSAGE navigation option fetches from the results of the SELECT run in the FIRST_
MESSAGE navigation. Thus performance is optimized because subsequent dequeues
need not run the entire SELECT again.

If the queue is enabled for transactional grouping, then the navigation options work in
a slightly different way. If FIRST_MESSAGE is requested, then the dequeue position is
still reset to the beginning of the queue. But if NEXT_MESSAGE is requested, then the
position is set to the next message in the same transaction. Transactional grouping also
offers a NEXT_TRANSACTION option. It sets the dequeue position to the first message
of the next transaction.

Transaction grouping has no effect if you dequeue by specifying a correlation identifier
or message identifier, or if you dequeue some of the messages of a transaction and
then commit.

If you reach the end of the queue while using the NEXT_MESSAGE or NEXT_
TRANSACTION option, and you have specified a nonzero wait time, then the
navigating position is automatically changed to the beginning of the queue. If a zero
wait time is specified, then you can get an exception when the end of the queue is
reached.

Waiting for Messages
Oracle Streams AQ allows applications to block on one or more queues waiting for the
arrival of either a newly enqueued message or a message that becomes ready. You can
use the DEQUEUE operation to wait for the arrival of a message in a single queue or the
LISTEN operation to wait for the arrival of a message in more than one queue.

Note: If the multiconsumer exception queue was created in a queue
table with the compatible parameter set to 8.0, then expired
messages can be dequeued only by specifying a message identifier.

Queues created in a queue table with compatible set to 8.0
(referred to in this guide as 8.0-style queues) are deprecated in Oracle
Streams AQ 10g Release 2 (10.2). Oracle recommends that any new
queues you create be 8.1-style or newer and that you migrate existing
8.0-style queues at your earliest convenience.

Note: Applications can also perform a blocking dequeue on
exception queues to wait for arrival of EXPIRED messages.

Dequeue Features

1-24 Oracle Streams Advanced Queuing User’s Guide

When the blocking DEQUEUE call returns, it returns the message properties and the
message payload. When the blocking LISTEN call returns, it discloses only the name
of the queue where a message has arrived. A subsequent DEQUEUE operation is
needed to dequeue the message.

When there are messages for multiple agents in the agent list, LISTEN returns with the
first agent for whom there is a message. To prevent one agent from starving other
agents for messages, the application can change the order of the agents in the agent
list.

Applications can optionally specify a timeout of zero or more seconds to indicate the
time that Oracle Streams AQ must wait for the arrival of a message. The default is to
wait forever until a message arrives in the queue. This removes the burden of
continually polling for messages from the application, and it saves CPU and network
resources because the application remains blocked until a new message is enqueued or
becomes READY after its DELAY time.

An application that is blocked on a dequeue is either awakened directly by the
enqueuer if the new message has no DELAY or is awakened by the queue monitor
process when the DELAY or EXPIRATION time has passed. If an application is waiting
for the arrival of a message in a remote queue, then the Oracle Streams AQ propagator
wakes up the blocked dequeuer after a message has been propagated.

Retries with Delays
If the transaction dequeuing a message from a queue fails, then it is regarded as an
unsuccessful attempt to consume the message. Oracle Streams AQ records the number
of failed attempts to consume the message in the message history. Applications can
query the RETRY_COUNT column of the queue table view to find out the number of
unsuccessful attempts on a message. In addition, Oracle Streams AQ allows the
application to specify, at the queue level, the maximum number of retries for messages
in the queue. The default value for maximum retries is 5. If the number of failed
attempts to remove a message exceeds this number, then the message is moved to the
exception queue and is no longer available to applications.

A bad condition can cause the transaction receiving a message to end. Oracle Streams
AQ allows users to hide the bad message for a specified retry delay interval, during
which it is in the WAITING state. After the retry delay, the failed message is again
available for dequeue. The Oracle Streams AQ time manager enforces the retry delay
property. The default value for retry delay is 0.

If multiple sessions are dequeuing messages from a queue simultaneously, then
RETRY_COUNT information might not always be updated correctly. If session one
dequeues a message and rolls back the transaction, then Oracle Streams AQ notes that
the RETRY_COUNT information for this message must be updated. However RETRY_
COUNT cannot be incremented until session one completes the rollback. If session two
attempts to dequeue the same message after session one has completed the rollback
but before it has incremented RETRY_COUNT, then the dequeue by session two
succeeds. When session one attempts to increment RETRY_COUNT, it finds that the

Note: This feature is not currently supported in Visual Basic (OO4O).

Note: If a dequeue transaction fails because the server process dies
(including ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on
the instance, then RETRY_COUNT is not incremented.

Dequeue Features

Introduction to Oracle Streams AQ 1-25

message is locked by session two and RETRY_COUNT is not incremented. A trace file is
then generated in the USER_DUMP_DESTINATION for the instance with the following
message:

Error on rollback: ORA-25263: no message in queue schema.qname with message ID ...

Optional Transaction Protection
Enqueue and dequeue requests are usually part of a transaction that contains the
requests, thereby providing the wanted transactional action. You can, however,
specify that a specific request is a transaction by itself, making the result of that request
immediately visible to other transactions. This means that messages can be made
visible to the external world when the enqueue or dequeue statement is applied or
after the transaction is committed.

Exception Queues
An exception queue is a repository for expired or unserviceable messages.
Applications cannot directly enqueue into exception queues. Also, a multiconsumer
exception queue cannot have subscribers associated with it. However, an application
that intends to handle these expired or unserviceable messages can dequeue them
exactly once from the exception queue using remove mode. The consumer name
specified while dequeuing should be null. Messages can also be dequeued from the
exception queue by specifying the message identifier.

After a message has been moved to an exception queue, there is no way to identify
which queue the message resided in before moving to the exception queue. If this
information is important, then the application must save this information in the
message itself.

Note: Maximum retries and retry delay are not available with
8.0-style multiconsumer queues.

Queues created in a queue table with compatible set to 8.0
(referred to in this guide as 8.0-style queues) are deprecated in Oracle
Streams AQ 10g Release 2 (10.2). Oracle recommends that any new
queues you create be 8.1-style or newer and that you migrate existing
8.0-style queues at your earliest convenience.

Note: Transaction protection is not supported for buffered
messaging.

Note: Expired or unserviceable buffered messages are moved to an
exception queue as persistent messages.

Messages intended for single-consumer queues, or for 8.0-style
multiconsumer queues, can only be dequeued by their message
identifiers once the messages have been moved to an exception queue.

Queues created in a queue table with compatible set to 8.0
(referred to in this guide as 8.0-style queues) are deprecated in Oracle
Streams AQ 10g Release 2 (10.2). Oracle recommends that any new
queues you create be 8.1-style or newer and that you migrate existing
8.0-style queues at your earliest convenience.

Propagation Features

1-26 Oracle Streams Advanced Queuing User’s Guide

The exception queue is a message property that can be specified during enqueue time.
If an exception queue is not specified, then a default exception queue is used. The
default exception queue is automatically created when the queue table is created.

A message is moved to an exception queue under the following conditions:

■ It was not dequeued within the specified expiration interval.

For a message intended for multiple recipients, the message is moved to the
exception queue if one or more of the intended recipients was not able to dequeue
the message within the specified expiration interval. The default expiration
interval is never, meaning the messages does not expire.

■ The message was dequeued successfully, but the application that dequeued it
rolled back the transaction because of an error that arose while processing the
message. If the message has been dequeued but rolled back more than the number
of times specified by the retry limit, then the message is moved to the exception
queue.

For a message intended for multiple recipients, a separate retry count is kept for
each recipient. The message is moved to the exception queue only when retry
counts for all recipients of the message have exceeded the specified retry limit.

The default retry limit is five for single-consumer queues and 8.1-style
multiconsumer queues. No retry limit is supported for 8.0-style multiconsumer
queues, which are deprecated in Oracle Streams AQ 10g Release 2 (10.2).

■ The statement processed by the client contains a dequeue that succeeded but the
statement itself was undone later due to an exception.

If the dequeue procedure succeeds but the PL/SQL procedure raises an exception,
then Oracle Streams AQ increments the retry count of the message returned by the
dequeue procedure.

■ The client program successfully dequeued a message but terminated before
committing the transaction.

Propagation Features
Messages can be propagated from one queue to another, allowing applications to
communicate with each other without being connected to the same database or to the
same queue. The destination queue can be located in the same database or in a remote
database.

Propagation enables you to fan out messages to a large number of recipients without
requiring them all to dequeue messages from a single queue. You can also use
propagation to combine messages from different queues into a single queue. This is
known as compositing or funneling messages.

Note: If a dequeue transaction fails because the server process dies
(including ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on
the instance, then RETRY_COUNT is not incremented.

Note: You can propagate messages from a multiconsumer queue to a
single-consumer queue. Propagation from a single-consumer queue to
a multiconsumer queue is not possible.

Propagation Features

Introduction to Oracle Streams AQ 1-27

A message is marked as processed in the source queue immediately after the message
has been propagated, even if the consumer has not dequeued the message at the
remote queue. Similarly, when a propagated message expires at the remote queue, the
message is moved to the exception queue of the remote queue, and not to the
exception queue of the local queue. Oracle Streams AQ does not currently propagate
the exceptions to the source queue.

To enable propagation, one or more subscribers are defined for the queue from which
messages are to be propagated and a schedule is defined for each destination where
messages are to be propagated from the queue.

Oracle Streams AQ automatically checks if the type of the remote queue is structurally
equivalent to the type of the local queue within the context of the character sets in
which they are created. Messages enqueued in the source queue are then propagated
and automatically available for dequeuing at the destination queue or queues.

When messages arrive at the destination queues, sessions based on the source queue
schema name are used for enqueuing the newly arrived messages into the destination
queues. This means that you must grant schemas of the source queues enqueue
privileges to the destination queues.

Propagation runs as an Oracle Scheduler job. A background process, the JOB_QUEUE_
PROCESS will run the job. Propagation scheduling may be a dedicated process,
running continuously and without end, or it may be event driven, in which case it
runs only if there is a message to be propagated.

Oracle Streams AQ offers two kinds of propagation:

■ Queue-to-dblink propagation

■ Queue-to-queue propagation

Queue-to-dblink propagation delivers messages or events from the source queue to all
subscribing queues at the destination database identified by the dblink.

A single propagation schedule is used to propagate messages to all subscribing
queues. Hence any changes made to this schedule will affect message delivery to all
the subscribing queues.

Queue-to-queue propagation delivers messages or events from the source queue to a
specific destination queue identified on the dblink. This allows the user to have
fine-grained control on the propagation schedule for message delivery.

This new propagation mode also supports transparent failover when propagating to a
destination RAC system. With queue-to-queue propagation, you are no longer
required to re-point a database link if the owner instance of the queue fails on RAC.

Oracle Streams AQ provides detailed statistics about the messages propagated and the
schedule itself. This information can be used to tune propagation schedules for best
performance.

Remote Consumers
Consumers of a message in multiconsumer queues can be local or remote. Local
consumers dequeue messages from the same queues into which the producer
enqueued the messages. Local consumers have a name but no address or protocol in
their agent descriptions.

Remote consumers dequeue from queues that are different from the queues where the
messages were enqueued. Remote consumers fall into three categories:

■ The address refers to a queue in the same database.

Propagation Features

1-28 Oracle Streams Advanced Queuing User’s Guide

In this case the consumer dequeues the message from a different queue in the
same database. These addresses are of the form [schema].queue_name. If the
schema is not specified, then the schema of the current user is used.

■ The address refers to a queue in a different database.

In this case the database must be reachable using database links and the protocol
must be either NULL or 0. These addresses are of the form [schema].queue_
name@dblink. If the schema is not specified, then the schema of the current user
is used. If the database link does not have a domain name specified, then the
default domain as specified by the DB_DOMAIN init.ora parameter is used.

■ The address refers to a destination that can be reached by a third party protocol.

You must refer to the documentation of the third party software to determine how
to specify the address and the protocol database link and schedule propagation.

Propagation to Remote Subscribers
Oracle Streams AQ validates the database link specified in a propagation schedule
when the schedule runs, but not when the schedule is created. It is possible, therefore,
to create a queue-to-dblink or queue-to-queue propagation before creating its
associated database link. Also, the propagation schedule is not disabled if you remove
the database link.

Oracle Streams AQ offers two kinds of propagation:

A) Queue-to-dblink propagation - specified by providing a (source) queue and
(destination) databaselink. Messages from the source queue for any queues at the
destination specified by the dblink will be handled by this propagation.

In this scenario, we cannot have multiple propagations from a source queue, with
dblinks connecting to the same database. Thus(q1, dblink1) and (q1, dblink2) cannot
co-exist if both dblinks connect to the same database. On the other hand (q1, dblink1)
and (q2, dblink1) OR (q1, dblink1) and (q2, dblink2) can co-exist as source queues are
different.

B) Queue-to-queue propagation - specified by providing a (source) queue,
(destination) dblink and (destination) queue. Messages from the source queue for the
indicated queue at the destination dblink will be handled by this propagation. Here,
either (q1, dblink1, dq1), (q1, dblink1, dq2) OR (q1, dblink1, dq1), (q1, dblink2, dq2)
succeeds. This strategy works because the destination queues are different even
though source queue is the same and dblink connects to the same database.

In this scenario, we cannot have multiple propagations between a source queue,
destination queue, even if using different dblinks: (q1, dblink1, q2) and (q1, dblink2,
q2) cannot co-exist, if dblink1 and dblink2 are pointing to the same database.

Priority and Ordering of Messages in Propagation
The delay, expiration, and priority parameters apply identically to both local and
remote consumers in both queue-to-dblink and queue-to-queue propagation. Oracle
Streams AQ accounts for any delay in propagation by adjusting the delay and
expiration parameters accordingly. For example, if expiration is set to one hour, and
the message is propagated after 15 minutes, then the expiration at the remote queue is
set to 45 minutes.

Inboxes and Outboxes
Figure 1–9 illustrates applications on different databases communicating using Oracle
Streams AQ. Each application has an inbox for handling incoming messages and an
outbox for handling outgoing messages. Whenever an application enqueues a

Propagation Features

Introduction to Oracle Streams AQ 1-29

message, it goes into its outbox regardless of the message destination. Similarly, an
application dequeues messages from its inbox no matter where the message originates.

Figure 1–9 Message Propagation in Oracle Streams AQ

Propagation Scheduling
A queue-to-dblink propagation schedule is defined for a pair of source and destination
database links. A queue-to-queue propagation schedule is defined for a pair of source
and destination queues. If a queue has messages to be propagated to several queues,
then a schedule must be defined for each of the destination queues. With
queue-to-dblink propagation, all schedules for a particular remote database have the
same frequency. With queue-to-queue propagation, the frequency of each schedule can
be adjusted independently of the others

A schedule indicates the time frame during which messages can be propagated from
the source queue. This time frame can depend on a number of factors such as network
traffic, load at the source database, and load at the destination database. If the duration

Application B
consumer & producer

Inbox

Enqueue
Dequeue

Application A
producer & consumer

Dequeue
Enqueue

Database 1

Outbox

Application C
consumer & producer

Inbox

Enqueue
Dequeue

Outbox

Database 2

AQ's
Message

Propagation
Infrastructure

Outbox Inbox

Propagation Features

1-30 Oracle Streams Advanced Queuing User’s Guide

is unspecified, then the time frame is an infinite single window. If a window must be
repeated periodically, then a finite duration is specified along with a NEXT_TIME
function that defines the periodic interval between successive windows.

When a schedule is created, a job is automatically submitted to the job queue facility to
handle propagation.

The propagation schedules defined for a queue can be changed or dropped at any time
during the life of the queue. You can also temporarily disable a schedule instead of
dropping it. All administrative calls can be made irrespective of whether the schedule
is active or not. If a schedule is active, then it takes a few seconds for the calls to be
processed.

Propagation of Messages with LOBs
Large Objects can be propagated using Oracle Streams AQ using two methods:

■ Propagation from RAW queues

In RAW queues the message payload is stored as a BLOB. This allows users to
store up to 32KB of data when using the PL/SQL interface and as much data as
can be contiguously allocated by the client when using OCI. This method is
supported by all releases after 8.0.4 inclusive.

■ Propagation from object queues with LOB attributes

The user can populate the LOB and read from the LOB using Oracle Database LOB
handling routines. The LOB attributes can be BLOBs or CLOBs (not NCLOBs). If the
attribute is a CLOB, then Oracle Streams AQ automatically performs any necessary
character set conversion between the source queue and the destination queue. This
method is supported by all releases from 8.1.3 inclusive.

Propagation Statistics
Detailed runtime information about propagation is gathered and stored in the DBA_
QUEUE_SCHEDULES view for each propagation schedule. This information can be used
by queue designers and administrators to fix problems or tune performance. Similarly,
errors reported by the view can be used to diagnose and fix problems. The view also
describes additional information such as the session ID of the session handling the
propagation and the process name of the job queue process handling the propagation.

For each schedule, detailed propagation statistics are maintained:

■ Total number of messages propagated in a schedule

■ Total number of bytes propagated in a schedule

■ Maximum number of messages propagated in a window

■ Maximum number of bytes propagated in a window

■ Average number of messages propagated in a window

■ Average size of propagated messages

Note: Payloads containing LOBs require users to grant explicit
Select, Insert and Update privileges on the queue table for doing
enqueues and dequeues.

See Also: Oracle Database SecureFiles and Large Objects Developer's
Guide

Propagation Features

Introduction to Oracle Streams AQ 1-31

■ Average time to propagated a message

Propagation Error Handling
Propagation has built-in support for handling failures and reporting errors. For
example, if the specified database link is invalid, if the remote database is unavailable,
or if the remote queue is not enabled for enqueuing, then the appropriate error
message is reported. Propagation uses an exponential backoff scheme for retrying
propagation from a schedule that encountered a failure.

If a schedule continuously encounters failures, then the first retry happens after 30
seconds, the second after 60 seconds, the third after 120 seconds and so forth. If the
retry time is beyond the expiration time of the current window, then the next retry is
attempted at the start time of the next window. A maximum of 16 retry attempts is
made, after which the schedule is automatically disabled.

When a schedule is disabled automatically due to failures, the relevant information is
written into the alert log. A check for scheduling failures indicates:

■ How many successive failures were encountered

■ The error message indicating the cause for the failure

■ The time at which the last failure was encountered

By examining this information, a queue administrator can fix the failure and enable
the schedule. If propagation is successful during a retry, then the number of failures is
reset to 0.

In some situations that indicate application errors in queue-to-dblink propagations,
Oracle Streams AQ marks messages as UNDELIVERABLE and logs a message in
alert.log. Examples of such errors are when the remote queue does not exist or
when there is a type mismatch between the source queue and the remote queue. The
trace files in the background_dump_dest directory can provide additional
information about the error.

When a new job queue process starts, it clears the mismatched type errors so the types
can be reverified. If you have capped the number of job queue processes and
propagation remains busy, then you might not want to wait for the job queue process
to terminate and restart. Queue types can be reverified at any time using DBMS_
AQADM.VERIFY_QUEUE_TYPES.

Note: Once a retry attempt slips to the next propagation window, it
will always do so; the exponential backoff scheme no longer governs
retry scheduling. If the date function specified in the next_time
parameter of DBMS_AQADM.SCHEDULE_PROPAGATION() results in a
short interval between windows, then the number of unsuccessful
retry attempts can quickly exceed 16, disabling the schedule.

Note: When a type mismatch is detected in queue-to-queue
propagation, propagation stops and throws an error. In such situations
you must query the DBA_SCHEDULES view to determine the last error
that occurred during propagation to a particular destination. The
message is not marked as UNDELIVERABLE.

Propagation Features

1-32 Oracle Streams Advanced Queuing User’s Guide

Propagation with Real Application Clusters
Propagation has support built-in for Oracle Real Application Clusters. It is transparent
to the user and the queue administrator. The job that handles propagation is submitted
to the same instance as the owner of the queue table where the queue resides.

If there is a failure at an instance and the queue table that stores the source queue is
migrated to a different instance, then the propagation job is also migrated to the new
instance. This minimizes pinging between instances and thus offers better
performance.

The destination can be identified by a database link or by destination queue name.
Specifying the destination database results in queue-to-dblink propagation. If you
propagate messages to several queues in another database, then all queue-to-dblink
propagations to that database have the same frequency. Specifying the destination
queue name results in queue-to-queue propagation, a new feature in Oracle Streams
AQ 10g Release 2 (10.2). If you propagate messages to several queues in another
database, then queue-to-queue propagation enables you to adjust the frequency of
each schedule independently of the others. You can even enable or disable individual
propagations.

This new queue-to-queue propagation mode also supports transparent failover when
propagating to a destination RAC system. With queue-to-queue propagation, you are
no longer required to re-point a database link if the owner instance of the queue fails
on RAC.

Propagation has been designed to handle any number of concurrent schedules. The
number of job queue processes is limited to a maximum of 1000, and some of these can
be used to handle jobs unrelated to propagation. Hence, propagation has built-in
support for multitasking and load balancing.

The propagation algorithms are designed such that multiple schedules can be handled
by a single job queue process. The propagation load on a job queue process can be
skewed based on the arrival rate of messages in the different source queues.

If one process is overburdened with several active schedules while another is less
loaded with many passive schedules, then propagation automatically redistributes the
schedules so they are loaded uniformly.

Third-Party Support
If the protocol number for a recipient is in the range 128 - 255, then the address of the
recipient is not interpreted by Oracle Streams AQ and the message is not propagated
by the Oracle Streams AQ system. Instead, a third-party propagator can dequeue the
message by specifying a reserved consumer name in the dequeue operation. The
reserved consumer names are of the form AQ$_Pprotocol_number. For example,
the consumer name AQ$_P128 can be used to dequeue messages for recipients with
protocol number 128. The list of recipients for a message with the specific protocol
number is returned in the recipient_list message property on dequeue.

Another way for Oracle Streams AQ to propagate messages to and from third-party
messaging systems is through Messaging Gateway. Messaging Gateway dequeues
messages from an Oracle Streams AQ queue and guarantees delivery to supported
third-party messaging systems. Messaging Gateway can also dequeue messages from
these systems and enqueue them to an Oracle Streams AQ queue.

See Also: "Scheduling a Queue Propagation" on page 8-24 for more
information on queue-to-queue propagation

Other Oracle Streams AQ Features

Introduction to Oracle Streams AQ 1-33

Propagation Using HTTP
In Oracle Database 10g you can set up Oracle Streams AQ propagation over HTTP and
HTTPS (HTTP over SSL). HTTP propagation uses the Internet access infrastructure
and requires that the Oracle Streams AQ servlet that connects to the destination
database be deployed. The database link must be created with the connect string
indicating the Web server address and port and indicating HTTP as the protocol. The
source database must be created for running Java and XML. Otherwise, the setup for
HTTP propagation is more or less the same as Oracle Net Services propagation.

Message Format Transformation
Applications often use data in different formats. A transformation defines a mapping
from one Oracle data type to another. The transformation is represented by a SQL
function that takes the source data type as input and returns an object of the target
data type. Only one-to-one message transformations are supported.

To transform a message during enqueue, specify a mapping in the enqueue options. To
transform a message during dequeue, specify a mapping either in the dequeue options
or when you add a subscriber. A dequeue mapping overrides a subscriber mapping.
To transform a message during propagation, specify a mapping when you add a
subscriber.

You can create transformations by creating a single PL/SQL function or by creating an
expression for each target type attribute. The PL/SQL function returns an object of the
target type or the constructor of the target type. This representation is preferable for
simple transformations or those not easily broken down into independent
transformations for each attribute.

Creating a separate expression specified for each attribute of the target type simplifies
transformation mapping creation and management for individual attributes of the
destination type. It is useful when the destination type has many attributes.

As Figure 1–10 shows, queuing, routing, and transformation are essential building
blocks to an integrated application architecture. The figure shows how data from the
Out queue of a CRM application is routed and transformed in the integration hub and
then propagated to the In queue of the Web application. The transformation engine
maps the message from the format of the Out queue to the format of the In queue.

Figure 1–10 Transformations in Application Integration

XML Data Transformation
You can transform XML data using the extract() method supported on XMLType
to return an object of XMLType after applying the supplied XPath expression. You can
also create a PL/SQL function that transforms the XMLType object by applying an
XSLT transformation to it, using the package XSLPROCESSOR.

Other Oracle Streams AQ Features
This section contains these topics:

■ Queue Monitor Coordinator

Out Queue In QueueRouting and
Transformation

CRM
Application

Web
Application

Spoke Spoke

Propagation

Integration Hub

Other Oracle Streams AQ Features

1-34 Oracle Streams Advanced Queuing User’s Guide

■ Integration with Oracle Internet Directory

■ Integration with Oracle Enterprise Manager

■ Retention and Message History

■ Cleaning Up Message Queues

■ Tracking and Event Journals

■ Non-repudiation

■ Internet Integration

Queue Monitor Coordinator
Before 10g Release 1 (10.1), the Oracle Streams AQ time manager process was called
queue monitor (QMNn), a background process controlled by setting the dynamic
init.ora parameter AQ_TM_PROCESSES. Beginning with 10g Release 1 (10.1), time
management and many other background processes are automatically controlled by a
coordinator-slave architecture called Queue Monitor Coordinator (QMNC). QMNC
dynamically spawns slaves named qXXX depending on the system load. The slaves
provide mechanisms for:

■ Message delay

■ Message expiration

■ Retry delay

■ Garbage collection for the queue table

■ Memory management tasks for buffered messages

Because the number of processes is determined automatically and tuned constantly,
you are saved the trouble of setting it with AQ_TM_PROCESSES.

Although it is no longer necessary to set init.ora parameter AQ_TM_PROCESSES, it
is still supported. If you do set it (up to a maximum of 10), then QMNC still autotunes
the number of processes. But you are guaranteed at least the set number of processes
for persistent queues. Processes for a buffered queue and other Oracle Streams tasks,
however, are not affected by this parameter.

Integration with Oracle Internet Directory
Oracle Internet Directory is a native LDAPv3 directory service built on Oracle
Database that centralizes a wide variety of information, including e-mail addresses,
telephone numbers, passwords, security certificates, and configuration data for many
types of networked devices. You can look up enterprise-wide queuing
information—queues, subscriptions, and events—from one location, the Oracle
Internet Directory. Refer to the Oracle Internet Directory Administrator's Guide for more
information.

Note: If you want to disable the Queue Monitor Coordinator, then
you must set AQ_TM_PROCESSES = 0 in your pfile or spfile.
Oracle strongly recommends that you do NOT set AQ_TM_
PROCESSES = 0. If you are using Oracle Streams, setting this
parameter to zero (which Oracle Database respects no matter what)
can cause serious problems.

Other Oracle Streams AQ Features

Introduction to Oracle Streams AQ 1-35

Integration with Oracle Enterprise Manager
You can use Oracle Enterprise Manager to:

■ Create and manage queues, queue tables, propagation schedules, and
transformations

■ Monitor your Oracle Streams AQ environment using its topology at the database
and queue levels, and by viewing queue errors and queue and session statistics

Retention and Message History
The systems administrator specifies the retention duration to retain messages after
consumption. Oracle Streams AQ stores information about the history of each
message, preserving the queue and message properties of delay, expiration, and
retention for messages destined for local or remote receivers. The information contains
the enqueue and dequeue times and the identification of the transaction that executed
each request. This allows users to keep a history of relevant messages. The history can
be used for tracking, data warehouse, and data mining operations, as well as specific
auditing functions.

Message retention is not supported for buffered messaging.

Cleaning Up Message Queues
The Oracle Streams AQ retention feature can be used to automatically clean up
messages after the user-specified duration after consumption.

If messages are accidentally inserted into a queue for the wrong subscriber, you can
dequeue them with the subscriber name or by message identifier. This consumes the
messages, which are cleaned up after their retention time expires.

To clean up messages for a particular subscriber, you can remove the subscriber and
add the subscriber again. Removing the subscriber removes all the messages for that
subscriber.

Tracking and Event Journals
Retained messages can be related to each other to form sequences. These sequences
represent event journals, which are often constructed by applications. Oracle Streams
AQ is designed to let applications create event journals automatically.

Non-repudiation
Oracle Streams AQ maintains the entire history of information about a message along
with the message itself. This information serves as proof of sending and receiving of
messages and can be used for non-repudiation of the sender and non-repudiation of
the receiver.

The following information is kept at enqueue for non-repudiation of the enqueuer:

■ Oracle Streams AQ agent doing the enqueue

■ Database user doing the enqueue

■ Enqueue time

■ Transaction ID of the transaction doing enqueue

The following information is kept at dequeue for non-repudiation of the dequeuer:

■ Oracle Streams AQ agent doing dequeue

■ Database user doing dequeue

Other Oracle Streams AQ Features

1-36 Oracle Streams Advanced Queuing User’s Guide

■ Dequeue time

■ Transaction ID of the transaction doing dequeue

After propagation, the ORIGINAL_MSGID field in the destination queue of the
propagation corresponds to the message ID of the source message. This field can be
used to correlate the propagated messages. This is useful for non-repudiation of the
dequeuer of propagated messages.

 Stronger non-repudiation can be achieved by enqueuing the digital signature of the
sender at the time of enqueue with the message and by storing the digital signature of
the dequeuer at the time of dequeue.

Internet Integration
You can access Oracle Streams AQ over the Internet by using Simple Object Access
Protocol (SOAP). Internet Data Access Presentation (IDAP) is the SOAP specification
for Oracle Streams AQ operations. IDAP defines the XML message structure for the
body of the SOAP request.

An IDAP message encapsulates the Oracle Streams AQ request and response in XML.
IDAP is used to perform Oracle Streams AQ operations such as enqueue, dequeue,
send notifications, register for notifications, and propagation over the Internet
standard transports—HTTP(s) and e-mail. In addition, IDAP encapsulates
transactions, security, transformation, and the character set ID for requests.

You can create an alias to an Oracle Streams AQ agent in Oracle Internet Directory and
then use the alias in IDAP documents sent over the Internet to perform Oracle Streams
AQ operations. Using aliases prevents exposing the internal name of the Oracle
Streams AQ agent.

Figure 1–11 shows the architecture for performing Oracle Streams AQ operations over
HTTP. The major components are:

■ Oracle Streams AQ client program

■ Web server/servlet runner hosting the Oracle Streams AQ servlet

■ Oracle Database server

The Oracle Streams AQ client program sends XML messages (conforming to IDAP) to
the Oracle Streams AQ servlet, which understands the XML message and performs
Oracle Streams AQ operations. Any HTTP client, a Web browser for example, can be
used. The Web server/servlet runner hosting the Oracle Streams AQ servlet,
Apache/Jserv or Tomcat for example, interprets the incoming XML messages. The
Oracle Streams AQ servlet connects to the Oracle Database server and performs
operations on user queues.

Note: This feature is certified to work with Apache, along with the
Tomcat or Jserv servlet execution engines. However, the code does not
prevent the servlet from working with other Web server and servlet
execution engines that support Java Servlet 2.0 or higher interfaces.

Oracle Streams AQ Demonstrations

Introduction to Oracle Streams AQ 1-37

Figure 1–11 Architecture for Performing Oracle Streams AQ Operations Using HTTP

Interfaces to Oracle Streams AQ
You can access Oracle Streams AQ functionality through the following interfaces:

■ PL/SQL using DBMS_AQ, DBMS_AQADM, and DBMS_AQELM

■ Visual Basic using Oracle Objects for OLE

■ Java Message Service (JMS) using the oracle.jms Java package

■ Internet access using HTTP(S)

Oracle Streams AQ Demonstrations
Oracle Streams AQ demos can be installed from the Oracle Database Companion CD.
Once they are installed, you can find them in the $ORACLE_HOME/rdbms/demo
directory. Refer to aqxmlREADME.txt and aqjmsREADME.txt in the demo directory
for more information.

Table 1–1 lists and briefly describes the PL/SQL and OCI demos. Table 1–2 lists and
briefly describes the JMS demos. Table 1–3 lists and briefly describes the XML demos.

Note: The oracle.AQ Java package was deprecated in Oracle
Streams AQ 10g Release 1 (10.1). Oracle recommends that you migrate
existing Java AQ applications to Oracle JMS and use Oracle JMS to
design your future Java AQ applications.

See Also:

■ Oracle Database PL/SQL Packages and Types Reference

■ Online Help for Oracle Objects for OLE

Table 1–1 Oracle Streams AQ Demonstrations

Demo and Locations Topic

aqdemo00.sql Create users, message types, and tables

aqdemo01.sql Create queue tables, queues, subscribers, and propagation schedule

aqdemo02.sql Enqueue messages into input queue

aqdemo03.sql Install dequeue procedures

aqdemo04.sql Perform blocking dequeues

aqdemo05.sql Perform listen for multiple agents

AQ
Queue

Web
Server

AQ Client

Oracle
Database
Server

AQ Servlet

XML Message
over HTTP

Oracle Streams AQ Demonstrations

1-38 Oracle Streams Advanced Queuing User’s Guide

aqdemo06.sql Clean up users, queue tables, queues, and subscribers in
aqdemo00.sql to aqdemo05.sql

aqdemo07.sql Enqueue and dequeue to XMLType queue using XPATH
expressions

aqdemo08.sql Demonstrates server-to-server email notifications with default XML
presentation

aqdemo09.sql Set up queues and subscribers for array enqueue and dequeue (for
OCI array demos also)

aqdemo10.sql Array enqueue 10 messages

aqdemo11.sql Array dequeue 10 messages

aqdemo12.sql Clean up queues and subscribers for array enqueue and dequeue
(for OCI array demos also)

ociaqdemo00.c Enqueue messages

ociaqdemo01.c Perform blocking dequeues

ociaqdemo02.c Perform listen for multiple agents

ociaqarrayenq.c Array enqueue 10 messages

ociaqarraydeq.c Array dequeue 10 messages

Table 1–2 Oracle Streams AQ JMS Demonstrations

Demo and Locations Topic

aqjmsREADME.txt Describes the Oracle Streams AQ Java API and JMS demos

aqjmsdmo.sql Set up Oracle Streams AQ JMS demos

aqjmsdemo01.java Enqueue text messages and dequeue based on message properties

aqjmsdemo02.java Message listener demo (enqueue messages)

aqjmsdemo03.java Message listener demo (set up listener and dequeue messages)

aqjmsdemo04.java Oracle type payload: dequeue on payload content

aqjmsdemo05.java Queue browser example

aqjmsdemo06.java Schedule propagation between queues in the database

aqjmsdemo07.java Send and receive an ADT message containing XML data

aqjmsdemo08.java JMS 1.1 domain unification demo

aqjmsdemo09.java JMS bulk array enqueue and dequeue

aqjmsdemo10.java ANYDATA messaging with JMS message types and ADT messages

aqjmsdrp.sql Clean up AQ JMS demos

aqoradmo.sql Set up Oracle Streams AQ Java API demos

aqorademo01.java Enqueue and dequeue RAW messages

aqorademo02.java Enqueue and dequeue object type messages using ORAData
interface

aqoradrp.sql Clean up AQ Java API demos

aqjmskprb01.java Enqueues and dequeues a message within the database

Table 1–1 (Cont.) Oracle Streams AQ Demonstrations

Demo and Locations Topic

Oracle Streams AQ Demonstrations

Introduction to Oracle Streams AQ 1-39

aqjmskprb01a.sql Set up kprb driver demo

aqjmskprb01b.sql Defines Java program aqjmskprb01.java as stored procedure

aqjmskprb01c.sql Runs aqjmskprb01.java as stored procedure

aqjmskprb01d.sql Clean up AQ kprb driver demo

Table 1–3 Oracle Streams AQ XML Demonstrations

Demo and Locations Topic

aqxmlREADME.txt Describes the Internet access demos

aqxmldmo.sql Create users, queue tables, and queues

aqxml01.xml AQXmlSend: Enqueue three messages to an ADT single- consumer
queue with piggyback commit

aqxml02.xml AQXmlReceive: Dequeue messages from ADT single-consumer
queue with piggyback commit

aqxml03.xml AQXmlPublish: Enqueue two messages to an ADT multiconsumer
queue

aqxml04.xml AQXmlReceive: Dequeue messages from an ADT (with LOB)
multiconsumer queue

aqxml05.xml AQXmlCommit: Commit previous operation

aqxml06.xml AQXmlSend: Enqueue a message to a JMS TEXT single-consumer
queue with piggyback commit

aqxml07.xml AQXmlReceive: Dequeue messages from a JMS TEXT
single-consumer queue with piggyback commit

aqxml08.xml AQXmlPublish: Enqueue a JMS MAP message with recipient into
multiconsumer queue

aqxml09.xml AQXmlReceive: Dequeue JMS MAP messages from a
multiconsumer queue

aqxml10.xml AQXmlRollback: Roll back previous operation

aqxmlhtp.sql HTTP propagation

AQDemoServlet.java Servlet to post Oracle Streams AQ XML files (for Jserv)

AQPropServlet.java Servlet for Oracle Streams AQ HTTP propagation

aqxmldrp.sql Clean up AQ XML demo

Table 1–2 (Cont.) Oracle Streams AQ JMS Demonstrations

Demo and Locations Topic

Oracle Streams AQ Demonstrations

1-40 Oracle Streams Advanced Queuing User’s Guide

Basic Components 2-1

2
Basic Components

This chapter describes the Oracle Streams Advanced Queuing (AQ) basic components.

This chapter contains the following topics:

■ Object Name

■ Type Name

■ AQ Agent Type

■ AQ Recipient List Type

■ AQ Agent List Type

■ AQ Subscriber List Type

■ AQ Registration Information List Type

■ AQ Post Information List Type

■ AQ Registration Information Type

■ AQ Notification Descriptor Type

■ AQ Message Properties Type

■ AQ Post Information Type

■ AQ$_NTFN_MSGID_ARRAY Type

■ Enumerated Constants in the Oracle Streams AQ Administrative Interface

■ Enumerated Constants in the Oracle Streams AQ Operational Interface

■ AQ Background Processes

Object Name
object_name := VARCHAR2
object_name := [schema_name.]name

This component names database objects. This naming convention applies to queues,
queue tables, and object types.

Names for objects are specified by an optional schema name and a name. If the schema
name is not specified, then the current schema is assumed. The name must follow the

See Also:

■ Chapter 8, "Oracle Streams AQ Administrative Interface"

■ Chapter 10, "Oracle Streams AQ Operations Using PL/SQL"

Type Name

2-2 Oracle Streams Advanced Queuing User’s Guide

reserved character guidelines in Oracle Database SQL Language Reference. The schema
name, agent name, and the object type name can each be up to 30 bytes long.
However, queue names and queue table names can be a maximum of 24 bytes.

Type Name
type_name := VARCHAR2
type_name := object_type | "RAW"

This component defines queue types. For details on creating object types refer to Oracle
Database Concepts. The maximum number of attributes in the object type is limited to
900.

To store payloads of type RAW, Oracle Streams AQ creates a queue table with a LOB
column as the payload repository. The size of the payload is limited to 32K bytes of
data. Because LOB columns are used for storing RAW payload, the Oracle Streams AQ
administrator can choose the LOB tablespace and configure the LOB storage by
constructing a LOB storage string in the storage_clause parameter during queue
table creation time.

AQ Agent Type
TYPE AQ$_AGENT IS OBJECT (
 name VARCHAR2(30),
 address VARCHAR2(1024),
 protocol NUMBER);

This component identifies a producer or a consumer of a message.

All consumers that are added as subscribers to a multiconsumer queue must have
unique values for the AQ$_AGENT parameters. Two subscribers cannot have the same
values for the NAME, ADDRESS, and PROTOCOL attributes for the AQ$_AGENT type. At
least one of the three attributes must be different for two subscribers.

You can add subscribers by repeatedly using the DBMS_AQADM.ADD_SUBSCRIBER
procedure up to a maximum of 1024 subscribers for a multiconsumer queue.

This type has three attributes:

■ name

This attribute specifies the name of a producer or consumer of a message. It can be
the name of an application or a name assigned by an application. A queue can
itself be an agent, enqueuing or dequeuing from another queue. The name must
follow the reserved character guidelines in Oracle Database SQL Language Reference.

■ address

This attribute is interpreted in the context of protocol. If protocol is 0
(default), then address is of the form [schema.]queue[@dblink].

■ protocol

This attribute specifies the protocol to interpret the address and propagate the
message. The default value is 0.

Note: Payloads containing LOBs require users to grant explicit
Select, Insert and Update privileges on the queue table for doing
enqueues and dequeues.

AQ Registration Information Type

Basic Components 2-3

AQ Recipient List Type
TYPE AQ$_RECIPIENT_LIST_T IS TABLE OF aq$_agent
 INDEX BY BINARY_INTEGER;

This component identifies the list of agents that receive a message.

AQ Agent List Type
TYPE AQ$_AGENT_LIST_T IS TABLE OF aq$_agent
 INDEX BY BINARY INTEGER;

This component identifies the list of agents for DBMS_AQ.LISTEN to listen for.

AQ Subscriber List Type
TYPE AQ$_SUBSCRIBER_LIST_T IS TABLE OF aq$_agent
 INDEX BY BINARY INTEGER;

This component identifies the list of subscribers that subscribe to this queue.

AQ Registration Information List Type
TYPE AQ$_REG_INFO_LIST AS VARRAY(1024) OF sys.aq$_reg_info;

This component identifies the list of registrations to a queue.

AQ Post Information List Type
TYPE AQ$_POST_INFO_LIST AS VARRAY(1024) OF sys.aq$_post_info;

This component identifies the list of anonymous subscriptions to which messages are
posted.

AQ Registration Information Type
TYPE SYS.AQ$_REG_INFO IS OBJECT (
 name VARCHAR2(128),
 namespace NUMBER,
 callback VARCHAR2(4000),
 context RAW(2000) DEFAULT NULL,
 qosflags NUMBER,
 timeout NUMBER
 ntfn_grouping_class NUMBER,
 ntfn_grouping_value NUMBER DEFAULT 600,
 ntfn_grouping_type NUMBER,
 ntfn_grouping_start_time TIMESTAMP WITH TIME ZONE,
 ntfn_grouping_repeat_count NUMBER);

This component identifies a producer or a consumer of a message. Its attributes are
described in the following list. Attributes qosflags and timeout are part of Oracle
Streams AQ 10g Release 2 (10.2) notification enhancements.

AQ Registration Information Type

2-4 Oracle Streams Advanced Queuing User’s Guide

Table 2–1 AQ$_REG_INFO Type Attributes

Attribute Description

name Specifies the name of the subscription. The subscription name is
of the form schema.queue if the registration is for a single
consumer queue or schema.queue:consumer_name if the
registration is for a multiconsumer queues.

namespace Specifies the namespace of the subscription. To receive
notification from Oracle Streams AQ queues, the namespace
must be DBMS_AQ.NAMESPACE_AQ. To receive notifications
from other applications through DBMS_AQ.POST or
OCISubscriptionPost(), the namespace must be DBMS_
AQ.NAMESPACE_ANONYMOUS.

callback Specifies the action to be performed on message notification. For
HTTP notifications, use http://www.company.com:8080. For
e-mail notifications, use mailto://xyz@company.com. For
raw message payload for the PLSQLCALLBACK procedure, use
plsql://schema.procedure?PR=0. For user-defined type
message payload converted to XML for the PLSQLCALLBACK
procedure, use plsql://schema.procedure?PR=1

context Specifies the context that is to be passed to the callback function

qosflags Can be set to one or more of the following values to specify the
notification quality of service:

■ NTFN_QOS_RELIABLE- This value specifies that reliable
notification is required. Reliable notifications persist across
instance and database restarts.

■ NTFN_QOS_PAYLOAD - This value specifies that payload
delivery is required. It is supported only for client
notification and only for RAW queues.

■ NTFN_QOS_PURGE_ON_NTFN - This value specifies that the
registration is to be purged automatically when the first
notification is delivered to this registration location.

ntfn_grouping_class Currently, only the following flag can be set to specify criterion
for grouping. The default value will be 0. If ntfn_grouping_
class is 0, all other notification grouping attributes must be 0.

■ NTFN_GROUPING_CLASS_TIME - Notifications grouped by
time, that is, the user specifies a time value and a single
notification gets published at the end of that time.

ntfn_grouping_value Time-period of grouping notifications specified in seconds,
meaning the time after which grouping notification would be
sent periodically until ntfn_grouping_repeat_count is
exhausted.

ntfn_grouping_type ■ NTFN_GROUPING_TYPE_SUMMARY - Summary of all
notifications that occurred in the time interval. (Default)

■ NTFN_GROUPING_TYPE_LAST - Last notification that
occurred in the interval.

ntfn_grouping_start_
time

Notification grouping start time. Notification grouping can start
from a user-specified time that should a valid timestamp with
time zone. If ntfn_grouping_start_time is not specified
when using grouping, the default is to current timestamp with
time zone

AQ Message Properties Type

Basic Components 2-5

AQ Notification Descriptor Type
TYPE SYS.AQ$_DESCRIPTOR IS OBJECT (
 queue_name VARCHAR2(61),
 consumer_name VARCHAR2(30),
 msg_id RAW(16),
 msg_prop MSG_PROP_T,
 gen_desc AQ$_NTFN_DESCRIPTOR,
 msgid_array SYS.AQ$_NTFN_MSGID_ARRAY,
 ntfnsRecdInGrp NUMBER);

This component specifies the Oracle Streams AQ descriptor received by Oracle
Streams AQ PL/SQL callbacks upon notification. It has the following attributes:

AQ Message Properties Type
The message properties type msg_prop_t has the following components:

TYPE AQ$_MSG_PROP_T IS OBJECT(
 priority number,
 delay number,
 expiration number,
 correlation varchar2(128),
 attempts number,
 recipent_list aq$_recipient_list_t,
 exception_queue varchar2(51),
 enqueue_time date,
 state number,
 sender_id aq$_agent,
 original_misgid raw(16),
 delivery_mode number);

ntfn_grouping_
repeat_count

Grouping notifications will be sent as many times as specified by
the notification grouping repeat count and after that revert to
regular notifications. The ntfn_grouping_repeat_count, if not
specified, will default to

■ NTFN_GROUPING_FOREVER - Keep sending grouping
notifications forever.

Table 2–2 AQ$_DESCRIPTOR Attributes

Attribute Description

queue_name Name of the queue in which the message was enqueued which
resulted in the notification

consumer_name Name of the consumer for the multiconsumer queue

msg_id Identification number of the message

msg_prop Message properties specified by the MSG_PROP_T type

gen_desc Indicates the timeout specifications

msgid_array Group notification message ID list

ntfnsRecdInGrp Notifications received in group

Table 2–1 (Cont.) AQ$_REG_INFO Type Attributes

Attribute Description

AQ Post Information Type

2-6 Oracle Streams Advanced Queuing User’s Guide

The timeout specifications type AQ$_NTFN_DESCRIPTOR has a single component:

TYPE AQ$_NTFN_DESCRIPTOR IS OBJECT(
 NTFN_FLAGS number);

NTFN_FLAGS is set to 1 if the notifications are already removed after a stipulated
timeout; otherwise the value is 0.

AQ Post Information Type
TYPE SYS.AQ$_POST_INFO IS OBJECT (
 name VARCHAR2(128),
 namespace NUMBER,
 payload RAW(2000));

This component specifies anonymous subscriptions to which you want to post
messages. It has three attributes:

■ name

This attribute specifies the name of the anonymous subscription to which you
want to post.

■ namespace

This attribute specifies the namespace of the anonymous subscription. To receive
notifications from other applications using DBMS_AQ.POST or
OCISubscriptionPost(), the namespace must be DBMS_AQ.NAMESPACE_
ANONYMOUS.

■ payload

This attribute specifies the payload to be posted to the anonymous subscription.
The default is NULL.

AQ$_NTFN_MSGID_ARRAY Type
TYPE SYS.AQ$_NTFN_MSGID_ARRAY
 AS VARRAY(1073741824)OF RAW(16);

This component is for storing grouping notification data for AQ namespace, value 230
which is the max varray size.

Enumerated Constants in the Oracle Streams AQ Administrative Interface
When enumerated constants such as INFINITE, TRANSACTIONAL, and NORMAL_
QUEUE are selected as values, the symbol must be specified with the scope of the
packages defining it. All types associated with the administrative interfaces must be
prepended with DBMS_AQADM. For example:

DBMS_AQADM.NORMAL_QUEUE

Table 2–3 lists the enumerated constants in the Oracle Streams AQ administrative
interface.

See Also: "MESSAGE_PROPERTIES_T Type" in Oracle Database
PL/SQL Packages and Types Reference

Enumerated Constants in the Oracle Streams AQ Operational Interface

Basic Components 2-7

Enumerated Constants in the Oracle Streams AQ Operational Interface
When using enumerated constants such as BROWSE, LOCKED, and REMOVE, the
PL/SQL constants must be specified with the scope of the packages defining them. All
types associated with the operational interfaces must be prepended with DBMS_AQ.
For example:

DBMS_AQ.BROWSE

Table 2–4 lists the enumerated constants in the Oracle Streams AQ operational
interface.

Table 2–3 Enumerated Constants in the Oracle Streams AQ Administrative Interface

Parameter Options

retention 0,1,2...INFINITE

message_grouping TRANSACTIONAL, NONE

queue_type NORMAL_QUEUE, EXCEPTION_QUEUE,NON_PERSISTENT_QUEUE

delivery_mode BUFFERED, PERSISTENT, PERSISTENT_OR_BUFFERED

Note: Nonpersistent queues are deprecated in Oracle Streams AQ
10g Release 2 (10.2). Oracle recommends that you use buffered
messaging instead.

Table 2–4 Enumerated Constants in the Oracle Streams AQ Operational Interface

Parameter Options

visibility IMMEDIATE, ON_COMMIT

dequeue mode BROWSE, LOCKED, REMOVE, REMOVE_NODATA

navigation FIRST_MESSAGE, NEXT_MESSAGE, NEXT_TRANSACTION

state WAITING, READY, PROCESSED, EXPIRED

wait FOREVER, NO_WAIT

delay NO_DELAY

expiration NEVER

namespace NAMESPACE_AQ, NAMESPACE_ANONYMOUS

delivery_mode BUFFERED, PERSISTENT, PERSISTENT_OR_BUFFERED

quosflags NTFN_QOS_RELIABLE, NTFN_QOS_PAYLOAD, NTFN_QOS_
PURGE_ON_NTFN

ntfn_grouping_class NFTN_GROUPING_CLASS_TIME

ntfn_grouping_type NTFN_GROUPING_TYPE_SUMMARY, NTFN_GROUPING_TYPE_
LAST

ntfn_grouping_
repeat_count

NTFN_GROUPING_FOREVER

AQ Background Processes

2-8 Oracle Streams Advanced Queuing User’s Guide

AQ Background Processes
■ Queue Monitor Processes

■ Job Queue Processes

Queue Monitor Processes
A number of Streams AQ or Streams tasks are executed in the background. These
include converting messages with DELAY specified into the READY state, expiring
messages, moving messages to exception queues, spilling and recovering of buffered
messages, and similar operations.

These are executed by a set of AQ background process. These include a coordinator
process, name QMNC (link), which dynamically spawns subordinate processes Qxx as
needed. The number of subordinate processes is determined automatically and tuned
constantly.

It is no longer necessary to set AQ_TM_PROCESSES when Oracle Streams AQ or
Streams is used. If a value is specified, that value is taken into account when starting
the Qxx processes. However, the number of Qxx processes can be different from what
was specified by AQ_TM_PROCESSES.

QMNC only runs when you use queues and create new queues. It affects Streams
Replication and Messaging users.

No separate API is needed to disable or enable the background processes. This is
controlled by setting AQ_TM_PROCESSES to zero or nonzero. Oracle recommends,
however, that you leave the AQ_TM_PROCESSES parameter unspecified and let the
system autotune.

Job Queue Processes
Propagation and PL/SQL notifications are handled by job queue (Jnnn) processes. The
parameter JOB_QUEUE_PROCESSES no longer needs to be specified. The database
scheduler automatically starts the job queue processes that are needed for the
propagation and notification jobs.

Note: If you want to disable the Queue Monitor Coordinator, then
you must set AQ_TM_PROCESSES = 0 in your pfile or spfile.
Oracle strongly recommends that you do NOT set AQ_TM_
PROCESSES = 0. If you are using Oracle Streams, then setting this
parameter to zero (which Oracle Database respects no matter what)
can cause serious problems.

Oracle Streams AQ: Programmatic Interfaces 3-1

3
Oracle Streams AQ: Programmatic Interfaces

This chapter describes the different language options and elements you must work
with and issues to consider in preparing your Oracle Streams Advanced Queuing
(AQ) application environment.

This chapter contains these topics:

■ Programmatic Interfaces for Accessing Oracle Streams AQ

■ Using PL/SQL to Access Oracle Streams AQ

■ Using OCI to Access Oracle Streams AQ

■ Using OCCI to Access Oracle Streams AQ

■ Using Visual Basic (OO4O) to Access Oracle Streams AQ

■ Using Oracle Java Message Service (OJMS) to Access Oracle Streams AQ

■ Using Oracle Streams AQ XML Servlet to Access Oracle Streams AQ

■ Comparing Oracle Streams AQ Programmatic Interfaces

Programmatic Interfaces for Accessing Oracle Streams AQ
Table 3–1 lists Oracle Streams AQ programmatic interfaces, functions supported in
each interface, and syntax references.

Note: Java package oracle.AQ was deprecated in 10g Release 1
(10.1). Oracle recommends that you migrate existing Java AQ
applications to Oracle JMS (or other Java APIs) and use Oracle JMS (or
other Java APIs) to design your future Java AQ applications.

Table 3–1 Oracle Streams AQ Programmatic Interfaces

Language Precompiler or Interface Program
Functions
Supported Syntax References

PL/SQL DBMS_AQADM and DBMS_AQ Packages Administrative
and operational

Oracle Database PL/SQL Packages
and Types Reference

C Oracle Call Interface (OCI) Operational only Oracle Call Interface
Programmer's Guide

Using PL/SQL to Access Oracle Streams AQ

3-2 Oracle Streams Advanced Queuing User’s Guide

Using PL/SQL to Access Oracle Streams AQ
The PL/SQL packages DBMS_AQADM and DBMS_AQ support access to Oracle Streams
AQ administrative and operational functions using the native Oracle Streams AQ
interface. These functions include:

■ Create queue, queue table, nonpersistent queue, multiconsumer queue/topic,
RAW message, or message with structured data

■ Get queue table, queue, or multiconsumer queue/topic

■ Alter queue table or queue/topic

■ Drop queue/topic

■ Start or stop queue/topic

■ Grant and revoke privileges

■ Add, remove, or alter subscriber

■ Add, remove, or alter an Oracle Streams AQ Internet agent

■ Grant or revoke privileges of database users to Oracle Streams AQ Internet agents

■ Enable, disable, or alter propagation schedule

■ Enqueue messages to single consumer queue (point-to-point model)

■ Publish messages to multiconsumer queue/topic (publish/subscribe model)

■ Subscribe for messages in multiconsumer queue

■ Browse messages in a queue

■ Receive messages from queue/topic

■ Register to receive messages asynchronously

■ Listen for messages on multiple queues/topics

■ Post messages to anonymous subscriptions

■ Bind or unbind agents in a Lightweight Directory Access Protocol (LDAP) server

■ Add or remove aliases to Oracle Streams AQ objects in a LDAP server

Available PL/SQL DBMS_AQADM and DBMS_AQ functions are listed in detail in
Table 3–2 through Table 3–9.

Visual Basic Oracle Objects for OLE (OO4O) Operational only Online help available from
Application Development
submenu of Oracle installation.

Java (JMS) oracle.JMS package using JDBC API Administrative
and operational

Oracle Streams Advanced Queuing
Java API Reference

AQ XML servlet Internet Data Access Presentation (IDAP) Operational only Chapter 6, "Internet Access to
Oracle Streams AQ"

See Also: Oracle Database PL/SQL Packages and Types Reference for
detailed documentation of DBMS_AQADM and DBMS_AQ, including
syntax, parameters, parameter types, return values, and examples

Table 3–1 (Cont.) Oracle Streams AQ Programmatic Interfaces

Language Precompiler or Interface Program
Functions
Supported Syntax References

Using Visual Basic (OO4O) to Access Oracle Streams AQ

Oracle Streams AQ: Programmatic Interfaces 3-3

Using OCI to Access Oracle Streams AQ
OCI provides an interface to Oracle Streams AQ functions using the native Oracle
Streams AQ interface.

An OCI client can perform the following actions:

■ Enqueue messages

■ Dequeue messages

■ Listen for messages on sets of queues

■ Register to receive message notifications

In addition, OCI clients can receive asynchronous notifications for new messages in a
queue using OCISubscriptionRegister.

Oracle Type Translator
For queues with user-defined payload types, the Oracle type translator must be used
to generate the OCI/OCCI mapping for the Oracle type. The OCI client is responsible
for freeing the memory of the Oracle Streams AQ descriptors and the message
payload.

Using OCCI to Access Oracle Streams AQ
C++ applications can use OCCI, which has a set of Oracle Streams AQ interfaces that
enable messaging clients to access Oracle Streams AQ. OCCI AQ supports all the
operational functions required to send/receive and publish/subscribe messages in a
message-enabled database. Synchronous and asynchronous message consumption is
available, based on a message selection rule.

Using Visual Basic (OO4O) to Access Oracle Streams AQ
Visual Basic (OO4O) supports access to Oracle Streams AQ operational functions
using the native Oracle Streams AQ interface.

These functions include the following:

■ Create a connection, RAW message, or message with structured data

■ Enqueue messages to a single-consumer queue (point-to-point model)

■ Publish messages to a multiconsumer queue/topic (publish/subscribe model)

■ Browse messages in a queue

■ Receive messages from a queue/topic

■ Register to receive messages asynchronously

See Also: "OCI and Advanced Queuing" and "Publish-Subscribe
Notification" in Oracle Call Interface Programmer's Guide for syntax
details

See Also: Appendix C, "OCI Examples", which appears only in the
HTML version of this guide, for OCI interface examples

See Also: "Oracle Streams Advanced Queuing" in Oracle C++ Call
Interface Programmer's Guide

Using Oracle Java Message Service (OJMS) to Access Oracle Streams AQ

3-4 Oracle Streams Advanced Queuing User’s Guide

Using Oracle Java Message Service (OJMS) to Access Oracle Streams AQ
Java Message Service (JMS) is a messaging standard defined by Sun Microsystems,
Oracle, IBM, and other vendors. JMS is a set of interfaces and associated semantics that
define how a JMS client accesses the facilities of an enterprise messaging product.

Oracle Java Message Service (OJMS) provides a Java API for Oracle Streams AQ
based on the JMS standard. OJMS supports the standard JMS interfaces and has
extensions to support administrative operations and other features that are not a part
of the standard.

Standard JMS features include:

■ Point-to-point model of communication using queues

■ Publish/subscribe model of communication using topics

■ ObjectMessage, StreamMessage, TextMessage, BytesMessage, and
MapMessage message types

■ Asynchronous and synchronous delivery of messages

■ Message selection based on message header fields or properties

Oracle JMS extensions include:

■ Administrative API to create queue tables, queues and topics

■ Point-to-multipoint communication using recipient lists for topics

■ Message propagation between destinations, which allows the application to define
remote subscribers

■ Support for transactional sessions, enabling JMS and SQL operations in one
transaction

■ Message retention after messages have been dequeued

■ Message delay, allowing messages to be made visible after a certain delay

■ Exception handling, allowing messages to be moved to exception queues if they
cannot be processed successfully

■ Support for AdtMessage

These are stored in the database as Oracle objects, so the payload of the message
can be queried after it is enqueued. Subscriptions can be defined on the contents of
these messages as opposed to just the message properties.

■ Topic browsing

This allows durable subscribers to browse through the messages in a
publish/subscribe (topic) destination. It optionally allows these subscribers to
purge the browsed messages, so they are no longer retained by Oracle Streams AQ
for that subscriber.

Note: Because the database handles message propagation, OO4O
does not differentiate between remote and local recipients. The same
sequence of calls/steps are required to dequeue a message for local
and remote recipients.

Using Oracle Java Message Service (OJMS) to Access Oracle Streams AQ

Oracle Streams AQ: Programmatic Interfaces 3-5

Accessing Standard and Oracle JMS Applications
Standard JMS interfaces are in the javax.jms package. Oracle JMS interfaces are in
the oracle.jms package. You must have EXECUTE privilege on the DBMS_AQIN and
DBMS_AQJMS packages to use the Oracle JMS interfaces. You can also acquire these
rights through the AQ_USER_ROLE or the AQ_ADMINSTRATOR_ROLE. You also need
the appropriate system and queue or topic privileges to send or receive messages.

Because Oracle JMS uses Java Database Connectivity (JDBC) to connect to the
database, its applications can run outside the database using the JDBC OCI driver or
JDBC thin driver.

Using JDBC OCI Driver or JDBC Thin Driver
To use JMS with clients running outside the database, you must include the
appropriate JDBC driver, Java Naming and Directory Interface (JNDI) jar files, and
Oracle Streams AQ jar files in your CLASSPATH.

For JDK 1.3.x and higher, include the following in the CLASSPATH:

$ORACLE_HOME/jdbc/lib/classes12.jar
$ORACLE_HOME/jdbc/lib/orail8n.jar
$ORACLE_HOME/jdk/jre/lib/ext/jta.jar
$ORACLE_HOME/jdk/jre/lib/ext/jta.jar
$ORACLE_HOME/jlib/jndi.jar
$ORACLE_HOME/lib/xmlparserv2.jar
$ORACLE_HOME/rdbms/jlib/xdb.jar
$ORACLE_HOME/rdbms/jlib/aqapi13.jar
$ORACLE_HOME/rdbms/jlib/jmscommon.jar

For JDK 1.2 include the following in the CLASSPATH:

$ORACLE_HOME/jdbc/lib/classes12.jar
$ORACLE_HOME/jdbc/lib/orail8n.jar
$ORACLE_HOME/jdk/jre/lib/ext/jta.jar
$ORACLE_HOME/jlib/jndi.jar
$ORACLE_HOME/lib/xmlparserv2.jar
$ORACLE_HOME/rdbms/jlib/xdb.jar
$ORACLE_HOME/rdbms/jlib/aqapi12.jar
$ORACLE_HOME/rdbms/jlib/jmscommon.jar

Using Oracle Server Driver in JServer
If your application is running inside the JServer, then you should be able to access the
Oracle JMS classes that have been automatically loaded when the JServer was
installed. If these classes are not available, then you must load jmscommon.jar
followed by aqapi.jar using the $ORACLE_HOME/rdbms/admin/initjms SQL
script.

See Also:

■ Java Message Service Specification, version 1.1, March 18, 2002, Sun
Microsystems, Inc.

■ Part IV, "Using Oracle JMS and Oracle Streams AQ"

■ Oracle Streams Advanced Queuing Java API Reference

Using Oracle Streams AQ XML Servlet to Access Oracle Streams AQ

3-6 Oracle Streams Advanced Queuing User’s Guide

Using Oracle Streams AQ XML Servlet to Access Oracle Streams AQ
You can use Oracle Streams AQ XML servlet to access Oracle Streams AQ over HTTP
using Simple Object Access Protocol (SOAP) and an Oracle Streams AQ XML
message format called Internet Data Access Presentation (IDAP).

Using the Oracle Streams AQ servlet, a client can perform the following actions:

■ Send messages to single-consumer queues

■ Publish messages to multiconsumer queues/topics

■ Receive messages from queues

■ Register to receive message notifications

Comparing Oracle Streams AQ Programmatic Interfaces
Available functions for the Oracle Streams AQ programmatic interfaces are listed by
use case in Table 3–2 through Table 3–9. Use cases are described in Chapter 8 through
Chapter 10 and Chapter 12 through Chapter 15.

Oracle Streams AQ Administrative Interfaces
Table 3–2 lists the equivalent Oracle Streams AQ administrative functions for the
PL/SQL and Java (JMS) programmatic interfaces.

See Also: "Deploying the Oracle Streams AQ XML Servlet" on
page 6-4 for more information on the Oracle Streams AQ XML servlet

Table 3–2 Comparison of Oracle Streams AQ Programmatic Interfaces: Administrative Interface

Use Case PL/SQL Java (JMS)

Create a connection factory N/A AQjmsFactory.getQueue
ConnectionFactory
AQjmsFactory.getTopic
ConnectionFactory

Register a ConnectionFactory in an
LDAP server

N/A AQjmsFactory.register
ConnectionFactory

Create a queue table DBMS_AQADM.CREATE_QUEUE_TABLE AQjmsSession.createQueueTable

Get a queue table Use schema.queue_table_name AQjmsSession.getQueueTable

Alter a queue table DBMS_AQADM.ALTER_QUEUE_TABLE AQQueueTable.alter

Drop a queue table DBMS_AQADM.DROP_QUEUE_TABLE AQQueueTable.drop

Create a queue DBMS_AQADM.CREATE_QUEUE AQjmsSession.createQueue

Get a queue Use schema.queue_name AQjmsSession.getQueue

Create a multiconsumer queue/topic
in a queue table with multiple
consumers enabled

DBMS_AQADM.CREATE_QUEUE AQjmsSession.createTopic

Get a multiconsumer queue/topic Use schema.queue_name AQjmsSession.getTopic

Alter a queue/topic DBMS_AQADM.ALTER_QUEUE AQjmsDestination.alter

Start a queue/topic DBMS_AQADM.START_QUEUE AQjmsDestination.start

Stop a queue/topic DBMS_AQADM.STOP_QUEUE AQjmsDestination.stop

Drop a queue/topic DBMS_AQADM.DROP_QUEUE AQjmsDestination.drop

Comparing Oracle Streams AQ Programmatic Interfaces

Oracle Streams AQ: Programmatic Interfaces 3-7

Oracle Streams AQ Operational Interfaces
Table 3–3 through Table 3–9 list equivalent Oracle Streams AQ operational functions
for the programmatic interfaces PL/SQL, OCI, Oracle Streams AQ XML Servlet, and
JMS, for various use cases.

Grant system privileges DBMS_AQADM.GRANT_SYSTEM_
PRIVILEGE

AQjmsSession.grantSystem
Privilege

Revoke system privileges DBMS_AQADM.REVOKE_SYSTEM_
PRIVILEGE

AQjmsSession.revokeSystem
Privilege

Grant a queue/topic privilege DBMS_AQADM.GRANT_QUEUE_
PRIVILEGE

AQjmsDestination.grantQueue
Privilege
AQjmsDestination.grantTopic
Privilege

Revoke a queue/topic privilege DBMS_AQADM.REVOKE_QUEUE_
PRIVILEGE

AQjmsDestination.revokeQueue
Privilege
AQjmsDestination.revokeTopic
Privilege

Verify a queue type DBMS_AQADM.VERIFY_QUEUE_TYPES Not supported

Add a subscriber DBMS_AQADM.ADD_SUBSCRIBER See Table 3–6

Alter a subscriber DBMS_AQADM.ALTER_SUBSCRIBER See Table 3–6

Remove a subscriber DBMS_AQADM.REMOVE_SUBSCRIBER See Table 3–6

Schedule propagation DBMS_AQADM.SCHEDULE_PROPAGATION AQjmsDestination.schedule
Propagation

Enable a propagation schedule DBMS_AQADM.ENABLE_PROPAGATION_
SCHEDULE

AQjmsDestination.enable
PropagationSchedule

Alter a propagation schedule DBMS_AQADM.ALTER_PROPAGATION_
SCHEDULE

AQjmsDestination.alter
PropagationSchedule

Disable a propagation schedule DBMS_AQADM.DISABLE_PROPAGATION_
SCHEDULE

AQjmsDestination.disable
PropagationSchedule

Unschedule a propagation DBMS_AQADM.UNSCHEDULE_
PROPAGATION

AQjmsDestination.unschedule
Propagation

Create an Oracle Streams AQ
Internet Agent

DBMS_AQADM.CREATE_AQ_AGENT Not supported

Alter an Oracle Streams AQ Internet
Agent

DBMS_AQADM.ALTER_AQ_AGENT Not supported

Drop an Oracle Streams AQ Internet
Agent

DBMS_AQADM.DROP_AQ_AGENT Not supported

Grant database user privileges to an
Oracle Streams AQ Internet Agent

DBMS_AQADM.ENABLE_AQ_AGENT Not supported

Revoke database user privileges
from an Oracle Streams AQ Internet
Agent

DBMS_AQADM.DISABLE_AQ_AGENT Not supported

Add alias for queue, agent,
ConnectionFactory in a LDAP server

DBMS_AQADM.ADD_ALIAS_TO_LDAP Not supported

Delete alias for queue, agent,
ConnectionFactory in a LDAP server

DBMS_AQADM.DEL_ALIAS_FROM_LDAP Not supported

Table 3–2 (Cont.) Comparison of Oracle Streams AQ Programmatic Interfaces: Administrative Interface

Use Case PL/SQL Java (JMS)

Comparing Oracle Streams AQ Programmatic Interfaces

3-8 Oracle Streams Advanced Queuing User’s Guide

Table 3–3 Comparison of Oracle Streams AQ Programmatic Interfaces: Operational Interface—Create
Connection, Session, Message Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Create a
connection

N/A OCIServer
Attach

Open an HTTP connection
after authenticating with the
Web server

AQjmsQueueConnectionFactory
.createQueueConnection
AQjmsTopicConnectionFactory
.createTopicConnection

Create a
session

N/A OCISession
Begin

An HTTP servlet session is
automatically started with
the first SOAP request

QueueConnection.createQueue
Session
TopicConnection.createTopic
Session

Create a RAW
message

Use SQL
RAW type for
message

Use OCIRaw for
Message

Supply the hex
representation of the
message payload in the XML
message. For example,
<raw>023f4523</raw>

Not supported

Create a
message with
structured
data

Use SQL
Oracle object
type for
message

Use SQL Oracle
object type for
message

For Oracle object type queues
that are not JMS queues (that
is, they are not type AQ$_
JMS_*), the XML specified in
<message payload> must
map to the SQL type of the
payload for the queue table.

For JMS queues, the XML
specified in the <message_
payload> must be one of
the following: <jms_text_
message>, <jms_map_
message>, <jms_bytes_
message>, <jms_object_
message>

Session.createTextMessage
Session.createObjectMessage
Session.createMapMessage
Session.createBytesMessage
Session.createStreamMessage
AQjmsSession.createAdtMessage

Create a
message
producer

N/A N/A N/A QueueSession.createSender
TopicSession.createPublisher

Comparing Oracle Streams AQ Programmatic Interfaces

Oracle Streams AQ: Programmatic Interfaces 3-9

Table 3–4 Comparison of Oracle Streams AQ Programmatic Interfaces: Operational Interface—Enqueue
Messages to a Single-Consumer Queue, Point-to-Point Model Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Enqueue a message
to a
single-consumer
queue

DBMS_AQ.enqueue OCIAQEnq <AQXmlSend> QueueSender.send

Enqueue a message
to a queue and
specify visibility
options

DBMS_AQ.enqueue

Specify visibility in

ENQUEUE_OPTIONS

OCIAQEnq

Specify OCI_ATTR_
VISIBILITY in
OCIAQEnqOptions

OCIAQEnqOptions

<AQXmlSend>

Specify
<visibility> in

<producer_options>

Not supported

Enqueue a message
to a
single-consumer
queue and specify
message properties
priority and
expiration

DBMS_AQ.enqueue

Specify priority,
expiration in

MESSAGE_PROPERTIES

OCIAQEnq

Specify OCI_ATTR_
PRIORITY, OCI_
ATTR_EXPIRATION
in

OCIAQMsgProperties

<AQXmlSend>

Specify <priority>,
<expiration> in

<message_header>

Specify priority
and TimeToLive
during

QueueSender.send

or

.setTimeToLive

and

MessageProducer.
setPriority

followed by

QueueSender.send

Enqueue a message
to a
single-consumer
queue and specify
message properties
correlationID, delay,
and exception
queue

DBMS_AQ.enqueue

Specify correlation,
delay, exception_
queue in

MESSAGE_PROPERTIES

OCIAQEnq

Specify OCI_ATTR_
CORRELATION, OCI_
ATTR_DELAY, OCI_
ATTR_EXCEPTION_
QUEUE in

OCIAQMsgProperties

<AQXmlSend>

Specify
<correlation_id>,
<delay>,
<exception_queue>
in

<message_header>

Message.setJMS
CorrelationI

Delay and exception
queue specified as
provider specific
message properties

JMS_OracleDelay
JMS_OracleExcpQ

followed by

QueueSender.send

Enqueue a message
to a
single-consumer
queue and specify
user-defined
message properties

Not supported

Properties should be
part of payload

Not supported

Properties should be
part of payload

<AQXmlSend>

Specify <name> and
<int_value>,
<string_value>,
<long_value>, and
so on in

<user_properties>

Message.setInt
Property
Message.setString
Property
Message.setBoolean
Property

and so forth,
followed by

QueueSender.send

Enqueue a message
to a
single-consumer
queue and specify
message
transformation

DBMS_AQ.enqueue

Specify
transformation in

ENQUEUE_OPTIONS

OCIAQEnq

Specify OCI_ATTR_
TRANSFORMATION in

OCIAQEnqOptions

<AQXmlSend>

Specify
<transformation>
in

<producer_options>

AQjmsQueueSender.
setTransformation

followed by

QueueSender.send

Comparing Oracle Streams AQ Programmatic Interfaces

3-10 Oracle Streams Advanced Queuing User’s Guide

Table 3–5 Comparison of Oracle Streams AQ Programmatic Interfaces: Operational Interface—Publish
Messages to a Multiconsumer Queue/Topic, Publish/Subscribe Model Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Publish a message
to a multiconsumer
queue/topic using
default subscription
list

DBMS_AQ.enqueue

Set recipient_
list to NULL in

MESSAGE_PROPERTIES

OCIAQEnq

Set OCI_ATTR_
RECIPIENT_LIST to
NULL in

OCIAQMsgProperties

<AQXmlPublish> TopicPublisher.
publish

Publish a message
to a multiconsumer
queue/topic using
specific recipient list

See footnote-1

DBMS_AQ.enqueue

Specify recipient list
in

MESSAGE_PROPERTIES

OCIAQEnq

Specify OCI_ATTR_
RECIPIENT_LIST in

OCIAQMsgProperties

<AQXmlPublish>

Specify <recipient_
list> in

<message_header>

AQjmsTopic
Publisher.publish

Specify recipients as
an array of
AQjmsAgent

Publish a message
to a multiconsumer
queue/topic and
specify message
properties priority
and expiration

DBMS_AQ.enqueue

Specify priority,
expiration in

MESSAGE_PROPERTIES

OCIAQEnq

Specify OCI_ATTR_
PRIORITY, OCI_
ATTR_EXPIRATION
in

OCIAQMsgProperties

<AQXmlPublish>

Specify <priority>,
<expiration> in

<message_header>

Specify priority
and TimeToLive
during

TopicPublisher.
publish

or

MessageProducer.
setTimeToLive

and

MessageProducer.
setPriority

followed by

TopicPublisher.
publish

Comparing Oracle Streams AQ Programmatic Interfaces

Oracle Streams AQ: Programmatic Interfaces 3-11

Publish a message
to a multiconsumer
queue/topic and
specify send
options
correlationID, delay,
and exception
queue

DBMS_AQ.enqueue

Specify correlation,
delay, exception_
queue in

MESSAGE_PROPERTIES

OCIAQEnq

Specify OCI_ATTR_
CORRELATION, OCI_
ATTR_DELAY, OCI_
ATTR_EXCEPTION_
QUEUE in

OCIAQMsgProperties

<AQXmlPublish>

Specify
<correlation_id>,
<delay>,
<exception_
queue> in

<message_header>

Message.setJMS
CorrelationID

Delay and exception
queue specified as
provider-specific
message properties

JMS_OracleDelay
JMS_OracleExcpQ

followed by

TopicPublisher.
publish

Publish a message
to a topic and
specify user-defined
message properties

Not supported

Properties should be
part of payload

Not supported

Properties should be
part of payload

<AQXmlPublish>

Specify <name> and
<int_value>,
<string_value>,
<long_value>, and
so on in

<user_properties>

Message.setInt
Property
Message.setString
Property
Message.setBoolean
Property

and so forth,
followed by

TopicPublisher.
publish

Publish a message
to a topic and
specify message
transformation

DBMS_AQ.enqueue

Specify
transformation in

ENQUEUE_OPTIONS

OCIAQEnq

Specify OCI_ATTR_
TRANSFORMATION in

OCIAQEnqOptions

<AQXmlPublish>

Specify
<transformation>
in

<producer_options>

AQjmsTopic
Publisher.set
Transformation

followed by

TopicPublisher.
publish

Table 3–6 Comparison of Oracle Streams AQ Programmatic Interfaces: Operational
Interface—Subscribing for Messages in a Multiconsumer Queue/Topic, Publish/Subscribe Model Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Add a subscriber See administrative
interfaces

Not supported Not supported TopicSession.
createDurable
Subscriber
AQjmsSession.
createDurable
Subscriber

Alter a subscriber See administrative
interfaces

Not supported Not supported TopicSession.
createDurable
Subscriber
AQjmsSession.
createDurable
Subscriber

using the new
selector

Remove a subscriber See administrative
interfaces

Not supported Not supported AQjmsSession.
unsubscribe

Table 3–5 (Cont.) Comparison of Oracle Streams AQ Programmatic Interfaces: Operational
Interface—Publish Messages to a Multiconsumer Queue/Topic, Publish/Subscribe Model Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Comparing Oracle Streams AQ Programmatic Interfaces

3-12 Oracle Streams Advanced Queuing User’s Guide

Table 3–7 Comparison of Oracle Streams AQ Programmatic Interfaces: Operational Interface—Browse
Messages in a Queue Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Browse
messages in a
queue/topic

DBMS_AQ.
dequeue

Set dequeue_
mode to BROWSE in

DEQUEUE_OPTIONS

OCIAQDeq

Set OCI_ATTR_
DEQ_MODE to
BROWSE in

OCIAQDeqOptions

<AQXmlReceive>

Specify <dequeue_
mode> BROWSE in

<consumer_options>

QueueSession.createBrowser
QueueBrowser.getEnumeration

Not supported on topics

oracle.jms.AQjmsSession.
createBrowser
oracle.jms.TopicBrowser.
getEnumeration

Browse
messages in a
queue/topic
and lock
messages
while
browsing

DBMS_AQ.dequeue

Set dequeue_
mode to LOCKED in

DEQUEUE_OPTIONS

OCIAQDeq

Set OCI_ATTR_
DEQ_MODE to
LOCKED in

OCIAQDeqOptions

<AQXmlReceive>

Specify <dequeue_
mode> LOCKED in

<consumer_options>

AQjmsSession.createBrowser

set locked to TRUE.

QueueBrowser.getEnumeration

Not supported on topics

oracle.jms.AQjmsSession.
createBrowser
oracle.jms.TopicBrowser.
getEnumeration

Table 3–8 Comparison of Oracle Streams AQ Programmatic Interfaces: Operational Interface—Receive
Messages from a Queue/Topic Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Start a
connection for
receiving
messages

N/A N/A N/A Connection.start

Create a
message
consumer

N/A N/A N/A QueueSession.
createQueueReceiver
TopicSession.create
DurableSubscriber
AQjmsSession.create
TopicReceiver

Dequeue a
message from a
queue/topic
and specify
visibility

DBMS_AQ.dequeue

Specify visibility in

DEQUEUE_OPTIONS

OCIAQDeq

Specify OCI_ATTR_
VISIBILITY in

OCIAQDeqOptions

<AQXmlReceive>

Specify
<visibility> in

<consumer_options>

Not supported

Dequeue a
message from a
queue/topic
and specify
transformation

DBMS_AQ.dequeue

Specify
transformation in

DEQUEUE_OPTIONS

OCIAQDeq

Specify OCI_ATTR_
TRANSFORMATION in

OCIAQDeqOptions

<AQXmlReceive>

Specify
<transformation>
in

<consumer_options>

AQjmsQueueReceiver.
setTransformation
AQjmsTopicSubscriber.
setTransformation
AQjmsTopicReceiver.
setTransformation

Dequeue a
message from a
queue/topic
and specify
navigation
mode

DBMS_AQ.dequeue

Specify navigation in

DEQUEUE_OPTIONS

OCIAQDeq

Specify OCI_ATTR_
NAVIGATION in

OCIAQDeqOptions

<AQXmlReceive>

Specify
<navigation> in

<consumer_options>

AQjmsQueueReceiver.
setNavigationMode
AQjmsTopicSubscriber.
setNavigationMode
AQjmsTopicReceiver.
setNavigationMode

Comparing Oracle Streams AQ Programmatic Interfaces

Oracle Streams AQ: Programmatic Interfaces 3-13

Dequeue a
message from a
single-consume
r queue

DBMS_AQ.dequeue

Set dequeue_mode
to REMOVE in

DEQUEUE_OPTIONS

OCIAQDeq

Set OCI_ATTR_DEQ_
MODE to REMOVE in

OCIAQDeqOptions

<AQXmlReceive> QueueReceiver.receive

or

QueueReceiver.receive
NoWait

or

AQjmsQueueReceiver.
receiveNoData

Dequeue a
message from a
multiconsumer
queue/topic
using
subscription
name

DBMS_AQ.dequeue

Set dequeue_mode
to REMOVE and set
consumer_name to
subscription name in

DEQUEUE_OPTIONS

OCIAQDeq

Set OCI_ATTR_DEQ_
MODE to REMOVE and
set OCI_ATTR_
CONSUMER_NAME to
subscription name in

OCIAQDeqOptions

<AQXmlReceive>

Specify <consumer_
name> in

<consumer_options>

Create a durable
TopicSubscriber on the
topic using the
subscription name, then

TopicSubscriber.
receive

or

TopicSubscriber.
receiveNoWait

or

AQjmsTopicSubscriber.
receiveNoData

Dequeue a
message from a
multiconsumer
queue/topic
using recipient
name

DBMS_AQ.dequeue

Set dequeue_mode
to REMOVE and set
consumer_name to
recipient name in

DEQUEUE_OPTIONS

OCIAQDeq

Set OCI_ATTR_DEQ_
MODE to REMOVE and
set OCI_ATTR_
CONSUMER_NAME to
recipient name in

OCIAQDeqOptions

<AQXmlReceive>

Specify <consumer_
name> in

<consumer_options>

Create a TopicReceiver
on the topic using the
recipient name, then

AQjmsSession.create
TopicReceiver
AQjmsTopicReceiver.
receive

or

AQjmsTopicReceiver.
receiveNoWait

or

AQjmsTopicReceiver.
receiveNoData

Table 3–8 (Cont.) Comparison of Oracle Streams AQ Programmatic Interfaces: Operational
Interface—Receive Messages from a Queue/Topic Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Comparing Oracle Streams AQ Programmatic Interfaces

3-14 Oracle Streams Advanced Queuing User’s Guide

Table 3–9 Comparison of Oracle Streams AQ Programmatic Interfaces: Operational Interface—Register to
Receive Messages Asynchronously from a Queue/Topic Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Receive messages
asynchronously from
a single-consumer
queue

Define a PL/SQL
callback procedure

Register it using

DBMS_AQ.REGISTER

OCISubscription
Register

Specify queue_name
as subscription name

OCISubscription
Enable

<AQXmlRegister>

Specify queue name
in <destination>
and notification
mechanism in

<notify_url>

Create a
QueueReceiver on
the queue, then

QueueReceiver.set
MessageListener

Receive messages
asynchronously from
a multiconsumer
queue/topic

Define a PL/SQL
callback procedure

Register it using

DBMS_AQ.REGISTER

OCISubscription
Register

Specify queue:OCI_
ATTR_CONSUMER_
NAME as subscription
name

OCISubscription
Enable

<AQXmlRegister>

Specify queue name
in <destination>,
consumer in
<consumer_name>
and notification
mechanism in
<notify_url>

Create a
TopicSubscriber
or TopicReceiver
on the topic, then

TopicSubscriber.
setMessageListener

Listen for messages
on multiple
queues/topics

- - - -

Listen for messages
on one (many)
single-consumer
queues

DBMS_AQ.LISTEN

Use agent_name as
NULL for all agents in
agent_list

OCIAQListen

Use agent_name as
NULL for all agents in
agent_list

Not supported Create multiple
QueueReceivers
on a QueueSession,
then

QueueSession.set
MessageListener

Listen for messages
on one (many)
multiconsumer
queues/Topics

DBMS_AQ.LISTEN

Specify agent_name
for all agents in
agent_list

OCIAQListen

Specify agent_name
for all agents in
agent_list

Not supported Create multiple
TopicSubscribers
or TopicReceivers
on a TopicSession,
then

TopicSession.set
MessageListener

Part II
Managing and Tuning Oracle Streams AQ

Part II describes how to manage and tune your Oracle Streams Advanced Queuing
(AQ) application.

This part contains the following chapters:

■ Chapter 4, "Managing Oracle Streams AQ"

■ Chapter 5, "Oracle Streams AQ Performance and Scalability"

■ Chapter 6, "Internet Access to Oracle Streams AQ"

■ Chapter 7, "Troubleshooting Oracle Streams AQ"

Managing Oracle Streams AQ 4-1

4
Managing Oracle Streams AQ

This chapter discusses topics related to managing Oracle Streams Advanced Queuing
(AQ).

This chapter contains these topics:

■ Oracle Streams AQ Compatibility Parameters

■ Queue Security and Access Control

■ Queue Table Export-Import

■ Oracle Enterprise Manager Support

■ Using Oracle Streams AQ with XA

■ Restrictions on Queue Management

■ Managing Propagation

Oracle Streams AQ Compatibility Parameters
The queues in which buffered messages are stored must be created with compatibility
set to 8.1 or higher.

The compatible parameter of init.ora and the compatible parameter of the
queue table should be set to 8.1 or higher to use the following features:

■ Queue-level access control

■ Support for Real Application Clusters environments

■ Rule-based subscribers for publish/subscribe

■ Asynchronous notification

■ Sender identification

■ Separate storage of history management information

■ Secure queues

Mixed case (upper and lower case together) queue names, queue table names, and
subscriber names are supported if database compatibility is 10.0, but the names must
be enclosed in double quote marks. So abc.efg means the schema is ABC and the
name is EFG, but "abc"."efg" means the schema is abc and the name is efg.

See Also: Oracle Streams Concepts and Administration for more
information on secure queues

Queue Security and Access Control

4-2 Oracle Streams Advanced Queuing User’s Guide

Queue Security and Access Control
This section contains these topics:

■ Oracle Streams AQ Security

■ Queue Security

■ Queue Privileges and Access Control

■ OCI Applications and Queue Access

■ Security Required for Propagation

Oracle Streams AQ Security
Configuration information can be managed through procedures in the DBMS_AQADM
package. Initially, only SYS and SYSTEM have execution privilege for the procedures in
DBMS_AQADM and DBMS_AQ. Users who have been granted EXECUTE rights to these
two packages are able to create, manage, and use queues in their own schemas. The
MANAGE_ANY AQ system privilege is used to create and manage queues in other
schemas.

Users of the Java Message Service (JMS) API need EXECUTE privileges on DBMS_
AQJMS and DBMS_AQIN.

This section contains these topics:

■ Administrator Role

■ User Role

■ Access to Oracle Streams AQ Object Types

Administrator Role
The AQ_ADMINISTRATOR_ROLE has all the required privileges to administer queues.
The privileges granted to the role let the grantee:

■ Perform any queue administrative operation, including create queues and queue
tables on any schema in the database

■ Perform enqueue and dequeue operations on any queues in the database

■ Access statistics views used for monitoring the queue workload

■ Create transformations using DBMS_TRANSFORM

■ Run all procedures in DBMS_AQELM

■ Run all procedures in DBMS_AQJMS

User Role
You should avoid granting AQ_USER_ROLE, because this role does not provide
sufficient privileges for enqueuing or dequeuing.

Your database administrator has the option of granting the system privileges
ENQUEUE_ANY and DEQUEUE_ANY, exercising DBMS_AQADM.GRANT_SYSTEM_
PRIVILEGE and DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE directly to a database
user, if you want the user to have this level of control.

See Also: "Granting Oracle Streams AQ System Privileges" on
page 8-18 for more information on AQ system privileges

Queue Security and Access Control

Managing Oracle Streams AQ 4-3

You as the application developer give rights to a queue by granting and revoking
privileges at the object level by exercising DBMS_AQADM.GRANT_QUEUE_PRIVILEGE
and DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE.

As a database user, you do not need any explicit object-level or system-level privileges
to enqueue or dequeue to queues in your own schema other than the EXECUTE right
on DBMS_AQ.

Access to Oracle Streams AQ Object Types
All internal Oracle Streams AQ objects are now accessible to PUBLIC.

Queue Security
Oracle Streams AQ administrators of Oracle Database can create queues. When you
create queues, the default value of the compatible parameter in DBMS_
AQADM.CREATE_QUEUE_TABLE is that of the compatible parameter.

To enqueue or dequeue, users need EXECUTE rights on DBMS_AQ and either enqueue
or dequeue privileges on target queues, or ENQUEUE_ANY/DEQUEUE_ANY system
privileges.

Queue Privileges and Access Control
You can grant or revoke privileges at the object level on queues. You can also grant or
revoke various system-level privileges. Table 4–1 lists all common Oracle Streams AQ
operations and the privileges needed to perform these operations.

OCI Applications and Queue Access
For an Oracle Call Interface (OCI) application to access a queue, the session user must
be granted either the object privilege of the queue he intends to access or the ENQUEUE
ANY QUEUE or DEQUEUE ANY QUEUE system privileges. The EXECUTE right of DBMS_
AQ is not checked against the session user's rights.

Table 4–1 Operations and Required Privileges

Operation(s) Privileges Required

CREATE/DROP/MONITOR
own queues

Must be granted EXECUTE rights on DBMS_AQADM. No other
privileges needed.

CREATE/DROP/MONITOR any
queues

Must be granted EXECUTE rights on DBMS_AQADM and be
granted AQ_ADMINISTRATOR_ROLE by another user who has
been granted this role (SYS and SYSTEM are the first granters
of AQ_ADMINISTRATOR_ROLE)

ENQUEUE/ DEQUEUE to own
queues

Must be granted EXECUTE rights on DBMS_AQ. No other
privileges needed.

ENQUEUE/ DEQUEUE to
another's queues

Must be granted EXECUTE rights on DBMS_AQ and be granted
privileges by the owner using DBMS_AQADM.GRANT_QUEUE_
PRIVILEGE.

ENQUEUE/ DEQUEUE to any
queues

Must be granted EXECUTE rights on DBMS_AQ and be granted
ENQUEUE ANY QUEUE or DEQUEUE ANY QUEUE system
privileges by an Oracle Streams AQ administrator using
DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE.

Queue Table Export-Import

4-4 Oracle Streams Advanced Queuing User’s Guide

Security Required for Propagation
Oracle Streams AQ propagates messages through database links. The propagation
driver dequeues from the source queue as owner of the source queue; hence, no
explicit access rights need be granted on the source queue. At the destination, the login
user in the database link should either be granted ENQUEUE ANY QUEUE privilege or be
granted the right to enqueue to the destination queue. However, if the login user in the
database link also owns the queue tables at the destination, then no explicit Oracle
Streams AQ privileges must be granted.

Queue Table Export-Import
When a queue table is exported, the queue table data and anonymous blocks of
PL/SQL code are written to the export dump file. When a queue table is imported, the
import utility executes these PL/SQL anonymous blocks to write the metadata to the
data dictionary.

Oracle AQ does not export registrations with a user export. All applications that make
use of client registrations should take this into account as the client may not be present
in the imported database.

This section contains these topics:

■ Exporting Queue Table Data

■ Importing Queue Table Data

■ Data Pump Export and Import

Exporting Queue Table Data
The export of queues entails the export of the underlying queue tables and related
dictionary tables. Export of queues can also be accomplished at queue-table
granularity.

Exporting Queue Tables with Multiple Recipients
A queue table that supports multiple recipients is associated with the following tables:

■ Dequeue index-organized table (IOT)

■ Time-management index-organized table

■ Subscriber table

■ A history IOT

These tables are exported automatically during full database mode, user mode and
table mode exports. See "Export Modes" on page 4-5.

See Also: "Propagation from Object Queues" on page 4-9

Note: You cannot export or import buffered messages.

If there exists a queue table with the same name in the same schema in
the database as in the export dump, then ensure that the database
queue table is empty before importing a queue table with queues.
Failing to do so has a possibility of ruining the metadata for the
imported queue.

Queue Table Export-Import

Managing Oracle Streams AQ 4-5

Because the metadata tables contain ROWIDs of some rows in the queue table, the
import process generates a note about the ROWIDs being made obsolete when
importing the metadata tables. This message can be ignored, because the queuing
system automatically corrects the obsolete ROWIDs as a part of the import operation.
However, if another problem is encountered while doing the import (such as running
out of rollback segment space), then you should correct the problem and repeat the
import.

Export Modes
Exporting operates in full database mode, user mode, and table mode. Incremental
exports on queue tables are not supported.

In full database mode, queue tables, all related tables, system-level grants, and
primary and secondary object grants are exported automatically.

In user mode, queue tables, all related tables, and primary object grants are exported
automatically. However, doing a user-level export from one schema to another using
the FROMUSER TOUSER clause is not supported.

In table mode, queue tables, all related tables, and primary object grants are exported
automatically. For example, when exporting a multiconsumer queue table, the
following tables are automatically exported:

■ AQ$_queue_table_I (the dequeue IOT)

■ AQ$_queue_table_T (the time-management IOT)

■ AQ$_queue_table_S (the subscriber table)

■ AQ$_queue_table_H (the history IOT)

Importing Queue Table Data
Similar to exporting queues, importing queues entails importing the underlying queue
tables and related dictionary data. After the queue table data is imported, the import
utility executes the PL/SQL anonymous blocks in the dump file to write the metadata
to the data dictionary.

Importing Queue Tables with Multiple Recipients
A queue table that supports multiple recipients is associated with the following tables:

■ A dequeue IOT

■ A time-management IOT

■ A subscriber table

■ A history IOT

These tables must be imported as well as the queue table itself.

Import IGNORE Parameter
You must not import queue data into a queue table that already contains data. The
IGNORE parameter of the import utility must always be set to NO when importing
queue tables. If the IGNORE parameter is set to YES, and the queue table that already
exists is compatible with the table definition in the dump file, then the rows are loaded
from the dump file into the existing table. At the same time, the old queue table
definition is lost and re-created. Queue table definition prior to the import is lost and
duplicate rows appear in the queue table.

Oracle Enterprise Manager Support

4-6 Oracle Streams Advanced Queuing User’s Guide

Data Pump Export and Import
The Data Pump replace and skip modes are supported for queue tables. In the replace
mode an existing queue table is dropped and replaced by the new queue table from
the export dump file. In the skip mode, a queue table that already exists is not
imported.

The truncate and append modes are not supported for queue tables. The behavior in
this case is the same as the replace mode.

Oracle Enterprise Manager Support
Oracle Enterprise Manager supports most of the administrative functions of Oracle
Streams AQ. Oracle Streams AQ functions are found under the Distributed node in the
navigation tree of the Enterprise Manager console. Functions available through Oracle
Enterprise Manager include:

■ Using queues as part of the schema manager to view properties

■ Creating, starting, stopping, and dropping queues

■ Scheduling and unscheduling propagation

■ Adding and removing subscribers

■ Viewing propagation schedules for all queues in the database

■ Viewing errors for all queues in the database

■ Viewing the message queue

■ Granting and revoking privileges

■ Creating, modifying, or removing transformations

Using Oracle Streams AQ with XA
You must specify "Objects=T" in the xa_open string if you want to use the Oracle
Streams AQ OCI interface. This forces XA to initialize the client-side cache in Objects
mode. You are not required to do this if you plan to use Oracle Streams AQ through
PL/SQL wrappers from OCI or Pro*C.

The large object (LOB) memory management concepts from the Pro* documentation
are not relevant for Oracle Streams AQ raw messages because Oracle Streams AQ
provides a simple RAW buffer abstraction (although they are stored as LOBs).

When using the Oracle Streams AQ navigation option, you must reset the dequeue
position by using the FIRST_MESSAGE option if you want to continue dequeuing
between services (such as xa_start and xa_end boundaries). This is because XA
cancels the cursor fetch state after an xa_end. If you do not reset, then you get an
error message stating that the navigation is used out of sequence (ORA-25237).

See Also: Oracle Database Utilities for more information on Data
Pump Export and Data Pump Import

See Also:

■ "Working with Transaction Monitors with Oracle XA" in Oracle
Database Advanced Application Developer's Guide for more
information on XA

■ "Large Objects (LOBs)" in Pro*C/C++ Programmer's Guide

Restrictions on Queue Management

Managing Oracle Streams AQ 4-7

Restrictions on Queue Management
This section discusses restrictions on queue management.

This section contains these topics:

■ Subscribers

■ DML Not Supported on Queue Tables or Associated IOTs

■ Propagation from Object Queues with REF Payload Attributes

■ Collection Types in Message Payloads

■ Synonyms on Queue Tables and Queues

■ Synonyms on Object Types

■ Tablespace Point-in-Time Recovery

■ Virtual Private Database

Subscribers
You cannot have more than 1,000 local subscribers for each queue. Also, only 32
remote subscribers are allowed for each remote destination database.

DML Not Supported on Queue Tables or Associated IOTs
Oracle Streams AQ does not support data manipulation language (DML)
operations on queue tables or associated index-organized tables (IOTs), if any. The
only supported means of modifying queue tables is through the supplied APIs. Queue
tables and IOTs can become inconsistent and therefore effectively ruined, if DML
operations are performed on them.

Propagation from Object Queues with REF Payload Attributes
Oracle Streams AQ does not support propagation from object queues that have REF
attributes in the payload.

Collection Types in Message Payloads
You cannot construct a message payload using a VARRAY that is not itself contained
within an object. You also cannot currently use a NESTED Table even as an embedded
object within a message payload. However, you can create an object type that contains
one or more VARRAYs, and create a queue table that is founded on this object type, as
shown in Example 4–1.

Example 4–1 Creating Objects Containing VARRAYs

CREATE TYPE number_varray AS VARRAY(32) OF NUMBER;
CREATE TYPE embedded_varray AS OBJECT (col1 number_varray);
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'QT',

Note: Mixed case (upper and lower case together) queue names,
queue table names, and subscriber names are supported if database
compatibility is 10.0, but the names must be enclosed in double quote
marks. So abc.efg means the schema is ABC and the name is EFG,
but "abc"."efg" means the schema is abc and the name is efg.

Managing Propagation

4-8 Oracle Streams Advanced Queuing User’s Guide

 queue_payload_type => 'embedded_varray');

Synonyms on Queue Tables and Queues
No Oracle Streams AQ PL/SQL calls resolve synonyms on queues and queue tables.
Although you can create synonyms, you should not apply them to the Oracle Streams
AQ interface.

Synonyms on Object Types
If you have created synonyms on object types, you cannot use them in DBMS_
AQADM.CREATE_QUEUE_TABLE. Error ORA-24015 results.

Tablespace Point-in-Time Recovery
Oracle Streams AQ currently does not support tablespace point-in-time recovery.
Creating a queue table in a tablespace disables that particular tablespace for
point-in-time recovery. Oracle Streams AQ does support regular point-in-time
recovery.

Virtual Private Database
You can use Oracle Streams AQ with Virtual Private Database by specifying a
security policy with Oracle Streams AQ queue tables. While dequeuing, use the
dequeue condition (deq_cond) or the correlation identifier for the policy to be
applied. You can use "1=1" as the dequeue condition. If you do not use a dequeue
condition or correlation ID, then the dequeue results in an error.

Managing Propagation
This section contains these topics:

■ EXECUTE Privileges Required for Propagation

■ Propagation from Object Queues

■ Optimizing Propagation

■ Handling Failures in Propagation

EXECUTE Privileges Required for Propagation
Propagation jobs are owned by SYS, but the propagation occurs in the security context
of the queue table owner. Previously propagation jobs were owned by the user
scheduling propagation, and propagation occurred in the security context of the user
setting up the propagation schedule. The queue table owner must be granted
EXECUTE privileges on the DBMS_AQADM package. Otherwise, the Oracle Database
snapshot processes do not propagate and generate trace files with the error identifier

Note: When a dequeue condition or correlation identifier is used, the
order of the messages dequeued is indeterminate, and the sort order
of the queue is not honored.

Caution: For propagation to work correctly, the queue aq$_prop_
notify_X should never be stopped or dropped and the table aq$_
prop_table_X should never be dropped.

Managing Propagation

Managing Oracle Streams AQ 4-9

SYS.DBMS_AQADM not defined. Private database links owned by the queue table
owner can be used for propagation. The username specified in the connection string
must have EXECUTE access on the DBMS_AQ and DBMS_AQADM packages on the remote
database.

Propagation from Object Queues
Propagation from object queues with BFILE objects is supported. To be able to
propagate object queues with BFILE objects, the source queue owner must have read
privileges on the directory object corresponding to the directory in which the BFILE is
stored. The database link user must have write privileges on the directory object
corresponding to the directory of the BFILE at the destination database.

AQ propagation does not support non-final types. Propagation of BFILE objects from
object queues without specifying a database link is not supported.

Optimizing Propagation
AQ propagation jobs are run by the Oracle Scheduler. Propagation may be scheduled
in the following ways:

■ A dedicated schedule in which the propagation runs forever or for a specified
duration. This mode provides the lowest propagation latencies.

■ A periodic schedule in which the propagation runs periodically for a specified
interval. This may be used when propagation can be run in a batched mode.

■ An event based system in which propagation is started when there are messages
to be propagated. This mode makes more efficient use of available resources,
while still providing a fast response time.

The administrator may choose a schedule that best meets the application performance
requirements.

Oracle Scheduler will start the required number of job queue processes for the
propagation schedules. Since the scheduler optimizes for throughput, if the system is
heavily loaded, it may not run some propagation jobs. The resource manager may be
used to have better control over the scheduling decisions. In particular, associating
propagation jobs with different resource groups can allow for fairness in scheduling
which may be important in heavy load situations.

In setting the number of JOB_QUEUE_PROCESSES, DBAs should be aware that this
number is determined by the number of queues from which the messages must be
propagated and the number of destinations (rather than queues) to which messages
must be propagated.

A scheduling algorithm handles propagation. The algorithm optimizes available job
queue processes and minimizes the time it takes for a message to show up at a
destination after it has been enqueued into the source queue, thereby providing
near-OLTP action. The algorithm can handle an unlimited number of schedules and
various types of failures. While propagation tries to make the optimal use of the
available job queue processes, the number of job queue processes to be started also
depends on the existence of jobs unrelated to propagation, such as replication jobs.
Hence, it is important to use the following guidelines to get the best results from the
scheduling algorithm.

See Also: "CREATE DIRECTORY" in Oracle Database SQL Language
Reference for more information on directory objects

Managing Propagation

4-10 Oracle Streams Advanced Queuing User’s Guide

The scheduling algorithm uses the job queue processes as follows (for this discussion,
an active schedule is one that has a valid current window):

■ If the number of active schedules is fewer than half the number of job queue
processes, then the number of job queue processes acquired corresponds to the
number of active schedules.

■ If the number of active schedules is more than half the number of job queue
processes, after acquiring half the number of job queue processes, then multiple
active schedules are assigned to an acquired job queue process.

■ If the system is overloaded (all schedules are busy propagating), depending on
availability, then additional job queue processes are acquired up to one fewer than
the total number of job queue processes.

■ If none of the active schedules handled by a process has messages to be
propagated, then that job queue process is released.

■ The algorithm performs automatic load balancing by transferring schedules from a
heavily loaded process to a lightly load process such that no process is excessively
loaded.

Handling Failures in Propagation
The scheduling algorithm has robust support for handling failures. Common failures
that prevent message propagation include the following:

■ Database link failed

■ Remote database is not available

■ Remote queue does not exist

■ Remote queue was not started

■ Security violation while trying to enqueue messages into remote queue

Under all these circumstances the appropriate error messages are reported in the DBA_
QUEUE_SCHEDULES view.

When an error occurs in a schedule, propagation of messages in that schedule is
attempted again after a retry period of 30*(number of failures) seconds, with an upper
bound of ten minutes. After sixteen consecutive retries, the schedule is disabled.

If the problem causing the error is fixed and the schedule is enabled, then the error
fields that indicate the last error date, time, and message continue to show the error
information. These fields are reset only when messages are successfully propagated in
that schedule.

See Also: Chapter 7, "Troubleshooting Oracle Streams AQ"

Oracle Streams AQ Performance and Scalability 5-1

5
Oracle Streams AQ Performance and

Scalability

This chapter discusses performance and scalability issues relating to Oracle Streams
Advanced Queuing (AQ).

This chapter contains the following topics:

■ Persistent Messaging Performance Overview

■ Persistent Messaging Basic Tuning Tips

■ Propagation Tuning Tips

■ Buffered Messaging Tuning

Persistent Messaging Performance Overview
When persistent messages are enqueued, they are stored in database tables. The
performance characteristics of queue operations on persistent messages are similar to
underlying database operations. The code path of an enqueue operation is comparable
to SELECT and INSERT into a multicolumn queue table with three index-organized
tables. The code path of a dequeue operation is comparable to SELECT, DELETE, and
UPDATE operations on similar tables.

Oracle Streams AQ and Oracle Real Application Clusters
Real Application Clusters (RAC) can be used to ensure highly available access to
queue data. The entry and exit points of a queue, commonly called its tail and head
respectively, can be extreme hot spots. Because RAC may not scale well in the presence
of hot spots, limit usual access to a queue from one instance only. If an instance failure
occurs, then messages managed by the failed instance can be processed immediately
by one of the surviving instances.

You can associate RAC instance affinities with 8.1-compatible queue tables. If you are
using q1 and q2 in different instances, then you can use ALTER_QUEUE_TABLE or
CREATE_QUEUE_TABLE on the queue table and set primary_instance to the
appropriate instance_id.

Note: Performance is not affected by the number of queues in a table.

See Also:

■ "Creating a Queue Table" on page 8-1

■ "Altering a Queue Table" on page 8-8

Persistent Messaging Basic Tuning Tips

5-2 Oracle Streams Advanced Queuing User’s Guide

Oracle Streams AQ in a Shared Server Environment
Queue operation scalability is similar to the underlying database operation scalability.
If a dequeue operation with wait option is applied, then it does not return until it is
successful or the wait period has expired. In a shared server environment, the shared
server process is dedicated to the dequeue operation for the duration of the call,
including the wait time. The presence of many such processes can cause severe
performance and scalability problems and can result in deadlocking the shared server
processes. For this reason, Oracle recommends that dequeue requests with wait option
be applied using dedicated server processes. This restriction is not enforced.

Persistent Messaging Basic Tuning Tips
Oracle Streams AQ table layout is similar to a layout with ordinary database tables
and indexes.

Using Storage Parameters
Storage parameters can be specified when creating a queue table using the storage_
clause parameter. Storage parameters are inherited by other IOTs and tables created
with the queue table. The tablespace of the queue table should have sufficient space to
accommodate data from all the objects associated with the queue table. With retention
specified, the history table as well as the queue table can grow to be quite big.

Oracle recommends you use automatic segment-space management (ASSM).
Otherwise initrans, freelists and freelist groups must be tuned for AQ performance
under high concurrency.

Increasing PCTFREE will reduce the number of messages in a queue table/IOT block.
This will reduce block level contention when there is concurrency.

Storage parameters specified at queue table creation are shared by the queue table,
IOTs and indexes. These may be individually altered by an online redefinition using
DBMS_REDEFINTION.

I/O Configuration
Because Oracle Streams AQ is very I/O intensive, you will usually need to tune I/O to
remove any bottlenecks.

Running Enqueue and Dequeue Processes Concurrently in a Single Queue Table
Some environments must process messages in a constant flow, requiring that enqueue
and dequeue processes run concurrently. If the message delivery system has only one
queue table and one queue, then all processes must work on the same segment area at
the same time. This precludes reasonable performance levels when delivering a high
number of messages.

See Also: "DEQUEUE_OPTIONS_T Type" in Oracle Database PL/SQL
Packages and Types Reference for more information on the wait option

See Also: Oracle Database Performance Tuning Guide for tuning
recommendations

See Also: "I/O Configuration and Design" in Oracle Database
Performance Tuning Guide

Persistent Messaging Basic Tuning Tips

Oracle Streams AQ Performance and Scalability 5-3

The best number for concurrent processes depends on available system resources. For
example, on a four-CPU system, it is reasonable to start with two concurrent enqueue
and two concurrent dequeue processes. If the system cannot deliver the wanted
number of messages, then use several subscribers for load balancing rather than
increasing the number of processes.

Tune the enqueue and dequeue rates on the queue so that in the common case the
queue size remains small and bounded. A queue that grows and shrinks considerably
will have indexes and IOTs that are out of balance, which will affect performance.

With multi-consumer queues, using several subscribers for load balancing rather than
increasing the number of processes will reduce contention. Multiple queue tables may
be used garnering horizontal scalability.

Running Enqueue and Dequeue Processes Serially in a Single Queue Table
When enqueue and dequeue processes are running serially, contention on the same
data segment is lower than in the case of concurrent processes. The total time taken to
deliver messages by the system, however, is longer than when they run concurrently.
Increasing the number of processes helps both enqueuing and dequeuing. The
message throughput rate is higher for enqueuers than for dequeuers when the number
of processes is increased. Usually, the dequeue operations throughput is much less
than the enqueue operation (INSERT) throughput, because dequeue operations
perform SELECT, DELETE, and UPDATE.

Creating Indexes on a Queue Table
Creating an index on a queue table is useful if you:

■ Dequeue using correlation ID

An index created on the column corr_id of the underlying queue table AQ$_
QueueTableName expedites dequeues.

■ Dequeue using a condition

This is like adding the condition to the where-clause for the SELECT on the
underlying queue table. An index on QueueTableName expedites performance
on this SELECT statement.

Other Tips
■ Ensure that statistics are being gathered so that the optimal query plans for

retrieving messages are being chosen. By default, queue tables are locked out from
automatic gathering of statistics. The recommended use is to gather statistics with
a representative queue message load and lock them.

■ The queue table indexes and IOTs must be coalesced periodically. In 10.2 with
automatic space segment management (ASSM), or an online shrink operation may
be used for the same purpose. This reduces queue monitor CPU consumption and
ensures optimal enqueue dequeue performance.

■ Ensure that there are enough queue monitor processes running to perform the
background tasks. The queue monitor must also be running for other crucial
background activity. Multiple qmn processes share the load; make sure that there
are enough of them. These are auto-tuned, but can be forced to a minimum
number, if needed.

■ It is recommended that dequeue with a wait time is only used with dedicated
server processes. In a shared server environment, the shared server process is

Propagation Tuning Tips

5-4 Oracle Streams Advanced Queuing User’s Guide

dedicated to the dequeue operation for the duration of the call, including the wait
time. The presence of many such processes can cause severe performance and
scalability problems and can result in deadlocking the shared server processes.

■ Long running dequeue transactions worsen dequeue contention on the queue, and
must be avoided.

■ Dequeue operations are typically slower than enqueue. Overall dequeue/enqueue
rates also depend on application design.

■ Use NEXT as navigation mode, if not using message priorities. This offers the same
semantics but improved performance.

■ Use the REMOVE_NODATA dequeue mode if dequeuing in BROWSE mode followed
by a REMOVE.

Propagation Tuning Tips
Propagation can be considered a special kind of dequeue operation with an additional
INSERT at the remote (or local) queue table. Propagation from a single schedule is not
parallelized across multiple job queue processes. Rather, they are load balanced. For
better scalability, configure the number of propagation schedules according to the
available system resources (CPUs).

Propagation rates from transactional and nontransactional (default) queue tables vary
to some extent because Oracle Streams AQ determines the batching size for
nontransactional queues, whereas for transactional queues, batch size is mainly
determined by the user application.

Optimized propagation happens in batches. If the remote queue is in a different
database, then Oracle Streams AQ uses a sequencing algorithm to avoid the need for a
two-phase commit. When a message must be sent to multiple queues in the same
destination, it is sent multiple times. If the message must be sent to multiple
consumers in the same queue at the destination, then it is sent only once.

Buffered Messaging Tuning
Buffered messaging operations in a Real Application Clusters environment will be
fastest on the OWNER_INSTANCE of the queue.

Performance Views
Oracle provides views to monitor system performance and troubleshooting:

■ (G)V$PERSISTENT_QUEUES: All Active Persistent Queues in the Instance

■ (G)V$PERSISTENT_SUBSCRIBERS: All Active Subscribers of the Persistent
Queues in the Instance

■ (G)V$PERSISTENT_PUBLISHERS: All Active Publishers of the Persistent Queues
in the Instance

■ (G)V$BUFFERED_QUEUES: All Buffered Queues in the Instance.

■ (G)V$BUFFERED_SUBSCRIBERS: Subscribers for All Buffered Queues in the
Instance

■ (G)V$BUFFERED_PUBLISHERS: All Buffered Publishers in the Instance

Performance Views

Oracle Streams AQ Performance and Scalability 5-5

These views are integrated with the Automatic Workload Repository (AWR). Users
can generate a report based on two AWR snapshots to compute enqueue rate, dequeue
rate, and other statistics per queue/subscriber.

Performance Views

5-6 Oracle Streams Advanced Queuing User’s Guide

Internet Access to Oracle Streams AQ 6-1

6
Internet Access to Oracle Streams AQ

You can access Oracle Streams Advanced Queuing (AQ) over the Internet by using
Simple Object Access Protocol (SOAP). Internet Data Access Presentation (IDAP) is
the SOAP specification for Oracle Streams AQ operations. IDAP defines XML message
structure for the body of the SOAP request. An IDAP-structured message is
transmitted over the Internet using HTTP.

Users can register for notifications using the IDAP interface.

This chapter contains these topics:

■ Overview of Oracle Streams AQ Operations over the Internet

■ Deploying the Oracle Streams AQ XML Servlet

■ Internet Data Access Presentation (IDAP)

■ Request and Response IDAP Documents

■ Notification of Messages by e-mail

Overview of Oracle Streams AQ Operations over the Internet
This section contains these topics:

■ Oracle Streams AQ Internet Operations Architecture

■ Internet Message Payloads

■ Configuring the Web Server to Authenticate Users Sending POST Requests

■ Client Requests Using HTTP

■ Oracle Streams AQ Servlet Responses Using HTTP

■ Oracle Streams AQ Propagation Using HTTP and HTTPS

Oracle Streams AQ Internet Operations Architecture
Figure 6–1 shows the architecture for performing Oracle Streams AQ operations over
HTTP. The major components are:

■ Oracle Streams AQ client program

See Also:

■ Appendix B, "SOAP and Oracle Streams AQ XML Schemas",
which appears only in the HTML version of this guide

■ Table 1–3, " Oracle Streams AQ XML Demonstrations" on
page 1-39 for the locations of AQ XML demonstrations

Overview of Oracle Streams AQ Operations over the Internet

6-2 Oracle Streams Advanced Queuing User’s Guide

■ Web server/servlet runner hosting the Oracle Streams AQ servlet

■ Oracle Database server

A Web browser or any other HTTP client can serve as an Oracle Streams AQ client
program, sending XML messages conforming to IDAP to the Oracle Streams AQ
servlet, which interprets the incoming XML messages. The Oracle Streams AQ servlet
connects to the Oracle Database server and performs operations on user queues.

Figure 6–1 Architecture for Performing Oracle Streams AQ Operations Using HTTP

Internet Message Payloads
Oracle Streams AQ supports messages of three types: RAW, Oracle object, and Java
Message Service (JMS). All these message types can be accessed using SOAP and Web
services. If the queue holds messages in RAW, Oracle object, or JMS format, then XML
payloads are transformed to the appropriate internal format during enqueue and
stored in the queue. During dequeue, when messages are obtained from queues
containing messages in any of the preceding formats, they are converted to XML
before being sent to the client.

The message payload type depends on the queue type on which the operation is being
performed:

RAW Queues
The contents of RAW queues are raw bytes. You must supply the hex representation of
the message payload in the XML message. For example, <raw>023f4523</raw>.

Oracle Object Type Queues
For Oracle object type queues that are not JMS queues (that is, they are not type AQ$_
JMS_*), the type of the payload depends on the type specified while creating the
queue table that holds the queue. The content of the XML elements must map to the
attributes of the object type of the queue table.

JMS Type Queues/Topics
For queues with JMS types (that is, those with payloads of type AQ$_JMS_*), there are
four XML elements, depending on the JMS type. IDAP supports queues or topics with
the following JMS types:

■ TextMessage

■ MapMessage

■ BytesMessage

■ ObjectMessage

JMS queues with payload type StreamMessage are not supported through IDAP.

AQ
Queue

Web
Server

AQ Client

Oracle
Database
Server

AQ Servlet

XML Message
over HTTP

Overview of Oracle Streams AQ Operations over the Internet

Internet Access to Oracle Streams AQ 6-3

Configuring the Web Server to Authenticate Users Sending POST Requests
After the servlet is installed, the Web server must be configured to authenticate all
users that send POST requests to the Oracle Streams AQ servlet. The Oracle Streams
AQ servlet allows only authenticated users to access the servlet. If the user is not
authenticated, then an error is returned by the servlet.

The Web server can be configured in multiple ways to restrict access. Some of the
common techniques are basic authentication (username/password) over SSL and
client certificates. Consult your Web server documentation to see how you can restrict
access to servlets.

In the context of the Oracle Streams AQ servlet, the username that is used to connect to
the Web server is known as the Oracle Streams AQ HTTP agent or Oracle Streams AQ
Internet user.

Client Requests Using HTTP
An Oracle Streams AQ client begins a request to the Oracle Streams AQ servlet using
HTTP by opening a connection to the server. The client logs in to the server using
HTTP basic authentication (with or without SSL) or SSL certificate-based client
authentication. The client constructs an XML message representing the send, publish,
receive or register request.

The client sends an HTTP POST to the servlet at the remote server.

User Sessions and Transactions
After a client is authenticated and connects to the Oracle Streams AQ servlet, an HTTP
session is created on behalf of the user. The first request in the session also implicitly
starts a new database transaction. This transaction remains open until it is explicitly
committed or terminated. The responses from the servlet includes the session ID in the
HTTP headers as cookies.

If the client wishes to continue work in the same transaction, then it must include this
HTTP header containing the session ID cookie in subsequent requests. This is
automatically accomplished by most Web browsers. However, if the client is using a
Java or C client to post requests, then this must be accomplished programmatically.

An explicit commit or rollback must be applied to end the transaction. The commit or
rollback requests can also be included as part of other Oracle Streams AQ operations.

Oracle Streams AQ Servlet Responses Using HTTP
The server accepts the client HTTP(S) connection and authenticates the user (Oracle
Streams AQ agent) specified by the client. The server receives the POST request and
invokes the Oracle Streams AQ servlet.

See Also: "Request and Response IDAP Documents" on page 6-9

See Also: Table 1–3, " Oracle Streams AQ XML Demonstrations" on
page 1-39 for the locations of AQ XML demonstrations illustrating
POST requests using HTTP

See Also: Table 1–3, " Oracle Streams AQ XML Demonstrations" on
page 1-39 for the locations of AQ XML demonstrations illustrating a
Java program used to post requests as part of the same session

Deploying the Oracle Streams AQ XML Servlet

6-4 Oracle Streams Advanced Queuing User’s Guide

If this is the first request from this client, then a new HTTP session is created. The XML
message is parsed and its contents are validated. If a session ID is passed by the client
in the HTTP headers, then this operation is performed in the context of that session.

The servlet determines which object (queue/topic) the agent is trying to perform
operations on. The servlet looks through the list of database users that map to this
Oracle Streams AQ agent. If any one of these users has privileges to access the
queue/topic specified in the request, then the Oracle Streams AQ servlet superuser
creates a session on behalf of this user.

If no transaction is active in the HTTP session, then a new database transaction is
started. Subsequent requests in the session are part of the same transaction until an
explicit COMMIT or ROLLBACK request is made. The effects of the transaction are
visible only after it is committed. If the transaction remains inactive for 120 seconds,
then it is automatically terminated.

The requested operation is performed. The response is formatted as an XML message
and sent back the client. The response also includes the session ID in the HTTP
headers as a cookie.

Oracle Streams AQ Propagation Using HTTP and HTTPS
You can propagate over HTTP and HTTPS (HTTP over SSL) instead of Oracle Net
Services. HTTP, unlike Oracle Net Services, is easy to configure for firewalls. The
background process doing propagation pushes messages to an Oracle Streams AQ
servlet that enqueues them into the destination database, as shown in Figure 6–2.

Figure 6–2 HTTP Oracle Streams AQ Propagation

You can set up any application to use Oracle Streams AQ HTTP propagation without
any change to the existing code. An application using Oracle Streams AQ HTTP
propagation can easily switch back to Net Services propagation just by re-creating the
database link with a Net Services connection string, without any other changes.

Deploying the Oracle Streams AQ XML Servlet
Follow these steps to deploy the AQ XML servlet using OC4J:

1. For JDK1.2.x or JDK1.3.x, include the following in your CLASSPATH:

ORACLE_HOME/jdbc/lib/classes12.zip
ORACLE_HOME/jdbc/lib/nls_charset12.zip
ORACLE_HOME/jlib/javax-ssl-1_1.jar
ORACLE_HOME/jlib/jndi.jar
ORACLE_HOME/jlib/jssl-1_1.jar
ORACLE_HOME/jlib/jta.jar
ORACLE_HOME/jlib/orai18n.jar

See Also: "User Sessions and Transactions" on page 6-3

Source
Database

Oracle
Server

Oracle
Server

AQ Queue

Web
Server

Job queue
process

Destination
Database

AQ QueueAQ
Servlet

Deploying the Oracle Streams AQ XML Servlet

Internet Access to Oracle Streams AQ 6-5

ORACLE_HOME/jlib/orai18n-collation.jar
ORACLE_HOME/jlib/orai18n-mapping.jar
ORACLE_HOME/jlib/orai18n-utility.jar
ORACLE_HOME/lib/http_client.jar
ORACLE_HOME/lib/lclasses12.zip
ORACLE_HOME/lib/servlet.jar
ORACLE_HOME/lib/xmlparserv2.jar
ORACLE_HOME/lib/xschema.jar
ORACLE_HOME/lib/xsu12.jar
ORACLE_HOME/rdbms/jlib/aqapi.jar
ORACLE_HOME/rdbms/jlib/aqxml.jar
ORACLE_HOME/rdbms/jlib/jmscommon.jar
ORACLE_HOME/rdbms/jlib/xdb.jar
ORACLE_HOME/rdbms/jlib/xsu12.jar

2. For JDK1.4.x, include the following in your CLASSPATH:

ORACLE_HOME/jdbc/lib/ojdbc14.jar
ORACLE_HOME/jlib/javax-ssl-1_1.jar
ORACLE_HOME/jlib/jndi.jar
ORACLE_HOME/jlib/jssl-1_1.jar
ORACLE_HOME/jlib/jta.jar
ORACLE_HOME/jlib/orai18n.jar
ORACLE_HOME/jlib/orai18n-collation.jar
ORACLE_HOME/jlib/orai18n-mapping.jar
ORACLE_HOME/jlib/orai18n-utility.jar
ORACLE_HOME/lib/http_client.jar
ORACLE_HOME/lib/lclasses12.zip
ORACLE_HOME/lib/servlet.jar
ORACLE_HOME/lib/xmlparserv2.jar
ORACLE_HOME/lib/xschema.jar
ORACLE_HOME/lib/xsu12.jar
ORACLE_HOME/rdbms/jlib/aqapi.jar
ORACLE_HOME/rdbms/jlib/aqxml.jar
ORACLE_HOME/rdbms/jlib/jmscommon.jar
ORACLE_HOME/rdbms/jlib/xdb.jar

3. Compile AQHttpRq.java:

cd ORACLE_HOME/rdbms/demo
javac AQHttpRq.java AQHttp.java

4. Set the following database initialization parameters to the indicated values:

job_queue_processes=2
compatible=10.2.0

5. Restart the database and listener.

6. Set up queues and authenticate users for restricted access.

7. Deploy the servlet and start the OC4J instance:

Note: http_client.jar, jssl-1_1.jar, and javax-ssl-1_
1.jar are required by HTTPClient used in AQHttp.java and
AQHttpRq.java.

See Also: aqxmlREADME.txt and aqxmldmo.sql in ORACLE_
HOME/rdbms/demo for additional information.

Deploying the Oracle Streams AQ XML Servlet

6-6 Oracle Streams Advanced Queuing User’s Guide

cd ORACLE_HOME/bin
sh aqxmlctl deploy
sh aqxmlctl start

8. Check the status of the servlet and information on the protocol and port number
used for deploying the servlet in the following files:

ORACLE_HOME/rdbms/demo/aqxml.ini
ORACLE_HOME/oc4j/j2ee/OC4J_AQ/config/rmi.xml
ORACLE_HOME/oc4j/j2ee/OC4J_AQ/config/http-web-site.xml

9. Point a web browser to the following URL:

https://hostname:portnumber/aqserv/servlet/AQDemoServlet

where hostname is the server name, and portnumber is the value discovered in
the previous step. After you respond to a username/password prompt, the servlet
displays:

Sample AQ Servlet
AQxmlServlet is working!

10. Create an SSL Certificate and generate a keystore. The following files provide
examples:

ORACLE_HOME/rdbms/demo/aqxmloc4j.cert
ORACLE_HOME/rdbms/demo/keystore

The following tags in ORACLE_HOME/oc4j/j2ee/OC4J_
AQ/config/http-web-site.xml indicate that the Web site is secure and
keystore is used for SSL authentication:

<web-site port="443" secure="true">
....
 <ssl-config
 keystore="ORACLE_HOME/oc4j/j2ee/home/keystore"
 keystore-password="welcome" />
</web-site>

To make the site access only HTTP requests, remove secure="true" and
<ssl-config> from http-web-site.xml.

11. Stop and restart the AQ XML servlet:

sh aqxmlctl stop
sh aqxmlctl start

Note: Use sh aqxmlctl stop to stop the OC4J instance. The
deploy servlet and start OC4J instance steps might have been done
during your Oracle Database installation. You can verify this in the
following steps.

See Also: Keytool documentation at
http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris
/keytool.html

Internet Data Access Presentation (IDAP)

Internet Access to Oracle Streams AQ 6-7

Internet Data Access Presentation (IDAP)
Internet Data Access Presentation (IDAP) uses the Content-Type of text/xml to
specify the body of the SOAP request. XML provides the presentation for IDAP
request and response messages as follows:

■ All request and response tags are scoped in the SOAP namespace.

■ Oracle Streams AQ operations are scoped in the IDAP namespace.

■ The sender includes namespaces in IDAP elements and attributes in the SOAP
body.

■ The receiver processes SOAP messages that have correct namespaces and returns
an invalid request error for requests with incorrect namespaces.

■ The SOAP namespace has the value
http://schemas.xmlsoap.org/soap/envelope/

■ The IDAP namespace has the value
http://ns.oracle.com/AQ/schemas/access

SOAP Message Structure
SOAP structures a message request or response as follows:

■ SOAP Envelope

■ SOAP Header

■ SOAP Body

SOAP Envelope
This is the root or top element in an XML tree. Its tag is SOAP:Envelope. SOAP
defines a global attribute SOAP:encodingStyle that indicates serialization rules
used instead of those described by the SOAP specification. This attribute can appear
on any element and is scoped to that element and all child elements not themselves
containing such an attribute. Omitting this attribute means that type specification has
been followed unless overridden by a parent element.

The SOAP envelope also contains namespace declarations and additional attributes,
provided they are namespace-qualified. Additional namespace-qualified subelements
can follow the body.

SOAP Header
This is the first element under the root. Its tag is SOAP:Header. A SOAP header
passes necessary information, such as the transaction identifier. The header is encoded
as a child of the SOAP:Envelope XML element. Headers are identified by the name
element and are namespace-qualified. A header entry is encoded as an embedded
element.

SOAP Body
This is the Oracle Streams AQ XML document. Its tag is SOAP:Body, and it contains a
first subelement whose name is the method name. This method request element
contains elements for each input and output parameter. The element names are the
parameter names. The body also contains SOAP:Fault, indicating information about
an error. The Oracle Streams AQ XML document has the namespace
http://ns.oracle.com/AQ/schemas/access

Internet Data Access Presentation (IDAP)

6-8 Oracle Streams Advanced Queuing User’s Guide

SOAP Method Invocation
A method invocation is performed by creating the request header and body and
processing the returned response header and body. The request and response headers
can consist of standard transport protocol-specific and extended headers.

HTTP Headers
The POST method within the HTTP request header performs the SOAP method
invocation. The request should include the header SOAPMethodName, whose value
indicates the method to be invoked on the target. The value is of the form
URI#method name. For example:

SOAPMethodName: http://ns.oracle.com/AQ/schemas/access#AQXmlSend

The URI used for the interface must match the implied or specified namespace
qualification of the method name element in the SOAP:Body part of the payload. The
method name must not include the "#" character.

Method Invocation Body
SOAP method invocation consists of a method request and optionally a method
response. The SOAP method request and method response are an HTTP request and
response, respectively, whose contents are XML documents consisting of the root and
mandatory body elements. These XML documents are referred to as SOAP payloads in
the rest of this chapter.

A SOAP payload is defined as follows:

■ The SOAP root element is the top element in the XML tree.

■ The SOAP payload headers contain additional information that must travel with
the request.

■ The method request is represented as an XML element with additional elements
for parameters. It is the first child of the SOAP:Body element. This request can be
one of the Oracle Streams AQ XML client requests described in the next section.

■ The response is the return value or an error or exception that is passed back to the
client.

At the receiving site, a request can have one of the following outcomes:

■ The HTTP infrastructure on the receiving site is able to receive and process the
request. In this case, the HTTP infrastructure passes the headers and body to the
SOAP infrastructure.

■ The HTTP infrastructure on the receiving site cannot receive and process the
request. In this case, the result is an HTTP response containing an HTTP error in
the status field and no XML body.

■ The SOAP infrastructure on the receiving site is able to decode the input
parameters, dispatch to an appropriate server indicated by the server address, and
invoke an application-level function corresponding semantically to the method
indicated in the method request. In this case, the result of the method request
consists of a response or error.

■ The SOAP infrastructure on the receiving site cannot decode the input parameters,
dispatch to an appropriate server indicated by the server address, and invoke an
application-level function corresponding semantically to the interface or method
indicated in the method request. In this case, the result of the method is an error

Request and Response IDAP Documents

Internet Access to Oracle Streams AQ 6-9

that prevented the dispatching infrastructure on the receiving side from successful
completion.

In the last two cases, additional message headers can be present in the results of the
request for extensibility.

Results from a Method Request
The results of the request are to be provided in the form of a request response. The
HTTP response must be of Content-Type text/xml. A SOAP result indicates success
and an error indicates failure. The method response never contains both a result and
an error.

Request and Response IDAP Documents
The body of a SOAP message is an IDAP message. This XML document has the
namespace http://ns.oracle.com/AQ/schemas/access. The body represents:

■ Client requests for enqueue, dequeue, and registration

■ Server responses to client requests for enqueue, dequeue, and registration

■ Notifications from the server to the client

This section contains these topics:

■ IDAP Client Requests for Enqueue

■ IDAP Client Requests for Dequeue

■ IDAP Client Requests for Registration

■ IDAP Client Requests to Commit a Transaction

■ IDAP Client Requests to Roll Back a Transaction

■ IDAP Server Response to an Enqueue Request

■ IDAP Server Response to a Dequeue Request

■ IDAP Server Response to a Register Request

■ IDAP Commit Response

■ IDAP Rollback Response

■ IDAP Notification

■ IDAP Response in Case of Error

IDAP Client Requests for Enqueue
Client send and publish requests use AQXmlSend to enqueue to a single-consumer
queue and AQXmlPublish to enqueue to multiconsumer queues/topics

AQXmlSend and AQXmlPublish contain the following elements:

■ producer_options

■ message_set

Note: Oracle Streams AQ Internet access is supported only for 8.1or
higher style queues.

Request and Response IDAP Documents

6-10 Oracle Streams Advanced Queuing User’s Guide

■ message_header

■ message_payload

■ AQXmlCommit

producer_options
This is a required element. It contains the following child elements:

■ destination

This element is required. It specifies the queue/topic to which messages are to be
sent. It has an optional lookup_type attribute, which determines how the
destination value is interpreted. If lookup_type is DATABASE, which is the default,
then the destination is interpreted as schema.queue_name. If lookup_type is
LDAP, then the LDAP server is used to resolve the destination.

■ visibility

This element is optional. It determines when an enqueue becomes visible. The
default is ON_COMMIT, which makes the enqueue visible when the current
transaction commits. If IMMEDIATE is specified, then the effects of the enqueue are
visible immediately after the request is completed. The enqueue is not part of the
current transaction. The operation constitutes a transaction on its own.

■ transformation

This element is optional. It specifies the PL/SQL transformation to be invoked
before the message is enqueued.

message_set
This is a required element and contains one or more messages. Each message consists
of a message_header and a message_payload.

message_header
This element is optional. It contains the following child elements:

■ sender_id

If a message_header element is included, then it must contain a sender_id
element, which specifies an application-specific identifier. The sender_id
element can contain agent_name, address, protocol, and agent_alias
elements. The agent_alias element resolves to a name, address, and protocol
using LDAP.

■ message_id

This element is optional. It is a unique identifier of the message, supplied during
dequeue.

■ correlation

This element is optional. It is the correlation identifier of the message.

■ delay

This element is optional. It specifies the duration in seconds after which a message
is available for processing.

■ expiration

This element is optional. It specifies the duration in seconds that a message is
available for dequeuing. This parameter is an offset from the delay. By default

Request and Response IDAP Documents

Internet Access to Oracle Streams AQ 6-11

messages never expire. If a message is not dequeued before it expires, then it is
moved to an exception queue in the EXPIRED state.

■ priority

This element is optional. It specifies the priority of the message. The priority can
be any number, including negative numbers. A smaller number indicates higher
priority.

■ recipient_list

This element is optional. It is a list of recipients which overrides the default
subscriber list. Each recipient is represented in recipient_list by a
recipient element, which can contain agent_name, address, protocol, and
agent_alias elements. The agent_alias element resolves to a name, address,
and protocol using LDAP.

■ message_state

This element is optional. It specifies the state of the message. It is filled in
automatically during dequeue. If message_state is 0, then the message is ready
to be processed. If it is 1, then the message delay has not yet been reached. If it is 2,
then the message has been processed and is retained. If it is 3, then the message
has been moved to an exception queue.

■ exception_queue

This element is optional. It specifies the name of the queue to which the message is
moved if the number of unsuccessful dequeue attempts has exceeded max_
retries or the message has expired. All messages in the exception queue are in
the EXPIRED state.

If the exception queue specified does not exist at the time of the move, then the
message is moved to the default exception queue associated with the queue table,
and a warning is logged in the alert log. If the default exception queue is used,
then the parameter returns a NULL value at dequeue time.

message_payload
This is a required element. It can contain different elements based on the payload type
of the destination queue/topic. The different payload types are described in "IDAP
Client Requests for Dequeue" on page 6-11.

AQXmlCommit
This is an optional empty element. If it is included, then the transaction is committed
at the end of the request.

IDAP Client Requests for Dequeue
Client requests for dequeue use AQXmlReceive, which contains the following
elements:

■ consumer_options

■ AQXmlCommit

consumer_options
This is a required element. It contains the following child elements:

See Also: "Internet Message Payloads" on page 6-2 for an
explanation of IDAP message payloads

Request and Response IDAP Documents

6-12 Oracle Streams Advanced Queuing User’s Guide

■ destination

This element is required. It specifies the queue/topic from which messages are to
be received. The destination element has an optional lookup_type attribute,
which determines how the destination value is interpreted. If lookup_type is
DATABASE, which is the default, then the destination is interpreted as
schema.queue_name. If lookup_type is LDAP, then the LDAP server is used to
resolve the destination.

■ consumer_name

This element is optional. It specifies the name of the consumer. Only those
messages matching the consumer name are accessed. If a queue is not set up for
multiple consumers, then this field should not be specified.

■ wait_time

This element is optional. It specifies the number of seconds to wait if there is no
message currently available which matches the search criteria.

■ selector

This element is optional. It specifies criteria used to select the message. It can
contain child elements correlation, message_id, or condition.

A dequeue condition element is a Boolean expression using syntax similar to
the WHERE clause of a SQL query. This Boolean expression can include conditions
on message properties, user object payload data properties, and PL/SQL or SQL
functions. Message properties include priority, corrid and other columns in
the queue table.

To specify dequeue conditions on a message payload, use attributes of the object
type in clauses. You must prefix each attribute with tab.user_data as a qualifier
to indicate the specific column of the queue table that stores the payload.

A dequeue condition element cannot exceed 4000 characters.

■ visibility

This element is optional. It determines when a dequeue becomes visible. The
default is ON_COMMIT, which makes the dequeue visible when the current
transaction commits. If IMMEDIATE is specified, then the effects of the dequeue are
visible immediately after the request is completed. The dequeue is not part of the
current transaction. The operation constitutes a transaction on its own.

■ dequeue_mode

This element is optional. It specifies the locking action associated with the
dequeue. The possible values are REMOVE, BROWSE, and LOCKED.

REMOVE is the default and causes the message to be read and deleted. The message
can be retained in the queue table based on the retention properties. BROWSE reads
the message without acquiring any lock on it. This is equivalent to a select
statement. LOCKED reads the message and obtains a write lock on it. The lock lasts
for the duration of the transaction. This is equivalent to a select for update
statement.

Note: When a dequeue condition or correlation identifier is used, the
order of the messages dequeued is indeterminate, and the sort order
of the queue is not honored.

Request and Response IDAP Documents

Internet Access to Oracle Streams AQ 6-13

■ navigation_mode

This element is optional. It specifies the position of the message that is retrieved.
First, the position is determined. Second, the search criterion is applied. Finally,
the message is retrieved. Possible values are FIRST_MESSAGE, NEXT_MESSAGE,
and NEXT_TRANSACTION.

FIRST_MESSAGE retrieves the first message which is available and which matches
the search criteria. This resets the position to the beginning of the queue. NEXT_
MESSAGE is the default and retrieves the next message which is available and
which matches the search criteria. If the previous message belongs to a message
group, then Oracle Streams AQ retrieves the next available message which
matches the search criteria and which belongs to the message group.NEXT_
TRANSACTION skips the remainder of the current transaction group and retrieves
the first message of the next transaction group. This option can only be used if
message grouping is enabled for the current queue.

■ transformation

This element is optional. It specifies the PL/SQL transformation to be invoked
after the message is dequeued.

AQXmlCommit
This is an optional empty element. If it is included, then the transaction is committed
at the end of the request.

IDAP Client Requests for Registration
Client requests for registration use AQXmlRegister, which must contain a
register_options element. The register_options element contains the
following child elements:

■ destination

This element is required. It specifies the queue/topic on which notifications are
registered. The destination element has an optional lookup_type attribute,
which determines how the destination value is interpreted. If lookup_type is
DATABASE, which is the default, then the destination is interpreted as
schema.queue_name. If lookup_type is LDAP, then the LDAP server is used to
resolve the destination.

■ consumer_name

This element is optional. It specifies the consumer name for multiconsumer queues
or topics. This parameter must not be specified for single-consumer queues.

■ notify_url

This element is required. It specifies where notification is sent when a message is
enqueued. The form can be http://url, mailto://email address or
plsql://pl/sql procedure.

IDAP Client Requests to Commit a Transaction
A request to commit all actions performed by the user in a session uses AQXmlCommit.
A commit request has the following format:

<?xml version="1.0"?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>
 <AQXmlCommit xmlns="http://ns.oracle.com/AQ/schemas/access"/>

Request and Response IDAP Documents

6-14 Oracle Streams Advanced Queuing User’s Guide

 </Body>
</Envelope>

IDAP Client Requests to Roll Back a Transaction
A request to roll back all actions performed by the user in a session uses
AQXmlRollback. Actions performed with IMMEDIATE visibility are not rolled back.
An IDAP client rollback request has the following format:

<?xml version="1.0"?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>
 <AQXmlRollback xmlns="http://ns.oracle.com/AQ/schemas/access"/>
 </Body>
</Envelope>

IDAP Server Response to an Enqueue Request
The response to an enqueue request to a single-consumer queue uses
AQXmlSendResponse. It contains the following elements:

■ status_response

This element contains child elements status_code, error_code, and error_
message. The status_code element takes value 0 for success or -1 for failure.
The error_code element contains an Oracle error code. The error_message
element contains a description of the error.

■ send_result

This element contains child elements destination and message_id. The
destination element specifies where the message was sent. The message_id
element uniquely identifies every message sent.

The response to an enqueue request to a multiconsumer queue or topic uses
AQXmlPublishResponse. It contains the following elements:

■ status_response

This element contains child elements status_code, error_code, and error_
message. The status_code element takes value 0 for success or -1 for failure.
The error_code element contains an Oracle error code. The error_message
element contains a description of the error.

■ publish_result

This element contains child elements destination and message_id. The
destination element specifies where the message was sent. The message_id
element uniquely identifies every message sent.

IDAP Server Response to a Dequeue Request
The response to a dequeue request uses AQXmlReceiveResponse. It contains the
following elements:

■ status_response

This element contains child elements status_code, error_code, and error_
message. The status_code element takes value 0 for success or -1 for failure.
The error_code element contains an Oracle error code. The error_message
element contains a description of the error.

Request and Response IDAP Documents

Internet Access to Oracle Streams AQ 6-15

■ receive_result

This element contains child elements destination and message_set. The
destination element specifies where the message was sent. The message_set
element specifies the set of messages dequeued.

IDAP Server Response to a Register Request
The response to a register request uses AQXmlRegisterResponse. It contains the
status_response element described in "IDAP Server Response to a Dequeue
Request" on page 6-14.

IDAP Commit Response
The response to a commit request uses AQXmlCommitResponse. It contains the
status_response element described in "IDAP Server Response to a Dequeue
Request" on page 6-14. The response to a commit request has the following format:

<?xml version = '1.0'?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>
 <AQXmlCommitResponse xmlns="http://ns.oracle.com/AQ/schemas/access">
 <status_response>
 <status_code>0</status_code>
 </status_response>
 </AQXmlCommitResponse>
 </Body>
</Envelope>

IDAP Rollback Response
The response to a rollback request uses AQXmlRollbackResponse. It contains the
status_response element described in "IDAP Server Response to a Dequeue
Request" on page 6-14.

IDAP Notification
When an event for which a client has registered occurs, a notification is sent to the
client at the URL specified in the REGISTER request using AQXmlNotification. It
contains the following elements:

■ notification_options

This element has child elements destination and consumer_name. The
destination element specifies the destination queue/topic on which the event
occurred. The consumer_name element specifies the consumer name for which the
even occurred. It applies only to multiconsumer queues/topics.

■ message_set

This element specifies the set of message properties.

IDAP Response in Case of Error
In case of an error in any of the preceding requests, a FAULT is generated. The FAULT
element contains the following elements:

■ faultcode

This element specifies the error code for the fault.

Notification of Messages by e-mail

6-16 Oracle Streams Advanced Queuing User’s Guide

■ faultstring

This element indicates a client error or a server error. A client error means that the
request is not valid. A server error indicates that the Oracle Streams AQ servlet
has not been set up correctly.

■ detail

This element contains the status_response element, which is described in
"IDAP Server Response to a Dequeue Request" on page 6-14.

Notification of Messages by e-mail
Here are the steps for setting up your database for e-mail notifications:

1. Set the SMTP mail host by invoking DBMS_AQELM.SET_MAILHOST as an Oracle
Streams AQ administrator.

2. Set the SMTP mail port by invoking DBMS_AQELM.SET_MAILPORT as an Oracle
Streams AQ administrator. If not explicit, set defaults to 25.

3. Set the SendFrom address by invoking DBMS_AQELM.SET_SENDFROM.

4. After setup, you can register for e-mail notifications using the Oracle Call Interface
(OCI) or PL/SQL API.

Troubleshooting Oracle Streams AQ 7-1

7
Troubleshooting Oracle Streams AQ

This chapter describes how to troubleshoot Oracle Streams Advanced Queuing (AQ).

The chapter contains these topics:

■ Debugging Oracle Streams AQ Propagation Problems

■ Oracle Streams AQ Error Messages

Debugging Oracle Streams AQ Propagation Problems
The following tips should help with debugging propagation problems. This discussion
assumes that you have created queue tables and queues in source and target databases
and defined a database link for the destination database. The notation assumes that
you supply the actual name of the entity (without the brackets).

To begin debugging, do the following:

1. Check that the propagation schedule has been created and that a job queue process
has been assigned.

Look for the entry in the DBA_QUEUE_SCHEDULES view and make sure that the
status of the schedule is enabled. SCHEDULE_DISABLED must be set to 'N'. Check
that it has a nonzero entry for JOBNO in table AQ$_SCHEDULES, and that there is
an entry in table JOB$ with that JOBNO.

To check if propagation is occurring, monitor the DBA_QUEUE_SCHEDULES view
for the number of messages propagated (TOTAL_NUMBER).

If propagation is not occurring, check the view for any errors. Also check the
NEXT_RUN_DATE and NEXT_RUN_TIME in DBA_QUEUE_SCHEDULES to see if
propagation is scheduled for a later time, perhaps due to errors or the way it is set
up.

2. Check if the database link to the destination database has been set up properly.
Make sure that the queue owner can use the database link. You can do this with:

select count(*) from table_name@dblink_name;

3. Make sure that at least two job queue processes are running.

4. Check for messages in the source queue with:

select count (*) from AQ$<source_queue_table>
 where q_name = 'source_queue_name';

See Also: "Optimizing Propagation" on page 4-9

Oracle Streams AQ Error Messages

7-2 Oracle Streams Advanced Queuing User’s Guide

5. Check for messages in the destination queue with:

select count (*) from AQ$<destination_queue_table>
 where q_name = 'destination_queue_name';

6. Check to see who is using job queue processes.

Check which jobs are being run by querying dba_jobs_running. It is possible
that other jobs are starving the propagation jobs.

7. Check to see that the queue table sys.aq$_prop_table_instno exists in DBA_
QUEUE_TABLES. The queue sys.aq$_prop_notify_queue_instno must also
exist in DBA_QUEUES and must be enabled for enqueue and dequeue.

In case of Real Application Clusters (RAC), this queue table and queue pair must
exist for each RAC node in the system. They are used for communication between
job queue processes and are automatically created.

8. Check that the consumer attempting to dequeue a message from the destination
queue is a recipient of the propagated messages.

For 8.1-style queues, you can do the following:

select consumer_name, deq_txn_id, deq_time, deq_user_id,
 propagated_msgid from aq$<destination_queue_table>
 where queue = 'queue_name';

For 8.0-style queues, you can obtain the same information from the history column
of the queue table:

select h.consumer, h.transaction_id, h.deq_time, h.deq_user,
 h.propagated_msgid from aq$<destination_queue_table> t, table(t.history) h
 where t.q_name = 'queue_name';

9. Turn on propagation tracing at the highest level using event 24040, level 10.

Debugging information is logged to job queue trace files as propagation takes
place. You can check the trace file for errors and for statements indicating that
messages have been sent.

Oracle Streams AQ Error Messages

ORA-1555
You might get this error when using the NEXT_MESSAGE navigation option for
dequeue. NEXT_MESSAGE uses the snapshot created during the first dequeue call.
After that, undo information may not be retained.

The workaround is to use the FIRST_MESSAGE option to dequeue the message. This
reexecutes the cursor and gets a new snapshot. FIRST_MESSAGE does not perform as
well as NEXT_MESSAGE, so Oracle recommends that you dequeue messages in
batches: FIRST_MESSAGE for one, NEXT_MESSAGE for the next 1000 messages, then
FIRST_MESSAGE again, and so on.

Note: Queues created in a queue table with compatible set to 8.0
(referrred to in this guide as 8.0-style queues) are deprecated in Oracle
Streams AQ 10g Release 2 (10.2). Oracle recommends that any new
queues you create be 8.1-style or newer and that you migrate existing
8.0-style queues at your earliest convenience.

Oracle Streams AQ Error Messages

Troubleshooting Oracle Streams AQ 7-3

ORA-24033
This error is raised if a message is enqueued to a multiconsumer queue with no
recipient and the queue has no subscribers (or rule-based subscribers that match this
message). This is a warning that the message will be discarded because there are no
recipients or subscribers to whom it can be delivered.

ORA-25237
When using the Oracle Streams AQ navigation option, you must reset the dequeue
position by using the FIRST_MESSAGE option if you want to continue dequeuing
between services (such as xa_start and xa_end boundaries). This is because XA
cancels the cursor fetch state after an xa_end. If you do not reset, then you get an
error message stating that the navigation is used out of sequence.

ORA-25307
Flow control has been enabled for the message sender. This means that the fastest
subscriber of the sender's message is not able to keep pace with the rate at which
messages are enqueued. The buffered messaging application must handle this error
and attempt again to enqueue messages after waiting for some time.

Oracle Streams AQ Error Messages

7-4 Oracle Streams Advanced Queuing User’s Guide

Part III
Oracle Streams AQ Administrative and

Operational Interfaces

Part IV describes Oracle Streams Advanced Queuing (AQ) administrative and
operational interfaces.

This part contains the following chapters:

■ Chapter 8, "Oracle Streams AQ Administrative Interface"

■ Chapter 9, "Oracle Streams AQ & Messaging Gateway Views"

■ Chapter 10, "Oracle Streams AQ Operations Using PL/SQL"

Oracle Streams AQ Administrative Interface 8-1

8
Oracle Streams AQ Administrative Interface

This chapter describes the Oracle Streams Advanced Queuing (AQ) administrative
interface.

This chapter contains these topics:

■ Managing Queue Tables

■ Managing Queues

■ Managing Transformations

■ Granting and Revoking Privileges

■ Managing Subscribers

■ Managing Propagations

■ Managing Oracle Streams AQ Agents

■ Adding an Alias to the LDAP Server

■ Deleting an Alias from the LDAP Server

Managing Queue Tables
This section contains these topics:

■ Creating a Queue Table

■ Altering a Queue Table

■ Dropping a Queue Table

■ Purging a Queue Table

■ Migrating a Queue Table

Creating a Queue Table
DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table IN VARCHAR2,
 queue_payload_type IN VARCHAR2,

See Also:

■ Chapter 3, "Oracle Streams AQ: Programmatic Interfaces" for a list
of available functions in each programmatic interface

■ Oracle Database PL/SQL Packages and Types Reference for
information on the DBMS_AQADM Package

Managing Queue Tables

8-2 Oracle Streams Advanced Queuing User’s Guide

 [storage_clause IN VARCHAR2 DEFAULT NULL,]
 sort_list IN VARCHAR2 DEFAULT NULL,
 multiple_consumers IN BOOLEAN DEFAULT FALSE,
 message_grouping IN BINARY_INTEGER DEFAULT NONE,
 comment IN VARCHAR2 DEFAULT NULL,
 primary_instance IN BINARY_INTEGER DEFAULT 0,
 secondary_instance IN BINARY_INTEGER DEFAULT 0,
 compatible IN VARCHAR2 DEFAULT NULL,
 secure IN BOOLEAN DEFAULT FALSE);

This procedure creates a queue table for messages of a predefined type. It has the
following required and optional parameters:

Parameter Description

queue_table This required parameter specifies the queue table name.

Mixed case (upper and lower case together) queue table names are
supported if database compatibility is 10.0, but the names must be
enclosed in double quote marks. So abc.efg means the schema is
ABC and the name is EFG, but "abc"."efg" means the schema is
abc and the name is efg.

Queue table names must not be longer than 24 characters. If you
attempt to create a queue table with a longer name, error ORA-24019
results.

queue_payload_type This required parameter specifies the payload type as RAW or an
object type. See "Payload Type" on page 8-3 for more information.

storage_clause This optional parameter specifies a tablespace for the queue table.
See "Storage Clause" on page 8-3 for more information.

sort_list This optional parameter specifies one or two columns to be used as
sort keys in ascending order. It has the format sort_
column1,sort_column2. See "Sort Key" on page 8-4 for more
information.

multiple_consumers This optional parameter specifies the queue table as
single-consumer or multiconsumer. The default FALSE means
queues created in the table can have only one consumer for each
message. TRUE means queues created in the table can have multiple
consumers for each message.

message_grouping This optional parameter specifies whether messages are grouped or
not. The default NONE means each message is treated individually.
TRANSACTIONAL means all messages enqueued in one transaction
are considered part of the same group and can be dequeued as a
group of related messages.

comment This optional parameter is a user-specified description of the queue
table. This user comment is added to the queue catalog.

primary_instance This optional parameter specifies the primary owner of the queue
table. Queue monitor scheduling and propagation for the queues in
the queue table are done in this instance. The default value 0 means
queue monitor scheduling and propagation is done in any available
instance.

You can specify and modify this parameter only if compatible is
8.1 or higher.

secondary_instance This optional parameter specifies the owner of the queue table if the
primary instance is not available. The default value 0 means that the
queue table will fail over to any available instance.

You can specify and modify this parameter only if primary_
instance is also specified and compatible is 8.1 or higher.

Managing Queue Tables

Oracle Streams AQ Administrative Interface 8-3

Payload Type
To specify the payload type as an object type, you must define the object type.

CLOB, BLOB, and BFILE objects are valid in an Oracle Streams AQ message. You can
propagate these object types using Oracle Streams AQ propagation with Oracle
software since Oracle8i release 8.1.x. To enqueue an object type that has a LOB, you
must first set the LOB_attribute to EMPTY_BLOB() and perform the enqueue. You
can then select the LOB locator that was generated from the queue table's view and use
the standard LOB operations.

Storage Clause
The storage_clause argument can take any text that can be used in a standard
CREATE TABLE storage_clause argument.

Once you pick the tablespace, any index-organized table (IOT) or index created for
that queue table goes to the specified tablespace. You do not currently have a choice to
split them between different tablespaces.

compatible This optional parameter specifies the lowest database version with
which the queue table is compatible. The possible values are 8.0,
8.1, and 10.0. If the database is in 10.1-compatible mode, then the
default value is 10.0. If the database is in 8.1-compatible or
9.2-compatible mode, then the default value is 8.1. If the database
is in 8.0-compatible mode, then the default value is 8.0. The 8.0
value is deprecated in Oracle Streams AQ 10g Release 2 (10.2).

For more information on compatibility, see "Oracle Streams AQ
Compatibility Parameters" on page 4-1.

secure This optional parameter must be set to TRUE if you want to use the
queue table for secure queues. Secure queues are queues for which
AQ agents must be associated explicitly with one or more database
users who can perform queue operations, such as enqueue and
dequeue. The owner of a secure queue can perform all queue
operations on the queue, but other users cannot unless they are
configured as secure queue users

Note: If you have created synonyms on object types, then you cannot
use them in DBMS_AQADM.CREATE_QUEUE_TABLE. Error ORA-24015
results.

Note: Payloads containing LOBs require users to grant explicit
Select, Insert and Update privileges on the queue table for doing
enqueues and dequeues.

Parameter Description

Managing Queue Tables

8-4 Oracle Streams Advanced Queuing User’s Guide

Sort Key
The sort_list parameter determines the order in which messages are dequeued. You
cannot change the message sort order after you have created the queue table. Your
choices are:

■ ENQ_TIME

■ ENQ_TIME,PRIORITY

■ PRIORITY

■ PRIORITY,ENQ_TIME

■ PRIORITY,COMMIT_TIME

■ COMMIT_TIME

The COMMIT_TIME choice is a new feature in Oracle Streams AQ 10g Release 2 (10.2).
If it is specified, then any queue that uses the queue table is a commit-time queue, and
Oracle Streams AQ computes an approximate CSCN for each enqueued message
when its transaction commits.

If you specify COMMIT_TIME as the sort key, then you must also specify the following:

■ multiple_consumers = TRUE

■ message_grouping = TRANSACTIONAL

■ compatible = 8.1 or higher

Commit-time ordering is useful when transactions are interdependent or when
browsing the messages in a queue must yield consistent results.

Other Tables and Views
The following objects are created at table creation time:

■ AQ$QUEUE_TABLE_NAME, a read-only view which is used by Oracle Streams AQ
applications for querying queue data

■ AQ$_QUEUE_TABLE_NAME_E, the default exception queue associated with the
queue table

Note: If you choose to create the queue table in a locally managed
tablespace or with freelist groups > 1, then Queue Monitor
Coordinator will skip the cleanup of those blocks. This can cause a
decline in performance over time.

The workaround is to coalesce the dequeue IOT by running

ALTER TABLE AQ$_queue_table_I COALESCE;

You can run this command while there are concurrent dequeuers and
enqueuers of the queue, but these concurrent users might see a slight
decline in performance while the command is running.

See Also:

■ "Commit-Time Queues" in Oracle Streams Concepts and
Administration

■ "Dequeue Modes" on page 1-21

Managing Queue Tables

Oracle Streams AQ Administrative Interface 8-5

■ AQ$_QUEUE_TABLE_NAME_I, an index or an index-organized table (IOT) in the
case of multiple consumer queues for dequeue operations

■ AQ$_QUEUE_TABLE_NAME_T, an index for the queue monitor operations

The following objects are created only for 8.1-compatible multiconsumer queue tables:

■ AQ$_queue_table_name_S, a table for storing information about subscribers

■ AQ$_queue_table_name_H, an index organized table (IOT) for storing dequeue
history data

If you do not specify a schema, then you default to the user's schema.

If GLOBAL_TOPIC_ENABLED = TRUE when a queue table is created, then a
corresponding Lightweight Directory Access Protocol (LDAP) entry is also created.

If the queue type is ANYDATA, then a buffered queue and two additional objects are
created. The buffered queue stores logical change records created by a capture process.
The logical change records are staged in a memory buffer associated with the queue;
they are not ordinarily written to disk.

If they have been staged in the buffer for a period of time without being dequeued, or
if there is not enough space in memory to hold all of the captured events, then they are
spilled to:

■ AQ$_QUEUE_TABLE_NAME_P, a table for storing the captured events that spill
from memory

■ AQ$_QUEUE_TABLE_NAME_d, a table for storing information about the
propagations and apply processes that are eligible for processing each event

Examples
The following examples assume you are in a SQL*Plus testing environment. In
Example 8–1, you create users in preparation for the other examples in this chapter.
For this example, you must connect as a user with administrative privileges. For most
of the other examples in this chapter, you can connect as user test_adm. A few
examples must be run as test with EXECUTE privileges on DBMS_AQADM.

Example 8–1 Setting Up AQ Administrative Users

CREATE USER test_adm IDENTIFIED BY test_adm DEFAULT TABLESPACE example;
GRANT DBA, CREATE ANY TYPE TO test_adm;
GRANT EXECUTE ON DBMS_AQADM TO test_adm;
GRANT aq_administrator_role TO test_adm;
BEGIN
 DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => 'MANAGE_ANY',
 grantee => 'test_adm',
 admin_option => FALSE);

Note: Oracle Streams AQ does not support the use of triggers on
these internal AQ queue tables.

See Also: Oracle Database SecureFiles and Large Objects Developer's
Guide

See Also: Chapter 3, "Streams Staging and Propagation" in Oracle
Streams Concepts and Administration

Managing Queue Tables

8-6 Oracle Streams Advanced Queuing User’s Guide

END;
/
CREATE USER test IDENTIFIED BY test;
GRANT DBA TO test;
GRANT EXECUTE ON dbms_aq TO test;

Example 8–2 Setting Up AQ Administrative Example Types

CREATE TYPE test.message_typ AS object(
 sender_id NUMBER,
 subject VARCHAR2(30),
 text VARCHAR2(1000));
/
CREATE TYPE test.msg_table AS TABLE OF test.message_typ;
/
CREATE TYPE test.order_typ AS object(
 custno NUMBER,
 item VARCHAR2(30),
 description VARCHAR2(1000));
/
CREATE TYPE test.lob_typ AS object(
 id NUMBER,
 subject VARCHAR2(100),
 data BLOB,
 trailer NUMBER);
/

Example 8–3 Creating a Queue Table for Messages of Object Type

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.obj_qtab',
 queue_payload_type => 'test.message_typ');
END;
/

Example 8–4 Creating a Queue Table for Messages of RAW Type

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.raw_qtab',
 queue_payload_type => 'RAW');
END;
/

Example 8–5 Creating a Queue Table for Messages of LOB Type

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.lob_qtab',
 queue_payload_type => 'test.lob_typ');
END;
/

Example 8–6 Creating a Queue Table for Messages of XMLType

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.xml_qtab',
 queue_payload_type => 'SYS.XMLType',

Managing Queue Tables

Oracle Streams AQ Administrative Interface 8-7

 multiple_consumers => TRUE,
 compatible => '8.1',
 comment => 'Overseas Shipping multiconsumer orders queue table');
END;
/

Example 8–7 Creating a Queue Table for Grouped Messages

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.group_qtab',
 queue_payload_type => 'test.message_typ',
 message_grouping => DBMS_AQADM.TRANSACTIONAL);
END;
/

Example 8–8 Creating Queue Tables for Prioritized Messages and Multiple Consumers

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.priority_qtab',
 queue_payload_type => 'test.order_typ',
 sort_list => 'PRIORITY,ENQ_TIME',
 multiple_consumers => TRUE);
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.multiconsumer_qtab',
 queue_payload_type => 'test.message_typ',
 sort_list => 'PRIORITY,ENQ_TIME',
 multiple_consumers => TRUE);
END;
/

Example 8–9 Creating a Queue Table with Commit-Time Ordering

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.commit_time_qtab',
 queue_payload_type => 'test.message_typ',
 sort_list => 'COMMIT_TIME',
 multiple_consumers => TRUE,
 message_grouping => DBMS_AQADM.TRANSACTIONAL,
 compatible => '10.0');
END;
/

Example 8–10 Creating an 8.1-Compatible Queue Table for Multiple Consumers

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.multiconsumer_81_qtab',
 queue_payload_type => 'test.message_typ',
 multiple_consumers => TRUE,
 compatible => '8.1');
END;
/

Managing Queue Tables

8-8 Oracle Streams Advanced Queuing User’s Guide

Example 8–11 Creating a Queue Table in a Specified Tablespace

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.example_qtab',
 queue_payload_type => 'test.message_typ',
 storage_clause => 'tablespace example');
END;
/

Example 8–12 Creating a Queue Table with Freelists or Freelist Groups

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.freelist_qtab',
 queue_payload_type => 'RAW',
 storage_clause => 'STORAGE (FREELISTS 4 FREELIST GROUPS 2)',
 compatible => '8.1');
END;
/

Altering a Queue Table
DBMS_AQADM.ALTER_QUEUE_TABLE (
 queue_table IN VARCHAR2,
 comment IN VARCHAR2 DEFAULT NULL,
 primary_instance IN BINARY_INTEGER DEFAULT NULL,
 secondary_instance IN BINARY_INTEGER DEFAULT NULL);

This procedure alters the existing properties of a queue table.

If GLOBAL_TOPIC_ENABLED = TRUE when a queue table is modified, then a
corresponding LDAP entry is also altered.

Parameter Description

queue_table This required parameter specifies the queue table name.

comment This optional parameter is a user-specified description of the queue
table. This user comment is added to the queue catalog.

primary_instance This optional parameter specifies the primary owner of the queue
table. Queue monitor scheduling and propagation for the queues in
the queue table are done in this instance.

You can specify and modify this parameter only if compatible is
8.1 or higher.

secondary_instance This optional parameter specifies the owner of the queue table if the
primary instance is not available.

You can specify and modify this parameter only if primary_
instance is also specified and compatible is 8.1 or higher.

Note: In general, DDL statements are not supported on queue tables
and may even render them inoperable. For example, issuing an ALTER
TABLE ... SHRINK statement against a queue table results in an
internal error, and all subsequent attempts to use the queue table will
also result in errors. Oracle recommends that you not use DDL
statements on queue tables.

Managing Queue Tables

Oracle Streams AQ Administrative Interface 8-9

Example 8–13 Altering a Queue Table by Changing the Primary and Secondary
Instances

BEGIN
 DBMS_AQADM.ALTER_QUEUE_TABLE(
 queue_table => 'test.obj_qtab',
 primary_instance => 3,
 secondary_instance => 2);
END;
/

Example 8–14 Altering a Queue Table by Changing the Comment

BEGIN
 DBMS_AQADM.ALTER_QUEUE_TABLE(
 queue_table => 'test.obj_qtab',
 comment => 'revised usage for queue table');
END;
/

Dropping a Queue Table
DBMS_AQADM.DROP_QUEUE_TABLE(
 queue_table IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE,

This procedure drops an existing queue table. You must stop and drop all the queues
in a queue table before the queue table can be dropped. You must do this explicitly if
force is set to FALSE. If force is set to TRUE, then all queues in the queue table and
their associated propagation schedules are dropped automatically.

If GLOBAL_TOPIC_ENABLED = TRUE when a queue table is dropped, then a
corresponding LDAP entry is also dropped.

Example 8–15 Dropping a Queue Table

BEGIN
 DBMS_AQADM.DROP_QUEUE_TABLE(
 queue_table => 'test.obj_qtab');
END;
/

Example 8–16 Dropping a Queue Table with force Option

BEGIN
 DBMS_AQADM.DROP_QUEUE_TABLE(
 queue_table => 'test.raw_qtab',
 force => TRUE);
END;
/

Purging a Queue Table
DBMS_AQADM.PURGE_QUEUE_TABLE(
 queue_table IN VARCHAR2,
 purge_condition IN VARCHAR2,
 purge_options IN aq$_purge_options_t);

This procedure purges messages from a queue table. It has the following parameters:

Managing Queue Tables

8-10 Oracle Streams Advanced Queuing User’s Guide

A trace file is generated in the udump destination when you run this procedure. It
details what the procedure is doing. The procedure commits after it has processed all
the messages.

Example 8–17 Purging All Messages in a Queue Table

DECLARE
po dbms_aqadm.aq$_purge_options_t;
BEGIN
 po.block := FALSE;
 DBMS_AQADM.PURGE_QUEUE_TABLE(
 queue_table => 'test.obj_qtab',
 purge_condition => NULL,
 purge_options => po);
END;
/

Example 8–18 Purging All Messages in a Named Queue

DECLARE
po dbms_aqadm.aq$_purge_options_t;
BEGIN
 po.block := TRUE;
 DBMS_AQADM.PURGE_QUEUE_TABLE(
 queue_table => 'test.obj_qtab',
 purge_condition => 'qtview.queue = ''TEST.OBJ_QUEUE''',
 purge_options => po);
END;
/

Parameter Description

queue_table This required parameter specifies the queue table name.

purge_condition The purge condition must be in the format of a SQL WHERE clause,
and it is case-sensitive. The condition is based on the columns of
aq$queue_table_name view. Each column name in the purge
condition must be prefixed with "qtview."

All purge conditions supported for persistent messages are also
supported for buffered messages.

To purge all queues in a queue table, set purge_condition to
either NULL (a bare null word, no quotes) or '' (two single quotes).

purge_options Type aq$_purge_options_t contains a block parameter. If
block is TRUE, then an exclusive lock on all the queues in the queue
table is held while purging the queue table. This will cause
concurrent enqueuers and dequeuers to block while the queue table
is purged. The purge call always succeeds if block is TRUE. The
default for block is FALSE. This will not block enqueuers and
dequeuers, but it can cause the purge to fail with an error during
high concurrency times.

Type aq$_purge_options_t also contains a delivery_mode
parameter. If it is the default PERSISTENT, then only persistent
messages are purged. If it is set to BUFFERED, then only buffered
messages are purged. If it is set to PERSISTENT_OR_BUFFERED,
then both types are purged.

See Also: "DBMS_AQADM" in Oracle Database PL/SQL Packages and
Types Reference for more information on DBMS_AQADM.PURGE_
QUEUE_TABLE

Managing Queue Tables

Oracle Streams AQ Administrative Interface 8-11

Example 8–19 Purging All PROCESSED Messages in a Named Queue

DECLARE
po dbms_aqadm.aq$_purge_options_t;
BEGIN
 po.block := TRUE;
 DBMS_AQADM.PURGE_QUEUE_TABLE(
 queue_table => 'test.obj_qtab',
 purge_condition => 'qtview.queue = ''TEST.OBJ_QUEUE''
 and qtview.msg_state = ''PROCESSED''',
 purge_options => po);
END;
/

Example 8–20 Purging All Messages in a Named Queue and for a Named Consumer

DECLARE
po dbms_aqadm.aq$_purge_options_t;
BEGIN
 po.block := TRUE;
 DBMS_AQADM.PURGE_QUEUE_TABLE(
 queue_table => 'test.multiconsumer_81_qtab',
 purge_condition => 'qtview.queue = ''TEST.MULTICONSUMER_81_QUEUE''
 and qtview.consumer_name = ''PAYROLL_APP''',
 purge_options => po);
END;
/

Example 8–21 Purging All Messages from a Named Sender

DECLARE
po dbms_aqadm.aq$_purge_options_t;
BEGIN
 po.block := TRUE;
 DBMS_AQADM.PURGE_QUEUE_TABLE(
 queue_table => 'test.multiconsumer_81_qtab',
 purge_condition => 'qtview.sender_name = ''TEST.OBJ_QUEUE''',
 purge_options => po);
END;
/

Migrating a Queue Table
DBMS_AQADM.MIGRATE_QUEUE_TABLE(
 queue_table IN VARCHAR2,
 compatible IN VARCHAR2);

This procedure migrates a queue table from 8.0, 8.1, or 10.0 to 8.0, 8.1, or 10.0. Only the
owner of the queue table can migrate it.

Note: Some purge conditions, such as consumer_name in
Example 8–20 and sender_name in Example 8–21, are supported
only in 8.1-compatible queue tables. For more information, see
Table 9–1, " AQ$Queue_Table_Name View" on page 9-4.

Managing Queues

8-12 Oracle Streams Advanced Queuing User’s Guide

If a schema was created by an import of an export dump from a lower release or has
Oracle Streams AQ queues upgraded from a lower release, then attempts to drop it
with DROP USER CASCADE will fail with ORA-24005. To drop such schemas:

1. Event 10851 should be set to level 1.

2. Drop all tables of the form AQ$_queue_table_name_NR from the schema.

3. Turn off event 10851.

4. Drop the schema.

Example 8–22 Upgrading a Queue Table from 8.1-Compatible to 10.0-Compatible

BEGIN
 DBMS_AQADM.MIGRATE_QUEUE_TABLE (
 queue_table => 'test.xml_qtab',
 compatible => '10.0');
END;
/

Managing Queues
This section contains these topics:

■ Creating a Queue

■ Altering a Queue

■ Starting a Queue

■ Stopping a Queue

■ Dropping a Queue

Creating a Queue
DBMS_AQADM.CREATE_QUEUE(
 queue_name IN VARCHAR2,
 queue_table IN VARCHAR2,
 queue_type IN BINARY_INTEGER DEFAULT NORMAL_QUEUE,
 max_retries IN NUMBER DEFAULT NULL,
 retry_delay IN NUMBER DEFAULT 0,
 retention_time IN NUMBER DEFAULT 0,
 dependency_tracking IN BOOLEAN DEFAULT FALSE,

Caution: This procedure requires that the EXECUTE privilege on
DBMS_AQADM be granted to the queue table owner, who is probably an
ordinary queue user. If you do not want ordinary queue users to be
able to create and drop queues and queue tables, add and delete
subscribers, and so forth, then you must revoke the EXECUTE
privilege as soon as the migration is done.

Note: Queues created in a queue table with compatible set to 8.0
(referred to in this guide as 8.0-style queues) are deprecated in Oracle
Streams AQ 10g Release 2 (10.2). Oracle recommends that any new
queues you create be 8.1-style or newer and that you migrate existing
8.0-style queues at your earliest convenience.

Managing Queues

Oracle Streams AQ Administrative Interface 8-13

 comment IN VARCHAR2 DEFAULT NULL,

This procedure creates a queue. It has the following parameters:

All queue names must be unique within a schema. Once a queue is created with
CREATE_QUEUE, it can be enabled by calling START_QUEUE. By default, the queue is
created with both enqueue and dequeue disabled. To view retained messages, you can
either dequeue by message ID or use SQL. If GLOBAL_TOPIC_ENABLED = TRUE
when a queue is created, then a corresponding LDAP entry is also created.

The following examples (Example 8–23 through Example 8–30) use data structures
created in Example 8–1 through Example 8–12.

Example 8–23 Creating a Queue for Messages of Object Type

BEGIN
 DBMS_AQADM.CREATE_QUEUE(

Parameter Description

queue_name This required parameter specifies the name of the new queue.

Mixed case (upper and lower case together) queue names are
supported if database compatibility is 10.0, but the names must be
enclosed in double quote marks. So abc.efg means the schema
is ABC and the name is EFG, but "abc"."efg" means the schema
is abc and the name is efg.

User-generated queue names must not be longer than 24
characters. If you attempt to create a queue with a longer name,
error ORA-24019 results. Queue names generated by Oracle
Streams AQ, such as those listed in "Other Tables and Views" on
page 8-4, cannot be longer than 30 characters.

queue_table This required parameter specifies the queue table in which the
queue is created.

queue_type This parameter specifies what type of queue to create. The default
NORMAL_QUEUE produces a normal queue. EXCEPTION_QUEUE
produces an exception queue.

max_retries This parameter limits the number of times a dequeue with the
REMOVE mode can be attempted on a message. The maximum
value of max_retries is 2**31 -1.

retry_delay This parameter specifies the number of seconds after which this
message is scheduled for processing again after an application
rollback. The default is 0, which means the message can be retried
as soon as possible. This parameter has no effect if max_retries
is set to 0.

This parameter is supported for single-consumer queues and
8.1-style or higher multiconsumer queues but not for 8.0-style
multiconsumer queues, which are deprecated in Oracle Streams
AQ 10g Release 2 (10.2).

retention_time This parameter specifies the number of seconds a message is
retained in the queue table after being dequeued from the queue.
When retention_time expires, messages are removed by the
time manager process. INFINITE means the message is retained
forever. The default is 0, no retention.

dependency_tracking This parameter is reserved for future use. FALSE is the default.
TRUE is not permitted in this release.

comment This optional parameter is a user-specified description of the
queue. This user comment is added to the queue catalog.

Managing Queues

8-14 Oracle Streams Advanced Queuing User’s Guide

 queue_name => 'test.obj_queue',
 queue_table => 'test.obj_qtab');
END;
/

Example 8–24 Creating a Queue for Messages of RAW Type

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'test.raw_queue',
 queue_table => 'test.raw_qtab');
END;
/

Example 8–25 Creating a Queue for Messages of LOB Type

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'test.lob_queue',
 queue_table => 'test.lob_qtab');
END;
/

Example 8–26 Creating a Queue for Grouped Messages

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'test.group_queue',
 queue_table => 'test.group_qtab');
END;
/

Example 8–27 Creating a Queue for Prioritized Messages

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'test.priority_queue',
 queue_table => 'test.priority_qtab');
END;
/

Example 8–28 Creating a Queue for Prioritized Messages and Multiple Consumers

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'test.multiconsumer_queue',
 queue_table => 'test.multiconsumer_qtab');
END;
/

Example 8–29 Creating a Queue to Demonstrate Propagation

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'test.another_queue',
 queue_table => 'test.multiconsumer_qtab');
END;
/

Managing Queues

Oracle Streams AQ Administrative Interface 8-15

Example 8–30 Creating an 8.1-Style Queue for Multiple Consumers

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'test.multiconsumer_81_queue',
 queue_table => 'test.multiconsumer_81_qtab');
END;
/

Altering a Queue
DBMS_AQADM.ALTER_QUEUE(
 queue_name IN VARCHAR2,
 max_retries IN NUMBER DEFAULT NULL,
 retry_delay IN NUMBER DEFAULT NULL,
 retention_time IN NUMBER DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL);

This procedure alters existing properties of a queue.

Only max_retries, comment, retry_delay, and retention_time can be altered.
To view retained messages, you can either dequeue by message ID or use SQL. If
GLOBAL_TOPIC_ENABLED = TRUE when a queue is modified, then a corresponding
LDAP entry is also altered.

Example 8–31 changes retention time, saving messages for 1 day after dequeuing.

Example 8–31 Altering a Queue by Changing Retention Time

BEGIN
 DBMS_AQADM.ALTER_QUEUE(
 queue_name => 'test.another_queue',
 retention_time => 86400);
END;
/

Starting a Queue
DBMS_AQADM.START_QUEUE(
 queue_name IN VARCHAR2,
 enqueue IN BOOLEAN DEFAULT TRUE,
 dequeue IN BOOLEAN DEFAULT TRUE);

This procedure enables the specified queue for enqueuing or dequeuing.

After creating a queue, the administrator must use START_QUEUE to enable the queue.
The default is to enable it for both enqueue and dequeue. Only dequeue operations are
allowed on an exception queue. This operation takes effect when the call completes
and does not have any transactional characteristics.

Example 8–32 Starting a Queue with Both Enqueue and Dequeue Enabled

BEGIN
 DBMS_AQADM.START_QUEUE (
 queue_name => 'test.obj_queue');
END;
/

Managing Transformations

8-16 Oracle Streams Advanced Queuing User’s Guide

Example 8–33 Starting a Queue for Dequeue Only

BEGIN
 DBMS_AQADM.START_QUEUE(
 queue_name => 'test.raw_queue',
 dequeue => TRUE,
 enqueue => FALSE);
END;
/

Stopping a Queue
DBMS_AQADM.STOP_QUEUE(
 queue_name IN VARCHAR2,
 enqueue IN BOOLEAN DEFAULT TRUE,
 dequeue IN BOOLEAN DEFAULT TRUE,
 wait IN BOOLEAN DEFAULT TRUE);

This procedure disables enqueuing, dequeuing, or both on the specified queue.

By default, this call disables both enqueue and dequeue. A queue cannot be stopped if
there are outstanding transactions against the queue. This operation takes effect when
the call completes and does not have any transactional characteristics.

Example 8–34 Stopping a Queue

BEGIN
 DBMS_AQADM.STOP_QUEUE(
 queue_name => 'test.obj_queue');
END;
/

Dropping a Queue
DBMS_AQADM.DROP_QUEUE(
 queue_name IN VARCHAR2,

This procedure drops an existing queue. DROP_QUEUE is not allowed unless STOP_
QUEUE has been called to disable the queue for both enqueuing and dequeuing. All the
queue data is deleted as part of the drop operation.

If GLOBAL_TOPIC_ENABLED = TRUE when a queue is dropped, then a
corresponding LDAP entry is also dropped.

Example 8–35 Dropping a Standard Queue

BEGIN
 DBMS_AQADM.DROP_QUEUE(
 queue_name => 'test.obj_queue');
END;
/

Managing Transformations
Transformations change the format of a message, so that a message created by one
application can be understood by another application. You can use transformations on
both persistent and buffered messages.

This section contains these topics:

■ Creating a Transformation

Managing Transformations

Oracle Streams AQ Administrative Interface 8-17

■ Modifying a Transformation

■ Dropping a Transformation

Creating a Transformation
DBMS_TRANSFORM.CREATE_TRANSFORMATION(
 schema VARCHAR2(30),
 name VARCHAR2(30),
 from_schema VARCHAR2(30),
 from_type VARCHAR2(30),
 to_schema VARCHAR2(30),
 to_type VARCHAR2(30),
 transformation VARCHAR2(4000));

This procedure creates a message format transformation. The transformation must be
a SQL function with input type from_type, returning an object of type to_type. It
can also be a SQL expression of type to_type, referring to from_type. All references
to from_type must be of the form source.user_data.

You must be granted EXECUTE privilege on dbms_transform to use this feature. This
privilege is included in the AQ_ADMINISTRATOR_ROLE.

You must also have EXECUTE privilege on the user-defined types that are the source
and destination types of the transformation, and have EXECUTE privileges on any
PL/SQL function being used in the transformation function. The transformation
cannot write the database state (that is, perform DML operations) or commit or
rollback the current transaction.

Example 8–36 Creating a Transformation

BEGIN
 DBMS_TRANSFORM.CREATE_TRANSFORMATION(
 schema => 'test',
 name => 'message_order_transform',
 from_schema => 'test',
 from_type => 'message_typ',
 to_schema => 'test',
 to_type => 'order_typ',
 transformation => 'test.order_typ(
 source.user_data.sender_id,
 source.user_data.subject,
 source.user_data.text)');
END;
/

Modifying a Transformation
DBMS_TRANSFORM.MODIFY_TRANSFORMATION(
 schema VARCHAR2(30),
 name VARCHAR2(30),
 attribute_number INTEGER,
 transformation VARCHAR2(4000));

This procedure changes the transformation function and specifies transformations for
each attribute of the target type. If the attribute number 0 is specified, then the

See Also: "Oracle Streams AQ Security" on page 4-2 for more
information on administrator and user roles

Granting and Revoking Privileges

8-18 Oracle Streams Advanced Queuing User’s Guide

transformation expression singularly defines the transformation from the source to
target types.

All references to from_type must be of the form source.user_data. All references
to the attributes of the source type must be prefixed by source.user_data.

You must be granted EXECUTE privileges on dbms_transform to use this feature.
You must also have EXECUTE privileges on the user-defined types that are the source
and destination types of the transformation, and have EXECUTE privileges on any
PL/SQL function being used in the transformation function.

Dropping a Transformation
DBMS_TRANSFORM.DROP_TRANSFORMATION (
 schema VARCHAR2(30),
 name VARCHAR2(30));
This procedure drops a transformation.

You must be granted EXECUTE privileges on dbms_transform to use this feature.
You must also have EXECUTE privileges on the user-defined types that are the source
and destination types of the transformation, and have EXECUTE privileges on any
PL/SQL function being used in the transformation function.

Granting and Revoking Privileges
This section contains these topics:

■ Granting Oracle Streams AQ System Privileges

■ Revoking Oracle Streams AQ System Privileges

■ Granting Queue Privileges

■ Revoking Queue Privileges

Granting Oracle Streams AQ System Privileges
DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE(
 privilege IN VARCHAR2,
 grantee IN VARCHAR2,
 admin_option IN BOOLEAN := FALSE);

This procedure grants Oracle Streams AQ system privileges to users and roles. The
privileges are ENQUEUE_ANY, DEQUEUE_ANY, MANAGE_ANY. Initially, only SYS and
SYSTEM can use this procedure successfully.

Users granted the ENQUEUE_ANY privilege are allowed to enqueue messages to any
queues in the database. Users granted the DEQUEUE_ANY privilege are allowed to
dequeue messages from any queues in the database. Users granted the MANAGE_ANY
privilege are allowed to run DBMS_AQADM calls on any schemas in the database.

Example 8–37 Granting AQ System Privileges

BEGIN
 DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => 'ENQUEUE_ANY',
 grantee => 'test',
 admin_option => FALSE);
 DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => 'DEQUEUE_ANY',
 grantee => 'test',

Granting and Revoking Privileges

Oracle Streams AQ Administrative Interface 8-19

 admin_option => FALSE);
END;
/

Revoking Oracle Streams AQ System Privileges
DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE(
 privilege IN VARCHAR2,
 grantee IN VARCHAR2);

This procedure revokes Oracle Streams AQ system privileges from users and roles.
The privileges are ENQUEUE_ANY, DEQUEUE_ANY and MANAGE_ANY. The ADMIN
option for a system privilege cannot be selectively revoked.

Users granted the ENQUEUE_ANY privilege are allowed to enqueue messages to any
queues in the database. Users granted the DEQUEUE_ANY privilege are allowed to
dequeue messages from any queues in the database. Users granted the MANAGE_ANY
privilege are allowed to run DBMS_AQADM calls on any schemas in the database.

Example 8–38 Revoking AQ System Privileges

BEGIN
 DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE(
 privilege => 'DEQUEUE_ANY',
 grantee => 'test');
END;
/

Granting Queue Privileges
DBMS_AQADM.GRANT_QUEUE_PRIVILEGE(
 privilege IN VARCHAR2,
 queue_name IN VARCHAR2,
 grantee IN VARCHAR2,
 grant_option IN BOOLEAN := FALSE);

This procedure grants privileges on a queue to users and roles. The privileges are
ENQUEUE, DEQUEUE, or ALL. Initially, only the queue table owner can use this
procedure to grant privileges on the queues.

Example 8–39 Granting Queue Privilege

BEGIN
 DBMS_AQADM.GRANT_QUEUE_PRIVILEGE (
 privilege => 'ALL',
 queue_name => 'test.multiconsumer_81_queue',
 grantee => 'test_adm',
 grant_option => TRUE);
END;
/

Caution: This procedure requires that EXECUTE privileges on DBMS_
AQADM be granted to the queue table owner, who is probably an
ordinary queue user. If you do not want ordinary queue users to be
able to create and drop queues and queue tables, add and delete
subscribers, and so forth, then you must revoke the EXECUTE
privilege as soon as the initial GRANT_QUEUE_PRIVILEGE is done.

Managing Subscribers

8-20 Oracle Streams Advanced Queuing User’s Guide

Revoking Queue Privileges
DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE (
 privilege IN VARCHAR2,
 queue_name IN VARCHAR2,
 grantee IN VARCHAR2);

This procedure revokes privileges on a queue from users and roles. The privileges are
ENQUEUE or DEQUEUE.

To revoke a privilege, the revoker must be the original grantor of the privilege. The
privileges propagated through the GRANT option are revoked if the grantor's privileges
are revoked.

You can revoke the dequeue right of a grantee on a specific queue, leaving the grantee
with only the enqueue right as in Example 8–40.

Example 8–40 Revoking Dequeue Privilege

BEGIN
 DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE(
 privilege => 'DEQUEUE',
 queue_name => 'test.multiconsumer_81_queue',
 grantee => 'test_adm');
END;

Managing Subscribers
This section contains these topics:

■ Adding a Subscriber

■ Altering a Subscriber

■ Removing a Subscriber

Adding a Subscriber
DBMS_AQADM.ADD_SUBSCRIBER (
 queue_name IN VARCHAR2,
 subscriber IN sys.aq$_agent,
 rule IN VARCHAR2 DEFAULT NULL,
 transformation IN VARCHAR2 DEFAULT NULL,
 queue_to_queue IN BOOLEAN DEFAULT FALSE,
 delivery_mode IN PLS_INTEGER DEFAULT PERSISTENT);

This procedure adds a default subscriber to a queue.

An application can enqueue messages to a specific list of recipients or to the default
list of subscribers. This operation succeeds only on queues that allow multiple
consumers, and the total number of subscribers must be 1024 or less. This operation
takes effect immediately and the containing transaction is committed. Enqueue
requests that are executed after the completion of this call reflect the new action. Any
string within the rule must be quoted (with single quotation marks) as follows:

rule => 'PRIORITY <= 3 AND CORRID = ''FROM JAPAN'''

User data properties or attributes apply only to object payloads and must be prefixed
with tab.userdata in all cases.

Managing Subscribers

Oracle Streams AQ Administrative Interface 8-21

If GLOBAL_TOPIC_ENABLED is set to true when a subscriber is created, then a
corresponding LDAP entry is also created.

Specify the name of the transformation to be applied during dequeue or propagation.
The transformation must be created using the DBMS_TRANSFORM package.

For queues that contain payloads with XMLType attributes, you can specify rules that
contain operators such as XMLType.existsNode() and XMLType.extract().

If parameter queue_to_queue is set to TRUE, then the added subscriber is a
queue-to-queue subscriber. When queue-to-queue propagation is set up between a
source queue and a destination queue, queue-to-queue subscribers receive messages
through that propagation schedule.

If the delivery_mode parameter is the default PERSISTENT, then the subscriber
receives only persistent messages. If it is set to BUFFERED, then the subscriber receives
only buffered messages. If it is set to PERSISTENT_OR_BUFFERED, then the subscriber
receives both types. You cannot alter this parameter with ALTER_SUBSCRIBER.

The agent name should be NULL if the destination queue is a single consumer queue.

Example 8–41 Adding a Subscriber at a Designated Queue at a Dababase Link

DECLARE
 subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent('subscriber1', 'test2.msg_queue2@london', null);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'test.multiconsumer_81_queue',
 subscriber => subscriber);
END;
/

Example 8–42 Adding a Single Consumer Queue at a Dababase Link as a Subscriber

DECLARE
 subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent('subscriber1', 'test2.msg_queue2@london', null);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'test.multiconsumer_81_queue',
 subscriber => subscriber);
END;
/

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information on the DBMS_TRANSFORM package

See Also: "Scheduling a Queue Propagation" on page 8-24

Note: ADD_SUBSCRIBER is an administrative operation on a queue.
Although Oracle Streams AQ does not prevent applications from
issuing administrative and operational calls concurrently, they are
executed serially. ADD_SUBSCRIBER blocks until pending calls that
are enqueuing or dequeuing messages complete. It will not wait for
the pending transactions to complete.

Managing Subscribers

8-22 Oracle Streams Advanced Queuing User’s Guide

Example 8–43 Adding a Subscriber with a Rule

DECLARE
 subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent('subscriber2', 'test2.msg_queue2@london', null);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'test.multiconsumer_81_queue',
 subscriber => subscriber,
 rule => 'priority < 2');
END;
/

Example 8–44 Adding a Subscriber and Specifying a Transformation

DECLARE
 subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent('subscriber3', 'test2.msg_queue2@london', null);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'test.multiconsumer_81_queue',
 subscriber => subscriber,
 transformation => 'test.message_order_transform');
END;
/

Example 8–45 Propagating from a Multiple-Consumer Queue to a Single Consumer
Queue

DECLARE
 subscriber SYS.AQ$_AGENT;
BEGIN
 subscriber := SYS.AQ$_AGENT(NULL, 'test2.single_consumer__queue@london',
null);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'test.multiconsumer_81_queue',
 subscriber => subscriber);
END;

Altering a Subscriber
DBMS_AQADM.ALTER_SUBSCRIBER (
 queue_name IN VARCHAR2,
 subscriber IN sys.aq$_agent,
 rule IN VARCHAR2
 transformation IN VARCHAR2);

This procedure alters existing properties of a subscriber to a specified queue.

The rule, the transformation, or both can be altered. If you alter only one of these
attributes, then specify the existing value of the other attribute to the alter call. If
GLOBAL_TOPIC_ENABLED = TRUE when a subscriber is modified, then a
corresponding LDAP entry is created.

Example 8–46 Altering a Subscriber Rule

DECLARE
 subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent('subscriber2', 'test2.msg_queue2@london', null);
 DBMS_AQADM.ALTER_SUBSCRIBER(

Managing Propagations

Oracle Streams AQ Administrative Interface 8-23

 queue_name => 'test.multiconsumer_81_queue',
 subscriber => subscriber,
 rule => 'priority = 1');
END;
/

Removing a Subscriber
DBMS_AQADM.REMOVE_SUBSCRIBER (
 queue_name IN VARCHAR2,
 subscriber IN sys.aq$_agent);

This procedure removes a default subscriber from a queue.

This operation takes effect immediately and the containing transaction is committed.
All references to the subscriber in existing messages are removed as part of the
operation. If GLOBAL_TOPIC_ENABLED = TRUE when a subscriber is dropped, then
a corresponding LDAP entry is also dropped.

It is not an error to run the REMOVE_SUBSCRIBER procedure even when there are
pending messages that are available for dequeue by the consumer. These messages are
automatically made unavailable for dequeue when the REMOVE_SUBSCRIBER
procedure finishes.

Example 8–47 Removing a Subscriber

DECLARE
 subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent ('subscriber2', 'test2.msg_queue2@london', null);
 DBMS_AQADM.REMOVE_SUBSCRIBER(
 queue_name => 'test.multiconsumer_81_queue',
 subscriber => subscriber);
END;
/

Managing Propagations
The propagation schedules defined for a queue can be changed or dropped at any time
during the life of the queue. You can also temporarily disable a schedule instead of
dropping it. All administrative calls can be made irrespective of whether the schedule
is active or not. If a schedule is active, then it takes a few seconds for the calls to be
processed.

This section contains these topics:

■ Scheduling a Queue Propagation

■ Verifying Propagation Queue Type

■ Altering a Propagation Schedule

Note: REMOVE_SUBSCRIBER is an administrative operation on a
queue. Although Oracle Streams AQ does not prevent applications
from issuing administrative and operational calls concurrently, they
are executed serially. REMOVE_SUBSCRIBER blocks until pending
calls that are enqueuing or dequeuing messages complete. It will not
wait for the pending transactions to complete.

Managing Propagations

8-24 Oracle Streams Advanced Queuing User’s Guide

■ Enabling a Propagation Schedule

■ Disabling a Propagation Schedule

■ Unscheduling a Queue Propagation

Scheduling a Queue Propagation
DBMS_AQADM.SCHEDULE_PROPAGATION (
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 start_time IN DATE DEFAULT SYSDATE,
 duration IN NUMBER DEFAULT NULL,
 next_time IN VARCHAR2 DEFAULT NULL,
 latency IN NUMBER DEFAULT 60,
 destination_queue IN VARCHAR2 DEFAULT NULL);

This procedure schedules propagation of messages.

The destination can be identified by a database link in the destination parameter, a
queue name in the destination_queue parameter, or both. Specifying only a
database link results in queue-to-dblink propagation. If you propagate messages to
several queues in another database, then all propagations have the same frequency.

If a private database link in the schema of the queue table owner has the same name as
a public database link, AQ always uses the private database link.

Specifying the destination queue name results in queue-to-queue propagation was
introduce in Oracle Streams AQ 10g Release 2 (10.2). If you propagate messages to
several queues in another database, queue-to-queue propagation enables you to
configure each schedule independently of the others. You can enable or disable
individual propagations.

Queue-to-queue propagation mode supports transparent failover when propagating to
a destination Real Application Clusters (RAC) system. With queue-to-queue
propagation, it is not required to repoint a database link if the owner instance of the
queue fails on RAC.

Messages can also be propagated to other queues in the same database by specifying a
NULL destination. If a message has multiple recipients at the same destination in either
the same or different queues, then the message is propagated to all of them at the same
time.

The source queue must be in a queue table meant for multiple consumers. If you
specify a single-consumer queue, than error ORA-24039 results. Oracle Streams AQ
does not support the use of synonyms to refer to queues or database links.

If you specify a propagation next_time and duration, propagation will run
periodically for the specified duration.

If you specify a latency of zero with no next_time or duration, the resulting
propagation will run forever, propagating messages as they appear in the queue, and
idling otherwise.

If a non-zero latency is specified, with no next_time or duration (default), the
propagation schedule will be event-based. It will be scheduled to run when there are

Note: If you want queue-to-queue propagation to a queue in another
database, then you must specify parameters destination and
destination_queue.

Managing Propagations

Oracle Streams AQ Administrative Interface 8-25

messages in the queue to be propagated. When there are no more messages for a
system-defined period of time, the job will stop running until there are new messages
to be propagated.

The time at which the job runs depends on other factors, such as the number of ready
jobs and the number of job queue processes.

Propagation uses a linear backoff scheme for retrying propagation from a schedule
that encountered a failure. If a schedule continuously encounters failures, then the first
retry happens after 30 seconds, the second after 60 seconds, the third after 120 seconds
and so forth. If the retry time is beyond the expiration time of the current window,
then the next retry is attempted at the start time of the next window. A maximum of 16
retry attempts are made after which the schedule is automatically disabled.

If you specify a value for destination that does not exist, then this procedure still
runs without throwing an error. You can query runtime propagation errors in the
LAST_ERROR_MSG column of the USER_QUEUE_SCHEDULES view.

Example 8–48 Scheduling a Propagation to Queues in the Same Database

BEGIN
 DBMS_AQADM.SCHEDULE_PROPAGATION(
 queue_name => 'test.multiconsumer_queue');
END;
/

Example 8–49 Scheduling a Propagation to Queues in Another Database

BEGIN
 DBMS_AQADM.SCHEDULE_PROPAGATION(
 queue_name => 'test.multiconsumer_queue',
 destination => 'another_db.world');
END;
/

Example 8–50 Scheduling Queue-to-Queue Propagation

BEGIN
 DBMS_AQADM.SCHEDULE_PROPAGATION(

See Also:

■ "Managing Job Queues" in Oracle Database Administrator's Guide
for more information on job queues and Jnnn background
processes

■ Chapter 6, "Internet Access to Oracle Streams AQ"

Note: Once a retry attempt slips to the next propagation window, it
will always do so; the exponential backoff scheme no longer governs
retry scheduling. If the date function specified in the next_time
parameter of DBMS_AQADM.SCHEDULE_PROPAGATION() results in a
short interval between windows, then the number of unsuccessful
retry attempts can quickly exceed 16, disabling the schedule.

See Also: "USER_QUEUE_SCHEDULES: Propagation Schedules in
User Schema" on page 9-3

Managing Propagations

8-26 Oracle Streams Advanced Queuing User’s Guide

 queue_name => 'test.multiconsumer_queue',
 destination => 'another_db.world'
 destination_queue => 'target_queue');
END;
/

Verifying Propagation Queue Type
DBMS_AQADM.VERIFY_QUEUE_TYPES(
 src_queue_name IN VARCHAR2,
 dest_queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 rc OUT BINARY_INTEGER);

This procedure verifies that the source and destination queues have identical types.
The result of the verification is stored in the dictionary table SYS.AQ$_MESSAGE_
TYPES, overwriting all previous output of this command.

If the source and destination queues do not have identical types and a transformation
was specified, then the transformation must map the source queue type to the
destination queue type.

Example 8–51 Verifying a Queue Type

SET SERVEROUTPUT ON
DECLARE
rc BINARY_INTEGER;
BEGIN
 DBMS_AQADM.VERIFY_QUEUE_TYPES(
 src_queue_name => 'test.multiconsumer_queue',
 dest_queue_name => 'test.another_queue',
 rc => rc);
 DBMS_OUTPUT.PUT_LINE('Compatible: '||rc);
END;
/

Example 8–51 involves two queues of the same type. It returns:

VQT: new style queue
Compatible: 1

If the same example is run with test.raw_queue (a queue of type RAW) in place of
test.another_queue, then it returns:

VQT: new style queue
Compatible: 0

Altering a Propagation Schedule
DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE(
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 duration IN NUMBER DEFAULT NULL,
 next_time IN VARCHAR2 DEFAULT NULL,

Note: SYS.AQ$_MESSAGE_TYPES can have multiple entries for the
same source queue, destination queue, and database link, but with
different transformations.

Managing Propagations

Oracle Streams AQ Administrative Interface 8-27

 latency IN NUMBER DEFAULT 60,
 destination_queue IN VARCHAR2 DEFAULT NULL);

This procedure alters parameters for a propagation schedule. The destination_
queue parameter for queue-to-queue propagation cannot be altered.

Example 8–52 Altering a Propagation Schedule to Queues in the Same Database

BEGIN
 DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE(
 queue_name => 'test.multiconsumer_queue',
 duration => '2000',
 next_time => 'SYSDATE + 3600/86400',
 latency => '32');
END;
/

Example 8–53 Altering a Propagation Schedule to Queues in Another Database

BEGIN
 DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE(
 queue_name => 'test.multiconsumer_queue',
 destination => 'another_db.world',
 duration => '2000',
 next_time => 'SYSDATE + 3600/86400',
 latency => '32');
END;
/

Enabling a Propagation Schedule
DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE(
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 destination_queue IN VARCHAR2 DEFAULT NULL);

This procedure enables a previously disabled propagation schedule.

Example 8–54 Enabling a Propagation to Queues in the Same Database

BEGIN
 DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE(
 queue_name => 'test.multiconsumer_queue');
END;
/

Example 8–55 Enabling a Propagation to Queues in Another Database

BEGIN
 DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE(
 queue_name => 'test.multiconsumer_queue',
 destination => 'another_db.world');
END;
/

Disabling a Propagation Schedule
DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE(
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,

Managing Oracle Streams AQ Agents

8-28 Oracle Streams Advanced Queuing User’s Guide

 destination_queue IN VARCHAR2 DEFAULT NULL);

This procedure disables a previously enabled propagation schedule.

Example 8–56 Disabling a Propagation to Queues in the Same Database

BEGIN
 DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE(
 queue_name => 'test.multiconsumer_queue');
END;
/

Example 8–57 Disabling a Propagation to Queues in Another Database

BEGIN
 DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE(
 queue_name => 'test.multiconsumer_queue',
 destination => 'another_db.world');
END;
/

Unscheduling a Queue Propagation
DBMS_AQADM.UNSCHEDULE_PROPAGATION (
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 destination_queue IN VARCHAR2 DEFAULT NULL);

This procedure unschedules a previously scheduled propagation of messages from a
queue to a destination. The destination is identified by a specific database link in the
destination parameter or by name in the destination_queue parameter.

Example 8–58 Unscheduling a Propagation to Queues in the Same Database

BEGIN
 DBMS_AQADM.UNSCHEDULE_PROPAGATION(
 queue_name => 'test.multiconsumer_queue');
END;
/

Example 8–59 Unscheduling a Propagation to Queues in Another Database

BEGIN
 DBMS_AQADM.UNSCHEDULE_PROPAGATION(
 queue_name => 'test.multiconsumer_queue',
 destination => 'another_db.world');
END;
/

Managing Oracle Streams AQ Agents
This section contains these topics:

■ Creating an Oracle Streams AQ Agent

■ Altering an Oracle Streams AQ Agent

■ Dropping an Oracle Streams AQ Agent

■ Enabling Database Access

Managing Oracle Streams AQ Agents

Oracle Streams AQ Administrative Interface 8-29

■ Disabling Database Access

Creating an Oracle Streams AQ Agent
DBMS_AQADM.CREATE_AQ_AGENT (
 agent_name IN VARCHAR2,
 certificate_location IN VARCHAR2 DEFAULT NULL,
 enable_http IN BOOLEAN DEFAULT FALSE,
 enable_anyp IN BOOLEAN DEFAULT FALSE);

This procedure registers an agent for Oracle Streams AQ Internet access using HTTP
protocols.

The SYS.AQ$INTERNET_USERS view has a list of all Oracle Streams AQ Internet
agents. When an agent is created, altered, or dropped, an LDAP entry is created for the
agent if the following are true:

■ GLOBAL_TOPIC_ENABLED = TRUE

■ certificate_location is specified

Altering an Oracle Streams AQ Agent
DBMS_AQADM.ALTER_AQ_AGENT (
 agent_name IN VARCHAR2,
 certificate_location IN VARCHAR2 DEFAULT NULL,
 enable_http IN BOOLEAN DEFAULT FALSE,
 enable_anyp IN BOOLEAN DEFAULT FALSE);

This procedure alters an agent registered for Oracle Streams AQ Internet access.

When an Oracle Streams AQ agent is created, altered, or dropped, an LDAP entry is
created for the agent if the following are true:

■ GLOBAL_TOPIC_ENABLED = TRUE

■ certificate_location is specified

Dropping an Oracle Streams AQ Agent
DBMS_AQADM.DROP_AQ_AGENT (
 agent_name IN VARCHAR2);

This procedure drops an agent that was previously registered for Oracle Streams AQ
Internet access.

When an Oracle Streams AQ agent is created, altered, or dropped, an LDAP entry is
created for the agent if the following are true:

■ GLOBAL_TOPIC_ENABLED = TRUE

■ certificate_location is specified

Enabling Database Access
DBMS_AQADM.ENABLE_DB_ACCESS (
 agent_name IN VARCHAR2,
 db_username IN VARCHAR2)

Adding an Alias to the LDAP Server

8-30 Oracle Streams Advanced Queuing User’s Guide

This procedure grants an Oracle Streams AQ Internet agent the privileges of a specific
database user. The agent should have been previously created using the CREATE_AQ_
AGENT procedure.

The SYS.AQ$INTERNET_USERS view has a list of all Oracle Streams AQ Internet
agents and the names of the database users whose privileges are granted to them.

Disabling Database Access
DBMS_AQADM.DISABLE_DB_ACCESS (
 agent_name IN VARCHAR2,
 db_username IN VARCHAR2)

This procedure revokes the privileges of a specific database user from an Oracle
Streams AQ Internet agent. The agent should have been previously granted those
privileges using the ENABLE_DB_ACCESS procedure.

Adding an Alias to the LDAP Server
DBMS_AQADM.ADD_ALIAS_TO_LDAP(
 alias IN VARCHAR2,
 obj_location IN VARCHAR2);

This procedure adds an alias to the LDAP server.

This call takes the name of an alias and the distinguished name of an Oracle Streams
AQ object in LDAP, and creates the alias that points to the Oracle Streams AQ object.
The alias is placed immediately under the distinguished name of the database server.
The object to which the alias points can be a queue, an agent, or a ConnectionFactory.

Deleting an Alias from the LDAP Server
DBMS_AQADM.DEL_ALIAS_FROM_LDAP(
 alias IN VARCHAR2);

This procedure removes an alias from the LDAP server.

This call takes the name of an alias as the argument, and removes the alias entry in the
LDAP server. It is assumed that the alias is placed immediately under the database
server in the LDAP directory.

See Also: Oracle Streams Concepts and Administration for information
about secure queues

See Also: Oracle Streams Concepts and Administration for information
about secure queues

See Also: Oracle Streams Concepts and Administration for information
about secure queues

Oracle Streams AQ & Messaging Gateway Views 9-1

9
Oracle Streams AQ & Messaging Gateway

Views

This chapter describes the Oracle Streams Advanced Queuing (AQ) administrative
interface views and Oracle Messaging Gateway (MGW) views.

This chapter contains these topics:

Oracle AQ Views
■ DBA_QUEUE_TABLES: All Queue Tables in Database

■ USER_QUEUE_TABLES: Queue Tables in User Schema

■ ALL_QUEUE_TABLES: Queue Tables Queue Accessible to the Current User

■ DBA_QUEUES: All Queues in Database

■ USER_QUEUES: Queues In User Schema

■ ALL_QUEUES: Queues for Which User Has Any Privilege

■ DBA_QUEUE_SCHEDULES: All Propagation Schedules

■ USER_QUEUE_SCHEDULES: Propagation Schedules in User Schema

■ QUEUE_PRIVILEGES: Queues for Which User Has Queue Privilege

■ AQ$Queue_Table_Name: Messages in Queue Table

■ AQ$Queue_Table_Name_S: Queue Subscribers

■ AQ$Queue_Table_Name_R: Queue Subscribers and Their Rules

■ DBA_QUEUE_SUBSCRIBERS: All Queue Subscribers in Database

■ USER_QUEUE_SUBSCRIBERS: Queue Subscribers in User Schema

■ ALL_QUEUE_SUBSCRIBERS: Subscribers for Queues Where User Has Queue
Privileges

■ DBA_TRANSFORMATIONS: All Transformations

■ DBA_ATTRIBUTE_TRANSFORMATIONS: All Transformation Functions

■ USER_TRANSFORMATIONS: User Transformations

■ USER_ATTRIBUTE_TRANSFORMATIONS: User Transformation Functions

Note: All views not detailed in this chapter are described in the
Oracle Database Reference.

9-2 Oracle Streams Advanced Queuing User’s Guide

■ DBA_SUBSCR_REGISTRATIONS: All Subscription Registrations

■ USER_SUBSCR_REGISTRATIONS: User Subscription Registrations

■ AQ$INTERNET_USERS: Oracle Streams AQ Agents Registered for Internet Access

■ (G)V$AQ: Number of Messages in Different States in Database

■ (G)V$BUFFERED_QUEUES: All Buffered Queues in the Instance.

■ (G)V$BUFFERED_SUBSCRIBERS: Subscribers for All Buffered Queues in the
Instance

■ (G)V$BUFFERED_PUBLISHERS: All Buffered Publishers in the Instance

■ (G)V$PERSISTENT_QUEUES: All Active Persistent Queues in the Instance

■ (G)V$PERSISTENT_SUBSCRIBERS: All Active Subscribers of the Persistent
Queues in the Instance

■ (G)V$PERSISTENT_PUBLISHERS: All Active Publishers of the Persistent Queues
in the Instance

■ (G)V$PROPAGATION_SENDER: Buffer Queue Propagation Schedules on the
Sending (Source) Side

■ (G)V$PROPAGATION_RECEIVER: Buffer Queue Propagation Schedules on the
Receiving (Destination) Side

■ (G)V$SUBSCR_REGISTRATION_STATS: Diagnosability of Notifications

■ V$METRICGROUP: Information about the Metric Group

■ (G)V$STREAMSMETRIC: Streams Metrics for the Most Recent Interval

■ (G)V$STREAMSMETRIC_HISTORY: Streams Metrics Over Past Hour

■ (G)V$QUEUEMETRIC: Queue Metrics for the Most Recent Interval

■ (G)V$QUEUEMETRIC_HISTORY: Queue Metrics Over Past Hour

■ DBA_HIST_STREAMSMETRIC: Streams Metric History

■ DBA_HIST_QUEUEMETRIC: Queue Metric History

Oracle Messaging Gateway Views
■ MGW_GATEWAY: Configuration and Status Information

■ MGW_AGENT_OPTIONS: Supplemental Options and Properties

■ MGW_LINKS: Names and Types of Messaging System Links

■ MGW_MQSERIES_LINKS: WebSphere MQ Messaging System Links

■ MGW_TIBRV_LINKS: TIB/Rendezvous Messaging System Links

■ MGW_FOREIGN_QUEUES: Foreign Queues

■ MGW_JOBS: Messaging Gateway Propagation Jobs

■ MGW_SUBSCRIBERS: Information for Subscribers

■ MGW_SCHEDULES: Information about Schedules

QUEUE_PRIVILEGES: Queues for Which User Has Queue Privilege

Oracle Streams AQ & Messaging Gateway Views 9-3

DBA_QUEUE_TABLES: All Queue Tables in Database
The DBA_QUEUE_TABLES view contains information about the owner instance for a
queue table. A queue table can contain multiple queues. In this case, each queue in a
queue table has the same owner instance as the queue table. Its columns are the same
as those in ALL_QUEUE_TABLES.

USER_QUEUE_TABLES: Queue Tables in User Schema
The USER_QUEUE_TABLES view is the same as DBA_QUEUE_TABLES with the
exception that it only shows queue tables in the user's schema. It does not contain a
column for OWNER.

ALL_QUEUE_TABLES: Queue Tables Queue Accessible to the Current
User

The ALL_QUEUE_TABLES view describes queue tables accessible to the current user.

DBA_QUEUES: All Queues in Database
The DBA_QUEUES view specifies operational characteristics for every queue in a
database. Its columns are the same as those ALL_QUEUES.

USER_QUEUES: Queues In User Schema
The USER_QUEUES view is the same as DBA_QUEUES with the exception that it only
shows queues in the user's schema.

ALL_QUEUES: Queues for Which User Has Any Privilege
The ALL_QUEUES view describes all queues on which the current user has enqueue or
dequeue privileges. If the user has any Advanced Queuing system privileges, like
MANAGE ANY QUEUE, ENQUEUE ANY QUEUE or DEQUEUE ANY QUEUE, this view
describes all queues in the database.

DBA_QUEUE_SCHEDULES: All Propagation Schedules
The DBA_QUEUE_SCHEDULES view describes all the current schedules in the database
for propagating messages.

USER_QUEUE_SCHEDULES: Propagation Schedules in User Schema
The USER_QUEUE_SCHEDULES view is the same as DBA_QUEUE_SCHEDULES with the
exception that it only shows queue schedules in the user's schema.

QUEUE_PRIVILEGES: Queues for Which User Has Queue Privilege
The QUEUE_PRIVILEGES view describes queues for which the user is the grantor,
grantee, or owner. It also shows queues for which an enabled role on the queue is
granted to PUBLIC.

AQ$Queue_Table_Name: Messages in Queue Table

9-4 Oracle Streams Advanced Queuing User’s Guide

AQ$Queue_Table_Name: Messages in Queue Table
The AQ$Queue_Table_Name view describes the queue table in which message data is
stored. This view is automatically created with each queue table and should be used
for querying the queue data. The dequeue history data (time, user identification and
transaction identification) is only valid for single-consumer queues.

In a queue table that is created with the compatible parameter set to '8.1' or higher,
messages that were not dequeued by the consumer are shown as "UNDELIVERABLE".
You can dequeue these messages by msgid. If the Oracle Streams AQ queue process
monitor is running, then the messages are eventually moved to an exception queue.
You can dequeue these messages from the exception queue with an ordinary dequeue.

A multiconsumer queue table created without the compatible parameter, or with the
compatible parameter set to '8.0', does not display the state of a message on a
consumer basis, but only displays the global state of the message.

When a message is dequeued using the REMOVE mode, DEQ_TIME, DEQ_USER_ID,
and DEQ_TXN_ID are updated for the consumer that dequeued the message.

You can use MSGID and ORIGINAL_MSGID to chain propagated messages. When a
message with message identifier m1 is propagated to a remote queue, m1 is stored in
the ORIGINAL_MSGID column of the remote queue.

Beginning with Oracle Database 10g, AQ$Queue_Table_Name includes buffered
messages. For buffered messages, the value of MSG_STATE is one of the following:

■ IN MEMORY

Buffered messages enqueued by a user

■ DEFERRED

Buffered messages enqueued by a capture process

■ SPILLED

User-enqueued buffered messages that have been spilled to disk

■ DEFERRED SPILLED

Capture-enqueued buffered messages that have been spilled to disk

■ BUFFERED EXPIRED

Expired buffered messages

Note: Queues created in a queue table with compatible set to 8.0
(referred to in this guide as 8.0-style queues) are deprecated in Oracle
Streams AQ 10g Release 2 (10.2). Oracle recommends that any new
queues you create be 8.1-style or newer and that you migrate existing
8.0-style queues at your earliest convenience.

Table 9–1 AQ$Queue_Table_Name View

Column Datatype NULL Description

QUEUE VARCHAR2(30) - Queue name

MSG_ID RAW(16) NOT
NULL

Unique identifier of the message

CORR_ID VARCHAR2(128) - User-provided correlation identifier

AQ$Queue_Table_Name: Messages in Queue Table

Oracle Streams AQ & Messaging Gateway Views 9-5

MSG_PRIORITY NUMBER - Message priority

MSG_STATE VARCHAR2(16) - Message state

DELAY DATE - Time in date format at which the message in waiting
state would become ready. Equals ENQUEUE_TIME +
user specified DELAY

DELAY_TIMESTAMP TIMESTAMP - Time as a timestamp format at which the message in
waiting state would become ready. Equals ENQUEUE_
TIMESTAMP + user specified DELAY

EXPIRATION NUMBER - Number of seconds in which the message expires after
being READY

ENQ_TIME DATE - Enqueue time

ENQ_TIMESTAMP TIMESTAMP - Enqueue time

ENQ_USER_ID NUMBER - Enqueue user ID

ENQ_USER_ID (10.1
queue tables)

VARCHAR2(30) - Enqueue user name

ENQ_TXN_ID VARCHAR2(30) - Enqueue transaction ID

DEQ_TIME DATE - Dequeue time

DEQ_TIMESTAMP TIMESTAMP - Dequeue time

DEQ_USER_ID NUMBER - Dequeue user ID

DEQ_USER_ID (10.1
queue tables)

VARCHAR2(30) - Dequeue user name

DEQ_TXN_ID VARCHAR2(30) - Dequeue transaction ID

RETRY_COUNT NUMBER - Number of retries

EXCEPTION_QUEUE_
OWNER

VARCHAR2(30) - Exception queue schema

EXCEPTION_QUEUE VARCHAR2(30) - Exception queue name

USER_DATA - - User data

SENDER_NAME VARCHAR2(30) - Name of the agent enqueuing the message (valid only
for 8.1-compatible queue tables)

SENDER_ADDRESS VARCHAR2(1024) - Queue name and database name of the source (last
propagating) queue (valid only for 8.1-compatible queue
tables). The database name is not specified if the source
queue is in the local database.

SENDER_PROTOCOL NUMBER - Protocol for sender address (reserved for future use and
valid only for 8.1-compatible queue tables)

ORIGINAL_MSGID RAW(16) - Message ID of the message in the source queue (valid
only for 8.1-compatible queue tables)

CONSUMER_NAME VARCHAR2(30) - Name of the agent receiving the message (valid only for
8.1-compatible multiconsumer queue tables)

ADDRESS VARCHAR2(1024) - Queue name and database link name of the agent
receiving the message.The database link name is not
specified if the address is in the local database. The
address is NULL if the receiving agent is local to the
queue (valid only for 8.1-compatible multiconsumer
queue tables)

Table 9–1 (Cont.) AQ$Queue_Table_Name View

Column Datatype NULL Description

AQ$Queue_Table_Name_S: Queue Subscribers

9-6 Oracle Streams Advanced Queuing User’s Guide

AQ$Queue_Table_Name_S: Queue Subscribers
The AQ$Queue_Table_Name_S view provides information about subscribers for all
the queues in any given queue table. It shows subscribers created by users with DBMS_
AQADM.ADD_SUBSCRIBER and subscribers created for the apply process to apply
user-created events. It also displays the transformation for the subscriber, if it was
created with one. It is generated when the queue table is created.

This view provides functionality that is equivalent to the DBMS_AQADM.QUEUE_
SUBSCRIBERS() procedure. For these queues, Oracle recommends that the view be
used instead of this procedure to view queue subscribers. This view is created only for
8.1-compatible queue tables.

PROTOCOL NUMBER - Protocol for address of receiving agent (valid only for
8.1-compatible queue tables)

PROPAGATED_MSGID RAW(16) - Message ID of the message in the queue of the receiving
agent (valid only for 8.1-compatible queue tables)

ORIGINAL_QUEUE_
NAME

VARCHAR2(30) - Name of the queue the message came from

ORIGINAL_QUEUE_
OWNER

VARCHAR2(30) - Owner of the queue the message came from

EXPIRATION_REASON VARCHAR2(19) - Reason the message came into exception queue. Possible
values are TIME_EXPIRATION (message expired after
the specified expired time), MAX_RETRY_EXCEEDED
(maximum retry count exceeded), and PROPAGATION_
FAILURE (message became undeliverable during
propagation).

Note: A message is moved to an exception queue if RETRY_COUNT is
greater than MAX_RETRIES. If a dequeue transaction fails because the
server process dies (including ALTER SYSTEM KILL SESSION) or
SHUTDOWN ABORT on the instance, then RETRY_COUNT is not
incremented.

Table 9–2 AQ$Queue_Table_Name_S View

Column Datatype NULL Description

QUEUE VARCHAR2(30) NOT
NULL

Name of queue for which subscriber is defined

NAME VARCHAR2(30) - Name of agent

ADDRESS VARCHAR2(1024) - Address of agent

PROTOCOL NUMBER - Protocol of agent

TRANSFORMATION VARCHAR2(61) - Name of the transformation (can be null)

Table 9–1 (Cont.) AQ$Queue_Table_Name View

Column Datatype NULL Description

ALL_QUEUE_SUBSCRIBERS: Subscribers for Queues Where User Has Queue Privileges

Oracle Streams AQ & Messaging Gateway Views 9-7

AQ$Queue_Table_Name_R: Queue Subscribers and Their Rules
The AQ$Queue_Table_Name_R view displays only the subscribers based on rules for
all queues in a given queue table, including the text of the rule defined by each
subscriber. It also displays the transformation for the subscriber, if one was specified. It
is generated when the queue table is created.

This view is created only for 8.1-compatible queue tables.

DBA_QUEUE_SUBSCRIBERS: All Queue Subscribers in Database
The DBA_QUEUE_SUBSCRIBERS view returns a list of all subscribers on all queues in
the database. Its columns are the same as those in ALL_QUEUE_SUBSCRIBERS.

USER_QUEUE_SUBSCRIBERS: Queue Subscribers in User Schema
The USER_QUEUE_SUBSCRIBERS view returns a list of subscribers on queues in the
schema of the current user. Its columns are the same as those in ALL_QUEUE_
SUBSCRIBERS except that it does not contain the OWNER column.

ALL_QUEUE_SUBSCRIBERS: Subscribers for Queues Where User Has
Queue Privileges

The ALL_QUEUE_SUBSCRIBERS view returns a list of subscribers to queues that the
current user has privileges to dequeue from.

Table 9–3 AQ$Queue_Table_Name_R View

Column Datatype NULL Description

QUEUE VARCHAR2(30) NOT
NULL

Name of queue for which subscriber is defined

NAME VARCHAR2(30) - Name of agent

ADDRESS VARCHAR2(1024) - Address of agent

PROTOCOL NUMBER - Protocol of agent

RULE CLOB - Text of defined rule

RULE_SET VARCHAR2(65) - Set of rules

TRANSFORMATION VARCHAR2(61) - Name of the transformation (can be null)

DBA_TRANSFORMATIONS: All Transformations

9-8 Oracle Streams Advanced Queuing User’s Guide

DBA_TRANSFORMATIONS: All Transformations
The DBA_TRANSFORMATIONS view displays all the transformations in the database.
These transformations can be specified with Advanced Queue operations like
enqueue, dequeue and subscribe to automatically integrate transformations in
messaging. This view is accessible only to users having DBA privileges.

DBA_ATTRIBUTE_TRANSFORMATIONS: All Transformation Functions
The DBA_ATTRIBUTE_TRANSFORMATIONS view displays the transformation
functions for all the transformations in the database.

USER_TRANSFORMATIONS: User Transformations
The USER_TRANSFORMATIONS view displays all the transformations owned by the
user. To view the transformation definition, query USER_ATTRIBUTE_
TRANSFORMATIONS.

USER_ATTRIBUTE_TRANSFORMATIONS: User Transformation Functions
The USER_ATTRIBUTE_TRANSFORMATIONS view displays the transformation
functions for all the transformations of the user.

DBA_SUBSCR_REGISTRATIONS: All Subscription Registrations
The DBA_SUBSCR_REGISTRATIONS view lists all the subscription registrations in the
database.

USER_SUBSCR_REGISTRATIONS: User Subscription Registrations
The USER_SUBSCR_REGISTRATIONS view lists the subscription registrations in the
database for the current user. Its columns are the same as those in DBA_SUBSCR_
REGISTRATIONS.

AQ$INTERNET_USERS: Oracle Streams AQ Agents Registered for
Internet Access

The AQ$INTERNET_USERS view provides information about the agents registered for
Internet access to Oracle Streams AQ. It also provides the list of database users that
each Internet agent maps to.

Table 9–4 AQ$INTERNET_USERS View

Column Datatype NULL Description

AGENT_NAME VARCHAR2(30) - Name of the Oracle Streams AQ Internet agent

DB_USERNAME VARCHAR2(30) - Name of database user that this Internet agent maps to

HTTP_ENABLED VARCHAR2(4) - Indicates whether this agent is allowed to access Oracle
Streams AQ through HTTP (YES or NO)

FTP_ENABLED VARCHAR2(4) - Indicates whether this agent is allowed to access Oracle
Streams AQ through FTP (always NO in current release)

(G)V$PERSISTENT_PUBLISHERS: All Active Publishers of the Persistent Queues in the Instance

Oracle Streams AQ & Messaging Gateway Views 9-9

(G)V$AQ: Number of Messages in Different States in Database
The (G)V$AQ view provides information about the number of messages in different
states for the whole database.

In a Real Application Clusters environment, each instance keeps its own Oracle
Streams AQ statistics information in its own System Global Area (SGA), and does not
have knowledge of the statistics gathered by other instances. When a GV$AQ view is
queried by an instance, all other instances funnel their Oracle Streams AQ statistics
information to the instance issuing the query.

(G)V$BUFFERED_QUEUES: All Buffered Queues in the Instance.
The V$BUFFERED_QUEUES view displays information about all buffered queues in the
instance. There is one row per queue.

(G)V$BUFFERED_SUBSCRIBERS: Subscribers for All Buffered Queues in
the Instance

The V$BUFFERED_SUBSCRIBERS view displays information about the subscribers for
all buffered queues in the instance. There is one row per subscriber per queue.

(G)V$BUFFERED_PUBLISHERS: All Buffered Publishers in the Instance
The V$BUFFERED_PUBLISHERS view displays information about all buffered
publishers in the instance. There is one row per queue per sender. The values are reset
to zero when the database (or instance in an Oracle RAC environment) restarts.

(G)V$PERSISTENT_QUEUES: All Active Persistent Queues in the Instance
The V$PERSISTENT_QUEUES view displays information about all active persistent
queues in the database since the queues' first activity time. There is one row per queue.
The rows are deleted when the database (or instance in an Oracle RAC environment)
restarts.

(G)V$PERSISTENT_SUBSCRIBERS: All Active Subscribers of the
Persistent Queues in the Instance

The V$PERSISTENT_SUBSCRIBERS view displays information about all active
subscribers of the persistent queues in the database. There is one row per instance per
queue per subscriber. The rows are deleted when the database (or instance in an
Oracle RAC environment) restarts.

(G)V$PERSISTENT_PUBLISHERS: All Active Publishers of the Persistent
Queues in the Instance

The V$PERSISTENT_PUBLISHERS view displays information about all active
publishers of the persistent queues in the database. There is one row per instance per
queue per publisher. The rows are deleted when the database (or instance in an Oracle
RAC environment) restarts.

(G)V$PROPAGATION_SENDER: Buffer Queue Propagation Schedules on the Sending (Source) Side

9-10 Oracle Streams Advanced Queuing User’s Guide

(G)V$PROPAGATION_SENDER: Buffer Queue Propagation Schedules on
the Sending (Source) Side

The V$PROPAGATION_SENDER view displays information about buffer queue
propagation schedules on the sending (source) side. The values are reset to zero when
the database (or instance in a Real Application Clusters (RAC) environment) restarts,
when propagation migrates to another instance, or when an unscheduled propagation
is attempted.

(G)V$PROPAGATION_RECEIVER: Buffer Queue Propagation Schedules
on the Receiving (Destination) Side

The V$PROPAGATION_RECEIVER view displays information about buffer queue
propagation schedules on the receiving (destination) side. The values are reset to zero
when the database (or instance in a Real Application Clusters (RAC) environment)
restarts, when propagation migrates to another instance, or when an unscheduled
propagation is attempted.

(G)V$SUBSCR_REGISTRATION_STATS: Diagnosability of Notifications
The V$SUBSCR_REGISTRATION_STATS view provides information for diagnosability
of notifications.

V$METRICGROUP: Information about the Metric Group
This V$METRICGROUP view displays information about the metric group for each of
the four major Streams components: capture, propagation, apply, and queue.

(G)V$STREAMSMETRIC: Streams Metrics for the Most Recent Interval
This view displays the capture, propagation, and apply metrics for the most recent
interval.

Table 9–5 GV$STREAMSMETRIC View

Column Datatype Description

INST_ID Instance ID (GV$ only)

BEGIN_TIME DATE Begin time of interval

END_TIME DATE End time of interval

INTSIZE_CSEC NUMBER Interval size (centi-seconds)

COMPONENT_TYPE VARCHAR2(32) Type of the component (either ‘CAPTURE’, ‘PROPAGATION’, or
‘APPLY’)

COMPONENT_NAME VARCHAR2(32) Name of streams component

COMPONENT_START_
TIME

DATE Time that component started

RATE1_VALUE NUMBER Value of rate 1

RATE1_NAME VARCHAR2(64) Name of rate1

RATE1_UNIT VARCHAR2(64) Unit of measurement of rate1

RATE2_VALUE NUMBER Value of rate 2

DBA_HIST_STREAMSMETRIC: Streams Metric History

Oracle Streams AQ & Messaging Gateway Views 9-11

(G)V$STREAMSMETRIC_HISTORY: Streams Metrics Over Past Hour
This view returns all metric values for streams messages over the past hour. It has the
same form as (G)V$STREAMSMETRIC: Streams Metrics for the Most Recent Interval.

(G)V$QUEUEMETRIC: Queue Metrics for the Most Recent Interval
This view displays the queue metrics for the most recent interval.

(G)V$QUEUEMETRIC_HISTORY: Queue Metrics Over Past Hour
This view returns all queue metric values over the past hour. It has the same shape as
(G)V$QUEUEMETRIC: Queue Metrics for the Most Recent Interval.

DBA_HIST_STREAMSMETRIC: Streams Metric History
This view displays view provides catalog access to streams metric history.

RATE2_NAME VARCHAR2(64) Name of rate2

RATE2_UNIT VARCHAR2(64) Unit of measurement of rate2

LATENCY NUMBER Latency from time last message processed by component was
written to redo to time the message was processed by this
component

Table 9–6 GV$STREAMSMETRIC View

Column Datatype Description

INST_ID Instance ID (GV$ only)

BEGIN_TIME DATE Begin time of interval

END_TIME DATE End time of interval

INTSIZE_CSEC NUMBER Interval size (centi-seconds)

QUEUE_NAME VARCHAR2(32) Name of queue

QUEUE_START_TIME DATE Time when queue started

ENQUEUED_PER_
SECOND

NUMBER Number of messages enqueue per second

SPILLED_PER_
SECOND

NUMBER Number of messages spilled per second

NUM_MESSAGES NUMBER Current number of messages in the queue

Table 9–7 DBA_HIST_STREAMSMETRIC View

Column Datatype Description

SNAP_ID NUMBER Required by AWR, snapshot ID

DBID NUMBER Required by AWR, database ID

INSTANCE_NUMBER NUMBER Required by AWR, instance number

BEGIN_TIME DATE Begin time of interval

Table 9–5 (Cont.) GV$STREAMSMETRIC View

Column Datatype Description

DBA_HIST_QUEUEMETRIC: Queue Metric History

9-12 Oracle Streams Advanced Queuing User’s Guide

DBA_HIST_QUEUEMETRIC: Queue Metric History
This view displays view provides catalog access to queue metric history.

END_TIME DATE End time of interval

INTSIZE NUMBER Interval size (centi-seconds)

COMPONENT_TYPE VARCHAR2(32) Type of the component (either ‘CAPTURE’,
‘PROPAGATION’, or ‘APPLY’)

COMPONENT_NAME VARCHAR2(32) Name of streams component

COMPONENT_START_TIME DATE Time that component started

RATE1_VALUE NUMBER Value of rate 1

RATE2_VALUE NUMBER Value of rate 2

LATENCY NUMBER Latency from time last message processed by
component was written to redo to time the
message was processed by this component

Table 9–8 DBA_ATTRIBUTE_TRANSFORMATIONS View

Column Datatype Description

SNAP_ID NUMBER Required by AWR, snapshot ID

DBID NUMBER Required by AWR, database ID

INSTANCE_NUMBER NUMBER Required by AWR, instance number

QUEUE_NAME VARCHAR2(32) Name of queue process

QUEUE_START_TIME DATE Time when queue started

BEGIN_TIME DATE Begin time of interval

END_TIME DATE End time of interval

INTSIZE NUMBER Interval size (centi-seconds)

ENQUEUED_PER_SECOND NUMBER Messages enqueue per second

SPILLED_PER_SECOND NUMBER Messages spilled per second

NUMMESSAGES NUMBER Number of messages in the queue

Table 9–7 (Cont.) DBA_HIST_STREAMSMETRIC View

Column Datatype Description

MGW_GATEWAY: Configuration and Status Information

Oracle Streams AQ & Messaging Gateway Views 9-13

MGW_GATEWAY: Configuration and Status Information
This view lists configuration and status information for Messaging Gateway.

Table 9–9 MGW_GATEWAY View Properties

Name Type Description

AGENT_DATABASE VARCHAR2 The database connect string used by the Messaging Gateway agent.
NULL indicates that a local connection is used.

AGENT_INSTANCE NUMBER The database instance on which the Messaging Gateway agent is
currently running. This should be NULL if the agent is not running.

AGENT_JOB NUMBER [Deprecated] Job number of the queued job used to start the
Messaging Gateway agent process. The job number is set when
Messaging Gateway is started and cleared when it shuts down.

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent

AGENT_PING VARCHAR2 Gateway agent ping status. Values:

■ NULL means no ping attempt was made.

■ REACHABLE means ping attempt was successful.

■ UNREACHABLE means ping attempt failed.

AGENT_PING attempts to contact the Messaging Gateway agent.
There is a short delay (up to 5 seconds) if the ping attempt fails. No
ping is attempted if the AGENT_STATUS is NOT_STARTED or START_
SCHEDULED.

AGENT_START_TIME TIMESTAMP The time when the Messaging Gateway agent job currently running
was started. This should be NULL if the agent is not running.

AGENT_STATUS VARCHAR2 Status of the Messaging Gateway agent. Values:

■ NOT_STARTED means the Messaging Gateway agent has not
been started

■ START_SCHEDULED means Messaging Gateway agent has been
scheduled to start. That is, Messaging Gateway has been started
using DBMS_MGWADM.STARTUP, but the queued job used to start
the Messaging Gateway agent has not yet run.

■ STARTING means Messaging Gateway agent is starting. That is,
Messaging Gateway has been started using DBMS_
MGWADM.STARTUP, the queued job has run, and the Messaging
Gateway agent is starting up.

■ INITIALIZING means the Messaging Gateway agent has
started and is initializing

■ RUNNING means the Messaging Gateway agent is running

■ SHUTTING_DOWN means the Messaging Gateway agent is
shutting down

■ BROKEN means an unexpected condition has been encountered
that prevents the Messaging Gateway agent from starting.
DBMS_MGWADM.CLEANUP_GATEWAY must be called before the
agent can be started.

AGENT_USER VARCHAR2 Database username used by the Messaging Gateway agent to connect
to the database

COMMENTS VARCHAR2 Comments for the agent

CONNTYPE VARCHAR2 Connection type used by the agent:

■ JDBC_OCI if the JDBC OCI driver is used

■ JDBC_THIN if the JDBC Thin driver is used

MGW_AGENT_OPTIONS: Supplemental Options and Properties

9-14 Oracle Streams Advanced Queuing User’s Guide

MGW_AGENT_OPTIONS: Supplemental Options and Properties
This view lists supplemental options and properties for a Messaging Gateway agent.

MGW_LINKS: Names and Types of Messaging System Links
This view lists the names and types of messaging system links currently defined.

INITFILE VARCHAR2 Name of the Messaging Gateway initialization file used by the agent.
NULL indicates that the default initialization file is used.

LAST_ERROR_DATE DATE Date of last Messaging Gateway agent error. The last error
information is cleared when Messaging Gateway is started. It is set if
the Messaging Gateway agent fails to start or terminates due to an
abnormal condition.

LAST_ERROR_MSG VARCHAR2 Message for last Messaging Gateway agent error

LAST_ERROR_TIME VARCHAR2 Time of last Messaging Gateway agent error

MAX_CONNECTIONS NUMBER [Deprecated] Maximum number of messaging connections to Oracle
Database

MAX_MEMORY NUMBER Maximum heap size used by the Messaging Gateway agent (in MB)

MAX_THREADS NUMBER Maximum number of messaging threads created by the Messaging
Gateway agent

SERVICE VARCHAR2 Name of the database service that is associated with an Oracle
Scheduler job class used by the agent

Table 9–10 MGW_AGENT_OPTIONS View

Column Type Description

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent

ENCRYPTED VARCHAR2 Indicates whether the value is stored as encrypted:

■ TRUE if the value is stored encrypted

■ FALSE if the value is stored as cleartext

NAME VARCHAR2 Name of the option

TYPE VARCHAR2 Option type or usage: JAVA_SYSTEM_PROP if the option is used to
set a Java System property

VALUE VARCHAR2 Value for the option. This will be <<ENCRYPTED>> if the value is
stored in an encrypted form.

Table 9–11 MGW_LINKS View Properties

Name Type Description

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent that will process propagation
jobs for this link

Table 9–9 (Cont.) MGW_GATEWAY View Properties

Name Type Description

MGW_TIBRV_LINKS: TIB/Rendezvous Messaging System Links

Oracle Streams AQ & Messaging Gateway Views 9-15

MGW_MQSERIES_LINKS: WebSphere MQ Messaging System Links
This view lists information for the WebSphere MQ messaging system links. The view
includes most of the messaging system properties specified when the link is created.

MGW_TIBRV_LINKS: TIB/Rendezvous Messaging System Links
This view lists information for TIB/Rendezvous messaging system links. The view
includes most of the messaging system properties specified when the link was created.

LINK_COMMENT VARCHAR2 User comment for the link

LINK_NAME VARCHAR2 Name of the messaging system link

LINK_TYPE VARCHAR2 Type of messaging system link. Values

■ MQSERIES is for WebSphere MQ links.

■ TIBRV is for TIB/Rendezvous links.

Table 9–12 MGW_MQSERIES_LINKS View Properties

Name Type Description

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent that will process
propagation jobs for this link

CHANNEL VARCHAR2 Connection channel

HOSTNAME VARCHAR2 Name of the WebSphere MQ host

INBOUND_LOG_QUEUE VARCHAR2 Inbound propagation log queue

INTERFACE_TYPE VARCHAR2 Messaging interface type. Values:

■ BASE_JAVA is for WebSphere MQ Base Java interface

■ JMS_CONNECTION is for WebSphere MQ JMS unified,
domain-independent connections

■ JMS_QUEUE_CONNECTION is for WebSphere MQ JMS
queue connections

■ JMS_TOPIC_CONNECTION is for WebSphere MQ JMS
topic connections

LINK_COMMENT VARCHAR2 User comment for the link

LINK_NAME VARCHAR2 Name of the messaging system link

MAX_CONNECTIONS NUMBER Maximum number of messaging connections

OPTIONS SYS.MGW_
PROPERTIES

Link options

OUTBOUND_LOG_QUEUE VARCHAR2 Outbound propagation log queue

PORT NUMBER Port number

QUEUE_MANAGER VARCHAR2 Name of the WebSphere MQ queue manager

Table 9–11 (Cont.) MGW_LINKS View Properties

Name Type Description

MGW_FOREIGN_QUEUES: Foreign Queues

9-16 Oracle Streams Advanced Queuing User’s Guide

MGW_FOREIGN_QUEUES: Foreign Queues
This view lists information for foreign queues. The view includes most of the queue
properties specified when the queue is registered.

MGW_JOBS: Messaging Gateway Propagation Jobs
This view lists information for Messaging Gateway propagation jobs. The view
includes most of the job properties specified when the propagation job was created, as
well as other status and statistical information.

Table 9–13 MGW_TIBRV_LINKS View Properties

Property Name Type Description

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent that will process
propagation jobs for this link

CM_LEDGER VARCHAR2 TIB/Rendezvous CM ledger file name

CM_NAME VARCHAR2 TIB/Rendezvous CM correspondent name

DAEMON VARCHAR2 TIB/Rendezvous daemon parameter for RVD transport

LINK_COMMENT VARCHAR2 User comment for the link

LINK_NAME VARCHAR2 Name of the messaging system link

NETWORK VARCHAR2 TIB/Rendezvous network parameter for rvd transport

OPTIONS SYS.MGW_
PROPERTIES

Link options

SERVICE VARCHAR2 TIB/Rendezvous service parameter for rvd transport

Table 9–14 MGW_FOREIGN_QUEUES View Properties

Name Type Description

DOMAIN VARCHAR2 Queue domain type. Values:

■ NULL means the queue domain type is automatically
determined by the messaging system

■ QUEUE is for a queue (point-to-point) model

■ TOPIC is for a topic (publish-subscribe) model

LINK_NAME VARCHAR2 Name of the messaging system link

NAME VARCHAR2 Name of the registered queue

OPTIONS SYS.MGW_
PROPERTIES

Optional queue properties

PROVIDER_QUEUE VARCHAR2 Message provider (native) queue name

QUEUE_COMMENT VARCHAR2 User comment for the foreign queue

Table 9–15 MGW_JOBS View

Column Type Description

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent that processes this job

COMMENTS VARCHAR2 Comments for the propagation job

DESTINATION VARCHAR2 Destination queue to which messages are propagated

MGW_JOBS: Messaging Gateway Propagation Jobs

Oracle Streams AQ & Messaging Gateway Views 9-17

ENABLED VARCHAR2 Indicates whether the job is enabled or not:

■ TRUE if the job is enabled

■ FALSE if the job is disabled

EXCEPTION_QUEUE VARCHAR2 Exception queue used for propagation logging purposes

EXCEPTIONQ_MSGS NUMBER Option type or usage: JAVA_SYSTEM_PROP if the option is used to
set a Java System property

FAILURES NUMBER Number of messages moved to exception queue since the last time
the agent was started

JOB_NAME VARCHAR2 Name of the propagation job

LAST_ERROR_MSG VARCHAR2 Message for the last propagation error

LAST_ERROR_DATE DATE Date of the last propagation error

LAST_ERROR_TIME VARCHAR2 Time of the last propagation error

LINK_NAME VARCHAR2 Name of the Messaging Gateway link used by this job

OPTIONS SYS.MGW_
PROPERTIES

Job options

POLL_INTERVAL INTEGER Propagation poll interval (in seconds)

PROPAGATED_MSGS NUMBER Number of messages propagated since the last time the agent was
started

PROP_STYLE VARCHAR2 Message propagation style:

■ NATIVE for native message propagation

■ JMS for JMS message propagation

PROPAGATION_TYPE VARCHAR2 Propagation type:

■ OUTBOUND is for Oracle Streams AQ to non-Oracle propagation

■ INBOUND is for non-Oracle to Oracle Streams AQ propagation

RULE VARCHAR2 Subscription rule used for the propagation source

Table 9–15 (Cont.) MGW_JOBS View

Column Type Description

MGW_SUBSCRIBERS: Information for Subscribers

9-18 Oracle Streams Advanced Queuing User’s Guide

MGW_SUBSCRIBERS: Information for Subscribers
This view lists configuration and status information for Messaging Gateway
subscribers. The view includes most of the subscriber properties specified when the
subscriber is added, as well as other status and statistical information.

SOURCE VARCHAR2 Source queue from which messages are propagated

STATUS VARCHAR2 Job status:

■ READY means the job is ready for propagation. The job must be
enabled and the Messaging Gateway agent running before
messages are actually propagated.

■ RETRY means the agent encountered errors when attempting to
propagate messages for the job and will retry the operation

■ FAILED means the job has failed and agent has stopped trying
to propagate messages. Usually this is due to an unrecoverable
error or the propagation failure limit being reached. The job
must be reset before the agent will attempt to propagate
messages. The job is automatically reset each time the agent is
started and can be manually reset by DBMS_MGWADM.RESET_
JOB.

■ DELETE_PENDING means that job removal is pending. DBMS_
MGWADM.REMOVE_JOB has been called but certain cleanup
tasks for this job are still outstanding.

■ SUBSCRIBER_DELETE_PENDING means that removal is
pending for the subscriber associated with the job. DBMS_
MGWADM.REMOVE_SUBSCRIBER has been called but certain
cleanup tasks are still outstanding.

TRANSFORMATION VARCHAR2 Transformation used for message conversion

Table 9–16 MGW_SUBSCRIBERS View Properties

Name Type Description

DESTINATION VARCHAR2 Destination queue to which messages are propagated

EXCEPTIONQ_MSGS NUMBER Number of messages moved to the propagation exception queue
since the last time the agent was started

EXCEPTION_QUEUE VARCHAR2 Exception queue used for logging purposes

FAILURES NUMBER Number of propagation failures

LAST_ERROR_DATE DATE Date of last propagation error

LAST_ERROR_MSG VARCHAR2 Message for last propagation error

LAST_ERROR_TIME VARCHAR2 Time of last propagation error

OPTIONS SYS.MGW_
PROPERTIES

Subscriber options

PROP_STYLE VARCHAR2 Message propagation style. Values:

■ NATIVE is for native message propagation

■ JMS is for JMS message propagation

PROPAGATED_MSGS NUMBER Number of messages propagated to the destination queue since the
last time the agent was started

Table 9–15 (Cont.) MGW_JOBS View

Column Type Description

MGW_SCHEDULES: Information about Schedules

Oracle Streams AQ & Messaging Gateway Views 9-19

MGW_SCHEDULES: Information about Schedules
This view lists configuration and status information for Messaging Gateway
schedules. The view includes most of the schedule properties specified when the
schedule is created, as well as other status information.

PROPAGATION_TYPE VARCHAR2 Propagation type. Values:

■ OUTBOUND is for Oracle Streams AQ to non-Oracle
propagation

■ INBOUND is for non-Oracle to Oracle Streams AQ propagation

QUEUE_NAME VARCHAR2 Subscriber source queue

RULE VARCHAR2 Subscription rule

STATUS VARCHAR2 Subscriber status. Values:

■ ENABLED means the subscriber is enabled

■ DELETE_PENDING means subscriber removal is pending,
usually because DBMS_MGWADM.REMOVE_SUBSCRIBER has
been called but certain cleanup tasks pertaining to this
subscriber are still outstanding

SUBSCRIBER_ID VARCHAR2 Propagation subscriber identifier

TRANSFORMATION VARCHAR2 Transformation used for message conversion

Table 9–17 MGW_SCHEDULES View Properties

Name Type Description

DESTINATION VARCHAR2 Propagation destination

LATENCY NUMBER Propagation window latency (in seconds)

NEXT_TIME VARCHAR2 Reserved for future use

PROPAGATION_TYPE VARCHAR2 Propagation type. Values:

■ OUTBOUND is for Oracle Streams AQ to non-Oracle
propagation

■ INBOUND is for non-Oracle to Oracle Streams AQ propagation

PROPAGATION_WINDOW NUMBER Reserved for future use

SCHEDULE_DISABLED VARCHAR2 Indicates whether the schedule is disabled. Y means the schedule
is disabled. N means the schedule is enabled.

SCHEDULE_ID VARCHAR2 Propagation schedule identifier

SOURCE VARCHAR2 Propagation source

START_DATE DATE Reserved for future use

START_TIME VARCHAR2 Reserved for future use

Table 9–16 (Cont.) MGW_SUBSCRIBERS View Properties

Name Type Description

MGW_SCHEDULES: Information about Schedules

9-20 Oracle Streams Advanced Queuing User’s Guide

Oracle Streams AQ Operations Using PL/SQL 10-1

10
Oracle Streams AQ Operations Using

PL/SQL

This chapter describes the Oracle Streams Advanced Queuing (AQ) PL/SQL
operational interface.

This chapter contains these topics:

■ Using Secure Queues

■ Enqueuing Messages

■ Enqueuing an Array of Messages

■ Listening to One or More Queues

■ Dequeuing Messages

■ Dequeuing an Array of Messages

■ Registering for Notification

■ Posting for Subscriber Notification

■ Adding an Agent to the LDAP Server

■ Removing an Agent from the LDAP Server

See Also:

■ Chapter 3, "Oracle Streams AQ: Programmatic Interfaces" for a list
of available functions in each programmatic interface

■ "DBMS_AQ" in Oracle Database PL/SQL Packages and Types
Reference for more information on the PL/SQL interface

■ Oracle Objects for OLE Online Help > Contents tab > OO4O
Automation Server > OBJECTS > OraAQ Object for more
information on the Visual Basic (OO4O) interface

■ Oracle Streams Advanced Queuing Java API Reference for more
information on the Java interface

■ "More OCI Relational Functions" and "OCI Programming
Advanced Topics" in Oracle Call Interface Programmer's Guide for
more information on the Oracle Call Interface (OCI)

Using Secure Queues

10-2 Oracle Streams Advanced Queuing User’s Guide

Using Secure Queues
For secure queues, you must specify the sender_id in the messages_properties
parameter. See "MESSAGE_PROPERTIES_T Type" in Oracle Database PL/SQL Packages
and Types Reference for more information about sender_id.

When you use secure queues, the following are required:

■ You must have created a valid Oracle Streams AQ agent using DBMS_
AQADM.CREATE_AQ_AGENT.

■ You must map sender_id to a database user with enqueue privileges on the
secure queue. Use DBMS_AQADM.ENABLE_DB_ACCESS to do this.

Enqueuing Messages
DBMS_AQ.ENQUEUE(
 queue_name IN VARCHAR2,
 enqueue_options IN enqueue_options_t,
 message_properties IN message_properties_t,
 payload IN "type_name",
 msgid OUT RAW);

This procedure adds a message to the specified queue.

It is not possible to update the message payload after a message has been enqueued. If
you want to change the message payload, then you must dequeue the message and
enqueue a new message.

To store a payload of type RAW, Oracle Streams AQ creates a queue table with LOB
column as the payload repository. The maximum size of the payload is determined by
which programmatic interface you use to access Oracle Streams AQ. For PL/SQL, Java
and precompilers the limit is 32K; for the OCI the limit is 4G.

If a message is enqueued to a multiconsumer queue with no recipient and the queue
has no subscribers (or rule-based subscribers that match this message), then Oracle
error ORA 24033 is raised. This is a warning that the message will be discarded
because there are no recipients or subscribers to whom it can be delivered.

If several messages are enqueued in the same second, then they all have the same
enq_time. In this case the order in which messages are dequeued depends on step_
no, a variable that is monotonically increasing for each message that has the same
enq_time. There is no situation when both enq_time and step_no are the same for
two messages enqueued in the same session.

Enqueue Options
The enqueue_options parameter specifies the options available for the enqueue
operation. It has the following attributes:

■ visibility

The visibility attribute specifies the transactional behavior of the enqueue
request. ON_COMMIT (the default) makes the enqueue is part of the current

See Also:

■ "Creating an Oracle Streams AQ Agent" on page 8-29

■ "Enabling Database Access" on page 8-29

■ Oracle Streams Concepts and Administration for information about
secure queues

Enqueuing Messages

Oracle Streams AQ Operations Using PL/SQL 10-3

transaction. IMMEDIATE makes the enqueue operation an autonomous transaction
which commits at the end of the operation.

Do not use the IMMEDIATE option when you want to use LOB locators. LOB
locators are valid only for the duration of the transaction. Your locator will not be
valid, because the immediate option automatically commits the transaction.

You must set the visibility attribute to IMMEDIATE to use buffered messaging.

■ relative_msgid

The relative_msgid attribute specifies the message identifier of the message
referenced in the sequence deviation operation. This parameter is ignored unless
sequence_deviation is specified with the BEFORE attribute.

■ sequence_deviation

The sequence_deviation attribute specifies when the message should be
dequeued, relative to other messages already in the queue. BEFORE puts the
message ahead of the message specified by relative_msgid. TOP puts the
message ahead of any other messages.

Specifying sequence_deviation for a message introduces some restrictions for
the delay and priority values that can be specified for this message. The delay of
this message must be less than or equal to the delay of the message before which
this message is to be enqueued. The priority of this message must be greater than
or equal to the priority of the message before which this message is to be
enqueued.

■ transformation

The transformation attribute specifies a transformation that will be applied
before enqueuing the message. The return type of the transformation function
must match the type of the queue.

■ delivery_mode

If the delivery_mode attribute is the default PERSISTENT, then the message is
enqueued as a persistent message. If it is set to BUFFERED, then the message is
enqueued as an buffered message. Null values are not allowed.

Message Properties
The message_properties parameter contains the information that Oracle Streams
AQ uses to manage individual messages. It has the following attributes:

■ priority

The priority attribute specifies the priority of the message. It can be any
number, including negative numbers. A smaller number indicates higher priority.

■ delay

The delay attribute specifies the number of seconds during which a message is in
the WAITING state. After this number of seconds, the message is in the READY

Note: The sequence_deviation attribute has no effect in releases
prior to Oracle Streams AQ 10g Release 1 (10.1) if message_
grouping is set to TRANSACTIONAL.

The sequence deviation feature is deprecated in Oracle Streams AQ
10g Release 2 (10.2).

Enqueuing Messages

10-4 Oracle Streams Advanced Queuing User’s Guide

state and available for dequeuing. If you specify NO_DELAY, then the message is
available for immediate dequeuing. Dequeuing by msgid overrides the delay
specification.

■ expiration

The expiration attribute specifies the number of seconds during which the
message is available for dequeuing, starting from when the message reaches the
READY state. If the message is not dequeued before it expires, then it is moved to
the exception queue in the EXPIRED state. If you specify NEVER, then the message
does not expire.

■ correlation

The correlation attribute is an identifier supplied by the producer of the
message at enqueue time.

■ attempts

The attemps attribute specifies the number of attempts that have been made to
dequeue the message. This parameter cannot be set at enqueue time.

■ recipient_list

The recipient_list parameter is valid only for queues that allow multiple
consumers. The default recipients are the queue subscribers.

■ exception_queue

The exception_queue attribute specifies the name of the queue into which the
message is moved if it cannot be processed successfully. If the exception queue
specified does not exist at the time of the move, then the message is moved to the
default exception queue associated with the queue table, and a warning is logged
in the alert log.

■ delivery_mode

Any value for delivery_mode specified in message properties at enqueue time is
ignored. The value specified in enqueue options is used to set the delivery mode of
the message. If the delivery mode in enqueue options is left unspecified, then it
defaults to persistent.

■ enqueue_time

The enqueue_time attribute specifies the time the message was enqueued. This
value is determined by the system and cannot be set by the user at enqueue time.

Note: Delay is not supported with buffered messaging.

Note: Message delay and expiration are enforced by the queue
monitor (QMN) background processes. You must start the QMN
processes for the database if you intend to use the delay and
expiration features of Oracle Streams AQ.

Enqueuing Messages

Oracle Streams AQ Operations Using PL/SQL 10-5

■ state

The state attribute specifies the state of the message at the time of the dequeue.
This parameter cannot be set at enqueue time.

■ sender_id

The sender_id attribute is an identifier of type aq$_agent specified at enqueue
time by the message producer.

■ original_msgid

The original_msgid attribute is used by Oracle Streams AQ for propagating
messages.

■ transaction_group

The transaction_group attribute specifies the transaction group for the
message. This attribute is set only by DBMS_AQ.DEQUEUE_ARRAY. This attribute
cannot be used to set the transaction group of a message through DBMS_
AQ.ENQUEUE or DBMS_AQ.ENQUEUE_ARRAY.

■ user_property

The user_property attribute is optional. It is used to store additional
information about the payload.

The examples in this chapter use the same users, message types, queue tables, and
queues as do the examples in Chapter 8, "Oracle Streams AQ Administrative
Interface". If you have not already created these structures in your test environment,
then you must run the following examples:

■ Example 8–1, "Setting Up AQ Administrative Users" on page 8-5

■ Example 8–2, "Setting Up AQ Administrative Example Types" on page 8-6

■ Example 8–3, "Creating a Queue Table for Messages of Object Type" on page 8-6

■ Example 8–5, "Creating a Queue Table for Messages of LOB Type" on page 8-6

■ Example 8–7, "Creating a Queue Table for Grouped Messages" on page 8-7

■ Example 8–8, "Creating Queue Tables for Prioritized Messages and Multiple
Consumers" on page 8-7

■ Example 8–23, "Creating a Queue for Messages of Object Type" on page 8-13

■ Example 8–25, "Creating a Queue for Messages of LOB Type" on page 8-14

■ Example 8–26, "Creating a Queue for Grouped Messages" on page 8-14

■ Example 8–27, "Creating a Queue for Prioritized Messages" on page 8-14

■ Example 8–28, "Creating a Queue for Prioritized Messages and Multiple
Consumers" on page 8-14

■ Example 8–36, "Creating a Transformation" on page 8-17

Note: Because information about seasonal changes in the system
clock (switching between standard time and daylight-saving time, for
example) is stored with each queue table, seasonal changes are
automatically reflected in enqueue_time. If the system clock is
changed for some other reason, then you must restart the database for
Oracle Streams AQ to pick up the changed time.

Enqueuing Messages

10-6 Oracle Streams Advanced Queuing User’s Guide

For Example 8–1, you must connect as a user with administrative privileges. For the
other examples in the preceding list, you can connect as user test_adm. After you
have created the queues, you must start them as shown in "Starting a Queue" on
page 8-15. Except as noted otherwise, you can connect as ordinary queue user 'test'
to run all examples appearing in this chapter.

Example 10–1 Enqueuing a Message, Specifying Queue Name and Payload

DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
BEGIN
 message := test.message_typ(001, 'TEST MESSAGE', 'First message to obj_queue');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 COMMIT;
END;
/

Example 10–2 Enqueuing a Message, Specifying Priority

DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.order_typ;
BEGIN
 message := test.order_typ(002, 'PRIORITY MESSAGE', 'priority 30');
 message_properties.priority := 30;
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.priority_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 COMMIT;
END;
/

Enqueuing a LOB Type Message
Example 10–3 creates procedure blobenqueue() using the test.lob_type
message payload object type created in Example 8–1 on page 8-5. On enqueue, the
LOB attribute is set to EMPTY_BLOB. After the enqueue completes, but before the
transaction is committed, the LOB attribute is selected from the user_data column of
the test.lob_qtab queue table. The LOB data is written to the queue using the LOB
interfaces (which are available through both OCI and PL/SQL). The actual enqueue
operation is shown in

On dequeue, the message payload will contain the LOB locator. You can use this LOB
locator after the dequeue, but before the transaction is committed, to read the LOB
data. This is shown in Example 10–14 on page 10-16.

Enqueuing Messages

Oracle Streams AQ Operations Using PL/SQL 10-7

Example 10–3 Creating an Enqueue Procedure for LOB Type Messages

CREATE OR REPLACE PROCEDURE blobenqueue(msgno IN NUMBER) AS
 enq_userdata test.lob_typ;
 enq_msgid RAW(16);
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 lob_loc BLOB;
 buffer RAW(4096);
BEGIN
 buffer := HEXTORAW(RPAD('FF', 4096, 'FF'));
 enq_userdata := test.lob_typ(msgno, 'Large Lob data', EMPTY_BLOB(), msgno);
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.lob_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => enq_userdata,
 msgid => enq_msgid);
 SELECT t.user_data.data INTO lob_loc
 FROM lob_qtab t
 WHERE t.msgid = enq_msgid;
 DBMS_LOB.WRITE(lob_loc, 2000, 1, buffer);
 COMMIT;
END;
/

Example 10–4 Enqueuing a LOB Type Message

BEGIN
 FOR i IN 1..5 LOOP
 blobenqueue(i);
 END LOOP;
END;
/

Enqueuing Multiple Messages to a Single-Consumer Queue
Example 10–5 enqueues six messages to test.obj_queue. These messages are
dequeued in Example 10–17 on page 10-18.

Example 10–5 Enqueuing Multiple Messages

SET SERVEROUTPUT ON
DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
BEGIN
 message := test.message_typ(001, 'ORANGE', 'ORANGE enqueued first.');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 message := test.message_typ(001, 'ORANGE', 'ORANGE also enqueued second.');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,

Enqueuing Messages

10-8 Oracle Streams Advanced Queuing User’s Guide

 payload => message,
 msgid => message_handle);
 message := test.message_typ(001, 'YELLOW', 'YELLOW enqueued third.');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 message := test.message_typ(001, 'VIOLET', 'VIOLET enqueued fourth.');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 message := test.message_typ(001, 'PURPLE', 'PURPLE enqueued fifth.');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 message := test.message_typ(001, 'PINK', 'PINK enqueued sixth.');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 COMMIT;
END;
/

Enqueuing Multiple Messages to a Multiconsumer Queue
Example 10–6 requires that you connect as user 'test_adm' to add subscribers RED
and GREEN to queue test.multiconsumer_queue. The subscribers are required for
Example 10–7.

Example 10–6 Adding Subscribers RED and GREEN

DECLARE
 subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent('RED', NULL, NULL);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'test.multiconsumer_queue',
 subscriber => subscriber);

 subscriber := sys.aq$_agent('GREEN', NULL, NULL);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'test.multiconsumer_queue',
 subscriber => subscriber);
END;
/

Enqueuing Messages

Oracle Streams AQ Operations Using PL/SQL 10-9

Example 10–7 enqueues multiple messages from sender 001. MESSAGE 1 is intended
for all queue subscribers. MESSAGE 2 is intended for RED and BLUE. These messages
are dequeued in Example 10–17 on page 10-18.

Example 10–7 Enqueuing Multiple Messages to a Multiconsumer Queue

DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 recipients DBMS_AQ.aq$_recipient_list_t;
 message_handle RAW(16);
 message test.message_typ;
BEGIN
 message := test.message_typ(001, 'MESSAGE 1','For queue subscribers');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.multiconsumer_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);

 message := test.message_typ(001, 'MESSAGE 2', 'For two recipients');
 recipients(1) := sys.aq$_agent('RED', NULL, NULL);
 recipients(2) := sys.aq$_agent('BLUE', NULL, NULL);
 message_properties.recipient_list := recipients;
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.multiconsumer_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 COMMIT;
END;
/

Enqueuing Grouped Messages
Example 10–8 enqueues three groups of messages, with three messages in each group.
These messages are dequeued in Example 10–16 on page 10-17.

Example 10–8 Enqueuing Grouped Messages

DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
BEGIN
 FOR groupno in 1..3 LOOP
 FOR msgno in 1..3 LOOP
 message := test.message_typ(
 001,
 'GROUP ' || groupno,
 'Message ' || msgno || ' in group ' || groupno);
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.group_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);

Enqueuing Messages

10-10 Oracle Streams Advanced Queuing User’s Guide

 END LOOP;
 COMMIT;
 END LOOP;
END;
/

Enqueuing a Message with Delay and Expiration
In Example 10–9, an application wants a message to be dequeued no earlier than a
week from now, but no later than three weeks from now. Because expiration is
calculated from the earliest dequeue time, this requires setting the expiration time for
two weeks.

Example 10–9 Enqueuing a Message, Specifying Delay and Expiration

DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
BEGIN
 message := test.message_typ(001, 'DELAYED', 'Message is delayed one week.');
 message_properties.delay := 7*24*60*60;
 message_properties.expiration := 2*7*24*60*60;
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 COMMIT;
END;
/

Example 10–10 Enqueuing a Message, Specifying a Transformation

DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
BEGIN
 message := test.message_typ(001, 'NORMAL MESSAGE', 'enqueued to obj_queue');
 enqueue_options.transformation := 'message_order_transform';
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.priority_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 COMMIT;
END;
/

See Also: "Using Advanced Queuing Interfaces" in Oracle Objects for
OLE Developer's Guide for OO4O message-enqueuing examples

Enqueuing an Array of Messages

Oracle Streams AQ Operations Using PL/SQL 10-11

Enqueuing an Array of Messages
DBMS_AQ.ENQUEUE_ARRAY(
 queue_name IN VARCHAR2,
 enqueue_options IN enqueue_options_t,
 array_size IN PLS_INTEGER,
 message_properties_array IN message_properties_array_t,
 payload_array IN VARRAY,
 msid_array OUT msgid_array_t)
RETURN PLS_INTEGER;

Use the ENQUEUE_ARRAY function to enqueue an array of payloads using a
corresponding array of message properties. The output is an array of message
identifiers of the enqueued messages. The function returns the number of messages
successfully enqueued.

Array enqueuing is not supported for buffered messages, but you can still use DBMS_
AQ.ENQUEUE_ARRAY() to enqueue buffered messages by setting array_size to 1.

The message_properties_array parameter is an array of message properties.
Each element in the payload array must have a corresponding element in this record.
All messages in an array have the same delivery mode.

The payload structure can be a VARRAY or nested table. The message IDs are returned
into an array of RAW(16) entries of type DBMS_AQ.msgid_array_t.

As with array operations in the relational world, it is not possible to provide a single
optimum array size that will be correct in all circumstances. Application developers
must experiment with different array sizes to determine the optimal value for their
particular applications.

Example 10–11 Enqueuing an Array of Messages

DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 msg_prop_array DBMS_AQ.message_properties_array_t;
 msg_prop DBMS_AQ.message_properties_t;
 payload_array test.msg_table;
 msgid_array DBMS_AQ.msgid_array_t;
 retval PLS_INTEGER;
BEGIN
 payload_array := msg_table(
 message_typ(001, 'MESSAGE 1', 'array enqueued to obj_queue'),
 message_typ(001, 'MESSAGE 2', 'array enqueued to obj_queue'));
 msg_prop_array := DBMS_AQ.message_properties_array_t(msg_prop, msg_prop);

 retval := DBMS_AQ.ENQUEUE_ARRAY(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 array_size => 2,
 message_properties_array => msg_prop_array,
 payload_array => payload_array,
 msgid_array => msgid_array);
 COMMIT;
END;
/

See Also: "Enqueue Options" on page 10-2

See Also: "Message Properties" on page 10-3

Listening to One or More Queues

10-12 Oracle Streams Advanced Queuing User’s Guide

Listening to One or More Queues
DBMS_AQ.LISTEN(
 agent_list IN aq$_agent_list_t,
 wait IN BINARY_INTEGER DEFAULT FOREVER,
 listen_delivery_mode IN PLS_INTEGER DEFAULT PERSISTENT,
 agent OUT sys.aq$_agent
 message_delivery_mode OUT PLS_INTEGER);

TYPE aq$_agent_list_t IS TABLE of aq$_agent INDEXED BY BINARY_INTEGER;

This procedure specifies which queue or queues to monitor.

This call takes a list of agents as an argument. Each agent is identified by a unique
combination of name, address, and protocol.

You specify the queue to be monitored in the address field of each agent listed. Agents
must have dequeue privileges on each monitored queue. You must specify the name of
the agent when monitoring multiconsumer queues; but you must not specify an agent
name for single-consumer queues. Only local queues are supported as addresses.
Protocol is reserved for future use.

The listen_delivery_mode parameter specifies what types of message interest the
agent. If it is the default PERSISTENT, then the agent is informed about persistent
messages only. If it is set to BUFFERED, then the agent is informed about buffered
messages only. If it is set to PERSISTENT_OR_BUFFERED, then the agent is informed
about both types.

This is a blocking call that returns the agent and message type when there is a message
ready for consumption for an agent in the list. If there are messages for more than one
agent, then only the first agent listed is returned. If there are no messages found when
the wait time expires, then an error is raised.

A successful return from the listen call is only an indication that there is a message
for one of the listed agents in one of the specified queues. The interested agent must
still dequeue the relevant message.

Example 10–12 Listening to a Single-Consumer Queue with Zero Timeout

SET SERVEROUTPUT ON
DECLARE
 agent sys.aq$_agent;
 test_agent_list DBMS_AQ.aq$_agent_list_t;
BEGIN
 test_agent_list(1) := sys.aq$_agent(NULL, 'test.obj_queue', NULL);
 test_agent_list(2) := sys.aq$_agent(NULL, 'test.priority_queue', NULL);
 DBMS_AQ.LISTEN(
 agent_list => test_agent_list,
 wait => 0,
 agent => agent);

See Also: "AQ Agent Type" on page 2-2

Note: Listening to multiconsumer queues is not supported in the
Java API.

Note: You cannot call LISTEN on nonpersistent queues.

Dequeuing Messages

Oracle Streams AQ Operations Using PL/SQL 10-13

 DBMS_OUTPUT.PUT_LINE('Message in Queue: ' || agent.address);
END;
/

Even though both test.obj_queue and test.priority_queue contain messages
(enqueued in Example 10–1 and Example 10–2 respectively) Example 10–12 returns
only:

Message in Queue: "TEST"."OBJ_QUEUE"

If the order of agents in test_agent_list is reversed, so test.priority_queue
appears before test.obj_queue, then the example returns:

Message in Queue: "TEST"."PRIORITY_QUEUE"

Dequeuing Messages
DBMS_AQ.DEQUEUE(
 queue_name IN VARCHAR2,
 dequeue_options IN dequeue_options_t,
 message_properties OUT message_properties_t,
 payload OUT "type_name",
 msgid OUT RAW);

This procedure dequeues a message from the specified queue. Beginning with Oracle
Streams AQ 10g Release 2 (10.2), you can choose to dequeue only persistent messages,
only buffered messages, or both. See delivery_mode in the following list of dequeue
options.

Dequeue Options
The dequeue_options parameter specifies the options available for the dequeue
operation. It has the following attributes:

■ consumer_name

A consumer can dequeue a message from a queue by supplying the name that was
used in the AQ$_AGENT type of the DBMS_AQADM.ADD_SUBSCRIBER procedure or
the recipient list of the message properties. If a value is specified, then only those
messages matching consumer_name are accessed. If a queue is not set up for
multiple consumers, then this field must be set to NULL (the default).

■ dequeue_mode

The dequeue_mode attribute specifies the locking behavior associated with the
dequeue. If BROWSE is specified, then the message is dequeued without acquiring
any lock. If LOCKED is specified, then the message is dequeued with a write lock
that lasts for the duration of the transaction. If REMOVE is specified, then the
message is dequeued and deleted (the default). The message can be retained in the
queue table based on the retention properties. If REMOVE_NO_DATA is specified,
then the message is marked as updated or deleted.

■ navigation

The navigation attribute specifies the position of the dequeued message. If
FIRST_MESSAGE is specified, then the first available message matching the search
criteria is dequeued. If NEXT_MESSAGE is specified, then the next available
message matching the search criteria is dequeued (the default). If the previous

See Also: "Message Properties" on page 10-3

Dequeuing Messages

10-14 Oracle Streams Advanced Queuing User’s Guide

message belongs to a message group, then the next available message matching
the search criteria in the message group is dequeued.

If NEXT_TRANSACTION is specified, then any messages in the current transaction
group are skipped and the first message of the next transaction group is dequeued.
This setting can only be used if message grouping is enabled for the queue.

■ visibility

The visibility attribute specifies when the new message is dequeued. If ON_
COMMIT is specified, then the dequeue is part of the current transaction (the
default). If IMMEDIATE is specified, then the dequeue operation is an autonomous
transaction that commits at the end of the operation. The visibility attribute is
ignored in BROWSE dequeue mode.

Visibility must always be IMMEDIATE when dequeuing messages with delivery
mode DBMS_AQ.BUFFERED or DBMS_AQ.PERSISTENT_OR_BUFFERED.

■ wait

The wait attribute specifies the wait time if there is currently no message
available matching the search criteria. If a number is specified, then the operation
waits that number of seconds. If FOREVER is specified, then the operation waits
forever (the default). If NO_WAIT is specified, then the operation does not wait.

■ msgid

The msgid attribute specifies the message identifier of the dequeued message.
Only messages in the READY state are dequeued unless msgid is specified.

■ correlation

The correlation attribute specifies the correlation identifier of the dequeued
message. The correlation identifier cannot be changed between successive
dequeue calls without specifying the FIRST_MESSAGE navigation option.

Correlation identifiers are application-defined identifiers that are not interpreted
by Oracle Streams AQ. You can use special pattern matching characters, such as
the percent sign and the underscore. If more than one message satisfies the
pattern, then the order of dequeuing is indeterminate, and the sort order of the
queue is not honored.

■ deq_condition

The deq_condition attribute is a Boolean expression similar to the WHERE
clause of a SQL query. This Boolean expression can include conditions on message
properties, user data properties (object payloads only), and PL/SQL or SQL
functions.

To specify dequeue conditions on a message payload (object payload), use
attributes of the object type in clauses. You must prefix each attribute with
tab.user_data as a qualifier to indicate the specific column of the queue table
that stores the payload.

The deq_condition attribute cannot exceed 4000 characters. If more than one
message satisfies the dequeue condition, then the order of dequeuing is
indeterminate, and the sort order of the queue is not honored.

Note: Although dequeue options correlation and deq_
condition are both supported for buffered messages, it is not
possible to create indexes to optimize these queries.

Dequeuing Messages

Oracle Streams AQ Operations Using PL/SQL 10-15

■ transformation

The transformation attribute specifies a transformation that will be applied
after the message is dequeued but before returning the message to the caller.

■ delivery_mode

The delivery_mode attribute specifies what types of messages to dequeue. If it
is set to DBMS_AQ.PERSISTENT, then only persistent messages are dequeued. If it
is set to DBMS_AQ.BUFFERED, then only buffered messages are dequeued.

If it is the default DBMS_AQ.PERSISTENT_OR_BUFFERED, then both persistent
and buffered messages are dequeued. The delivery_mode attribute in the
message properties of the dequeued message indicates whether the dequeued
message was buffered or persistent.

The dequeue order is determined by the values specified at the time the queue table is
created unless overridden by the message identifier and correlation identifier in
dequeue options.

The database consistent read mechanism is applicable for queue operations. For
example, a BROWSE call may not see a message that is enqueued after the beginning of
the browsing transaction.

In a commit-time queue, a new feature of Oracle Streams AQ 10g Release 2 (10.2),
messages are not visible to BROWSE or DEQUEUE calls until a deterministic order can be
established among them based on an approximate CSCN.

If the navigation attribute of the dequeue_conditions parameter is NEXT_
MESSAGE (the default), then subsequent dequeues retrieve messages from the queue
based on the snapshot obtained in the first dequeue. A message enqueued after the
first dequeue command, therefore, will be processed only after processing all
remaining messages in the queue. This is not a problem if all the messages have
already been enqueued or if the queue does not have priority-based ordering. But if an
application must process the highest-priority message in the queue, then it must use
the FIRST_MESSAGE navigation option.

Messages enqueued in the same transaction into a queue that has been enabled for
message grouping form a group. If only one message is enqueued in the transaction,
then this effectively forms a group of one message. There is no upper limit to the
number of messages that can be grouped in a single transaction.

In queues that have not been enabled for message grouping, a dequeue in LOCKED or
REMOVE mode locks only a single message. By contrast, a dequeue operation that seeks

See Also:

■ "Commit-Time Queues" in Oracle Streams Concepts and
Administration

■ "Dequeue Modes" on page 1-21

Note: It can also be more efficient to use the FIRST_MESSAGE
navigation option when there are messages being concurrently
enqueued. If the FIRST_MESSAGE option is not specified, then Oracle
Streams AQ continually generates the snapshot as of the first dequeue
command, leading to poor performance. If the FIRST_MESSAGE
option is specified, then Oracle Streams AQ uses a new snapshot for
every dequeue command.

Dequeuing Messages

10-16 Oracle Streams Advanced Queuing User’s Guide

to dequeue a message that is part of a group locks the entire group. This is useful
when all the messages in a group must be processed as a unit.

When all the messages in a group have been dequeued, the dequeue returns an error
indicating that all messages in the group have been processed. The application can
then use NEXT_TRANSACTION to start dequeuing messages from the next available
group. In the event that no groups are available, the dequeue times out after the period
specified in the wait attribute of dequeue_options.

Typically, you expect the consumer of messages to access messages using the dequeue
interface. You can view processed messages or messages still to be processed by
browsing by message ID or by using SELECT commands.

Example 10–13 returns the message enqueued in Example 10–1 on page 10-6. It
returns:

From Sender No.1
Subject: TEST MESSAGE
Text: First message to obj_queue

Example 10–13 Dequeuing Object Type Messages

SET SERVEROUTPUT ON
DECLARE
dequeue_options DBMS_AQ.dequeue_options_t;
message_properties DBMS_AQ.message_properties_t;
message_handle RAW(16);
message test.message_typ;
BEGIN
 dequeue_options.navigation := DBMS_AQ.FIRST_MESSAGE;
 DBMS_AQ.DEQUEUE(
 queue_name => 'test.obj_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 DBMS_OUTPUT.PUT_LINE('From Sender No.'|| message.sender_id);
 DBMS_OUTPUT.PUT_LINE('Subject: '||message.subject);
 DBMS_OUTPUT.PUT_LINE('Text: '||message.text);
 COMMIT;
END;
/

Dequeuing LOB Type Messages
Example 10–14 creates procedure blobdequeue() to dequeue the LOB type
messages enqueued in Example 10–4 on page 10-7. The actual dequeue is shown in
Example 10–15. It returns:

Amount of data read: 2000
Amount of data read: 2000
Amount of data read: 2000
Amount of data read: 2000
Amount of data read: 2000

Example 10–14 Creating a Dequeue Procedure for LOB Type Messages

CREATE OR REPLACE PROCEDURE blobdequeue(msgno IN NUMBER) AS
 dequeue_options DBMS_AQ.dequeue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 msgid RAW(16);

Dequeuing Messages

Oracle Streams AQ Operations Using PL/SQL 10-17

 payload test.lob_typ;
 lob_loc BLOB;
 amount BINARY_INTEGER;
 buffer RAW(4096);
BEGIN
 DBMS_AQ.DEQUEUE(
 queue_name => 'test.lob_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => payload,
 msgid => msgid);
 lob_loc := payload.data;
 amount := 2000;
 DBMS_LOB.READ(lob_loc, amount, 1, buffer);
 DBMS_OUTPUT.PUT_LINE('Amount of data read: '|| amount);
 COMMIT;
END;
/

Example 10–15 Dequeuing LOB Type Messages

BEGIN
 FOR i IN 1..5 LOOP
 blobdequeue(i);
 END LOOP;
END;
/

Dequeuing Grouped Messages
You can dequeue the grouped messages enqueued in Example 10–8 on page 10-9 by
running Example 10–16. It returns:

GROUP 1: Message 1 in group 1
GROUP 1: Message 2 in group 1
GROUP 1: Message 3 in group 1
Finished GROUP 1
GROUP 2: Message 1 in group 2
GROUP 2: Message 2 in group 2
GROUP 2: Message 3 in group 2
Finished GROUP 2
GROUP 3: Message 1 in group 3
GROUP 3: Message 2 in group 3
GROUP 3: Message 3 in group 3
Finished GROUP 3
No more messages

Example 10–16 Dequeuing Grouped Messages

SET SERVEROUTPUT ON
DECLARE
 dequeue_options DBMS_AQ.dequeue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
 no_messages exception;
 end_of_group exception;
 PRAGMA EXCEPTION_INIT (no_messages, -25228);
 PRAGMA EXCEPTION_INIT (end_of_group, -25235);
BEGIN
 dequeue_options.wait := DBMS_AQ.NO_WAIT;

Dequeuing Messages

10-18 Oracle Streams Advanced Queuing User’s Guide

 dequeue_options.navigation := DBMS_AQ.FIRST_MESSAGE;
 LOOP
 BEGIN
 DBMS_AQ.DEQUEUE(
 queue_name => 'test.group_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 DBMS_OUTPUT.PUT_LINE(message.subject || ': ' || message.text);
 dequeue_options.navigation := DBMS_AQ.NEXT_MESSAGE;
 EXCEPTION
 WHEN end_of_group THEN
 DBMS_OUTPUT.PUT_LINE ('Finished ' || message.subject);
 COMMIT;
 dequeue_options.navigation := DBMS_AQ.NEXT_TRANSACTION;
 END;
 END LOOP;
 EXCEPTION
 WHEN no_messages THEN
 DBMS_OUTPUT.PUT_LINE ('No more messages');
END;
/

Dequeuing from a Multiconsumer Queue
You can dequeue the messages enqueued for RED in Example 10–7 on page 10-9 by
running Example 10–17. If you change RED to GREEN and then to BLUE, you can use it
to dequeue their messages as well. The output of the example will be different in each
case.

RED is a subscriber to the multiconsumer queue and is also a specified recipient of
MESSAGE 2, so it gets both messages:

Message: MESSAGE 1 .. For queue subscribers
Message: MESSAGE 2 .. For two recipients
No more messages for RED

GREEN is only a subscriber, so it gets only those messages in the queue for which no
recipients have been specified (in this case, MESSAGE 1):

Message: MESSAGE 1 .. For queue subscribers
No more messages for GREEN

BLUE, while not a subscriber to the queue, is nevertheless specified to receive
MESSAGE 2.

Message: MESSAGE 2 .. For two recipients
No more messages for BLUE

Example 10–17 Dequeuing Messages for RED from a Multiconsumer Queue

SET SERVEROUTPUT ON
DECLARE
 dequeue_options DBMS_AQ.dequeue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
 no_messages exception;
 PRAGMA EXCEPTION_INIT (no_messages, -25228);
BEGIN
 dequeue_options.wait := DBMS_AQ.NO_WAIT;

Dequeuing Messages

Oracle Streams AQ Operations Using PL/SQL 10-19

 dequeue_options.consumer_name := 'RED';
 dequeue_options.navigation := DBMS_AQ.FIRST_MESSAGE;
 LOOP
 BEGIN
 DBMS_AQ.DEQUEUE(
 queue_name => 'test.multiconsumer_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 DBMS_OUTPUT.PUT_LINE('Message: '|| message.subject ||' .. '|| message.text);
 dequeue_options.navigation := DBMS_AQ.NEXT_MESSAGE;
 END;
 END LOOP;
 EXCEPTION
 WHEN no_messages THEN
 DBMS_OUTPUT.PUT_LINE ('No more messages for RED');
 COMMIT;
END;
/

Example 10–18 browses messages enqueued in Example 10–5 until it finds PINK,
which it removes. The example returns:

Browsed Message Text: ORANGE enqueued first.
Browsed Message Text: ORANGE also enqueued second.
Browsed Message Text: YELLOW enqueued third.
Browsed Message Text: VIOLET enqueued fourth.
Browsed Message Text: PURPLE enqueued fifth.
Browsed Message Text: PINK enqueued sixth.
Removed Message Text: PINK enqueued sixth.

Dequeue Modes

Example 10–18 Dequeue in Browse Mode and Remove Specified Message

SET SERVEROUTPUT ON
DECLARE
 dequeue_options DBMS_AQ.dequeue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
BEGIN
 dequeue_options.dequeue_mode := DBMS_AQ.BROWSE;
 LOOP
 DBMS_AQ.DEQUEUE(
 queue_name => 'test.obj_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 DBMS_OUTPUT.PUT_LINE ('Browsed Message Text: ' || message.text);
 EXIT WHEN message.subject = 'PINK';
 END LOOP;
 dequeue_options.dequeue_mode := DBMS_AQ.REMOVE;
 dequeue_options.msgid := message_handle;
 DBMS_AQ.DEQUEUE(
 queue_name => 'test.obj_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,

Dequeuing an Array of Messages

10-20 Oracle Streams Advanced Queuing User’s Guide

 payload => message,
 msgid => message_handle);
 DBMS_OUTPUT.PUT_LINE('Removed Message Text: ' || message.text);
 COMMIT;
END;
/

Example 10–19 previews in locked mode the messages enqueued in Example 10–5
until it finds PURPLE, which it removes. The example returns:

Locked Message Text: ORANGE enqueued first.
Locked Message Text: ORANGE also enqueued second.
Locked Message Text: YELLOW enqueued third.
Locked Message Text: VIOLET enqueued fourth.
Locked Message Text: PURPLE enqueued fifth.
Removed Message Text: PURPLE enqueued fifth.

Example 10–19 Dequeue in Locked Mode and Remove Specified Message

SET SERVEROUTPUT ON
DECLARE
 dequeue_options DBMS_AQ.dequeue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
BEGIN
 dequeue_options.dequeue_mode := DBMS_AQ.LOCKED;
 LOOP
 DBMS_AQ.dequeue(
 queue_name => 'test.obj_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 DBMS_OUTPUT.PUT_LINE('Locked Message Text: ' || message.text);
 EXIT WHEN message.subject = 'PURPLE';
 END LOOP;
 dequeue_options.dequeue_mode := DBMS_AQ.REMOVE;
 dequeue_options.msgid := message_handle;
 DBMS_AQ.DEQUEUE(
 queue_name => 'test.obj_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 DBMS_OUTPUT.PUT_LINE('Removed Message Text: ' || message.text);
 COMMIT;
END;
/

Dequeuing an Array of Messages
DBMS_AQ.DEQUEUE_ARRAY(
 queue_name IN VARCHAR2,
 dequeue_options IN dequeue_options_t,
 array_size IN PLS_INTEGER,

See Also: "Using Advanced Queuing Interfaces" in Oracle Objects for
OLE Developer's Guide for OO4O message-dequeuing examples

Dequeuing an Array of Messages

Oracle Streams AQ Operations Using PL/SQL 10-21

 message_properties_array OUT message_properties_array_t,
 payload_array OUT VARRAY,
 msgid_array OUT msgid_array_t)
RETURN PLS_INTEGER;

Use the DEQUEUE_ARRAY function to dequeue an array of payloads and a
corresponding array of message properties. The output is an array of payloads,
message IDs, and message properties of the dequeued messages. The function returns
the number of messages successfully dequeued.

Array dequeuing is not supported for buffered messages, but you can still use DBMS_
AQ.DEQUEUE_ARRAY() to dequeue buffered messages by setting array_size to 1.

The payload structure can be a VARRAY or nested table. The message identifiers are
returned into an array of RAW(16) entries of type DBMS_AQ.msgid_array_t. The
message properties are returned into an array of type DBMS_AQ.message_
properties_array_t.

As with array operations in the relational world, it is not possible to provide a single
optimum array size that will be correct in all circumstances. Application developers
must experiment with different array sizes to determine the optimal value for their
particular applications.

All dequeue options available with DBMS_AQ.DEQUEUE are also available with DBMS_
AQ.DEQUEUE_ARRAY. Beginning with Oracle Streams AQ 10g Release 2 (10.2), you can
choose to dequeue only persistent messages, only buffered messages, or both. In
addition, the navigation attribute of dequeue_options offers two options specific
to DBMS_AQ.DEQUEUE_ARRAY.

When dequeuing messages, you might want to dequeue all the messages for a
transaction group with a single call. You might also want to dequeue messages that
span multiple transaction groups. You can specify either of these methods by using
one of the following navigation methods:

■ NEXT_MESSAGE_ONE_GROUP

■ FIRST_MESSAGE_ONE_GROUP

■ NEXT_MESSAGE_MULTI_GROUP

■ FIRST_MESSAGE_MULTI_GROUP

Navigation method NEXT_MESSAGE_ONE_GROUP dequeues messages that match the
search criteria from the next available transaction group into an array. Navigation
method FIRST_MESSAGE_ONE_GROUP resets the position to the beginning of the
queue and dequeues all the messages in a single transaction group that are available
and match the search criteria.

The number of messages dequeued is determined by an array size limit. If the number
of messages in the transaction group exceeds array_size, then multiple calls to
DEQUEUE_ARRAY must be made to dequeue all the messages for the transaction group.

Navigation methods NEXT_MESSAGE_MULTI_GROUP and FIRST_MESSAGE_MULTI_
GROUP work like their ONE_GROUP counterparts, but they are not limited to a single
transaction group. Each message that is dequeued into the array has an associated set
of message properties. Message property transaction_group determines which
messages belong to the same transaction group.

Example 10–20 dequeues the messages enqueued in Example 10–11 on page 10-11. It
returns:

See Also: "Dequeuing Messages" on page 10-13

Registering for Notification

10-22 Oracle Streams Advanced Queuing User’s Guide

Number of messages dequeued: 2

Example 10–20 Dequeuing an Array of Messages

SET SERVEROUTPUT ON
DECLARE
 dequeue_options DBMS_AQ.dequeue_options_t;
 msg_prop_array DBMS_AQ.message_properties_array_t :=
 DBMS_AQ.message_properties_array_t();
 payload_array test.msg_table;
 msgid_array DBMS_AQ.msgid_array_t;
 retval PLS_INTEGER;
BEGIN
 retval := DBMS_AQ.DEQUEUE_ARRAY(
 queue_name => 'test.obj_queue',
 dequeue_options => dequeue_options,
 array_size => 2,
 message_properties_array => msg_prop_array,
 payload_array => payload_array,
 msgid_array => msgid_array);
 DBMS_OUTPUT.PUT_LINE('Number of messages dequeued: ' || retval);
END;
/

Registering for Notification
DBMS_AQ.REGISTER(
 reg_list IN SYS.AQ$_REG_INFO_LIST,
 reg_count IN NUMBER);

This procedure registers an e-mail address, user-defined PL/SQL procedure, or HTTP
URL for message notification.

The reg_list parameter is a list of SYS.AQ$_REG_INFO objects. You can specify
notification quality of service, a new feature in Oracle Streams AQ 10g Release 2 (10.2),
with the qosflags attribute of SYS.AQ$_REG_INFO.

The reg_count parameter specifies the number of entries in the reg_list. Each
subscription requires its own reg_list entry. Interest in several subscriptions can be
registered at one time.

When PL/SQL notification is received, the Oracle Streams AQ message properties
descriptor that the callback is invoked with specifies the delivery_mode of the
message notified as DBMS_AQ.PERSISTENT or DBMS_AQ.BUFFERED.

Note: In releases before Oracle Database 10g Release 2 (10.2), the
Oracle Streams AQ notification feature was not supported for queues
with names longer than 30 characters. This restriction no longer
applies. The 24-character limit on names of user-generated queues still
applies. See "Creating a Queue" on page 8-12.

See Also: "AQ Registration Information Type" on page 2-3 for more
information on SYS.AQ$_REG_INFO objects

See Also: "AQ Notification Descriptor Type" on page 2-5 for more
information on the message properties descriptor

Posting for Subscriber Notification

Oracle Streams AQ Operations Using PL/SQL 10-23

If you register for e-mail notifications, then you must set the host name and port name
for the SMTP server that will be used by the database to send e-mail notifications. If
required, you should set the send-from e-mail address, which is set by the database as
the sent from field. You need a Java-enabled database to use this feature.

If you register for HTTP notifications, then you might want to set the host name and
port number for the proxy server and a list of no-proxy domains that will be used by
the database to post HTTP notifications.

An internal queue called SYS.AQ_SRVNTFN_TABLE_Q stores the notifications to be
processed by the job queue processes. If notification fails, then Oracle Streams AQ
retries the failed notification up to MAX_RETRIES attempts.

Example 10–21 Registering for Notifications

DECLARE
 reginfo sys.aq$_reg_info;
 reg_list sys.aq$_reg_info_list;
BEGIN
 reginfo := sys.aq$_reg_info(
 'test.obj_queue',
 DBMS_AQ.NAMESPACE_ANONYMOUS,
 'http://www.company.com:8080',
 HEXTORAW('FF'));
 reg_list := sys.aq$_reg_info_list(reginfo);
 DBMS_AQ.REGISTER(
 reg_list => reg_list,
 reg_count => 1);
 COMMIT;
END;
/

Unregistering for Notification
DBMS_AQ.UNREGISTER(
 reg_list IN SYS.AQ$_REG_INFO_LIST,
 reg_count IN NUMBER);

This procedure unregisters an e-mail address, user-defined PL/SQL procedure, or
HTTP URL for message notification.

Posting for Subscriber Notification
DBMS_AQ.POST(
 post_list IN SYS.AQ$_POST_INFO_LIST,
 post_count IN NUMBER);

This procedure posts to a list of anonymous subscriptions, allowing all clients who are
registered for the subscriptions to get notifications of persistent messages. This feature
is not supported with buffered messages.

Note: You can change the MAX_RETRIES and RETRY_DELAY
properties of SYS.AQ_SRVNTFN_TABLE_Q. The new settings are
applied across all notifications.

Adding an Agent to the LDAP Server

10-24 Oracle Streams Advanced Queuing User’s Guide

The count parameter specifies the number of entries in the post_list. Each posted
subscription must have its own entry in the post_list. Several subscriptions can be
posted to at one time.

The post_list parameter specifies the list of anonymous subscriptions to which you
want to post. It has three attributes:

■ name

The name attribute specifies the name of the anonymous subscription to which
you want to post.

■ namespace

The namespace attribute specifies the namespace of the subscription. To receive
notifications from other applications through DBMS_AQ.POST the namespace
must be DBMS_AQ.NAMESPACE_ANONYMOUS.

■ payload

The payload attribute specifies the payload to be posted to the anonymous
subscription. It is possible for no payload to be associated with this call.

This call provides a best-effort guarantee. A notification goes to registered clients at
most once. This call is primarily used for lightweight notification. If an application
needs more rigid guarantees, then it can enqueue to a queue.

Example 10–22 Posting Object-Type Messages

DECLARE
 postinfo sys.aq$_post_info;
 post_list sys.aq$_post_info_list;
BEGIN
 postinfo := sys.aq$_post_info('test.obj_queue',0,HEXTORAW('FF'));
 post_list := sys.aq$_post_info_list(postinfo);
 DBMS_AQ.POST(
 post_list => post_list,
 post_count => 1);
 COMMIT;
END;
/

Adding an Agent to the LDAP Server
DBMS_AQ.BIND_AGENT(
 agent IN SYS.AQ$_AGENT,
 certificate IN VARCHAR2 default NULL);

This procedure creates an entry for an Oracle Streams AQ agent in the Lightweight
Directory Access Protocol (LDAP) server.

The agent parameter specifies the Oracle Streams AQ Agent that is to be registered in
LDAP server.

The certificate parameter specifies the location (LDAP distinguished name) of the
OrganizationalPerson entry in LDAP whose digital certificate (attribute
usercertificate) is to be used for this agent. For example, "cn=OE, cn=ACME,
cn=com" is a distinguished name for a OrganizationalPerson OE whose certificate

See Also: "AQ Agent Type" on page 2-2

Removing an Agent from the LDAP Server

Oracle Streams AQ Operations Using PL/SQL 10-25

will be used with the specified agent. If the agent does not have a digital certificate,
then this parameter is defaulted to null.

Removing an Agent from the LDAP Server
DBMS_AQ.UNBIND_AGENT(
 agent IN SYS.AQ$_AGENT);

This procedure removes the entry for an Oracle Streams AQ agent from the LDAP
server.

Removing an Agent from the LDAP Server

10-26 Oracle Streams Advanced Queuing User’s Guide

Part IV
Using Oracle JMS and Oracle Streams AQ

Part V describes how to use Oracle JMS and Oracle Streams Advanced Queuing (AQ).

This part contains the following chapters:

■ Chapter 11, "Introducing Oracle JMS"

■ Chapter 12, "Oracle JMS Basic Operations"

■ Chapter 13, "Oracle JMS Point-to-Point"

■ Chapter 14, "Oracle JMS Publish/Subscribe"

■ Chapter 15, "Oracle JMS Shared Interfaces"

■ Chapter 16, "Oracle JMS Types Examples"

See Also:

■ Oracle9iAS Containers for J2EE Enterprise JavaBeans Guide

■ Oracle9iAS Containers for J2EE Services Guide

Introducing Oracle JMS 11-1

11
Introducing Oracle JMS

This chapter describes the Oracle Java Message Service (JMS) interface to Oracle
Streams Advanced Queuing (AQ).

This chapter contains these topics:

■ General Features of JMS and Oracle JMS

■ Structured Payload/Message Types in JMS

■ JMS Point-to-Point Model Features

■ JMS Publish/Subscribe Model Features

■ JMS MessageProducer Features

■ JMS Message Consumer Features

■ JMS Propagation

■ Message Transformation with JMS AQ

■ J2EE Compliance

General Features of JMS and Oracle JMS
This section contains these topics:

■ JMS Connection and Session

■ JMS Destination

■ System-Level Access Control in JMS

■ Destination-Level Access Control in JMS

■ Retention and Message History in JMS

■ Supporting Oracle Real Application Clusters in JMS

■ Supporting Statistics Views in JMS

JMS Connection and Session
This section contains these topics:

■ ConnectionFactory Objects

■ Using AQjmsFactory to Obtain ConnectionFactory Objects

■ Using JNDI to Look Up ConnectionFactory Objects

■ JMS Connection

General Features of JMS and Oracle JMS

11-2 Oracle Streams Advanced Queuing User’s Guide

■ JMS Session

ConnectionFactory Objects
A ConnectionFactory encapsulates a set of connection configuration parameters
that has been defined by an administrator. A client uses it to create a connection with a
JMS provider. In this case Oracle JMS, part of Oracle Database, is the JMS provider.

The three types of ConnectionFactory objects are:

■ ConnectionFactory

■ QueueConnectionFactory

■ TopicConnectionFactory

Using AQjmsFactory to Obtain ConnectionFactory Objects
You can use the AQjmsFactory class to obtain a handle to a ConnectionFactory,
QueueConnectionFactory, or TopicConnectionFactory object.

To obtain a ConnectionFactory, which supports both point-to-point and
publish/subscribe operations, use AQjmsFactory.getConnectionFactory(). To
obtain a QueueConnectionFactory, use
AQjmsFactory.getQueueConnectionFactory(). To obtain a
TopicConnectionFactory, use
AQjmsFactory.getTopicConnectionFactory().

The ConnectionFactory, QueueConnectionFactory, or
TopicConnectionFactory can be created using hostname, port number, and SID
driver or by using JDBC URL and properties.

Using JNDI to Look Up ConnectionFactory Objects
A JMS administrator can register ConnectionFactory objects in a Lightweight
Directory Access Protocol (LDAP) server. The following setup is required to enable
Java Naming and Directory Interface (JNDI) lookup in JMS:

1. Register Database

When the Oracle Database server is installed, the database must be registered with
the LDAP server. This can be accomplished using the Database Configuration
Assistant (DBCA). Figure 11–1 shows the structure of Oracle Streams AQ entries
in the LDAP server. ConnectionFactory information is stored under
<cn=OracleDBConnections>, while topics and queues are stored under
<cn=OracleDBQueues>.

General Features of JMS and Oracle JMS

Introducing Oracle JMS 11-3

Figure 11–1 Structure of Oracle Streams AQ Entries in LDAP Server

2. Set Parameter GLOBAL_TOPIC_ENABLED.

The GLOBAL_TOPIC_ENABLED system parameter for the database must be set to
TRUE. This ensures that all queues and topics created in Oracle Streams AQ are
automatically registered with the LDAP server. This parameter can be set by using
ALTER SYSTEM SET GLOBAL_TOPIC_ENABLED = TRUE.

3. Register ConnectionFactory Objects

After the database has been set up to use an LDAP server, the JMS administrator
can register ConnectionFactory, QueueConnectionFactory, and
TopicConnectionFactory objects in LDAP by using
AQjmsFactory.registerConnectionFactory().

The registration can be accomplished in one of the following ways:

■ Connect directly to the LDAP server

The user must have the GLOBAL_AQ_USER_ROLE to register connection
factories in LDAP.

To connect directly to LDAP, the parameters for the
registerConnectionFactory method include the LDAP context, the
name of the ConnectionFactory, QueueConnectionFactory, or
TopicConnectionFactory, hostname, database SID, port number, JDBC
driver (thin or oci8) and factory type (queue or topic).

■ Connect to LDAP through the database server

The user can log on to Oracle Database first and then have the database
update the LDAP entry. The user that logs on to the database must have the
AQ_ADMINISTRATOR_ROLE to perform this operation.

To connect to LDAP through the database server, the parameters for the
registerConnectionFactory method include a JDBC connection (to a
user having AQ_ADMINISTRATOR_ROLE), the name of the
ConnectionFactory, QueueConnectionFactory, or
TopicConnectionFactory, hostname, database SID, port number, JDBC
driver (thin or oci8) and factory type (queue or topic).

JMS Connection
A JMS Connection is an active connection between a client and its JMS provider. A
JMS Connection performs several critical services:

<cn=acme, cn=com>

<cn=OracleContext>

<cn=db1>

(administrative context)

(root of oracle RDBMS schema)

(database)

<cn=OracleDBConnections> <cn=OracleDBQueue> <cn= . . .>

(Other db objects)(Queues / Topics)(Connection Factories)

General Features of JMS and Oracle JMS

11-4 Oracle Streams Advanced Queuing User’s Guide

■ Encapsulates either an open connection or a pool of connections with a JMS
provider

■ Typically represents an open TCP/IP socket (or a set of open sockets) between a
client and a provider's service daemon

■ Provides a structure for authenticating clients at the time of its creation

■ Creates Sessions

■ Provides connection metadata

■ Supports an optional ExceptionListener

A JMS Connection to the database can be created by invoking
createConnection(), createQueueConnection(), or
createTopicConnection() and passing the parameters username and password
on the ConnectionFactory, QueueConnectionFactory, or
TopicConnectionFactory object respectively.

Some of the methods that are supported on the Connection object are

■ start()

This method starts or restart delivery of incoming messages.

■ stop()

This method temporarily stops delivery of incoming messages. When a
Connection object is stopped, delivery to all of its message consumers is
inhibited. Also, synchronous receive's block and messages are not delivered to
message listener.

■ close()

This method closes the JMS session and releases all associated resources.

■ createSession(true, 0)

This method creates a JMS Session using a JMS Connection instance.

■ createQueueSession(true, 0)

This method creates a QueueSession.

■ createTopicSession(true, 0)

This method creates a TopicSession.

■ setExceptionListener(ExceptionListener)

This method sets an exception listener for the Connection. This allows a client to
be notified of a problem asynchronously. If a Connection only consumes
messages, then it has no other way to learn it has failed.

■ getExceptionListener()

This method gets the ExceptionListener for this Connection.

A JMS client typically creates a Connection, a Session and a number of
MessageProducer and MessageConsumer objects. In the current version only one
open Session for each Connection is allowed, except in the following cases:

■ If the JDBC oci8 driver is used to create the JMS connection

■ If the user provides an OracleOCIConnectionPool instance during JMS
connection creation

General Features of JMS and Oracle JMS

Introducing Oracle JMS 11-5

When a Connection is created it is in stopped mode. In this state no messages can be
delivered to it. It is typical to leave the Connection in stopped mode until setup is
complete. At that point the Connection start() method is called and messages
begin arriving at the Connection consumers. This setup convention minimizes any
client confusion that can result from asynchronous message delivery while the client is
still in the process of setup.

It is possible to start a Connection and to perform setup subsequently. Clients that
do this must be prepared to handle asynchronous message delivery while they are still
in the process of setting up. A MessageProducer can send messages while a
Connection is stopped.

JMS Session
A JMS Session is a single threaded context for producing and consuming messages.
Although it can allocate provider resources outside the Java Virtual Machine (JVM), it
is considered a lightweight JMS object.

A Session serves several purposes:

■ Constitutes a factory for MessageProducer and MessageConsumer objects

■ Provides a way to get a handle to destination objects (queues/topics)

■ Supplies provider-optimized message factories

■ Supports a single series of transactions that combines work spanning session
MessageProducer and MessageConsumer objects, organizing these into units

■ Defines a serial order for the messages it consumes and the messages it produces

■ Serializes execution of MessageListener objects registered with it

In Oracle Database 10g, you can create as many JMS Sessions as resources allow
using a single JMS Connection, when using either JDBC thin or JDBC thick (OCI)
drivers.

Because a provider can allocate some resources on behalf of a Session outside the
JVM, clients should close them when they are not needed. Relying on garbage
collection to eventually reclaim these resources may not be timely enough. The same is
true for MessageProducer and MessageConsumer objects created by a Session.

Methods on the Session object include:

■ commit()

This method commits all messages performed in the transaction and releases locks
currently held.

■ rollback()

This method rolls back any messages accomplished in the transaction and release
locks currently held.

■ close()

This method closes the Session.

■ getDBConnection()

This method gets a handle to the underlying JDBC connection. This handle can be
used to perform other SQL DML operations as part of the same Session. The
method is specific to Oracle JMS.

■ acknowledge()

General Features of JMS and Oracle JMS

11-6 Oracle Streams Advanced Queuing User’s Guide

This method acknowledges message receipt in a nontransactional session.

■ recover()

This method restarts message delivery in a nontransactional session. In effect, the
series of delivered messages in the session is reset to the point after the last
acknowledged message.

The following are some Oracle JMS extensions:

■ createQueueTable()

This method creates a queue table.

■ getQueueTable()

This method gets a handle to an existing queue table.

■ createQueue()

This method creates a queue.

■ getQueue()

This method gets a handle to an existing queue.

■ createTopic()

This method creates a topic.

■ getTopic()

This method gets a handle to an existing topic.

The Session object must be cast to AQjmsSession to use any of the extensions.

JMS Destination
A Destination is an object a client uses to specify the destination where it sends
messages, and the source from which it receives messages. A Destination object can
be a Queue or a Topic. In Oracle Streams AQ, these map to a schema.queue at a
specific database. Queue maps to a single-consumer queue, and Topic maps to a
multiconsumer queue.

Using a JMS Session to Obtain Destination Objects
Destination objects are created from a Session object using the following
domain-specific Session methods:

■ AQjmsSession.getQueue(queue_owner, queue_name)

This method gets a handle to a JMS queue.

■ AQjmsSession.getTopic(topic_owner, topic_name)

Note: The JMS specification expects providers to return null
messages when receives are accomplished on a JMS Connection
instance that has not been started.

After you create a javax.jms.Connection instance, you must call
the start() method on it before you can receive messages. If you
add a line like t_conn.start(); any time after the connection has
been created, but before the actual receive, then you can receive your
messages.

General Features of JMS and Oracle JMS

Introducing Oracle JMS 11-7

This method gets a handle to a JMS topic.

Using JNDI to Look Up Destination Objects
The database can be configured to register schema objects with an LDAP server. If a
database has been configured to use LDAP and the GLOBAL_TOPIC_ENABLED
parameter has been set to TRUE, then all JMS queues and topics are automatically
registered with the LDAP server when they are created. The administrator can also
create aliases to the queues and topics registered in LDAP. Queues and topics that are
registered in LDAP can be looked up through JNDI using the name or alias of the
queue or topic.

JMS Destination Methods
Methods on the Destination object include:

■ alter()

This method alters a Queue or a Topic.

■ schedulePropagation()

This method schedules propagation from a source to a destination.

■ unschedulePropagation()

This method unschedules a previously scheduled propagation.

■ enablePropagationSchedule()

This method enables a propagation schedule.

■ disablePropagationSchedule()

This method disables a propagation schedule.

■ start()

This method starts a Queue or a Topic. The queue can be started for enqueue or
dequeue. The topic can be started for publish or subscribe.

■ stop()

This method stops a Queue or a Topic. The queue is stopped for enqueue or
dequeue. The topic is stopped for publish or subscribe.

■ drop()

This method drops a Queue or a Topic.

System-Level Access Control in JMS
Oracle8i or higher supports system-level access control for all queuing operations. This
feature allows an application designer or DBA to create users as queue administrators.
A queue administrator can invoke administrative and operational JMS interfaces on
any queue in the database. This simplifies administrative work, because all
administrative scripts for the queues in a database can be managed under one schema.

When messages arrive at the destination queues, sessions based on the source queue
schema name are used for enqueuing the newly arrived messages into the destination

See Also: "Adding an Alias to the LDAP Server" on page 8-30

See Also: "Oracle Enterprise Manager Support" on page 4-6

General Features of JMS and Oracle JMS

11-8 Oracle Streams Advanced Queuing User’s Guide

queues. This means that you must grant enqueue privileges for the destination queues
to schemas of the source queues.

To propagate to a remote destination queue, the login user (specified in the database
link in the address field of the agent structure) should either be granted the ENQUEUE_
ANY privilege, or be granted the rights to enqueue to the destination queue. However,
you are not required to grant any explicit privileges if the login user in the database
link also owns the queue tables at the destination.

Destination-Level Access Control in JMS
Oracle8i or higher supports access control for enqueue and dequeue operations at the
queue or topic level. This feature allows the application designer to protect queues and
topics created in one schema from applications running in other schemas. You can
grant only minimal access privileges to the applications that run outside the schema of
the queue or topic. The supported access privileges on a queue or topic are ENQUEUE,
DEQUEUE and ALL.

Retention and Message History in JMS
Messages are often related to each other. For example, if a message is produced as a
result of the consumption of another message, then the two are related. As the
application designer, you may want to keep track of such relationships. Oracle Streams
AQ allows users to retain messages in the queue table, which can then be queried in
SQL for analysis.

Along with retention and message identifiers, Oracle Streams AQ lets you
automatically create message journals, also called tracking journals or event journals.
Taken together, retention, message identifiers and SQL queries make it possible to
build powerful message warehouses.

Supporting Oracle Real Application Clusters in JMS
Oracle Real Application Clusters (RAC) can be used to improve Oracle Streams AQ
performance by allowing different queues to be managed by different instances. You
do this by specifying different instance affinities (preferences) for the queue tables that
store the queues. This allows queue operations (enqueue/dequeue) or topic operations
(publish/subscribe) on different queues or topics to occur in parallel.

The Oracle Streams AQ queue monitor process continuously monitors the instance
affinities of the queue tables. The queue monitor assigns ownership of a queue table to
the specified primary instance if it is available, failing which it assigns it to the
specified secondary instance.

If the owner instance of a queue table terminates, then the queue monitor changes
ownership to a suitable instance such as the secondary instance.

Oracle Streams AQ propagation is able to make use of Real Application Clusters,
although it is transparent to the user. The affinities for jobs submitted on behalf of the
propagation schedules are set to the same values as that of the affinities of the
respective queue tables. Thus, a job_queue_process associated with the owner
instance of a queue table is handling the propagation from queues stored in that queue
table, thereby minimizing pinging.

See Also: "Oracle Enterprise Manager Support" on page 4-6

Structured Payload/Message Types in JMS

Introducing Oracle JMS 11-9

Supporting Statistics Views in JMS
Each instance keeps its own Oracle Streams AQ statistics information in its own
System Global Area (SGA), and does not have knowledge of the statistics gathered by
other instances. Then, when a GV$AQ view is queried by an instance, all other
instances funnel their statistics information to the instance issuing the query.

The GV$AQ view can be queried at any time to see the number of messages in waiting,
ready or expired state. The view also displays the average number of seconds
messages have been waiting to be processed.

Structured Payload/Message Types in JMS
JMS messages are composed of a header, properties, and a body.

The header consists of header fields, which contain values used by both clients and
providers to identify and route messages. All messages support the same set of header
fields.

Properties are optional header fields. In addition to standard properties defined by
JMS, there can be provider-specific and application-specific properties.

The body is the message payload. JMS defines various types of message payloads, and
a type that can store JMS messages of any or all JMS-specified message types.

This section contains these topics:

■ JMS Message Headers

■ JMS Message Properties

■ JMS Message Bodies

■ Using Message Properties with Different Message Types

■ Buffered Messaging with Oracle JMS

JMS Message Headers
A JMS message header contains the following fields:

■ JMSDestination

This field contains the destination to which the message is sent. In Oracle Streams
AQ this corresponds to the destination queue/topic. It is a Destination type set
by JMS after the Send method has completed.

■ JMSDeliveryMode

This field determines whether the message is logged or not. JMS supports
PERSISTENT delivery (where messages are logged to stable storage) and
NONPERSISTENT delivery (messages not logged). It is a INTEGER set by JMS after

See Also:

■ "Scheduling a Queue Propagation" on page 8-24

■ Oracle Real Application Clusters Administration and Deployment
Guide

See Also: "(G)V$AQ: Number of Messages in Different States in
Database" on page 9-9

Structured Payload/Message Types in JMS

11-10 Oracle Streams Advanced Queuing User’s Guide

the Send method has completed. JMS permits an administrator to configure JMS
to override the client-specified value for JMSDeliveryMode.

■ JMSMessageID

This field uniquely identifies a message in a provider. All message IDs must begin
with the string ID:. It is a String type set by JMS after the Send method has
completed.

■ JMSTimeStamp

This field contains the time the message was handed over to the provider to be
sent. This maps to Oracle Streams AQ message enqueue time. It is a Long type set
by JMS after the Send method has completed.

■ JMSCorrelationID

This field can be used by a client to link one message with another. It is a String
type set by the JMS client.

■ JMSReplyTo

This field contains a Destination type supplied by a client when a message is
sent. Clients can use oracle.jms.AQjmsAgent; javax.jms.Queue; or
javax.jms.Topic.

■ JMSType

This field contains a message type identifier supplied by a client at send time. It is
a String type. For portability Oracle recommends that the JMSType be symbolic
values.

■ JMSExpiration

This field is the sum of the enqueue time and the TimeToLive in non-J2EE
compliance mode. In compliant mode, the JMSExpiration header value in a
dequeued message is the sum of JMSTimeStamp when the message was
enqueued (Greenwich Mean Time, in milliseconds) and the TimeToLive (in
milliseconds). It is a Long type set by JMS after the Send method has completed.
JMS permits an administrator to configure JMS to override the client-specified
value for JMSExpiration.

■ JMSPriority

This field contains the priority of the message. It is a INTEGER set by JMS after the
Send method has completed. In J2EE-compliance mode, the permitted values for
priority are 0–9, with 9 the highest priority and 4 the default, in conformance with
the Sun Microsystem JMS 1.1 standard. Noncompliant mode is the default. JMS
permits an administrator to configure JMS to override the client-specified value for
JMSPriority.

■ JMSRedelivered

This field is a Boolean set by the JMS provider.

JMS Message Properties
JMS properties are set either explicitly by the client or automatically by the JMS
provider (these are generally read-only). Some JMS properties are set using the
parameters specified in Send and Receive operations.

See Also: "J2EE Compliance" on page 11-29

Structured Payload/Message Types in JMS

Introducing Oracle JMS 11-11

Properties add optional header fields to a message. Properties allow a client, using a
messageSelector, to have a JMS provider select messages on its behalf using
application-specific criteria. Property names are strings and values can be: Boolean,
byte, short, int, long, float, double, and string.

JMS-defined properties, which all begin with "JMSX", include the following:

■ JMSXUserID

This field is the identity of the user sending the message. It is a String type set by
JMS after the Send method has completed.

■ JMSXAppID

This field is the identity of the application sending the message. It is a String
type set by JMS after the Send method has completed.

■ JMSXDeliveryCount

This field is the number of message delivery attempts. It is an Integer set by JMS
after the Send method has completed.

■ JMSXGroupid

This field is the identity of the message group that this message belongs to. It is a
String type set by the JMS client.

■ JMSXGroupSeq

This field is the sequence number of a message within a group. It is an Integer
set by the JMS client.

■ JMSXRcvTimeStamp

This field is the time the message was delivered to the consumer (dequeue time). It
is a String type set by JMS after the Receive method has completed.

■ JMSXState

This field is the message state, set by the provider. The message state can be
WAITING, READY, EXPIRED, or RETAINED.

Oracle-specific JMS properties, which all begin with JMS_Oracle, include the
following:

■ JMS_OracleExcpQ

This field is the queue name to send the message to if it cannot be delivered to the
original destination. It is a String type set by the JMS client. Only destinations of
type EXCEPTION can be specified in the JMS_OracleExcpQ property.

■ JMS_OracleDelay

This field is the time in seconds to delay the delivery of the message. It is an
Integer set by the JMS client. This can affect the order of message delivery.

■ JMS_OracleOriginalMessageId

This field is set to the message identifier of the message in the source if the
message is propagated from one destination to another. It is a String type set by
the JMS provider. If the message is not propagated, then this property has the
same value as JMSMessageId.

A client can add additional header fields to a message by defining properties. These
properties can then be used in a messageSelector to select specific messages.

Structured Payload/Message Types in JMS

11-12 Oracle Streams Advanced Queuing User’s Guide

JMS Message Bodies
JMS provides five forms of message body:

■ StreamMessage

■ BytesMessage

■ MapMessage

■ TextMessage

■ ObjectMessage

■ AdtMessage

StreamMessage
 A StreamMessage object is used to send a stream of Java primitives. It is filled and
read sequentially. It inherits from Message and adds a StreamMessage body. Its
methods are based largely on those found in java.io.DataInputStream and
java.io.DataOutputStream.

The primitive types can be read or written explicitly using methods for each type.
They can also be read or written generically as objects. To use StreamMessage
objects, create the queue table with the SYS.AQ$_JMS_STREAM_MESSAGE or AQ$_
JMS_MESSAGE payload types.

StreamMessage objects support the conversions shown in Table 11–1. A value
written as the row type can be read as the column type.

BytesMessage
A BytesMessage object is used to send a message containing a stream of
uninterpreted bytes. It inherits Message and adds a BytesMessage body. The
receiver of the message interprets the bytes. Its methods are based largely on those
found in java.io.DataInputStream and java.io.DataOutputStream.

This message type is for client encoding of existing message formats. If possible, one of
the other self-defining message types should be used instead.

The primitive types can be written explicitly using methods for each type. They can
also be written generically as objects. To use BytesMessage objects, create the queue
table with SYS.AQ$_JMS_BYTES_MESSAGE or AQ$_JMS_MESSAGE payload types.

Table 11–1 StreamMessage Conversion

Input Boolean byte short char int long float double String byte[]

Boolean X - - - - - - - X -

byte - X X - X X - - X -

short - - X - X X - - X -

char - - - X - - - - X -

int - - - - X X - - X -

long - - - - - X - - X -

float - - - - - - X X X -

double - - - - - - - X X -

string X X X X X X X X X -

byte[] - - - - - - - - - X

Structured Payload/Message Types in JMS

Introducing Oracle JMS 11-13

MapMessage
A MapMessage object is used to send a set of name-value pairs where the names are
String types, and the values are Java primitive types. The entries can be accessed
sequentially or randomly by name. The order of the entries is undefined. It inherits
from Message and adds a MapMessage body. The primitive types can be read or
written explicitly using methods for each type. They can also be read or written
generically as objects.

To use MapMessage objects, create the queue table with the SYS.AQ$_JMS_MAP_
MESSAGE or AQ$_JMS_MESSAGE payload types. MapMessage objects support the
conversions shown in Table 11–2. An "X" in the table means that a value written as the
row type can be read as the column type.

TextMessage
A TextMessage object is used to send a message containing a
java.lang.StringBuffer. It inherits from Message and adds a TextMessage
body. The text information can be read or written using methods getText() and
setText(...). To use TextMessage objects, create the queue table with the
SYS.AQ$_JMS_TEXT_MESSAGE or AQ$_JMS_MESSAGE payload types.

ObjectMessage
An ObjectMessage object is used to send a message that contains a serializable Java
object. It inherits from Message and adds a body containing a single Java reference.
Only serializable Java objects can be used. If a collection of Java objects must be sent,
then one of the collection classes provided in JDK 1.4 can be used. The objects can be
read or written using the methods getObject() and setObject(...).To use
ObjectMessage objects, create the queue table with the SYS.AQ$_JMS_OBJECT_
MESSAGE or AQ$_JMS_MESSAGE payload types.

AdtMessage
An AdtMessage object is used to send a message that contains a Java object that maps
to an Oracle object type. These objects inherit from Message and add a body
containing a Java object that implements the CustomDatum or ORAData interface.

Table 11–2 MapMessage Conversion

Input Boolean byte short char int long float double String byte[]

Boolean X - - - - - - - X -

byte - X X - X X - - X -

short - - X - X X - - X -

char - - - X - - - - X -

int - - - - X X - - X -

long - - - - - X - - X -

float - - - - - - X X X -

double - - - - - - - X X -

string X X X X X X X X X -

byte[] - - - - - - - - - X

See Also: Oracle Database Java Developer's Guide for information
about the CustomDatum and ORAData interfaces

Structured Payload/Message Types in JMS

11-14 Oracle Streams Advanced Queuing User’s Guide

To use AdtMessage objects, create the queue table with payload type as the Oracle
object type. The AdtMessage payload can be read and written using the
getAdtPayload and setAdtPayload methods.

You can also use an AdtMessage object to send messages to queues of type
SYS.XMLType. You must use the oracle.xdb.XMLType class to create the message.

For AdtMessage objects, the client can get:

■ JMSXDeliveryCount

■ JMSXRecvTimeStamp

■ JMSXState

■ JMS_OracleExcpQ

■ JMS_OracleDelay

Using Message Properties with Different Message Types
The following message properties can be set by the client using the setProperty call.
For StreamMessage, BytesMessage, ObjectMessage, TextMessage, and
MapMessage objects, the client can set:

■ JMSXAppID

■ JMSXGroupID

■ JMSXGroupSeq

■ JMS_OracleExcpQ

■ JMS_OracleDelay

For AdtMessage objects, the client can set:

■ JMS_OracleExcpQ

■ JMS_OracleDelay

The following message properties can be obtained by the client using the
getProperty call. For StreamMessage, BytesMessage, ObjectMessage,
TextMessage, and MapMessage objects, the client can get:

■ JMSXuserID

■ JMSXAppID

■ JMSXDeliveryCount

■ JMSXGroupID

■ JMSXGroupSeq

■ JMSXRecvTimeStamp

■ JMSXState

■ JMS_OracleExcpQ

■ JMS_OracleDelay

■ JMS_OracleOriginalMessageID

Structured Payload/Message Types in JMS

Introducing Oracle JMS 11-15

Buffered Messaging with Oracle JMS
Users can send a nonpersistent JMS message by specifying the deliveryMode to be
NON_PERSISTENT when sending a message. JMS nonpersistent messages are not
required to be logged to stable storage, so they can be lost after a JMS system failure.
JMS nonpersistent messages are similar to the buffered messages now available in
Oracle Streams AQ, but there are also important differences between the two.

Transaction Commits and Client Acknowledgments
The JMS deliveryMode is orthogonal to the transaction attribute of a message. JMS
nonpersistent messages can be sent and received by either a transacted session or a
nontransacted session. If a JMS nonpersistent message is sent and received by a
transacted session, then the effect of the JMS operation is only visible after the
transacted session commits. If it is received by a nontransacted session with CLIENT_
ACKNOWLEDGE acknowledgment mode, then the effect of receiving this message is
only visible after the client acknowledges the message. Without the acknowledgment,
the message is not removed and will be redelivered if the client calls
Session.recover.

Oracle Streams AQ buffered messages, on the other hand, do not support these
transaction or acknowledgment concepts. Both sending and receiving a buffered
message must be in the IMMEDIATE visibility mode. The effects of the sending and
receiving operations are therefore visible to the user immediately, no matter whether
the session is committed or the messages are acknowledged.

Different APIs
Messages sent with the regular JMS send and publish methods are treated by Oracle
Streams AQ as persistent messages. The regular JMS receive methods receive only AQ
persistent messages. To send and receive buffered messages, you must use the Oracle
extension APIs bufferSend, bufferPublish, and bufferReceive.

Payload Limits
The Oracle Streams AQ implementation of buffered messages does not support LOB
attributes. This places limits on the payloads for the five types of standard JMS
messages:

■ JMS TextMessage payloads cannot exceed 4000 bytes.

This limit might be even lower with some database character sets, because during
the Oracle JMS character set conversion, Oracle JMS sometimes must make a
conservative choice of using CLOB instead of VARCHAR to store the text payload in
the database.

Note: Do not confuse Oracle JMS nonpersistent messages with
Oracle Streams AQ nonpersistent queues, which are deprecated in
Oracle Database 10g Release 2 (10.2).

See Also:

■ "Buffered Messaging" on page 1-12

■ Appendix A, "Nonpersistent Queues"

See Also: Oracle Streams Advanced Queuing Java API Reference for
more information on bufferSend, bufferPublish, and
bufferReceive

JMS Point-to-Point Model Features

11-16 Oracle Streams Advanced Queuing User’s Guide

■ JMS BytesMessage payloads cannot exceed 2000 bytes.

■ JMS ObjectMessage, StreamMessage, and MapMessage data serialized by
JAVA cannot exceed 2000 bytes.

■ For all other Oracle JMS ADT messages, the corresponding Oracle database ADT
cannot contain LOB attributes.

Different Constants
The Oracle Streams AQ and Oracle JMS APIs use different numerical values to
designate buffered and persistent messages, as shown in Table 11–3.

JMS Point-to-Point Model Features
In the point-to-point model, clients exchange messages from one point to another.
Message producers and consumers send and receive messages using single-consumer
queues. An administrator creates the single-consumer queues with the createQueue
method in AQjmsSession. Before they can be used, the queues must be enabled for
enqueue/dequeue using the start call in AQjmsDestination. Clients obtain a
handle to a previously created queue using the getQueue method on
AQjmsSession.

In a single-consumer queue, a message can be consumed exactly once by a single
consumer. If there are multiple processes or operating system threads concurrently
dequeuing from the same queue, then each process dequeues the first unlocked
message at the head of the queue. A locked message cannot be dequeued by a process
other than the one that has created the lock.

After processing, the message is removed if the retention time of the queue is 0, or it is
retained for a specified retention time. As long as the message is retained, it can be
either queried using SQL on the queue table view or dequeued by specifying the
message identifier of the processed message in a QueueBrowser.

QueueSender
A client uses a QueueSender to send messages to a queue. It is created by passing a
queue to the createSender method in a client Session. A client also has the option
of creating a QueueSender without supplying a queue. In that case a queue must be
specified on every send operation.

A client can specify a default delivery mode, priority and TimeToLive for all
messages sent by the QueueSender. Alternatively, the client can define these options
for each message.

QueueReceiver
A client uses a QueueReceiver to receive messages from a queue. It is created using
the createQueueReceiver method in a client Session. It can be created with or
without a messageSelector.

Table 11–3 Oracle Streams AQ and Oracle JMS Buffered Messaging Constants

API Persistent Message Buffered Message

Oracle Streams AQ PERSISTENT := 1 BUFFERED :=2

Oracle JMS PERSISTENT := 2 NON_PERSISTENT := 1

JMS Publish/Subscribe Model Features

Introducing Oracle JMS 11-17

QueueBrowser
A client uses a QueueBrowser to view messages on a queue without removing them.
The browser method returns a java.util.Enumeration that is used to scan
messages in the queue. The first call to nextElement gets a snapshot of the queue. A
QueueBrowser can be created with or without a messageSelector.

A QueueBrowser can also optionally lock messages as it is scanning them. This is
similar to a "SELECT... for UPDATE" command on the message. This prevents other
consumers from removing the message while they are being scanned.

MessageSelector
A messageSelector allows the client to restrict messages delivered to the consumer
to those that match the messageSelector expression. A messageSelector for
queues containing payloads of type TextMessage, StreamMessage,
BytesMessage, ObjectMessage, or MapMessage can contain any expression that
has one or more of the following:

■ JMS message identifier prefixed with "ID:"

JMSMessageID ='ID:23452345'

■ JMS message header fields or properties

JMSPriority < 3 AND JMSCorrelationID = 'Fiction'

JMSCorrelationID LIKE 'RE%'

■ User-defined message properties

color IN ('RED', BLUE', 'GREEN') AND price < 30000

The messageSelector for queues containing payloads of type AdtMessage can
contain any expression that has one or more of the following:

■ Message identifier without the "ID:" prefix

msgid = '23434556566767676'

■ Priority, correlation identifier, or both

priority < 3 AND corrid = 'Fiction'

■ Message payload

tab.user_data.color = 'GREEN' AND tab.user_data.price < 30000

JMS Publish/Subscribe Model Features
This section contains these topics:

■ JMS Publish/Subscribe Overview

■ DurableSubscriber

■ RemoteSubscriber

■ TopicPublisher

■ Recipient Lists

■ TopicReceiver

JMS Publish/Subscribe Model Features

11-18 Oracle Streams Advanced Queuing User’s Guide

■ TopicBrowser

■ Setting Up JMS Publish/Subscribe Operations

JMS Publish/Subscribe Overview
JMS enables flexible and dynamic communication between applications functioning as
publishers and applications playing the role of subscribers. The applications are not
coupled together; they interact based on messages and message content.

In distributing messages, publisher applications are not required to handle or manage
message recipients explicitly. This allows new subscriber applications to be added
dynamically without changing any publisher application logic.

Similarly, subscriber applications receive messages based on message content without
regard to which publisher applications are sending messages. This allows new
publisher applications to be added dynamically without changing any subscriber
application logic.

Subscriber applications specify interest by defining a rule-based subscription on
message properties or the message content of a topic. The system automatically routes
messages by computing recipients for published messages using the rule-based
subscriptions.

In the publish/subscribe model, messages are published to and received from topics.
A topic is created using the CreateTopic() method in an AQjmsSession. A client
can obtain a handle to a previously-created topic using the getTopic() method in
AQjmsSession.

DurableSubscriber
A client creates a DurableSubscriber with the createDurableSubscriber()
method in a client Session. It can be created with or without a messageSelector.

A messageSelector allows the client to restrict messages delivered to the subscriber
to those that match the selector. The syntax for the selector is described in detail in
createDurableSubscriber in Oracle Streams Advanced Queuing Java API Reference.

When subscribers use the same name, durable subscriber action depends on the J2EE
compliance mode set for an Oracle Java Message Service (OJMS) client at runtime.

In noncompliant mode, two durable TopicSubscriber objects with the same name
can be active against two different topics. In compliant mode, durable subscribers with
the same name are not allowed. If two subscribers use the same name and are created
against the same topic, but the selector used for each subscriber is different, then the
underlying Oracle Streams AQ subscription is altered using the internal DBMS_
AQJMS.ALTER_SUBSCRIBER() call.

If two subscribers use the same name and are created against two different topics, and
if the client that uses the same subscription name also originally created the
subscription name, then the existing subscription is dropped and the new subscription
is created.

If two subscribers use the same name and are created against two different topics, and
if a different client (a client that did not originate the subscription name) uses an

See Also: "MessageSelector" on page 11-17

See Also: "J2EE Compliance" on page 11-29

JMS Publish/Subscribe Model Features

Introducing Oracle JMS 11-19

existing subscription name, then the subscription is not dropped and an error is
thrown. Because it is not known if the subscription was created by JMS or PL/SQL, the
subscription on the other topic should not be dropped.

RemoteSubscriber
Remote subscribers are defined using the createRemoteSubscriber call. The
remote subscriber can be a specific consumer at the remote topic or all subscribers at
the remote topic

A remote subscriber is defined using the AQjmsAgent structure. An AQjmsAgent
consists of a name and address. The name refers to the consumer_name at the remote
topic. The address refers to the remote topic:

schema.topic_name[@dblink]

To publish messages to a particular consumer at the remote topic, the
subscription_name of the recipient at the remote topic must be specified in the
name field of AQjmsAgent. The remote topic must be specified in the address field of
AQjmsAgent.

To publish messages to all subscribers of the remote topic, the name field of
AQjmsAgent must be set to null. The remote topic must be specified in the address
field of AQjmsAgent.

TopicPublisher
Messages are published using TopicPublisher, which is created by passing a
Topic to a createPublisher method. A client also has the option of creating a
TopicPublisher without supplying a Topic. In this case, a Topic must be
specified on every publish operation. A client can specify a default delivery mode,
priority and TimeToLive for all messages sent by the TopicPublisher. It can also
specify these options for each message.

Recipient Lists
In the JMS publish/subscribe model, clients can specify explicit recipient lists instead
of having messages sent to all the subscribers of the topic. These recipients may or
may not be existing subscribers of the topic. The recipient list overrides the
subscription list on the topic for this message. Recipient lists functionality is an Oracle
extension to JMS.

TopicReceiver
If the recipient name is explicitly specified in the recipient list, but that recipient is not
a subscriber to the queue, then messages sent to it can be received by creating a
TopicReceiver. If the subscriber name is not specified, then clients must use
durable subscribers at the remote site to receive messages. TopicReceiver is an
Oracle extension to JMS.

A TopicReceiver can be created with a messageSelector. This allows the client
to restrict messages delivered to the recipient to those that match the selector.

See Also: "MessageSelector" on page 11-17

JMS Publish/Subscribe Model Features

11-20 Oracle Streams Advanced Queuing User’s Guide

TopicBrowser
A client uses a TopicBrowser to view messages on a topic without removing them.
The browser method returns a java.util.Enumeration that is used to scan topic
messages. Only durable subscribers are allowed to create a TopicBrowser. The first
call to nextElement gets a snapshot of the topic.

A TopicBrowser can optionally lock messages as it is scanning them. This is similar
to a SELECT... for UPDATE command on the message. This prevents other consumers
from removing the message while it is being scanned.

A TopicBrowser can be created with a messageSelector. This allows the client to
restrict messages delivered to the browser to those that match the selector.

TopicBrowser supports a purge feature. This allows a client using a TopicBrowser
to discard all messages that have been seen during the current browse operation on
the topic. A purge is equivalent to a destructive receive of all of the seen messages (as
if performed using a TopicSubscriber).

For a purge, a message is considered seen if it has been returned to the client using a
call to the nextElement() operation on the java.lang.Enumeration for the
TopicBrowser. Messages that have not yet been seen by the client are not discarded
during a purge. A purge operation can be performed multiple times on the same
TopicBrowser.

The effect of a purge becomes stable when the JMS Session used to create the
TopicBrowser is committed. If the operations on the session are rolled back, then the
effects of the purge operation are also undone.

Setting Up JMS Publish/Subscribe Operations
Follow these steps to use the publish/subscribe model of communication in JMS:

1. Set up one or more topics to hold messages. These topics represent an area or
subject of interest. For example, a topic can represent billed orders.

2. Enable enqueue/dequeue on the topic using the start call in
AQjmsDestination.

3. Create a set of durable subscribers. Each subscriber can specify a
messageSelector that selects the messages that the subscriber wishes to receive.
A null messageSelector indicates that the subscriber wishes to receive all
messages published on the topic.

Subscribers can be local or remote. Local subscribers are durable subscribers
defined on the same topic on which the message is published. Remote subscribers
are other topics, or recipients on other topics that are defined as subscribers to a
particular queue. In order to use remote subscribers, you must set up propagation

See Also: "Creating a TopicBrowser for Standard JMS Messages" on
page 14-19

See Also: "Creating a TopicBrowser for Standard JMS Messages,
Locking Messages" on page 14-20

See Also: "MessageSelector" on page 11-17

See Also: "Browsing Messages Using a TopicBrowser" on page 14-22

JMS MessageProducer Features

Introducing Oracle JMS 11-21

between the source and destination topics. Remote subscribers and propagation
are Oracle extensions to JMS.

4. Create TopicPublisher objects using the createPublisher() method in the
publisher Session. Messages are published using the publish call. Messages
can be published to all subscribers to the topic or to a specified subset of recipients
on the topic.

5. Subscribers receive messages on the topic by using the receive method.

6. Subscribers can also receive messages asynchronously by using message
listeners.

JMS MessageProducer Features
■ Priority and Ordering of Messages

■ Specifying a Message Delay

■ Specifying a Message Expiration

■ Message Grouping

Priority and Ordering of Messages
 Message ordering dictates the order in which messages are received from a queue or
topic. The ordering method is specified when the queue table for the queue or topic is
created. Currently, Oracle Streams AQ supports ordering on message priority and
enqueue time, producing four possible ways of ordering:

■ First-In, First-Out (FIFO)

If enqueue time was chosen as the ordering criteria, then messages are received in
the order of the enqueue time. The enqueue time is assigned to the message by
Oracle Streams AQ at message publish/send time. This is also the default
ordering.

■ Priority Ordering

If priority ordering was chosen, then each message is assigned a priority. Priority
can be specified as a message property at publish/send time by the
MessageProducer. The messages are received in the order of the priorities
assigned.

■ FIFO Priority

If FIFO priority ordering was chosen, then the topic/queue acts like a priority
queue. If two messages are assigned the same priority, then they are received in
the order of their enqueue time.

■ Enqueue Time Followed by Priority

Messages with the same enqueue time are received according to their priorities. If
the ordering criteria of two message is the same, then the order they are received is
indeterminate. However, Oracle Streams AQ does ensure that messages produced
in one session with a particular ordering criteria are received in the order they
were sent.

See Also: "Managing Propagations" on page 8-23

See Also: "Listening to One or More Queues" on page 10-12

JMS Message Consumer Features

11-22 Oracle Streams Advanced Queuing User’s Guide

Specifying a Message Delay
Messages can be sent/published to a queue/topic with delay. The delay represents a
time interval after which the message becomes available to the message consumer. A
message specified with a delay is in a waiting state until the delay expires. Receiving
by message identifier overrides the delay specification.

Delay is an Oracle Streams AQ extension to JMS message properties. It requires the
Oracle Streams AQ background process queue monitor to be started.

Specifying a Message Expiration
Producers of messages can specify expiration limits, or TimeToLive for messages.
This defines the period of time the message is available for a Message Consumer.

TimeToLive can be specified at send/publish time or using the set TimeToLive
method of a MessageProducer, with the former overriding the latter. The Oracle
Streams AQ background process queue monitor must be running to implement
TimeToLive.

Message Grouping
Messages belonging to a queue/topic can be grouped to form a set that can be
consumed by only one consumer at a time. This requires the queue/topic be created in
a queue table that is enabled for transactional message grouping. All messages
belonging to a group must be created in the same transaction, and all messages created
in one transaction belong to the same group.

Message grouping is an Oracle Streams AQ extension to the JMS specification.

You can use this feature to divide a complex message into a linked series of simple
messages. For example, an invoice directed to an invoices queue could be divided into
a header message, followed by several messages representing details, followed by the
trailer message.

Message grouping is also very useful if the message payload contains complex large
objects such as images and video that can be segmented into smaller objects.

The priority, delay, and expiration properties for the messages in a group are
determined solely by the message properties specified for the first message (head) of
the group. Properties specified for subsequent messages in the group are ignored.

Message grouping is preserved during propagation. The destination topic must be
enabled for transactional grouping.

JMS Message Consumer Features
This section contains these topics:

■ Receiving Messages

■ Message Navigation in Receive

■ Browsing Messages

■ Remove No Data

See Also: "Dequeue Features" on page 1-20 for a discussion of
restrictions you must keep in mind if message grouping is to be
preserved while dequeuing messages from a queue enabled for
transactional grouping

JMS Message Consumer Features

Introducing Oracle JMS 11-23

■ Retry with Delay Interval

■ Asynchronously Receiving Messages Using MessageListener

■ Exception Queues

Receiving Messages
A JMS application can receive messages by creating a message consumer. Messages
can be received synchronously using the receive call or asynchronously using a
message listener.

There are three modes of receive:

■ Block until a message arrives for a consumer

■ Block for a maximum of the specified time

■ Nonblocking

Message Navigation in Receive
If a consumer does not specify a navigation mode, then its first receive in a session
retrieves the first message in the queue or topic, its second receive gets the next
message, and so on. If a high priority message arrives for the consumer, then the
consumer does not receive the message until it has cleared the messages that were
already there before it.

To provide the consumer better control in navigating the queue for its messages,
Oracle Streams AQ offers several navigation modes as JMS extensions. These modes
can be set at the TopicSubscriber, QueueReceiver or the TopicReceiver.

Two modes are available for ungrouped messages:

■ FIRST_MESSAGE

This mode resets the position to the beginning of the queue. It is useful for priority
ordered queues, because it allows the consumer to remove the message on the top
of the queue.

■ NEXT_MESSAGE

This mode gets whatever message follows the established position of the
consumer. For example, a NEXT_MESSAGE applied when the position is at the
fourth message will get the fifth message in the queue. This is the default action.

Three modes are available for grouped messages:

■ FIRST_MESSAGE

This mode resets the position to the beginning of the queue.

■ NEXT_MESSAGE

This mode sets the position to the next message in the same transaction.

■ NEXT_TRANSACTION

This mode sets the position to the first message in the next transaction.

The transaction grouping property can be negated if messages are received in the
following ways:

■ Receive by specifying a correlation identifier in the selector

■ Receive by specifying a message identifier in the selector

JMS Message Consumer Features

11-24 Oracle Streams Advanced Queuing User’s Guide

■ Committing before all the messages of a transaction group have been received

If the consumer reaches the end of the queue while using the NEXT_MESSAGE or
NEXT_TRANSACTION option, and you have specified a blocking receive(), then the
navigating position is automatically changed to the beginning of the queue.

By default, a QueueReceiver, TopicReceiver, or TopicSubscriber uses
FIRST_MESSAGE for the first receive call, and NEXT_MESSAGE for subsequent
receive() calls.

Browsing Messages
Aside from the usual receive, which allows the dequeuing client to delete the
message from the queue, JMS provides an interface that allows the JMS client to
browse its messages in the queue. A QueueBrowser can be created using the
createBrowser method from QueueSession.

If a message is browsed, then it remains available for further processing. That does not
necessarily mean that the message will remain available to the JMS session after it is
browsed, because a receive call from a concurrent session might remove it.

To prevent a viewed message from being removed by a concurrent JMS client, you can
view the message in the locked mode. To do this, you must create a QueueBrowser
with the locked mode using the Oracle Streams AQ extension to the JMS interface. The
lock on the message is released when the session performs a commit or a rollback.

To remove a message viewed by a QueueBrowser, the session must create a
QueueReceiver and use the JMSmesssageID as the selector.

Remove No Data
The consumer can remove a message from a queue or topic without retrieving it using
the receiveNoData call. This is useful when the application has already examined
the message, perhaps using a QueueBrowser. This mode allows the JMS client to
avoid the overhead of retrieving a payload from the database, which can be substantial
for a large message.

Retry with Delay Interval
If a transaction receiving a message from a queue/topic fails, then it is regarded as an
unsuccessful attempt to remove the message. Oracle Streams AQ records the number
of failed attempts to remove the message in the message history.

An application can specify the maximum number of retries supported on messages at
the queue/topic level. If the number of failed attempts to remove a message exceeds
this maximum, then the message is moved to an exception queue.

Oracle Streams AQ allows users to specify a retry_delay along with max_retries.
This means that a message that has undergone a failed attempt at retrieving remains
visible in the queue for dequeue after retry_delay interval. Until then it is in the
WAITING state. The Oracle Streams AQ background process time manager enforces
the retry delay property.

The maximum retries and retry delay are properties of the queue/topic. They can be
set when the queue/topic is created or by using the alter method on the queue/topic.
The default value for MAX_RETRIES is 5.

JMS Message Consumer Features

Introducing Oracle JMS 11-25

Asynchronously Receiving Messages Using MessageListener
The JMS client can receive messages asynchronously by setting the
MessageListener using the setMessageListener method.

When a message arrives for the consumer, the onMessage method of the message
listener is invoked with the message. The message listener can commit or terminate
the receipt of the message. The message listener does not receive messages if the JMS
Connection has been stopped. The receive call must not be used to receive
messages once the message listener has been set for the consumer.

The JMS client can receive messages asynchronously for all consumers in the session
by setting the MessageListener at the session. No other mode for receiving
messages must be used in the session once the message listener has been set.

Exception Queues
An exception queue is a repository for all expired or unserviceable messages.
Applications cannot directly enqueue into exception queues. However, an application
that intends to handle these expired or unserviceable messages can receive/remove
them from the exception queue.

To retrieve messages from exception queues, the JMS client must use the point-to-point
interface. The exception queue for messages intended for a topic must be created in a
queue table with multiple consumers enabled. Like any other queue, the exception
queue must be enabled for receiving messages using the start method in the
AQOracleQueue class. You get an exception if you try to enable it for enqueue.

The exception queue is an Oracle-specific message property called "JMS_
OracleExcpQ" that can be set with the message before sending/publishing it. If an
exception queue is not specified, then the default exception queue is used. The default
exception queue is automatically created when the queue table is created and is named
AQ$_queue_table_name_E.

Messages are moved to the exception queue under the following conditions:

■ The message was not dequeued within the specified timeToLive.

For messages intended for more than one subscriber, the message is moved to the
exception queue if one or more of the intended recipients is not able to dequeue
the message within the specified timeToLive.

■ The message was received successfully, but the application terminated the
transaction that performed the receive because of an error while processing the
message. The message is returned to the queue/topic and is available for any
applications that are waiting to receive messages.

A receive is considered rolled back or undone if the application terminates the
entire transaction, or if it rolls back to a savepoint that was taken before the
receive.

Because this was a failed attempt to receive the message, its retry count is updated.
If the retry count of the message exceeds the maximum value specified for the
queue/topic where it resides, then it is moved to the exception queue.

If a message has multiple subscribers, then the message is moved to the exception
queue only when all the recipients of the message have exceeded the retry limit.

JMS Propagation

11-26 Oracle Streams Advanced Queuing User’s Guide

JMS Propagation
This section contains these topics:

■ RemoteSubscriber

■ Scheduling Propagation

■ Enhanced Propagation Scheduling Capabilities

■ Exception Handling During Propagation

RemoteSubscriber
Oracle Streams AQ allows a subscriber at another database to subscribe to a topic. If a
message published to the topic meets the criterion of the remote subscriber, then it is
automatically propagated to the queue/topic at the remote database specified for the
remote subscriber. Propagation is performed using database links and Oracle Net
Services. This enables applications to communicate with each other without having to
be connected to the same database.

There are two ways to implement remote subscribers:

■ The createRemoteSubscriber method can be used to create a remote
subscriber to/on the topic. The remote subscriber is specified as an instance of the
class AQjmsAgent.

■ The AQjmsAgent has a name and an address. The address consists of a
queue/topic and the database link to the database of the subscriber.

There are two kinds of remote subscribers:

■ The remote subscriber is a topic.

This occurs when no name is specified for the remote subscriber in the
AQjmsAgent object and the address is a topic. The message satisfying the
subscriber's subscription is propagated to the remote topic. The propagated
message is now available to all the subscriptions of the remote topic that it
satisfies.

■ A specific remote recipient is specified for the message.

The remote subscription can be for a particular consumer at the remote database.
If the name of the remote recipient is specified (in the AQjmsAgent object), then
the message satisfying the subscription is propagated to the remote database for
that recipient only. The recipient at the remote database uses the TopicReceiver
interface to retrieve its messages. The remote subscription can also be for a
point-to-point queue.

Scheduling Propagation
Propagation must be scheduled using the schedule_propagation method for
every topic from which messages are propagated to target destination databases.

A schedule indicates the time frame during which messages can be propagated from
the source topic. This time frame can depend on a number of factors such as network

Note: If a dequeue transaction failed because the server process died
(including ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on
the instance, then RETRY_COUNT is not incremented.

JMS Propagation

Introducing Oracle JMS 11-27

traffic, the load at the source database, the load at the destination database, and so on.
The schedule therefore must be tailored for the specific source and destination. When a
schedule is created, a job is automatically submitted to the job_queue facility to
handle propagation.

The administrative calls for propagation scheduling provide great flexibility for
managing the schedules. The duration or propagation window parameter of a
schedule specifies the time frame during which propagation must take place. If the
duration is unspecified, then the time frame is an infinite single window. If a window
must be repeated periodically, then a finite duration is specified along with a next_
time function that defines the periodic interval between successive windows.

The propagation schedules defined for a queue can be changed or dropped at any time
during the life of the queue. In addition there are calls for temporarily disabling a
schedule (instead of dropping the schedule) and enabling a disabled schedule. A
schedule is active when messages are being propagated in that schedule. All the
administrative calls can be made irrespective of whether the schedule is active or not.
If a schedule is active, then it takes a few seconds for the calls to be executed.

Job queue processes must be started for propagation to take place. At least 2 job queue
processes must be started. The database links to the destination database must also be
valid. The source and destination topics of the propagation must be of the same
message type. The remote topic must be enabled for enqueue. The user of the database
link must also have enqueue privileges to the remote topic.

Enhanced Propagation Scheduling Capabilities
Catalog views defined for propagation provide the following information about active
schedules:

■ Name of the background process handling the schedule

■ SID (session and serial number) for the session handling the propagation

■ Instance handling a schedule (if using RAC)

■ Previous successful execution of a schedule

■ Next planned execution of a schedule

The following propagation statistics are maintained for each schedule, providing
useful information to queue administrators for tuning:

■ The total number of messages propagated in a schedule

■ Total number of bytes propagated in a schedule

■ Maximum number of messages propagated in a window

■ Maximum number of bytes propagated in a window

■ Average number of messages propagated in a window

■ Average size of propagated messages

■ Average time to propagated a message

Propagation has built-in support for handling failures and reporting errors. For
example, if the database link specified is invalid, or if the remote database is
unavailable, or if the remote topic/queue is not enabled for enqueuing, then the
appropriate error message is reported. Propagation uses an exponential backoff

See Also: "Scheduling a Propagation" on page 12-18

JMS Propagation

11-28 Oracle Streams Advanced Queuing User’s Guide

scheme for retrying propagation from a schedule that encountered a failure. If a
schedule continuously encounters failures, then the first retry happens after 30
seconds, the second after 60 seconds, the third after 120 seconds and so forth. If the
retry time is beyond the expiration time of the current window, then the next retry is
attempted at the start time of the next window. A maximum of 16 retry attempts are
made after which the schedule is automatically disabled.

When a schedule is disabled automatically due to failures, the relevant information is
written into the alert log. It is possible to check at any time if there were failures
encountered by a schedule and if so how many successive failures were encountered,
the error message indicating the cause for the failure and the time at which the last
failure was encountered. By examining this information, an administrator can fix the
failure and enable the schedule.

If propagation is successful during a retry, then the number of failures is reset to 0.

Propagation has built-in support for Real Application Clusters and is transparent to
the user and the administrator. The job that handles propagation is submitted to the
same instance as the owner of the queue table where the source topic resides. If at any
time there is a failure at an instance and the queue table that stores the topic is
migrated to a different instance, then the propagation job is also automatically
migrated to the new instance. This minimizes the pinging between instances and thus
offers better performance. Propagation has been designed to handle any number of
concurrent schedules.

The number of job_queue_processes is limited to a maximum of 1000 and some of
these can be used to handle jobs unrelated to propagation. Hence, propagation has
built in support for multitasking and load balancing. The propagation algorithms are
designed such that multiple schedules can be handled by a single snapshot (job_
queue) process. The propagation load on a job_queue processes can be skewed
based on the arrival rate of messages in the different source topics. If one process is
overburdened with several active schedules while another is less loaded with many
passive schedules, then propagation automatically redistributes the schedules among
the processes such that they are loaded uniformly.

Exception Handling During Propagation
When a system error such as a network failure occurs, Oracle Streams AQ continues to
attempt to propagate messages using an exponential back-off algorithm. In some
situations that indicate application errors in queue-to-dblink propagations, Oracle
Streams AQ marks messages as UNDELIVERABLE and logs a message in alert.log.
Examples of such errors are when the remote queue does not exist or when there is a
type mismatch between the source queue and the remote queue. The trace files in the
background_dump_dest directory can provide additional information about the
error.

When a new job queue process starts, it clears the mismatched type errors so the types
can be reverified. If you have capped the number of job queue processes and
propagation remains busy, then you might not want to wait for the job queue process

Note: Once a retry attempt slips to the next propagation window, it
will always do so; the exponential backoff scheme no longer governs
retry scheduling. If the date function specified in the next_time
parameter of DBMS_AQADM.SCHEDULE_PROPAGATION() results in a
short interval between windows, then the number of unsuccessful
retry attempts can quickly exceed 16, disabling the schedule.

J2EE Compliance

Introducing Oracle JMS 11-29

to terminate and restart. Queue types can be reverified at any time using DBMS_
AQADM.VERIFY_QUEUE_TYPES.

Message Transformation with JMS AQ
A transformation can be defined to map messages of one format to another.
Transformations are useful when applications that use different formats to represent
the same information must be integrated. Transformations can be SQL expressions and
PL/SQL functions. Message transformation is an Oracle Streams AQ extension to the
standard JMS interface.

The transformations can be created using the DBMS_TRANSFORM.create_
transformation procedure. Transformation can be specified for the following
operations:

■ Sending a message to a queue or topic

■ Receiving a message from a queue or topic

■ Creating a TopicSubscriber

■ Creating a RemoteSubscriber. This enables propagation of messages between
topics of different formats.

J2EE Compliance
In Oracle Database 10g, Oracle JMS conforms to the Sun Microsystems JMS 1.1
standard. You can define the J2EE compliance mode for an Oracle Java Message
Service (OJMS) client at runtime. For compliance, set the Java property
oracle.jms.j2eeCompliant to TRUE as a command line option. For
noncompliance, do nothing. FALSE is the default value.

Features in Oracle Streams AQ that support J2EE compliance (and are also available in
the noncompliant mode) include:

■ Nontransactional sessions

■ Durable subscribers

■ Temporary queues and topics

■ Nonpersistent delivery mode

■ Multiple JMS messages types on a single JMS queue or topic (using Oracle
Streams AQ queues of the AQ$_JMS_MESSAGE type)

■ The noLocal option for durable subscribers

Note: When a type mismatch is detected in queue-to-queue
propagation, propagation stops and throws an error. In such situations
you must query the DBA_SCHEDULES view to determine the last error
that occurred during propagation to a particular destination. The
message is not marked as UNDELIVERABLE.

J2EE Compliance

11-30 Oracle Streams Advanced Queuing User’s Guide

See Also:

■ Java Message Service Specification, version 1.1, March 18, 2002, Sun
Microsystems, Inc.

■ "JMS Message Headers" on page 11-9 for information on how the
Java property oracle.jms.j2eeCompliant affects JMSPriority
and JMSExpiration

■ "DurableSubscriber" on page 11-18 for information on how the
Java property oracle.jms.j2eeCompliant affects durable
subscribers

Oracle JMS Basic Operations 12-1

12
Oracle JMS Basic Operations

This chapter describes the basic operational Java Message Service (JMS)
administrative interface to Oracle Streams Advanced Queuing (AQ).

This chapter contains these topics:

■ EXECUTE Privilege on DBMS_AQIN

■ Registering a ConnectionFactory

■ Unregistering a Queue/Topic ConnectionFactory

■ Getting a QueueConnectionFactory or TopicConnectionFactory

■ Getting a Queue or Topic in LDAP

■ Creating a Queue Table

■ Getting a Queue Table

■ Creating a Queue

■ Granting and Revoking Privileges

■ Managing Destinations

■ Propagation Schedules

EXECUTE Privilege on DBMS_AQIN
Users should never directly call methods in the DBMS_AQIN package, but they do need
the EXECUTE privilege on DBMS_AQIN. Use the following syntax to accomplish this:

GRANT EXECUTE ON DBMS_AQIN to user;

Registering a ConnectionFactory
You can register a ConnectionFactory four ways:

■ Registering Through the Database Using JDBC Connection Parameters

■ Registering Through the Database Using a JDBC URL

■ Registering Through LDAP Using JDBC Connection Parameters

■ Registering Through LDAP Using a JDBC URL

Registering Through the Database Using JDBC Connection Parameters
public static int registerConnectionFactory(java.sql.Connection connection,
 java.lang.String conn_name,

Registering a ConnectionFactory

12-2 Oracle Streams Advanced Queuing User’s Guide

 java.lang.String hostname,
 java.lang.String oracle_sid,
 int portno,
 java.lang.String driver,
 java.lang.String type)
 throws JMSException

This method registers a QueueConnectionFactory or TopicConnectionFactory
through the database to a Lightweight Directory Access Protocol (LDAP) server with
JDBC connection parameters. This method is static and has the following parameters:

The database connection passed to registerConnectionFactory must be granted
AQ_ADMINISTRATOR_ROLE. After registration, you can look up the connection
factory using Java Naming and Directory Interface (JNDI).

Example 12–1 Registering Through the Database Using JDBC Connection Parameters

String url;
java.sql.connection db_conn;

url = "jdbc:oracle:thin:@sun-123:1521:db1";
db_conn = DriverManager.getConnection(url, "scott", "tiger");
AQjmsFactory.registerConnectionFactory(
 db_conn, "queue_conn1", "sun-123", "db1", 1521, "thin", "queue");

Registering Through the Database Using a JDBC URL
public static int registerConnectionFactory(java.sql.Connection connection,
 java.lang.String conn_name,
 java.lang.String jdbc_url,
 java.util.Properties info,
 java.lang.String type)
 throws JMSException

This method registers a QueueConnectionFactory or TopicConnectionFactory
through the database with a JDBC URL to LDAP. It is static and has the following
parameters:

Parameter Description

connection JDBC connection used in registration

conn_name Name of the connection to be registered

hostname Name of the host running Oracle Streams AQ

oracle_sid Oracle system identifier

portno Port number

driver JDBC driver type

type Connection factory type (QUEUE or TOPIC)

Parameter Description

connection JDBC connection used in registration

conn_name Name of the connection to be registered

jdbc_url URL to connect to

Registering a ConnectionFactory

Oracle JMS Basic Operations 12-3

The database connection passed to registerConnectionFactory must be granted
AQ_ADMINISTRATOR_ROLE. After registration, you can look up the connection
factory using JNDI.

Example 12–2 Registering Through the Database Using a JDBC URL

String url;
java.sql.connection db_conn;

url = "jdbc:oracle:thin:@sun-123:1521:db1";
db_conn = DriverManager.getConnection(url, "scott", "tiger");
AQjmsFactory.registerConnectionFactory(
 db_conn, "topic_conn1", url, null, "topic");

Registering Through LDAP Using JDBC Connection Parameters
public static int registerConnectionFactory(java.util.Hashtable env,
 java.lang.String conn_name,
 java.lang.String hostname,
 java.lang.String oracle_sid,
 int portno,
 java.lang.String driver,
 java.lang.String type)
 throws JMSException

This method registers a QueueConnectionFactory or TopicConnectionFactory
through LDAP with JDBC connection parameters to LDAP. It is static and has the
following parameters:

The hash table passed to registerConnectionFactory() must contain all the
information to establish a valid connection to the LDAP server. Furthermore, the
connection must have write access to the connection factory entries in the LDAP server
(which requires the LDAP user to be either the database itself or be granted GLOBAL_
AQ_USER_ROLE). After registration, look up the connection factory using JNDI.

Example 12–3 Registering Through LDAP Using JDBC Connection Parameters

Hashtable env = new Hashtable(5, 0.75f);

info Properties information

portno Port number

type Connection factory type (QUEUE or TOPIC)

Parameter Description

env Environment of LDAP connection

conn_name Name of the connection to be registered

hostname Name of the host running Oracle Streams AQ

oracle_sid Oracle system identifier

portno Port number

driver JDBC driver type

type Connection factory type (QUEUE or TOPIC)

Parameter Description

Registering a ConnectionFactory

12-4 Oracle Streams Advanced Queuing User’s Guide

/* the following statements set in hashtable env:
 * service provider package
 * the URL of the ldap server
 * the distinguished name of the database server
 * the authentication method (simple)
 * the LDAP username
 * the LDAP user password
*/
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://sun-456:389");
env.put("searchbase", "cn=db1,cn=Oraclecontext,cn=acme,cn=com");
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=db1aqadmin,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "welcome");

AQjmsFactory.registerConnectionFactory(env,
 "queue_conn1",
 "sun-123",
 "db1",
 1521,
 "thin",
 "queue");

Registering Through LDAP Using a JDBC URL
public static int registerConnectionFactory(java.util.Hashtable env,
 java.lang.String conn_name,
 java.lang.String jdbc_url,
 java.util.Properties info,
 java.lang.String type)
 throws JMSException

This method registers a QueueConnectionFactory or TopicConnectionFactory
through LDAP with JDBC connection parameters to LDAP. It is static and has the
following parameters:

The hash table passed to registerConnectionFactory() must contain all the
information to establish a valid connection to the LDAP server. Furthermore, the
connection must have write access to the connection factory entries in the LDAP server
(which requires the LDAP user to be either the database itself or be granted GLOBAL_
AQ_USER_ROLE). After registration, look up the connection factory using JNDI.

Example 12–4 Registering Through LDAP Using a JDBC URL

String url;
Hashtable env = new Hashtable(5, 0.75f);

/* the following statements set in hashtable env:
 * service provider package

Parameter Description

env Environment of LDAP connection

conn_name Name of the connection to be registered

jdbc_url URL to connect to

info Properties information

type Connection factory type (QUEUE or TOPIC)

Unregistering a Queue/Topic ConnectionFactory

Oracle JMS Basic Operations 12-5

 * the URL of the ldap server
 * the distinguished name of the database server
 * the authentication method (simple)
 * the LDAP username
 * the LDAP user password
*/
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://sun-456:389");
env.put("searchbase", "cn=db1,cn=Oraclecontext,cn=acme,cn=com");
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=db1aqadmin,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
url = "jdbc:oracle:thin:@sun-123:1521:db1";
AQjmsFactory.registerConnectionFactory(env, "topic_conn1", url, null, "topic");

Unregistering a Queue/Topic ConnectionFactory
You can unregister a queue/topic ConnectionFactory in LDAP two ways:

■ Unregistering Through the Database

■ Unregistering Through LDAP

Unregistering Through the Database
public static int unregisterConnectionFactory(java.sql.Connection connection,
 java.lang.String conn_name)
 throws JMSException

This method unregisters a QueueConnectionFactory or
TopicConnectionFactory in LDAP. It is static and has the following parameters:

The database connection passed to unregisterConnectionFactory() must be
granted AQ_ADMINISTRATOR_ROLE.

Example 12–5 Unregistering Through the Database

String url;
java.sql.connection db_conn;

url = "jdbc:oracle:thin:@sun-123:1521:db1";
db_conn = DriverManager.getConnection(url, "scott", "tiger");
AQjmsFactory.unregisterConnectionFactory(db_conn, "topic_conn1");

Unregistering Through LDAP
public static int unregisterConnectionFactory(java.util.Hashtable env,
 java.lang.String conn_name)
 throws JMSException

This method unregisters a QueueConnectionFactory or TopicConnectionFactory in
LDAP. It is static and has the following parameters:

Parameter Description

connection JDBC connection used in registration

conn_name Name of the connection to be registered

Getting a QueueConnectionFactory or TopicConnectionFactory

12-6 Oracle Streams Advanced Queuing User’s Guide

The hash table passed to unregisterConnectionFactory() must contain all the
information to establish a valid connection to the LDAP server. Furthermore, the
connection must have write access to the connection factory entries in the LDAP server
(which requires the LDAP user to be either the database itself or be granted GLOBAL_
AQ_USER_ROLE).

Example 12–6 Unregistering Through LDAP

Hashtable env = new Hashtable(5, 0.75f);

/* the following statements set in hashtable env:
 * service provider package
 * the distinguished name of the database server
 * the authentication method (simple)
 * the LDAP username
 * the LDAP user password
*/
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://sun-456:389");
env.put("searchbase", "cn=db1,cn=Oraclecontext,cn=acme,cn=com");
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=db1aqadmin,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
url = "jdbc:oracle:thin:@sun-123:1521:db1";
AQjmsFactory.unregisterConnectionFactory(env, "queue_conn1");

Getting a QueueConnectionFactory or TopicConnectionFactory
This section contains these topics:

■ Getting a QueueConnectionFactory with JDBC URL

■ Getting a QueueConnectionFactory with JDBC Connection Parameters

■ Getting a TopicConnectionFactory with JDBC URL

■ Getting a TopicConnectionFactory with JDBC Connection Parameters

■ Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP

Getting a QueueConnectionFactory with JDBC URL
public static javax.jms.QueueConnectionFactory getQueueConnectionFactory(
 java.lang.String jdbc_url,
 java.util.Properties info)
 throws JMSException

This method gets a QueueConnectionFactory with JDBC URL. It is static and has
the following parameters:

Parameter Description

env Environment of LDAP connection

conn_name Name of the connection to be registered

Parameter Description

jdbc_url URL to connect to

Getting a QueueConnectionFactory or TopicConnectionFactory

Oracle JMS Basic Operations 12-7

Example 12–7 Getting a QueueConnectionFactory with JDBC URL

 String url = "jdbc:oracle:oci10:internal/oracle"
 Properties info = new Properties();
 QueueConnectionFactory qc_fact;

 info.put("internal_logon", "sysdba");
 qc_fact = AQjmsFactory.getQueueConnectionFactory(url, info);

Getting a QueueConnectionFactory with JDBC Connection Parameters
public static javax.jms.QueueConnectionFactory getQueueConnectionFactory(
 java.lang.String hostname,
 java.lang.String oracle_sid,
 int portno,
 java.lang.String driver)
 throws JMSException

This method gets a QueueConnectionFactory with JDBC connection parameters. It
is static and has the following parameters:

Example 12–8 Getting a QueueConnectionFactory with JDBC Connection Parameters

 String host = "dlsun";
 String ora_sid = "rdbms10i"
 String driver = "thin";
 int port = 5521;
 QueueConnectionFactory qc_fact;

 qc_fact = AQjmsFactory.getQueueConnectionFactory(host, ora_sid, port, driver);

Getting a TopicConnectionFactory with JDBC URL
public static javax.jms.QueueConnectionFactory getQueueConnectionFactory(
 java.lang.String jdbc_url,
 java.util.Properties info)
 throws JMSException

This method gets a TopicConnectionFactory with a JDBC URL. It is static and has
the following parameters:

info Properties information

Parameter Description

hostname Name of the host running Oracle Streams AQ

oracle_sid Oracle system identifier

portno Port number

driver JDBC driver type

Parameter Description

jdbc_url URL to connect to

info Properties information

Parameter Description

Getting a QueueConnectionFactory or TopicConnectionFactory

12-8 Oracle Streams Advanced Queuing User’s Guide

Example 12–9 Getting a TopicConnectionFactory with JDBC URL

 String url = "jdbc:oracle:oci10:internal/oracle"
 Properties info = new Properties();
 TopicConnectionFactory tc_fact;

 info.put("internal_logon", "sysdba");
 tc_fact = AQjmsFactory.getTopicConnectionFactory(url, info);

Getting a TopicConnectionFactory with JDBC Connection Parameters
public static javax.jms.TopicConnectionFactory getTopicConnectionFactory(
 java.lang.String hostname,
 java.lang.String oracle_sid,
 int portno,
 java.lang.String driver)
 throws JMSException

This method gets a TopicConnectionFactory with JDBC connection parameters. It
is static and has the following parameters:

Example 12–10 Getting a TopicConnectionFactory with JDBC Connection Parameters

String host = "dlsun";
String ora_sid = "rdbms10i"
String driver = "thin";
int port = 5521;
TopicConnectionFactory tc_fact;

tc_fact = AQjmsFactory.getTopicConnectionFactory(host, ora_sid, port, driver);

Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP
This method gets a QueueConnectionFactory or TopicConnectionFactory
from LDAP.

Example 12–11 Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP

Hashtable env = new Hashtable(5, 0.75f);
DirContext ctx;
queueConnectionFactory qc_fact;

/* the following statements set in hashtable env:
 * service provider package
 * the URL of the ldap server
 * the distinguished name of the database server
 * the authentication method (simple)
 * the LDAP username
 * the LDAP user password
*/
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://sun-456:389");

Parameter Description

hostname Name of the host running Oracle Streams AQ

oracle_sid Oracle system identifier

portno Port number

driver JDBC driver type

Creating a Queue Table

Oracle JMS Basic Operations 12-9

env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=db1aquser1,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "welcome");

ctx = new InitialDirContext(env);
ctx =
(DirContext)ctx.lookup("cn=OracleDBConnections,cn=db1,cn=Oraclecontext,cn=acme,cn=
com");
qc_fact = (queueConnectionFactory)ctx.lookup("cn=queue_conn1");

Getting a Queue or Topic in LDAP
This method gets a queue or topic from LDAP.

Example 12–12 Getting a Queue or Topic in LDAP

Hashtable env = new Hashtable(5, 0.75f);
DirContext ctx;
topic topic_1;

/* the following statements set in hashtable env:
 * service provider package
 * the URL of the ldap server
 * the distinguished name of the database server
 * the authentication method (simple)
 * the LDAP username
 * the LDAP user password
*/
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://sun-456:389");
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=db1aquser1,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "welcome");

ctx = new InitialDirContext(env);
ctx =
(DirContext)ctx.lookup("cn=OracleDBQueues,cn=db1,cn=Oraclecontext,cn=acme,cn=com")
;
topic_1 = (topic)ctx.lookup("cn=topic_1");

Creating a Queue Table
public oracle.AQ.AQQueueTable createQueueTable(
 java.lang.String owner,
 java.lang.String name,
 oracle.AQ.AQQueueTableProperty property)
 throws JMSException

This method creates a queue table. It has the following parameters:

Parameter Description

owner Queue table owner (schema)

name Queue table name

property Queue table properties

Getting a Queue Table

12-10 Oracle Streams Advanced Queuing User’s Guide

If the queue table is used to hold queues, then the queue table must not be
multiconsumer enabled (default). If the queue table is used to hold topics, then the
queue table must be multiconsumer enabled.

CLOB, BLOB, and BFILE objects are valid attributes for an Oracle Streams AQ object
type load. However, only CLOB and BLOB can be propagated using Oracle Streams
AQ propagation in Oracle8i and after.

Example 12–13 Creating a Queue Table

QueueSession q_sess = null;
AQQueueTable q_table = null;
AQQueueTableProperty qt_prop = null;

qt_prop = new AQQueueTableProperty("SYS.AQ$_JMS_BYTES_MESSAGE");
q_table = ((AQjmsSession)q_sess).createQueueTable(
 "boluser", "bol_ship_queue_table", qt_prop);

Getting a Queue Table
public oracle.AQ.AQQueueTable getQueueTable(java.lang.String owner,
 java.lang.String name)
 throws JMSException

This method gets a queue table. It has the following parameters:

If the caller that opened the connection is not the owner of the queue table, then the
caller must have Oracle Streams AQ enqueue/dequeue privileges on queues/topics
in the queue table. Otherwise the queue table is not returned.

Example 12–14 Getting a Queue Table

QueueSession q_sess;
AQQueueTable q_table;

q_table = ((AQjmsSession)q_sess).getQueueTable(
 "boluser", "bol_ship_queue_table");

Creating a Queue
This section contains these topics:

■ Creating a Point-to-Point Queue

■ Creating a Publish/Subscribe Topic

Creating a Point-to-Point Queue
public javax.jms.Queue createQueue(
 oracle.AQ.AQQueueTable q_table,
 java.lang.String queue_name,
 oracle.jms.AQjmsDestinationProperty dest_property)
 throws JMSException

Parameter Description

owner Queue table owner (schema)

name Queue table name

Creating a Queue

Oracle JMS Basic Operations 12-11

This method creates a queue in a specified queue table. It has the following
parameters:

This method is specific to OJMS. You cannot use standard Java javax.jms.Session
objects with it. Instead, you must cast the standard type to the OJMS concrete class
oracle.jms.AQjmsSession.

Example 12–15 Creating a Point-to-Point Queue

QueueSession q_sess;
AQQueueTable q_table;
AqjmsDestinationProperty dest_prop;
Queue queue;

queue = ((AQjmsSession)q_sess).createQueue(q_table, "jms_q1", dest_prop);

Creating a Publish/Subscribe Topic
public javax.jms.Topic createTopic(
 oracle.AQ.AQQueueTable q_table,
 java.lang.String topic_name,
 oracle.jms.AQjmsDestinationProperty dest_property)
 throws JMSException

This method creates a topic in the publish/subscribe model. It has the following
parameters:

This method is specific to OJMS. You cannot use standard Java javax.jms.Session
objects with it. Instead, you must cast the standard type to the OJMS concrete class
oracle.jms.AQjmsSession.

Example 12–16 Creating a Publish/Subscribe Topic

TopicSession t_sess;
AQQueueTable q_table;
AqjmsDestinationProperty dest_prop;
Topic topic;

topic = ((AQjmsSessa)t_sess).createTopic(q_table, "jms_t1", dest_prop);

Parameter Description

q_table Queue table in which the queue is to be created. The queue table must
be single-consumer.

queue_name Name of the queue to be created

dest_property Queue properties

Parameter Description

q_table Queue table in which the queue is to be created. The queue table must
be multiconsumer.

queue_name Name of the queue to be created

dest_property Queue properties

Granting and Revoking Privileges

12-12 Oracle Streams Advanced Queuing User’s Guide

In Example 12–17, if an order cannot be filled because of insufficient inventory, then
the transaction processing the order is terminated. The bookedorders topic is set up
with max_retries = 4 and retry_delay = 12 hours.Thus, if an order is not filled
up in two days, then it is moved to an exception queue.

Example 12–17 Specifying Max Retries and Max Delays in Messages

public BolOrder process_booked_order(TopicSession jms_session)
 {
 Topic topic;
 TopicSubscriber tsubs;
 ObjectMessage obj_message;
 BolCustomer customer;
 BolOrder booked_order = null;
 String country;
 int i = 0;

 try
 {
 /* get a handle to the OE_bookedorders_topic */
 topic = ((AQjmsSession)jms_session).getTopic("WS",
 "WS_bookedorders_topic");

 /* Create local subscriber - to track messages for Western Region */
 tsubs = jms_session.createDurableSubscriber(topic, "SUBS1",
 "Region = 'Western' ",
 false);

 /* wait for a message to show up in the topic */
 obj_message = (ObjectMessage)tsubs.receive(10);

 booked_order = (BolOrder)obj_message.getObject();

 customer = booked_order.getCustomer();
 country = customer.getCountry();

 if (country == "US")
 {
 jms_session.commit();
 }
 else
 {
 jms_session.rollback();
 booked_order = null;
 }
 }catch (JMSException ex)
 { System.out.println("Exception " + ex) ;}

 return booked_order;
 }

Granting and Revoking Privileges
This section contains these topics:

■ Granting Oracle Streams AQ System Privileges

■ Revoking Oracle Streams AQ System Privileges

■ Granting Publish/Subscribe Topic Privileges

Granting and Revoking Privileges

Oracle JMS Basic Operations 12-13

■ Revoking Publish/Subscribe Topic Privileges

■ Granting Point-to-Point Queue Privileges

■ Revoking Point-to-Point Queue Privileges

Granting Oracle Streams AQ System Privileges
public void grantSystemPrivilege(java.lang.String privilege,
 java.lang.String grantee,
 boolean admin_option)
 throws JMSException

This method grants Oracle Streams AQ system privileges to a user or role.

Initially only SYS and SYSTEM can use this procedure successfully. Users granted the
ENQUEUE_ANY privilege are allowed to enqueue messages to any queues in the
database. Users granted the DEQUEUE_ANY privilege are allowed to dequeue messages
from any queues in the database. Users granted the MANAGE_ANY privilege are
allowed to run DBMS_AQADM calls on any schemas in the database.

Example 12–18 Granting Oracle Streams AQ System Privileges

TopicSession t_sess;

((AQjmsSession)t_sess).grantSystemPrivilege("ENQUEUE_ANY", "scott", false);

Revoking Oracle Streams AQ System Privileges
public void revokeSystemPrivilege(java.lang.String privilege,
 java.lang.String grantee)
 throws JMSException

This method revokes Oracle Streams AQ system privileges from a user or role. It has
the following parameters:

Users granted the ENQUEUE_ANY privilege are allowed to enqueue messages to any
queues in the database. Users granted the DEQUEUE_ANY privilege are allowed to
dequeue messages from any queues in the database. Users granted the MANAGE_ANY
privilege are allowed to run DBMS_AQADM calls on any schemas in the database.

Example 12–19 Revoking Oracle Streams AQ System Privileges

TopicSession t_sess;

Parameter Description

privilege ENQUEUE_ANY, DEQUEUE_ANY or MANAGE_ANY

grantee Grantee (user, role, or PUBLIC)

admin_option If this is set to true, then the grantee is allowed to use this procedure to
grant the system privilege to other users or roles

Parameter Description

privilege ENQUEUE_ANY, DEQUEUE_ANY or MANAGE_ANY

grantee Grantee (user, role, or PUBLIC)

Granting and Revoking Privileges

12-14 Oracle Streams Advanced Queuing User’s Guide

((AQjmsSession)t_sess).revokeSystemPrivilege("ENQUEUE_ANY", "scott");

Granting Publish/Subscribe Topic Privileges
public void grantTopicPrivilege(javax.jms.Session session,
 java.lang.String privilege,
 java.lang.String grantee,
 boolean grant_option)
 throws JMSException

This method grants a topic privilege in the publish/subscribe model. Initially only the
queue table owner can use this procedure to grant privileges on the topic. It has the
following parameters:

Example 12–20 Granting Publish/Subscribe Topic Privileges

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).grantTopicPrivilege(
 t_sess, "ENQUEUE", "scott", false);

Revoking Publish/Subscribe Topic Privileges
public void revokeTopicPrivilege(javax.jms.Session session,
 java.lang.String privilege,
 java.lang.String grantee)
 throws JMSException

This method revokes a topic privilege in the publish/subscribe model. It has the
following parameters:

Example 12–21 Revoking Publish/Subscribe Topic Privileges

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).revokeTopicPrivilege(t_sess, "ENQUEUE", "scott");

Granting Point-to-Point Queue Privileges
public void grantQueuePrivilege(javax.jms.Session session,

Parameter Description

session JMS session

privilege ENQUEUE, DEQUEUE, or ALL (ALL means both.)

grantee Grantee (user, role, or PUBLIC)

grant_option If this is set to true, then the grantee is allowed to use this procedure to
grant the system privilege to other users or roles

Parameter Description

session JMS session

privilege ENQUEUE, DEQUEUE, or ALL (ALL means both.)

grantee Revoked grantee (user, role, or PUBLIC)

Granting and Revoking Privileges

Oracle JMS Basic Operations 12-15

 java.lang.String privilege,
 java.lang.String grantee,
 boolean grant_option)
 throws JMSException

This method grants a queue privilege in the point-to-point model. Initially only the
queue table owner can use this procedure to grant privileges on the queue. It has the
following parameters:

Example 12–22 Granting Point-to-Point Queue Privileges

QueueSession q_sess;
Queue queue;

((AQjmsDestination)queue).grantQueuePrivilege(
 q_sess, "ENQUEUE", "scott", false);

Revoking Point-to-Point Queue Privileges
public void revokeQueuePrivilege(javax.jms.Session session,
 java.lang.String privilege,
 java.lang.String grantee)
 throws JMSException

This method revokes queue privileges in the point-to-point model. Initially only the
queue table owner can use this procedure to grant privileges on the queue. It has the
following parameters:

To revoke a privilege, the revoker must be the original grantor of the privilege.
Privileges propagated through the GRANT option are revoked if the grantor privilege is
also revoked.

Example 12–23 Revoking Point-to-Point Queue Privileges

QueueSession q_sess;
Queue queue;

((AQjmsDestination)queue).revokeQueuePrivilege(q_sess, "ENQUEUE", "scott");

Parameter Description

session JMS session

privilege ENQUEUE, DEQUEUE, or ALL (ALL means both.)

grantee Grantee (user, role, or PUBLIC)

grant_option If this is set to true, then the grantee is allowed to use this procedure to
grant the system privilege to other users or roles

Parameter Description

session JMS session

privilege ENQUEUE, DEQUEUE, or ALL (ALL means both.)

grantee Revoked grantee (user, role, or PUBLIC)

Managing Destinations

12-16 Oracle Streams Advanced Queuing User’s Guide

Managing Destinations
This section contains these topics:

■ Starting a Destination

■ Stopping a Destination

■ Altering a Destination

■ Dropping a Destination

Starting a Destination
public void start(javax.jms.Session session,
 boolean enqueue,
 boolean dequeue)
 throws JMSException

This method starts a destination. It has the following parameters:

Example 12–24 Starting a Destination

TopicSession t_sess;
QueueSession q_sess;
Topic topic;
Queue queue;

(AQjmsDestination)topic.start(t_sess, true, true);
(AQjmsDestination)queue.start(q_sess, true, true);

Stopping a Destination
public void stop(javax.jms.Session session,
 boolean enqueue,
 boolean dequeue,
 boolean wait)
 throws JMSException

This method stops a destination. It has the following parameters:

Example 12–25 Stopping a Destination

TopicSession t_sess;

Parameter Description

session JMS session

enqueue If set to TRUE, then enqueue is enabled

dequeue If set to TRUE, then dequeue is enabled

Parameter Description

session JMS session

enqueue If set to TRUE, then enqueue is disabled

dequeue If set to TRUE, then dequeue is disabled

wait If set to true, then pending transactions on the queue/topic are allowed
to complete before the destination is stopped

Propagation Schedules

Oracle JMS Basic Operations 12-17

Topic topic;

((AQjmsDestination)topic).stop(t_sess, true, false);

Altering a Destination
public void alter(javax.jms.Session session,
 oracle.jms.AQjmsDestinationProperty dest_property)
 throws JMSException

This method alters a destination. It has the following properties:

Example 12–26 Altering a Destination

QueueSession q_sess;
Queue queue;
TopicSession t_sess;
Topic topic;
AQjmsDestionationProperty dest_prop1, dest_prop2;

((AQjmsDestination)queue).alter(dest_prop1);
((AQjmsDestination)topic).alter(dest_prop2);

Dropping a Destination
public void drop(javax.jms.Session session)
 throws JMSException

This method drops a destination. It has the following parameter:

Example 12–27 Dropping a Destination

QueueSession q_sess;
Queue queue;
TopicSession t_sess;
Topic topic;

((AQjmsDestionation)queue).drop(q_sess);
((AQjmsDestionation)topic).drop(t_sess);

Propagation Schedules
This section contains these topics:

■ Scheduling a Propagation

■ Enabling a Propagation Schedule

■ Altering a Propagation Schedule

■ Disabling a Propagation Schedule

Parameter Description

session JMS session

dest_property New properties of the queue or topic

Parameter Description

session JMS session

Propagation Schedules

12-18 Oracle Streams Advanced Queuing User’s Guide

■ Unscheduling a Propagation

Scheduling a Propagation
public void schedulePropagation(javax.jms.Session session,
 java.lang.String destination,
 java.util.Date start_time,
 java.lang.Double duration,
 java.lang.String next_time,
 java.lang.Double latency)
 throws JMSException

This method schedules a propagation. It has the following parameters:

If a message has multiple recipients at the same destination in either the same or
different queues, then it is propagated to all of them at the same time.

Example 12–28 Scheduling a Propagation

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).schedulePropagation(
 t_sess, null, null, null, null, new Double(0));

Enabling a Propagation Schedule
public void enablePropagationSchedule(javax.jms.Session session,
 java.lang.String destination)
 throws JMSException

This method enables a propagation schedule. It has the following parameters:

Example 12–29 Enabling a Propagation Schedule

TopicSession t_sess;
Topic topic;

Parameter Description

session JMS session

destination Database link of the remote database for which propagation is being
scheduled. A null string means that propagation is scheduled for all
subscribers in the database of the topic.

start_time Time propagation starts

duration Duration of propagation

next_time Next time propagation starts

latency Latency in seconds that can be tolerated. Latency is the difference
between the time a message was enqueued and the time it was
propagated.

Parameter Description

session JMS session

destination Database link of the destination database. A null string means that
propagation is to the local database.

Propagation Schedules

Oracle JMS Basic Operations 12-19

((AQjmsDestination)topic).enablePropagationSchedule(t_sess, "dbs1");

Altering a Propagation Schedule
public void alterPropagationSchedule(javax.jms.Session session,
 java.lang.String destination,
 java.lang.Double duration,
 java.lang.String next_time,
 java.lang.Double latency)
 throws JMSException

This method alters a propagation schedule. It has the following parameters:

Example 12–30 Altering a Propagation Schedule

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).alterPropagationSchedule(
 t_sess, null, 30, null, new Double(30));

Disabling a Propagation Schedule
public void disablePropagationSchedule(javax.jms.Session session,
 java.lang.String destination)
 throws JMSException

This method disables a propagation schedule. It has the following parameters:

Example 12–31 Disabling a Propagation Schedule

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).disablePropagationSchedule(t_sess, "dbs1");

Parameter Description

session JMS session

destination Database link of the remote database for which propagation is being
scheduled. A null string means that propagation is scheduled for all
subscribers in the database of the topic.

duration Duration of propagation

next_time Next time propagation starts

latency Latency in seconds that can be tolerated. Latency is the difference
between the time a message was enqueued and the time it was
propagated.

Parameter Description

session JMS session

destination Database link of the destination database. A null string means that
propagation is to the local database.

Propagation Schedules

12-20 Oracle Streams Advanced Queuing User’s Guide

Unscheduling a Propagation
public void unschedulePropagation(javax.jms.Session session,
 java.lang.String destination)
 throws JMSException

This method unschedules a previously scheduled propagation. It has the following
parameters:

Example 12–32 Unscheduling a Propagation

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).unschedulePropagation(t_sess, "dbs1");

Parameter Description

session JMS session

destination Database link of the destination database. A null string means that
propagation is to the local database.

Oracle JMS Point-to-Point 13-1

13
Oracle JMS Point-to-Point

This chapter describes the components of the Oracle Streams Advanced Queuing (AQ)
Java Message Service (JMS) operational interface that are specific to point-to-point
operations. Components that are shared by point-to-point and publish/subscribe are
described in Chapter 15, "Oracle JMS Shared Interfaces".

This chapter contains these topics:

■ Creating a Connection with Username/Password

■ Creating a Connection with Default ConnectionFactory Parameters

■ Creating a QueueConnection with Username/Password

■ Creating a QueueConnection with an Open JDBC Connection

■ Creating a QueueConnection with Default ConnectionFactory Parameters

■ Creating a QueueConnection with an Open OracleOCIConnectionPool

■ Creating a Session

■ Creating a QueueSession

■ Creating a QueueSender

■ Sending Messages Using a QueueSender with Default Send Options

■ Sending Messages Using a QueueSender by Specifying Send Options

■ Creating a QueueBrowser for Standard JMS Type Messages

■ Creating a QueueBrowser for Standard JMS Type Messages, Locking Messages

■ Creating a QueueBrowser for Oracle Object Type Messages

■ Creating a QueueBrowser for Oracle Object Type Messages, Locking Messages

■ Creating a QueueReceiver for Standard JMS Type Messages

■ Creating a QueueReceiver for Oracle Object Type Messages

Creating a Connection with Username/Password
public javax.jms.Connection createConnection(
 java.lang.String username,
 java.lang.String password)
 throws JMSException

This method creates a connection supporting both point-to-point and
publish/subscribe operations with the specified username and password. This method
is new and supports JMS version 1.1 specifications. It has the following parameters:

Creating a Connection with Default ConnectionFactory Parameters

13-2 Oracle Streams Advanced Queuing User’s Guide

Creating a Connection with Default ConnectionFactory Parameters
public javax.jms.Connection createConnection()
 throws JMSException

This method creates a connection supporting both point-to-point and
publish/subscribe operations with default ConnectionFactory parameters. This
method is new and supports JMS version 1.1 specifications. If the
ConnectionFactory properties do not contain a default username and password,
then it throws a JMSException.

Creating a QueueConnection with Username/Password
public javax.jms.QueueConnection createQueueConnection(
 java.lang.String username,
 java.lang.String password)
 throws JMSException

This method creates a queue connection with the specified username and password. It
has the following parameters:

Example 13–1 Creating a QueueConnection with Username/Password

QueueConnectionFactory qc_fact = AQjmsFactory.getQueueConnectionFactory(
 "sun123", "oratest", 5521, "thin");
QueueConnection qc_conn = qc_fact.createQueueConnection("jmsuser", "jmsuser");

Creating a QueueConnection with an Open JDBC Connection
public static javax.jms.QueueConnection createQueueConnection(
 java.sql.Connection jdbc_connection)
 throws JMSException

This method creates a queue connection with an open JDBC connection. It is static and
has the following parameter:

The method in Example 13–2 can be used if the user wants to use an existing JDBC
connection (say from a connection pool) for JMS operations. In this case JMS does not
open a new connection, but instead uses the supplied JDBC connection to create the
JMS QueueConnection object.

Parameter Description

username Name of the user connecting to the database for queuing

password Password for creating the connection to the server

Parameter Description

username Name of the user connecting to the database for queuing

password Password for creating the connection to the server

Parameter Description

jdbc_connection Valid open connection to the database

Creating a Session

Oracle JMS Point-to-Point 13-3

Example 13–2 Creating a QueueConnection with an Open JDBC Connection

Connection db_conn; /* previously opened JDBC connection */
QueueConnection qc_conn = AQjmsQueueConnectionFactory.createQueueConnection(
 db_conn);

The method in Example 13–3 is the only way to create a JMS QueueConnection
when using JMS from a Java stored procedures inside the database (JDBC Server
driver)

Example 13–3 Creating a QueueConnection from a Java Procedure Inside Database

OracleDriver ora = new OracleDriver();
QueueConnection qc_conn =
AQjmsQueueConnectionFactory.createQueueConnection(ora.defaultConnection());

Creating a QueueConnection with Default ConnectionFactory Parameters
public javax.jms.QueueConnection createQueueConnection()
 throws JMSException

This method creates a queue connection with default ConnectionFactory parameters.
If the queue connection factory properties do not contain a default username and
password, then it throws a JMSException.

Creating a QueueConnection with an Open OracleOCIConnectionPool
public static javax.jms.QueueConnection createQueueConnection(
 oracle.jdbc.pool.OracleOCIConnectionPool cpool)
 throws JMSException

This method creates a queue connection with an open OracleOCIConnectionPool.
It is static and has the following parameter:

The method in Example 13–4 can be used if the user wants to use an existing
OracleOCIConnectionPool instance for JMS operations. In this case JMS does not
open an new OracleOCIConnectionPool instance, but instead uses the supplied
OracleOCIConnectionPool instance to create the JMS QueueConnection object.

Example 13–4 Creating a QueueConnection with an Open OracleOCIConnectionPool

OracleOCIConnectionPool cpool; /* previously created OracleOCIConnectionPool */
QueueConnection qc_conn =
AQjmsQueueConnectionFactory.createQueueConnection(cpool);

Creating a Session
public javax.jms.Session createSession(boolean transacted,
 int ack_mode)
 throws JMSException

This method creates a Session, which supports both point-to-point and
publish/subscribe operations. This method is new and supports JMS version 1.1

Parameter Description

cpool Valid open OCI connection pool to the database

Creating a QueueSession

13-4 Oracle Streams Advanced Queuing User’s Guide

specifications. Transactional and nontransactional sessions are supported. It has the
following parameters:

Creating a QueueSession
public javax.jms.QueueSession createQueueSession(
 boolean transacted, int ack_mode)
 throws JMSException

This method creates a QueueSession. Transactional and nontransactional sessions
are supported. It has the following parameters:

Example 13–5 Creating a Transactional QueueSession

QueueConnection qc_conn;
QueueSession q_sess = qc_conn.createQueueSession(true, 0);

Creating a QueueSender
public javax.jms.QueueSender createSender(javax.jms.Queue queue)
 throws JMSException

This method creates a QueueSender. If a sender is created without a default queue,
then the destination queue must be specified on every send operation. It has the
following parameter:

Sending Messages Using a QueueSender with Default Send Options
public void send(javax.jms.Queue queue,
 javax.jms.Message message)
 throws JMSException

This method sends a message using a QueueSender with default send options. This
operation uses default values for message priority (1) and timeToLive
(infinite). It has the following parameters:

Parameter Description

transacted If set to true, then the session is transactional

ack_mode Indicates whether the consumer or the client will acknowledge any
messages it receives. It is ignored if the session is transactional. Legal
values are Session.AUTO_ACKNOWLEDGE, Session.CLIENT_
ACKNOWLEDGE, and Session.DUPS_OK_ACKNOWLEDGE.

Parameter Description

transacted If set to true, then the session is transactional

ack_mode Indicates whether the consumer or the client will acknowledge any
messages it receives. It is ignored if the session is transactional. Legal
values are Session.AUTO_ACKNOWLEDGE, Session.CLIENT_
ACKNOWLEDGE, and Session.DUPS_OK_ACKNOWLEDGE.

Parameter Description

queue Name of destination queue

Sending Messages Using a QueueSender by Specifying Send Options

Oracle JMS Point-to-Point 13-5

If the QueueSender has been created with a default queue, then the queue parameter
may not necessarily be supplied in the send() call. If a queue is specified in the
send() operation, then this value overrides the default queue of the QueueSender.

If the QueueSender has been created without a default queue, then the queue
parameter must be specified in every send() call.

Example 13–6 Creating a Sender to Send Messages to Any Queue

/* Create a sender to send messages to any queue */
QueueSession jms_sess;
QueueSender sender1;
TextMessage message;
sender1 = jms_sess.createSender(null);
sender1.send(queue, message);

Example 13–7 Creating a Sender to Send Messages to a Specific Queue

/* Create a sender to send messages to a specific queue */
QueueSession jms_sess;
QueueSender sender2;
Queue billed_orders_que;
TextMessage message;
sender2 = jms_sess.createSender(billed_orders_que);
sender2.send(queue, message);

Sending Messages Using a QueueSender by Specifying Send Options
public void send(javax.jms.Queue queue,
 javax.jms.Message message,
 int deliveryMode,
 int priority,
 long timeToLive)
 throws JMSException

This method sends messages using a QueueSender by specifying send options. It has
the following parameters:

If the QueueSender has been created with a default queue, then the queue parameter
may not necessarily be supplied in the send() call. If a queue is specified in the
send() operation, then this value overrides the default queue of the QueueSender.

Parameter Description

queue Queue to send this message to

message Message to send

Parameter Description

queue Queue to send this message to

message Message to send

deliveryMode Delivery mode to use

priority Priority for this message

timeToLive Message lifetime in milliseconds (zero is unlimited)

Creating a QueueBrowser for Standard JMS Type Messages

13-6 Oracle Streams Advanced Queuing User’s Guide

If the QueueSender has been created without a default queue, then the queue
parameter must be specified in every send() call.

Example 13–8 Sending Messages Using a QueueSender by Specifying Send Options 1

/* Create a sender to send messages to any queue */
/* Send a message to new_orders_que with priority 2 and timetoLive 100000
 milliseconds */
QueueSession jms_sess;
QueueSender sender1;
TextMessage mesg;
Queue new_orders_que
sender1 = jms_sess.createSender(null);
sender1.send(new_orders_que, mesg, DeliveryMode.PERSISTENT, 2, 100000);

Example 13–9 Sending Messages Using a QueueSender by Specifying Send Options 2

/* Create a sender to send messages to a specific queue */
/* Send a message with priority 1 and timetoLive 400000 milliseconds */
QueueSession jms_sess;
QueueSender sender2;
Queue billed_orders_que;
TextMessage mesg;
sender2 = jms_sess.createSender(billed_orders_que);
sender2.send(mesg, DeliveryMode.PERSISTENT, 1, 400000);

Creating a QueueBrowser for Standard JMS Type Messages
public javax.jms.QueueBrowser createBrowser(javax.jms.Queue queue,
 java.lang.String messageSelector)
 throws JMSException

This method creates a QueueBrowser for queues with text, stream, objects, bytes or
MapMessage message bodies. It has the following parameters:

Use methods in java.util.Enumeration to go through list of messages.

Example 13–10 Creating a QueueBrowser Without a Selector

/* Create a browser without a selector */
QueueSession jms_session;
QueueBrowser browser;
Queue queue;
browser = jms_session.createBrowser(queue);

Example 13–11 Creating a QueueBrowser With a Specified Selector

/* Create a browser for queues with a specified selector */
QueueSession jms_session;
QueueBrowser browser;

Parameter Description

queue Queue to access

messageSelector Only messages with properties matching the messageSelector
expression are delivered

See Also: "MessageSelector" on page 11-17

Creating a QueueBrowser for Oracle Object Type Messages

Oracle JMS Point-to-Point 13-7

Queue queue;
/* create a Browser to look at messages with correlationID = RUSH */
browser = jms_session.createBrowser(queue, "JMSCorrelationID = 'RUSH'");

Creating a QueueBrowser for Standard JMS Type Messages, Locking
Messages

public javax.jms.QueueBrowser createBrowser(javax.jms.Queue queue,
 java.lang.String messageSelector,
 boolean locked)
 throws JMSException

This method creates a QueueBrowser for queues with TextMessage, StreamMessage,
ObjectMessage, BytesMessage, or MapMessage message bodies, locking messages
while browsing. Locked messages cannot be removed by other consumers until the
browsing session ends the transaction. It has the following parameters:

Example 13–12 Creating a QueueBrowser Without a Selector, Locking Messages

/* Create a browser without a selector */
QueueSession jms_session;
QueueBrowser browser;
Queue queue;
browser = jms_session.createBrowser(queue, null, true);

Example 13–13 Creating a QueueBrowser With a Specified Selector, Locking Messages

/* Create a browser for queues with a specified selector */
QueueSession jms_session;
QueueBrowser browser;
Queue queue;
/* create a Browser to look at messages with
correlationID = RUSH in lock mode */
browser = jms_session.createBrowser(queue, "JMSCorrelationID = 'RUSH'", true);

Creating a QueueBrowser for Oracle Object Type Messages
public javax.jms.QueueBrowser createBrowser(javax.jms.Queue queue,
 java.lang.String messageSelector,
 java.lang.Object payload_factory)
 throws JMSException

This method creates a QueueBrowser for queues of Oracle object type messages. It
has the following parameters:

Parameter Description

queue Queue to access

messageSelector Only messages with properties matching the messageSelector
expression are delivered

locked If set to true, then messages are locked as they are browsed (similar to a
SELECT for UPDATE)

Parameter Description

queue Queue to access

Creating a QueueBrowser for Oracle Object Type Messages, Locking Messages

13-8 Oracle Streams Advanced Queuing User’s Guide

The CustomDatumFactory for a particular java class that maps to the SQL object
payload can be obtained using the getFactory static method.

Assume the queue test_queue has payload of type SCOTT.EMPLOYEE and the java
class that is generated by Jpublisher for this Oracle object type is called Employee. The
Employee class implements the CustomDatum interface. The CustomDatumFactory
for this class can be obtained by using the Employee.getFactory() method.

Example 13–14 Creating a QueueBrowser for ADTMessages

/* Create a browser for a Queue with AdtMessage messages of type EMPLOYEE*/
QueueSession jms_session
QueueBrowser browser;
Queue test_queue;
browser = ((AQjmsSession)jms_session).createBrowser(test_queue,
 "corrid='EXPRESS'",
 Employee.getFactory());

Creating a QueueBrowser for Oracle Object Type Messages, Locking
Messages

public javax.jms.QueueBrowser createBrowser(javax.jms.Queue queue,
 java.lang.String messageSelector,
 java.lang.Object payload_factory,
 boolean locked)
 throws JMSException

This method creates a QueueBrowser for queues of Oracle object type messages,
locking messages while browsing. It has the following parameters:

messageSelector Only messages with properties matching the messageSelector
expression are delivered

payload_factory CustomDatumFactory or ORADataFactory for the java class that
maps to the Oracle ADT

See Also: "MessageSelector" on page 11-17

Note: CustomDatum support will be deprecated in a future release.
Use ORADataFactory payload factories instead.

Parameter Description

queue Queue to access

messageSelector Only messages with properties matching the messageSelector
expression are delivered

payload_factory CustomDatumFactory or ORADataFactory for the java class that
maps to the Oracle ADT

locked If set to true, then messages are locked as they are browsed (similar to a
SELECT for UPDATE)

Parameter Description

Creating a QueueReceiver for Oracle Object Type Messages

Oracle JMS Point-to-Point 13-9

Example 13–15 Creating a QueueBrowser for AdtMessages, Locking Messages

/* Create a browser for a Queue with AdtMessage messagess of type EMPLOYEE* in
lock mode/
QueueSession jms_session
QueueBrowser browser;
Queue test_queue;
browser = ((AQjmsSession)jms_session).createBrowser(test_queue,
 null,
 Employee.getFactory(),
 true);

Creating a QueueReceiver for Standard JMS Type Messages
public javax.jms.QueueReceiver createReceiver(javax.jms.Queue queue,
 java.lang.String messageSelector)
 throws JMSException

This method creates a QueueReceiver for queues of standard JMS type messages. It
has the following parameters:

Example 13–16 Creating a QueueReceiver Without a Selector

/* Create a receiver without a selector */
QueueSession jms_session
QueueReceiver receiver;
Queue queue;
receiver = jms_session.createReceiver(queue);

Example 13–17 Creating a QueueReceiver With a Specified Selector

/* Create a receiver for queues with a specified selector */
QueueSession jms_session;
QueueReceiver receiver;
Queue queue;
/* create Receiver to receive messages with correlationID starting with EXP */
browser = jms_session.createReceiver(queue, "JMSCorrelationID LIKE 'EXP%'");

Creating a QueueReceiver for Oracle Object Type Messages
public javax.jms.QueueReceiver createReceiver(javax.jms.Queue queue,
 java.lang.String messageSelector,
 java.lang.Object payload_factory)
 throws JMSException

Note: CustomDatum support will be deprecated in a future release.
Use ORADataFactory payload factories instead.

Parameter Description

queue Queue to access

messageSelector Only messages with properties matching the messageSelector
expression are delivered

See Also: "MessageSelector" on page 11-17

Creating a QueueReceiver for Oracle Object Type Messages

13-10 Oracle Streams Advanced Queuing User’s Guide

This method creates a QueueReceiver for queues of Oracle object type messages. It
has the following parameters:

The CustomDatumFactory for a particular java class that maps to the SQL object
type payload can be obtained using the getFactory static method.

Assume the queue test_queue has payload of type SCOTT.EMPLOYEE and the java
class that is generated by Jpublisher for this Oracle object type is called Employee. The
Employee class implements the CustomDatum interface. The ORADataFactory for
this class can be obtained by using the Employee.getFactory() method.

Example 13–18 Creating a QueueReceiver for AdtMessage Messages

/* Create a receiver for a Queue with AdtMessage messages of type EMPLOYEE*/
QueueSession jms_session
QueueReceiver receiver;
Queue test_queue;
browser = ((AQjmsSession)jms_session).createReceiver(
 test_queue,
 "JMSCorrelationID = 'MANAGER',
 Employee.getFactory());

Parameter Description

queue Queue to access

messageSelector Only messages with properties matching the messageSelector
expression are delivered

payload_factory CustomDatumFactory or ORADataFactory for the java class that
maps to the Oracle ADT

See Also: "MessageSelector" on page 11-17

Note: CustomDatum support will be deprecated in a future release.
Use ORADataFactory payload factories instead.

Oracle JMS Publish/Subscribe 14-1

14
Oracle JMS Publish/Subscribe

This chapter describes the components of the Oracle Streams Advanced Queuing (AQ)
Java Message Service (JMS) operational interface that are specific to
publish/subscribe operations. Components that are shared by point-to-point and
publish/subscribe are described in Chapter 15, "Oracle JMS Shared Interfaces".

This chapter contains these topics:

■ Creating a Connection with Username/Password

■ Creating a Connection with Default ConnectionFactory Parameters

■ Creating a TopicConnection with Username/Password

■ Creating a TopicConnection with Open JDBC Connection

■ Creating a TopicConnection with an Open OracleOCIConnectionPool

■ Creating a Session

■ Creating a TopicSession

■ Creating a TopicPublisher

■ Publishing Messages with Minimal Specification

■ Publishing Messages Specifying Topic

■ Publishing Messages Specifying Delivery Mode, Priority and TimeToLive

■ Publishing Messages Specifying a Recipient List

■ Creating a DurableSubscriber for a JMS Topic Without Selector

■ Creating a DurableSubscriber for a JMS Topic With Selector

■ Creating a DurableSubscriber for an Oracle Object Type Topic Without Selector

■ Creating a DurableSubscriber for an Oracle Object Type Topic With Selector

■ Specifying Transformations for Topic Subscribers

■ Creating a Remote Subscriber for JMS Messages

■ Creating a Remote Subscriber for Oracle Object Type Messages

■ Specifying Transformations for Remote Subscribers

■ Unsubscribing a Durable Subscription for a Local Subscriber

■ Unsubscribing a Durable Subscription for a Remote Subscriber

■ Creating a TopicReceiver for a Topic of Standard JMS Type Messages

■ Creating a TopicReceiver for a Topic of Oracle Object Type Messages

Creating a Connection with Username/Password

14-2 Oracle Streams Advanced Queuing User’s Guide

■ Creating a TopicBrowser for Standard JMS Messages

■ Creating a TopicBrowser for Standard JMS Messages, Locking Messages

■ Creating a TopicBrowser for Oracle Object Type Messages

■ Creating a TopicBrowser for Oracle Object Type Messages, Locking Messages

■ Browsing Messages Using a TopicBrowser

Creating a Connection with Username/Password
public javax.jms.Connection createConnection(
 java.lang.String username,
 java.lang.String password)
 throws JMSException

This method creates a connection supporting both point-to-point and
publish/subscribe operations with the specified username and password. This method
is new and supports JMS version 1.1 specifications. It has the following parameters:

Creating a Connection with Default ConnectionFactory Parameters
public javax.jms.Connection createConnection()
 throws JMSException

This method creates a connection supporting both point-to-point and
publish/subscribe operations with default ConnectionFactory parameters. This
method is new and supports JMS version 1.1 specifications. If the
ConnectionFactory properties do not contain a default username and password,
then it throws a JMSException.

Creating a TopicConnection with Username/Password
public javax.jms.TopicConnection createTopicConnection(
 java.lang.String username,
 java.lang.String password)
 throws JMSException

This method creates a TopicConnection with the specified username/password. It
has the following parameters:

Example 14–1 Creating a TopicConnection with Username/Password

TopicConnectionFactory tc_fact = AQjmsFactory.getTopicConnectionFactory("sun123",
"oratest", 5521, "thin");
/* Create a TopicConnection using a username/password */
TopicConnection tc_conn = tc_fact.createTopicConnection("jmsuser", "jmsuser");

Parameter Description

username Name of the user connecting to the database for queuing

password Password for creating the connection to the server

Parameter Description

username Name of the user connecting to the database for queuing

password Password for creating the connection to the server

Creating a Session

Oracle JMS Publish/Subscribe 14-3

Creating a TopicConnection with Open JDBC Connection
public static javax.jms.TopicConnection createTopicConnection(
 java.sql.Connection jdbc_connection)
 throws JMSException

This method creates a TopicConnection with open JDBC connection. It has the
following parameter:

Example 14–2 Creating a TopicConnection with Open JDBC Connection

Connection db_conn; /*previously opened JDBC connection */
TopicConnection tc_conn =
AQjmsTopicConnectionFactory createTopicConnection(db_conn);

Example 14–3 Creating a TopicConnection with New JDBC Connection

OracleDriver ora = new OracleDriver();
TopicConnection tc_conn =
AQjmsTopicConnectionFactory.createTopicConnection(ora.defaultConnection());

Creating a TopicConnection with an Open OracleOCIConnectionPool
public static javax.jms.TopicConnection createTopicConnection(
 oracle.jdbc.pool.OracleOCIConnectionPool cpool)
 throws JMSException

This method creates a TopicConnection with an open
OracleOCIConnectionPool. It is static and has the following parameter:

Example 14–4 Creating a TopicConnection with Open OracleOCIConnectionPool

OracleOCIConnectionPool cpool; /* previously created OracleOCIConnectionPool */
TopicConnection tc_conn =
AQjmsTopicConnectionFactory.createTopicConnection(cpool);

Creating a Session
public javax.jms.Session createSession(boolean transacted,
 int ack_mode)
 throws JMSException

This method creates a Session supporting both point-to-point and publish/subscribe
operations. It is new and supports JMS version 1.1 specifications. It has the following
parameters:

Parameter Description

jdbc_connection Valid open connection to database

Parameter Description

cpool Valid open OCI connection pool to the database

Parameter Description

transacted If set to true, then the session is transactional

Creating a TopicSession

14-4 Oracle Streams Advanced Queuing User’s Guide

Creating a TopicSession
public javax.jms.TopicSession createTopicSession(boolean transacted,
 int ack_mode)
 throws JMSException

This method creates a TopicSession. It has the following parameters:

Example 14–5 Creating a TopicSession

TopicConnection tc_conn;
TopicSession t_sess = tc_conn.createTopicSession(true,0);

Creating a TopicPublisher
public javax.jms.TopicPublisher createPublisher(javax.jms.Topic topic)
 throws JMSException

This method creates a TopicPublisher. It has the following parameter:

Publishing Messages with Minimal Specification
public void publish(javax.jms.Message message)
 throws JMSException

This method publishes a message with minimal specification. It has the following
parameter:

The TopicPublisher uses the default values for message priority (1) and
timeToLive (infinite).

Example 14–6 Publishing Without Specifying Topic

/* Publish without specifying topic */

ack_mode Indicates whether the consumer or the client will acknowledge any
messages it receives. It is ignored if the session is transactional. Legal
values are Session.AUTO_ACKNOWLEDGE, Session.CLIENT_
ACKNOWLEDGE, and Session.DUPS_OK_ACKNOWLEDGE.

Parameter Description

transacted If set to true, then the session is transactional

ack_mode Indicates whether the consumer or the client will acknowledge any
messages it receives. It is ignored if the session is transactional. Legal
values are Session.AUTO_ACKNOWLEDGE, Session.CLIENT_
ACKNOWLEDGE, and Session.DUPS_OK_ACKNOWLEDGE.

Parameter Description

topic Topic to publish to, or null if this is an unidentified producer

Parameter Description

message Message to send

Parameter Description

Publishing Messages Specifying Topic

Oracle JMS Publish/Subscribe 14-5

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisher1;
Topic shipped_orders;
int myport = 5521;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME",
 "MYSID",
 myport,
 "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
/* create TopicSession */
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
/* get shipped orders topic */
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE",
 "Shipped_Orders_Topic");
publisher1 = jms_sess.createPublisher(shipped_orders);
/* create TextMessage */
TextMessage jms_sess.createTextMessage();
/* publish without specifying the topic */
publisher1.publish(text_message);

Example 14–7 Publishing Specifying Correlation and Delay

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisher1;
Topic shipped_orders;
int myport = 5521;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME",
 "MYSID",
 myport,
 "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE",
 "Shipped_Orders_Topic");
publisher1 = jms_sess.createPublisher(shipped_orders);
/* Create TextMessage */
TextMessage jms_sess.createTextMessage();
/* Set correlation and delay */
/* Set correlation */
jms_sess.setJMSCorrelationID("FOO");
/* Set delay of 30 seconds */
jms_sess.setLongProperty("JMS_OracleDelay", 30);
/* Publish */
publisher1.publish(text_message);

Publishing Messages Specifying Topic
public void publish(javax.jms.Topic topic, javax.jms.Message message)
 throws JMSException

Publishing Messages Specifying Delivery Mode, Priority and TimeToLive

14-6 Oracle Streams Advanced Queuing User’s Guide

This method publishes a message specifying the topic. It has the following parameters:

If the TopicPublisher has been created with a default topic, then the topic
parameter may not be specified in the publish() call. If a topic is specified, then that
value overrides the default in the TopicPublisher. If the TopicPublisher has
been created without a default topic, then the topic must be specified with the
publish() call.

Example 14–8 Publishing Specifying Topic

/* Publish specifying topic */
TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisher1;
Topic shipped_orders;
int myport = 5521;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 'MYHOSTNAME', 'MYSID', myport, 'oci8');
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
/* create TopicPublisher */
publisher1 = jms_sess.createPublisher(null);
/* get topic object */
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 'WS', 'Shipped_Orders_Topic');
/* create text message */
TextMessage jms_sess.createTextMessage();
/* publish specifying the topic */
publisher1.publish(shipped_orders, text_message);

Publishing Messages Specifying Delivery Mode, Priority and TimeToLive
public void publish(javax.jms.Topic topic,
 javax.jms.Message message,
 oracle.jms.AQjmsAgent[] recipient_list,
 int deliveryMode,
 int priority,
 long timeToLive)
 throws JMSException

This method publishes a message specifying delivery mode, priority and
TimeToLive. It has the following parameters:

Parameter Description

topic Topic to publish to

message Message to send

Parameter Description

topic Topic to which to publish the message (overrides the default topic of
the MessageProducer)

message Message to publish

Publishing Messages Specifying a Recipient List

Oracle JMS Publish/Subscribe 14-7

Example 14–9 Publishing Specifying Priority and TimeToLive

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisher1;
Topic shipped_orders;
int myport = 5521;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
publisher1 = jms_sess.createPublisher(shipped_orders);
/* Create TextMessage */
TextMessage jms_sess.createTextMessage();
/* Publish message with priority 1 and time to live 200 seconds */
publisher1.publish(text_message, DeliveryMode.PERSISTENT, 1, 200000);

Publishing Messages Specifying a Recipient List
public void publish(javax.jms.Message message,
 oracle.jms.AQjmsAgent[] recipient_list)
 throws JMSException

This method publishes a message specifying a recipient list overriding topic
subscribers. It has the following parameters:

Example 14–10 Publishing Specifying a Recipient List Overriding Topic Subscribers

/* Publish specifying priority and timeToLive */
TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisher1;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent[] recipList;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(

recipient_list List of recipients to which the message is published. Recipients are of
type AQjmsAgent.

deliveryMode PERSISTENT or NON_PERSISTENT (only PERSISTENT is supported in
this release)

priority Priority for this message

timeToLive Message lifetime in milliseconds (zero is unlimited)

Parameter Description

message Message to publish

recipient_list List of recipients to which the message is published. Recipients are of
type AQjmsAgent.

Parameter Description

Creating a DurableSubscriber for a JMS Topic Without Selector

14-8 Oracle Streams Advanced Queuing User’s Guide

 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
publisher1 = jms_sess.createPublisher(shipped_orders);
/* create TextMessage */
TextMessage jms_sess.createTextMessage();
/* create two receivers */
recipList = new AQjmsAgent[2];
recipList[0] = new AQjmsAgent(
 "ES", "ES.shipped_orders_topic", AQAgent.DEFAULT_AGENT_PROTOCOL);
recipList[1] = new AQjmsAgent(
 "WS", "WS.shipped_orders_topic", AQAgent.DEFAULT_AGENT_PROTOCOL);
/* publish message specifying a recipient list */
publisher1.publish(text_message, recipList);

Creating a DurableSubscriber for a JMS Topic Without Selector
public javax.jms.TopicSubscriber createDurableSubscriber(
 javax.jms.Topic topic,
 java.lang.String subs_name)
 throws JMSException

This method creates a DurableSubscriber for a JMS topic without selector. It has the
following parameters:

Exclusive Access to Topics
CreateDurableSubscriber() and Unsubscribe() both require exclusive access
to their target topics. If there are pending JMS send(), publish(), or receive()
operations on the same topic when these calls are applied, then exception ORA - 4020
is raised. There are two solutions to the problem:

■ Limit calls to createDurableSubscriber() and Unsubscribe() to the setup
or cleanup phase when there are no other JMS operations pending on the topic.
That makes sure that the required resources are not held by other JMS operational
calls.

■ Call TopicSession.commit before calling createDurableSubscriber() or
Unsubscribe().

Example 14–11 Creating a Durable Subscriber for a JMS Topic Without Selector

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent[] recipList;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(

Parameter Description

topic Non-temporary topic to subscribe to

subs_name Name used to identify this subscription

Creating a DurableSubscriber for a JMS Topic With Selector

Oracle JMS Publish/Subscribe 14-9

 "MYHOSTNAME",
 "MYSID",
 myport,
 "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE",
 "Shipped_Orders_Topic");
/* create a durable subscriber on the shipped_orders topic*/
subscriber1 = jms_sess.createDurableSubscriber(
 shipped_orders,
 'WesternShipping');

Creating a DurableSubscriber for a JMS Topic With Selector
public javax.jms.TopicSubscriber createDurableSubscriber(
 javax.jms.Topic topic,
 java.lang.String subs_name,
 java.lang.String messageSelector,
 boolean noLocal)
 throws JMSException

This method creates a durable subscriber for a JMS topic with selector. It has the
following parameters:

A client can change an existing durable subscription by creating a durable
TopicSubscriber with the same name and a different messageSelector. An
unsubscribe call is needed to end the subscription to the topic.

Example 14–12 Creating a Durable Subscriber for a JMS Topic With Selector

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent[] recipList;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");

Parameter Description

topic Non-temporary topic to subscribe to

subs_name Name used to identify this subscription

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

noLocal If set to true, then it inhibits the delivery of messages published by its
own connection

See Also: "Exclusive Access to Topics" on page 14-8

See Also: "MessageSelector" on page 11-17

Creating a DurableSubscriber for an Oracle Object Type Topic Without Selector

14-10 Oracle Streams Advanced Queuing User’s Guide

jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
/* create a subscriber */
/* with condition on JMSPriority and user property 'Region' */
subscriber1 = jms_sess.createDurableSubscriber(
 shipped_orders, 'WesternShipping',
 "JMSPriority > 2 and Region like 'Western%'", false);

Creating a DurableSubscriber for an Oracle Object Type Topic Without
Selector

public javax.jms.TopicSubscriber createDurableSubscriber(
 javax.jms.Topic topic,
 java.lang.String subs_name,
 java.lang.Object payload_factory)
 throws JMSException

This method creates a durable subscriber for an Oracle object type topic without
selector. It has the following parameters:

Example 14–13 Creating a Durable Subscriber for an Oracle Object Type Topic Without
Selector

/* Subscribe to an ADT queue */
TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int my[port = 5521;
AQjmsAgent[] recipList;
/* the java mapping of the oracle object type created by J Publisher */
ADTMessage message;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
/* create a subscriber, specifying the correct CustomDatumFactory */

Parameter Description

topic Non-temporary topic to subscribe to

subs_name Name used to identify this subscription

payload_factory CustomDatumFactory or ORADataFactory for the Java class that
maps to the Oracle ADT

Note: CustomDatum support will be deprecated in a future release.
Use ORADataFactory payload factories instead.

See Also: "Exclusive Access to Topics" on page 14-8

Creating a DurableSubscriber for an Oracle Object Type Topic With Selector

Oracle JMS Publish/Subscribe 14-11

subscriber1 = jms_sess.createDurableSubscriber(
 shipped_orders, 'WesternShipping', AQjmsAgent.getFactory());

Creating a DurableSubscriber for an Oracle Object Type Topic With
Selector

public javax.jms.TopicSubscriber createDurableSubscriber(
 javax.jms.Topic topic,
 java.lang.String subs_name,
 java.lang.String messageSelector,
 boolean noLocal,
 java.lang.Object payload_factory)
 throws JMSException

This method creates a durable subscriber for an Oracle object type topic with selector.
It has the following parameters:

Example 14–14 Creating a Durable Subscriber for an Oracle Object Type Topic With
Selector

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent[] recipList;
/* the java mapping of the oracle object type created by J Publisher */
ADTMessage message;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
/* create a subscriber, specifying correct CustomDatumFactory and selector */
subscriber1 = jms_sess.createDurableSubscriber(

Parameter Description

topic Non-temporary topic to subscribe to

subs_name Name used to identify this subscription

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

noLocal If set to true, then it inhibits the delivery of messages published by its
own connection

payload_factory CustomDatumFactory or ORADataFactory for the Java class that
maps to the Oracle ADT

Note: CustomDatum support will be deprecated in a future release.
Use ORADataFactory payload factories instead.

See Also: "Exclusive Access to Topics" on page 14-8

Specifying Transformations for Topic Subscribers

14-12 Oracle Streams Advanced Queuing User’s Guide

 shipped_orders, "WesternShipping",
 "priority > 1 and tab.user_data.region like 'WESTERN %'", false,
 ADTMessage.getFactory());

Specifying Transformations for Topic Subscribers
A transformation can be supplied when sending/publishing a message to a
queue/topic. The transformation is applied before putting the message into the
queue/topic.

The application can specify a transformation using the setTransformation
interface in the AQjmsQueueSender and AQjmsTopicPublisher interfaces.

Example 14–15 Sending Messages to a Destination Using a Transformation

Suppose that the orders that are processed by the order entry application should be
published to WS_bookedorders_topic. The transformation OE2WS (defined in the
previous section) is supplied so that the messages are inserted into the topic in the
correct format.

public void ship_bookedorders(
 TopicSession jms_session,
 AQjmsADTMessage adt_message)
{
 TopicPublisher publisher;
 Topic topic;

 try
 {
 /* get a handle to the WS_bookedorders_topic */
 topic = ((AQjmsSession)jms_session).getTopic("WS", "WS_bookedorders_topic");

publisher = jms_session.createPublisher(topic);

 /* set the transformation in the publisher */
((AQjmsTopicPublisher)publisher).setTransformation("OE2WS");
publisher.publish(topic, adt_message);

 }
 catch (JMSException ex)
 {
 System.out.println("Exception :" ex);
 }
}

A transformation can also be specified when creating topic subscribers using the
CreateDurableSubscriber() call. The transformation is applied to the retrieved
message before returning it to the subscriber. If the subscriber specified in the
CreateDurableSubscriber() call already exists, then its transformation is set to
the specified transformation.

Example 14–16 Specifying Transformations for Topic Subscribers

The Western Shipping application subscribes to the OE_bookedorders_topic with the
transformation OE2WS. This transformation is applied to the messages and the
returned message is of Oracle object type WS.WS_orders.

Suppose that the WSOrder java class has been generated by Jpublisher to map to the
Oracle object WS.WS_order:

public AQjmsAdtMessage retrieve_bookedorders(TopicSession jms_session)
{

Creating a Remote Subscriber for JMS Messages

Oracle JMS Publish/Subscribe 14-13

 TopicSubscriber subscriber;
 Topic topic;
 AQjmsAdtMessage msg = null;

 try
 {
 /* get a handle to the OE_bookedorders_topic */
 topic = ((AQjmsSession)jms_session).getTopic("OE", "OE_bookedorders_topic");

 /* create a subscriber with the transformation OE2WS */
 subs = ((AQjmsSession)jms_session).createDurableSubscriber(
 topic, 'WShip', null, false, WSOrder.getFactory(), "OE2WS");
 msg = subscriber.receive(10);
 }
 catch (JMSException ex)
 {
 System.out.println("Exception :" ex);
 }
 return (AQjmsAdtMessage)msg;
}

Creating a Remote Subscriber for JMS Messages
public void createRemoteSubscriber(javax.jms.Topic topic,
 oracle.jms.AQjmsAgent remote_subscriber,
 java.lang.String messageSelector)
 throws JMSException

This method creates a remote subscriber for topics of JMS messages. It has the
following parameters:

Oracle Streams AQ allows topics to have remote subscribers, for example, subscribers
at other topics in the same or different database. In order to use remote subscribers,
you must set up propagation between the local and remote topic.

Remote subscribers can be a specific consumer at the remote topic or all subscribers at
the remote topic. A remote subscriber is defined using the AQjmsAgent structure. An
AQjmsAgent consists of a name and address. The name refers to the consumer_name
at the remote topic. The address refers to the remote topic. Its syntax is
schema.topic_name[@dblink].

To publish messages to a particular consumer at the remote topic, the
subscription_name of the recipient at the remote topic must be specified in the
name field of AQjmsAgent, and the remote topic must be specified in the address
field. To publish messages to all subscribers of the remote topic, the name field of
AQjmsAgent must be set to null.

Parameter Description

topic Topic to subscribe to

remote_subscriber AQjmsAgent that refers to the remote subscriber

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

See Also: "MessageSelector" on page 11-17

Creating a Remote Subscriber for Oracle Object Type Messages

14-14 Oracle Streams Advanced Queuing User’s Guide

Example 14–17 Creating a Remote Subscriber for Topics of JMS Messages

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int my[port = 5521;
AQjmsAgent remoteAgent;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
remoteAgent = new AQjmsAgent("WesternRegion", "WS.shipped_orders_topic", null);
/* create a remote subscriber (selector is null)*/
subscriber1 = ((AQjmsSession)jms_sess).createRemoteSubscriber(
 shipped_orders, remoteAgent, null);

Creating a Remote Subscriber for Oracle Object Type Messages
public void createRemoteSubscriber(javax.jms.Topic topic,
 oracle.jms.AQjmsAgent remote_subscriber,
 java.lang.String messageSelector,
 java.lang.Object payload_factory)
 throws JMSException

This method creates a remote subscriber for topics of Oracle object type messages. It
has the following parameters:

Oracle Streams AQ allows topics to have remote subscribers, for example, subscribers
at other topics in the same or different database. In order to use remote subscribers,
you must set up propagation between the local and remote topic.

Remote subscribers can be a specific consumer at the remote topic or all subscribers at
the remote topic. A remote subscriber is defined using the AQjmsAgent structure. An
AQjmsAgent consists of a name and address. The name refers to the consumer_name

Parameter Description

topic Topic to subscribe to

remote_subscriber AQjmsAgent that refers to the remote subscriber

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

payload_factory CustomDatumFactory or ORADataFactory for the Java class that
maps to the Oracle ADT

Note: CustomDatum support will be deprecated in a future release.
Use ORADataFactory payload factories instead.

See Also: "MessageSelector" on page 11-17

Specifying Transformations for Remote Subscribers

Oracle JMS Publish/Subscribe 14-15

at the remote topic. The address refers to the remote topic. Its syntax is
schema.topic_name[@dblink].

To publish messages to a particular consumer at the remote topic, the
subscription_name of the recipient at the remote topic must be specified in the
name field of AQjmsAgent, and the remote topic must be specified in the address
field. To publish messages to all subscribers of the remote topic, the name field of
AQjmsAgent must be set to null.

Example 14–18 Creating a Remote Subscriber for Topics of Oracle Object Type
Messages

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int my[port = 5521;
AQjmsAgent remoteAgent;
ADTMessage message;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
/* create TopicSession */
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
/* get the Shipped order topic */
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
/* create a remote agent */
remoteAgent = new AQjmsAgent("WesternRegion", "WS.shipped_orders_topic", null);
/* create a remote subscriber with null selector*/
subscriber1 = ((AQjmsSession)jms_sess).createRemoteSubscriber(
 shipped_orders, remoteAgent, null, message.getFactory);

Specifying Transformations for Remote Subscribers
Oracle Streams AQ allows a remote subscriber, that is a subscriber at another database,
to subscribe to a topic.

Transformations can be specified when creating remote subscribers using the
createRemoteSubscriber() call. This enables propagation of messages between
topics of different formats. When a message published at a topic meets the criterion of
a remote subscriber, Oracle Streams AQ automatically propagates the message to the
queue/topic at the remote database specified for the remote subscriber. If a
transformation is also specified, then Oracle Streams AQ applies the transformation to
the message before propagating it to the queue/topic at the remote database.

Example 14–19 Specifying Transformations for Remote Subscribers

A remote subscriber is created at the OE.OE_bookedorders_topic so that messages are
automatically propagated to the WS.WS_bookedorders_topic. The transformation

Note: AQ does not support the use of multiple dblink to the same
destination. As a workaround, use a single database link for each
destination.

Unsubscribing a Durable Subscription for a Local Subscriber

14-16 Oracle Streams Advanced Queuing User’s Guide

OE2WS is specified when creating the remote subscriber so that the messages reaching
the WS_bookedorders_topic have the correct format.

Suppose that the WSOrder java class has been generated by Jpublisher to map to the
Oracle object WS.WS_order

public void create_remote_sub(TopicSession jms_session)
{
 AQjmsAgent subscriber;
 Topic topic;

 try
 {
 /* get a handle to the OE_bookedorders_topic */
 topic = ((AQjmsSession)jms_session).getTopic("OE", "OE_bookedorders_topic");
 subscriber = new AQjmsAgent("WShip", "WS.WS_bookedorders_topic");

 ((AQjmsSession)jms_session).createRemoteSubscriber(
 topic, subscriber, null, WSOrder.getFactory(),"OE2WS");
 }
 catch (JMSException ex)
 {
 System.out.println("Exception :" ex);
 }
}

Unsubscribing a Durable Subscription for a Local Subscriber
public void unsubscribe(javax.jms.Topic topic,
 java.lang.String subs_name)
 throws JMSException

This method unsubscribes a durable subscription for a local subscriber. It has the
following parameters:

Example 14–20 Unsubscribing a Durable Subscription for a Local Subscriber

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent[] recipList;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
/* unsusbcribe "WesternShipping" from shipped_orders */

Parameter Description

topic Non-temporary topic to unsubscribe

subs_name Name used to identify this subscription

See Also: "Exclusive Access to Topics" on page 14-8

Creating a TopicReceiver for a Topic of Standard JMS Type Messages

Oracle JMS Publish/Subscribe 14-17

jms_sess.unsubscribe(shipped_orders, "WesternShipping");

Unsubscribing a Durable Subscription for a Remote Subscriber
public void unsubscribe(javax.jms.Topic topic,
 oracle.jms.AQjmsAgent remote_subscriber)
 throws JMSException

This method unsubscribes a durable subscription for a remote subscriber. It has the
following parameters:

Example 14–21 Unsubscribing a Durable Subscription for a Remote Subscriber

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent remoteAgent;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
remoteAgent = new AQjmsAgent("WS", "WS.Shipped_Orders_Topic", null);
/* unsubscribe the remote agent from shipped_orders */
((AQjmsSession)jms_sess).unsubscribe(shipped_orders, remoteAgent);

Creating a TopicReceiver for a Topic of Standard JMS Type Messages
public oracle.jms.AQjmsTopicReceiver createTopicReceiver(
 javax.jms.Topic topic,
 java.lang.String receiver_name,
 java.lang.String messageSelector)
 throws JMSException

This method creates a TopicReceiver for a topic of standard JMS type messages. It
has the following parameters:

Parameter Description

topic Non-temporary topic to unsubscribe

remote_subscriber AQjmsAgent that refers to the remote subscriber. The address field of
the AQjmsAgent cannot be null.

See Also: "Exclusive Access to Topics" on page 14-8

Parameter Description

topic Topic to access

receiver_name Name of message receiver

Creating a TopicReceiver for a Topic of Oracle Object Type Messages

14-18 Oracle Streams Advanced Queuing User’s Guide

Oracle Streams AQ allows messages to be sent to specified recipients. These receivers
may or may not be subscribers of the topic. If the receiver is not a subscriber to the
topic, then it receives only those messages that are explicitly addressed to it. This
method must be used order to create a TopicReceiver object for consumers that are
not durable subscribers.

Example 14–22 Creating a TopicReceiver for Standard JMS Type Messages

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = ull;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;
TopicReceiver receiver;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "WS", "Shipped_Orders_Topic");
receiver = ((AQjmsSession)jms_sess).createTopicReceiver(
 shipped_orders, "WesternRegion", null);

Creating a TopicReceiver for a Topic of Oracle Object Type Messages
public oracle.jms.AQjmsTopicReceiver createTopicReceiver(
 javax.jms.Topic topic,
 java.lang.String receiver_name,
 java.lang.String messageSelector,
 java.lang.Object payload_factory)
 throws JMSException

This method creates a TopicReceiver for a topic of Oracle object type messages with
selector. It has the following parameters:

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

See Also: "MessageSelector" on page 11-17

Parameter Description

topic Topic to access

receiver_name Name of message receiver

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

payload_factory CustomDatumFactory or ORADataFactory for the Java class that
maps to the Oracle ADT

Parameter Description

Creating a TopicBrowser for Standard JMS Messages

Oracle JMS Publish/Subscribe 14-19

Oracle Streams AQ allows messages to be sent to all subscribers of a topic or to
specified recipients. These receivers may or may not be subscribers of the topic. If the
receiver is not a subscriber to the topic, then it receives only those messages that are
explicitly addressed to it. This method must be used order to create a
TopicReceiver object for consumers that are not durable subscribers.

Example 14–23 Creating a TopicReceiver for Oracle Object Type Messages

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;
TopicReceiver receiver;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "WS", "Shipped_Orders_Topic");
receiver = ((AQjmsSession)jms_sess).createTopicReceiver(
 shipped_orders, "WesternRegion", null);

Creating a TopicBrowser for Standard JMS Messages
public oracle.jms.TopicBrowser createBrowser(javax.jms.Topic topic,
 java.lang.String cons_name,
 java.lang.String messageSelector)
 throws JMSException

This method creates a TopicBrowser for topics with TextMessage,
StreamMessage, ObjectMessage, BytesMessage, or MapMessage message
bodies. It has the following parameters:

Note: CustomDatum support will be deprecated in a future release.
Use ORADataFactory payload factories instead.

See Also: "MessageSelector" on page 11-17

Parameter Description

topic Topic to access

cons_name Name of the durable subscriber or consumer

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

payload_factory CustomDatumFactory or ORADataFactory for the Java class that
maps to the Oracle ADT

See Also: "MessageSelector" on page 11-17

Creating a TopicBrowser for Standard JMS Messages, Locking Messages

14-20 Oracle Streams Advanced Queuing User’s Guide

Example 14–24 Creating a TopicBrowser Without a Selector

/* Create a browser without a selector */
TopicSession jms_session;
TopicBrowser browser;
Topic topic;
browser = ((AQjmsSession) jms_session).createBrowser(topic, "SUBS1");

Example 14–25 Creating a TopicBrowser With a Specified Selector

/* Create a browser for topics with a specified selector */
TopicSession jms_session;
TopicBrowser browser;
Topic topic;
/* create a Browser to look at messages with correlationID = RUSH */
browser = ((AQjmsSession) jms_session).createBrowser(
 topic, "SUBS1", "JMSCorrelationID = 'RUSH'");

Creating a TopicBrowser for Standard JMS Messages, Locking Messages
public oracle.jms.TopicBrowser createBrowser(javax.jms.Topic topic,
 java.lang.String cons_name,
 java.lang.String messageSelector,
 boolean locked)
 throws JMSException

This method creates a TopicBrowser for topics with text, stream, objects, bytes or
map messages, locking messages while browsing. It has the following parameters:

Example 14–26 Creating a TopicBrowser Without a Selector, Locking Messages While
Browsing

/* Create a browser without a selector */
TopicSession jms_session;
TopicBrowser browser;
Topic topic;
browser = ((AQjmsSession) jms_session).createBrowser(
 topic, "SUBS1", true);

Example 14–27 Creating a TopicBrowser With a Specified Selector, Locking Messages

/* Create a browser for topics with a specified selector */
TopicSession jms_session;
TopicBrowser browser;
Topic topic;
/* create a Browser to look at messages with correlationID = RUSH in
lock mode */
browser = ((AQjmsSession) jms_session).createBrowser(

Parameter Description

topic Topic to access

cons_name Name of the durable subscriber or consumer

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

locked If set to true, then messages are locked as they are browsed (similar to
a SELECT for UPDATE)

Creating a TopicBrowser for Oracle Object Type Messages, Locking Messages

Oracle JMS Publish/Subscribe 14-21

 topic, "SUBS1", "JMSCorrelationID = 'RUSH'", true);

Creating a TopicBrowser for Oracle Object Type Messages
public oracle.jms.TopicBrowser createBrowser(javax.jms.Topic topic,
 java.lang.String cons_name,
 java.lang.String messageSelector,
 java.lang.Object payload_factory)
 throws JMSException

This method creates a TopicBrowser for topics of Oracle object type messages. It has
the following parameters:

The CustomDatumFactory for a particular Java class that maps to the SQL object
type payload can be obtained using the getFactory static method. Assume the topic
test_topic has payload of type SCOTT.EMPLOYEE and the Java class that is
generated by Jpublisher for this Oracle object type is called Employee. The Employee
class implements the CustomDatum interface. The CustomDatumFactory for this
class can be obtained by using the Employee.getFactory() method.

Example 14–28 Creating a TopicBrowser for AdtMessage Messages

/* Create a browser for a Topic with AdtMessage messages of type EMPLOYEE*/
TopicSession jms_session
TopicBrowser browser;
Topic test_topic;
browser = ((AQjmsSession) jms_session).createBrowser(
 test_topic, "SUBS1", Employee.getFactory());

Creating a TopicBrowser for Oracle Object Type Messages, Locking
Messages

public oracle.jms.TopicBrowser createBrowser(javax.jms.Topic topic,
 java.lang.String cons_name,
 java.lang.String messageSelector,
 java.lang.Object payload_factory,
 boolean locked)
 throws JMSException

Parameter Description

topic Topic to access

cons_name Name of the durable subscriber or consumer

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

payload_factory CustomDatumFactory or ORADataFactory for the Java class that
maps to the Oracle ADT

Note: CustomDatum support will be deprecated in a future release.
Use ORADataFactory payload factories instead.

See Also: "MessageSelector" on page 11-17

Browsing Messages Using a TopicBrowser

14-22 Oracle Streams Advanced Queuing User’s Guide

This method creates a TopicBrowser for topics of Oracle object type messages,
locking messages while browsing. It has the following parameters:

Example 14–29 Creating a TopicBrowser for AdtMessage Messages, Locking Messages

/* Create a browser for a Topic with AdtMessage messages of type EMPLOYEE* in
lock mode/
TopicSession jms_session
TopicBrowser browser;
Topic test_topic;
browser = ((AQjmsSession) jms_session).createBrowser(
 test_topic, "SUBS1", Employee.getFactory(), true);

Browsing Messages Using a TopicBrowser
public void purgeSeen()
 throws JMSException

This method browses messages using a TopicBrowser. Use methods in
java.util.Enumeration to go through the list of messages. Use the method
purgeSeen in TopicBrowser to purge messages that have been seen during the
current browse.

Example 14–30 Creating a TopicBrowser with a Specified Selector

/* Create a browser for topics with a specified selector */
public void browse_rush_orders(TopicSession jms_session)
TopicBrowser browser;
Topic topic;
ObjectMessage obj_message
BolOrder new_order;
Enumeration messages;
/* get a handle to the new_orders topic */
topic = ((AQjmsSession) jms_session).getTopic("OE", "OE_bookedorders_topic");
/* create a Browser to look at RUSH orders */
browser = ((AQjmsSession) jms_session).createBrowser(
 topic, "SUBS1", "JMSCorrelationID = 'RUSH'");

Parameter Description

topic Topic to access

cons_name Name of the durable subscriber or consumer

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

payload_factory CustomDatumFactory or ORADataFactory for the Java class that
maps to the Oracle ADT

locked If set to true, then messages are locked as they are browsed (similar to
a SELECT for UPDATE)

Note: CustomDatum support will be deprecated in a future release.
Use ORADataFactory payload factories instead.

See Also: "MessageSelector" on page 11-17

Browsing Messages Using a TopicBrowser

Oracle JMS Publish/Subscribe 14-23

/* Browse through the messages */
for (messages = browser.elements() ; message.hasMoreElements() ;)
{obj_message = (ObjectMessage)message.nextElement();}
/* Purge messages seen during this browse */
browser.purgeSeen()

Browsing Messages Using a TopicBrowser

14-24 Oracle Streams Advanced Queuing User’s Guide

Oracle JMS Shared Interfaces 15-1

15
Oracle JMS Shared Interfaces

This chapter describes the Java Message Service (JMS) operational interface (shared
interfaces) to Oracle Streams Advanced Queuing (AQ).

This chapter contains these topics:

■ Oracle Streams AQ JMS Operational Interface: Shared Interfaces

■ Specifying JMS Message Properties

■ Setting Default TimeToLive for All Messages Sent by a MessageProducer

■ Setting Default Priority for All Messages Sent by a MessageProducer

■ Creating an AQjms Agent

■ Receiving a Message Synchronously

■ Specifying the Navigation Mode for Receiving Messages

■ Receiving a Message Asynchronously

■ Getting Message ID

■ Getting JMS Message Properties

■ Closing and Shutting Down

■ Troubleshooting

Oracle Streams AQ JMS Operational Interface: Shared Interfaces
This section discusses Oracle Streams AQ shared interfaces for JMS operations.

This section contains these topics:

■ Starting a JMS Connection

■ Getting a JMS Connection

■ Committing All Operations in a Session

■ Rolling Back All Operations in a Session

■ Getting the JDBC Connection from a Session

■ Getting the OracleOCIConnectionPool from a JMS Connection

■ Creating a BytesMessage

■ Creating a MapMessage

■ Creating a StreamMessage

Oracle Streams AQ JMS Operational Interface: Shared Interfaces

15-2 Oracle Streams Advanced Queuing User’s Guide

■ Creating an ObjectMessage

■ Creating a TextMessage

■ Creating a JMS Message

■ Creating an AdtMessage

■ Setting JMS Correlation Identifier

Starting a JMS Connection
public void start()
 throws JMSException

AQjmsConnection.start() starts a JMS connection for receiving messages.

Getting a JMS Connection
public oracle.jms.AQjmsConnection getJmsConnection()
 throws JMSException

AQjmsSession.getJmsConnection() gets a JMS connection from a session.

Committing All Operations in a Session
public void commit()
 throws JMSException

AQjmsSession.commit() commits all JMS and SQL operations performed in a
session.

Rolling Back All Operations in a Session
public void rollback()
 throws JMSException

AQjmsSession.rollback() terminates all JMS and SQL operations performed in a
session.

Getting the JDBC Connection from a Session
public java.sql.Connection getDBConnection()
 throws JMSException

AQjmsSession.getDBConnection() gets the underlying JDBC connection from a
JMS session. The JDBC connection can be used to perform SQL operations as part of
the same transaction in which the JMS operations are accomplished.

Example 15–1 Getting Underlying JDBC Connection from JMS Session

java.sql.Connection db_conn;
QueueSession jms_sess;
db_conn = ((AQjmsSession)jms_sess).getDBConnection();

Getting the OracleOCIConnectionPool from a JMS Connection
public oracle.jdbc.pool.OracleOCIConnectionPool getOCIConnectionPool()

Oracle Streams AQ JMS Operational Interface: Shared Interfaces

Oracle JMS Shared Interfaces 15-3

AQjmsConnection.getOCIConnectionPool() gets the underlying
OracleOCIConnectionPool from a JMS connection. The settings of the
OracleOCIConnectionPool instance can be tuned by the user depending on the
connection usage, for example, the number of sessions the user wants to create using
the given connection. The user should not, however, close the
OracleOCIConnectionPool instance being used by the JMS connection.

Example 15–2 Getting Underlying OracleOCIConnectionPool from JMS Connection

oracle.jdbc.pool.OracleOCIConnectionPool cpool;
QueueConnection jms_conn;
cpool = ((AQjmsConnection)jms_conn).getOCIConnectionPool();

Creating a BytesMessage
public javax.jms.BytesMessage createBytesMessage()
 throws JMSException

AQjmsSession.createBytesMessage() creates a bytes message. It can be used
only if the queue table that contains the destination queue/topic was created with the
SYS.AQ$_JMS_BYTES_MESSAGE or AQ$_JMS_MESSAGE payload types.

Creating a MapMessage
public javax.jms.MapMessage createMapMessage()
 throws JMSException

AQjmsSession.createMapMessage() creates a map message. It can be used only
if the queue table that contains the destination queue/topic was created with the
SYS.AQ$_JMS_MAP_MESSAGE or AQ$_JMS_MESSAGE payload types.

Creating a StreamMessage
public javax.jms.StreamMessage createStreamMessage()
 throws JMSException

AQjmsSession.createStreamMessage() creates a stream message. It can be used
only if the queue table that contains the destination queue/topic was created with the
SYS.AQ$_JMS_STREAM_MESSAGE or AQ$_JMS_MESSAGE payload types.

Creating an ObjectMessage
public javax.jms.ObjectMessage createObjectMessage(java.io.Serializable object)
 throws JMSException

AQjmsSession.createObjectMessage() creates an object message. It can be
used only if the queue table that contains the destination queue/topic was created
with the SYS.AQ$_JMS_OBJECT_MESSAGE or AQ$_JMS_MESSAGE payload types.

Creating a TextMessage
public javax.jms.TextMessage createTextMessage()
 throws JMSException

AQjmsSession.createTextMessage() creates a text message. It can be used only
if the queue table that contains the destination queue/topic was created with the
SYS.AQ$_JMS_TEXT_MESSAGE or AQ$_JMS_MESSAGE payload types.

Specifying JMS Message Properties

15-4 Oracle Streams Advanced Queuing User’s Guide

Creating a JMS Message
public javax.jms.Message createMessage()
 throws JMSException

AQjmsSession.createMessage() creates a JMS message. You can use the AQ$_
JMS_MESSAGE construct message to construct messages of different types. The
message type must be one of the following:

■ DBMS_AQ.JMS_TEXT_MESSAGE

■ DBMS_AQ.JMS_OBJECT_MESSAGE

■ DBMS_AQ.JMS_MAP_MESSAGE

■ DBMS_AQ.JMS_BYTES_MESSAGE

■ DBMS_AQ.JMS_STREAM_MESSAGE

You can also use this ADT to create a header-only JMS message.

Creating an AdtMessage
public oracle.jms.AdtMessage createAdtMessage()
 throws JMSException

AQjmsSession.createAdtMessage() creates an AdtMessage. It can be used only
if the queue table that contains the queue/topic was created with an Oracle ADT
payload type. An AdtMessage must be populated with an object that implements the
CustomDatum interface. This object must be the Java mapping of the SQL ADT
defined as the payload for the queue/topic. Java classes corresponding to SQL ADT
types can be generated using the Jpublisher tool.

Setting JMS Correlation Identifier
public void setJMSCorrelationID(java.lang.String correlationID)
 throws JMSException

AQjmsMessage.setJMSCorrelationID() specifies the message correlation
identifier.

Specifying JMS Message Properties
Property names starting with JMS are provider-specific. User-defined properties
cannot start with JMS.

The following provider properties can be set by clients using text, stream, object, bytes
or map messages:

■ JMSXAppID (string)

■ JMSXGroupID (string)

■ JMSXGroupSeq (int)

■ JMS_OracleExcpQ (string)

This message property specifies the exception queue.

■ JMS_OracleDelay (int)

This message property specifies the message delay in seconds.

The following properties can be set on AdtMessage

Specifying JMS Message Properties

Oracle JMS Shared Interfaces 15-5

■ JMS_OracleExcpQ (String)

This message property specifies the exception queue as "schema.queue_name"

■ JMS_OracleDelay (int)

This message property specifies the message delay in seconds.

This section contains these topics:

■ Setting a Boolean Message Property

■ Setting a String Message Property

■ Setting an Integer Message Property

■ Setting a Double Message Property

■ Setting a Float Message Property

■ Setting a Byte Message Property

■ Setting a Long Message Property

■ Setting a Short Message Property

■ Getting an Object Message Property

Setting a Boolean Message Property
public void setBooleanProperty(java.lang.String name,
 boolean value)
 throws JMSException

AQjmsMessage.setBooleanProperty() specifies a message property as Boolean.
It has the following parameters:

Setting a String Message Property
public void setStringProperty(java.lang.String name,
 java.lang.String value)
 throws JMSException

AQjmsMessage.setStringProperty() specifies a message property as string. It
has the following parameters:

Setting an Integer Message Property
public void setIntProperty(java.lang.String name,
 int value)
 throws JMSException

Parameter Description

name Name of the Boolean property

value Boolean property value to set in the message

Parameter Description

name Name of the string property

value String property value to set in the message

Specifying JMS Message Properties

15-6 Oracle Streams Advanced Queuing User’s Guide

AQjmsMessage.setIntProperty() specifies a message property as integer. It has
the following parameters:

Setting a Double Message Property
public void setDoubleProperty(java.lang.String name,
 double value)
 throws JMSException

AQjmsMessage.setDoubleProperty() specifies a message property as double. It
has the following parameters:

Setting a Float Message Property
public void setFloatProperty(java.lang.String name,
 float value)
 throws JMSException

AQjmsMessage.setFloatProperty() specifies a message property as float. It has
the following parameters:

Setting a Byte Message Property
public void setByteProperty(java.lang.String name,
 byte value)
 throws JMSException

AQjmsMessage.setByteProperty() specifies a message property as byte. It has
the following parameters:

Setting a Long Message Property
public void setLongProperty(java.lang.String name,
 long value)
 throws JMSException

Parameter Description

name Name of the integer property

value Integer property value to set in the message

Parameter Description

name Name of the double property

value Double property value to set in the message

Parameter Description

name Name of the float property

value Float property value to set in the message

Parameter Description

name Name of the byte property

value Byte property value to set in the message

Setting Default TimeToLive for All Messages Sent by a MessageProducer

Oracle JMS Shared Interfaces 15-7

AQjmsMessage.setLongProperty() specifies a message property as long. It has
the following parameters:

Setting a Short Message Property
public void setShortProperty(java.lang.String name,
 short value)
 throws JMSException

AQjmsMessage.setShortProperty() specifies a message property as short. It has
the following parameters:

Setting an Object Message Property
public void setObjectProperty(java.lang.String name,
 java.lang.Object value)
 throws JMSException

AQjmsMessage.setObjectProperty() specifies a message property as object.
Only objectified primitive values are supported: Boolean, byte, short, integer, long,
float, double and string. It has the following parameters:

Setting Default TimeToLive for All Messages Sent by a MessageProducer
public void setTimeToLive(long timeToLive)
 throws JMSException

This method sets the default TimeToLive for all messages sent by a
MessageProducer. It is calculated after message delay has taken effect. This method
has the following parameter:

Example 15–3 Setting Default TimeToLive for All Messages Sent by a MessageProducer

/* Set default timeToLive value to 100000 milliseconds for all messages sent by
the QueueSender*/
QueueSender sender;
sender.setTimeToLive(100000);

Parameter Description

name Name of the long property

value Long property value to set in the message

Parameter Description

name Name of the short property

value Short property value to set in the message

Parameter Description

name Name of the Java object property

value Java object property value to set in the message

Parameter Description

timeToLive Message time to live in milliseconds (zero is unlimited)

Setting Default Priority for All Messages Sent by a MessageProducer

15-8 Oracle Streams Advanced Queuing User’s Guide

Setting Default Priority for All Messages Sent by a MessageProducer
public void setPriority(int priority)
 throws JMSException

This method sets the default Priority for all messages sent by a
MessageProducer. It has the following parameter:

Priority values can be any integer. A smaller number indicates higher priority. If a
priority value is explicitly specified during a send() operation, then it overrides the
default value set by this method.

Example 15–4 Setting Default Priority Value for All Messages Sent by QueueSender

/* Set default priority value to 2 for all messages sent by the QueueSender*/
QueueSender sender;
sender.setPriority(2);

Example 15–5 Setting Default Priority Value for All Messages Sent by TopicPublisher

/* Set default priority value to 2 for all messages sent by the TopicPublisher*/
TopicPublisher publisher;
publisher.setPriority(1);

Creating an AQjms Agent
public void createAQAgent(java.lang.String agent_name,
 boolean enable_http,
 throws JMSException

This method creates an AQjmsAgent. It has the following parameters:

Receiving a Message Synchronously
You can receive a message synchronously by specifying Timeout or without waiting.
You can also receive a message using a transformation:

■ Using a Message Consumer by Specifying Timeout

■ Using a Message Consumer Without Waiting

■ Receiving Messages from a Destination Using a Transformation

Using a Message Consumer by Specifying Timeout
public javax.jms.Message receive(long timeout)
 throws JMSException

Parameter Description

priority Message priority for this message producer. The default is 4.

Parameter Description

agent_name Name of the AQ agent

enable_http If set to true, then this agent is allowed to access AQ through HTTP

Receiving a Message Synchronously

Oracle JMS Shared Interfaces 15-9

This method receives a message using a message consumer by specifying timeout.

Example 15–6 Using a Message Consumer by Specifying Timeout

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "WS", "Shipped_Orders_Topic");

/* create a subscriber, specifying the correct CustomDatumFactory and
selector */
subscriber1 = jms_sess.createDurableSubscriber(
 shipped_orders, 'WesternShipping',
 " priority > 1 and tab.user_data.region like 'WESTERN %'",
 false, AQjmsAgent.getFactory());
/* receive, blocking for 30 seconds if there were no messages */
Message = subscriber.receive(30000);

Example 15–7 JMS: Blocking Until a Message Arrives

public BolOrder get_new_order1(QueueSession jms_session)
 {
 Queue queue;
 QueueReceiver qrec;
 ObjectMessage obj_message;
 BolCustomer customer;
 BolOrder new_order = null;
 String state;

 try
 {
 /* get a handle to the new_orders queue */
 queue = ((AQjmsSession) jms_session).getQueue("OE", "OE_neworders_que");
 qrec = jms_session.createReceiver(queue);

 /* wait for a message to show up in the queue */
 obj_message = (ObjectMessage)qrec.receive();
 new_order = (BolOrder)obj_message.getObject();
 customer = new_order.getCustomer();
 state = customer.getState();
 System.out.println("Order: for customer " + customer.getName());
 }
 catch (JMSException ex)
 {
 System.out.println("Exception: " + ex);
 }

Parameter Description

timeout Timeout value in milliseconds

Receiving a Message Synchronously

15-10 Oracle Streams Advanced Queuing User’s Guide

 return new_order;
 }

Using a Message Consumer Without Waiting
public javax.jms.Message receiveNoWait()
 throws JMSException

This method receives a message using a message consumer without waiting.

Example 15–8 JMS: Nonblocking Messages

public BolOrder poll_new_order3(QueueSession jms_session)
 {
 Queue queue;
 QueueReceiver qrec;
 ObjectMessage obj_message;
 BolCustomer customer;
 BolOrder new_order = null;
 String state;

 try
 {
 /* get a handle to the new_orders queue */
 queue = ((AQjmsSession) jms_session).getQueue("OE", "OE_neworders_que");
 qrec = jms_session.createReceiver(queue);

 /* check for a message to show in the queue */
 obj_message = (ObjectMessage)qrec.receiveNoWait();
 new_order = (BolOrder)obj_message.getObject();
 customer = new_order.getCustomer();
 state = customer.getState();

 System.out.println("Order: for customer " + customer.getName());
 }
 catch (JMSException ex)
 {
 System.out.println("Exception: " + ex);
 }
 return new_order;
 }

Receiving Messages from a Destination Using a Transformation
A transformation can be applied when receiving a message from a queue or topic. The
transformation is applied to the message before returning it to JMS application.

The transformation can be specified using the setTransformation() interface of
the AQjmsQueueReceiver, AQjmsTopicSubscriber or AQjmsTopicReceiver.

Example 15–9 JMS: Receiving Messages from a Destination Using a Transformation

Assume that the Western Shipping application retrieves messages from the OE_
bookedorders_topic. It specifies the transformation OE2WS to retrieve the message as
the Oracle object type WS_order. Assume that the WSOrder Java class has been
generated by Jpublisher to map to the Oracle object WS.WS_order:

public AQjmsAdtMessage retrieve_bookedorders(TopicSession jms_session)
 AQjmsTopicReceiver receiver;
 Topic topic;

Specifying the Navigation Mode for Receiving Messages

Oracle JMS Shared Interfaces 15-11

 Message msg = null;

 try
 {
 /* get a handle to the OE_bookedorders_topic */
 topic = ((AQjmsSession)jms_session).getTopic("OE", "OE_bookedorders_topic");

 /* Create a receiver for WShip */
 receiver = ((AQjmsSession)jms_session).createTopicReceiver(
 topic, "WShip, null, WSOrder.getFactory());

 /* set the transformation in the publisher */
 receiver.setTransformation("OE2WS");
 msg = receiver.receive(10);
 }
 catch (JMSException ex)
 {
 System.out.println("Exception :", ex);
 }
 return (AQjmsAdtMessage)msg;
}

Specifying the Navigation Mode for Receiving Messages
public void setNavigationMode(int mode)
 throws JMSException

This method specifies the navigation mode for receiving messages. It has the following
parameter:

Example 15–10 Specifying Navigation Mode for Receiving Messages

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic("WS", "Shipped_Orders_Topic");

/* create a subscriber, specifying the correct CustomDatumFactory and selector */
subscriber1 = jms_sess.createDurableSubscriber(
 shipped_orders, 'WesternShipping',
 "priority > 1 and tab.user_data.region like 'WESTERN %'", false,
 AQjmsAgent.getFactory());
subscriber1.setNavigationMode(AQjmsConstants.NAVIGATION_FIRST_MESSAGE);

/* get message for the subscriber, returning immediately if there was nomessage */
Message = subscriber.receive();

Parameter Description

mode New value of the navigation mode

Receiving a Message Asynchronously

15-12 Oracle Streams Advanced Queuing User’s Guide

Receiving a Message Asynchronously
You can receive a message asynchronously two ways:

■ Specifying a Message Listener at the Message Consumer

■ Specifying a Message Listener at the Session

Specifying a Message Listener at the Message Consumer
public void setMessageListener(javax.jms.MessageListener myListener)
 throws JMSException

This method specifies a message listener at the message consumer. It has the following
parameter:

Example 15–11 Specifying Message Listener at Message Consumer

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;
MessageListener mLis = null;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "WS", "Shipped_Orders_Topic");

/* create a subscriber, specifying the correct CustomDatumFactory and selector */
subscriber1 = jms_sess.createDurableSubscriber(
 shipped_orders, 'WesternShipping',
 "priority > 1 and tab.user_data.region like 'WESTERN %'",
 false, AQjmsAgent.getFactory());
mLis = new myListener(jms_sess, "foo");

/* get message for the subscriber, returning immediately if there was nomessage */
subscriber.setMessageListener(mLis);
The definition of the myListener class
import oracle.AQ.*;
import oracle.jms.*;
import javax.jms.*;
import java.lang.*;
import java.util.*;
public class myListener implements MessageListener
{
 TopicSession mySess;
 String myName;
 /* constructor */
 myListener(TopicSession t_sess, String t_name)
 {
 mySess = t_sess;

Parameter Description

myListener Sets the consumer message listener

Getting JMS Message Properties

Oracle JMS Shared Interfaces 15-13

 myName = t_name;
 }
 public onMessage(Message m)
 {
 System.out.println("Retrieved message with correlation: " ||
m.getJMSCorrelationID());
 try{
 /* commit the dequeue */
 mySession.commit();
 } catch (java.sql.SQLException e)
 {System.out.println("SQL Exception on commit"); }
 }
}

Specifying a Message Listener at the Session
public void setMessageListener(javax.jms.MessageListener listener)
 throws JMSException

This method specifies a message listener at the session.

Getting Message ID
This section contains these topics:

■ Getting the Correlation Identifier

■ Getting the Message Identifier

Getting the Correlation Identifier
public java.lang.String getJMSCorrelationID()
 throws JMSException

AQjmsMessage.getJMSCorrelationID() gets the correlation identifier of a
message.

Getting the Message Identifier
public byte[] getJMSCorrelationIDAsBytes()
 throws JMSException

AQjmsMessage.getJMSMessageID() gets the message identifier of a message as
bytes or a string.

Getting JMS Message Properties
This section contains these topics:

■ Getting a Boolean Message Property

■ Getting a String Message Property

■ Getting an Integer Message Property

■ Getting a Double Message Property

Parameter Description

listener Message listener to associate with this session

Getting JMS Message Properties

15-14 Oracle Streams Advanced Queuing User’s Guide

■ Getting a Float Message Property

■ Getting a Byte Message Property

■ Getting a Long Message Property

■ Getting a Short Message Property

■ Getting an Object Message Property

Getting a Boolean Message Property
public boolean getBooleanProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getBooleanProperty() gets a message property as Boolean. It
has the following parameter:

Getting a String Message Property
public java.lang.String getStringProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getStringProperty() gets a message property as string. It has
the following parameter:

Getting an Integer Message Property
public int getIntProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getIntProperty() gets a message property as integer. It has the
following parameter:

Getting a Double Message Property
public double getDoubleProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getDoubleProperty() gets a message property as double. It has
the following parameter:

Parameter Description

name Name of the Boolean property

Parameter Description

name Name of the string property

Parameter Description

name Name of the integer property

Parameter Description

name Name of the double property

Getting JMS Message Properties

Oracle JMS Shared Interfaces 15-15

Getting a Float Message Property
public float getFloatProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getFloatProperty() gets a message property as float. It has the
following parameter:

Getting a Byte Message Property
public byte getByteProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getByteProperty() gets a message property as byte. It has the
following parameter:

Getting a Long Message Property
public long getLongProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getLongProperty() gets a message property as long. It has the
following parameter:

Getting a Short Message Property
public short getShortProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getShortProperty() gets a message property as short. It has the
following parameter:

Getting an Object Message Property
public java.lang.Object getObjectProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getObjectProperty() gets a message property as object. It has
the following parameter:

Parameter Description

name Name of the float property

Parameter Description

name Name of the byte property

Parameter Description

name Name of the long property

Parameter Description

name Name of the short property

Closing and Shutting Down

15-16 Oracle Streams Advanced Queuing User’s Guide

Example 15–12 Getting Message Property as an Object

TextMessage message;
message.getObjectProperty("empid", new Integer(1000);

Closing and Shutting Down
This section contains these topics:

■ Closing a MessageProducer

■ Closing a Message Consumer

■ Stopping a JMS Connection

■ Closing a JMS Session

■ Closing a JMS Connection

Closing a MessageProducer
public void close()
 throws JMSException

AQjmsProducer.close() closes a MessageProducer.

Closing a Message Consumer
public void close()
 throws JMSException

AQjmsConsumer.close() closes a message consumer.

Stopping a JMS Connection
public void stop()
 throws JMSException

AQjmsConnection.stop() stops a JMS connection.

Closing a JMS Session
public void close()
 throws JMSException

AQjmsSession.close() closes a JMS session.

Closing a JMS Connection
public void close()
 throws JMSException

AQjmsConnection.close() closes a JMS connection and releases all resources
allocated on behalf of the connection. Because the JMS provider typically allocates
significant resources outside the JVM on behalf of a connection, clients should close

Parameter Description

name Name of the object property

Troubleshooting

Oracle JMS Shared Interfaces 15-17

them when they are not needed. Relying on garbage collection to eventually reclaim
these resources may not be timely enough.

Troubleshooting
This section contains these topics:

■ Getting a JMS Error Code

■ Getting a JMS Error Number

■ Getting an Exception Linked to a JMS Exception

■ Printing the Stack Trace for a JMS Exception

■ Setting an Exception Listener

■ Getting an Exception Listener

Getting a JMS Error Code
public java.lang.String getErrorCode()

AQjmsException.getErrorCode() gets the error code for a JMS exception.

Getting a JMS Error Number
public int getErrorNumber()

AQjmsException.getErrorNumber() gets the error number for a JMS exception.

Getting an Exception Linked to a JMS Exception
public java.lang.String getLinkString()

AQjmsException.getLinkString() gets the exception linked to a JMS exception.
In general, this contains the SQL exception raised by the database.

Printing the Stack Trace for a JMS Exception
public void printStackTrace(java.io.PrintStream s)

AQjmsException.printStackTrace() prints the stack trace for a JMS exception.

Setting an Exception Listener
public void setExceptionListener(javax.jms.ExceptionListener listener)
 throws JMSException

AQjmsConnection.setExceptionListener() specifies an exception listener for
a connection. It has the following parameter:

Note: This method will be deprecated in a future release. Use
getErrorCode() instead.

Parameter Description

listener Exception listener

Troubleshooting

15-18 Oracle Streams Advanced Queuing User’s Guide

If an exception listener has been registered, then it is informed of any serious problem
detected for a connection. This is accomplished by calling the listener
onException() method, passing it a JMS exception describing the problem. This
allows a JMS client to be notified of a problem asynchronously. Some connections only
consume messages, so they have no other way to learn the connection has failed.

Example 15–13 Specifying Exception Listener for Connection

//register an exception listener
Connection jms_connection;
jms_connection.setExceptionListener(
 new ExceptionListener() {
 public void onException (JMSException jmsException) {
 System.out.println("JMS-EXCEPTION: " + jmsException.toString());
 }
 };
);

Getting an Exception Listener
public javax.jms.ExceptionListener getExceptionListener()
 throws JMSException

AQjmsConnection.getExceptionListener() gets the exception listener for the
connection.

Example 15–14 Getting the Exception Listener for the Connection

//Get the exception listener
Connection jms_connection;
ExceptionListener el = jms_connection.getExceptionListener();

Oracle JMS Types Examples 16-1

16
Oracle JMS Types Examples

This chapter provides examples that illustrate how to use Oracle JMS Types to
dequeue and enqueue Oracle Streams Advanced Queuing (AQ) messages.

The chapter contains the following topics:

■ How to Run the Oracle Streams AQ JMS Type Examples

■ JMS BytesMessage Examples

■ JMS StreamMessage Examples

■ JMS MapMessage Examples

■ More Oracle Streams AQ JMS Examples

How to Run the Oracle Streams AQ JMS Type Examples
To run Example 16–2 through Example 16–7 follow these steps:

1. Copy and save Example 16–1 as setup.sql.

2. Run setup.sql as follows:

sqlplus /NOLOG @setup.sql

3. Log in to SQL*Plus as jmsuser/jmsuser.

4. Run the corresponding pair of SQL scripts for each type of message.

For JMS BytesMessage, for example, run Example 16–2 on page 16-5 and
Example 16–3 on page 16-7.

5. Ensure that your database parameter java_pool-size is large enough. For
example, you can use java_pool_size=20M.

Setting Up the Examples
Example 16–1 performs the necessary setup for the JMS types examples. Copy and
save it as setup.sql.

Example 16–1 Setting Up Environment for Running JMS Types Examples

connect sys;
enter password: password

Rem
Rem Create the JMS user: jmsuser
Rem

How to Run the Oracle Streams AQ JMS Type Examples

16-2 Oracle Streams Advanced Queuing User’s Guide

DROP USER jmsuser CASCADE;
CREATE USER jmsuser IDENTIFIED BY jmsuser;
GRANT DBA, AQ_ADMINISTRATOR_ROLE, AQ_USER_ROLE to jmsuser;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;
GRANT EXECUTE ON DBMS_AQ TO jmsuser;
GRANT EXECUTE ON DBMS_LOB TO jmsuser;
GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;

set echo off
set verify off

connect sys

DROP USER jmsuser CASCADE;

ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

CREATE USER jmsuser IDENTIFIED BY &password;
GRANT DBA, AQ_ADMINISTRATOR_ROLE, AQ_USER_ROLE to jmsuser;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;
GRANT EXECUTE ON DBMS_AQ TO jmsuser;
GRANT EXECUTE ON DBMS_LOB TO jmsuser;
GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;
connect jmsuser/&password

Rem
Rem Creating five AQ queue tables and five queues for five payloads:
Rem SYS.AQ$_JMS_TEXT_MESSAGE
Rem SYS.AQ$_JMS_BYTES_MESSAGE
Rem SYS.AQ$_JMS_STREAM_MESSAG
Rem SYS.AQ$_JMS_MAP_MESSAGE
Rem SYS.AQ$_JMS_MESSAGE
Rem

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (Queue_table => 'jmsuser.jms_qtt_text',
 Queue_payload_type => 'SYS.AQ$_JMS_TEXT_MESSAGE', compatible => '8.1.0');
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (Queue_table => 'jmsuser.jms_qtt_bytes',
 Queue_payload_type => 'SYS.AQ$_JMS_BYTES_MESSAGE', compatible => '8.1.0');
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (Queue_table => 'jmsuser.jms_qtt_stream',
 Queue_payload_type => 'SYS.AQ$_JMS_STREAM_MESSAGE', compatible => '8.1.0');
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (Queue_table => 'jmsuser.jms_qtt_map',
 Queue_payload_type => 'SYS.AQ$_JMS_MAP_MESSAGE', compatible => '8.1.0');
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (Queue_table => 'jmsuser.jms_qtt_general',
 Queue_payload_type => 'SYS.AQ$_JMS_MESSAGE', compatible => '8.1.0');
EXECUTE DBMS_AQADM.CREATE_QUEUE (Queue_name => 'jmsuser.jms_text_que',
 Queue_table => 'jmsuser.jms_qtt_text');
EXECUTE DBMS_AQADM.CREATE_QUEUE (Queue_name => 'jmsuser.jms_bytes_que',
 Queue_table => 'jmsuser.jms_qtt_bytes');
EXECUTE DBMS_AQADM.CREATE_QUEUE (Queue_name => 'jmsuser.jms_stream_que',
 Queue_table => 'jmsuser.jms_qtt_stream');
EXECUTE DBMS_AQADM.CREATE_QUEUE (Queue_name => 'jmsuser.jms_map_que',
 Queue_table => 'jmsuser.jms_qtt_map');
EXECUTE DBMS_AQADM.CREATE_QUEUE (Queue_name => 'jmsuser.jms_general_que',
 Queue_table => 'jmsuser.jms_qtt_general');

Rem
Rem Starting the queues and enable both enqueue and dequeue
Rem

How to Run the Oracle Streams AQ JMS Type Examples

Oracle JMS Types Examples 16-3

EXECUTE DBMS_AQADM.START_QUEUE (Queue_name => 'jmsuser.jms_text_que');
EXECUTE DBMS_AQADM.START_QUEUE (Queue_name => 'jmsuser.jms_bytes_que');
EXECUTE DBMS_AQADM.START_QUEUE (Queue_name => 'jmsuser.jms_stream_que');
EXECUTE DBMS_AQADM.START_QUEUE (Queue_name => 'jmsuser.jms_map_que');
EXECUTE DBMS_AQADM.START_QUEUE (Queue_name => 'jmsuser.jms_general_que');

Rem The supporting utility used in the example to help display results in SQLPLUS
enviroment

Rem
Rem Display a RAW data in SQLPLUS
Rem
create or replace procedure display_raw(rdata raw)
IS
 pos pls_integer;
 length pls_integer;
BEGIN
 pos := 1;
 length := UTL_RAW.LENGTH(rdata);

 WHILE pos <= length LOOP
 IF pos+20 > length+1 THEN
 dbms_output.put_line(UTL_RAW.SUBSTR(rdata, pos, length-pos+1));
 ELSE
 dbms_output.put_line(UTL_RAW.SUBSTR(rdata, pos, 20));
 END IF;
 pos := pos+20;
 END LOOP;

END display_raw;
/

show errors;

Rem
Rem Display a BLOB data in SQLPLUS
Rem
create or replace procedure display_blob(bdata blob)
IS
 pos pls_integer;
 length pls_integer;
BEGIN
 length := dbms_lob.getlength(bdata);
 pos := 1;
 WHILE pos <= length LOOP
 display_raw(DBMS_LOB.SUBSTR(bdata, 2000, pos));
 pos := pos+2000;
 END LOOP;
END display_blob;
/

show errors;

Rem
Rem Display a VARCHAR data in SQLPLUS
Rem
create or replace procedure display_varchar(vdata varchar)
IS
 pos pls_integer;
 text_len pls_integer;

How to Run the Oracle Streams AQ JMS Type Examples

16-4 Oracle Streams Advanced Queuing User’s Guide

BEGIN
 text_len := length(vdata);
 pos := 1;

 WHILE pos <= text_len LOOP
 IF pos+20 > text_len+1 THEN
 dbms_output.put_line(SUBSTR(vdata, pos, text_len-pos+1));
 ELSE
 dbms_output.put_line(SUBSTR(vdata, pos, 20));
 END IF;
 pos := pos+20;
 END LOOP;

END display_varchar;
/

show errors;

Rem
Rem Display a CLOB data in SQLPLUS
Rem
create or replace procedure display_clob(cdata clob)
IS
 pos pls_integer;
 length pls_integer;
BEGIN
 length := dbms_lob.getlength(cdata);
 pos := 1;
 WHILE pos <= length LOOP
 display_varchar(DBMS_LOB.SUBSTR(cdata, 2000, pos));
 pos := pos+2000;
 END LOOP;
END display_clob;
/

show errors;

Rem
Rem Display a SYS.AQ$_JMS_EXCEPTION data in SQLPLUS
Rem
Rem When application receives an ORA-24197 error, It means the JAVA stored
Rem procedures has thrown some exceptions that could not be catergorized. The
Rem user can use GET_EXCEPTION procedure of SYS.AQ$_JMS_BYTES_MESSAGE,
Rem SYS.AQ$_JMS_STREAM_MESSAG or SYS.AQ$_JMS_MAP_MESSAGE
Rem to retrieve a SYS.AQ$_JMS_EXCEPTION object which contains more detailed
Rem information on this JAVA exception including the exception name, JAVA error
Rem message and stack trace.
Rem
Rem This utility function is to help display the SYS.AQ$_JMS_EXCEPTION object in
Rem SQLPLUS
Rem
create or replace procedure display_exp(exp SYS.AQ$_JMS_EXCEPTION)
IS
 pos1 pls_integer;
 pos2 pls_integer;
 text_data varchar(2000);
BEGIN
 dbms_output.put_line('exception:'||exp.exp_name);
 dbms_output.put_line('err_msg:'||exp.err_msg);
 dbms_output.put_line('stack:'||length(exp.stack));

JMS BytesMessage Examples

Oracle JMS Types Examples 16-5

 pos1 := 1;
 LOOP
 pos2 := INSTR(exp.stack, chr(10), pos1);
 IF pos2 = 0 THEN
 pos2 := length(exp.stack)+1;
 END IF;

 dbms_output.put_line(SUBSTR(exp.stack, pos1, pos2-pos1));

 IF pos2 > length(exp.stack) THEN
 EXIT;
 END IF;

 pos1 := pos2+1;
 END LOOP;

END display_exp;
/

show errors;

EXIT;

JMS BytesMessage Examples
This section includes examples that illustrate enqueuing and dequeuing of a JMS
BytesMessage.

Example 16–2 shows how to use JMS type member functions with DBMS_AQ functions
to populate and enqueue a JMS BytesMessage represented as sys.aq$_jms_
bytes_message type in the database. This message later can be dequeued by a JAVA
Oracle Java Message Service (OJMS) client.

Example 16–2 Populating and Enqueuing a BytesMessage

set echo off
set verify off

connect sys

DROP USER jmsuser CASCADE;

ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

CREATE USER jmsuser IDENTIFIED BY &password;
GRANT DBA, AQ_ADMINISTRATOR_ROLE, AQ_USER_ROLE to jmsuser;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;
GRANT EXECUTE ON DBMS_AQ TO jmsuser;
GRANT EXECUTE ON DBMS_LOB TO jmsuser;
GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;
connect jmsuser/&password

SET ECHO ON
set serveroutput on

DECLARE

 id pls_integer;
 agent sys.aq$_agent := sys.aq$_agent(' ', null, 0);
 message sys.aq$_jms_bytes_message;

JMS BytesMessage Examples

16-6 Oracle Streams Advanced Queuing User’s Guide

 enqueue_options dbms_aq.enqueue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);

 java_exp exception;
 pragma EXCEPTION_INIT(java_exp, -24197);
BEGIN

 -- Consturct a empty BytesMessage object
 message := sys.aq$_jms_bytes_message.construct;

 -- Shows how to set the JMS header
 message.set_replyto(agent);
 message.set_type('tkaqpet1');
 message.set_userid('jmsuser');
 message.set_appid('plsql_enq');
 message.set_groupid('st');
 message.set_groupseq(1);

 -- Shows how to set JMS user properties
 message.set_string_property('color', 'RED');
 message.set_int_property('year', 1999);
 message.set_float_property('price', 16999.99);
 message.set_long_property('mileage', 300000);
 message.set_boolean_property('import', True);
 message.set_byte_property('password', -127);

 -- Shows how to populate the message payload of aq$_jms_bytes_message

 -- Passing -1 reserve a new slot within the message store of sys.aq$_jms_
bytes_message.
 -- The maximum number of sys.aq$_jms_bytes_message type of messges to be
operated at
 -- the same time within a session is 20. Calling clean_body function with
parameter -1
 -- might result a ORA-24199 error if the messages currently operated is
already 20.
 -- The user is responsible to call clean or clean_all function to clean up
message store.
 id := message.clear_body(-1);

 -- Write data into the BytesMessage paylaod. These functions are analogy of
JMS JAVA api's.
 -- See the document for detail.

 -- Write a byte to the BytesMessage payload
 message.write_byte(id, 10);

 -- Write a RAW data as byte array to the BytesMessage payload
 message.write_bytes(id, UTL_RAW.XRANGE(HEXTORAW('00'), HEXTORAW('FF')));

 -- Write a portion of the RAW data as byte array to BytesMessage payload
 -- Note the offset follows JAVA convention, starting from 0
 message.write_bytes(id, UTL_RAW.XRANGE(HEXTORAW('00'), HEXTORAW('FF')), 0,
16);

 -- Write a char to the BytesMessage payload
 message.write_char(id, 'A');

 -- Write a double to the BytesMessage payload

JMS BytesMessage Examples

Oracle JMS Types Examples 16-7

 message.write_double(id, 9999.99);

 -- Write a float to the BytesMessage payload
 message.write_float(id, 99.99);

 -- Write a int to the BytesMessage payload
 message.write_int(id, 12345);

 -- Write a long to the BytesMessage payload
 message.write_long(id, 1234567);

 -- Write a short to the BytesMessage payload
 message.write_short(id, 123);

 -- Write a String to the BytesMessage payload,
 -- the String is encoded in UTF8 in the message payload
 message.write_utf(id, 'Hello World!');

 -- Flush the data from JAVA stored procedure (JServ) to PL/SQL side
 -- Without doing this, the PL/SQL message is still empty.
 message.flush(id);

 -- Use either clean_all or clean to clean up the message store when the user
 -- do not plan to do paylaod population on this message anymore
 sys.aq$_jms_bytes_message.clean_all();
 --message.clean(id);

 -- Enqueue this message into AQ queue using DBMS_AQ package
 dbms_aq.enqueue(queue_name => 'jmsuser.jms_bytes_que',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => msgid);

 EXCEPTION
 WHEN java_exp THEN
 dbms_output.put_line('exception information:');
 display_exp(sys.aq$_jms_stream_message.get_exception());

END;
/

commit;

Example 16–3 illustrates how to use JMS type member functions with DBMS_AQ
functions to dequeue and retrieve data from a JMS BytesMessage represented as
sys.aq$_jms_bytes_message type in the database. This message might be
enqueued by a Java OJMS client.

Example 16–3 Dequeuing and Retrieving JMS BytesMessage Data

set echo off
set verify off

connect sys

DROP USER jmsuser CASCADE;

ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

JMS BytesMessage Examples

16-8 Oracle Streams Advanced Queuing User’s Guide

CREATE USER jmsuser IDENTIFIED BY &password;
GRANT DBA, AQ_ADMINISTRATOR_ROLE, AQ_USER_ROLE to jmsuser;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;
GRANT EXECUTE ON DBMS_AQ TO jmsuser;
GRANT EXECUTE ON DBMS_LOB TO jmsuser;
GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;
connect jmsuser/&password
set echo on
set serveroutput on size 20000

DECLARE

 id pls_integer;
 blob_data blob;
 clob_data clob;
 blob_len pls_integer;
 message sys.aq$_jms_bytes_message;
 agent sys.aq$_agent;
 dequeue_options dbms_aq.dequeue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);
 gdata sys.aq$_jms_value;

 java_exp exception;
 pragma EXCEPTION_INIT(java_exp, -24197);
BEGIN
 DBMS_OUTPUT.ENABLE (20000);

 -- Dequeue this message from AQ queue using DBMS_AQ package
 dbms_aq.dequeue(queue_name => 'jmsuser.jms_bytes_que',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => msgid);

 -- Retrieve the header
 agent := message.get_replyto;

 dbms_output.put_line('Type: ' || message.get_type ||
 ' UserId: ' || message.get_userid ||
 ' AppId: ' || message.get_appid ||
 ' GroupId: ' || message.get_groupid ||
 ' GroupSeq: ' || message.get_groupseq);

 -- Retrieve the user properties
 dbms_output.put_line('price: ' || message.get_float_property('price'));
 dbms_output.put_line('color: ' || message.get_string_property('color'));
 IF message.get_boolean_property('import') = TRUE THEN
 dbms_output.put_line('import: Yes');
 ELSIF message.get_boolean_property('import') = FALSE THEN
 dbms_output.put_line('import: No');
 END IF;
 dbms_output.put_line('year: ' || message.get_int_property('year'));
 dbms_output.put_line('mileage: ' || message.get_long_property('mileage'));
 dbms_output.put_line('password: ' || message.get_byte_property('password'));

-- Shows how to retrieve the message payload of aq$_jms_bytes_message

-- Prepare call, send the content in the PL/SQL aq$_jms_bytes_message object to

JMS BytesMessage Examples

Oracle JMS Types Examples 16-9

 -- Java stored procedure(Jserv) in the form of a byte array.
 -- Passing -1 reserves a new slot in msg store of sys.aq$_jms_bytes_message.
 -- Max number of sys.aq$_jms_bytes_message type of messges to be operated at
 -- the same time in a session is 20. Call clean_body fn. with parameter -1
 -- might result in ORA-24199 error if messages operated on are already 20.
 -- You must call clean or clean_all function to clean up message store.
 id := message.prepare(-1);

-- Read data from BytesMessage paylaod. These fns. are analogy of JMS Java
-- API's. See the JMS Types chapter for detail.
 dbms_output.put_line('Payload:');

 -- read a byte from the BytesMessage payload
 dbms_output.put_line('read_byte:' || message.read_byte(id));

 -- read a byte array into a blob object from the BytesMessage payload
 dbms_output.put_line('read_bytes:');
 blob_len := message.read_bytes(id, blob_data, 272);
 display_blob(blob_data);

 -- read a char from the BytesMessage payload
 dbms_output.put_line('read_char:'|| message.read_char(id));

 -- read a double from the BytesMessage payload
 dbms_output.put_line('read_double:'|| message.read_double(id));

 -- read a float from the BytesMessage payload
 dbms_output.put_line('read_float:'|| message.read_float(id));

 -- read a int from the BytesMessage payload
 dbms_output.put_line('read_int:'|| message.read_int(id));

 -- read a long from the BytesMessage payload
 dbms_output.put_line('read_long:'|| message.read_long(id));

 -- read a short from the BytesMessage payload
 dbms_output.put_line('read_short:'|| message.read_short(id));

 -- read a String from the BytesMessage payload.
 -- the String is in UTF8 encoding in the message payload
 dbms_output.put_line('read_utf:');
 message.read_utf(id, clob_data);
 display_clob(clob_data);

 -- Use either clean_all or clean to clean up the message store when the user
 -- do not plan to do paylaod retrieving on this message anymore
 message.clean(id);
 -- sys.aq$_jms_bytes_message.clean_all();

 EXCEPTION
 WHEN java_exp THEN
 dbms_output.put_line('exception information:');
 display_exp(sys.aq$_jms_bytes_message.get_exception());

END;
/

commit;

JMS StreamMessage Examples

16-10 Oracle Streams Advanced Queuing User’s Guide

JMS StreamMessage Examples
This section includes examples that illustrate enqueuing and dequeuing of a JMS
StreamMessage.

Example 16–4 shows how to use JMS type member functions with DBMS_AQ functions
to populate and enqueue a JMS StreamMessage represented as sys.aq$_jms_
stream_message type in the database. This message later can be dequeued by a
JAVA OJMS client.

Example 16–4 Populating and Enqueuing a JMS StreamMessage

set echo off
set verify off

connect sys

DROP USER jmsuser CASCADE;

ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

CREATE USER jmsuser IDENTIFIED BY &password;
GRANT DBA, AQ_ADMINISTRATOR_ROLE, AQ_USER_ROLE to jmsuser;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;
GRANT EXECUTE ON DBMS_AQ TO jmsuser;
GRANT EXECUTE ON DBMS_LOB TO jmsuser;
GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;
connect jmsuser/&password
SET ECHO ON
set serveroutput on

DECLARE

 id pls_integer;
 agent sys.aq$_agent := sys.aq$_agent(' ', null, 0);
 message sys.aq$_jms_stream_message;
 enqueue_options dbms_aq.enqueue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);

 java_exp exception;
 pragma EXCEPTION_INIT(java_exp, -24197);
BEGIN

 -- Consturct a empty StreamMessage object
 message := sys.aq$_jms_stream_message.construct;

 -- Shows how to set the JMS header
 message.set_replyto(agent);
 message.set_type('tkaqpet1');
 message.set_userid('jmsuser');
 message.set_appid('plsql_enq');
 message.set_groupid('st');
 message.set_groupseq(1);

 -- Shows how to set JMS user properties
 message.set_string_property('color', 'RED');
 message.set_int_property('year', 1999);
 message.set_float_property('price', 16999.99);
 message.set_long_property('mileage', 300000);

JMS StreamMessage Examples

Oracle JMS Types Examples 16-11

 message.set_boolean_property('import', True);
 message.set_byte_property('password', -127);

 -- Shows how to populate the message payload of aq$_jms_stream_message

 -- Passing -1 reserve a new slot within the message store of sys.aq$_jms_
stream_message.
 -- The maximum number of sys.aq$_jms_stream_message type of messges to be
operated at
 -- the same time within a session is 20. Calling clean_body function with
parameter -1
 -- might result a ORA-24199 error if the messages currently operated is
already 20.
 -- The user is responsible to call clean or clean_all function to clean up
message store.
 id := message.clear_body(-1);

 -- Write data into the message paylaod. These functions are analogy of JMS
JAVA api's.
 -- See the document for detail.

 -- Write a byte to the StreamMessage payload
 message.write_byte(id, 10);

 -- Write a RAW data as byte array to the StreamMessage payload
 message.write_bytes(id, UTL_RAW.XRANGE(HEXTORAW('00'), HEXTORAW('FF')));

 -- Write a portion of the RAW data as byte array to the StreamMessage payload
 -- Note the offset follows JAVA convention, starting from 0
 message.write_bytes(id, UTL_RAW.XRANGE(HEXTORAW('00'), HEXTORAW('FF')), 0,
16);

 -- Write a char to the StreamMessage payload
 message.write_char(id, 'A');

 -- Write a double to the StreamMessage payload
 message.write_double(id, 9999.99);

 -- Write a float to the StreamMessage payload
 message.write_float(id, 99.99);

 -- Write a int to the StreamMessage payload
 message.write_int(id, 12345);

 -- Write a long to the StreamMessage payload
 message.write_long(id, 1234567);

 -- Write a short to the StreamMessage payload
 message.write_short(id, 123);

 -- Write a String to the StreamMessage payload
 message.write_string(id, 'Hello World!');

 -- Flush the data from JAVA stored procedure (JServ) to PL/SQL side
 -- Without doing this, the PL/SQL message is still empty.
 message.flush(id);

 -- Use either clean_all or clean to clean up the message store when the user
 -- do not plan to do paylaod population on this message anymore
 sys.aq$_jms_stream_message.clean_all();

JMS StreamMessage Examples

16-12 Oracle Streams Advanced Queuing User’s Guide

 --message.clean(id);

 -- Enqueue this message into AQ queue using DBMS_AQ package
 dbms_aq.enqueue(queue_name => 'jmsuser.jms_stream_que',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => msgid);

 EXCEPTION
 WHEN java_exp THEN
 dbms_output.put_line('exception information:');
 display_exp(sys.aq$_jms_stream_message.get_exception());

END;
/

commit;

Example 16–5 shows how to use JMS type member functions with DBMS_AQ functions
to dequeue and retrieve data from a JMS StreamMessage represented as sys.aq$_
jms_stream_message type in the database. This message might be enqueued by a
JAVA OJMS client.

Example 16–5 Dequeuing and Retrieving Data From a JMS StreamMessage

set echo off
set verify off

connect sys

DROP USER jmsuser CASCADE;

ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

CREATE USER jmsuser IDENTIFIED BY &password;
GRANT DBA, AQ_ADMINISTRATOR_ROLE, AQ_USER_ROLE to jmsuser;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;
GRANT EXECUTE ON DBMS_AQ TO jmsuser;
GRANT EXECUTE ON DBMS_LOB TO jmsuser;
GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;
connect jmsuser/&password
set echo on
set serveroutput on

DECLARE

 id pls_integer;
 blob_data blob;
 clob_data clob;
 message sys.aq$_jms_stream_message;
 agent sys.aq$_agent;
 dequeue_options dbms_aq.dequeue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);
 gdata sys.aq$_jms_value;

 java_exp exception;
 pragma EXCEPTION_INIT(java_exp, -24197);

JMS StreamMessage Examples

Oracle JMS Types Examples 16-13

BEGIN
 DBMS_OUTPUT.ENABLE (20000);

 -- Dequeue this message from AQ queue using DBMS_AQ package
 dbms_aq.dequeue(queue_name => 'jmsuser.jms_stream_que',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => msgid);

 -- Retrieve the header
 agent := message.get_replyto;

 dbms_output.put_line('Type: ' || message.get_type ||
 ' UserId: ' || message.get_userid ||
 ' AppId: ' || message.get_appid ||
 ' GroupId: ' || message.get_groupid ||
 ' GroupSeq: ' || message.get_groupseq);

 -- Retrieve the user properties
 dbms_output.put_line('price: ' || message.get_float_property('price'));
 dbms_output.put_line('color: ' || message.get_string_property('color'));
 IF message.get_boolean_property('import') = TRUE THEN
 dbms_output.put_line('import: Yes');
 ELSIF message.get_boolean_property('import') = FALSE THEN
 dbms_output.put_line('import: No');
 END IF;
 dbms_output.put_line('year: ' || message.get_int_property('year'));
 dbms_output.put_line('mileage: ' || message.get_long_property('mileage'));
 dbms_output.put_line('password: ' || message.get_byte_property('password'));

 -- Shows how to retrieve the message payload of aq$_jms_stream_message

 -- The prepare call send the content in the PL/SQL aq$_jms_stream_message
object to
 -- JAVA stored procedure(Jserv) in the form of byte array.
 -- Passing -1 reserve a new slot within the message store of sys.aq$_jms_
stream_message.
 -- The maximum number of sys.aq$_jms_stream_message type of messges to be
operated at
 -- the same time within a session is 20. Calling clean_body function with
parameter -1
 -- might result a ORA-24199 error if the messages currently operated is
already 20.
 -- The user is responsible to call clean or clean_all function to clean up
message store.
 id := message.prepare(-1);

 -- Assume the users know the types of data in the StreamMessage payload.
 -- The user can use the specific read function corresponding with the data
type.
 -- These functions are analogy of JMS JAVA api's. See the document for detail.
 dbms_output.put_line('Retrieve payload by Type:');

 -- Read a byte from the StreamMessage payload
 dbms_output.put_line('read_byte:' || message.read_byte(id));

 -- Read a byte array into a blob object from the StreamMessage payload
 dbms_output.put_line('read_bytes:');

JMS StreamMessage Examples

16-14 Oracle Streams Advanced Queuing User’s Guide

 message.read_bytes(id, blob_data);
 display_blob(blob_data);

 -- Read another byte array into a blob object from the StreamMessage payload
 dbms_output.put_line('read_bytes:');
 message.read_bytes(id, blob_data);
 display_blob(blob_data);

 -- Read a char from the StreamMessage payload
 dbms_output.put_line('read_char:'|| message.read_char(id));

 -- Read a double from the StreamMessage payload
 dbms_output.put_line('read_double:'|| message.read_double(id));

 -- Read a float from the StreamMessage payload
 dbms_output.put_line('read_float:'|| message.read_float(id));

 -- Read a int from the StreamMessage payload
 dbms_output.put_line('read_int:'|| message.read_int(id));

 -- Read a long from the StreamMessage payload
 dbms_output.put_line('read_long:'|| message.read_long(id));

 -- Read a short from the StreamMessage payload
 dbms_output.put_line('read_short:'|| message.read_short(id));

 -- Read a String into a clob data from the StreamMessage payload
 dbms_output.put_line('read_string:');
 message.read_string(id, clob_data);
 display_clob(clob_data);

 -- Assume the users do not know the types of data in the StreamMessage
payload.
 -- The user can use read_object method to read the data into a sys.aq$_jms_
value object
 -- These functions are analogy of JMS JAVA api's. See the document for detail.

 -- Reset the stream pointer to the begining of the message so that we can read
throught
 -- the message payload again.
 message.reset(id);

 LOOP
 message.read_object(id, gdata);
 IF gdata IS NULL THEN
 EXIT;
 END IF;

 CASE gdata.type
 WHEN sys.dbms_jms_plsql.DATA_TYPE_BYTE THEN
 dbms_output.put_line('read_object/byte:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_SHORT THEN
 dbms_output.put_line('read_object/short:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_INTEGER THEN
 dbms_output.put_line('read_object/int:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_LONG THEN
 dbms_output.put_line('read_object/long:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_FLOAT THEN
 dbms_output.put_line('read_object/float:' || gdata.num_val);

JMS MapMessage Examples

Oracle JMS Types Examples 16-15

 WHEN sys.dbms_jms_plsql.DATA_TYPE_DOUBLE THEN
 dbms_output.put_line('read_object/double:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_BOOLEAN THEN
 dbms_output.put_line('read_object/boolean:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_CHARACTER THEN
 dbms_output.put_line('read_object/char:' || gdata.char_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_STRING THEN
 dbms_output.put_line('read_object/string:');
 display_clob(gdata.text_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_BYTES THEN
 dbms_output.put_line('read_object/bytes:');
 display_blob(gdata.bytes_val);
 ELSE dbms_output.put_line('No such data type');
 END CASE;

 END LOOP;

 -- Use either clean_all or clean to clean up the message store when the user
 -- do not plan to do paylaod retrieving on this message anymore
 message.clean(id);
 -- sys.aq$_jms_stream_message.clean_all();

 EXCEPTION
 WHEN java_exp THEN
 dbms_output.put_line('exception information:');
 display_exp(sys.aq$_jms_stream_message.get_exception());

END;
/

commit;

JMS MapMessage Examples
This section includes examples that illustrate enqueuing and dequeuing of a JMS
MapMessage.

Example 16–6 shows how to use JMS type member functions with DBMS_AQ functions
to populate and enqueue a JMS MapMessage represented as sys.aq$_jms_map_
message type in the database. This message later can be dequeued by a JAVA OJMS
client.

Example 16–6 Populating and Enqueuing a JMS MapMessage

set echo off
set verify off

connect sys

DROP USER jmsuser CASCADE;

ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

CREATE USER jmsuser IDENTIFIED BY &password;
GRANT DBA, AQ_ADMINISTRATOR_ROLE, AQ_USER_ROLE to jmsuser;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;
GRANT EXECUTE ON DBMS_AQ TO jmsuser;
GRANT EXECUTE ON DBMS_LOB TO jmsuser;
GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;
connect jmsuser/&password

JMS MapMessage Examples

16-16 Oracle Streams Advanced Queuing User’s Guide

SET ECHO ON
set serveroutput on

DECLARE

 id pls_integer;
 agent sys.aq$_agent := sys.aq$_agent(' ', null, 0);
 message sys.aq$_jms_map_message;
 enqueue_options dbms_aq.enqueue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);

 java_exp exception;
 pragma EXCEPTION_INIT(java_exp, -24197);
BEGIN

 -- Consturct a empty map message object
 message := sys.aq$_jms_map_message.construct;

 -- Shows how to set the JMS header
 message.set_replyto(agent);
 message.set_type('tkaqpet1');
 message.set_userid('jmsuser');
 message.set_appid('plsql_enq');
 message.set_groupid('st');
 message.set_groupseq(1);

 -- Shows how to set JMS user properties
 message.set_string_property('color', 'RED');
 message.set_int_property('year', 1999);
 message.set_float_property('price', 16999.99);
 message.set_long_property('mileage', 300000);
 message.set_boolean_property('import', True);
 message.set_byte_property('password', -127);

 -- Shows how to populate the message payload of aq$_jms_map_message

 -- Passing -1 reserve a new slot within the message store of sys.aq$_jms_map_
message.
 -- The maximum number of sys.aq$_jms_map_message type of messges to be
operated at
 -- the same time within a session is 20. Calling clean_body function with
parameter -1
 -- might result a ORA-24199 error if the messages currently operated is
already 20.
 -- The user is responsible to call clean or clean_all function to clean up
message store.
 id := message.clear_body(-1);

 -- Write data into the message paylaod. These functions are analogy of JMS
JAVA api's.
 -- See the document for detail.

 -- Set a byte entry in map message payload
 message.set_byte(id, 'BYTE', 10);

 -- Set a byte array entry using RAW data in map message payload
 message.set_bytes(id, 'BYTES', UTL_RAW.XRANGE(HEXTORAW('00'),
HEXTORAW('FF')));

JMS MapMessage Examples

Oracle JMS Types Examples 16-17

 -- Set a byte array entry using only a portion of the RAW data in map message
payload
 -- Note the offset follows JAVA convention, starting from 0
 message.set_bytes(id, 'BYTES_PART', UTL_RAW.XRANGE(HEXTORAW('00'),
HEXTORAW('FF')), 0, 16);

 -- Set a char entry in map message payload
 message.set_char(id, 'CHAR', 'A');

 -- Set a double entry in map message payload
 message.set_double(id, 'DOUBLE', 9999.99);

 -- Set a float entry in map message payload
 message.set_float(id, 'FLOAT', 99.99);

 -- Set a int entry in map message payload
 message.set_int(id, 'INT', 12345);

 -- Set a long entry in map message payload
 message.set_long(id, 'LONG', 1234567);

 -- Set a short entry in map message payload
 message.set_short(id, 'SHORT', 123);

 -- Set a String entry in map message payload
 message.set_string(id, 'STRING', 'Hello World!');

 -- Flush the data from JAVA stored procedure (JServ) to PL/SQL side
 -- Without doing this, the PL/SQL message is still empty.
 message.flush(id);

 -- Use either clean_all or clean to clean up the message store when the user
 -- do not plan to do paylaod population on this message anymore
 sys.aq$_jms_map_message.clean_all();
 --message.clean(id);

 -- Enqueue this message into AQ queue using DBMS_AQ package
 dbms_aq.enqueue(queue_name => 'jmsuser.jms_map_que',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => msgid);

END;
/

commit;

Example 16–7 illustrates how to use JMS type member functions with DBMS_AQ
functions to dequeue and retrieve data from a JMS MapMessage represented as
sys.aq$_jms_map_message type in the database. This message can be enqueued by
a Java OJMS client.

Example 16–7 Dequeuing and Retrieving Data From a JMS MapMessage

set echo off
set verify off

connect sys

JMS MapMessage Examples

16-18 Oracle Streams Advanced Queuing User’s Guide

DROP USER jmsuser CASCADE;

ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

CREATE USER jmsuser IDENTIFIED BY &password;
GRANT DBA, AQ_ADMINISTRATOR_ROLE, AQ_USER_ROLE to jmsuser;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;
GRANT EXECUTE ON DBMS_AQ TO jmsuser;
GRANT EXECUTE ON DBMS_LOB TO jmsuser;
GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;
connect jmsuser/&password

set echo on
set serveroutput on

DECLARE

 id pls_integer;
 blob_data blob;
 clob_data clob;
 message sys.aq$_jms_map_message;
 agent sys.aq$_agent;
 dequeue_options dbms_aq.dequeue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);
 name_arr sys.aq$_jms_namearray;
 gdata sys.aq$_jms_value;

 java_exp exception;
 pragma EXCEPTION_INIT(java_exp, -24197);
BEGIN
 DBMS_OUTPUT.ENABLE (20000);

 -- Dequeue this message from AQ queue using DBMS_AQ package
 dbms_aq.dequeue(queue_name => 'jmsuser.jms_map_que',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => msgid);

 -- Retrieve the header
 agent := message.get_replyto;

 dbms_output.put_line('Type: ' || message.get_type ||
 ' UserId: ' || message.get_userid ||
 ' AppId: ' || message.get_appid ||
 ' GroupId: ' || message.get_groupid ||
 ' GroupSeq: ' || message.get_groupseq);

 -- Retrieve the user properties
 dbms_output.put_line('price: ' || message.get_float_property('price'));
 dbms_output.put_line('color: ' || message.get_string_property('color'));
 IF message.get_boolean_property('import') = TRUE THEN
 dbms_output.put_line('import: Yes');
 ELSIF message.get_boolean_property('import') = FALSE THEN
 dbms_output.put_line('import: No');
 END IF;
 dbms_output.put_line('year: ' || message.get_int_property('year'));
 dbms_output.put_line('mileage: ' || message.get_long_property('mileage'));

JMS MapMessage Examples

Oracle JMS Types Examples 16-19

 dbms_output.put_line('password: ' || message.get_byte_property('password'));

 -- Shows how to retrieve the message payload of aq$_jms_map_message

 -- 'Prepare' sends the content in the PL/SQL aq$_jms_map_message object to
 -- Java stored procedure(Jserv) in the form of byte array.
 -- Passing -1 reserve a new slot within the message store of
 -- sys.aq$_jms_map_message. The maximum number of sys.aq$_jms_map_message
 -- type of messges to be operated at the same time within a session is 20.
 -- Calling clean_body function with parameter -1
 -- might result a ORA-24199 error if the messages currently operated is
 -- already 20. The user is responsible to call clean or clean_all function
 -- to clean up message store.
 id := message.prepare(-1);

 -- Assume the users know the names and types in the map message payload.
 -- The user can use names to get the corresponsing values.
 -- These functions are analogous to JMS Java API's. See JMS Types chapter
 -- for detail.
 dbms_output.put_line('Retrieve payload by Name:');

 -- Get a byte entry from the map message payload
 dbms_output.put_line('get_byte:' || message.get_byte(id, 'BYTE'));

 -- Get a byte array entry from the map message payload
 dbms_output.put_line('get_bytes:');
 message.get_bytes(id, 'BYTES', blob_data);
 display_blob(blob_data);

 -- Get another byte array entry from the map message payload
 dbms_output.put_line('get_bytes:');
 message.get_bytes(id, 'BYTES_PART', blob_data);
 display_blob(blob_data);

 -- Get a char entry from the map message payload
 dbms_output.put_line('get_char:'|| message.get_char(id, 'CHAR'));

 -- get a double entry from the map message payload
 dbms_output.put_line('get_double:'|| message.get_double(id, 'DOUBLE'));

 -- Get a float entry from the map message payload
 dbms_output.put_line('get_float:'|| message.get_float(id, 'FLOAT'));

 -- Get a int entry from the map message payload
 dbms_output.put_line('get_int:'|| message.get_int(id, 'INT'));

 -- Get a long entry from the map message payload
 dbms_output.put_line('get_long:'|| message.get_long(id, 'LONG'));

 -- Get a short entry from the map message payload
 dbms_output.put_line('get_short:'|| message.get_short(id, 'SHORT'));

 -- Get a String entry from the map message payload
 dbms_output.put_line('get_string:');
 message.get_string(id, 'STRING', clob_data);
 display_clob(clob_data);

 -- Assume users do not know names and types in map message payload.
 -- User can first retrieve the name array containing all names in the

JMS MapMessage Examples

16-20 Oracle Streams Advanced Queuing User’s Guide

 -- payload and iterate through the name list and get the corresponding
 -- value. These functions are analogous to JMS Java API's.
 -- See JMS Type chapter for detail.
 dbms_output.put_line('Retrieve payload by iteration:');

 -- Get the name array from the map message payload
 name_arr := message.get_names(id);

 -- Iterate through the name array to retrieve the value for each of the name.
 FOR i IN name_arr.FIRST..name_arr.LAST LOOP

 -- Test if a name exist in the map message payload
 -- (It is not necessary in this case, just a demostration on how to use it)
 IF message.item_exists(id, name_arr(i)) THEN
 dbms_output.put_line('item exists:'||name_arr(i));

 -- Because we do not know the type of entry, we must use sys.aq$_jms_value
 -- type object for the data returned
 message.get_object(id, name_arr(i), gdata);
 IF gdata IS NOT NULL THEN
 CASE gdata.type
 WHEN sys.dbms_jms_plsql.DATA_TYPE_BYTE
 THEN dbms_output.put_line('get_object/byte:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_SHORT
 THEN dbms_output.put_line('get_object/short:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_INTEGER
 THEN dbms_output.put_line('get_object/int:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_LONG
 THEN dbms_output.put_line('get_object/long:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_FLOAT
 THEN dbms_output.put_line('get_object/float:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_DOUBLE
 THEN dbms_output.put_line('get_object/double:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_BOOLEAN
 THEN dbms_output.put_line('get_object/boolean:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_CHARACTER
 THEN dbms_output.put_line('get_object/char:' || gdata.char_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_STRING
 THEN dbms_output.put_line('get_object/string:');
 display_clob(gdata.text_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_BYTES
 THEN
 dbms_output.put_line('get_object/bytes:');
 display_blob(gdata.bytes_val);
 ELSE dbms_output.put_line('No such data type');
 END CASE;
 END IF;
 ELSE
 dbms_output.put_line('item not exists:'||name_arr(i));
 END IF;

 END LOOP;

 -- Use either clean_all or clean to clean up the message store when the user
 -- do not plan to do paylaod population on this message anymore
 message.clean(id);
 -- sys.aq$_jms_map_message.clean_all();

 EXCEPTION

More Oracle Streams AQ JMS Examples

Oracle JMS Types Examples 16-21

 WHEN java_exp THEN
 dbms_output.put_line('exception information:');
 display_exp(sys.aq$_jms_stream_message.get_exception());

END;
/

commit;

More Oracle Streams AQ JMS Examples
The sample program in Example 16–8 enqueues a large TextMessage (along with
JMS user properties) in an Oracle Streams AQ queue created through the OJMS
administrative interfaces to hold JMS TEXT messages. Both the TextMessage and
BytesMessage enqueued in this example can be dequeued using OJMS Java clients.

Example 16–8 Enqueuing a Large TextMessage

DECLARE

 text varchar2(32767);
 agent sys.aq$_agent := sys.aq$_agent(' ', null, 0);
 message sys.aq$_jms_text_message;

 enqueue_options dbms_aq.enqueue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);

BEGIN

 message := sys.aq$_jms_text_message.construct;

 message.set_replyto(agent);
 message.set_type('tkaqpet2');
 message.set_userid('jmsuser');
 message.set_appid('plsql_enq');
 message.set_groupid('st');
 message.set_groupseq(1);

 message.set_boolean_property('import', True);
 message.set_string_property('color', 'RED');
 message.set_short_property('year', 1999);
 message.set_long_property('mileage', 300000);
 message.set_double_property('price', 16999.99);
 message.set_byte_property('password', 127);

 FOR i IN 1..500 LOOP
 text := CONCAT (text, '1234567890');
 END LOOP;

 message.set_text(text);

 dbms_aq.enqueue(queue_name => 'jmsuser.jms_text_t1',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => msgid);

END;

More Oracle Streams AQ JMS Examples

16-22 Oracle Streams Advanced Queuing User’s Guide

The sample program in Example 16–9 enqueues a large BytesMessage.

Example 16–9 Enqueuing a Large BytesMessage

DECLARE

 text VARCHAR2(32767);
 bytes RAW(32767);
 agent sys.aq$_agent := sys.aq$_agent(' ', null, 0);
 message sys.aq$_jms_bytes_message;
 body BLOB;
 position INT;

 enqueue_options dbms_aq.enqueue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);

BEGIN

 message := sys.aq$_jms_bytes_message.construct;

 message.set_replyto(agent);
 message.set_type('tkaqper4');
 message.set_userid('jmsuser');
 message.set_appid('plsql_enq_raw');
 message.set_groupid('st');
 message.set_groupseq(1);

 message.set_boolean_property('import', True);
 message.set_string_property('color', 'RED');
 message.set_short_property('year', 1999);
 message.set_long_property('mileage', 300000);
 message.set_double_property('price', 16999.99);

-- prepare a huge payload into a blob

 FOR i IN 1..1000 LOOP
 text := CONCAT (text, '0123456789ABCDEF');
 END LOOP;

 bytes := HEXTORAW(text);

 dbms_lob.createtemporary(lob_loc => body, cache => TRUE);
 dbms_lob.open (body, DBMS_LOB.LOB_READWRITE);
 position := 1 ;
 FOR i IN 1..10 LOOP
 dbms_lob.write (lob_loc => body,
 amount => FLOOR((LENGTH(bytes)+1)/2),
 offset => position,
 buffer => bytes);
 position := position + FLOOR((LENGTH(bytes)+1)/2) ;
 END LOOP;

-- end of the preparation

 message.set_bytes(body);
 dbms_aq.enqueue(queue_name => 'jmsuser.jms_bytes_t1',
 enqueue_options => enqueue_options,
 message_properties => message_properties,

More Oracle Streams AQ JMS Examples

Oracle JMS Types Examples 16-23

 payload => message,
 msgid => msgid);

 dbms_lob.freetemporary(lob_loc => body);
END;

More Oracle Streams AQ JMS Examples

16-24 Oracle Streams Advanced Queuing User’s Guide

Part V
Using Messaging Gateway

Part VII describes Messaging Gateway and how to use it.

This part contains the following chapters:

■ Chapter 17, "Introducing Oracle Messaging Gateway"

■ Chapter 18, "Getting Started with Oracle Messaging Gateway"

■ Chapter 19, "Working with Oracle Messaging Gateway"

■ Chapter 20, "Oracle Messaging Gateway Message Conversion"

■ Chapter 21, "Monitoring Oracle Messaging Gateway"

Introducing Oracle Messaging Gateway 17-1

17
Introducing Oracle Messaging Gateway

The Messaging Gateway administration package DBMS_MGWADM provides an
interface for creating Messaging Gateway agents, managing agents, creating
messaging system links, registering non-Oracle queues, and setting up propagation
jobs.

This chapter contains these topics:

■ Introducing Oracle Messaging Gateway

■ Oracle Messaging Gateway Features

■ Oracle Messaging Gateway Architecture

■ Propagation Processing Overview

■ Oracle Streams AQ Buffered Messages and Messaging Gateway

Introducing Oracle Messaging Gateway
Messaging Gateway enables communication between applications based on
non-Oracle messaging systems and Oracle Streams AQ.

Oracle Streams AQ provides propagation between two Oracle Streams AQ queues to
enable e-business (HTTP through IDAP). Messaging Gateway extends this to
applications based on non-Oracle messaging systems.

Because Messaging Gateway is integrated with Oracle Streams AQ and Oracle
Database, it offers reliable message delivery. Messaging Gateway guarantees that
messages are delivered once and only once between Oracle Streams AQ and
non-Oracle messaging systems that support persistence. The PL/SQL interface
provides an easy-to-learn administrative API, especially for developers already
proficient in using Oracle Streams AQ.

This release of Messaging Gateway supports the integration of Oracle Streams AQ
with applications based on WebSphere MQ 6.0 and TIB/Rendezvous 7.2.

Oracle Messaging Gateway Features
Messaging Gateway provides the following features:

■ Extends Oracle Streams AQ message propagation

Messaging Gateway propagates messages between Oracle Streams AQ and
non-Oracle messaging systems. Messages sent by Oracle Streams AQ applications
can be received by non-Oracle messaging system applications. Conversely,

Oracle Messaging Gateway Features

17-2 Oracle Streams Advanced Queuing User’s Guide

messages published by non-Oracle messaging system applications can be
consumed by Oracle Streams AQ applications.

■ Support for Java Message Service (JMS) messaging systems

Messaging Gateway propagates messages between Oracle Java Message Service
(Oracle JMS) and WebSphere MQ Java Message Service (WebSphere MQ JMS).

■ Native message format support

Messaging Gateway supports the native message formats of messaging systems.
Oracle Streams AQ messages can have RAW or any Oracle object type payload.
WebSphere MQ messages can be text or byte messages. TIB/Rendezvous
messages can be any TIB/Rendezvous wire format datatype except the nested
datatype MSG and those with unsigned integers.

■ Message conversion

Messaging Gateway facilitates message conversion between Oracle Streams AQ
messages and non-Oracle messaging system messages. Messages are converted
through either automatic routines provided by Messaging Gateway or customized
message transformation functions that you provide.

■ Integration with Oracle Database

Messaging Gateway is managed through a PL/SQL interface similar to that of
Oracle Streams AQ. Configuration information is stored in Oracle Database tables.
Message propagation is carried out by an external process of the Oracle Database
server.

■ Guaranteed message delivery

If the messaging systems at the propagation source and propagation destination
both support transactions, then Messaging Gateway guarantees that persistent
messages are propagated exactly once. If messages are not persistent or
transactions are not supported by the messaging systems at the propagation
source or propagation destination, then at-most-once propagation is guaranteed.

■ Security support

Messaging Gateway supports client authentication of Oracle Database and
non-Oracle messaging systems.

Messaging Gateway also allows Secure Socket Layer (SSL) support for IBM
WebSphere MQ and WebSphere MQ JMS connections made by the Messaging
Gateway agent.

■ Multiple agent support

See Also:

■ "Propagation Processing Overview" on page 17-4

■ Chapter 20, "Oracle Messaging Gateway Message Conversion"

Note: Messaging Gateway does not support message propagation
between JMS and non-JMS messaging systems.

See Also: "Converting Oracle Messaging Gateway Non-JMS
Messages" on page 20-1

Oracle Messaging Gateway Architecture

Introducing Oracle Messaging Gateway 17-3

Messaging Gateway supports multiple agents for a given database. Users can
partition propagation jobs based on functionality, organizations, or workload and
assign them to different Messaging Gateway agents. This allows Messaging
Gateway to scale in a RAC environment and enables propagation job grouping
and isolation.

Oracle Messaging Gateway Architecture
Messaging Gateway has two main components:

■ Administration Package DBMS_MGWADM

■ Messaging Gateway Agent

Figure 17–1 shows how these components work together with Oracle Database and
non-Oracle messaging systems.

Figure 17–1 Messaging Gateway Architecture

Administration Package DBMS_MGWADM
The Messaging Gateway administration package DBMS_MGWADM provides an interface
for creating named Messaging Gateway agents, managing agents, creating messaging
system links, registering non-Oracle queues, and setting up propagation jobs.

Users call the procedures in the package to make configuration changes regardless of
whether the Messaging Gateway agent is running. If the Messaging Gateway agent is
running, then the procedures in the package send notifications for configuration
changes to the agent. The agent dynamically alters its configuration for most
configuration changes, although some changes require that the agent be shut down
and restarted before they take effect. All the procedures in the package are serialized to
guarantee that the Messaging Gateway agent receives and processes notifications in
the same order as they are made.

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information on DBMS_MGWADM

Propagation Engine

MQ
Base
Java
Driver

MQ
JMS

Driver

TIB /
Rendezvous

Driver

MQSeries MQSeries TIB /
Rendezvous

AQ Messaging
System Link

Messaging
System Link

Messaging
System Link

Messaging Gateway Agent

table

table

Oracle Database

Messaging
Gateway Administration

PL/SQL Interface

JDBC

Propagation Processing Overview

17-4 Oracle Streams Advanced Queuing User’s Guide

Oracle Messaging Gateway Agent
The Messaging Gateway agent runs as an external process of the Oracle Database
server and processes propagation jobs. It is started and shut down by calling the
STARTUP and SHUTDOWN procedures in DBMS_MGWADM package.

The Messaging Gateway agent contains a multithreaded propagation engine and a set
of drivers for messaging systems. The propagation engine fairly schedules
propagation jobs and processes propagation jobs concurrently. The polling thread in
the agent periodically polls the source queues of enabled propagation jobs and wakes
up worker threads to process propagation jobs if messages are available. The drivers
for non-Oracle messaging systems run as clients of the messaging systems for all
messaging operations.

Oracle Database
As an Oracle Database feature, Messaging Gateway provides a mechanism of message
propagation between Oracle Streams AQ and non-Oracle messaging systems. Oracle
Streams AQ is involved in every propagation job as either propagation source or
propagation destination.

Messaging Gateway is managed through the PL/SQL administration package DBMS_
MGWADM. All configuration information and execution state information of Messaging
Gateway are stored in Oracle Database and can be accessed through database views.

The Messaging Gateway agent runs as an external procedure of the Oracle Database
server. Therefore, it runs only when its associated database server is running.

Non-Oracle Messaging Systems
The Messaging Gateway agent connects to non-Oracle messaging systems through
messaging system links. Messaging system links are communication channels between
the Messaging Gateway agent and non-Oracle messaging systems. Users can use the
administration package DBMS_MGWADM to configure multiple links to the same or
different non-Oracle messaging systems.

Queues in non-Oracle messaging systems, such as WebSphere MQ queues,
TIB/Rendezvous subjects, and WebSphere MQ JMS destinations (queues and topics)
can all serve as propagation sources and destinations for Messaging Gateway. They are
referred to as foreign queues. All foreign queues involved in message propagation as
source queues, destination queues, or exception queues must be registered through the
administration package. The registration of a foreign queue does not create the
physical queue in a non-Oracle messaging system, but merely records information
about the queue, such as the messaging system link to access it, its native name, and
its domain (queue or topic). The physical queue must be created through the
administration interface of the non-Oracle messaging system.

Propagation Processing Overview
Propagation jobs must be defined in order for messages to be propagated from one
messaging system to another. A propagation job defines the source queue, destination
queue, and various other attributes that affect the processing of the propagation job.

If the propagation source is a queue (point-to-point), then the Messaging Gateway
agent moves all messages in the queue to the destination. If the propagation source is a
topic (publish/subscribe), then the Messaging Gateway agent creates a subscription

See Also: "Registering a Non-Oracle Queue" on page 19-13

Oracle Streams AQ Buffered Messages and Messaging Gateway

Introducing Oracle Messaging Gateway 17-5

on the propagation source topic. The agent moves all messages that are published to
the topic after the subscription is created.

A propagation job is processed when it is enabled. Disabling a propagation job stops
propagation processing but does not stop message subscription.

When the Messaging Gateway agent processes a propagation job, it dequeues
messages from the source queue and enqueues the messages to the destination queue.
As each message is propagated, it is converted from its native format in the source
messaging system to its native format in the destination messaging system. Messaging
Gateway provides automatic message conversions between simple and commonly
used message formats. You can customize message conversions by providing your
own message transformation functions.

When the Messaging Gateway agent fails to convert a message from the source format
to the destination format, the agent moves the message from the source queue to an
exception queue, if the exception queue exists, and continues to process the
propagation job.

If the Messaging Gateway agent runs into failures when processing a propagation job,
it retries up to sixteen times in an exponential backoff scheme (from two seconds up to
thirty minutes) before it stops retrying.

To guarantee reliable message delivery, Messaging Gateway requires logging queues
in messaging systems that support transactions and persistent messages. The
Messaging Gateway agent uses the logging queues to store the processing states of
propagation jobs so that it can restore propagation processing from failures.

Oracle Streams AQ Buffered Messages and Messaging Gateway
Messaging Gateway does not support propagation of buffered messages. In outbound
propagation, the Messaging Gateway agent dequeues only persistent messages from
AQ queues. In inbound propagation, the Messaging Gateway agent always enqueues
persistent messages into AQ queues.

See Also: "Configuring Oracle Messaging Gateway Propagation
Jobs" on page 19-14

Oracle Streams AQ Buffered Messages and Messaging Gateway

17-6 Oracle Streams Advanced Queuing User’s Guide

Getting Started with Oracle Messaging Gateway 18-1

18
Getting Started with Oracle Messaging

Gateway

This chapter describes Oracle Messaging Gateway (MGW) prerequisites and how to
load, set up, and unload Messaging Gateway. It also describes how to set up and
modify the mgw.ora initialization file.

This chapter contains these topics:

■ Oracle Messaging Gateway Prerequisites

■ Loading and Setting Up Oracle Messaging Gateway

■ Setting Up Non-Oracle Messaging Systems

■ Verifying the Oracle Messaging Gateway Setup

■ Unloading Oracle Messaging Gateway

■ Understanding the mgw.ora Initialization File

Oracle Messaging Gateway Prerequisites
Messaging Gateway uses one Oracle Scheduler job for each Messaging Gateway agent.
If the value of the JOB_QUEUE_PROCESSES database initialization parameter is zero,
then that parameter does not influence the number of Oracle Scheduler jobs that can
run concurrently. However, if the value is non-zero, it effectively becomes the
maximum number of Scheduler jobs and job queue jobs than can run concurrently. If a
non-zero value is set, it should be large enough to accommodate a Scheduler job for
each Messaging Gateway agent to be started.

Loading and Setting Up Oracle Messaging Gateway
Perform the following procedures before running Messaging Gateway:

■ Loading Database Objects into the Database

■ Modifying listener.ora for the External Procedure

■ Modifying tnsnames.ora for the External Procedure

■ Setting Up a mgw.ora Initialization File

■ Creating an Oracle Messaging Gateway Administration User

■ Creating an Oracle Messaging Gateway Agent User

■ Configuring Oracle Messaging Gateway Connection Information

■ Configuring Oracle Messaging Gateway in a RAC Environment

Loading and Setting Up Oracle Messaging Gateway

18-2 Oracle Streams Advanced Queuing User’s Guide

Loading Database Objects into the Database
Using SQL*Plus, run ORACLE_HOME/mgw/admin/catmgw.sql as user SYS as
SYSDBA. This script loads the database objects necessary for Messaging Gateway,
including roles, tables, views, object types, and PL/SQL packages. It creates public
synonyms for Messaging Gateway PL/SQL packages. It creates two roles, MGW_
ADMINISTRATOR_ROLE and MGW_AGENT_ROLE, with certain privileges granted. All
objects are owned by SYS.

Modifying listener.ora for the External Procedure
This procedure is for Linux 32-bit operating systems only. Static service information
for the listener is not necessary on the Windows operating system.

You must modify listener.ora so that the Messaging Gateway PL/SQL packages
can call the external procedure.

1. Verify that the default Inter-process Communication (IPC) protocol address for
the external procedures is set.

LISTENER = (ADDRESS_LIST=
(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC))

2. Add static service information for the listener in step 1. This involves setting a
SID_DESC for the listener. Within the SID_DESC, the parameters described in
Table 18–1 are important to Messaging Gateway and must be specified according
to your own situation.

Note: These setup instructions are specific to 32-bit versions of the
Windows and Linux x86 operating systems. The tasks apply to both
Windows and Linux operating systems, except where "Windows
Operating System Only" or "Linux Operating System Only" is
indicated. For other operating systems, see operating-system specific
documentation.

Table 18–1 SID_DESC Parameters

Parameter Description

SID_NAME The SID that is specified in the net service name in tnsnames.ora. In the
following example, the SID_NAME is mgwextproc.

ENVS Set up the LD_LIBRARY_PATH environment needed for the external
procedure to run. The LD_LIBRARY_PATH must contain the following paths:

JRE_HOME/lib/PLATFORM_TYPE
JRE_HOME/lib/PLATFORM_TYPE/server
ORACLE_HOME/lib

It should also contain any additional libraries required by third-party
messaging systems. See "Setting Up Non-Oracle Messaging Systems" on
page 18-6.

ORACLE_HOME Your Oracle home directory. Using $ORACLE_HOME does not work.

PROGRAM The name of the external procedure agent, which is extproc

Loading and Setting Up Oracle Messaging Gateway

Getting Started with Oracle Messaging Gateway 18-3

Example 18–1 adds SID_NAME mgwextproc to a listener.ora file for Linux x86.

Example 18–1 Adding Static Service Information for a Listener

Add a SID_DESC
SID_LIST_LISTENER= (SID_LIST=
(SID_DESC =
 (SID_NAME= mgwextproc)
 (ENVS=
 "LD_LIBRARY_PATH=JRE_HOME/lib/i386:JRE_HOME/lib/i386/server:ORACLE_HOME/lib")
 (ORACLE_HOME=ORACLE_HOME)
 (PROGRAM = extproc))

Modifying tnsnames.ora for the External Procedure
This procedure is for Linux 32-bit operating systems only. For the external procedure,
configure a net service name MGW_AGENT in tnsnames.ora whose connect descriptor
matches the information configured in listener.ora, as shown in Example 18–2.
The net service name must be MGW_AGENT (this value is fixed). The KEY value must
match the KEY value specified for the IPC protocol in listener.ora. The SID value
must match the value specified for SID_NAME of the SID_DESC entry in
listener.ora.

Example 18–2 Configuring MGW_AGENT

MGW_AGENT =
(DESCRIPTION=
 (ADDRESS_LIST= (ADDRESS= (PROTOCOL=IPC)(KEY=EXTPROC)))
 (CONNECT_DATA= (SID=mgwextproc)))

Setting Up a mgw.ora Initialization File
The Messaging Gateway default initialization file ORACLE_
HOME/mgw/admin/mgw.ora is a text file. The Messaging Gateway external
procedure uses it to get initialization parameters to start the Messaging Gateway
agent. Copy ORACLE_HOME/mgw/admin/sample_mgw.ora to mgw.ora and modify
it according to your situation.

The following procedure sets environment variables and other parameters required for
all applications of Messaging Gateway:

1. Windows Operating System Only: Set the MGW_PRE_PATH variable. Its value is
the path to the jvm.dll library:

Note: JRE_HOME represents the root directory of a JRE installation,
just as ORACLE_HOME represents the root directory of an Oracle
installation. Oracle recommends that you use the JRE installed with
Oracle Database.

Note: If the names.default_domain parameter for sqlnet.ora
has been used to set a default domain, then that domain must be
appended to the MGW_AGENT net service name in tnsnames.ora. For
example, if sqlnet.ora contains the entry names.default_
domain=acme.com, then the net service name in tnsnames.ora
must be MGW_AGENT.acme.com.

Loading and Setting Up Oracle Messaging Gateway

18-4 Oracle Streams Advanced Queuing User’s Guide

set MGW_PRE_PATH = JRE_HOME\bin\client

This variable is prepended to the path inherited by the Messaging Gateway agent
process.

2. Set CLASSPATH to include at least the following:

■ JRE runtime classes:

JRE_HOME/lib/rt.jar

■ Oracle JDBC classes:

ORACLE_HOME/jdbc/lib/ojdbc5.jar

■ Oracle internationalization classes:

ORACLE_HOME/jlib/orai18n.jar

■ SQLJ runtime:

ORACLE_HOME/sqlj/lib/runtime12.jar

■ Java Message Service (JMS) interface

ORACLE_HOME/rdbms/jlib/jmscommon.jar

■ Oracle JMS implementation classes

ORACLE_HOME/rdbms/jlib/aqapi.jar

■ Java transaction API

ORACLE_HOME/jlib/jta.jar

■ Any additional classes needed for Messaging Gateway to access non-Oracle
messaging systems

Creating an Oracle Messaging Gateway Administration User
To perform Messaging Gateway administration work, a database user must be created
with MGW_ADMINISTRATOR_ROLE privileges, as shown in Example 18–3.

Example 18–3 Creating a Messaging Gateway Administrator User

CREATE USER admin_user IDENTIFIED BY admin_password;
GRANT CREATE SESSION to admin_user;
GRANT MGW_ADMINISTRATOR_ROLE to admin_user;

Creating an Oracle Messaging Gateway Agent User
To establish the Messaging Gateway agent connection back to the database, a database
user with MGW_AGENT_ROLE privileges must be created, as shown in Example 18–4.

See Also: "Setting Up Non-Oracle Messaging Systems" on page 18-6

Note: Replace ORACLE_HOME with the appropriate, spelled-out
value. Using $ORACLE_HOME, for example, does not work.

Users of the Windows operating system must set CLASSPATH using
the Windows operating system path syntax.

Loading and Setting Up Oracle Messaging Gateway

Getting Started with Oracle Messaging Gateway 18-5

Example 18–4 Creating a Messaging Gateway Agent User

CREATE USER agent_user IDENTIFIED BY agent_password;
GRANT CREATE SESSION to agent_user;
GRANT MGW_AGENT_ROLE to agent_user;

Configuring Oracle Messaging Gateway Connection Information
After the Messaging Gateway agent user is created, the administration user uses
DBMS_MGWADM.ALTER_AGENT to configure Messaging Gateway with the username,
password, and database connect string used by the Messaging Gateway agent to
connect back to the database, as shown in Example 18–5. Use the Messaging Gateway
username and password that you created in "Creating an Oracle Messaging Gateway
Agent User" on page 18-4. The database connect string parameter can be set to either a
net service name in tnsnames.ora (with IPC protocol for better performance) or
NULL. If NULL, then the oracle_sid parameter must be set in mgw.ora.

For this release, always specify a not NULL value for the database connect string
parameter when calling DBMS_MGWADM.ALTER_AGENT.

Example 18–5 Configuring Messaging Gateway Connection Information

set echo off
set verify off
connect admin_user

ACCEPT password CHAR PROMPT 'Enter the password for AGENT_USER: ' HIDE

EXEC DBMS_MGWADM.ALTER_AGENT(
 agent_name => ’default_agent’,
 username => ’agent_user’,
 password => ’&password’,
 database => ’agent_database’);

Configuring Oracle Messaging Gateway in a RAC Environment
This section contains these topics:

■ Configuring Connection Information for the MGW Agent Connections

■ Setting the RAC Instance for the Messaging Gateway Agent

Configuring Connection Information for the MGW Agent Connections
You must make all database connections made by the Messaging Gateway agent to the
instance on which the Messaging Gateway agent process is running. This ensures
correct failover behavior in a Real Application Clusters (RAC) environment. You can
configure connections this way by having the instances use slightly different
tnsnames.ora files. Each file contains an entry with the same net service name, but
the connect data refers to only the instance associated with that tnsnames.ora file.
The common net service name would then be used for the database parameter when
DBMS_MGWADM.ALTER_AGENT is used to configure the Messaging Gateway agent
database connection information.

For example, in a two-instance RAC environment with instances OraDB1 and OraDB2,
where the net service name AGENT_DB is to be used, the tnsnames.ora for instance
OraDB1 would look like this:

AGENT_DB =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = myhost1.mycorp.com)(PORT = 1521))

Setting Up Non-Oracle Messaging Systems

18-6 Oracle Streams Advanced Queuing User’s Guide

 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraDB10.mycorp.com)
 (INSTANCE_NAME = OraDB1)
)
)

The tnsnames.ora for OraDB2 would look like this:

AGENT_DB =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = myhost2.mycorp.com)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraDB10.mycorp.com)
 (INSTANCE_NAME = OraDB2)
)
)

You would then configure Messaging Gateway agent user connection information by
running the following command:

EXEC DBMS_MGWADM.ALTER_AGENT(
 agent_name => ’default_agent’,
 username => ’agent_user’,
 password => ’agent_password’,
 database => ’agent_db’);

Setting the RAC Instance for the Messaging Gateway Agent
Messaging Gateway provides service affinity for the Messaging Gateway agent
external process by leveraging the database service support of the Oracle Scheduler.
By default, a Messaging Gateway agent will use the default database service that is
mapped to all instances. If you want a Messaging Gateway agent to start on a select
group of database instances, you must create a database service for those instances and
then assign the database service to the Messaging Gateway agent using the SERVICE
parameter of the DBMS_MGWADM.CREATE_AGENT or DBMS_MGWADM.ALTER_AGENT
procedures. The DBMS_MGWADM.STARTUP procedure submits an Oracle Scheduler job
that starts the Messaging Gateway agent external process when the Scheduler job is
executed. The Scheduler job will use the database service configured for the Messaging
Gateway agent.

The database service specified by the SERVICE parameter is only used for the service
affinity of the Oracle Scheduler job and thus the service affinity for the Messaging
Gateway external process. It is not used for the database connections made by the
Messaging Gateway agent user. Those JDBC client connections are based on the values
specified for the DATABASE and CONNTYPE parameters.

Setting Up Non-Oracle Messaging Systems
This section contains these topics:

■ Setting Up for TIB/Rendezvous

■ Setting Up for WebSphere MQ Base Java or JMS

See Also: "Running the Oracle Messaging Gateway Agent on RAC"
on page 19-5

Setting Up Non-Oracle Messaging Systems

Getting Started with Oracle Messaging Gateway 18-7

Setting Up for TIB/Rendezvous
Running as a TIB/Rendezvous Java client application, the Messaging Gateway agent
requires TIB/Rendezvous software to be installed on the computer where the
Messaging Gateway agent runs. In this section TIBRV_HOME refers to the installed
TIB/Rendezvous software location.

Modifying listener.ora
On the Linux operating system, LD_LIBRARY_PATH in the entry for Messaging
Gateway must include TIBRV_HOME/lib for the agent to access TIB/Rendezvous
shared library files.

On the Windows operating system, you are not required to modify listener.ora.
But the system environment variable PATH must include TIBRV_HOME\bin.

Modifying mgw.ora
MGW_PRE_PATH must include the directory that contains the TIB/Rendezvous license
ticket file (tibrv.tkt), which usually is located in TIBRV_HOME/bin.

CLASSPATH must include the TIB/Rendezvous jar file TIBRV_
HOME/lib/tibrvj.jar. If you use your own customized TIB/Rendezvous advisory
message callback, then the location of the callback class must also be included.

You can set the following Java properties to change the default setting:

■ oracle.mgw.tibrv.encoding

■ oracle.mgw.tibrv.intraProcAdvSubjects

■ oracle.mgw.tibrv.advMsgCallback

Example 18–6 Setting Java Properties

setJavaProp oracle.mgw.tibrv.encoding=ISO8859_1
setJavaProp oracle.mgw.tibrv.intraProcAdvSubjects=_RV.>
setJavaProp oracle.mgw.tibrv.advMsgCallback=MyadvCallback

Setting Up for WebSphere MQ Base Java or JMS
The WebSphere MQ client and WebSphere MQ classes for Java and JMS must be
installed on the computer where the Messaging Gateway agent runs. In this section
MQ_HOME refers to the location of the installed client. On the Linux operating system,
this location is always /opt/mqm. On the Windows operating system, the installed
location can vary.

Modifying listener.ora
No extra modification of listener.ora is necessary for Messaging Gateway to
access WebSphere MQ.

See Also: "Modifying listener.ora for the External Procedure" on
page 18-2

See Also: "Understanding the mgw.ora Initialization File" on
page 18-9

Verifying the Oracle Messaging Gateway Setup

18-8 Oracle Streams Advanced Queuing User’s Guide

Modifying mgw.ora
When using WebSphere MQ Base Java (non-JMS) interface, set CLASSPATH to include
at least the following (in addition to those in "Setting Up a mgw.ora Initialization File"
on page 18-3):

■ MQ_HOME/java/lib/com.ibm.mq.jar

■ MQ_HOME/java/lib/connector.jar

When using WebSphere MQ JMS interface, set CLASSPATH to include at least the
following (in addition to those in "Setting Up a mgw.ora Initialization File" on
page 18-3):

■ MQ_HOME/java/lib/com.ibm.mqjms.jar

■ MQ_HOME/java/lib/com.ibm.mq.jar

■ MQ_HOME/java/lib/connector.jar

Verifying the Oracle Messaging Gateway Setup
The following procedure verifies the setup and includes a simple startup and
shutdown of the Messaging Gateway agent:

1. Start the database listeners.

Start the listener for the external procedure and other listeners for the regular
database connection.

2. Test the database connect string for the Messaging Gateway agent user.

Run sqlplus agent_user/agent_password@agent_database.

If it is successful, then the Messaging Gateway agent is able to connect to the
database.

3. Linux Operating System Only: Test the net service entry used to call the external
procedure.

Run sqlplus agent_user/agent_password@MGW_AGENT.

This should fail with "ORA-28547: connection to server failed, probable Oracle Net
admin error". Any other error indicates that the tnsnames.ora, listener.ora,
or both are not correct.

4. Connect as admin_user and call DBMS_MGWADM.STARTUP to start the Messaging
Gateway agent.

5. Using the MGW_GATEWAY view, wait for AGENT_STATUS to change to RUNNING
and AGENT_PING to change to REACHABLE.

6. Connect as admin_user and call DBMS_MGWADM.SHUTDOWN to shut down the
Messaging Gateway agent.

7. Using the MGW_GATEWAY view, wait for AGENT_STATUS to change to NOT_
STARTED.

Unloading Oracle Messaging Gateway
Use this procedure to unload Messaging Gateway:

1. Shut down Messaging Gateway.

Understanding the mgw.ora Initialization File

Getting Started with Oracle Messaging Gateway 18-9

2. Remove any user-created queues whose payload is a Messaging Gateway
canonical type (for example, SYS.MGW_BASIC_MSG_T).

3. Using SQL*Plus, run ORACLE_HOME/mgw/admin/catnomgw.sql as user SYS as
SYSDBA.

This drops the database objects used by Messaging Gateway, including roles,
tables, views, packages, object types, and synonyms.

4. Remove entries for Messaging Gateway created in listener.ora and
tnsnames.ora.

Understanding the mgw.ora Initialization File
Messaging Gateway reads initialization information from a text file when the
Messaging Gateway agent starts. The initialization file contains lines for setting
initialization parameters, environment variables, and Java properties. Each entity must
be specified on one line. Leading whitespace is trimmed in all cases.

A Messaging Gateway administrator can specify the initialization file to be used for a
Messaging Gateway agent via DBMS_MGWADM.CREATE_AGENT and DBMS_
MGWADM.ALTER_AGENT. If an initialization file is not specified then a default
initialization file will be used.

The default initialization file for the default agent is ORACLE_
HOME/mgw/admin/mgw.ora.

The default initialization file for a named agent is ORACLE_HOME/mgw/admin/mgw_
AGENTNAME.ora where AGENTNAME is the name in uppercase of the Messaging
Gateway agent. For example, if the agent name is my_agent then the name of the
agent’s default initialization file is ORACLE_HOME/mgw/admin/mgw_MY_AGENT.ora.
If the default initialization file for a named agent is not found then ORACLE_
HOME/mgw/admin/mgw.ora will be used.

mgw.ora Initialization Parameters
 The initialization parameters are typically specified by lines having a
"name=value<NL>" format where name represents the parameter name, value
represents its value and <NL> represents a new line.

log_directory

Usage: Specifies the directory where the Messaging Gateway log/trace file is
created.

Format: log_directory = value

Default: ORACLE_HOME/mgw/log

Example: log_directory = /private/mgwlog

log_level

Usage: Specifies the level of logging detail recorded by the Messaging Gateway
agent. The logging level can be dynamically changed by changed by calling DBMS_
MGWADM.SET_LOG_LEVEL while the Messaging Gateway agent is running. Oracle
recommends that log level 0 (the default value) be used at all times.

Understanding the mgw.ora Initialization File

18-10 Oracle Streams Advanced Queuing User’s Guide

Format: log_level = value

Values:

0 for basic logging; equivalent to DBMS_MGWADM.BASIC_LOGGING

1 for light tracing; equivalent to DBMS_MGWADM.TRACE_LITE_LOGGING

2 for high tracing; equivalent to DBMS_MGWADM.TRACE_HIGH_LOGGING

3 for debug tracing; equivalent to DBMS_MGWADM.TRACE_DEBUG_LOGGING

Example: log_level = 0

mgw.ora Environment Variables
Because the Messaging Gateway process environment is not under the direct control of
the user, certain environment variables should be set using the initialization file. The
environment variables currently used by the Messaging Gateway agent are
CLASSPATH, MGW_PRE_PATH, and ORACLE_SID.

Environment variables such as CLASSPATH and MGW_PRE_PATH are set so the
Messaging Gateway agent can find the required shared objects, Java classes, and so on.
Environment variables are specified by lines having a "set env_var=value<NL>"
or "setenv env_var=value<NL>" format where env_var represents the name of
the environment variable to set, value represents the value of the environment
variable, and <NL> represents a new line.

CLASSPATH

Usage: Used by the Java Virtual Machine to find Java classes needed by the
Messaging Gateway agent for propagation between Oracle Streams AQ and
non-Oracle messaging systems.

Format: set CLASSPATH=value

Example: set CLASSPATH=ORACLE_HOME/jdbc/lib/ojdbc5.jar:JRE_HOME/lib/rt.jar:
ORACLE_HOME/sqlj/lib/runtime12.jar:ORACLE_HOME/jlib/orai18n.jar:ORACLE_HOME/rdbms/
jlib/jmscommon.jar:ORACLE_HOME/rdbms/jlib/aqapi.jar:ORACLE_HOME/jlib/jta.jar:
/opt/mqm/java/lib/com.ibm.mq.jar:/opt/mqm/java/lib/com.ibm.mqjms.jar:/opt/mqm/java
/lib/connector.jar

MGW_PRE_PATH

Usage: Appended to the front of the path inherited by the Messaging Gateway
process. For the Windows operating system, this variable must be set to indicate where
the library jvm.dll is found.

Format: set MGW_PRE_PATH=value

Example: set MGW_PRE_PATH=JRE_HOME\bin\client

ORACLE_SID

Usage: Can be used when a service name is not specified when configuring
Messaging Gateway.

Understanding the mgw.ora Initialization File

Getting Started with Oracle Messaging Gateway 18-11

Format: set ORACLE_SID=value

Example: set ORACLE_SID=my_sid

mgw.ora Java Properties
You must specify Java system properties for the Messaging Gateway JVM when
working with TIB/Rendezvous subjects. You can use the setJavaProp parameter of
the Messaging Gateway initialization file for this. Java properties are specified by lines
having a "setJavaProp prop_name=value<NL>" format, where prop_name
represents the name of the Java property to set, value represents the value of the Java
property, and <NL> represents a new line character.

oracle.mgw.batch_size

Usage: This Java property represents the maximum number of messages propagated
in one transaction. It serves as a default value if the Messaging Gateway job option,
MsgBatchSize, is not specified. If altered from the default, then consideration should
be given to the expected message size and the Messaging Gateway agent memory (see
max_memory parameter of DBMS_MGWADM.ALTER_AGENT). The minimum value of
this Java property is 1, the maximum is 100, and the default is 30.

Syntax: setJavaProp oracle.mgw.batch_size=value

Example: setJavaProp oracle.mgw.batch_size=10

oracle.mgw.polling_interval

Usage: This parameter specifies the time (in milliseconds) that must elapse between
polls for available messages of a propagation source queue. The default polling
interval used by Messaging Gateway is 5000 milliseconds (5 seconds).

Syntax: setJavaProp oracle.mgw.polling_interval=value

Example: setJavaProp oracle.mgw.polling_interval=1000

oracle.mgw.tibrv.encoding

Usage: This parameter specifies the character encoding to be used by the
TIB/Rendezvous messaging system links. Only one character set for all configured
TIB/Rendezvous links is allowed due to TIB/Rendezvous restrictions. The default is
ISO 8859-1 or the character set specified by the Java system property
file.encoding.

Syntax: setJavaProp oracle.mgw.tibrv.encoding=value

Example: setJavaProp oracle.mgw.tibrv.encoding=ISO8859_1

See Also: "DBMS_MGWADM" in Oracle Database PL/SQL Packages
and Types Reference

Understanding the mgw.ora Initialization File

18-12 Oracle Streams Advanced Queuing User’s Guide

oracle.mgw.tibrv.intraProcAdvSubjects

Usage Used for all TIB/Rendezvous messaging system links, this parameter
specifies the names of system advisory subjects that present on the intraprocess
transport.

Syntax setJavaProp oracle.mgw.tibrv.intraProcAdvSubjects=
advisorySubjectName[:advisorySubjectName]

Example: setJavaProp oracle.mgw.tibrv.intraProcAdvSubjects=_RV.>

oracle.mgw.tibrv.advMsgCallback

Usage: Used for all TIB/Rendezvous messaging system links, this parameter
specifies the name of the Java class that implements the TibrvMsgCallback interface
to handle system advisory messages. If it is not specified, then the default system
advisory message handler provided by Messaging Gateway is used, which writes
system advisory messages into Messaging Gateway log files. If it is specified, then the
directory where the class file is stored must be included in the CLASSPATH in
mgw.ora.

Syntax: setJavaProp oracle.mgw.tibrv.advMsgCallback=className

Example: setJavaProp oracle.mgw.tibrv.advMsgCallback=MyAdvCallback

oracle.net.tns_admin

Usage: This parameter specifies the directory of the tnsnames.ora file. It must be set
if the Messaging Gateway agent is configured to use the JDBC Thin driver and the
database specifier of the agent connection information is a TNSNames alias. This does
not need to be set if the JDBC OCI driver is used or the database specifier is something
other than a TNSNames alias.

Syntax: setJavaProp oracle.net.tns_admin=value

Example: setJavaProp oracle.net.tns_admin=/myoraclehome/network/admin

mgw.ora Comment Lines
 Comment lines are designated with a # character as the first character of the line.

Working with Oracle Messaging Gateway 19-1

19
Working with Oracle Messaging Gateway

After Oracle Messaging Gateway (MGW) is loaded and set up, it is ready to be
configured and run. You can use DBMS_MGWADM.ALTER_AGENT to set the username,
password, database specifier, and connection type the Messaging Gateway agent will
use for creating database connections.

This chapter contains these topics:

■ Configuring the Oracle Messaging Gateway Agent

■ Starting and Shutting Down the Oracle Messaging Gateway Agent

■ Configuring Messaging System Links

■ Configuring Non-Oracle Messaging System Queues

■ Configuring Oracle Messaging Gateway Propagation Jobs

■ Propagation Jobs, Subscribers, and Schedules

■ Configuration Properties

Configuring the Oracle Messaging Gateway Agent
Messages are propagated between Oracle Streams AQ and non-Oracle messaging
systems by the Messaging Gateway agent. The Messaging Gateway agent runs as an
external process of the Oracle Database server.

Messaging Gateway supports multiple agents for a given database. A default agent is
automatically created that has the name of DEFAULT_AGENT. Additional named
agents can be created to provide propagation job isolation and grouping, and scaling
in a RAC environment. The default agent is usually sufficient for single instance,
non-RAC, environments.

This section contains these topics:

■ Creating a Messaging Gateway Agent

■ Removing a Messaging Gateway Agent

■ Database Connection

Note: All commands in the examples must be run as a user granted
MGW_ADMINISTRATOR_ROLE.

See Also: "DBMS_MGWADM" and "DBMS_MGWMSG" in Oracle
Database PL/SQL Packages and Types Reference

Configuring the Oracle Messaging Gateway Agent

19-2 Oracle Streams Advanced Queuing User’s Guide

■ Resource Limits

Creating a Messaging Gateway Agent
You can use DBMS_MGWADM.CREATE_AGENT to create additional Messaging Gateway
agents. The Messaging Gateway default agent, DEFAULT_AGENT, is automatically
created when Messaging Gateway is installed and will always exist.

Agents can be configured with an agent user, connection information, database
service, and resource limits when the agent is created, or at a later time using DBMS_
MGWADM.ALTER_AGENT. A Messaging Gateway agent must be configured with a
database user that has been granted the role MGW_AGENT_ROLE before the agent can
be started.

Example 19–1 creates the agent named myagent and specifies the database connection
information for the agent user. Default values are used for all other parameters.

Example 19–1 Creating a Messaging Gateway Agent

SQL> exec DBMS_MGWADM.CREATE_AGENT(
 agent_name => ‘myagent’,
 username => ‘mgwagent’,
 password => ‘mgwagent_password’,
 database => ‘mydatabase’);

Removing a Messaging Gateway Agent
A Messaging Gateway agent can be removed by calling DBMS_MGWADM.REMOVE_
AGENT. Before an agent can be removed, all Messaging Gateway links associated with
the agent must be removed and the agent shut down. The default agent, DEFAULT_
AGENT, cannot be removed. Example 19–2 removes the agent named myagent.

Example 19–2 Removing a Messaging Gateway Agent

SQL> exec DBMS_MGWADM.REMOVE_AGENT(agent_name => ’myagent’);

Database Connection
The Messaging Gateway agent runs as a process external to the database. To access
Oracle Streams AQ and the Messaging Gateway packages, the Messaging Gateway
agent needs to establish connections to the database. You can use DBMS_
MGWADM.ALTER_AGENT to set the username, password and the database connect string
that the Messaging Gateway agent will use for creating database connections. The user
must be granted the role MGW_AGENT_ROLE before the Messaging Gateway agent can
be started.

Example 19–3 shows the Messaging Gateway default agent being configured for user
mgwagent with password mgwagent_password using net service name
mydatabase.

Example 19–3 Setting Database Connection Information

SQL> exec DBMS_MGWADM.ALTER_AGENT (
 agent_name => ’default_agent’,
 username => 'mgwagent',
 password => 'mgwagent_password',
 database => 'mydatabase');

Starting and Shutting Down the Oracle Messaging Gateway Agent

Working with Oracle Messaging Gateway 19-3

Resource Limits
You can use DBMS_MGWADM.ALTER_AGENT to set resource limits for the Messaging
Gateway agent. For example, you can set the heap size of the Messaging Gateway
agent process and the number of propagation threads used by the agent process. The
default values are 64 MB of memory heap and one propagation thread. For named
agents, these values can also be specified when the agent is created by DBMS_
MGWADM.CREATE_AGENT.

Example 19–4 sets the heap size to 96 MB and two propagation threads for the agent
myagent.

Example 19–4 Setting the Resource Limits

SQL> exec DBMS_MGWADM.ALTER_AGENT(
 agent_name => ’myagent’,
 max_memory => 96,
 max_threads => 2);

The memory heap size and the number of propagation threads cannot be altered when
the Messaging Gateway agent is running.

Starting and Shutting Down the Oracle Messaging Gateway Agent
This section contains these topics:

■ Starting the Oracle Messaging Gateway Agent

■ Shutting Down the Oracle Messaging Gateway Agent

■ Oracle Messaging Gateway Agent Scheduler Job

■ Running the Oracle Messaging Gateway Agent on RAC

Starting the Oracle Messaging Gateway Agent
After the Messaging Gateway agent is configured, you can start the agent with DBMS_
MGWADM.STARTUP. Example 19–5 shows how to start the default agent and agent
myagent.

Example 19–5 Starting the Messaging Gateway Agent

SQL> exec DBMS_MGWADM.STARTUP;
SQL> exec DBMS_MGWADM.STARTUP (‘myagent’);

You can use the MGW_GATEWAY view to check the status of the Messaging Gateway
agent, as described in Chapter 21, "Monitoring Oracle Messaging Gateway".

Shutting Down the Oracle Messaging Gateway Agent
You can use DBMS_MGWADM.SHUTDOWN to shut down the Messaging Gateway agent.
Example 19–6 shows how to shut down the Messaging Gateway default agent and
agent myagent.

Example 19–6 Shutting Down the Messaging Gateway Agent

SQL> exec DBMS_MGWADM.SHUTDOWN;
SQL> exec DBMS_MGWADM.SHUTDOWN (‘myagent’);

Starting and Shutting Down the Oracle Messaging Gateway Agent

19-4 Oracle Streams Advanced Queuing User’s Guide

You can use the MGW_GATEWAY view to check if the Messaging Gateway agent has
shut down successfully, as described in Chapter 21, "Monitoring Oracle Messaging
Gateway".

Oracle Messaging Gateway Agent Scheduler Job
Messaging Gateway uses a Scheduler job to start the Messaging Gateway agent. This
job is created when procedure DBMS_MGWADM.STARTUP is called. When the job is run,
it calls an external procedure that creates the Messaging Gateway agent in an external
process. The job is removed after:

■ The agent shuts down because DBMS_MGWADM.SHUTDOWN was called

■ The agent terminates because a non-restartable error occurs

Messaging Gateway uses DBMS_SCHEDULER to create a repeatable Scheduler job with
a repeat interval of one minute. The job is owned by SYS. A repeatable job enables the
Messaging Gateway agent to restart automatically when a given job instance ends
because of a database shutdown, database malfunction, or a restartable error. Only
one instance of a Messaging Gateway agent job runs at a given time.

Each agent uses a Scheduler job class to specify the service affinity for the agent’s
Scheduler job. The job class will be configured with the database service specified by
DBMS_MGWADM.CREATE_AGENT or DBMS_MGWADM.ALTER_AGENT. A database
administrator is responsible for setting up the database service. If no database service
is specified, the default database service that maps to every instance is used.

The name of the Scheduler job class used by the Messaging Gateway default agent is
SYS.MGW_JOBCLS_DEFAULT_AGENT. The Scheduler job used by the default agent is
SYS.MGW_JOB_DEFAULT_AGENT.

The name of the Scheduler job class used by a Messaging Gateway named agent is
SYS.MGW_JOBCLS_<agent_name>. The Scheduler job used by a named agent is
SYS.MGW_JOB_<agent_name>.

If the agent job encounters an error, then the error is classified as either a restartable
error or non-restartable error. A restartable error indicates a problem that might go
away if the agent job were to be restarted. A non-restartable error indicates a problem
that is likely to persist and be encountered again if the agent job restarts. ORA-01089
(immediate shutdown in progress) and ORA-28576 (lost RPC connection to external
procedure) are examples of restartable errors. ORA-06520 (error loading external
library) is an example of a non-restartable error.

Messaging Gateway uses a database shutdown trigger. If the Messaging Gateway
agent is running on the instance being shut down, then the trigger notifies the agent of
the shutdown, and upon receipt of the notification, the agent will terminate the current
run. The job scheduler will automatically schedule the job to run again at a future
time.

If a Messaging Gateway agent job instance ends because of a database malfunction or
a restartable error detected by the agent job, then the job will not be removed and the
job scheduler will automatically schedule the job to run again at a future time.

The MGW_GATEWAY view shows the agent status, database service, and the database
instance on which the Messaging Gateway agent is current running. The Oracle
Scheduler views provide information about Scheduler jobs, job classes, and job run
details.

Configuring Messaging System Links

Working with Oracle Messaging Gateway 19-5

Running the Oracle Messaging Gateway Agent on RAC
While the Messaging Gateway job startup and shutdown principles are the same for
Oracle Real Application Clusters (RAC) and non-RAC environments, there are some
things to keep in mind for a RAC environment.

A single process of each configured Messaging Gateway agent can be running, even in
a RAC environment. For example, if the default agent and two named agents have
been configured with an agent user, then one instance of all three agents could be
running at the same time. The database service associated with each agent determines
the service affinity of the agent’s Scheduler job, and thus, the database instance on
which the agent process can run.

When a database instance is shut down in a RAC environment, the Messaging
Gateway shutdown trigger will notify the agent to shut down only if the Messaging
Gateway agent is running on the instance being shut down. The job scheduler will
automatically schedule the job to be run again at a future time, either on another
instance, or if the job can only run on the instance being shut down, when that
instance is restarted.

Oracle recommends that all database connections made by the Messaging Gateway
agent be made to the instance on which the Messaging Gateway agent process is
running. This ensures correct failover behavior in a RAC environment.

If a Messaging Gateway agent has been associated with a database service, the agent’s
Scheduler job will not run unless that service is current enabled on a running instance.
When you shut down a database Oracle stops all services to that database and you
may need to manually restart the services when you start the database.

Configuring Messaging System Links
Running as a client of non-Oracle messaging systems, the Messaging Gateway agent
communicates with non-Oracle messaging systems through messaging system links. A
messaging system link is a set of connections between the Messaging Gateway agent
and a non-Oracle messaging system.

To configure a messaging system link of a non-Oracle messaging system, users must
provide information for the agent to make connections to the non-Oracle messaging
system. Users can specify the maximum number of messaging connections.

An agent name will be associated with each messaging system link. This is done when
the link is created and cannot be changed. The agent associated with the link is then
responsible for processing all propagation jobs that use a registered queue associated
with that link. The Messaging Gateway default agent will be used if an agent name is
not specified when the messaging system link is created.

See Also:

■ "DBMS_SCHEDULER" in Oracle Database PL/SQL Packages and
Types Reference

■ Chapter 21, "Monitoring Oracle Messaging Gateway"

See Also:

■ "Configuring Oracle Messaging Gateway in a RAC Environment"
on page 18-5

■ "DBMS_MGWADM" and "DBMS_SCHEDULER" in Oracle Database
PL/SQL Packages and Types Reference

Configuring Messaging System Links

19-6 Oracle Streams Advanced Queuing User’s Guide

When configuring a messaging system link for a non-Oracle messaging system that
supports transactions and persistent messages, the native name of log queues for
inbound and outbound propagation must be specified in order to guarantee
exactly-once message delivery. The log queues should be used only by the Messaging
Gateway agent. No other programs should enqueue or dequeue messages of the log
queues. The inbound log queue and outbound log queue can refer to the same
physical queue, but better performance can be achieved if they refer to different
physical queues.

One and only one Messaging Gateway agent should access a propagation log queue.
This insures that a given log queue contains log records for only those propagation
jobs processed by that agent and that the agent is free to discard any other log records
it might encounter.

When configuring a messaging system link, users can also specify an options
argument. An options argument is a set of {name, value} pairs of type SYS.MGW_
PROPERTY.

This section contains these topics:

■ Creating a WebSphere MQ Base Java Link

■ Creating a WebSphere MQ JMS Link

■ Creating a WebSphere MQ Link to Use SSL

■ Creating a TIB/Rendezvous Link

■ Altering a Messaging System Link

■ Removing a Messaging System Link

■ Views for Messaging System Links

Creating a WebSphere MQ Base Java Link
A WebSphere MQ Base Java link is created by calling DBMS_MGWADM.CREATE_
MSGSYSTEM_LINK with the following information provided:

■ Interface type: DBMS_MGWADM.MQSERIES_BASE_JAVA_INTERFACE

■ WebSphere MQ connection information:

■ Host name and port number of the WebSphere MQ server

■ Queue manager name

■ Channel name

■ User name and password

■ Maximum number of messaging connections allowed

■ Log queue names for inbound and outbound propagation

■ Optional information such as:

■ Send, receive, and security exits

■ Character sets

Example 19–7 configures a WebSphere MQ Base Java link mqlink. The link is
configured to use the WebSphere MQ queue manager my.queue.manager on host
myhost.mydomain and port 1414, using WebSphere MQ channel mychannel.

This example also sets the option to register a WebSphere MQ SendExit class. The
class mySendExit must be in the CLASSPATH set in mgw.ora. The Messaging

Configuring Messaging System Links

Working with Oracle Messaging Gateway 19-7

Gateway default agent (DEFAULT_AGENT) is responsible for the link and all
propagation jobs using the link.

Example 19–7 Configuring a WebSphere MQ Base Java Link

DECLARE
 v_options sys.mgw_properties;
 v_prop sys.mgw_mqseries_properties;
BEGIN
 v_prop := sys.mgw_mqseries_properties.construct();

 v_prop.interface_type := dbms_mgwadm.MQSERIES_BASE_JAVA_INTERFACE;
 v_prop.max_connections := 1;
 v_prop.username := 'mqm';
 v_prop.password := 'mqm';
 v_prop.hostname := 'myhost.mydomain';
 v_prop.port := 1414;
 v_prop.channel := 'mychannel';
 v_prop.queue_manager := 'my.queue.manager';
 v_prop.outbound_log_queue := 'mylogq';

 -- Specify a WebSphere MQ send exit class 'mySendExit' to be associated with
 -- the queue.
 -- Note that this is used as an example of how to use the options parameter,
 -- but is not an option that is usually set.
 v_options := sys.mgw_properties(sys.mgw_property('MQ_SendExit',
 'mySendExit'));
 dbms_mgwadm.create_msgsystem_link(
 linkname => 'mqlink', agent_name=>’default_agent’, properties => v_prop,
 options => v_options);
END;

Creating a WebSphere MQ JMS Link
A WebSphere MQ JMS link is created by calling DBMS_MGWADM.CREATE_
MSGSYSTEM_LINK with the following information provided:

■ Interface type

Java Message Service (JMS) distinguishes between queue and topic connections.
The Sun Microsystem JMS 1.1 standard supports domain unification that allows
both JMS queues and topics to be accessed by a single JMS connection:

■ A WebSphere MQ JMS link created with interface type DBMS_MGWADM.JMS_
CONNECTION can be used to access both JMS queues and topics. This is the
recommended interface for a WebSphere MQ JMS link.

■ A WebSphere MQ JMS link created with interface type DBMS_MGWADM.JMS_
QUEUE_CONNECTION can be used to access only JMS queues.

■ A WebSphere MQ JMS link created with interface type DBMS_MGWADM.JMS_
TOPIC_CONNECTION can be used to access only JMS topics.

■ WebSphere MQ connection information:

See Also:

■ "Understanding the mgw.ora Initialization File" on page 18-9 for
information on setting the CLASSPATH of the Messaging
Gateway agent

■ "WebSphere MQ System Properties" on page 19-20

Configuring Messaging System Links

19-8 Oracle Streams Advanced Queuing User’s Guide

■ Host name and port number of the WebSphere MQ server

■ Queue manager name

■ Channel name

■ User name and password

■ Maximum number of messaging connections allowed

A messaging connection is mapped to a JMS session.

■ Log destination (JMS queue or JMS topic) for inbound and outbound propagation

The log destination type must be valid for the link type. JMS unified links and JMS
queue links must use JMS queues for log destinations, and JMS topic links must
use topics:

■ For a WebSphere MQ JMS unified or queue link, the log queue name must be
the name of a physical WebSphere MQ JMS queue created using WebSphere
MQ administration tools.

■ For a WebSphere MQ JMS topic link, the log topic name must be the name of a
WebSphere MQ JMS topic. The physical WebSphere MQ queue used by that
topic must be created using WebSphere MQ administration tools. By default,
the physical queue used is SYSTEM.JMS.D.SUBSCRIBER.QUEUE. A link
option can be used to specify a different physical queue.

■ Optional information such as:

■ Send, receive, and security exits

■ Character sets

■ WebSphere MQ publish/subscribe configuration used for JMS topics

Example 19–8 configures a Messaging Gateway link to a WebSphere MQ queue
manager using a JMS topic interface. The link is named mqjmslink and is configured
to use the WebSphere MQ queue manager my.queue.manager on host
myhost.mydomain and port 1414, using WebSphere MQ channel mychannel.

This example also uses the options parameter to specify a nondefault durable
subscriber queue to be used with the log topic. The Messaging Gateway agent
myagent is responsible for the link and all propagation jobs using the link.

Example 19–8 Configuring a WebSphere MQ JMS Link

DECLARE
 v_options sys.mgw_properties;
 v_prop sys.mgw_mqseries_properties;
BEGIN
 v_prop := sys.mgw_mqseries_properties.construct();
 v_prop.max_connections := 1;

 v_prop.interface_type := DBMS_MGWADM.JMS_TOPIC_CONNECTION;
 v_prop.username := 'mqm';
 v_prop.password := 'mqm';
 v_prop.hostname := 'myhost.mydomain';
 v_prop.port := 1414;
 v_prop.channel := 'mychannel';
 v_prop.queue_manager := 'my.queue.manager';

 v_prop.outbound_log_queue := 'mylogtopic'

 -- Specify a WebSphere MQ durable subscriber queue to be used with the

Configuring Messaging System Links

Working with Oracle Messaging Gateway 19-9

 -- log topic.
 v_options := sys.mgw_properties(
 sys.mgw_property('MQ_JMSDurSubQueue', 'myDSQueue'));

 DBMS_MGWADM.CREATE_MSGSYSTEM_LINK(
 linkname => 'mqjmslink',
 agent_name => 'myagent',
 properties => v_prop,
 options => v_options);
END;

Creating a WebSphere MQ Link to Use SSL
Messaging Gateway allows SSL support for IBM WebSphere MQ and WebSphere MQ
JMS connections. This section describes how to configure Messaging Gateway to use
SSL for a WebSphere MQ Base Java link and the same information applies to a
WebSphere MQ JMS link. There are no differences in terms of the Messaging Gateway
configuration.

The following are needed in order to use SSL for WebSphere MQ connections:

■ A WebSphere MQ channel configured to use SSL.

■ A truststore and optionally a keystore file that are in a location accessible to the
Messaging Gateway agent process. In a RAC environment, these files must be
accessible to all instances on which the Messaging Gateway agent process might
run, using the same path specification.

■ Use DBMS_MGWADM.CREATE_MSGSYSTEM_LINK to create a WebSphere MQ link
with the desired SSL related link options. At minimum, the MQ_SSLCIPHERSUITE
property should be set to specify the SSL ciphersuite used by the channel.

■ Use DBMS_MGWADM.SET_OPTION to set certain JSSE Java properties for the
Messaging Gateway agent assigned to the link.

JSEE related properties:

■ java.net.ssl.keyStore

This property is used to specify the location of the keystore. A keystore is a
database of key material used for various purposes, including authentication and
data integrity.

■ java.net.ssl.keyStorePassword

This property is used to specify the password of the keystore. This password is
used to check the integrity of the data in the keystore before accessing it.

■ java.net.ssl.trustStore

This property is used to specify the location of the truststore. A truststore is a
keystore that is used when making decisions about which clients and servers are
trusted.

■ java.net.ssl.trustStorePassword

See Also:

■ "Registering a WebSphere MQ JMS Queue or Topic" on page 19-13
for more information on JMS queues and topics

■ "WebSphere MQ System Properties" on page 19-20

Configuring Messaging System Links

19-10 Oracle Streams Advanced Queuing User’s Guide

This property is used to specify the password of the truststore. This password is
used to check the integrity of the data in the truststore before accessing it.

The java.net.ssl.keyStore and java.net.ssl.keyStorePassword properties
are only needed if the WebSphere MQ channel is configured to use SSL client
authentication.

Example 19–9 configures a WebSphere MQ Base Java link mqssllink to use SSL
connections using the SSL_RSA_WITH_RC4_128_MD5 ciphersuite. It assumes the
channel has been configured for SSL client authentication so the Messaging Gateway
agent associated with the link, DEFAULT_AGENT, is configured with Java properties
for both a keystore and a truststore.

This configuration should be done when the Messaging Gateway agent is shut down
since the Java properties set by DBMS_MGWADM.SET_OPTION are set only when the
agent first starts. If the agent is running when the configuration is done it will need to
be shutdown and restarted before the SSL connections will be used.

Example 19–9 Configuring a WebSphere MQ Base Java Link for SSL

DECLARE
 v_options sys.mgw_properties;
 v_prop sys.mgw_mqseries_properties;
 v_agent varchar2(30) := 'default_agent';
BEGIN
 v_prop := sys.mgw_mqseries_properties.construct();
 v_prop.interface_type := DBMS_MGWADM.MQSERIES_BASE_JAVA_INTERFACE;
 v_prop.max_connections := 1;
 v_prop.username := 'mqm';
 v_prop.password := 'mqm';
 v_prop.hostname := 'myhost.mydomain';
 v_prop.port := 1414;
 v_prop.channel := 'mysslchannel';
 v_prop.queue_manager := 'my.queue.manager';
 v_prop.outbound_log_queue := 'mylogq';

 -- specify the SSL ciphersuite
 v_options := sys.mgw_properties(
 sys.mgw_property('MQ_SSLCIPHERSUITE','SSL_RSA_WITH_RC4_128_MD5'));

 -- create the MQSeries link
 DBMS_MGWADM.CREATE_MSGSYSTEM_LINK(linkname => 'mqssllink',
 agent_name => v_agent,
 properties => v_prop,
 options => v_options);

 -- set Java properties for the agent that specify the JSSE security
 -- properties for the keystore and truststore; the paths will be
 -- saved as cleartext and the passwords encrypted

 DBMS_MGWADM.SET_OPTION(target_type => DBMS_MGWADM.AGENT_JAVA_PROP,
 target_name => v_agent,
 option_name => 'javax.net.ssl.keyStore',
 option_value => '/tmp/mq_ssl/key.jks',
 encrypted => false);

 DBMS_MGWADM.SET_OPTION(target_type => DBMS_MGWADM.AGENT_JAVA_PROP,
 target_name => v_agent,
 option_name => 'javax.net.ssl.keyStorePassword',
 option_value => 'welcome',
 encrypted => true);

Configuring Messaging System Links

Working with Oracle Messaging Gateway 19-11

 DBMS_MGWADM.SET_OPTION(target_type => DBMS_MGWADM.AGENT_JAVA_PROP,
 target_name => v_agent,
 option_name => 'javax.net.ssl.trustStore',
 option_value => '/tmp/mq_ssl/trust.jks',
 encrypted => false);

 DBMS_MGWADM.SET_OPTION(target_type => DBMS_MGWADM.AGENT_JAVA_PROP,
 target_name => v_agent,
 option_name => 'javax.net.ssl.trustStorePassword',
 option_value => 'welcome',
 encrypted => true);
END;

Creating a TIB/Rendezvous Link
A TIB/Rendezvous link is created by calling DBMS_MGWADM.CREATE_MSGSYSTEM_
LINK with three parameters (service, network and daemon) for the agent to create
a corresponding transport of TibrvRvdTransport type.

A TIB/Rendezvous message system link does not need propagation log queues.
Logging information is stored in memory. Therefore, Messaging Gateway can only
guarantee at-most-once message delivery.

Example 19–10 configures a TIB/Rendezvous link named rvlink that connects to the
rvd daemon on the local computer. An agent name is not specified for the link so the
Messaging Gateway default agent (DEFAULT_AGENT) is responsible for the link and
all propagation jobs using the link.

Example 19–10 Configuring a TIB/Rendezvous Link

DECLARE
 v_options sys.mgw_properties;
 v_prop sys.mgw_tibrv_properties;
BEGIN
 v_prop := sys.mgw_tibrv_properties.construct();

 DBMS_MGWADM.CREATE_MSGSYSTEM_LINK(linkname => 'rvlink', properties => v_prop);
END;

Altering a Messaging System Link
Using DBMS_MGWADM.ALTER_MSGSYSTEM_LINK, you can alter some link information
after the link is created. You can alter link information with the Messaging Gateway
agent running or shut down. Example 19–11 alters the link mqlink to change the
max_connections property.

Example 19–11 Altering a WebSphere MQ Link

DECLARE
 v_options sys.mgw_properties;
 v_prop sys.mgw_mqseries_properties;
BEGIN
 -- use alter_construct() for initialization
 v_prop := sys.mgw_mqseries_properties.alter_construct();

See Also: "WebSphere MQ System Properties" on page 19-20

See Also: "TIB/Rendezvous System Properties" on page 19-22

Configuring Non-Oracle Messaging System Queues

19-12 Oracle Streams Advanced Queuing User’s Guide

 v_prop.max_connections := 2;

 DBMS_MGWADM.ALTER_MSGSYSTEM_LINK(
 linkname => 'mqlink', properties => v_prop);
END;

Removing a Messaging System Link
You can remove a Messaging Gateway link to a non-Oracle messaging system with
DBMS_MGWADM.REMOVE_MSGSYSTEM_LINK, but only if all registered queues
associated with this link have already been unregistered. The link can be removed
with the Messaging Gateway agent running or shut down. Example 19–12 removes the
link mqlink.

Example 19–12 Removing a Messaging Gateway Link

BEGIN
 dbms_mgwadm.remove_msgsystem_link(linkname =>'mqlink');
END;

Views for Messaging System Links
You can use the MGW_LINKS view to check links that have been created. It lists the
name and link type, as shown in Example 19–13.

Example 19–13 Listing All Messaging Gateway Links

SQL> select link_name, link_type from MGW_LINKS;

LINK_NAME LINK_TYPE

MQLINK MQSERIES
RVLINK TIBRV

You can use the MGW_MQSERIES_LINK and MGW_TIBRV_LINKS views to check
messaging system type-specific configuration information, as shown in
Example 19–14.

Example 19–14 Checking Messaging System Link Configuration Information

SQL> select link_name, queue_manager, channel, hostname from mgw_mqseries_link;

LINK_NAME QUEUE_MANAGER CHANNEL HOSTNAME
--
MQLINK my.queue.manager mychannel myhost.mydomain

SQL> select link_name, service, network, daemon from mgw_tibrv_links;

LINK_NAME SERVICE NETWORK DAEMON

RVLINK

Configuring Non-Oracle Messaging System Queues
All non-Oracle messaging system queues involved in propagation as a source queue,
destination queue, or exception queue must be registered through the Messaging

See Also: "Configuration Properties" on page 19-20 for restrictions
on changes when the Messaging Gateway agent is running

Configuring Non-Oracle Messaging System Queues

Working with Oracle Messaging Gateway 19-13

Gateway administration interface. You do not need to register Oracle Streams AQ
queues involved in propagation.

This section contains these topics:

■ Registering a Non-Oracle Queue

■ Unregistering a Non-Oracle Queue

■ View for Registered Non-Oracle Queues

Registering a Non-Oracle Queue
You can register a non-Oracle queue using DBMS_MGWADM.REGISTER_FOREIGN_
QUEUE. Registering a non-Oracle queue provides information for the Messaging
Gateway agent to access the queue. However, it does not create the physical queue in
the non-Oracle messaging system. The physical queue must be created using the
non-Oracle messaging system administration interfaces before the Messaging Gateway
agent accesses the queue.

The following information is used to register a non-Oracle queue:

■ Name of the messaging system link used to access the queue

■ Native name of the queue (its name in the non-Oracle messaging system)

■ Domain of the queue

■ DBMS_MGWADM.DOMAIN_QUEUE for a point-to-point queue

■ DBMS_MGWADM.DOMAIN_TOPIC for a publish/subscribe queue

■ Options specific to the non-Oracle messaging system

These options are a set of {name, value} pairs, both of which are strings.

Example 19–15 shows how to register the WebSphere MQ Base Java queue my_mq_
queue as a Messaging Gateway queue destq.

Example 19–15 Registering a WebSphere MQ Base Java Queue

BEGIN
 DBMS_MGWADM.REGISTER_FOREIGN_QUEUE(
 name => 'destq',
 linkname => 'mqlink',
 provider_queue => 'my_mq_queue',
 domain => dbms_mgwadm.DOMAIN_QUEUE);
END;

Registering a WebSphere MQ Base Java Queue
The domain must be DBMS_MGWADM.DOMAIN_QUEUE or NULL, because only
point-to-point queues are supported for WebSphere MQ.

Registering a WebSphere MQ JMS Queue or Topic
When registering a WebSphere MQ JMS queue, the domain must be DBMS_
MGWADM.DOMAIN_QUEUE, and the linkname parameter must refer to a WebSphere
MQ JMS unified link or queue link.

See Also: "Optional Foreign Queue Configuration Properties" on
page 19-25

Configuring Oracle Messaging Gateway Propagation Jobs

19-14 Oracle Streams Advanced Queuing User’s Guide

When registering a WebSphere MQ JMS topic, the domain must be DBMS_
MGWADM.DOMAIN_TOPIC, and the linkname parameter must refer to a WebSphere
MQ JMS unified link or topic link. The provider_queue for a WebSphere MQ JMS
topic used as a propagation source may include wildcards. See WebSphere MQ
documentation for wildcard syntax.

Registering a TIB/Rendezvous Subject
When registering a TIB/Rendezvous subject with Messaging Gateway, the
provider_queue parameter specifies a TIB/Rendezvous subject name. The domain
of a registered TIB/Rendezvous queue must be DBMS_MGWADM.DOMAIN_TOPIC or
NULL.

A registered TIB/Rendezvous queue with provider_queue set to a wildcard subject
name can be used as a propagation source queue for inbound propagation. It is not
recommended to use queues with wildcard subject names as propagation destination
queues or exception queues. As documented in TIB/Rendezvous, sending messages to
wildcard subjects can trigger unexpected behavior. However, neither Messaging
Gateway nor TIB/Rendezvous prevents you from doing so.

Unregistering a Non-Oracle Queue
A non-Oracle queue can be unregistered with DBMS_MGWADM.UNREGISTER_
FOREIGN_QUEUE, but only if there are no propagation jobs referencing it.

Example 19–16 unregisters the queue destq of the link mqlink.

Example 19–16 Unregistering a Non-Oracle Queue

BEGIN
 DBMS_MWGADM.UNREGISTER_FOREIGN_QUEUE(name =>'destq', link_name=>'mqlink');
END;

View for Registered Non-Oracle Queues
You can use the MGW_FOREIGN_QUEUES view to check which non-Oracle queues are
registered and what link each uses, as shown in Example 19–17.

Example 19–17 Checking Which Queues Are Registered

SELECT name, link_name, provider_queue FROM MGW_FOREIGN_QUEUES;

NAME LINK_NAME PROVIDER_QUEUE

DESTQ MQLINK my_mq_queue

Configuring Oracle Messaging Gateway Propagation Jobs
Propagating messages between an Oracle Streams AQ queue and a non-Oracle
messaging system queue requires a propagation job. Each propagation job will have a
unique propagation type, source, and destination triplet.

You can create a propagation job to propagate messages between JMS destinations.
You can also create a propagation job to propagate messages between non-JMS
queues. Messaging Gateway does not support message propagation between a JMS
destination and a non-JMS queue.

This section contains these topics:

Configuring Oracle Messaging Gateway Propagation Jobs

Working with Oracle Messaging Gateway 19-15

■ Propagation Job Overview

■ Creating an Oracle Messaging Gateway Propagation Job

■ Enabling and Disabling a Propagation Job

■ Resetting a Propagation Job

■ Altering a Propagation Job

■ Removing a Propagation Job

Propagation Job Overview
A propagation job specifies what messages are propagated and how the messages are
propagated.

Messaging Gateway allows bidirectional message propagation. An outbound
propagation moves messages from Oracle Streams AQ to non-Oracle messaging
systems. An inbound propagation moves messages from non-Oracle messaging
systems to Oracle Streams AQ.

If the propagation source is a queue (point-to-point), then the Messaging Gateway
agent moves all messages from the source queue to the destination queue. If the
propagation source is a topic (publish/subscribe), then the Messaging Gateway agent
creates a subscriber of the propagation source queue in the messaging system. The
agent only moves messages that are published to the source queue after the subscriber
is created.

When propagating a message, the Messaging Gateway agent converts the message
from the format in the source messaging system to the format in the destination
messaging system. Users can customize the message conversion by providing a
message transformation. If message conversion fails, then the message will be moved
to an exception queue, if one has been provided, so that the agent can continue to
propagate messages for the subscriber.

A Messaging Gateway exception queue is different from an Oracle Streams AQ
exception queue. Messaging Gateway moves a message to a Messaging Gateway
exception queue when message conversion fails. Oracle Streams AQ moves a message
to an Oracle Streams AQ exception queue after MAX_RETRIES dequeue attempts on
the message.

Messages moved to an Oracle Streams AQ exception queue may result in irrecoverable
failures on the associated Messaging Gateway propagation job. To avoid the problem,
the MAX_RETRIES parameter of any Oracle Streams AQ queue that is used as the
propagation source of a Messaging Gateway propagation job should be set to a value
much larger than 16.

If the messaging system of the propagation source queue supports message selection,
then a message selection rule can be specified for a propagation subscriber. Only
messages that satisfy the message selector will be propagated.

Users can also specify propagation job options to control how messages are
propagated, such as options for JMS message delivery mode and TIB/Rendezvous
queue policies.

The MGW_JOBS view can be used to check the configuration and status of Messaging
Gateway propagation jobs.

See Also: Chapter 21, "Monitoring Oracle Messaging Gateway"

Configuring Oracle Messaging Gateway Propagation Jobs

19-16 Oracle Streams Advanced Queuing User’s Guide

Creating an Oracle Messaging Gateway Propagation Job
Messaging Gateway propagation jobs are created by DBMS_MGWADM.CREATE_JOB.

If the propagation source for non-JMS propagation is an Oracle Streams AQ queue,
then the queue can be either a single consumer queue or multiple consumer queue. If
it is a multiple consumer queue, Messaging Gateway creates a corresponding Oracle
Streams AQ subscriber MGW_job_name for the propagation job job_name when
DBMS_MGWADM.CREATE_JOB is called.

If the propagation source is a JMS topic, such as an Oracle Java Message Service
(OJMS) topic or a WebSphere MQ JMS topic, then a JMS subscriber MGW_job_name is
created on the topic in the source messaging system by the Messaging Gateway agent.
If the agent is not running, then the subscriber will not be created until the agent is
restarted.

If the propagation source is a queue, then only one propagation job can be created
using that queue as the propagation source. If the propagation source is a topic, then
multiple propagation jobs can be set up using that topic as the propagation source
with each propagation job having its own corresponding subscriber on the topic in the
messaging system.

Example 19–18 creates Messaging Gateway propagation job job_aq2mq.

Example 19–18 Creating a Messaging Gateway Propagation Job

BEGIN
 DBMS_MGWADM.CREATE_JOB(
 job_name => ’job_aq2mq’,
 propagation_type => DBMS_MGWADM.OUTBOUND_PROPAGATION,
 source => ’mquser.srcq’,
 destination => ’deqq@mqlink’);
END;

Enabling and Disabling a Propagation Job
A propagation job can be initially enabled or disabled when it is created by DBMS_
MGWADM.CREATE_JOB. By default, a job is enabled when it is created. You can use
DBMS_MGWADM.ENABLE_JOB to enable a propagation job and DBMS_
MGWADM.DISABLE_JOB to disable a job. No propagation processing will occur when
the job is disabled.

Example 19–19 enables the propagation for propagation job job_aq2mq.

Example 19–19 Enabling a Messaging Gateway Propagation Job

BEGIN
 DBMS_MGWADM.ENABLE_JOB(job_name => ’job_aq2mq’);
END;

Example 19–20 disables the propagation for propagation job job_aq2mq.

Note: If a WebSphere MQ JMS topic is involved in a propagation job
and the interface type of the link is DBMS_MGWADM.JMS_TOPIC_
CONNECTION, then a durable subscriber MGL_subscriber_id is
created on the log topic. The durable subscriber is removed when the
Messaging Gateway propagation job is successfully removed.

Configuring Oracle Messaging Gateway Propagation Jobs

Working with Oracle Messaging Gateway 19-17

Example 19–20 Disabling a Messaging Gateway Propagation Job

BEGIN
 DBMS_MGWADM.DISABLE_JOB(job_name => ’job_aq2mq’);
END;

Resetting a Propagation Job
When a problem occurs with a propagation job, the Messaging Gateway agent retries
the failed operation up to 16 times in an exponential backoff scheme before the
propagation job stops. You can use DBMS_MGWADM.RESET_JOB to reset the failure
count to zero to allow the agent to retry the failed operation immediately.

Example 19–21 resets the failure count for propagation job job_aq2mq.

Example 19–21 Resetting a Propagation Job

BEGIN
 DBMS_MGWADM.RESET_JOB (job_name => ’job_aq2mq’);
END;

Altering a Propagation Job
After a propagation job is created you can alter the selection rule, transformation,
exception queue, job options, and poll interval of the job using DBMS_MGWADM.ALTER_
JOB. The job can be altered with the Messaging Gateway running or shut down.

Example 19–22 adds an exception queue for a propagation job.

Example 19–22 Altering Propagation Job by Adding an Exception Queue

BEGIN
 DBMS_MGWADM.ALTER_JOB(
 job_name => ’job_aq2mq’,
 exception_queue => ’mgwuser.my_ex_queue’);
END;

Example 19–23 changes the polling interval for a propagation job. The polling interval
determines how soon the agent can discover the available messages in the propagation
source queue. The default polling interval is 5 seconds or the value set for
oracle.mgw.polling_interval in the Messaging Gateway initialization file.

Example 19–23 Altering Propagation Job by Changing the Polling Interval

BEGIN
 DBMS_MGWADM.ALTER_JOB(
 job_name => ’job_aq2mq’,
 poll_interval => 2);
END;

Removing a Propagation Job
You can remove a Messaging Gateway propagation job by calling DBMS_
MGWADM.REMOVE_JOB.

Before removing the propagation job from the Messaging Gateway configuration,
Messaging Gateway does the following cleanup:

■ Removes from the messaging system the associated subscriber that may have been
created by Messaging Gateway

Propagation Jobs, Subscribers, and Schedules

19-18 Oracle Streams Advanced Queuing User’s Guide

■ Removes propagation log records from log queues for the job being removed

Messaging Gateway may fail to do the cleanup because:

■ The Messaging Gateway agent is not running

■ Non-Oracle messaging system is not running

■ The Messaging Gateway agent is unable to interact with the source or destination
messaging system

If the Messaging Gateway cleanup fails for any reason, then the propagation job being
removed is placed in a DELETE_PENDING state. The Messaging Gateway agent tries to
clean up propagation jobs in a DELETE_PENDING state when:

■ DBMS_MGWADM.REMOVE_JOB is called and the Messaging Gateway agent is
running.

■ The Messaging Gateway agent is starting and finds a propagation job in a
DELETE_PENDING state.

DBMS_MGWADM.REMOVE_JOB has a force parameter that allows you to force the
propagation job to be removed from the Messaging Gateway configuration without
placing it in DELETE_PENDING state. This is useful in case of cleanup failures or if you
want to remove a propagation job when the Messaging Gateway agent is not running.

Forcing a propagation job to be removed may result in obsolete log records being left
in the log queues, and subscriptions in the messaging systems that may cause
unnecessary message accumulation. Oracle recommends that the force option not be
used for DBMS_MGWADM.REMOVE_JOB if possible.

Example 19–24 removes a propagation job in a non-forced manner.

Example 19–24 Removing a Propagation Job

BEGIN
 DBMS_MGWADM.REMOVE_JOB (job_name => ’job_aq2mq’);
END;

Propagation Jobs, Subscribers, and Schedules
Subprograms are provided as part of the DBMS_MGWADM package that simplify the
creation and management of propagation jobs. Those subprograms allow a user to
configure a propagation job rather than a disjoint subscriber and schedule as was done
in prior releases. Oracle recommends that you use the propagation job procedures but
still supports the subscriber and schedule procedures for backward compatibility.

Table 19–1 lists the Messaging Gateway propagation job procedures and shows which
subscriber and/or schedule procedures it replaces. All procedures are from the DBMS_
MGWADM package.

Table 19–1 Messaging Gateway Propagation Job Subprograms

Job Procedure Replaces Subscriber, Schedule Procedure

CREATE_JOB ADD_SUBSCRIBER, SCHEDULE_PROPAGATION

ALTER_JOB ALTER_SUBSCRIBER, ALTER_PROPAGATION_SCHEDULE

REMOVE_JOB REMOVE_SUBSCRIBER, UNSCHEDULE_PROPAGATION

ENABLE_JOB ENABLE_PROPAGATION_SCHEDULE

DISABLE_JOB DISABLE_PROPAGATION_SCHEDULE

Propagation Jobs, Subscribers, and Schedules

Working with Oracle Messaging Gateway 19-19

This section contains the following topics:

■ Propagation Job, Subscriber, Schedule Interface Interoperability

■ Propagation Job, Subscriber, Schedule Views

■ Single Consumer Queue As Propagation Source

Propagation Job, Subscriber, Schedule Interface Interoperability
The user can create two types of propagation jobs, a new style job or an old style job. A
new style job is created by DBMS_MGWADM.CREATE_JOB. An old style job is created by
calling DBMS_MGWADM.ADD_SUBSCRIBER and DBMS_MGWADM.SCHEDULE_
PROPAGATION using the same {propagation_type, source, destination} triplet.
A subscriber that does not have a matching schedule, or a schedule that does not have
a matching subscriber, is not considered to be a propagation job.

For new style job, the job name will serve as both the subscriber ID and the schedule
ID. For an old style job, the subscriber ID is used as the job name.

Both the propagation job subprograms and the subscriber/schedule subprograms can
be used for old style propagation jobs. Oracle recommends that you use the job
subprograms to create and manage propagation jobs. The job subprograms cannot be
used for an unmatched subscriber or schedule since those do not constitute a
propagation job.

Only the new job subprograms can be used for new style propagation jobs. An error
will occur if a user tries to call a subscriber or scheduler procedure on a new style job.

Other than DBMS_MGWADM.REMOVE_JOB, calling the job subprograms for an old style
job is straightforward and the results are effectively the same as calling the
corresponding subscriber/schedule subprograms. There may be certain restrictions in
the future but there are none at this time.

The DBMS_MGWADM.REMOVE_JOB procedure can be used to remove both new style and
old style jobs. A forced and non-forced remove is supported. If the Messaging
Gateway agent is not running when a non-forced remove is done, the job will be
flagged as delete pending and neither the underlying subscriber nor schedule will be
removed at that time. The job (subscriber /schedule pair) will be removed once the
agent is restarted and performs its cleanup work or a forced DBMS_MGWADM.REMOVE_
JOB is performed. In order to insure that the subscriber/schedule pair is removed at
the same time, an error will occur if you first call DBMS_MGWADM.REMOVE_JOB and
subsequently attempt to call DBMS_MGWADM.REMOVE_SUBSCRIBER or DBMS_
MGWADM.UNSCHEDULE_PROPAGATION for an old style job.

Once DBMS_MGWADM.REMOVE_JOB as been called for a job and it has been flagged as
delete pending, all job procedures, other than DBMS_MGWADM.REMOVE_JOB, will fail
for both new style and old style jobs. In addition, all subscriber and schedule
subprograms will fail if the propagation job happens to be an old style job.DBMS_
MGWADM.REMOVE_SUBSCRIBER and DBMS_MGWADM.UNSCHEDULE_PROPAGATION can
be used for an old style job as long as DBMS_MGWADM.REMOVE_JOB has not been called
for that job. If DBMS_MGWADM.UNSCHEDULE_PROPAGATION is called for an old style
job, the schedule is immediately removed and it ceases to be a propagation job and
DBMS_MGWADM.REMOVE_SUSCRIBER must be used to remove the subscriber. If DBMS_

RESET_JOB RESET_SUBSCRIBER

Table 19–1 (Cont.) Messaging Gateway Propagation Job Subprograms

Job Procedure Replaces Subscriber, Schedule Procedure

Configuration Properties

19-20 Oracle Streams Advanced Queuing User’s Guide

MGWADM.REMOVE_SUBSCRIBER is called for an old style job, the user can subsequently
call DBMS_MGWADM.REMOVE_JOB as long as the subscriber exists.

Propagation Job, Subscriber, Schedule Views
The MGW_JOBS view shows information for the current propagation jobs, both new
style jobs and old style jobs, and includes all the pertinent information shown by the
MGW_SUBSCRIBERS and MGW_SCHEDULES views. The MGW_SUBSCRIBERS and MGW_
SCHEDULES views are still useful for finding an unmatched subscriber or schedule
since they don’t constitute a propagation job and will not show up in the MGW_JOBS
view.

Single Consumer Queue As Propagation Source
Messaging Gateway allows an Oracle Streams AQ multiple consumer queue or a
single consumer queue to be a propagation source for an outbound new style job
created by DBMS_MGWADM.CREATE_JOB. A multiple consumer queue must be used for
the propagation source for an outbound old style job. An error will occur if an
administrator attempts to call DBMS_MGWADM.ADD_SUBSCRIBER and the source is a
single consumer queue.

An Oracle Streams AQ dequeue condition is not supported for native (non-JMS)
outbound propagation when the propagation source is a single consumer queue.

Configuration Properties
This section summarizes basic and optional properties related to Messaging Gateway
links, foreign queues, and propagation jobs.

This section contains these topics:

■ WebSphere MQ System Properties

■ TIB/Rendezvous System Properties

■ Optional Link Configuration Properties

■ Optional Foreign Queue Configuration Properties

■ Optional Job Configuration Properties

WebSphere MQ System Properties
Table 19–2 summarizes the basic configuration properties for a WebSphere MQ
messaging link. The table indicates which properties of SYS.MGW_MQSERIES_
PROPERTIES are optional (NULL allowed), which can be altered, and if alterable,
which values can be dynamically changed.

See Also: "SYS.MGW_MQSERIES_PROPERTIES Type" in Oracle
Database PL/SQL Packages and Types Reference

Table 19–2 WebSphere MQ Link Properties

Attribute NULL Allowed? Alter Value? Dynamic?

queue_manager no no no

hostname yes (1) no no

port yes (1) no no

Configuration Properties

Working with Oracle Messaging Gateway 19-21

Notes on Table 19–2
1. If hostname is NULL, then the port and channel must be NULL. If the hostname is

not NULL, then the port must be not NULL. If the hostname is NULL, then a
WebSphere MQ bindings connection is used; otherwise a client connection is used.

2. If interface_type is NULL, then a default value of DBMS_MGWADM.MQSERIES_
BASE_JAVA_INTERFACE is used.

3. If max_connections is NULL, then a default value of 1 is used.

4. Attribute inbound_log_queue can be NULL if the link is not used for inbound
propagation. The log queue can be altered only when no inbound propagation job
references the link.

5. Attribute outbound_log_queue can be NULL if the link is not used for outbound
propagation. The log queue can be altered only when no outbound propagation
job references the link.

6. The channel attribute must be NULL if a client channel definition table (CCDT) is
used. The MQ_ccdtURL link option can be used to specify a CCDT.

Table 19–3 summarizes the optional configuration properties supported when a
WebSphere MQ Base Java interface is used to access the WebSphere MQ messaging
system. Table 19–4 summarizes the optional configuration properties supported when
a WebSphere MQ JMS interface is used. Each table lists the property name, where that
property applies, whether the property can be altered, and if alterable, whether the
value can be dynamically changed. Only the properties listed in the tables are
supported, and any extra properties are ignored.

channel yes (1), (6) yes no

interface_type yes (2) no no

max_connections yes (3) yes yes

username yes yes yes

password yes yes yes

inbound_log_queue yes (4) yes(4) yes

outbound_log_queue yes (5) yes(5) yes

Table 19–3 Optional Configuration Properties for WebSphere MQ Base Java

Property Name Used For Alter Value? Dynamic?

MQ_ccdtUrl link yes no

MQ_ccsid link yes no

MQ_ReceiveExit link yes no

MQ_SecurityExit link yes no

MQ_SendExit link yes no

MQ_SSLCipherSuite link yes no

MQ_SSLFipsRequired link yes no

MQ_SSLPeerName link yes no

MQ_SSLResetCount link yes no

Table 19–2 (Cont.) WebSphere MQ Link Properties

Attribute NULL Allowed? Alter Value? Dynamic?

Configuration Properties

19-22 Oracle Streams Advanced Queuing User’s Guide

TIB/Rendezvous System Properties
Table 19–5 summarizes the basic configuration properties for a TIB/Rendezvous
messaging link. It indicates which properties of SYS.MGW_TIBRV_PROPERTIES are
optional (NULL allowed), which can be altered, and if alterable, which values can be
dynamically changed.

MQ_openOptions foreign queue no no

MsgBatchSize job yes yes

PreserveMessageID job yes yes

Table 19–4 Optional Configuration Properties for WebSphere MQ JMS

Property Name Used For Alter Value? Dynamic?

MQ_BrokerControlQueue link yes no

MQ_BrokerPubQueue link yes no

MQ_BrokerQueueManager link yes no

MQ_BrokerVersion link yes no

MQ_ccdtUrl link yes no

MQ_ccsid link yes no

MQ_JmsDurSubQueue link no no

MQ_PubAckInterval link yes no

MQ_ReceiveExit link yes no

MQ_ReceiveExitInit link yes no

MQ_SecurityExit link yes no

MQ_SecurityExitInit link yes no

MQ_SendExit link yes no

MQ_SendExitInit link yes no

MQ_SSLCipherSuite link yes no

MQ_SSLCrl link yes no

MQ_SSLFipsRequired link yes no

MQ_SSLPeerName link yes no

MQ_SSLResetCount link yes no

MQ_CharacterSet foreign queue no no

MQ_JmsDurSubQueue foreign queue no no

MQ_JmsTargetClient foreign queue no no

JMS_DeliveryMode job yes yes

JMS_NoLocal job no no

MsgBatchSize job yes yes

PreserveMessageID job yes yes

Table 19–3 (Cont.) Optional Configuration Properties for WebSphere MQ Base Java

Property Name Used For Alter Value? Dynamic?

Configuration Properties

Working with Oracle Messaging Gateway 19-23

Notes on Table 19–5:
1. System default values will be used if service, daemon, or network are NULL.

2. The cm_name and cm_ledger attributes are reserved for future use when
TIB/Rendezvous certified messages are supported. At present, a NULL must be
specified for these parameters when a TIB/Rendezvous link is configured.

Table 19–6 summarizes the optional configuration properties supported when a
TIB/Rendezvous messaging system is used. The table lists the property name, where
that property applies, whether the property can be altered, and if alterable, whether
the value can be dynamically changed. Only the properties listed in the table are
supported, and any extra properties will be ignored.

Optional Link Configuration Properties
This section describes optional link properties you can specify using the options
parameter of DBMS_MGWADM.CREATE_MSGSYSTEM_LINK and DBMS_
MGWADM.ALTER_MSGSYSTEM_LINK. Each listing also indicates which messaging
system might use that property.

MQ_BrokerControlQueue
This property is used by WebSphere MQ JMS. It specifies the name of the broker
control queue and corresponds to WebSphere MQ JMS administration tool property
BROKERCONQ. The WebSphere MQ default is SYSTEM.BROKER.CONTROL.QUEUE.

MQ_BrokerPubQueue
This property is used by WebSphere MQ JMS. It specifies the name of the broker
publish queue and corresponds to WebSphere MQ JMS administration tool property
BROKERPUBQ. The WebSphere MQ default is SYSTEM.BROKER.DEFAULT.STREAM.

See Also: "SYS.MGW_TIBRV_PROPERTIES Type" in Oracle Database
PL/SQL Packages and Types Reference

Table 19–5 TIB/Rendezvous Link Properties

Attribute NULL allowed? Alter value? Dynamic?

service yes(1) no no

daemon yes(1) no no

network yes(1) no no

cm_name yes(2) no no

cm_ledger yes(2) no no

Table 19–6 Optional Properties for TIB/Rendezvous

Property Name Used For Alter Value? Dynamic?

AQ_MsgProperties job yes yes

MsgBatchSize job yes yes

PreserveMessageID job yes yes

RV_discardAmount job yes no

RV_limitPolicy job yes no

RV_maxEvents job yes no

Configuration Properties

19-24 Oracle Streams Advanced Queuing User’s Guide

MQ_BrokerQueueManager
This property is used by WebSphere MQ JMS. It specifies the name of the broker
queue manager and corresponds to WebSphere MQ administration tool property
BROKERQMGR. If it is not set, then no default is used.

MQ_BrokerVersion
This property is used by WebSphere MQ JMS. It specifies the broker version number
and corresponds to WebSphere MQ JMS administration tool property BROKERVER.
The WebSphere MQ default is 0.

MQ_ccdtUrl
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It
specifies the URL string of a client channel definition table (CCDT) to be used. If not
set, a CCDT is not used. If a CCDT is used, then the SYS.MGW_MQSERIES_
PROPERTIES.channel link property must be NULL.

MQ_ccsid
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It
specifies the character set identifier to be used to translate information in the
WebSphere MQ message header. This should be the integer value of the character set
(for example, 819) rather than a descriptive string. If it is not set, then the WebSphere
MQ default character set 819 is used.

MQ_JmsDurSubQueue
This property is used by WebSphere MQ JMS. It applies to WebSphere MQ JMS topic
links only. The SYS.MGW_MQSERIES_PROPERITES attributes, inbound_log_queue
and outbound_log_queue, specify the names of WebSphere MQ JMS topics used for
propagation logging. This property specifies the name of the WebSphere MQ queue
from which durable subscription messages are retrieved by the log topic subscribers.
The WebSphere MQ default queue is SYSTEM.JMS.D.SUBSCRIBER.QUEUE.

MQ_PubAckInterval
This property is used by WebSphere MQ JMS. It specifies the interval, in number of
messages, between publish requests that require acknowledgment from the broker
and corresponds to WebSphere MQ JMS administration tool property PUBACKINT.
The WebSphere MQ default is 25.

MQ_ReceiveExit
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It
specifies the fully qualified Java classname of a class implementing the
MQReceiveExit interface. This class must be in the CLASSPATH of the Messaging
Gateway agent. There is no default.

MQ_ReceiveExitInit
This initialization string is used by WebSphere MQ JMS. It is passed by WebSphere
MQ JMS to the constructor of the class specified by MQ_ReceiveExit and
corresponds to WebSphere MQ JMS administration tool property RECEXITINIT.
There is no default.

MQ_SecurityExit
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It
specifies the fully qualified Java classname of a class implementing the
MQSecurityExit interface. This class must be in the CLASSPATH of the Messaging
Gateway agent. There is no default.

Configuration Properties

Working with Oracle Messaging Gateway 19-25

MQ_SecurityExitInit
This initialization string is used by WebSphere MQ JMS. It is passed by WebSphere
MQ JMS to the constructor of the class specified by MQ_SecurityExit and
corresponds to WebSphere MQ JMS administration tool property SECEXITINIT.
There is no default.

MQ_SendExit
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It
specifies the fully qualified Java classname of a class implementing the MQSendExit
interface. This class must be in the CLASSPATH of the Messaging Gateway agent.
There is no default.

MQ_SendExitInit
This initialization string is used by WebSphere MQ JMS. It is passed by WebSphere
MQ JMS to the constructor of the class specified by MQ_SendExit. It corresponds to
WebSphere MQ JMS administration tool property SENDEXITINIT. There is no
default.

MQ_SSLCipherSuite
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It
specifies the CipherSuite to be used; for example, SSL_RSA_WITH_RC4_128_MD5.
This corresponds to the WebSphere MQ SSLCIPHERSUITE administration property.

MQ_SSLCrl
This property is used by WebSphere MQ JMS. It specifies a space-delimited list of
LDAP servers that can be used for certificate revocation list (CRL) checking. If not set,
no CRL checking is done. This corresponds to the WebSphere MQ SSLCRL
administration property. This option is not supported for WebSphere MQ Base Java,
and instead, a client channel definition table (CCDT) must be used if CRL checking is
needed.

MQ_SSLFipsRequired
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It
indicates whether the CipherSuite being used is supported by the IBM Java JSSE FIPS
provider (IBMSJSSEFIPS). The value should be TRUE or FALSE. The default value is
FALSE. This corresponds to the WebSphere MQ SSLFIPSREQUIRED administration
property.

MQ_SSLPeerName
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It
specifies a distinguished name (DN) pattern that the queue manager certificate must
match in order for a connection to be established. If not set, no DN check is performed.
This corresponds to the WebSphere MQ SSLPEERNAME administration property.

MQ_SSLResetCount
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It
specifies the total number of bytes sent and received before the secret key is
renegotiated. If not set, the key is not renegotiated. This corresponds to the WebSphere
MQ SSLRESETCOUNT administration property.

Optional Foreign Queue Configuration Properties
This section describes optional foreign queue properties that you can specify using the
options parameter of DBMS_MGWADM.REGISTER_FOREIGN_QUEUE. Each listing also
indicates which messaging system might use that property.

Configuration Properties

19-26 Oracle Streams Advanced Queuing User’s Guide

MQ_CharacterSet
This property is used by WebSphere MQ JMS. It is used only for outbound
propagation to a JMS queue or topic. It specifies the character set to be used to encode
text strings sent to the destination. It should be the integer value of the character set
(for example, 1208) rather than a descriptive string. The default value used by
Messaging Gateway is 1208 (UTF8).

MQ_JmsDurSubQueue
This property is used by WebSphere MQ JMS. It is a string representing the name of
the WebSphere MQ queue from which durable subscription messages are retrieved by
subscribers on this topic. It applies only to WebSphere MQ JMS topics. The WebSphere
MQ default queue is SYSTEM.JMS.D.SUBSCRIBER.QUEUE.

MQ_JmsTargetClient
This property is used by WebSphere MQ JMS. It is used only for outbound
propagation to a JMS queue or topic. Supported values are TRUE and FALSE. TRUE
indicates that WebSphere MQ should store the message as a JMS message. FALSE
indicates that WebSphere MQ should store the message in non-JMS format so that
non-JMS applications can access it. Default is TRUE.

MQ_openOptions
This property is used by WebSphere MQ Base Java. It specifies the value used for the
openOptions argument of the WebSphere MQ Base Java
MQQueueManager.accessQueue method. No value is required. But if one is given,
then the Messaging Gateway agent adds MQOO_OUTPUT to the specified value for an
enqueue (put) operation. MQOO_INPUT_SHARED is added for a dequeue (get)
operation. The default is MQOO_OUTPUT for an enqueue/put operation; MQOO_INPUT_
SHARED for a dequeue/get operation.

Optional Job Configuration Properties
This section describes optional propagation job properties that you can specify using
the options parameter of DBMS_MGWADM.CREATE_JOB and DBMS_MGWADM.ALTER_
JOB.

AQ_MsgProperties
This property is used by TIB/Rendezvous. It specifies how Oracle Streams AQ
message properties will be used during message propagation. Supported values are
TRUE and FALSE. The default value is FALSE.

For an outbound propagation job, if the value is TRUE (case insensitive), then the
Messaging Gateway agent will add a field for most Oracle Streams AQ message
properties to the message propagated to the TIB/Rendezvous subject.

For an inbound propagation job, if the value is TRUE (case insensitive), then the
Messaging Gateway agent will search the source message for a field with a reserved
name, and if it exists, use its value to set the corresponding Oracle Streams AQ
message property. A default value will be used if the field does not exist or does not
have an expected datatype.

JMS_DeliveryMode
This property is used by WebSphere MQ JMS and Oracle JMS. You can use this
property when the propagation destination is a JMS messaging system. It sets the
delivery mode of messages enqueued to the propagation destination queue by a JMS
MessageProducer. The default is PRESERVE_MSG. Supported values and their
associated delivery modes are:

■ PERSISTENT (DeliveryMode.PERSISTENT)

Configuration Properties

Working with Oracle Messaging Gateway 19-27

■ NON_PERSISTENT (DeliveryMode.NON_PERSISTENT)

■ PRESERVE_MSG (delivery mode of the source JMS message is used)

JMS_NoLocal
This property is used by WebSphere MQ JMS and Oracle JMS. You can use it when the
propagation source is a JMS messaging system. It sets the noLocal parameter of a
JMS TopicSubscriber. TRUE indicates that messages that have been published to
this topic through the same Messaging Gateway link will not be propagated. The
default value FALSE indicates that such messages will be propagated from the topic.

MsgBatchSize
This property can be used by any supported messaging system. It specifies the
maximum number of messages, if available, to be propagated in one transaction. The
default is 30.

PreserveMessageID
This property is used by WebSphere MQ Base Java, WebSphere MQ JMS,
TIB/Rendezvous, and Oracle JMS. It specifies whether Messaging Gateway should
preserve the original message identifier when the message is propagated to the
destination messaging system. The exact details depend on the capabilities of the
messaging systems involved. Supported values are TRUE and FALSE. The default
value is FALSE.

RV_discardAmount
This property is used by TIB/Rendezvous. It specifies the discard amount of a queue.
It is meaningful only for an inbound propagation job. The default is 0.

RV_limitPolicy
This property is used by TIB/Rendezvous. It specifies the limit policy for resolving
overflow of a queue limit. It is meaningful only for an inbound propagation job. The
default is DISCARD_NONE. Supported values and their associated limit policies are:
DISCARD_NONE, DISCARD_FIRST, DISCARD_LAST and DISCARD_NEW.

■ DISCARD_NONE (TibrvQueue.DISCARD_NONE)

■ DISCARD_FIRST (TibrvQueue.DISCARD_FIRST)

■ DISCARD_LAST (TibrvQueue.DISCARD_LAST)

■ DISCARD_NEW (TibrvQueue.DISCARD_NEW)

RV_maxEvents
This property is used by TIB/Rendezvous. It specifies the maximum event limit of a
queue. It is meaningful only for an inbound propagation job. The default is 0.

Configuration Properties

19-28 Oracle Streams Advanced Queuing User’s Guide

Oracle Messaging Gateway Message Conversion 20-1

20
Oracle Messaging Gateway Message

Conversion

This chapter discusses how Oracle Messaging Gateway (MGW) converts message
formats from one messaging system to another. A conversion is generally necessary
when moving messages between Oracle Streams AQ and another system, because
different messaging systems have different message formats. Java Message Service
(JMS) messages are a special case. A JMS message can be propagated only to a JMS
destination, making conversion a simple process.

This chapter contains these topics:

■ Converting Oracle Messaging Gateway Non-JMS Messages

■ Message Conversion for WebSphere MQ

■ Message Conversion for TIB/Rendezvous

■ JMS Messages

Converting Oracle Messaging Gateway Non-JMS Messages
MGW converts the native message format of the source messaging system to the
native message format of the destination messaging system during propagation.
MGW uses canonical types and a model centering on Oracle Streams AQ for the
conversion.

Overview of the Non-JMS Message Conversion Process
When a message is propagated by MGW, the message is converted from the native
format of the source queue to the native format of the destination queue.

A native message usually contains a message header and a message body. The header
contains the fixed header fields that all messages in that messaging system have, such
as message properties in Oracle Streams AQ and the fixed header in WebSphere MQ.
The body contains message contents, such as the Oracle Streams AQ payload, the
WebSphere MQ message body, or the entire TIB/Rendezvous message. MGW converts
both message header and message body components.

Figure 20–1 shows how non-JMS messages are converted in two stages. A message is
first converted from the native format of the source queue to the MGW internal
message format, and then it is converted from the internal message format to the
native format of the destination queue.

Converting Oracle Messaging Gateway Non-JMS Messages

20-2 Oracle Streams Advanced Queuing User’s Guide

Figure 20–1 Non-JMS Message Conversion

The MGW agent uses an internal message format consisting of a header that is similar
to the Oracle Streams AQ message properties and a body that is a representation of an
MGW canonical type.

Oracle Messaging Gateway Canonical Types
MGW defines canonical types to support message conversion between Oracle Streams
AQ and non-Oracle messaging systems. A canonical type is a message type
representation in the form of a PL/SQL Oracle type in Oracle Database. The canonical
types are RAW, SYS.MGW_BASIC_MSG_T, and SYS.MGW_TIBRV_MSG_T.

WebSphere MQ propagation supports the canonical types SYS.MGW_BASIC_MSG_T
and RAW. TIB/Rendezvous propagation supports the canonical types SYS.MGW_
TIBRV_MSG_T and RAW.

Message Header Conversion
MGW provides default mappings between Oracle Streams AQ message properties and
non-Oracle message header fields that have a counterpart in Oracle Streams AQ
message properties with the same semantics. Where MGW does not provide a
mapping, the message header fields are set to a default value, usually the default value
defined by the messaging system.

Handling Arbitrary Payload Types Using Message Transformations
When converting to or from Oracle Streams AQ messages, the MGW agent uses only
its canonical types. Arbitrary payload types are supported, however, with the
assistance of user-defined Oracle Streams AQ message transformations to convert
between an Oracle Streams AQ queue payload and an MGW canonical type.

For MGW to propagate messages from an Oracle Streams AQ queue with an arbitrary
ADT payload (outbound propagation), you must provide a mapping to an MGW
canonical ADT. The transformation is invoked when the MGW agent dequeues
messages from the Oracle Streams AQ queue. Similarly, for MGW to propagate

See Also: "DBMS_MGWMSG" in Oracle Database PL/SQL Packages
and Types Reference for Syntax and attribute information for SYS.MGW_
BASIC_MSG_T and SYS.MGW_TIBRV_MSG_T

AQ Property

AQ Payload

Advanced Queuing
Message

AQ Property

Canonical Type

Messaging Gateway
Message

Message

Non-Oracle
Message

Outbound
Propagation

Inbound
Propagation

Converting Oracle Messaging Gateway Non-JMS Messages

Oracle Messaging Gateway Message Conversion 20-3

messages to an Oracle Streams AQ queue with an arbitrary ADT payload (inbound
propagation), you must provide a mapping from an MGW canonical ADT. The
transformation is invoked when the MGW agent enqueues messages to the Oracle
Streams AQ queue.

Figure 20–2 Oracle Streams AQ Message Conversion

The transformation is always executed in the context of the MGW agent, which means
that the MGW agent user (the user specified using DBMS_MGWADM.CREATE_AGENT or
DBMS_MGWADM.ALTER_AGENT) must have EXECUTE privileges on the transformation
function and the Oracle Streams AQ payload type. This can be accomplished by
granting the EXECUTE privilege to PUBLIC or by granting the EXECUTE privilege
directly to the MGW agent user.

To configure a MGW propagation job with a transformation:

1. Create the transformation function.

2. Grant EXECUTE to the MGW agent user or to PUBLIC on the function and the
object types it references.

3. Call DBMS_TRANSFORM.CREATE_TRANSFORMATION to register the
transformation.

4. Call DBMS_MGWADM.CREATE_JOB to create a MGW propagation job using the
transformation, or DBMS_MGWADM.ALTER_JOB to alter an existing job.

The value passed in the transformation parameter for these APIs must be the
registered transformation name and not the function name. For example, trans_
sampleadt_to_mgw_basic is a stored procedure representing a transformation
function with the signature shown in Example 20–1.

Example 20–1 Transformation Function Signature

FUNCTION trans_sampleadt_to_mgw_basic(in_msg IN mgwuser.sampleADT)
RETURN SYS.MGW_BASIC_MSG_T;

Note: All commands in the examples must be run as a user granted
MGW_ADMINISTRATOR_ROLE, except for the commands to create
transformations.

Advanced Queuing
Message

Messaging Gateway
Message

Outbound
Propagation

Inbound
Propagation

AQ Property

AQ Payload

Transformation
Function

Transformation
Function

AQ Property

Canonical Type

Converting Oracle Messaging Gateway Non-JMS Messages

20-4 Oracle Streams Advanced Queuing User’s Guide

You can create a transformation using DBMS_TRANSFORM.CREATE_
TRANSFORMATION, as shown in Example 20–2.

Example 20–2 Creating a Transformation

BEGIN
 DBMS_TRANSFORM.CREATE_TRANSFORMATION(
 schema => 'mgwuser',
 name => 'sample_adt_to_mgw_basic',
 from_schema => 'mgwuser',
 from_type => 'sampleadt',
 to_schema => 'sys',
 to_type => 'MGW_BASIC_MSG_T',
 transformation => 'mgwuser.trans_sampleadt_to_mgw_basic(user_data)');
END;

Once created, this transformation can be registered with MGW when creating a
propagation job. Example 20–3 creates job job_aq2mq, for whom messages are
propagated from Oracle Streams AQ queue mgwuser.srcq to non-Oracle
messaging system queue destq@mqlink using transformation mgwuser.sample_
adt_to_mgw_basic.

Example 20–3 Registering a Transformation

BEGIN
 DBMS_MGWADM.CREATE_JOB(
 job_name => ’job_aq2mq’,
 propagation_type => DBMS_MGWADM.OUTBOUND_PROPAGATION,
 source => ’mgwuser.srcq’,
 destination => ’destq.mqlink’,
 transformation => ’mgwuser.sample_adt_to_mgw_basic’,
 exception_queue => ’mgwuser.excq’);
END;

An error that occurs while attempting a user-defined transformation is usually
considered a message conversion exception, and the message is moved to the
exception queue if it exists.

Handling Logical Change Records
MGW provides facilities to propagate Logical Change Records (LCRs). Routines are
provided to help in creating transformations to handle the propagation of both row
LCRs and DDL LCRs stored in queues with payload type ANYDATA. An LCR is
propagated as an XML string stored in the appropriate message type.

Because Oracle Streams uses ANYDATA queues to store LCRs, an ANYDATA queue is the
source for outbound propagation. The transformation must first convert the ANYDATA
object containing an LCR into an XMLType object using the MGW routine DBMS_
MGWMSG.LCR_TO_XML. If the ANYDATA object does not contain an LCR, then this
routine raises an error. The XML document string of the LCR is then extracted from

See Also: "DBMS_MGWADM", "DBMS_MGWMSG", and "DBMS_
TRANSFORM" in Oracle Database PL/SQL Packages and Types Reference

Note: For LCR propagation, you must load the XDB package.

Converting Oracle Messaging Gateway Non-JMS Messages

Oracle Messaging Gateway Message Conversion 20-5

the XMLType and placed in the appropriate MGW canonical type (SYS.MGW_BASIC_
MSG_T or SYS.MGW_TIBRV_MSG_T).

Example 20–4 illustrates a simplified transformation used for LCR outbound
propagation. The transformation converts an ANYDATA payload containing an LCR to
a SYS.MGW_TIBRV_MSG_T object. The string representing the LCR as an XML
document is put in a field named ORACLE_LCR.

Example 20–4 Outbound LCR Transformation

create or replace function any2tibrv(adata in anydata)
return SYS.MGW_TIBRV_MSG_T is
 v_xml XMLType;
 v_text varchar2(2000);
 v_tibrv sys.mgw_tibrv_msg_t;
BEGIN
 v_xml := dbms_mgwmsg.lcr_to_xml(adata);
 -- assume the lcr is smaller than 2000 characters long.
 v_text := v_xml.getStringVal();
 v_tibrv := SYS.MGW_TIBRV_MSG_T.CONSTRUCT;
 v_tibrv.add_string('ORACLE_LCR', 0, v_text);
 return v_tibrv;
END any2tibrv;

For LCR inbound propagation, an MGW canonical type (SYS.MGW_BASIC_MSG_T or
SYS.MGW_TIBRV_MSG_T) is the transformation source type. A string in the format of
an XML document representing an LCR must be contained in the canonical type. The
transformation function must extract the string from the message, create an XMLType
object from it, and convert it to an ANYDATA object containing an LCR with the MGW
routine DBMS_MGWMSG.XML_TO_LCR. If the original XML document does not
represent an LCR, then this routine raises an error.

Example 20–5 illustrates a simplified transformation used for LCR inbound
propagation. The transformation converts a SYS.MGW_TIBRV_MSG_T object with a
field containing an XML string representing an LCR to an ANYDATA object. The string
representing the LCR as an XML document is taken from a field named ORACLE_LCR.

Example 20–5 Inbound LCR Transformation

create or replace function tibrv2any(tdata in sys.mgw_tibrv_msg_t)
return anydata is
 v_field sys.mgw_tibrv_field_t;
 v_xml XMLType;
 v_text varchar2(2000);
 v_any anydata;
BEGIN
 v_field := tdata.get_field_by_name('ORACLE_LCR');
 -- type checking
 v_text := v_field.text_value;
 -- assume it is not null
 v_xml := XMLType.createXML(v_text);
 v_any := dbms_mgwmsg.xml_to_lcr(v_xml);
 return v_any;
END tibrv2any;

Message Conversion for WebSphere MQ

20-6 Oracle Streams Advanced Queuing User’s Guide

Message Conversion for WebSphere MQ
MGW converts between the MGW canonical types and the WebSphere MQ native
message format. WebSphere MQ native messages consist of a fixed message header
and a message body. The message body is treated as either a TEXT value or RAW
(bytes) value. The canonical types supported for WebSphere MQ propagation are
SYS.MGW_BASIC_MSG_T and RAW.

Figure 20–3 Message Conversion for WebSphere MQ Using MGW_BASIC_MSG_T

Figure 20–3 illustrates the message conversion performed by the MGW WebSphere
MQ driver when using the canonical type SYS.MGW_BASIC_MSG_T. For outbound
propagation, the driver maps the Oracle Streams AQ message properties and
canonical message to a WebSphere MQ message having a fixed header and a message
body. For inbound propagation, the driver maps a native message to a set of Oracle
Streams AQ message properties and a canonical message. When the canonical type is
RAW, the mappings are the same, except no canonical headers exist.

WebSphere MQ Message Header Mappings
When the MGW canonical type used in an outbound propagation job is RAW, no
WebSphere MQ header information is set from the RAW message body. Similarly, for
inbound propagation no WebSphere MQ header information is preserved in the RAW
message body. MGW canonical type SYS.MGW_BASIC_MSG_T, however, has a header
that can be used to specify WebSphere MQ header fields for outbound propagation,
and preserve WebSphere MQ header fields for inbound propagation.

This section describes the message properties supported for the WebSphere MQ
messaging system when using SYS.MGW_BASIC_MSG_T as the canonical type.
Table 20–1 defines the MGW {name, value} pairs used to describe the WebSphere MQ
header properties. The first column refers to valid string values for the SYS.MGW_
NAME_VALUE_T.NAME field in the SYS.MGW_BASIC_MSG_T header. The second

See Also:

■ "DBMS_MGWMSG" in Oracle Database PL/SQL Packages and Types
Reference

■ ORACLE_HOME/mgw/samples/lcr for complete examples of
LCR transformations

Messaging Gateway
Message

MQSeries
Message

Outbound
Propagation

Inbound
Propagation

AQ Property

Canonical Header

Canonical Body

Header

Body

Message Conversion for WebSphere MQ

Oracle Messaging Gateway Message Conversion 20-7

column refers to the SYS.MGW_NAME_VALUE_T.TYPE value corresponding to the
name. (Refer to "Notes on Table 20–1" on page 20-8 for explanations of the numbers in
parentheses.)

For inbound propagation, the WebSphere MQ driver generates {name,value} pairs
based on the source message header and stores them in the header part of the
canonical message of the SYS.MGW_BASIC_MSG_T type. For outbound propagation,
the WebSphere MQ driver sets the message header and enqueue options from
{name,value} pairs for these properties stored in the header part of the SYS.MGW_
BASIC_MSG_T canonical message.

See Also: "DBMS_MGWMSG" in Oracle Database PL/SQL Packages
and Types Reference

Table 20–1 MGW Names for WebSphere MQ Header Values

MGW Name MGW Type
WebSphere MQ Property
Name Used For

MGW_MQ_accountingToken RAW_VALUE (size 32) accountingToken Outbound (1), Inbound

MGW_MQ_applicationIdData TEXT_VALUE (size 32) applicationIdData Outbound (1), Inbound

MGW_MQ_applicationOriginData TEXT_VALUE (size 4) applicationOriginData Outbound (1), Inbound

MGW_MQ_backoutCount INTEGER_VALUE backoutCount Inbound

MGW_MQ_characterSet INTEGER_VALUE characterSet Outbound, Inbound

MGW_MQ_correlationId RAW_VALUE (size 24) correlationId Outbound (1), Inbound

MGW_MQ_encoding INTEGER_VALUE encoding Outbound, Inbound

MGW_MQ_expiry INTEGER_VALUE expiry Outbound, Inbound

MGW_MQ_feedback INTEGER_VALUE feedback Outbound, Inbound

MGW_MQ_format TEXT_VALUE (size 8) format Outbound (1), Inbound

MGW_MQ_groupId RAW_VALUE (size 24) groupId Outbound (1), Inbound

MGW_MQ_messageFlags INTEGER_VALUE messageFlags Outbound, Inbound

MGW_MQ_messageId RAW_VALUE (size 24) messageId Outbound, Inbound

MGW_MQ_messageSequenceNumber INTEGER_VALUE messageSequenceNumber Outbound, Inbound

MGW_MQ_messageType INTEGER_VALUE messageType Outbound, Inbound

MGW_MQ_offset INTEGER_VALUE offset Outbound, Inbound

MGW_MQ_originalLength INTEGER_VALUE originalLength Outbound, Inbound

MGW_MQ_persistence INTEGER_VALUE persistence Inbound

MGW_MQ_priority INTEGER_VALUE priority Outbound, Inbound

MGW_MQ_putApplicationName TEXT_VALUE (size 28) putApplicationName Outbound (1), Inbound

MGW_MQ_putApplicationType INTEGER_VALUE putApplicationType Outbound (1), Inbound

MGW_MQ_putDateTime DATE_VALUE putDateTime Inbound

MGW_MQ_putMessageOptions INTEGER_VALUE putMessageOptions Outbound (1) (2)

MGW_MQ_replyToQueueManagerName TEXT_VALUE (size 48) replyToQueueManagerName Outbound, Inbound

MGW_MQ_replyToQueueName TEXT_VALUE (size 48) replyToQueueName Outbound, Inbound

MGW_MQ_report INTEGER_VALUE report Outbound (1), Inbound

MGW_MQ_userId TEXT_VALUE (size 12) userId Outbound, Inbound

Message Conversion for WebSphere MQ

20-8 Oracle Streams Advanced Queuing User’s Guide

Notes on Table 20–1
1. This use is subject to WebSphere MQ restrictions. For example, if MGW_MQ_

accountingToken is set for an outgoing message, then WebSphere MQ
overrides its value unless MGW_MQ_putMessageOptions is set to the WebSphere
MQ constant MQPMD_SET_ALL_CONTEXT.

2. MGW_MQ_putMessageOptions is used as the putMessageOptions argument
to the WebSphere MQ Base Java Queue.put() method. It is not part of the
WebSphere MQ header information and is therefore not an actual message
property.

The value for the openOptions argument of the WebSphere MQ Base Java
MQQueueManager.accessQueue method is specified when the WebSphere MQ
queue is registered using the DBMS_MGWADM.REGISTER_FOREIGN_QUEUE call.
Dependencies can exist between the two. For instance, for MGW_MQ_
putMessageOptions to include MQPMD_SET_ALL_CONTEXT, the MQ_
openMessageOptions queue option must include MQOO_SET_CONTEXT.

The MGW agent adds the value MQPMO_SYNCPOINT to any value that you can
specify.

MGW sets default values for two WebSphere MQ message header fields:
messageType defaults to MQMT_DATAGRAM and putMessageOptions defaults to
MQPMO_SYNCPOINT.

MGW provides two default mappings between Oracle Streams AQ message properties
and WebSphere MQ header fields.

One maps the Oracle Streams AQ message property expiration, representing the
time-to-live of the message at the time the message becomes available in the queue, to
the WebSphere MQ header field expiry, representing the time-to-live of the message.
For outbound propagation, the value used for expiry is determined by subtracting
the time the message was available in the queue from the expiration, converted to
tenths of a second. Oracle Streams AQ value NEVER is mapped to MQEI_UNLIMITED.
For inbound propagation, the value of expiration is simply expiry converted to
seconds. WebSphere MQ value MQEI_UNLIMITED is mapped to NEVER.

The other default maps Oracle Streams AQ message property priority with the
WebSphere MQ header field priority. It is described in Table 20–2.

Table 20–2 Default Priority Mappings for Propagation

Propagation Type Message System Priority Values

Outbound Oracle Streams AQ 0 1 2 3 4 5 6 7 8 9

Outbound WebSphere MQ 9 8 7 6 5 4 3 2 1 0

Inbound Oracle Streams AQ 9 8 7 6 5 4 3 2 1 0

Inbound WebSphere MQ 0 1 2 3 4 5 6 7 8 9

Note: For outbound propagation, Oracle Streams AQ priority values
less than 0 are mapped to WebSphere MQ priority 9, and Oracle
Streams AQ priority values greater than 9 are mapped to WebSphere
MQ priority 0.

Message Conversion for WebSphere MQ

Oracle Messaging Gateway Message Conversion 20-9

WebSphere MQ Outbound Propagation
If no message transformation is provided for outbound propagation, then the Oracle
Streams AQ source queue payload type must be either SYS.MGW_BASIC_MSG_T or
RAW. If a message transformation is specified, then the target ADT of the
transformation must be SYS.MGW_BASIC_MSG_T, but the source ADT can be any
ADT supported by Oracle Streams AQ.

If the Oracle Streams AQ queue payload is RAW, then the resulting WebSphere MQ
message has the message body set to the value of the RAW bytes and, by default, the
format field set to the value "MGW_Byte".

If the Oracle Streams AQ queue payload or transformation target ADT is SYS.MGW_
BASIC_MSG_T, then the message is mapped to a WebSphere MQ native message as
follows:

■ The WebSphere MQ fixed header fields are based on the internal Oracle Streams
AQ message properties and the SYS.MGW_BASIC_MSG_T.header attribute of
the canonical message, as described in "WebSphere MQ Message Header
Mappings" on page 20-6.

■ If the canonical message has a TEXT body, then the WebSphere MQ format header
field is set to MQFMT_STRING unless overridden by the header property MGW_MQ_
format. The message body is treated as text.

■ If the canonical message has a RAW body, then the WebSphere MQ format header
field is set to "MGW_Byte" unless overridden by the header property MGW_MQ_
format. The message body is treated as raw bytes.

■ If the canonical message has both a TEXT and RAW body, then message conversion
fails.

■ If the canonical message has neither a TEXT nor RAW body, then no message body
is set, and the WebSphere MQ format header field is MQFMT_NONE.

■ If the canonical message has a TEXT body with both small and large values set
(SYS.MGW_BASIC_MSG_T.TEXT_BODY.small_value and SYS.MGW_BASIC_
MSG_T.TEXT_BODY.large_value not empty), then message conversion fails.

■ If the canonical message has a RAW body with both small and large values set
(SYS.MGW_BASIC_MSG_T.RAW_BODY.small_value and SYS.MGW_BASIC_
MSG_T.RAW_BODY.large_value not empty), then message conversion fails.

If the job option PreserveMessageID is specified with a value of TRUE, then the
correlationId field of the WebSphere message header will be set to the AQ source
message identifier. The correlationId value will be a 24-byte value of the form
"AQMSGID:"+AQ_msgid where AQ_msgid represents the 16-byte Streams AQ
message identifier.

WebSphere MQ Inbound Propagation
If no message transformation is provided for inbound propagation, then the Oracle
Streams AQ destination queue payload type must be either SYS.MGW_BASIC_MSG_T
or RAW. If a message transformation is specified, then the source ADT of the
transformation must be SYS.MGW_BASIC_MSG_T, but the destination ADT can be any
ADT supported by Oracle Streams AQ.

If the Oracle Streams AQ queue payload is RAW and the incoming WebSphere MQ
message has a format of MQFMT_STRING, then message conversion fails. Otherwise
the message body is considered as raw bytes and enqueued directly to the destination

Message Conversion for TIB/Rendezvous

20-10 Oracle Streams Advanced Queuing User’s Guide

queue. If the number of bytes is greater than 32KB, then message conversion fails. The
actual limit is 32512 bytes rather than 32767 bytes.

If the Oracle Streams AQ queue payload or transformation source ADT is SYS.MGW_
BASIC_MSG_T, then the WebSphere MQ message is mapped to a SYS.MGW_BASIC_
MSG_T message as follows:

■ Specific WebSphere MQ header fields are mapped to Oracle Streams AQ message
properties as previously described.

■ The SYS.MGW_BASIC_MSG_T.header attribute of the canonical message is set to
{name, value} pairs based on the WebSphere MQ header fields, as described in
Table 20–1. These values preserve the original content of the WebSphere MQ
message header.

■ If the WebSphere MQ format header field is MQFMT_STRING, then the
WebSphere MQ message body is treated as text, and its value is mapped to
SYS.MGW_BASIC_MSG_T.text_body. For any other format value, the message
body is treated as raw bytes, and its value is mapped to SYS.MGW_BASIC_MSG_
T.raw_body.

Message Conversion for TIB/Rendezvous
MGW regards a TIB/Rendezvous message as a set of fields and supplementary
information. Figure 20–4 shows how messages are converted between MGW and
TIB/Rendezvous.

Figure 20–4 Message Conversion for TIB/Rendezvous

When a message conversion failure occurs, messages are moved to an exception queue
(if one has been provided), so that MGW can continue propagation of the remaining
messages in the source queue. In inbound propagation from TIB/Rendezvous, an
exception queue is a registered subject.

All TIB/Rendezvous wire format datatypes for TIB/Rendezvous fields are supported,
except for the datatypes with unsigned integers and the nested message type.
User-defined custom datatypes are not supported in this release. If a message contains
data of the unsupported datatypes, then a message conversion failure occurs when the
message is processed. A message conversion failure results in moving the failed
message from the source queue to the exception queue, if an exception queue is
provided.

Table 20–3 shows the datatype mapping used when MGW converts between a native
TIB/Rendezvous message and the canonical ADT. For each supported

See Also: "WebSphere MQ Message Header Mappings" on page 20-6

Message

AQ Property

Messaging Gateway

Message

Fields

Supplementary
Information

TIB / Rendezvous

Canonical
Body

Outbound
Propagation

Inbound
Propagation

Message Conversion for TIB/Rendezvous

Oracle Messaging Gateway Message Conversion 20-11

TIB/Rendezvous wire format type, it shows the Oracle type used to store the data and
the DBMS_MGWMSG constant that represents that type.

For propagation between Oracle Streams AQ and TIB/Rendezvous, MGW provides
direct support for the Oracle Streams AQ payload types RAW and SYS.MGW_TIBRV_
MSG_T. To support any other Oracle Streams AQ payload type, you must supply a
transformation.

Table 20–3 TIB/Rendezvous Datatype Mapping

TIB/Rendezvous
Wire Format Oracle Type ADT Field Type

Bool NUMBER TIBRVMSG_BOOL

F32 NUMBER TIBRVMSG_F32

F64 NUMBER TIBRVMSG_F64

I8 NUMBER TIBRVMSG_I8

I16 NUMBER TIBRVMSG_I16

I32 NUMBER TIBRVMSG_I32

I64 NUMBER TIBRVMSG_I64

U8 not supported not supported

U16 not supported not supported

U32 not supported not supported

U64 not supported not supported

IPADDR32 VARCHAR2 TIBRVMSG_IPADDR32

IPPORT16 NUMBER TIBRVMSG_IPPORT16

DATETIME DATE TIBRVMSG_DATETIME

F32ARRAY SYS.MGW_NUMBER_ARRAY_T TIBRVMSG_F32ARRAY

F64ARRAY SYS.MGW_NUMBER_ARRAY_T TIBRVMSG_F64ARRAY

I8ARRAY SYS.MGW_NUMBER_ARRAY_T TIBRVMSG_I8ARRAY

I16ARRAY SYS.MGW_NUMBER_ARRAY_T TIBRVMSG_I16ARRAY

I32ARRAY SYS.MGW_NUMBER_ARRAY_T TIBRVMSG_I32ARRAY

I64ARRAY SYS.MGW_NUMBER_ARRAY_T TIBRVMSG_I64ARRAY

U8ARRAY not supported not supported

U16ARRAY not supported not supported

U32ARRAY not supported not supported

U64ARRAY not supported not supported

MSG not supported not supported

OPAQUE RAW or BLOB TIBRVMSG_OPAQUE

STRING VARCHAR2 or CLOB TIBRVMSG_STRING

XML RAW or BLOB TIBRVMSG_XML

Message Conversion for TIB/Rendezvous

20-12 Oracle Streams Advanced Queuing User’s Guide

AQ Message Property Mapping for TIB/Rendezvous
This section describes the mapping between Oracle Streams AQ message properties
and TIB/Rendezvous fields. This mapping is used to preserve Streams AQ message
properties during outbound propagation, and set Streams AQ message properties
during inbound propagation.

Table 20–4 describes the Streams AQ message properties supported using
TIB/Rendezvous fields. The first column indicates the DBMS_AQ.MESSAGE_
PROPERTIES_T field for the Streams AQ message property. The second and third
columns indicate the name and datatype used for the TIB/Rendezvous field. The last
column indicates if the message property is supported for inbound and outbound
propagation.

Notes on Table 20–4:
1. The msgid Streams AQ property represents the Streams AQ message identifier,

rather than a particular field of the DBMS_AQ.MESSAGE_PROPERTIES_T record.

TIB/Rendezvous Outbound Propagation
If no propagation transformation is provided for outbound propagation, then the
Oracle Streams AQ source queue payload type must be either SYS.MGW_TIBRV_MSG_
T or RAW. If a propagation transformation is specified, then the target ADT of the
transformation must be SYS.MGW_TIBRV_MSG_T, but the source ADT can be any
ADT supported by Oracle Streams AQ.

If the Oracle Streams AQ queue payload or transformation target ADT is SYS.MGW_
TIBRV_MSG_T, then:

■ Every field in the source message is converted to a TIB/Rendezvous message field
of the resulting TIB/Rendezvous message.

■ If the reply_subject attribute is not NULL, then the reply subject
supplementary information is set.

■ The send_subject field is ignored.

If the Oracle Streams AQ queue payload is RAW, then:

■ The resulting message contains a field named MGW_RAW_MSG with value
TibrvMsg.OPAQUE. The field ID is set to 0.

Table 20–4 TIB/Rendezvous and MGW Names for Oracle Streams AQ Message Properties

Oracle Streams AQ
Message Property MGW Name

TIB/Rendezvous Wire
Format Datatype Used For

priority MGW_AQ_priority TibrvMsg.I32 Outbound, Inbound

expiration MGW_AQ_expiration TibrvMsg.I32 Outbound, Inbound

delay MGW_AQ_delay TibrvMsg.I32 Outbound, Inbound

correlation MGW_AQ_correlation TibrvMsg.STRING Outbound, Inbound

exception_queue MGW_AQ_exception_queue TibrvMsg.STRING Outbound, Inbound

enqueue_time MGW_AQ_enqueue_time TibrvMsg.DATETIME Outbound

original_msgid MGW_AQ_original_msgid TibrvMsg.OPAQUE Outbound

msgid (1) MGW_AQ_messageID TibrvMsg.OPAQUE Outbound

Message Conversion for TIB/Rendezvous

Oracle Messaging Gateway Message Conversion 20-13

If the job option AQ_MsgProperties is specified with a value of TRUE, then the
MGW agent generates fields to preserve the Streams AQ message properties in the
TIB/Rendezvous message according to Table 20–4.

If the PreserveMessageID job option is specified with a value of TRUE, then the
Streams AQ message identifier (msgid) is preserved in the TIB/Rendezvous message
according to Table 20–4.

TIB/Rendezvous Inbound Propagation
If no propagation transformation is provided for inbound propagation, then the Oracle
Streams AQ destination queue payload type must be either RAW or SYS.MGW_TIBRV_
MSG_T. If a propagation transformation is specified, then the target ADT of the
transformation can be any ADT supported by Oracle Streams AQ, but the source ADT
of the transformation must be SYS.MGW_TIBRV_MSG_T.

If the Oracle Streams AQ queue payload or transformation source ADT is SYS.MGW_
TIBRV_MSG_T, then:

■ Every field in the source TIB/Rendezvous message is converted to a field of the
resulting message of the SYS.MGW_TIBRV_MSG_T type.

■ The MGW agent extracts the send subject name from the source TIB/Rendezvous
message and sets the send_subject attribute in SYS.MGW_TIBRV_MSG_T. The
send subject name is usually the same as the subject name of the registered
propagation source queue, but it might be different when wildcards are used.

■ The MGW agent extracts the reply subject name from the source TIB/Rendezvous
message, if it exists, and sets the reply_subject attribute in SYS.MGW_TIBRV_
MSG_T.

■ If the source TIB/Rendezvous message contains more than three large text fields
(greater than 4000 bytes of text) or more than three large bytes fields (greater than
2000 bytes), then message conversion fails.

If the Oracle Streams AQ queue payload is RAW, then:

■ The Oracle Streams AQ message payload is the field data if the source
TIB/Rendezvous message has a field named MGW_RAW_MSG of type
TibrvMsg.OPAQUE or TibrvMsg.XML. The field name and ID are ignored. If no
such field exists or has an unexpected type, then a message conversion failure
occurs.

■ A message conversion failure occurs if the RAW data size is greater than 32KB. This
is due to a restriction on the data size allowed for a bind variable. Also, the actual
limit is 32512 rather than 32767.

If the job option AQ_MsgProperties is specified with a value of TRUE, then the
MGW agent searches for fields in the original TIB/Rendezvous messages with
reserved field names. Table 20–4 shows the field name strings and the corresponding
values used in the TIB/Rendezvous message.

If such fields exist, then the MGW agent uses the field value to set the corresponding
Oracle Streams AQ message properties, instead of using the default values. If there is
more than one such field with the same name, then only the first one is used. Such
fields are removed from the resulting payload only if the Oracle Streams AQ queue
payload is RAW. If a field with the reserved name does not have the expected datatype,
then it causes a message conversion failure.

See Also: "DBMS_MGWMSG" in Oracle Database PL/SQL Packages
and Types Reference for the value datatypes

JMS Messages

20-14 Oracle Streams Advanced Queuing User’s Guide

JMS Messages
MGW propagates only JMS messages between Oracle JMS and non-Oracle JMS
systems, without changing the message content. Figure 20–5 shows JMS message
propagation.

MGW supports only the standard JMS message types. It does not support:

■ JMS provider extensions, because any such extensions would not be recognized by
the destination JMS system. An attempt to propagate any such non-JMS message
results in an error.

■ User transformations for JMS propagation.

■ Propagation of Logical Change Records (LCRs).

Figure 20–5 JMS Message Propagation

For the purposes of this discussion, a JMS message is a Java object of a class that
implements one of the five JMS message interfaces. Table 20–5 shows the JMS message
interfaces and the corresponding Oracle JMS ADTs. The table also shows the interface,
javax.jms.Message, which can be any one of the five specific types, and the
corresponding generic Oracle JMS type SYS.AQ$_JMS_MESSAGE.

When a propagation job is activated, the MGW agent checks the Oracle Streams AQ
payload type for the propagation source or destination. If the type is one of those
listed in Table 20–5 or ANYDATA, then message propagation is attempted. Otherwise an
exception is logged and propagation is not attempted.

The MGW agent may add a JMS String property named OracleMGW_
OriginalMessageID to the JMS message sent to the destination queue in order to

Table 20–5 Oracle JMS Message Conversion

JMS Message ADT

javax.jms.TextMessage SYS.AQ$_JMS_TEXT_MESSAGE

javax.jms.BytesMessage SYS.AQ$_JMS_BYTES_MESSAGE

javax.jms.MapMessage SYS.AQ$_JMS_MAP_MESSAGE

javax.jms.StreamMessage SYS.AQ$_JMS_STREAM_MESSAGE

javax.jms.ObjectMessage SYS.AQ$_JMS_OBJECT_MESSAGE

javax.jms.Message SYS.AQ$_JMS_MESSAGE

Message

Properties

Header

Oracle JMS

Body

Outbound
Propagation

Inbound
Propagation

Message

Properties

Header

Messaging Gateway

Body

Message

Properties

Header

Third-Party JMS

Body

JMS Messages

Oracle Messaging Gateway Message Conversion 20-15

preserve the original message identifier of the source message. This property is added
if the PreserveMessageID job option is specified with a value of TRUE. It will also
be added for any message moved to an exception queue upon a message conversion
failure.

JMS Outbound Propagation
When dequeuing a message from an Oracle Streams AQ queue, Oracle JMS converts
instances of the ADTs shown in Table 20–5 into JMS messages. In addition it can
convert instances of ANYDATA into JMS messages, depending on the content.

A queue with payload type ANYDATA can hold messages that do not map to a JMS
message. MGW fails to dequeue such a message. An error is logged and propagation
of messages from that queue does not continue until the message is removed.

JMS Inbound Propagation
Every message successfully dequeued using WebSphere MQ JMS is a JMS message.
No message conversion is necessary prior to enqueuing using Oracle JMS. However, if
the payload ADT of the propagation destination does not accept the type of the
inbound message, then an exception is logged and an attempt is made to place the
message in an exception queue. An example of such type mismatches is a JMS
TextMessage and a queue payload type SYS.AQ$_JMS_BYTES_MESSAGE.

JMS Messages

20-16 Oracle Streams Advanced Queuing User’s Guide

Monitoring Oracle Messaging Gateway 21-1

21
Monitoring Oracle Messaging Gateway

This chapter discusses means of monitoring the Oracle Messaging Gateway (MGW)
agent, abnormal situations you may experience, several sources of information about
Messaging Gateway errors and exceptions, and suggested remedies.

This chapter contains these topics:

■ Oracle Messaging Gateway Log Files

■ Monitoring the Oracle Messaging Gateway Agent Status

■ Monitoring Oracle Messaging Gateway Propagation

■ Oracle Messaging Gateway Agent Error Messages

Oracle Messaging Gateway Log Files
Messaging Gateway agent status, history, and errors are recorded in Messaging
Gateway log files. A different log file is created each time the Messaging Gateway
agent is started. You should monitor the log file because any errors, configuration
information read at startup time, or dynamic configuration information is written to
the log.

The format of the log file name for the default agent is:

oramgw-hostname-timestamp-processid.log

The format of the log file name for a named agent is:

oramgw-AGENTNAME-hostname-timestamp-processid.log

By default the Messaging Gateway log file is in ORACLE_HOME/mgw/log. This
location can overridden by the parameter log_directory in the Messaging Gateway
initialization file used by the agent, usually mgw.ora.

This section contains these topics:

■ Sample Oracle Messaging Gateway Log File

■ Interpreting Exception Messages in an Oracle Messaging Gateway Log File

Sample Oracle Messaging Gateway Log File
The following sample log file shows the Messaging Gateway agent starting. The
sample log file shows that a messaging link, a registered foreign queue, a propagation
job, and a schedule associated with the job have been added. The log file shows that
the propagation job has been activated. The last line indicates that the Messaging
Gateway is up and running and ready to propagate messages.

Oracle Messaging Gateway Log Files

21-2 Oracle Streams Advanced Queuing User’s Guide

Example 21–1 Sample Messaging Gateway Log File

>>2007-01-16 15:04:49 MGW C-Bootstrap 0 LOG process-id=11080
Bootstrap program starting
>>2007-01-16 15:04:50 MGW C-Bootstrap 0 LOG process-id=11080
JVM created -- heapsize = 64
>>2007-01-16 15:04:53 MGW Engine 0 200 main
MGW Agent version: 11.1.0.0
>>2007-01-16 15:04:53 MGW AdminMgr 0 LOG main
Connecting to database using connect string = jdbc:oracle:oci:@INST1
>>2007-01-16 15:05:00 MGW Engine 0 200 main
MGW Component version: 11.1.0.3.0
>>2007-01-16 15:05:01 MGW Engine 0 200 main
MGW agent name: DEFAULT_AGENT, MGW job instance id:
273006EC6ED255F1E040578C6D021A8C, MGW database instance: 1
>>2007-01-16 15:05:09 MGW Engine 0 1 main
Agent is initializing.
>>2007-01-16 15:05:09 MGW Engine 0 23 main
The number of worker threads is set to 1.
>>2007-01-16 15:05:09 MGW Engine 0 22 main
The default polling interval is set to 5000ms.
>>2007-01-16 15:05:09 MGW MQD 0 LOG main
Creating MQSeries messaging link:
link : MQLINK
link type : Base Java interface
queue manager : my.queue.manager
channel : channel1
host : my.machine
port : 1414
user :
ccdt url :
ssl cipherSuite :
connections : 1
inbound logQ : logq1
outbound logQ : logq2
>>2007-01-16 15:05:09 MGW Engine 0 4 main
Link MQLINK has been added.
>>2007-01-16 15:05:09 MGW Engine 0 7 main
Queue DESTQ@MQLINK has been registered; provider queue: MGWUSER.MYQUEUE.
>>2007-01-16 15:05:09 MGW Engine 0 9 main
Propagation Schedule JOB_AQ2MQ (MGWUSER.MGW_BASIC_SRC --> DESTQ@MQLINK) has been
added.
>>2007-01-16 15:05:09 MGW AQN 0 LOG main
Creating AQ messaging link:
link : oracleMgwAq
link type : native
database : INST1
user : MGWAGENT
connection type : JDBC OCI
connections : 1
inbound logQ : SYS.MGW_RECV_LOG
outbound logQ : SYS.MGW_SEND_LOG
>>2007-01-16 15:05:10 MGW Engine 0 19 main
MGW propagation job JOB_AQ2MQ has been activated.
>>2007-01-16 15:05:10 MGW Engine 0 14 main
MGW propagation job JOB_AQ2MQ (MGWUSER.MGW_BASIC_SRC --> DESTQ@MQLINK) has been
added.
>>2007-01-16 15:05:11 MGW Engine 0 2 main
Agent is up and running.

Monitoring the Oracle Messaging Gateway Agent Status

Monitoring Oracle Messaging Gateway 21-3

Interpreting Exception Messages in an Oracle Messaging Gateway Log File
Exception messages logged to the Messaging Gateway log file may include one or
more linked exceptions, identified by [Linked-exception] in the log file. These are
often the most useful means of determining the cause of a problem. For instance, a
linked exception could be a java.sql.SQLException, possibly including an Oracle
error message, a PL/SQL stack trace, or both.

The following example shows entries from a Messaging Gateway log file when an
invalid value (bad_service_name) was specified for the database parameter of
DBMS_MGWADM.CREATE_AGENT or DBMS_MGWADM.ALTER_AGENT. This resulted in the
Messaging Gateway agent being unable to establish database connections.

Example 21–2 Sample Exception Message

>>2003-07-22 15:27:26 MGW AdminMgr 0 LOG main
Connecting to database using connect string = jdbc:oracle:oci8:@BAD_SERVICE_NAME
>>2003-07-22 15:27:29 MGW Engine 0 EXCEPTION main
oracle.mgw.admin.MgwAdminException: [241] Failed to connect to database. SQL
error: 12154, connect string: jdbc:oracle:oci8:@BAD_SERVICE_NAME
[…Java stack trace here…]
[Linked-exception]
java.sql.SQLException: ORA-12154: TNS:could not resolve the connect identifier
specified
[…Java stack trace here…]
>>2003-07-22 15:27:29 MGW Engine 0 25 main
Agent is shutting down.

Monitoring the Oracle Messaging Gateway Agent Status
This section contains these topics:

■ MGW_GATEWAY View

■ Oracle Messaging Gateway Irrecoverable Error Messages

■ Other Oracle Messaging Gateway Error Conditions

MGW_GATEWAY View
The MGW_GATEWAY view monitors the progress of the Messaging Gateway agent.
Among the fields that can be used to monitor the agent are:

■ AGENT_NAME

■ AGENT_INSTANCE

■ AGENT_PING

■ AGENT_STATUS

■ LAST_ERROR_MSG

■ SERVICE

The AGENT_STATUS field shows the status of the agent. This column has the following
possible values:

NOT_STARTED
Indicates that the agent is neither running nor scheduled to be run.

START_SCHEDULED
Indicates that the agent job is waiting to be run by the job scheduler.

Monitoring the Oracle Messaging Gateway Agent Status

21-4 Oracle Streams Advanced Queuing User’s Guide

STARTING
Indicates that the agent is in the process of starting.

INITIALIZING
Indicates that the agent has started and is reading configuration data.

RUNNING
Indicates that the agent is ready to propagate any available messages or process
dynamic configuration changes.

SHUTTING_DOWN
Indicates that the agent is in the process of shutting down.

BROKEN
Indicates that, while attempting to start an agent process, Messaging Gateway has
detected another agent already running. This situation should never occur under
normal usage.

Querying the AGENT_PING field pings the Messaging Gateway agent. Its value is
either REACHABLE or UNREACHABLE. An agent with status of RUNNING should almost
always be REACHABLE.

The columns LAST_ERROR_MSG, LAST_ERROR_DATE, and LAST_ERROR_TIME give
valuable information if an error in starting or running the Messaging Gateway agent
occurs. AGENT_INSTANCE indicates the Oracle Database instance on which the
Messaging Gateway instance was started.

Oracle Messaging Gateway Irrecoverable Error Messages
A status of NOT_STARTED in the AGENT_STATUS field of the MGW_GATEWAY view
indicates that the Messaging Gateway agent is not running. If the AGENT_STATUS is
NOT_STARTED and the LAST_ERROR_MSG field is not NULL, then the Messaging
Gateway agent has encountered an irrecoverable error while starting or running.
Check if a Messaging Gateway log file has been generated and whether it indicates
any errors. If a log file is not present, then the Messaging Gateway agent process was
probably not started.

This section describes the causes and solutions for some error messages that may
appear in the LAST_ERROR_MSG field of the MGW_GATEWAY view. Unless indicated
otherwise, the Messaging Gateway agent will not attempt to restart itself when one of
these errors occurs.

ORA-01089: Immediate shutdown in progress - no operations are
permitted
The Messaging Gateway agent has shut down because the SHUTDOWN IMMEDIATE
command was used to shut down a running Oracle Database instance on which the
agent was running. The agent will restart itself on the next available database instance
on which it is set up to run.

ORA-06520: PL/SQL: Error loading external library
The Messaging Gateway agent process was unable to start because the shared library
was not loaded. This may be because the Java shared library was not in the library
path. Verify that the library path in listener.ora has been set correctly.

See Also: "DBMS_MGWADM" in Oracle Database PL/SQL Packages
and Types Reference for more information on the MGW_GATEWAY view

Monitoring the Oracle Messaging Gateway Agent Status

Monitoring Oracle Messaging Gateway 21-5

ORA-28575: Unable to open RPC connection to external procedure agent
The Messaging Gateway agent was unable to start. It will attempt to start again
automatically.

Possible causes include:

■ The listener is not running. If you have modified listener.ora, then you must
stop and restart the listener before the changes will take effect.

■ Values in tnsnames.ora, listener.ora, or both are not correct.

In particular, tnsnames.ora must have a net service name entry of MGW_AGENT.
This entry is not needed for Messaging Gateway on Windows. The SID value
specified for CONNECT_DATA of the MGW_AGENT net service name in
tnsnames.ora must match the SID_NAME value of the SID_DESC entry in
listener.ora. If the MGW_AGENT net service name is set up for an Inter-process
Communication (IPC) connection, then the KEY values for ADDRESS in
tnsnames.ora and listener.ora must match. If the names.default_
domain parameter for sqlnet.ora has been used to set a default domain, then
that domain must be appended to the MGW_AGENT net service name in
tnsnames.ora.

ORA-28576: Lost RPC connection to external procedure agent
The Messaging Gateway agent process ended prematurely. This may be because the
process was stopped by an outside entity or because an internal error caused a
malfunction. The agent will attempt to start again automatically. Check the Messaging
Gateway log file to determine if further information is available. If the problem
persists, then contact Oracle Support Services for assistance.

ORA-32830: Result code -2 returned by Messaging Gateway agent
An error occurred when the Messaging Gateway agent tried to read its initialization
file, usually mgw.ora. Verify that the file is readable.

ORA-32830: Result code -3 returned by Messaging Gateway agent
An error occurred creating the Messaging Gateway log file. Verify that the log
directory can be written to. The default location is ORACLE_HOME/mgw/log.

ORA-32830: Result code -8 returned by Messaging Gateway agent
An error occurred starting the Java Virtual Machine (JVM). Verify that:

■ You are using the correct Java version

■ Your operating system version and patch level are sufficient for the JDK version

■ You are using a reasonable value for the JVM heap size

The heap size is specified by the max_memory parameter of DBMS_
MGWADM.ALTER_AGENT

■ On Windows platforms, verify the MGW_PRE_PATH set in mgw.ora contains the
path to the correct JVM library (jvm.dll).

ORA-32830: Result code -12 returned by Messaging Gateway agent
An error occurred writing to the Messaging Gateway log file. Check the free disk
space or any other issues that might result in file I/O problems.

Monitoring the Oracle Messaging Gateway Agent Status

21-6 Oracle Streams Advanced Queuing User’s Guide

ORA-32830: Result code -17 returned by Messaging Gateway agent
The JVM was successfully created but an error occurred trying to call the MGW Java
agent program. Verify that the CLASSPATH set in mgw.ora is correct.

ORA-32830: Result code -19 returned by Messaging Gateway agent
The Messaging Gateway agent was configured to use a particular initialization file but
that file does not exist. The INITFILE field of the MGW_GATEWAY view shows the full
pathname of the file specified by the administrator. Either create that initialization file,
or use DBMS_MGWADM.ALTER_AGENT to set INITFILE to another file or NULL to use
the default initialization file.

ORA-32830: Result code -100 returned by Messaging Gateway agent
The Messaging Gateway agent JVM encountered a runtime exception or error on
startup before it could write to the log file.

ORA-32830: Result code -101 returned by Messaging Gateway agent
An irrecoverable error caused the Messaging Gateway agent to shut down. Check the
Messaging Gateway log file for further information. Verify that the values specified in
mgw.ora are correct. Incorrect values can cause the Messaging Gateway agent to
terminate due to unusual error conditions.

ORA-32830: Result code -102 returned by Messaging Gateway agent
The Messaging Gateway agent shut down because the version of file ORACLE_
HOME/mgw/jlib/mgw.jar does not match the version of the Messaging Gateway
PL/SQL packages. Verify that all Messaging Gateway components are from the same
release.

ORA-32830: Result code -103 returned by Messaging Gateway agent
The Messaging Gateway agent shut down because the database instance on which it
was running was shutting down. The agent should restart automatically, either on
another instance if set up to do so, or when the instance that shut down is restarted.

ORA-32830: Result code -104 returned by Messaging Gateway agent
See previous error.

ORA-32830: Result code -105 returned by Messaging Gateway agent
The Messaging Gateway agent detected that it was running when it should not be.
This should not happen. If it does, AGENT_STATUS will be BROKEN and the agent will
shut down automatically. If you encounter this error:

■ Terminate any Messaging Gateway agent process that may still be running. The
process is usually named extprocmgwextproc.

■ Run DBMS_MGWADM.CLEANUP_GATEWAY(DBMS_MGWADM.CLEAN_STARTUP_
STATE).

■ Start the Messaging Gateway agent using DBMS_MGWADM.STARTUP.

ORA-32830: Result code -106 returned by Messaging Gateway agent
See previous error.

See Also: "DBMS-MGWADM" in Oracle Database PL/SQL Packages
and Types Reference

Monitoring the Oracle Messaging Gateway Agent Status

Monitoring Oracle Messaging Gateway 21-7

Other Oracle Messaging Gateway Error Conditions
This section discusses possible causes for AGENT_STATUS remaining START_
SCHEDULED in MGW_GATEWAY view for an extended period.

Database Service Not Started
Messaging Gateway uses an Oracle Scheduler job to start the Messaging Gateway
agent. Oracle Scheduler allows you to specify a database service under which a job
should be run (service affinity). Messaging Gateway allows an administrator to
configure the Messaging Gateway agent with a database service that will be used to
configure the Scheduler job class associated with that agent.

When you shutdown a database Oracle stops all services to that database. You may
need to manually restart the services when you start the database. If a Scheduler job is
associated with a service then the job will not run until the service is started. If
AGENT_STATUS for a Messaging Gateway agent remains START_SCHEDULED for an
extended period that might indicate that the database service is disabled or no
database instances associated with the service are running. Use the MGW_GATEWAY
view, Oracle Scheduler views, and service views to determine how the agent was
configured and the current state of the Scheduler job and database service.

Too Few Job Queue Processes
Messaging Gateway uses Oracle Scheduler to start the Messaging Gateway external
process. When AGENT_STATUS is START_SCHEDULED, the Messaging Gateway agent
Scheduler job is waiting to be run by the Scheduler. The Messaging Gateway job will
not run until there is an available job process. Messaging Gateway holds its Scheduler
job process for the lifetime of the Messaging Gateway agent session. If multiple
Messaging Gateway agents have been started, each agent uses its own Scheduler job
and require its own job process.

If the value of the database initialization parameter JOB_QUEUE_PROCESSES is zero,
then that parameter does not influence the number of Oracle Scheduler jobs that can
concurrently run. However, if the value is non-zero, it effectively becomes the
maximum number of Scheduler jobs and job queue jobs than can concurrently run.

If Messaging Gateway status remains START_SCHEDULED for an extended period of
time, then it may indicate that the database has been started with a non-zero value for
JOB_QUEUE_PROCESSES and that all jobs processes are busy. If the value is non-zero,
verify that the database instance has been started with enough job queue processes so
that one is available for each Messaging Gateway agent.

Scheduler Job Broken or Disabled
The Messaging Gateway agent status will remain START_SCHEDULED if the Oracle
Scheduler job associated with a Messaging Gateway agent has become disabled or
broken for some reason. To determine if this is the case, use the DBA_SCHEDULER_
JOBS view to look at STATE field for the agent’s Scheduler job. Normally the
Scheduler job state will be SCHEDULED when the Messaging Gateway agent’s
Scheduler job is waiting to be run, or RUNNING when the Messaging Gateway agent is
running. The agent’s Scheduler job should not exist if the Messaging Gateway agent
status is NOT_STARTED.

See Also: Oracle Messaging Gateway Agent Scheduler Job on
page 19-4 for information about Oracle Scheduler objects used by
Messaging Gateway.

Monitoring Oracle Messaging Gateway Propagation

21-8 Oracle Streams Advanced Queuing User’s Guide

Check other Scheduler views, such as DBA_SCHEDULER_JOB_RUN_DETAILS, for
additional information about the Messaging Gateway Scheduler jobs. Also check the
MGW_GATEWAY view and the Messaging Gateway log file for any error messages that
may indicate a problem.

Real Application Clusters (RAC) Environment
If Messaging Gateway is being used in a RAC environment and the agent has been
configured with a database service but no database instances are running that have the
service enabled, then the Messaging Gateway AGENT_STATUS will remain START_
SCHEDULED until the service is started on a running database instance.

Monitoring Oracle Messaging Gateway Propagation
Messaging Gateway propagation can be monitored using the MGW_JOBS view and the
Messaging Gateway log file. The view provides information on propagated messages
and errors that may have occurred during propagation attempts. The log file can be
used to determine the cause of the errors.

Besides showing configuration information, the MGW_JOBS view also has dynamic
information that can be used to monitor message propagation. Applicable fields
include STATUS, ENABLED, PROPAGATED_MSGS, EXCEPTIONQ_MSGS, FAILURES,
LAST_ERROR_MSG, LAST_ERROR_DATE, and LAST_ERROR_TIME.

The STATUS field indicates current status of the job. READY means that the job is ready
for propagation (but only if the ENABLED field is TRUE). RETRY means that a
propagation failure occurred but that propagation will be retried. FAILED means that
the agent has stopped propagation for the job due to an unrecoverable error or the
maximum number of consecutive propagation failures has been reached. DELETE_
PENDING means job removal is pending due to DBMS_MGWADM.REMOVE_JOB being
called but certain cleanup tasks pertaining to the job are still outstanding.
SUBSCRIBER_DELETE_PENDING means that DBMS_MGWADM.REMOVE_SUBSCRIBER
has been called on an old style propagation job but certain cleanup tasks pertaining to
the job are still outstanding.

The ENABLED field indicates whether the propagation job is currently enabled. TRUE
indicates the job is enabled while FALSE indicates the job is disabled. No propagation
will occur unless the job is enabled.

The PROPAGATED_MSGS field of the MGW_JOBS view indicates how many messages
have been successfully propagated. This field is reset to zero when the Messaging
Gateway agent is started.

If a Messaging Gateway propagation job has been configured with an exception
queue, then the Messaging Gateway agent will move messages to that exception
queue the first time the Messaging Gateway agent encounters a propagation failure
caused by a message conversion failure. A message conversion failure is indicated by
oracle.mgw.common.MessageException in the Messaging Gateway log file. The
EXCEPTIONQ_MSGS field indicates how many messages have been moved to the
exception queue. This field is reset to zero when the Messaging Gateway agent is
started.

See Also: Oracle Messaging Gateway Agent Scheduler Job on
page 19-4 for information about Oracle Scheduler objects used by Messaging
Gateway

Oracle Messaging Gateway Agent Error Messages

Monitoring Oracle Messaging Gateway 21-9

If an error occurs during message propagation for a propagation job, a count is
incremented in the FAILURES field. This field indicates the number of failures
encountered since the last successful propagation of messages. Each time a failure
occurs, an error message and the time it occurred will be shown by LAST_ERROR_
MSG, LAST_ERROR_DATE, and LAST_ERROR_TIME. When the number of failures
reaches sixteen, Messaging Gateway halts propagation attempts for this propagation
job. To resume propagation attempts you must call DBMS_MGWADM.RESET_JOB for the
propagation job.

If an error occurs, then examine the Messaging Gateway log file for further
information.

Oracle Messaging Gateway Agent Error Messages
This section lists some of the most commonly occurring errors that are shown in the
LAST_ERROR_MSG column of the MGW_JOBS view and logged to the Messaging
Gateway agent log file. Also shown are some errors that require special action. When
you notice that a failure has occurred, look at the linked exceptions in the log file to
determine the root cause of the problem.

Two primary types of errors are logged to the Messaging Gateway agent log file:

■ oracle.mgw.common.MessageException

This error type is logged when a message conversion failure occurs. The
Messaging Gateway agent probably cannot propagate the message causing the
failure, and the propagation job will eventually be stopped.

■ oracle.mgw.common.GatewayException

This error type is logged when some failure other than message conversion occurs.
Depending on the cause, the problem may fix itself or require user action.

[221] Failed to access <messaging_system> queue: <queue>
An error occurred while trying to access either an Oracle Streams AQ queue or a
non-Oracle queue. Check the linked exception error code and message in the log file.

[241] Failed to connect to database. SQL error: <error>, connect string:
<connect_string>
This is probably caused by incorrect MGW agent connection information specified for
DBMS_MGWADM.CREATE_AGENT or DBMS_MGWADM.ALTER_AGENT. Either the
Messaging Gateway agent user or password is incorrect or the database specifier
(database parameter) is incorrect. Verify that the connection information is correct for
the connection type used by the agent, JDBC OCI or JDBC Thin.

If the database parameter is NULL, then check the Messaging Gateway log file for the
following Oracle linked errors:

ORA-01034: ORACLE not available
ORA-27101: shared memory realm does not exist

These two errors together indicate that the Messaging Gateway agent is attempting to
connect to the database using a local IPC connection, but the ORACLE_SID value is not
correct.

See Also: "DBMS_MGWADM" in Oracle Database PL/SQL Packages
and Types Reference

Oracle Messaging Gateway Agent Error Messages

21-10 Oracle Streams Advanced Queuing User’s Guide

A local connection is used when the database parameter is set to NULL. If a local
connection is desired, the correct ORACLE_SID value must be set in the Messaging
Gateway agent process. This can be done by adding the following line to the MGW
initialization file, usually mgw.ora:

set ORACLE_SID = sid_value

ORACLE_SID need not be set in the MGW initialization file if the database parameter
is not NULL.

If setting ORACLE_SID in the MGW initialization file does not work, then the database
parameter must be set to a value that is not NULL.

If the JDBC Thin connection is used, then the database parameter must be not NULL. If
the JDBC Thin connection is used and the database parameter is a TNSNames alias,
make sure that the oracle.net.tns_names Java property is set in the MGW
initialization file. The property can be set by adding the following line to the MGW
initialization file:

setJavaProp oracle.net.tns_admin=<directory containing tnsnames.ora>

[415] Missing messages from source queue of job <job_name>
Possible causes include:

■ The agent partially processed persistent messages that were dequeued by
someone other than the Messaging Gateway agent.

■ The propagation source queue was purged or re-created.

■ A message was moved to the Oracle Streams AQ exception queue.

If this error occurs, then call procedure CLEANUP_GATEWAY in the DBMS_MGWADM
package:

DBMS_MGWADM.CLEANUP_GATEWAY (
 action => DBMS_MGWADM.RESET_SUB_MISSING_MESSAGE,
 sarg => <job_name>);

The call takes effect only if the propagation job has encountered the missing message
problem and the agent is running. The agent treats the missing messages as
nonpersistent messages and continues processing the propagation job.

[416] Missing log records in receiving log queue for job <job_name>
Possible causes include:

■ Log records were dequeued from the log queues by someone other than the
Messaging Gateway agent.

■ The log queues were purged or re-created.

If this error occurs, then call procedure CLEANUP_GATEWAY in the DBMS_MGWADM
package:

DBMS_MGWADM.CLEANUP_GATEWAY (
 action => DBMS_MGWADM.RESET_SUB_MISSING_LOG_REC,
 sarg => <job_name>);

See Also: "oracle.net.tns_admin" on page 18-12 for more information

See Also: "Propagation Job Overview" on page 19-15 for more
information on Messaging Gateway exception queues

Oracle Messaging Gateway Agent Error Messages

Monitoring Oracle Messaging Gateway 21-11

The call takes effect only if the propagation job has encountered the missing log
records problem and the agent is running.

[417] Missing log records in sending log queue for job <job_name>
See previous error.

[421] WARNING: Unable to get connections to recover job <job_name>
This message is a warning message indicating that the Messaging Gateway agent
failed to get a connection to recover the propagation job, because other propagation
jobs are using them all. The agent will keep trying to get a connection until it succeeds.

If this message is repeated many times for a WebSphere MQ link, then increase the
maximum number of connections used by the Messaging Gateway link associated
with the propagation job.

[434] Failed to access queue <queue>; provider queue <queue>
This message indicates that a messaging system native queue cannot be accessed. The
queue may have been registered by DBMS_MGWADM.REGISTER_FOREIGN_QUEUE, or
it may be an Oracle Streams AQ queue. The linked exceptions should give more
information.

Possible causes include:

■ The foreign queue was registered incorrectly, or the Messaging Gateway link was
configured incorrectly.

Verify configuration information. If possible, use the same configuration
information to run a sample application of the non-Oracle messaging system.

■ The non-Oracle messaging system is not accessible.

Check that the non-Oracle messaging system is running and can be accessed using
the information supplied in the Messaging Gateway link.

■ The Oracle Streams AQ queue does not exist. Perhaps the queue was removed
after the Messaging Gateway propagation job was created.

Check that the Oracle Streams AQ queue still exists.

[436] LOW MEMORY WARNING: total memory = < >, free_mem = < >
The Messaging Gateway agent JVM is running low on memory. Java garbage
collection will be invoked, but this may represent a JVM heap size that is too small.
Use the max_memory parameter of DBMS_MGWADM.ALTER_AGENT to increase the JVM
heap size. If the Messaging Gateway agent is running, then it must be restarted for this
change to take effect.

Note: Calling procedure DBMS_MGWADM.CLEANUP_GATEWAY may
result in duplicated messages if the missing messages have already
been propagated to the destination queue. Users should check the
source and destination queues for any messages that exist in both
places. If such messages exist, then they should be removed from
either the source or destination queue before calling this procedure.

See Also: "Altering a Messaging System Link" on page 19-11

Oracle Messaging Gateway Agent Error Messages

21-12 Oracle Streams Advanced Queuing User’s Guide

[703] Failed to retrieve information for transformation <transformation_id>
The Messaging Gateway agent could not obtain all the information it needs about the
transformation. The transformation parameter of DBMS_MGWADM.CREATE_JOB must
specify the name of the registered transformation and not the name of the
transformation function.

Possible causes include:

■ The transformation does not exist. Verify that the transformation has been created.
You can see this from the following query performed as user SYS:

SELECT TRANSFORMATION_ID, OWNER FROM DBA_TRANSFORMATIONS;

■ The wrong transformation is registered with Messaging Gateway. Verify that the
transformation registered is the one intended.

■ The Messaging Gateway agent user does not have EXECUTE privilege on the
object type used for the from_type or the to_type of the transformation
indicated in the exception.

It is not sufficient to grant EXECUTE to MGW_AGENT_ROLE and then grant MGW_
AGENT_ROLE to the agent user. You must grant EXECUTE privilege on the object
type directly to the agent user or to PUBLIC.

Example 21–3 shows such a case for the from_type. It also shows the use of
linked exceptions for determining the precise cause of the error.

Example 21–3 No EXECUTE Privilege on Object Type

Errors occurred during processing of job JOB_AQ2MQ_2
oracle.mgw.common.GatewayException: [703] Failed to retrieve information for
transformation mgwuser.SAMPLEADT_TO_MGW_BASIC_MSG
[…Java stack trace here…]
[Linked-exception]
java.sql.SQLException: "from_type" is null
[…Java stack trace here…]

[720] AQ payload type <type> not supported; queue: <queue>
The payload type of the Oracle Streams AQ queue used by a Messaging Gateway
propagation job is not directly supported by Messaging Gateway. For non-JMS
propagation, Messaging Gateway directly supports the payload types RAW, SYS.MGW_
BASIC_MSG_T and SYS.MGW_TIBRV_MSG_T.

Possible actions include:

■ Configure the Messaging Gateway propagation job to use a transformation that
converts the queue payload type to a supported type.

■ Remove the Messaging Gateway propagation job and create a new job that uses an
Oracle Streams AQ queue with a supported payload type.

For Java Message Service (JMS) propagation, the Messaging Gateway
propagation job must be removed and a new job created whose Oracle Streams
AQ payload type is supported by Oracle Java Message Service (OJMS).
Transformations are not supported for JMS propagation.

[721] Transformation type <type> not supported; queue: <queue_name>,
transform: <transformation>
A Messaging Gateway propagation job was configured with a transformation that
uses an object type that is not one of the Messaging Gateway canonical types.

Oracle Messaging Gateway Agent Error Messages

Monitoring Oracle Messaging Gateway 21-13

For an outbound job, the transformation from_type must be the Oracle Streams
AQ payload type, and the to_type must be a Messaging Gateway canonical type.
For an inbound job, the transformation from_type must be a Messaging Gateway
canonical type and the to_type must be the Oracle Streams AQ payload type.

[722] Message transformation failed; queue: <queue_name>, transform:
<transformation>
An error occurred while attempting execution of the transformation. ORA-25229 is
typically thrown by Oracle Streams AQ when the transformation function raises a
PL/SQL exception or some other Oracle error occurs when attempting to use the
transformation.

Possible causes include:

■ The Messaging Gateway agent user does not have EXECUTE privilege on the
transformation function. This is illustrated in Example 21–4.

It is not sufficient to grant EXECUTE to MGW_AGENT_ROLE and then grant MGW_
AGENT_ROLE to the Messaging Gateway agent user. You must grant EXECUTE
privilege on the transformation function directly to the Messaging Gateway agent
user or to PUBLIC.

Example 21–4 No EXECUTE Privilege on Transformation Function

Errors occurred during processing of job JOB_MQ2AQ_2
oracle.mgw.common.GatewayException: [722] Message transformation failed queue:
MGWUSER.DESTQ_SIMPLEADT, transform: MGWUSER.MGW_BASIC_MSG_TO_SIMPLEADT
[…Java stack trace here…]
[Linked-exception]
oracle.mgw.common.MessageException: [722] Message transformation failed;
queue: MGWUSER.DESTQ_SIMPLEADT, transform:
MGWUSER.MGW_BASIC_MSG_TO_SIMPLEADT
[…Java stack trace here…]
[Linked-exception]
java.sql.SQLException: ORA-25229: error on transformation of message msgid:
9749DB80C85B0BD4E03408002086745E
ORA-00604: error occurred at recursive SQL level 1
ORA-00904: invalid column name
[…Java stack trace here…]

■ The transformation function does not exist, even though the registered
transformation does. If the transformation function does not exist, it must be
re-created.

■ The Messaging Gateway agent user does not have EXECUTE privilege on the
payload object type for the queue indicated in the exception.

It is not sufficient to grant EXECUTE to MGW_AGENT_ROLE and then grant MGW_
AGENT_ROLE to the Messaging Gateway agent user. You must grant EXECUTE
privilege on the object type directly to the Messaging Gateway agent user or to
PUBLIC.

■ The transformation function raised the error. Verify that the transformation
function can handle all messages it receives.

 [724] Message conversion not supported; to AQ payload type: <type>,
from type: <type>
A Messaging Gateway propagation job is configured for inbound propagation where
the canonical message type generated by the non-Oracle messaging system link is not

Oracle Messaging Gateway Agent Error Messages

21-14 Oracle Streams Advanced Queuing User’s Guide

compatible with the Oracle Streams AQ queue payload type. For example,
propagation from a TIB/Rendezvous messaging system to an Oracle Streams AQ
queue with a SYS.MGW_BASIC_MSG_T payload type, or propagation from WebSphere
MQ to an Oracle Streams AQ queue with a SYS.MGW_TIBRV_MSG_T payload type.

Possible actions include:

■ Configure the Messaging Gateway propagation job with a transformation that
maps the canonical message type generated by the non-Oracle messaging link to
the Oracle Streams AQ payload type.

■ Remove the Messaging Gateway propagation job and create a new job whose
Oracle Streams AQ queue payload type matches the canonical message type
generated by the non-Oracle link.

[725] Text message not supported for RAW payload
A Messaging Gateway propagation job is configured for inbound propagation to an
Oracle Streams AQ destination having a RAW payload type. A text message was
received from the source (non-Oracle) queue resulting in a message conversion failure.

If support for text data is required, remove the Messaging Gateway propagation job
and create a new job to an Oracle Streams AQ destination whose payload type
supports text data.

[726] Message size <size> too large for RAW payload; maximum size is
<size>
A Messaging Gateway propagation job is configured for inbound propagation to an
Oracle Streams AQ destination having a RAW payload type. A message conversion
failure occurred when a message containing a large RAW value was received from the
source (non-Oracle) queue.

If large data support is required, remove the Messaging Gateway propagation job and
create a new job to an Oracle Streams AQ destination whose payload type supports
large data, usually in the form of an object type with a BLOB attribute.

[728] Message contains too many large (BLOB) fields
The source message contains too many fields that must be stored in BLOB types.
SYS.MGW_TIBRV_MSG_T is limited to three BLOB fields. Reduce the number of large
fields in the message, perhaps by breaking them into smaller fields or combining them
into fewer large fields.

[729] Message contains too many large (CLOB) fields
The source message contains too many fields that contain a large text value that must
be stored in a CLOB. SYS.MGW_TIBRV_MSG_T is limited to three CLOB fields. Reduce
the number of large fields in the message, perhaps by breaking them into smaller
fields or combining them into fewer large fields.

[805] MQSeries Message error while enqueuing to queue: <queue>
WebSphere MQ returned an error when an attempt was made to put a message in a
WebSphere MQ queue. Check the linked exception error code and message in the log
file. Consult WebSphere MQ documentation.

Part VI
Using Oracle Streams with Oracle Streams

AQ

Part VIII describes how to use Oracle Streams with Oracle Streams Advanced
Queuing.

This part contains the following chapters:

■ Chapter 22, "Using ANYDATA Queues for User Messages"

■ Chapter 23, "Oracle Streams Messaging Example"

Using ANYDATA Queues for User Messages 22-1

22
Using ANYDATA Queues for User Messages

This chapter describes how to use and manage Oracle Streams AQ when enqueuing
and propagating. It describes ANYDATA queues and user messages.

Oracle Streams uses queues of type ANYDATA to store three types of messages:

■ Captured logical change record (LCR)

This message type, produced by an Oracle Streams capture process, is not
discussed in this guide.

■ User-enqueued LCR

This is a message containing an LCR that was enqueued by a user or application.

■ User message

This is a non-LCR message created and enqueued by a user or application.

All three types of messages can be used for information sharing within a single
database or between databases.

This chapter contains these topics:

■ ANYDATA Queues and User Messages

■ Message Propagation and ANYDATA Queues

■ Enqueuing User Messages in ANYDATA Queues

■ Dequeuing User Messages from ANYDATA Queues

■ Propagating User Messages from ANYDATA Queues to Typed Queues

■ Propagating User-Enqueued LCRs from ANYDATA Queues to Typed Queues

ANYDATA Queues and User Messages
This section contains these topics:

■ ANYDATA Wrapper for User Messages Payloads

■ Programmatic Interfaces for Enqueue and Dequeue of User Messages

See Also: "Streams Capture Process" in Oracle Streams Concepts and
Administration

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about the ANYDATA type

See Also: Oracle Streams Concepts and Administration

ANYDATA Queues and User Messages

22-2 Oracle Streams Advanced Queuing User’s Guide

ANYDATA Wrapper for User Messages Payloads
You can wrap almost any type of payload in an ANYDATA payload with the
Convertdata_type static functions of the ANYDATA type, where data_type is the
type of object to wrap. These functions take the object as input and return an ANYDATA
object.

The following datatypes cannot be wrapped in an ANYDATA wrapper:

■ Nested table

■ NCLOB

■ ROWID and UROWID

The following datatypes can be directly wrapped in an ANYDATA wrapper, but they
cannot be present in a user-defined type payload wrapped in an ANYDATA wrapper:

■ CLOB

■ BLOB

■ BFILE

■ VARRAY

Programmatic Interfaces for Enqueue and Dequeue of User Messages
Your applications can use the following programmatic interfaces to enqueue user
messages into an ANYDATA queue and dequeue user messages from an ANYDATA
queue:

■ PL/SQL (DBMS_AQ package)

■ Java Message Service (JMS)

■ OCI

The following sections provide information about using these interfaces to enqueue
user messages into and dequeue user messages from an ANYDATA queue.

Enqueuing User Messages Using PL/SQL
To enqueue a user message containing an LCR into an ANYDATA queue using PL/SQL,
first create the LCR to be enqueued. You use the constructor for the SYS.LCR$_ROW_
RECORD type to create a row LCR, and you use the constructor for the SYS.LCR$_
DDL_RECORD type to create a DDL LCR. Then you use the
ANYDATA.ConvertObject function to convert the LCR into an ANYDATA payload
and enqueue it using the DBMS_AQ.ENQUEUE procedure.

To enqueue a user message containing a non-LCR object into an ANYDATA queue using
PL/SQL, you use one of the ANYDATA.Convert* functions to convert the object into
an ANYDATA payload and enqueue it using the DBMS_AQ.ENQUEUE procedure.

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about the ANYDATA type

See Also: Chapter 3, "Oracle Streams AQ: Programmatic Interfaces"
for more information about these programmatic interfaces

ANYDATA Queues and User Messages

Using ANYDATA Queues for User Messages 22-3

Enqueuing User Messages Using OCI or JMS
To enqueue a user message containing an LCR into an ANYDATA queue using JMS or
OCI, you must represent the LCR in XML format. To construct an LCR, use the
oracle.xdb.XMLType class. LCRs are defined in the SYS schema. The LCR schema
must be loaded into the SYS schema using the catxlcr.sql script in ORACLE_
HOME/rdbms/admin.

To enqueue a message using OCI, perform the same actions that you would to
enqueue a message into a typed queue. To enqueue a message using JMS, a user must
have EXECUTE privilege on the DBMS_AQ, DBMS_AQIN and DBMS_AQJMS packages.

A non-LCR user message can be a message of any user-defined type or a JMS type.
The JMS types include the following:

■ javax.jms.TextMessage

■ javax.jms.MapMessage

■ javax.jms.StreamMessage

■ javax.jms.ObjectMessage

■ javax.jms.BytesMessage

When using user-defined types, you must generate the Java class for the message
using Jpublisher, which implements the ORAData interface. To enqueue a message into
an ANYDATA queue, you can use methods QueueSender.send or
TopicPublisher.publish.

See Also:

■ "Enqueuing Messages" on page 10-2

■ Chapter 23, "Oracle Streams Messaging Example"

■ Oracle Streams Concepts and Administration, "Managing a Streams
Messaging Environment"

Note: Enqueue of JMS types and XML types does not work with
ANYDATA queues unless you call DBMS_AQADM.ENABLE_JMS_
TYPES(queue_table_name) after DBMS_STREAMS_ADM.SET_UP_
QUEUE(queue_name). Enabling a queue for these types may affect
import/export of the queue table.

See Also:

■ "Enqueuing and Dequeuing Messages Using JMS" on page 23-16

■ Oracle XML DB Developer's Guide for more information about
representing messages in XML format

■ Oracle Streams Advanced Queuing Java API Reference for more
information about the oracle.jms Java package

■ The OCIAQenq function in the Oracle Call Interface Programmer's
Guide for more information about enqueuing messages using OCI

ANYDATA Queues and User Messages

22-4 Oracle Streams Advanced Queuing User’s Guide

Dequeuing User Messages Using PL/SQL
To dequeue a user message from an ANYDATA queue using PL/SQL, you use the
DBMS_AQ.DEQUEUE procedure and specify ANYDATA as the payload. The user
message can contain an LCR or another type of object.

Dequeuing User Messages Using OCI or JMS
In an ANYDATA queue, user messages containing LCRs in XML format are represented
as oracle.xdb.XMLType. Non-LCR messages can be any user-defined type or a JMS
type.

To dequeue a message from an ANYDATA queue using JMS, you can use methods
QueueReceiver, TopicSubscriber, or TopicReceiver. Because the queue can
contain different types of objects wrapped in ANYDATA wrappers, you must register a
list of SQL types and their corresponding Java classes in the type map of the JMS
session. JMS types are already preregistered in the type map.

For example, suppose a queue contains user-enqueued LCR messages represented as
oracle.xdb.XMLType and non-LCR messages of type person and address. The
classes JPerson.java and JAddress.java are the ORAData mappings for person
and address, respectively. Before dequeuing the message, the type map must be
populated as follows:

java.util.Map map = ((AQjmsSession)q_sess).getTypeMap();

map.put("SCOTT.PERSON", Class.forName("JPerson"));
map.put("SCOTT.ADDRESS", Class.forName("JAddress"));
map.put("SYS.XMLTYPE", Class.forName("oracle.xdb.XMLType")); // For LCRs

When using a messageSelector with a QueueReceiver or TopicPublisher, the
selector can contain any SQL92 expression that has a combination of one or more of
the following:

■ JMS message header fields or properties

These include JMSPriority, JMSCorrelationID, JMSType, JMSXUserI,
JMSXAppID, JMSXGroupID, and JMSXGroupSeq. An example of a JMS message
field messageSelector is:

JMSPriority < 3 AND JMSCorrelationID = 'Fiction'

■ User-defined message properties

An example of a user-defined message properties messageSelector is:

color IN ('RED', 'BLUE', 'GREEN') AND price < 30000

■ PL/SQL functions

An example of a PL/SQL function messageSelector is:

hr.GET_TYPE(tab.user_data) = 'HR.EMPLOYEES'

To dequeue a message from an ANYDATA queue using OCI, perform the same actions
that you would to dequeue a message from a typed queue.

See Also: "Dequeuing Messages" on page 10-13

Message Propagation and ANYDATA Queues

Using ANYDATA Queues for User Messages 22-5

Message Propagation and ANYDATA Queues
ANYDATA queues can interoperate with typed queues. Table 22–1 shows the types of
propagation possible between queues.

Although you cannot use Simple Object Access Protocol (SOAP) to interact directly
with an ANYDATA queue, you can use SOAP by propagating messages between an
ANYDATA queue and a typed queue. If you want to enqueue a message into an
ANYDATA queue using SOAP, you must first configure propagation from a typed
queue to the ANYDATA queue. Then you can use SOAP to enqueue a message into the
typed queue. The message is propagated automatically from the typed queue to the
ANYDATA queue.

If you want to use SOAP to dequeue a message that is in an ANYDATA queue, then you
can configure propagation from the ANYDATA queue to a typed queue. The message is
propagated automatically from the ANYDATA queue to the typed queue, where it is
available for access using SOAP.

See Also:

■ "Enqueuing and Dequeuing Messages Using JMS" on page 23-16

■ Oracle XML DB Developer's Guide for more information about
representing messages in XML format

■ Oracle Streams Advanced Queuing Java API Reference for more
information about the oracle.jms Java package

■ The OCIAQdeq function in the Oracle Call Interface Programmer's
Guide for more information about dequeuing messages using OCI

Table 22–1 Propagation Between Different Types of Queues

Source Queue Destination Queue Transformation

ANYDATA ANYDATA None

Typed ANYDATA Implicit

Note: Propagation is possible only if the messages
in the typed queue meet the restrictions outlined in
"Object Type Support" on page 1-3.

ANYDATA Typed Requires a rule to filter messages and a user-defined
transformation. Only messages containing a
payload of the same type as the typed queue can be
propagated to the typed queue.

Typed Typed Follows Oracle Streams AQ rules

Note: Propagations cannot propagate user-enqueued ANYDATA
messages that encapsulate payloads of object types, varrays, or nested
tables between databases with different character sets. Propagations
can propagate such messages between databases with the same
character set.

See Also: "Propagating Messages Between an ANYDATA Queue
and a Typed Queue" in Oracle Streams Concepts and Administration

Enqueuing User Messages in ANYDATA Queues

22-6 Oracle Streams Advanced Queuing User’s Guide

Enqueuing User Messages in ANYDATA Queues
This section provides examples of enqueuing messages into an ANYDATA queue. The
examples assume you are in a SQL*Plus testing environment with access to two
databases named db01 and db02. The first few examples prepare the testing
environment for the other examples in this chapter.

In Example 22–1, you connect as a user with administrative privileges at databases
db01 and db02 to create administrator user strmadmin and to grant EXECUTE
privilege on the DBMS_AQ package to sample schema user oe.

Example 22–1 Creating ANYDATA Users

GRANT EXECUTE ON DBMS_AQ TO oe;
CREATE USER strmadmin IDENTIFIED BY strmadmin DEFAULT TABLESPACE example;
GRANT DBA TO strmadmin;
GRANT EXECUTE ON DBMS_STREAMS_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_TRANSFORM TO strmadmin;

In Example 22–2, you connect to db01 as strmadmin to create ANYDATA queue oe_
queue_any. The oe user is configured automatically as a secure user of the oe_
queue_any queue and is given ENQUEUE and DEQUEUE privileges on the queue.

Example 22–2 Creating an ANYDATA Queue

CONNECT strmadmin;
Enter password: password
BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'oe_qtab_any',
 queue_name => 'oe_queue_any',
 queue_user => 'oe');
END;
/

In Example 22–3, you add a subscriber to the oe_queue_any queue. This subscriber
performs explicit dequeues of messages. The ADD_SUBSCRIBER procedure will
automatically create an AQ_AGENT.

Example 22–3 Adding a Subscriber to the ANYDATA Queue

DECLARE
 subscriber SYS.AQ$_AGENT;
BEGIN
 subscriber := SYS.AQ$_AGENT('LOCAL_AGENT', NULL, NULL);
 SYS.DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'strmadmin.oe_queue_any',
 subscriber => subscriber);
END;
/

In Example 22–4, you associate the oe user with the local_agent agent.

Example 22–4 Associating a User with an AQ_AGENT

BEGIN
 DBMS_AQADM.ENABLE_DB_ACCESS(
 agent_name => 'local_agent',
 db_username => 'oe');
END;

Enqueuing User Messages in ANYDATA Queues

Using ANYDATA Queues for User Messages 22-7

/

In Example 22–5, you connect to database db01 as user oe to create an enqueue
procedure. It takes an object of ANYDATA type as an input parameter and enqueues a
message containing the payload into an existing ANYDATA queue.

Example 22–5 Creating an Enqueue Procedure

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for OE: ' HIDE
CONNECT oe/&password@db01;

set echo on
CREATE PROCEDURE oe.enq_proc (payload ANYDATA) IS
 enqopt DBMS_AQ.ENQUEUE_OPTIONS_T;
 mprop DBMS_AQ.MESSAGE_PROPERTIES_T;
 enq_msgid RAW(16);
BEGIN
 mprop.SENDER_ID := SYS.AQ$_AGENT('LOCAL_AGENT', NULL, NULL);
 DBMS_AQ.ENQUEUE(
 queue_name => 'strmadmin.oe_queue_any',
 enqueue_options => enqopt,
 message_properties => mprop,
 payload => payload,
 msgid => enq_msgid);
END;
/

In Example 22–6, you use procedure oe.enq_proc to enqueue a message of type
VARCHAR2 into an ANYDATA queue.

Example 22–6 Enqueuing a VARCHAR2 Message into an ANYDATA Queue

EXEC oe.enq_proc(ANYDATA.ConvertVarchar2('Chemicals - SW'));
COMMIT;

In Example 22–7, you use procedure oe.enq_proc to enqueue a message of type
NUMBER into an ANYDATA queue.

Example 22–7 Enqueuing a NUMBER Message into an ANYDATA Queue

EXEC oe.enq_proc(ANYDATA.ConvertNumber('16'));
COMMIT;

In Example 22–8, you use procedure oe.enq_proc to enqueue a user-defined type
message into an ANYDATA queue.

Example 22–8 Enqueuing a User-Defined Type Message into an ANYDATA Queue

BEGIN
 oe.enq_proc(ANYDATA.ConvertObject(oe.cust_address_typ(
 '1646 Brazil Blvd','361168','Chennai','Tam', 'IN')));
END;
/
COMMIT;

See Also: "Viewing the Contents of User-Enqueued Events in a
Queue" in Oracle Streams Concepts and Administration

Dequeuing User Messages from ANYDATA Queues

22-8 Oracle Streams Advanced Queuing User’s Guide

Dequeuing User Messages from ANYDATA Queues
This section provides examples of dequeuing messages from an ANYDATA queue. The
examples assume that you have completed the examples in "Enqueuing User
Messages in ANYDATA Queues" on page 22-6.

To dequeue messages, you must know the consumer of the messages. To find the
consumer for the messages in a queue, connect as the owner of the queue and query
the AQ$queue_table_name view, where queue_table_name is the name of the
queue table containing the queue.

In Example 22–9, you connect to database db01 as strmadmin, the owner of queue
oe_queue_any, and perform a query on the AQ$OE_QTAB_ANY view. The query
returns three rows, with LOCAL_AGENT as the CONSUMER_NAME in each row.

Example 22–9 Determining the Consumer of Messages in a Queue

CONNECT strmadmin;
Enter password: password
SELECT MSG_ID, MSG_STATE, CONSUMER_NAME FROM AQ$OE_QTAB_ANY;

In Example 22–10, you connect to database db01 as user oe to create a dequeue
procedure that takes as an input the consumer of the messages you want to dequeue,
dequeues messages of oe.cust_address_typ, and prints the contents of the
messages.

Example 22–10 Creating a Dequeue Procedure for an ANYDATA Queue

CONNECT oe; -- @db01
Enter password: password

CREATE PROCEDURE oe.get_cust_address (
consumer IN VARCHAR2) AS
 address OE.CUST_ADDRESS_TYP;
 deq_address ANYDATA;
 msgid RAW(16);
 deqopt DBMS_AQ.DEQUEUE_OPTIONS_T;
 mprop DBMS_AQ.MESSAGE_PROPERTIES_T;
 new_addresses BOOLEAN := TRUE;
 next_trans EXCEPTION;
 no_messages EXCEPTION;
 pragma exception_init (next_trans, -25235);
 pragma exception_init (no_messages, -25228);
 num_var pls_integer;
BEGIN
 deqopt.consumer_name := consumer;
 deqopt.wait := 1;
 WHILE (new_addresses) LOOP
 BEGIN
 DBMS_AQ.DEQUEUE(
 queue_name => 'strmadmin.oe_queue_any',
 dequeue_options => deqopt,
 message_properties => mprop,
 payload => deq_address,
 msgid => msgid);
 deqopt.navigation := DBMS_AQ.NEXT;
 DBMS_OUTPUT.PUT_LINE('****');
 IF (deq_address.GetTypeName() = 'OE.CUST_ADDRESS_TYP') THEN
 DBMS_OUTPUT.PUT_LINE('Message TYPE is: ' || deq_address.GetTypeName());
 num_var := deq_address.GetObject(address);

Propagating User Messages from ANYDATA Queues to Typed Queues

Using ANYDATA Queues for User Messages 22-9

 DBMS_OUTPUT.PUT_LINE(' **** CUSTOMER ADDRESS **** ');
 DBMS_OUTPUT.PUT_LINE(address.street_address);
 DBMS_OUTPUT.PUT_LINE(address.postal_code);
 DBMS_OUTPUT.PUT_LINE(address.city);
 DBMS_OUTPUT.PUT_LINE(address.state_province);
 DBMS_OUTPUT.PUT_LINE(address.country_id);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Message TYPE is: ' || deq_address.GetTypeName());
 END IF;
 COMMIT;
 EXCEPTION
 WHEN next_trans THEN
 deqopt.navigation := DBMS_AQ.NEXT_TRANSACTION;
 WHEN no_messages THEN
 new_addresses := FALSE;
 DBMS_OUTPUT.PUT_LINE('No more messages');
 END;
 END LOOP;
END;
/

In Example 22–11, you use procedure oe.get_cust_address, created in
Example 22–10, specifying LOCAL_AGENT as the consumer.

Example 22–11 Dequeuing Messages from an ANYDATA Queue

SET SERVEROUTPUT ON SIZE 100000
EXEC oe.get_cust_address('LOCAL_AGENT');

The example returns:

Message TYPE is: SYS.VARCHAR2

Message TYPE is: SYS.NUMBER

Message TYPE is: OE.CUST_ADDRESS_TYP
**** CUSTOMER ADDRESS ****
1646 Brazil Blvd
361168
Chennai
Tam
IN
No more messages

Propagating User Messages from ANYDATA Queues to Typed Queues
This section provides examples showing how to propagate non-LCR user messages
between an ANYDATA queue and a typed queue.

Note: The examples in this section assume that you have completed
the examples in "Enqueuing User Messages in ANYDATA Queues" on
page 22-6.

See Also: "Message Propagation and ANYDATA Queues" on
page 22-5 for more information about propagation between ANYDATA
and typed queues

Propagating User Messages from ANYDATA Queues to Typed Queues

22-10 Oracle Streams Advanced Queuing User’s Guide

The first few examples set up propagation from the ANYDATA queue oe_queue_any,
created in Example 22–2 on page 22-6, to a typed queue in database db02. In
Example 22–12, you connect as sample schema user oe to grant EXECUTE privilege on
oe.cust_address_typ at databases db01 and db02 to administrator user
strmadmin.

Example 22–12 Granting EXECUTE Privilege on a Type

CONNECT oe; -- @db01
Enter password: password

GRANT EXECUTE ON oe.cust_address_typ TO strmadmin;
CONNECT oe; -- @db02
Enter password: password

GRANT EXECUTE ON oe.cust_address_typ TO strmadmin;

In Example 22–13, you connect to database db02 as administrator user strmadmin
and create a destination queue of type oe.cust_address_typ.

Example 22–13 Creating a Typed Destination Queue

CONNECT strmadmin;
Enter password: password

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'strmadmin.oe_qtab_address',
 queue_payload_type => 'oe.cust_address_typ',
 multiple_consumers => true);
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'strmadmin.oe_queue_address',
 queue_table => 'strmadmin.oe_qtab_address');
 DBMS_AQADM.START_QUEUE(
 queue_name => 'strmadmin.oe_queue_address');
END;
/

In Example 22–14, you connect to database db01 as administrator user strmadmin to
create a database link from db01 to db02.

Example 22–14 Creating a Database Link

CONNECT strmadmin;
Enter password: password

CREATE DATABASE LINK db02 CONNECT TO strmadmin IDENTIFIED BY password
 USING 'db02';

In Example 22–15, you create function any_to_cust_address_typ in the
strmadmin schema at db01 that takes an ANYDATA payload containing an oe.cust_
address_typ object and returns an oe.cust_address_typ object.

Example 22–15 Creating a Function to Extract a Typed Object from an ANYDATA Object

CONNECT strmadmin;
Enter password: password

CREATE FUNCTION strmadmin.any_to_cust_address_typ(in_any IN ANYDATA)
RETURN OE.CUST_ADDRESS_TYP

Propagating User Messages from ANYDATA Queues to Typed Queues

Using ANYDATA Queues for User Messages 22-11

AS
 address OE.CUST_ADDRESS_TYP;
 num_var NUMBER;
 type_name VARCHAR2(100);
BEGIN
 type_name := in_any.GetTypeName();
 IF (type_name = 'OE.CUST_ADDRESS_TYP') THEN
 num_var := in_any.GetObject(address);
 RETURN address;
 ELSE
 raise_application_error(-20101, 'Conversion failed - ' || type_name);
 END IF;
END;
/

In Example 22–16, you create a transformation at db01 using the DBMS_TRANSFORM
package.

Example 22–16 Creating an ANYDATA to Typed Object Transformation

BEGIN
 DBMS_TRANSFORM.CREATE_TRANSFORMATION(
 schema => 'strmadmin',
 name => 'anytoaddress',
 from_schema => 'SYS',
 from_type => 'ANYDATA',
 to_schema => 'oe',
 to_type => 'cust_address_typ',
 transformation => 'strmadmin.any_to_cust_address_typ(source.user_data)');
END;
/

In Example 22–17, you create a subscriber for the typed queue. The subscriber must
contain a rule that ensures that only messages of the appropriate type are propagated
to the destination queue.

Example 22–17 Creating Subscriber ADDRESS_AGENT_REMOTE

DECLARE
 subscriber SYS.AQ$_AGENT;
BEGIN
 subscriber := SYS.AQ$_AGENT ('ADDRESS_AGENT_REMOTE',
 'STRMADMIN.OE_QUEUE_ADDRESS@DB02',
 0);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'strmadmin.oe_queue_any',
 subscriber => subscriber,
 rule => 'TAB.USER_DATA.GetTypeName()=''OE.CUST_ADDRESS_TYP''',
 transformation => 'strmadmin.anytoaddress');
END;
/

In Example 22–18, you schedule propagation between the ANYDATA queue at db01
and the typed queue at db02.

Example 22–18 Scheduling Propagation from an ANYDATA Queue to a Typed Queue

BEGIN
 DBMS_AQADM.SCHEDULE_PROPAGATION(
 queue_name => 'strmadmin.oe_queue_any',

Propagating User-Enqueued LCRs from ANYDATA Queues to Typed Queues

22-12 Oracle Streams Advanced Queuing User’s Guide

 destination => 'db02');
END;
/

In Example 22–19, you connect to database db01 as sample schema user oe to
enqueue a message of oe.cust_address_typ type wrapped in an ANYDATA
wrapper. This example uses the enqueue procedure oe.enq_proc created in
Example 22–5 on page 22-7.

Example 22–19 Enqueuing a Typed Message in an ANYDATA Wrapper

CONNECT oe;
Enter password: password

BEGIN
 oe.enq_proc(ANYDATA.ConvertObject(oe.cust_address_typ(
 '1668 Chong Tao','111181','Beijing',NULL,'CN')));
END;
/
COMMIT;

After allowing some time for propagation, in Example 22–20 you query queue table
AQ$OE_QTAB_ADDRESS at db02 to view the propagated message.

Example 22–20 Viewing the Propagated Message

CONNECT strmadmin;
Enter password: password

SELECT MSG_ID, MSG_STATE, CONSUMER_NAME FROM AQ$OE_QTAB_ADDRESS;

The example returns one message for ADDRESS_AGENT_REMOTE:

MSG_ID MSG_STATE CONSUMER_NAME
-------------------------------- ---------------- ------------------------------
EBEF5CACC4665A6FE030578CE70A370D READY ADDRESS_AGENT_REMOTE

1 row selected.

Propagating User-Enqueued LCRs from ANYDATA Queues to Typed
Queues

You can propagate user-enqueued LCRs to an appropriate typed queue, but
propagation of captured LCRs to a typed queue is not supported.

To propagate user-enqueued LCRs from an ANYDATA queue to a typed queue, you
complete the same steps as you do for non-LCR messages, but Oracle supplies the
transformation functions. You can use the following functions in the DBMS_STREAMS
package to transform LCRs in ANYDATA queues to messages in typed queues:

■ CONVERT_ANYDATA_TO_LCR_ROW transforms an ANYDATA payload containing a
row LCR into a SYS.LCR$_ROW_RECORD payload.

See Also: Chapter 20, "Oracle Messaging Gateway Message
Conversion" for more information about transformations during
propagation

See Also: "Streams Capture Process" in Oracle Streams Concepts and
Administration for more information on capture processes

Propagating User-Enqueued LCRs from ANYDATA Queues to Typed Queues

Using ANYDATA Queues for User Messages 22-13

■ CONVERT_ANYDATA_TO_LCR_DDL transforms an ANYDATA payload containing a
DDL LCR into a SYS.LCR$_DDL_RECORD payload.

The examples in this section set up propagation of row LCRs from an ANYDATA queue
named oe_queue_any to a typed queue of type SYS.LCR$_ROW_RECORD named
oe_queue_lcr. The source queue oe_queue_any is at database db01, and the
destination queue oe_queue_lcr is created at database db02 in Example 22–21.

Example 22–21 Creating a Queue of Type LCR$_ROW_RECORD

CONNECT strmadmin;
Enter password: password

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'strmadmin.oe_qtab_lcr',
 queue_payload_type => 'SYS.LCR$_ROW_RECORD',
 multiple_consumers => true);
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'strmadmin.oe_queue_lcr',
 queue_table => 'strmadmin.oe_qtab_lcr');
 DBMS_AQADM.START_QUEUE(
 queue_name => 'strmadmin.oe_queue_lcr');
END;
/

In Example 22–22, you connect to db01 as administrator user strmadmin to create an
ANYDATA to LCR$_ROW_RECORD transformation at db01 using the DBMS_TRANSFORM
package.

Example 22–22 Creating an ANYDATA to LCR$_ROW_RECORD Transformation

CONNECT strmadmin;
Enter password: password

BEGIN
 DBMS_TRANSFORM.CREATE_TRANSFORMATION(
 schema => 'strmadmin',
 name => 'anytolcr',
 from_schema => 'SYS',
 from_type => 'ANYDATA',
 to_schema => 'SYS',
 to_type => 'LCR$_ROW_RECORD',
 transformation =>
 'SYS.DBMS_STREAMS.CONVERT_ANYDATA_TO_LCR_ROW(source.user_data)');
END;
/

In Example 22–23, you create a subscriber at the typed queue. The subscriber specifies
the anytolcr transformation created in Example 22–22 for the transformation
parameter.

Example 22–23 Creating Subscriber ROW_LCR_AGENT_REMOTE

DECLARE
 subscriber SYS.AQ$_AGENT;

Note: The examples in this section assume you have already run the
examples in the preceding sections of this chapter.

Propagating User-Enqueued LCRs from ANYDATA Queues to Typed Queues

22-14 Oracle Streams Advanced Queuing User’s Guide

BEGIN
 subscriber := SYS.AQ$_AGENT(
 'ROW_LCR_AGENT_REMOTE',
 'STRMADMIN.OE_QUEUE_LCR@DB02',
 0);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'strmadmin.oe_queue_any',
 subscriber => subscriber,
 rule => 'TAB.USER_DATA.GetTypeName()=''SYS.LCR$_ROW_RECORD''',
 transformation => 'strmadmin.anytolcr');
END;
/

In Example 22–24, you connect to database db01 as sample schema user oe to create a
procedure to construct and enqueue a row LCR into the strmadmin.oe_queue_any
queue.

Example 22–24 Creating a Procedure to Construct and Enqueue a Row LCR

CONNECT oe;
Enter password: password

CREATE PROCEDURE oe.enq_row_lcr_proc(
 source_dbname VARCHAR2,
 cmd_type VARCHAR2,
 obj_owner VARCHAR2,
 obj_name VARCHAR2,
 old_vals SYS.LCR$_ROW_LIST,
 new_vals SYS.LCR$_ROW_LIST)
AS
 eopt DBMS_AQ.ENQUEUE_OPTIONS_T;
 mprop DBMS_AQ.MESSAGE_PROPERTIES_T;
 enq_msgid RAW(16);
 row_lcr SYS.LCR$_ROW_RECORD;
BEGIN
 mprop.SENDER_ID := SYS.AQ$_AGENT('LOCAL_AGENT', NULL, NULL);
 row_lcr := SYS.LCR$_ROW_RECORD.CONSTRUCT(
 source_database_name => source_dbname,
 command_type => cmd_type,
 object_owner => obj_owner,
 object_name => obj_name,
 old_values => old_vals,
 new_values => new_vals);
 DBMS_AQ.ENQUEUE(
 queue_name => 'strmadmin.oe_queue_any',
 enqueue_options => eopt,
 message_properties => mprop,
 payload => ANYDATA.ConvertObject(row_lcr),
 msgid => enq_msgid);
END enq_row_lcr_proc;
/

In Example 22–25, you use the oe.enq_row_lcr_proc procedure first to create a
row LCR that inserts a row into the oe.inventories table, and then to enqueue the
row LCR into the strmadmin.oe_queue_any queue.

Propagating User-Enqueued LCRs from ANYDATA Queues to Typed Queues

Using ANYDATA Queues for User Messages 22-15

Example 22–25 Creating and Enqueuing a Row LCR

DECLARE
 newunit1 SYS.LCR$_ROW_UNIT;
 newunit2 SYS.LCR$_ROW_UNIT;
 newunit3 SYS.LCR$_ROW_UNIT;
 newvals SYS.LCR$_ROW_LIST;
BEGIN
 newunit1 := SYS.LCR$_ROW_UNIT(
 'PRODUCT_ID',
 ANYDATA.ConvertNumber(3503),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newunit2 := SYS.LCR$_ROW_UNIT(
 'WAREHOUSE_ID',
 ANYDATA.ConvertNumber(1),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newunit3 := SYS.LCR$_ROW_UNIT(
 'QUANTITY_ON_HAND',
 ANYDATA.ConvertNumber(157),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newvals := SYS.LCR$_ROW_LIST(newunit1,newunit2,newunit3);
oe.enq_row_lcr_proc(
 source_dbname => 'DB01',
 cmd_type => 'INSERT',
 obj_owner => 'OE',
 obj_name => 'INVENTORIES',
 old_vals => NULL,
 new_vals => newvals);
END;
/
COMMIT;

The LCR is propagated to database db02 by the schedule created in Example 22–18 on
page 22-11. After allowing some time for propagation, in Example 22–26 you query
queue table AQ$OE_QTAB_LCR at db02 to view the propagated message.

Example 22–26 Viewing the Propagated LCR

CONNECT strmadmin;
Enter password: password

SELECT MSG_ID, MSG_STATE, CONSUMER_NAME FROM AQ$OE_QTAB_LCR;

The example returns one message for ROW_LCR_AGENT_REMOTE:

MSG_ID MSG_STATE CONSUMER_NAME
-------------------------------- ---------------- ------------------------------
ECE2B0F912DDFF5EE030578CE70A04BB READY ROW_LCR_AGENT_REMOTE

Note: This example does not insert a new row in the
oe.inventories table. The new row is inserted when an Oracle
Streams apply process dequeues the row LCR and applies it.

Propagating User-Enqueued LCRs from ANYDATA Queues to Typed Queues

22-16 Oracle Streams Advanced Queuing User’s Guide

See Also: "DBMS_STREAMS" in Oracle Database PL/SQL Packages
and Types Reference for more information about the row LCR and DDL
LCR conversion functions

Oracle Streams Messaging Example 23-1

23
Oracle Streams Messaging Example

The examples in this chapter illustrate a messaging environment that can be
constructed using Oracle Streams. The examples assume you are in a SQL*Plus testing
environment with access to a database named db01.

 This chapter contains these topics:

■ Overview of Messaging Example

■ Setting Up Users and Creating an ANYDATA Queue

■ Creating Enqueue Procedures

■ Configuring an Apply Process

■ Configuring Explicit Dequeue

■ Enqueuing Messages

■ Dequeuing Messages Explicitly and Querying for Applied Messages

■ Enqueuing and Dequeuing Messages Using JMS

Overview of Messaging Example
This example illustrates using a single ANYDATA queue to create an Oracle Streams
messaging environment in which message payloads of different types are stored in the
same queue. Specifically, this example illustrates the following messaging features of
Oracle Streams:

■ Enqueuing messages containing order payload as ANYDATA payloads

■ Enqueuing messages containing customer payload as ANYDATA payloads

■ Enqueuing messages containing row LCRs as ANYDATA payloads

■ Creating a rule set for applying the events

■ Creating an evaluation context used by the rule set

■ Creating an Oracle Streams apply process to dequeue and process the events
based on rules

■ Creating a message handler and associating it with the apply process

■ Explicitly dequeuing and processing events based on rules without using the
apply process

Figure 23–1 provides an overview of this environment.

See Also: Oracle Streams Concepts and Administration for more
information about messaging and ANYDATA queues

Setting Up Users and Creating an ANYDATA Queue

23-2 Oracle Streams Advanced Queuing User’s Guide

Figure 23–1 Example Oracle Streams Messaging Environment

Setting Up Users and Creating an ANYDATA Queue
Because the examples in this chapter use the oe sample schema, the oe user must
have privileges to run the subprograms in the DBMS_AQ package. This is accomplished
in Example 23–1.

Most of the configuration and administration actions illustrated in these examples are
performed by the Oracle Streams administrator strmadmin. Example 23–1 also
creates this user and grants the necessary privileges. These privileges enable the user
to run subprograms in packages related to Oracle Streams, create rule sets, create rules,
and monitor the Oracle Streams environment by querying data dictionary views.

In Example 23–1, you connect to database db01 as a user with administrative
privileges.

Note: The oe user is specified as the queue user when the ANYDATA
queue is created in Example 23–2 on page 23-3. The SET_UP_QUEUE
procedure grants the oe user enqueue and dequeue privileges on the
queue, but the oe user also needs EXECUTE privilege on the DBMS_AQ
package to enqueue and dequeue messages.

oe.enq_row_lcr
PL/SQL Procedure

strmadmin.oe_queue

customer_event_typ payload event
LCR$_ROW_RECORD payload event
order_event_typ payload event
.
.
.
.
.
.
.
.

Oracle
Database
oedb.net

Enqueue
Events

oe.enq_proc
PL/SQL Procedure

Enqueue
Events

Apply Process

apply_oe

Tables

hr.customers
hr.orders

Apply Changes oe.mes_handler
PL/SQL Procedure

Explicit Dequeue
 by Application oe.explicit_dq

PL/SQL Procedure

Send Non-LCR Events to Message Handler

Apply
LCR Events
Directly

Setting Up Users and Creating an ANYDATA Queue

Oracle Streams Messaging Example 23-3

Example 23–1 Setting Up ANYDATA Users

GRANT EXECUTE ON DBMS_AQ TO oe;
CREATE USER strmadmin IDENTIFIED BY strmadmin DEFAULT TABLESPACE example;
GRANT DBA, SELECT_CATALOG_ROLE TO strmadmin;
GRANT EXECUTE ON DBMS_APPLY_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_AQ TO strmadmin;
GRANT EXECUTE ON DBMS_AQADM TO strmadmin;
GRANT EXECUTE ON DBMS_STREAMS_ADM TO strmadmin;
BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

In Example 23–2, you connect to database db01 as administrator user strmadmin to
create ANYDATA queue oe_queue. The SET_UP_QUEUE procedure creates a queue
table for the queue and then creates and starts the queue.

Example 23–2 Creating an ANYDATA Queue

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for STRMADMIN: ' HIDE
CONNECT strmadmin/&password@db01;
set echo on

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'oe_queue_table',
 queue_name => 'oe_queue');
END;
/

In Example 23–3, you connect to database db01 as administrator user strmadmin to
grant the oe user privileges on queue oe_queue, create agent explicit_enq that

Note:

■ The SELECT_CATALOG_ROLE is not required for the Oracle
Streams administrator. It is granted in this example so that the
Oracle Streams administrator can monitor the environment easily.

■ If you plan to use the Oracle Streams tool in Oracle Enterprise
Manager, then grant the Oracle Streams administrator SELECT
ANY DICTIONARY privilege, in addition to the privileges shown in
this step.

Creating Enqueue Procedures

23-4 Oracle Streams Advanced Queuing User’s Guide

will be used to perform explicit enqueue operations on the queue, and associate the oe
user with the agent.

Queue oe_queue is a secure queue because it was created using SET_UP_QUEUE. For
a user to perform enqueue and dequeue operations on a secure queue, the user must
be configured as a secure queue user of the queue. Associating the oe user with agent
explicit_enq enables the oe user to perform enqueue operations on this queue.

Example 23–3 Enabling Enqueue on the ANYDATA Queue

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for STRMADMIN: ' HIDE
CONNECT strmadmin/&password@db01;
set echo on

BEGIN
 SYS.DBMS_AQADM.GRANT_QUEUE_PRIVILEGE(
 privilege => 'ALL',
 queue_name => 'strmadmin.oe_queue',
 grantee => 'oe');
 SYS.DBMS_AQADM.CREATE_AQ_AGENT(
 agent_name => 'explicit_enq');
 DBMS_AQADM.ENABLE_DB_ACCESS(
 agent_name => 'explicit_enq',
 db_username => 'oe');
END;
/

Creating Enqueue Procedures
The examples in this section create two PL/SQL procedures that enqueue messages
into the ANYDATA queue oe_queue. One procedure enqueues non-LCR messages, and
the other procedure enqueues row LCR messages.

In Example 23–4, you connect to database db01 as sample schema user oe to create a
type to represent orders based on the columns in the oe.orders table. This type is
used for messages that are enqueued into the ANYDATA queue oe_queue. The type
attributes include the columns in the oe.orders table, along with one extra attribute
named action. The value of the action attribute for instances of this type is used to
determine the correct action to perform on the instance (either apply process dequeue
or explicit dequeue).

Example 23–4 Creating an Orders Type

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for OE: ' HIDE
CONNECT oe/&password@db01;
set echo on

CREATE TYPE order_event_typ AS OBJECT(
 order_id NUMBER(12),
 order_date TIMESTAMP(6) WITH LOCAL TIME ZONE,
 order_mode VARCHAR2(8),
 customer_id NUMBER(6),
 order_status NUMBER(2),
 order_total NUMBER(8,2),
 sales_rep_id NUMBER(6),

Creating Enqueue Procedures

Oracle Streams Messaging Example 23-5

 promotion_id NUMBER(6),
 action VARCHAR(7));
/

In Example 23–5, you connect to database db01 as sample schema user oe to create a
type to represent customers based on the columns in the oe.customers table. This
type is used for messages that are enqueued into the ANYDATA queue oe_queue. The
type attributes include the columns in the oe.customers table, along with one extra
attribute named action. The value of the action attribute for instances of this type
is used to determine the correct action to perform on the instance (either apply process
dequeue or explicit dequeue).

Example 23–5 Creating a Customers Type

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for OE: ' HIDE
CONNECT oe/&password@db01;
set echo on

CREATE TYPE customer_event_typ AS OBJECT(
 customer_id NUMBER(6),
 cust_first_name VARCHAR2(20),
 cust_last_name VARCHAR2(20),
 cust_address CUST_ADDRESS_TYP,
 phone_numbers PHONE_LIST_TYP,
 nls_language VARCHAR2(3),
 nls_territory VARCHAR2(30),
 credit_limit NUMBER(9,2),
 cust_email VARCHAR2(30),
 account_mgr_id NUMBER(6),
 date_of_birth DATE,
 marital_status VARCHAR2(20),
 gender VARCHAR2(1),
 income_level VARCHAR2(20),
 action VARCHAR(7));
/

In Example 23–6, you connect to database db01 as sample schema user oe to create a
PL/SQL procedure called enq_proc to enqueue non-LCR messages into ANYDATA
queue oe_queue.

Example 23–6 Creating a Procedure to Enqueue Non-LCR Messages

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for OE: ' HIDE
CONNECT oe/&password@db01;
set echo on

Note: This example assumes you have dropped the cust_geo_
location column from the oe.customers table. This column is
useful only with Oracle Spatial.

Note: A single enqueued message can be dequeued by both an apply
process and an explicit dequeue, but the examples in this chapter do
not illustrate this capability.

Creating Enqueue Procedures

23-6 Oracle Streams Advanced Queuing User’s Guide

CREATE PROCEDURE oe.enq_proc (event IN ANYDATA) IS
 enqopt DBMS_AQ.ENQUEUE_OPTIONS_T;
 mprop DBMS_AQ.MESSAGE_PROPERTIES_T;
 enq_eventid RAW(16);
 BEGIN
 mprop.SENDER_ID := SYS.AQ$_AGENT('explicit_enq', NULL, NULL);
 DBMS_AQ.ENQUEUE(
 queue_name => 'strmadmin.oe_queue',
 enqueue_options => enqopt,
 message_properties => mprop,
 payload => event,
 msgid => enq_eventid);
END;
/

In Example 23–7, you connect to database db01 as sample schema user oe to create a
PL/SQL procedure called enq_row_lcr that constructs a row LCR and then
enqueues the row LCR into ANYDATA queue oe_queue.

Example 23–7 Creating a Procedure to Construct and Enqueue Row LCR Events

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for OE: ' HIDE
CONNECT oe/&password@db01;
set echo on

CREATE PROCEDURE oe.enq_row_lcr(
 source_dbname VARCHAR2,
 cmd_type VARCHAR2,
 obj_owner VARCHAR2,
 obj_name VARCHAR2,
 old_vals SYS.LCR$_ROW_LIST,
 new_vals SYS.LCR$_ROW_LIST)
AS
 eopt DBMS_AQ.ENQUEUE_OPTIONS_T;
 mprop DBMS_AQ.MESSAGE_PROPERTIES_T;
 enq_msgid RAW(16);
 row_lcr SYS.LCR$_ROW_RECORD;
BEGIN
 mprop.SENDER_ID := SYS.AQ$_AGENT('explicit_enq', NULL, NULL);
 row_lcr := SYS.LCR$_ROW_RECORD.CONSTRUCT(
 source_database_name => source_dbname,
 command_type => cmd_type,
 object_owner => obj_owner,
 object_name => obj_name,
 old_values => old_vals,
 new_values => new_vals);
 DBMS_AQ.ENQUEUE(
 queue_name => 'strmadmin.oe_queue',
 enqueue_options => eopt,
 message_properties => mprop,
 payload => ANYDATA.ConvertObject(row_lcr),
 msgid => enq_msgid);
END enq_row_lcr;
/

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about LCR constructors

Configuring an Apply Process

Oracle Streams Messaging Example 23-7

Configuring an Apply Process
The examples in this section configure an apply process to apply the user-enqueued
messages in the ANYDATA queue oe_queue.

In Example 23–8, you connect to database db01 as sample schema user oe to create a
function called get_oe_action and to grant EXECUTE privilege on the function to
administrator user strmadmin.

This function determines the value of the action attribute in the messages in queue
oe_queue. It is used in rules later in this chapter to determine the value of the
action attribute for an event. Then, the clients of the rules engine perform the
appropriate action for the event (either dequeue by apply process or explicit dequeue).
In this example, the clients of the rules engine are the apply process and the
oe.explicit_dq PL/SQL procedure.

Example 23–8 Creating a Function to Determine the Value of the Action Attribute

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for OE: ' HIDE
CONNECT oe/&password@db01;
set echo on

CREATE FUNCTION oe.get_oe_action (event IN ANYDATA)
RETURN VARCHAR2
IS
 ord oe.order_event_typ;
 cust oe.customer_event_typ;
 num NUMBER;
 type_name VARCHAR2(61);
BEGIN
 type_name := event.GETTYPENAME;
 IF type_name = 'OE.ORDER_EVENT_TYP' THEN
 num := event.GETOBJECT(ord);
 RETURN ord.action;
 ELSIF type_name = 'OE.CUSTOMER_EVENT_TYP' THEN
 num := event.GETOBJECT(cust);
 RETURN cust.action;
 ELSE
 RETURN NULL;
 END IF;
END;
/
GRANT EXECUTE ON get_oe_action TO strmadmin;

In Example 23–9, you connect to database db01 as sample schema user oe to create a
PL/SQL procedure called mes_handler that is used as a message handler by the
apply process. You also grant EXECUTE privilege on this procedure to administrator
user strmadmin. This procedure takes the payload in a user-enqueued message of
type oe.order_event_typ or oe.customer_event_typ and inserts it as a row in
the oe.orders table or oe.customers table, respectively.

Example 23–9 Creating a Message Handler

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for OE: ' HIDE
CONNECT oe/&password@db01;
set echo on

Configuring an Apply Process

23-8 Oracle Streams Advanced Queuing User’s Guide

CREATE PROCEDURE oe.mes_handler (event IN ANYDATA) IS
 ord oe.order_event_typ;
 cust oe.customer_event_typ;
 num NUMBER;
 type_name VARCHAR2(61);
BEGIN
 type_name := event.GETTYPENAME;
 IF type_name = 'OE.ORDER_EVENT_TYP' THEN
 num := event.GETOBJECT(ord);
 INSERT INTO oe.orders VALUES (ord.order_id, ord.order_date,
 ord.order_mode, ord.customer_id, ord.order_status, ord.order_total,
 ord.sales_rep_id, ord.promotion_id);
 ELSIF type_name = 'OE.CUSTOMER_EVENT_TYP' THEN
 num := event.GETOBJECT(cust);
 INSERT INTO oe.customers VALUES (cust.customer_id, cust.cust_first_name,
 cust.cust_last_name, cust.cust_address, cust.phone_numbers,
 cust.nls_language, cust.nls_territory, cust.credit_limit, cust.cust_email,
 cust.account_mgr_id, cust.date_of_birth, cust.marital_status,
 cust.gender, cust.income_level);
 END IF;
END;
/
GRANT EXECUTE ON mes_handler TO strmadmin;

In Example 23–10, you connect to database db01 as administrator user strmadmin to
create an evaluation context for the rule set.

Example 23–10 Creating an Evaluation Context for the Rule Set

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for STRMADMIN: ' HIDE
CONNECT strmadmin/&password@db01;
set echo on

DECLARE
 table_alias SYS.RE$TABLE_ALIAS_LIST;
BEGIN
 table_alias := SYS.RE$TABLE_ALIAS_LIST(
 SYS.RE$TABLE_ALIAS('tab', 'strmadmin.oe_queue_table'));
 DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(
 evaluation_context_name => 'oe_eval_context',
 table_aliases => table_alias);
END;
/

In Example 23–11, you connect to database db01 as administrator user strmadmin to
create a rule set for the apply process.

Example 23–11 Creating a Rule Set for the Apply Process

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for STRMADMIN: ' HIDE
CONNECT strmadmin/&password@db01;
set echo on

BEGIN
 DBMS_RULE_ADM.CREATE_RULE_SET(

Configuring an Apply Process

Oracle Streams Messaging Example 23-9

 rule_set_name => 'apply_oe_rs',
 evaluation_context => 'strmadmin.oe_eval_context');
END;
/

In Example 23–12, you connect to database db01 as administrator user strmadmin to
create a rule that evaluates to TRUE if the action value of a message is apply. Notice
that tab.user_data is passed to the oe.get_oe_action function. The
tab.user_data column holds the event payload in a queue table. The table alias for
the queue table was specified as tab in Example 23–10 on page 23-8.

Example 23–12 Creating a Rule that Evaluates to TRUE if Action Is Apply

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for STRMADMIN: ' HIDE
CONNECT strmadmin/&password@db01;
set echo on

BEGIN
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.apply_action',
 condition => 'oe.get_oe_action(tab.user_data) = ''APPLY'' ');
END;
/

In Example 23–13, you connect to database db01 as administrator user strmadmin to
create a rule that evaluates to TRUE if the event in the queue is a row LCR that changes
either the oe.orders table or the oe.customers table. This rule enables the apply
process to apply user-enqueued changes to the tables directly.

For convenience, this rule uses the Oracle-supplied evaluation context
SYS.STREAMS$_EVALUATION_CONTEXT because the rule is used to evaluate LCRs.
When this rule is added to the rule set, the Oracle-supplied evaluation context is used
for the rule during evaluation instead of evaluation context oe_eval_context
created in Example 23–10 on page 23-8.

Example 23–13 Creating a Rule that Evaluates to TRUE for Row LCR Events

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for STRMADMIN: ' HIDE
CONNECT strmadmin/&password@db01;
set echo on

BEGIN
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'apply_lcrs',
 condition => ':dml.GET_OBJECT_OWNER() = ''OE'' AND ' ||
 ' (:dml.GET_OBJECT_NAME() = ''ORDERS'' OR ' ||
 ':dml.GET_OBJECT_NAME() = ''CUSTOMERS'') ',
 evaluation_context => 'SYS.STREAMS$_EVALUATION_CONTEXT');
END;
/

In Example 23–14, you connect to database db01 as administrator user strmadmin to
add the apply_action rule created in Example 23–12 on page 23-9 and the apply_
lcrs rule created in Example 23–13 on page 23-9 to the apply_oe_rs rule set created
in Example 23–11 on page 23-8.

Configuring an Apply Process

23-10 Oracle Streams Advanced Queuing User’s Guide

Example 23–14 Adding Rules to the Rule Set

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for STRMADMIN: ' HIDE
CONNECT strmadmin/&password@db01;
set echo on

BEGIN
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'apply_action',
 rule_set_name => 'apply_oe_rs');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'apply_lcrs',
 rule_set_name => 'apply_oe_rs');
END;
/

In Example 23–16, you connect to database db01 as administrator user strmadmin to
create an apply process that is associated with queue oe_queue, that uses the apply_
oe_rs rule set, and that uses the mes_handler procedure as a message handler.

Example 23–15 Creating an Apply Process

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for STRMADMIN: ' HIDE
CONNECT strmadmin/&password@db01;
set echo on

BEGIN
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strmadmin.oe_queue',
 apply_name => 'apply_oe',
 rule_set_name => 'strmadmin.apply_oe_rs',
 message_handler => 'oe.mes_handler',
 apply_user => 'oe',
 apply_captured => false);
END;
/

Because oe was specified as the apply user when the apply process was created in
Example 23–16 on page 23-10, you must grant this user EXECUTE privilege on the
strmadmin.apply_oe_rs rule set used by the apply process. You connect to
database db01 as administrator user strmadmin to accomplish this in Example 23–17.

Example 23–16 Granting EXECUTE Privilege on the Rule Set To oe User

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for STRMADMIN: ' HIDE
CONNECT strmadmin/&password@db01;
set echo on

BEGIN
 DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(
 privilege => DBMS_RULE_ADM.EXECUTE_ON_RULE_SET,
 object_name => 'strmadmin.apply_oe_rs',
 grantee => 'oe',
 grant_option => FALSE);
END;

Configuring Explicit Dequeue

Oracle Streams Messaging Example 23-11

/

In Example 23–18, you connect to database db01 as administrator user strmadmin to
start the apply process with the disable_on_error parameter set to n so that the
apply process is not disabled if it encounters an error.

Example 23–17 Starting the Apply Process

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for STRMADMIN: ' HIDE
CONNECT strmadmin/&password@db01;
set echo on

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'apply_oe',
 parameter => 'disable_on_error',
 value => 'n');
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_oe');
END;
/

Configuring Explicit Dequeue
The examples in this section illustrate how to configure explicit dequeue of messages
based on message contents.

In Example 23–19, you connect to database db01 as administrator user strmadmin to
create agent explicit_dq. This agent is used to perform explicit dequeue operations
on the oe_queue queue.

Example 23–18 Creating an Agent for Explicit Dequeue

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for STRMADMIN: ' HIDE
CONNECT strmadmin/&password@db01;
set echo on

BEGIN
 SYS.DBMS_AQADM.CREATE_AQ_AGENT(
 agent_name => 'explicit_dq');
END;
/

The oe_queue queue is a secure queue because it was created using SET_UP_QUEUE
in Example 23–2 on page 23-3. For a user to perform enqueue and dequeue operations
on a secure queue, the user must be configured as a secure queue user of the queue.

In Example 23–20, you connect to database db01 as administrator user strmadmin to
associate the oe user with agent explicit_dq. The oe user is able to perform
dequeue operations on the oe_queue queue when the agent is used to create a
subscriber to the queue in Example 23–21 on page 23-12.

Example 23–19 Associating User oe with Agent explicit_dq

set echo off

Configuring Explicit Dequeue

23-12 Oracle Streams Advanced Queuing User’s Guide

set verify off
ACCEPT password CHAR PROMPT 'Enter the password for STRMADMIN: ' HIDE
CONNECT strmadmin/&password@db01;
set echo on

BEGIN
 DBMS_AQADM.ENABLE_DB_ACCESS(
 agent_name => 'explicit_dq',
 db_username => 'oe');
END;
/

In Example 23–21, you connect to database db01 as administrator user strmadmin to
add a subscriber to the oe_queue queue. This subscriber will perform explicit
dequeues of messages. A subscriber rule is used to dequeue any messages where the
action value is not apply. If the action value is apply for a message, then the
message is ignored by the subscriber. Such messages are dequeued and processed by
the apply process.

Example 23–20 Adding a Subscriber to the oe_queue Queue

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for STRMADMIN: ' HIDE
CONNECT strmadmin/&password@db01;
set echo on

DECLARE
 subscriber SYS.AQ$_AGENT;
BEGIN
 subscriber := SYS.AQ$_AGENT('explicit_dq', NULL, NULL);
 SYS.DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'strmadmin.oe_queue',
 subscriber => subscriber,
 rule => 'oe.get_oe_action(tab.user_data) != ''APPLY''');
END;
/

In Example 23–22, you connect to database db01 as sample schema user oe to create a
PL/SQL procedure called explicit_dq to dequeue messages explicitly using the
subscriber created in Example 23–21 on page 23-12.

The procedure commits after the dequeue of the messages. The commit informs the
queue that the dequeued messages have been consumed successfully by this
subscriber.

The procedure can process multiple transactions and uses two exception handlers.
Exception handler next_trans moves to the next transaction, and exception handler
no_messages exits the loop when there are no more messages.

Example 23–21 Creating a Procedure to Dequeue Messages Explicitly

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for OE: ' HIDE
CONNECT oe/&password@db01;
set echo on

CREATE PROCEDURE oe.explicit_dq (consumer IN VARCHAR2) AS
 deqopt DBMS_AQ.DEQUEUE_OPTIONS_T;

Configuring Explicit Dequeue

Oracle Streams Messaging Example 23-13

 mprop DBMS_AQ.MESSAGE_PROPERTIES_T;
 msgid RAW(16);
 payload ANYDATA;
 new_messages BOOLEAN := TRUE;
 ord oe.order_event_typ;
 cust oe.customer_event_typ;
 tc pls_integer;
 next_trans EXCEPTION;
 no_messages EXCEPTION;
 pragma exception_init (next_trans, -25235);
 pragma exception_init (no_messages, -25228);
BEGIN
 deqopt.consumer_name := consumer;
 deqopt.wait := 1;
 WHILE (new_messages) LOOP
 BEGIN
 DBMS_AQ.DEQUEUE(
 queue_name => 'strmadmin.oe_queue',
 dequeue_options => deqopt,
 message_properties => mprop,
 payload => payload,
 msgid => msgid);
 COMMIT;
 deqopt.navigation := DBMS_AQ.NEXT;
 DBMS_OUTPUT.PUT_LINE('Message Dequeued');
 DBMS_OUTPUT.PUT_LINE('Type Name := ' || payload.GetTypeName);
 IF (payload.GetTypeName = 'OE.ORDER_EVENT_TYP') THEN
 tc := payload.GetObject(ord);
 DBMS_OUTPUT.PUT_LINE('order_id - ' || ord.order_id);
 DBMS_OUTPUT.PUT_LINE('order_date - ' || ord.order_date);
 DBMS_OUTPUT.PUT_LINE('order_mode - ' || ord.order_mode);
 DBMS_OUTPUT.PUT_LINE('customer_id - ' || ord.customer_id);
 DBMS_OUTPUT.PUT_LINE('order_status - ' || ord.order_status);
 DBMS_OUTPUT.PUT_LINE('order_total - ' || ord.order_total);
 DBMS_OUTPUT.PUT_LINE('sales_rep_id - ' || ord.sales_rep_id);
 DBMS_OUTPUT.PUT_LINE('promotion_id - ' || ord.promotion_id);
 END IF;
 IF (payload.GetTypeName = 'OE.CUSTOMER_EVENT_TYP') THEN
 tc := payload.GetObject(cust);
 DBMS_OUTPUT.PUT_LINE('customer_id - ' || cust.customer_id);
 DBMS_OUTPUT.PUT_LINE('cust_first_name - ' || cust.cust_first_name);
 DBMS_OUTPUT.PUT_LINE('cust_last_name - ' || cust.cust_last_name);
 DBMS_OUTPUT.PUT_LINE('street_address - ' ||
 cust.cust_address.street_address);
 DBMS_OUTPUT.PUT_LINE('postal_code - ' ||
 cust.cust_address.postal_code);
 DBMS_OUTPUT.PUT_LINE('city - ' || cust.cust_address.city);
 DBMS_OUTPUT.PUT_LINE('state_province - ' ||
 cust.cust_address.state_province);
 DBMS_OUTPUT.PUT_LINE('country_id - ' ||
 cust.cust_address.country_id);
 DBMS_OUTPUT.PUT_LINE('phone_number1 - ' || cust.phone_numbers(1));
 DBMS_OUTPUT.PUT_LINE('phone_number2 - ' || cust.phone_numbers(2));
 DBMS_OUTPUT.PUT_LINE('phone_number3 - ' || cust.phone_numbers(3));
 DBMS_OUTPUT.PUT_LINE('nls_language - ' || cust.nls_language);
 DBMS_OUTPUT.PUT_LINE('nls_territory - ' || cust.nls_territory);
 DBMS_OUTPUT.PUT_LINE('credit_limit - ' || cust.credit_limit);
 DBMS_OUTPUT.PUT_LINE('cust_email - ' || cust.cust_email);
 DBMS_OUTPUT.PUT_LINE('account_mgr_id - ' || cust.account_mgr_id);
 DBMS_OUTPUT.PUT_LINE('date_of_birth - ' || cust.date_of_birth);

Enqueuing Messages

23-14 Oracle Streams Advanced Queuing User’s Guide

 DBMS_OUTPUT.PUT_LINE('marital_status - ' || cust.marital_status);
 DBMS_OUTPUT.PUT_LINE('gender - ' || cust.gender);
 DBMS_OUTPUT.PUT_LINE('income_level - ' || cust.income_level);
 END IF;
 EXCEPTION
 WHEN next_trans THEN
 deqopt.navigation := DBMS_AQ.NEXT_TRANSACTION;
 WHEN no_messages THEN
 new_messages := FALSE;
 DBMS_OUTPUT.PUT_LINE('No more messagess');
 END;
 END LOOP;
END;
/

Enqueuing Messages
The examples in this section illustrate how to enqueue non-LCR messages and row
LCR messages into a queue.

In Example 23–23, you connect to database db01 as sample schema user oe to
enqueue two messages with apply for the action value. Based on the apply process
rules, the apply process dequeues and processes these messages with the oe.mes_
handler message handler procedure created in Example 23–9 on page 23-7. The
COMMIT after the enqueues makes these two enqueues part of the same transaction.
An enqueued message is not visible until the session that enqueued it commits the
enqueue.

Example 23–22 Enqueuing Non-LCR Messages to Be Dequeued by an Apply Process

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for OE: ' HIDE
CONNECT oe/&password@db01;
set echo on

BEGIN
 oe.enq_proc(ANYDATA.convertobject(oe.order_event_typ(
 2500,'05-MAY-01','online',117,3,44699,161,NULL,'APPLY')));
END;
/
BEGIN
 oe.enq_proc(ANYDATA.convertobject(oe.customer_event_typ(
 990,'Hester','Prynne',oe.cust_address_typ('555 Beacon Street',
 '02109','Boston','MA','US'),oe.phone_list_typ('+1 617 123 4104',
 '+1 617 083 4381','+1 617 742 5813'),'i','AMERICA',5000,
 'a@scarlet_letter.com',145,NULL,'SINGLE','F','UNDER 50,000','APPLY')));
END;
/
COMMIT;

In Example 23–24, you connect to database db01 as sample schema user oe to
enqueue two messages with dequeue for the action value. The oe.explicit_dq

Note: It is possible to dequeue user-enqueued LCRs explicitly, but
these examples do not illustrate this capability.

Enqueuing Messages

Oracle Streams Messaging Example 23-15

procedure created in Example 23–22 on page 23-12 dequeues these messages because
the action is not apply. Based on the apply process rules, the apply process ignores
these messages. The COMMIT after the enqueues makes these two enqueues part of the
same transaction.

Example 23–23 Enqueuing Non-LCR Messages to Be Dequeued Explicitly

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for OE: ' HIDE
CONNECT oe/&password@db01;
set echo on

BEGIN
 oe.enq_proc(ANYDATA.convertobject(oe.order_event_typ(
 2501,'22-JAN-00','direct',117,3,22788,161,NULL,'DEQUEUE')));
END;
/
BEGIN
 oe.enq_proc(ANYDATA.convertobject(oe.customer_event_typ(
 991,'Nick','Carraway',oe.cust_address_typ('10th Street',
 '11101','Long Island','NY','US'),oe.phone_list_typ('+1 718 786 2287',
 '+1 718 511 9114', '+1 718 888 4832'),'i','AMERICA',3000,
 'nick@great_gatsby.com',149,NULL,'MARRIED','M','OVER 150,000','DEQUEUE')));
END;
/
COMMIT;

In Example 23–25, you connect to database db01 as sample schema user oe to create a
row LCR that inserts a row into the oe.orders table and another LCR that updates
that row. The apply process applies these messages directly.

Example 23–24 Enqueuing Row LCRs to Be Dequeued by an Apply Process

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for OE: ' HIDE
CONNECT oe/&password@db01;
set echo on

DECLARE
 newunit1 SYS.LCR$_ROW_UNIT;
 newunit2 SYS.LCR$_ROW_UNIT;
 newunit3 SYS.LCR$_ROW_UNIT;
 newunit4 SYS.LCR$_ROW_UNIT;
 newunit5 SYS.LCR$_ROW_UNIT;
 newunit6 SYS.LCR$_ROW_UNIT;
 newunit7 SYS.LCR$_ROW_UNIT;
 newunit8 SYS.LCR$_ROW_UNIT;
 newvals SYS.LCR$_ROW_LIST;
BEGIN
 newunit1 := SYS.LCR$_ROW_UNIT(

Note: Enqueued LCRs should commit at transaction boundaries. In
this example, a COMMIT statement is run after each enqueue, making
each enqueue a separate transaction. However, you can perform
multiple LCR enqueues before a commit if there is more than one LCR
in a transaction.

Dequeuing Messages Explicitly and Querying for Applied Messages

23-16 Oracle Streams Advanced Queuing User’s Guide

 'ORDER_ID',ANYDATA.ConvertNumber(2502),DBMS_LCR.NOT_A_LOB,NULL,NULL);
 newunit2 := SYS.LCR$_ROW_UNIT(
 'ORDER_DATE',ANYDATA.ConvertTimestampLTZ('04-NOV-00'),DBMS_LCR.NOT_A_LOB,
 NULL,NULL);
 newunit3 := SYS.LCR$_ROW_UNIT(
 'ORDER_MODE',ANYDATA.ConvertVarchar2('online'),DBMS_LCR.NOT_A_LOB,NULL,NULL);
 newunit4 := SYS.LCR$_ROW_UNIT(
 'CUSTOMER_ID',ANYDATA.ConvertNumber(145),DBMS_LCR.NOT_A_LOB,NULL,NULL);
 newunit5 := SYS.LCR$_ROW_UNIT(
 'ORDER_STATUS',ANYDATA.ConvertNumber(3),DBMS_LCR.NOT_A_LOB,NULL,NULL);
 newunit6 := SYS.LCR$_ROW_UNIT(
 'ORDER_TOTAL',ANYDATA.ConvertNumber(35199),DBMS_LCR.NOT_A_LOB,NULL,NULL);
 newunit7 := SYS.LCR$_ROW_UNIT(
 'SALES_REP_ID',ANYDATA.ConvertNumber(160),DBMS_LCR.NOT_A_LOB,NULL,NULL);
 newunit8 := SYS.LCR$_ROW_UNIT(
 'PROMOTION_ID',ANYDATA.ConvertNumber(1),DBMS_LCR.NOT_A_LOB,NULL,NULL);
 newvals := SYS.LCR$_ROW_LIST(
 newunit1,newunit2,newunit3,newunit4,newunit5,newunit6,newunit7,newunit8);
 oe.enq_row_lcr('DB01','INSERT','OE','ORDERS',NULL,newvals);
END;
/
COMMIT;
DECLARE
 oldunit1 SYS.LCR$_ROW_UNIT;
 oldunit2 SYS.LCR$_ROW_UNIT;
 oldvals SYS.LCR$_ROW_LIST;
 newunit1 SYS.LCR$_ROW_UNIT;
 newvals SYS.LCR$_ROW_LIST;
BEGIN
 oldunit1 := SYS.LCR$_ROW_UNIT(
 'ORDER_ID',ANYDATA.ConvertNumber(2502),DBMS_LCR.NOT_A_LOB,NULL,NULL);
 oldunit2 := SYS.LCR$_ROW_UNIT(
 'ORDER_TOTAL',ANYDATA.ConvertNumber(35199),DBMS_LCR.NOT_A_LOB,NULL,NULL);
 oldvals := SYS.LCR$_ROW_LIST(oldunit1,oldunit2);
 newunit1 := SYS.LCR$_ROW_UNIT(
 'ORDER_TOTAL',ANYDATA.ConvertNumber(5235),DBMS_LCR.NOT_A_LOB,NULL,NULL);
 newvals := SYS.LCR$_ROW_LIST(newunit1);
 oe.enq_row_lcr('DB01','UPDATE','OE','ORDERS',oldvals,newvals);
END;
/
COMMIT;

Dequeuing Messages Explicitly and Querying for Applied Messages
The examples in this section illustrate how to dequeue messages explicitly and query
messages that were applied by the apply process. The examples use messages that
were enqueued in the previous section.

In Example 23–26, you connect to database db01 as sample schema user oe to run
procedure explicit_dq, created in Example 23–22 on page 23-12. You specify
subscriber explicit_dq, added in Example 23–21 on page 23-12, as the consumer of
the messages you want to dequeue. In these examples, messages that are not
dequeued explicitly by this procedure are dequeued by the apply process.

Example 23–25 Dequeuing Messages Explicitly

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for OE: ' HIDE
CONNECT oe/&password@db01;

Dequeuing Messages Explicitly and Querying for Applied Messages

Oracle Streams Messaging Example 23-17

set echo on

CREATE PROCEDURE oe.enq_proc (payload ANYDATA) IS
SET SERVEROUTPUT ON SIZE 100000;
EXEC oe.explicit_dq('explicit_dq');

The example returns the payload of the messages enqueued in Example 23–24 on
page 23-14:

Message Dequeued
Type Name := OE.ORDER_EVENT_TYP
order_id - 2501
order_date - 22-JAN-00 12.00.00.000000 AM
order_mode - direct
customer_id - 117
order_status - 3
order_total - 22788
sales_rep_id - 161
promotion_id -
Message Dequeued
Type Name := OE.CUSTOMER_EVENT_TYP
customer_id - 991
cust_first_name - Nick
cust_last_name - Carraway
street_address - 10th Street
postal_code - 11101
city - Long Island
state_province - NY
country_id - US
phone_number1 - +1 718 786 2287
phone_number2 - +1 718 511 9114
phone_number3 - +1 718 888 4832
nls_language - i
nls_territory - AMERICA
credit_limit - 3000
cust_email - nick@great_gatsby.com
account_mgr_id - 149
date_of_birth -
marital_status - MARRIED
gender - M
income_level - OVER 150,000
No more messages

Example 23–27, you connect to database db01 as sample schema user oe to query the
oe.orders and oe.customers tables to see the rows corresponding to the messages
applied by apply process apply_oe, created in Example 23–16 on page 23-10.

Example 23–26 Querying for Applied Messages

set echo off
set verify off
ACCEPT password CHAR PROMPT 'Enter the password for OE: ' HIDE
CONNECT oe/&password@db01;
set echo on

CREATE PROCEDURE oe.enq_proc (payload ANYDATA) IS
SELECT order_id, order_date, customer_id, order_total
 FROM oe.orders WHERE order_id = 2500;
SELECT cust_first_name, cust_last_name, cust_email
 FROM oe.customers WHERE customer_id = 990;

Enqueuing and Dequeuing Messages Using JMS

23-18 Oracle Streams Advanced Queuing User’s Guide

SELECT order_id, order_date, customer_id, order_total
 FROM oe.orders WHERE order_id = 2502;

The example returns three rows:

 ORDER_ID ORDER_DATE CUSTOMER_ID ORDER_TOTAL
---------- ------------------------------ ----------- -----------
 2500 05-MAY-01 12.00.00.000000 AM 117 44699

1 row selected.

CUST_FIRST_NAME CUST_LAST_NAME CUST_EMAIL
-------------------- -------------------- ------------------------------
Hester Prynne a@scarlet_letter.com

1 row selected.

 ORDER_ID ORDER_DATE CUSTOMER_ID ORDER_TOTAL
---------- ------------------------------ ----------- -----------
 2502 04-NOV-00 12.00.00.000000 AM 145 5235

1 row selected.

Enqueuing and Dequeuing Messages Using JMS
The examples in this section illustrate how to enqueue non-LCR messages and row
LCRs into a queue and then dequeue them using Java Message Service (JMS).

The following jar and zip files should be in the CLASSPATH based on the release of
JDK you are using.

For JDK 1.4.x, the CLASSPATH must contain:

ORACLE_HOME/jdbc/lib/classes12.jar
ORACLE_HOME/jdbc/lib/ojdbc14.jar
ORACLE_HOME/jlib/jndi.jar
ORACLE_HOME/lib/jta.jar
ORACLE_HOME/rdbms/jlib/aqapi13.jar
ORACLE_HOME/rdbms/jlib/jmscommon.jar
ORACLE_HOME/rdbms/jlib/xdb.jar
ORACLE_HOME/xdk/lib/xmlparserv2.jar

For JDK 1.3.x, the CLASSPATH must contain:

ORACLE_HOME/jdbc/lib/classes12.jar
ORACLE_HOME/jlib/jndi.jar
ORACLE_HOME/rdbms/jlib/aqapi13.jar
ORACLE_HOME/rdbms/jlib/jmscommon.jar
ORACLE_HOME/rdbms/jlib/xdb.jar
ORACLE_HOME/lib/jta.jar
ORACLE_HOME/xdk/lib/xmlparserv2.jar

For JDK 1.2.x, the CLASSPATH must contain:

ORACLE_HOME/jdbc/lib/classes12.jar
ORACLE_HOME/jlib/jndi.jar
ORACLE_HOME/lib/jta.jar
ORACLE_HOME/rdbms/jlib/aqapi12.jar
ORACLE_HOME/rdbms/jlib/jmscommon.jar
ORACLE_HOME/rdbms/jlib/xdb.jar
ORACLE_HOME/xdk/lib/xmlparserv2.jar

Enqueuing and Dequeuing Messages Using JMS

Oracle Streams Messaging Example 23-19

Also, make sure LD_LIBRARY_PATH (Linux and Solaris) or PATH (Windows) includes
ORACLE_HOME/lib.

These examples show sample schema user oe enqueuing JMS messages into a queue
and agent explicit_dq dequeuing them. Agent explicit_dq was created in
Example 23–19 on page 23-11, associated with sample schema user oe in
Example 23–20 on page 23-11, and made a subscriber to queue oe_queue in
Example 23–21 on page 23-12.

Sample schema user oe was granted EXECUTE on DBMS_AQ in Example 23–1 on
page 23-3. In order for this user to use the Oracle JMS interface, it must have EXECUTE
privilege on DBMS_AQIN as well. In Example 23–28, you connect to database db01 as a
user with administrative privileges to grant the necessary privilege to oe.

Example 23–27 Granting EXECUTE on DBMS_AQIN to User oe

GRANT EXECUTE on DBMS_AQIN to oe;

Enqueue of JMS types and XML types does not work with Oracle Streams ANYDATA
queues unless you call DBMS_AQADM.ENABLE_JMS_TYPES(queue_table_name)
after DBMS_STREAMS_ADM.SET_UP_QUEUE(). In Example 23–29, you connect to
database db01 as administrator user strmadmin, created in Example 23–1 on
page 23-3, to run ENABLE_JMS_TYPES on ANYDATA queue table oe_queue_table,
created in Example 23–2 on page 23-3.

Example 23–28 Enabling JMS Types on an ANYDATA Queue

CONNECT strmadmin;
Enter password: password
BEGIN
 DBMS_AQADM.ENABLE_JMS_TYPES('oe_queue_table');
END;
/

In Example 23–30, you connect to database db01 as sample schema user oe to create
types address and person.

Example 23–29 Creating Oracle Object Types address and person

CONNECT oe;
Enter password: password
CREATE TYPE address AS OBJECT (street VARCHAR (30), num NUMBER)
/
CREATE TYPE person AS OBJECT (name VARCHAR (30), home ADDRESS)
/

In Example 23–31, you use JPublisher to generate two Java classes named JPerson
and JAddress for the person and address types, respectively. The input to
JPublisher is a file called input.typ with the following lines:

SQL PERSON AS JPerson
SQL ADDRESS AS JAddress

See Also: "Accessing Standard and Oracle JMS Applications" on
page 3-5

Note: Enabling an Oracle Streams queue for these types may affect
import/export of the queue table.

Enqueuing and Dequeuing Messages Using JMS

23-20 Oracle Streams Advanced Queuing User’s Guide

Example 23–30 Creating Java Classes That Map to Oracle Object Types

jpub -input=input.typ -user=OE/OE

Example 23–32 is the Java code that you use to publish JMS text messages, LCRs, and
non-LCR ADT messages into an Oracle Streams topic. It does the following:

■ Creates a TopicConnectionFactory using the JDBC OCI driver

■ Creates a TopicSession

■ Starts the connection

■ Creates method publishUserMessages() to publish an ADT message and a
JMS text message to an Oracle Streams topic

■ Creates method publishLcrMessages() to publish an XML LCR message to an
Oracle Streams topic

■ Publishes three messages, providing feedback as it proceeds

Method publishUserMessages() does the following:

■ Gets the topic

■ Creates a publisher

■ Specifies agent explicit_enq to access queue oe_queue

■ Creates a PERSON ADT message

■ Sets the payload in the message

■ Specifies explicit_dq as the recipient

■ Publishes the PERSON ADT message

■ Creates a JMS Text message

■ Publishes the JMS Text message

Method publishLcrMessages() does the following:

■ Gets the topic

■ Creates a publisher

■ Gets the JDBC connection

■ Specifies agent explicit_enq to access queue oe_queue

■ Creates an ADT message

■ Creates the LCR representation in XML

■ Creates the XMLType containing the LCR

■ Sets the payload in the message

■ Specifies explicit_dq as the recipient

■ Publishes the LCR

The code is compiled in Example 23–34 on page 23-27. For now, just save it as
StreamsEnq.java.

Note: The JDBC OCI driver is your only choice for accessing Oracle
Streams through JMS.

Enqueuing and Dequeuing Messages Using JMS

Oracle Streams Messaging Example 23-21

Example 23–31 Java Code for Enqueuing Messages

import oracle.AQ.*;
import oracle.jms.*;
import javax.jms.*;
import java.lang.*;
import oracle.xdb.*;

public class StreamsEnq
{
 public static void main (String args [])
 throws java.sql.SQLException, ClassNotFoundException, JMSException
 {
 TopicConnectionFactory tc_fact= null;
 TopicConnection t_conn = null;
 TopicSession t_sess = null;

 try
 {
 if (args.length < 3)
 System.out.println("Usage:java filename [SID] [HOST] [PORT]");
 else
 {
 tc_fact = AQjmsFactory.getTopicConnectionFactory(
 args[1], args[0], Integer.parseInt(args[2]), "oci8");
 t_conn = tc_fact.createTopicConnection("OE","OE");
 t_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
 t_conn.start() ;
 publishUserMessages(t_sess);
 publishLcrMessages(t_sess);
 t_sess.close() ;
 t_conn.close() ;
 System.out.println("End of StreamsEnq Demo") ;
 }
 }
 catch (Exception ex)
 {
 System.out.println("Exception-1: " + ex);
 ex.printStackTrace();
 }
 }

 public static void publishUserMessages(TopicSession t_sess) throws Exception
 {
 Topic topic = null;
 TopicPublisher t_pub = null;
 JPerson pers = null;
 JAddress addr = null;
 TextMessage t_msg = null;
 AdtMessage adt_msg = null;
 AQjmsAgent agent = null;
 AQjmsAgent[] recipList = null;

 try
 {
 topic = ((AQjmsSession)t_sess).getTopic("strmadmin", "oe_queue");
 t_pub = t_sess.createPublisher(topic);
 agent = new AQjmsAgent("explicit_enq", null);
 adt_msg = ((AQjmsSession)t_sess).createAdtMessage();
 pers = new JPerson();
 addr = new JAddress();

Enqueuing and Dequeuing Messages Using JMS

23-22 Oracle Streams Advanced Queuing User’s Guide

 addr.setNum(new java.math.BigDecimal(500));
 addr.setStreet("Oracle Pkwy");
 pers.setName("Mark");
 pers.setHome(addr);
 adt_msg.setAdtPayload(pers);
 ((AQjmsMessage)adt_msg).setSenderID(agent);
 System.out.println("Publish message 1 -type PERSON\n");
 recipList = new AQjmsAgent[1];
 recipList[0] = new AQjmsAgent("explicit_dq", null);
 ((AQjmsTopicPublisher)t_pub).publish(topic, adt_msg, recipList);
 t_sess.commit();

 t_msg = t_sess.createTextMessage();
 t_msg.setText("Test message");
 t_msg.setStringProperty("color", "BLUE");
 t_msg.setIntProperty("year", 1999);
 ((AQjmsMessage)t_msg).setSenderID(agent);
 System.out.println("Publish message 2 -type JMS TextMessage\n");
 ((AQjmsTopicPublisher)t_pub).publish(topic, t_msg, recipList);
 t_sess.commit();

 }
 catch (JMSException jms_ex)
 {
 System.out.println("JMS Exception: " + jms_ex);
 if(jms_ex.getLinkedException() != null)
 System.out.println("Linked Exception: " + jms_ex.getLinkedException());
 }
 }

 public static void publishLcrMessages(TopicSession t_sess) throws Exception
 {
 Topic topic = null;
 TopicPublisher t_pub = null;
 XMLType xml_lcr = null;
 AdtMessage adt_msg = null;
 AQjmsAgent agent = null;
 StringBuffer lcr_data = null;
 AQjmsAgent[] recipList = null;
 java.sql.Connection db_conn = null;

 try
 {
 topic = ((AQjmsSession)t_sess).getTopic("strmadmin", "oe_queue");
 t_pub = t_sess.createPublisher(topic);
 db_conn = ((AQjmsSession)t_sess).getDBConnection();
 agent = new AQjmsAgent("explicit_enq", null);
 adt_msg = ((AQjmsSession)t_sess).createAdtMessage();
 lcr_data = new StringBuffer();

 lcr_data.append("<ROW_LCR ");
 lcr_data.append("xmlns='http://xmlns.oracle.com/streams/schemas/lcr' \n");
 lcr_data.append("xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' \n");
 lcr_data.append("xsi:schemaLocation='http://xmlns.oracle.com/streams/schemas/lcr ");
 lcr_data.append("http://xmlns.oracle.com/streams/schemas/lcr/streamslcr.xsd'");
 lcr_data.append("> \n");
 lcr_data.append("<source_database_name>source_dbname</source_database_name> \n");
 lcr_data.append("<command_type>INSERT</command_type> \n");
 lcr_data.append("<object_owner>Ram</object_owner> \n");
 lcr_data.append("<object_name>Emp</object_name> \n");

Enqueuing and Dequeuing Messages Using JMS

Oracle Streams Messaging Example 23-23

 lcr_data.append("<tag>0ABC</tag> \n");
 lcr_data.append("<transaction_id>0.0.0</transaction_id> \n");
 lcr_data.append("<scn>0</scn> \n");
 lcr_data.append("<old_values> \n");
 lcr_data.append("<old_value> \n");
 lcr_data.append("<column_name>C01</column_name> \n");
 lcr_data.append("<data><varchar2>Clob old</varchar2></data> \n");
 lcr_data.append("</old_value> \n");
 lcr_data.append("<old_value> \n");
 lcr_data.append("<column_name>C02</column_name> \n");
 lcr_data.append("<data><varchar2>A123FF</varchar2></data> \n");
 lcr_data.append("</old_value> \n");
 lcr_data.append("<old_value> \n");
 lcr_data.append("<column_name>C03</column_name> \n");
 lcr_data.append("<data> \n");
 lcr_data.append("<date><value>1997-11-24</value><format>SYYYY-MM-DD</format></date> \n");
 lcr_data.append("</data> \n");
 lcr_data.append("</old_value> \n");
 lcr_data.append("<old_value> \n");
 lcr_data.append("<column_name>C04</column_name> \n");
 lcr_data.append("<data> \n");
 lcr_data.append("<timestamp><value>1999-05-31T13:20:00.000</value>");
 lcr_data.append("<format>SYYYY-MM-DD\"T\"HH24:MI:SS.FF</format></timestamp> \n");
 lcr_data.append("</data> \n");
 lcr_data.append("</old_value> \n");
 lcr_data.append("<old_value> \n");
 lcr_data.append("<column_name>C05</column_name> \n");
 lcr_data.append("<data><raw>ABCDE</raw></data> \n");
 lcr_data.append("</old_value> \n");
 lcr_data.append("</old_values> \n");
 lcr_data.append("<new_values> \n");
 lcr_data.append("<new_value> \n");
 lcr_data.append("<column_name>C01</column_name> \n");
 lcr_data.append("<data><varchar2>A123FF</varchar2></data> \n");
 lcr_data.append("</new_value> \n");
 lcr_data.append("<new_value> \n");
 lcr_data.append("<column_name>C02</column_name> \n");
 lcr_data.append("<data><number>35.23</number></data> \n");
 lcr_data.append("</new_value> \n");
 lcr_data.append("<new_value> \n");
 lcr_data.append("<column_name>C03</column_name> \n");
 lcr_data.append("<data><number>-100000</number></data> \n");
 lcr_data.append("</new_value> \n");
 lcr_data.append("<new_value> \n");
 lcr_data.append("<column_name>C04</column_name> \n");
 lcr_data.append("<data><varchar2>Hello</varchar2></data> \n");
 lcr_data.append("</new_value> \n");
 lcr_data.append("<new_value> \n");
 lcr_data.append("<column_name>C05</column_name> \n");
 lcr_data.append("<data><char>world</char></data> \n");
 lcr_data.append("</new_value> \n");
 lcr_data.append("</new_values> \n");
 lcr_data.append("</ROW_LCR>");

 xml_lcr = oracle.xdb.XMLType.createXML(db_conn, lcr_data.toString());
 adt_msg.setAdtPayload(xml_lcr);
 ((AQjmsMessage)adt_msg).setSenderID(agent);
 System.out.println("Publish message 3 - XMLType containing LCR ROW\n");
 recipList = new AQjmsAgent[1];
 recipList[0] = new AQjmsAgent("explicit_dq", null);

Enqueuing and Dequeuing Messages Using JMS

23-24 Oracle Streams Advanced Queuing User’s Guide

 ((AQjmsTopicPublisher)t_pub).publish(topic, adt_msg, recipList);
 t_sess.commit();

 }
 catch (JMSException jms_ex)
 {
 System.out.println("JMS Exception: " + jms_ex);
 if(jms_ex.getLinkedException() != null)
 System.out.println("Linked Exception: " + jms_ex.getLinkedException());
 }
 }
}

Example 23–33 is the Java code you use to receive messages from a Oracle Streams
topic. It does the following:

■ Creates a TopicConnectionFactory using the JDBC OCI driver

■ Creates a TopicSession

■ Starts the connection

■ Creates method receiveMessages() to receive messages from an Oracle
Streams topic

■ Receives three messages, providing feedback as it proceeds

Method receiveMessages() does the following:

■ Gets the topic

■ Creates a TopicReceiver to receive messages for consumer explicit_dq

■ Registers mappings for ADDRESS and PERSON in the JMS typemap

■ Registers a mapping for XMLType in the typemap (required for LCRs)

■ Receives the enqueued messages

The code is compiled in Example 23–34 on page 23-27. For now, just save it as
StreamsDeq.java.

Example 23–32 Java Code for Dequeuing Messages

import oracle.AQ.*;
import oracle.jms.*;
import javax.jms.*;
import java.lang.*;
import oracle.xdb.*;
import java.sql.SQLException;

public class StreamsDeq
{
 public static void main (String args [])
 throws java.sql.SQLException, ClassNotFoundException, JMSException
 {
 TopicConnectionFactory tc_fact= null;
 TopicConnection t_conn = null;
 TopicSession t_sess = null;

Note: The JDBC OCI driver is your only choice for accessing Oracle
Streams through JMS.

Enqueuing and Dequeuing Messages Using JMS

Oracle Streams Messaging Example 23-25

 try
 {
 if (args.length < 3)
 System.out.println("Usage:java filename [SID] [HOST] [PORT]");
 else
 {
 tc_fact = AQjmsFactory.getTopicConnectionFactory(
 args[1], args[0], Integer.parseInt(args[2]), "oci8");
 t_conn = tc_fact.createTopicConnection("OE","OE");

 t_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
 t_conn.start() ;

 receiveMessages(t_sess);

 t_sess.close() ;
 t_conn.close() ;
 System.out.println("\nEnd of StreamsDeq Demo") ;
 }
 }
 catch (Exception ex)
 {
 System.out.println("Exception-1: " + ex);
 ex.printStackTrace();
 }
 }

 public static void receiveMessages(TopicSession t_sess) throws Exception
 {
 Topic topic = null;
 JPerson pers = null;
 JAddress addr = null;
 XMLType xtype = null;
 TextMessage t_msg = null;
 AdtMessage adt_msg = null;
 Message jms_msg = null;
 TopicReceiver t_recv = null;
 int i = 0;
 java.util.Map map= null;

 try
 {
 topic = ((AQjmsSession)t_sess).getTopic("strmadmin", "oe_queue");
 t_recv = ((AQjmsSession)t_sess).createTopicReceiver(topic, "explicit_dq", null);
 map = ((AQjmsSession)t_sess).getTypeMap();
 map.put("OE.PERSON", Class.forName("JPerson"));
 map.put("OE.ADDRESS", Class.forName("JAddress"));
 map.put("SYS.XMLTYPE", Class.forName("oracle.xdb.XMLTypeFactory"));
 System.out.println("Receive messages ...\n");
 do
 {
 try
 {
 jms_msg = (t_recv.receive(10));
 i++;

 ((AQjmsTopicReceiver)t_recv).setNavigationMode(AQjmsConstants.NAVIGATION_NEXT_MESSAGE);
 }
 catch (JMSException jms_ex2)
 {

Enqueuing and Dequeuing Messages Using JMS

23-26 Oracle Streams Advanced Queuing User’s Guide

 if((jms_ex2.getLinkedException() != null) &&
 (jms_ex2.getLinkedException() instanceof SQLException))
 {
 SQLException sql_ex2 =(SQLException)(jms_ex2.getLinkedException());
 if(sql_ex2.getErrorCode() == 25235)
 {
 ((AQjmsTopicReceiver)t_recv).setNavigationMode(
 AQjmsConstants.NAVIGATION_NEXT_TRANSACTION);
 continue;
 }
 else
 throw jms_ex2;
 }
 else
 throw jms_ex2;
 }
 if(jms_msg == null)
 {
 System.out.println("\nNo more messages");
 }
 else
 {
 if(jms_msg instanceof AdtMessage)
 {
 adt_msg = (AdtMessage)jms_msg;

 System.out.println("Retrieved message " + i + ": " +
 adt_msg.getAdtPayload());
 if(adt_msg.getAdtPayload() instanceof JPerson)
 {
 pers =(JPerson)(adt_msg.getAdtPayload());
 System.out.println("PERSON: Name: " + pers.getName());
 }
 else if(adt_msg.getAdtPayload() instanceof JAddress)
 {
 addr =(JAddress)(adt_msg.getAdtPayload());
 System.out.println("ADDRESS: Street" + addr.getStreet());
 }
 else if(adt_msg.getAdtPayload() instanceof oracle.xdb.XMLType)
 {
 xtype = (XMLType)adt_msg.getAdtPayload();
 System.out.println("XMLType: Data: \n" + xtype.getStringVal());
 }
 System.out.println("Msg id: " + adt_msg.getJMSMessageID());
 System.out.println();
 }
 else if(jms_msg instanceof TextMessage)
 {
 t_msg = (TextMessage)jms_msg;

 System.out.println("Retrieved message " + i + ": " +
 t_msg.getText());
 System.out.println("Msg id: " + t_msg.getJMSMessageID());
 System.out.println();
 }
 else
 System.out.println("Invalid message type");
 }
 } while (jms_msg != null);
 t_sess.commit();

Enqueuing and Dequeuing Messages Using JMS

Oracle Streams Messaging Example 23-27

 }
 catch (JMSException jms_ex)
 {
 System.out.println("JMS Exception: " + jms_ex);
 if(jms_ex.getLinkedException() != null)
 System.out.println("Linked Exception: " + jms_ex.getLinkedException());
 t_sess.rollback();
 }
 catch (java.sql.SQLException sql_ex)
 {
 System.out.println("SQL Exception: " + sql_ex);
 sql_ex.printStackTrace();
 t_sess.rollback();
 }
 }
}

In Example 23–34, you compile the scripts.

Example 23–33 Compiling StreamsEnq.java and StreamsDeq.java

javac StreamsEnq.java StreamsDeq.java JPerson.java JAddress.java

In Example 23–35, you run the enqueue program, specifying values for ORACLE_SID,
HOST, and PORT that are appropriate for your testing environment.

Example 23–34 Running StreamsEnq

java StreamsEnq ORACLE_SID HOST PORT

The example returns:

Publish message 1 -type PERSON
Publish message 2 -type JMS TextMessage
Publish message 3 - XMLType containing LCR ROW
End of StreamsEnq Demo

In Example 23–36, you run the dequeue program, specifying values for ORACLE_SID,
HOST, and PORT that are appropriate for your testing environment.

Example 23–35 Running StreamsDeq

java StreamsDeq ORACLE_SID HOST PORT

Enqueuing and Dequeuing Messages Using JMS

23-28 Oracle Streams Advanced Queuing User’s Guide

Nonpersistent Queues A-1

A
Nonpersistent Queues

This appendix describes nonpersistent queues, which are deprecated in Oracle Streams
AQ 10g Release 2 (10.2). Oracle recommends that you use buffered messaging instead.

Oracle Streams AQ can deliver nonpersistent messages asynchronously to subscribers.
These messages can be event-driven and do not persist beyond the failure of the
system (or instance). The messages are stored in a system-created queue table. Oracle
Streams AQ supports persistent and nonpersistent messages with a common API.

Nonpersistent queues, which can be either single-consumer or multiconsumer,
provide a mechanism for notification to all currently connected users. Subscribers can
be added to multiconsumer nonpersistent queues, and nonpersistent queues can be
destinations for propagation.

You use the enqueue interface to enqueue messages into a nonpersistent queue in the
usual way. You can enqueue RAW and Oracle object type messages into a
nonpersistent queue. OCI notifications are used to deliver such messages to users that
are currently registered for notification.

This appendix contains these topics:

■ Creating Nonpersistent Queues

■ Managing Nonpersistent Queues

■ Compatibility of Nonpersistent Queues

■ Nonpersistent Queue Notification

■ Restrictions on Nonpersistent Queues

Creating Nonpersistent Queues
DBMS_AQADM.CREATE_NP_QUEUE (
 queue_name IN VARCHAR2,
 multiple_consumers IN BOOLEAN DEFAULT FALSE,
 comment IN VARCHAR2 DEFAULT NULL);

This procedure creates a nonpersistent queue.

Only local recipients are supported for nonpersistent queues. The queue can be either
single-consumer or multiconsumer. All queue names must be unique within a schema.
The queues are created in an 8.1-compatible system-created queue table (AQ$_MEM_SC
or AQ$_MEM_MC) in the same schema as that specified by the queue name. If the queue

See Also: "Buffered Messaging" on page 1-12

Managing Nonpersistent Queues

A-2 Oracle Streams Advanced Queuing User’s Guide

name does not specify a schema name, then the queue is created in the login user's
schema.

Managing Nonpersistent Queues
Once a queue is created with CREATE_NP_QUEUE, it can be enabled by calling START_
QUEUE. By default, the queue is created with both enqueue and dequeue disabled.

You can enqueue RAW and Oracle object type messages into a nonpersistent queue.
You cannot dequeue from a nonpersistent queue. The only way to retrieve a message
from a nonpersistent queue is by using the Oracle Call Interface (OCI) notification
mechanism. You cannot invoke the listen call on a nonpersistent queue.

A nonpersistent queue can be dropped only by its owner.

Compatibility of Nonpersistent Queues
For 8.1-style or higher queues, the compatible parameter of init.ora and the
compatible parameter of the queue table should be set to 8.1 or higher to use
nonpersistent queues.

Nonpersistent Queue Notification
For nonpersistent queues, the message is delivered as part of the notification.
Table A–1 shows the actions performed for nonpersistent queues for different
notification mechanisms when RAW presentation is specified. Table A–2 shows the
actions performed when XML presentation is specified.

Restrictions on Nonpersistent Queues
You can create nonpersistent queues of RAW and Oracle object type.You are limited to
sending messages only to subscribers and explicitly specified recipients who are local.

Note: Names of nonpersistent queues must not be longer than 24
characters. If you attempt to create a nonpersistent queue with a
longer name, error ORA-24019 results.

Table A–1 Actions Performed for Nonpersistent Queues When RAW Presentation Specified

Queue Payload Type OCI Callback E-mail PL/SQL Callback

RAW OCI callback receives
the RAW data in the
payload.

Not supported PL/SQL callback receives the
RAW data in the payload.

Oracle object type Not supported Not supported Not supported

Table A–2 Actions Performed for Nonpersistent Queues When XML Presentation Specified

Queue Payload Type OCI Callback E-mail PL/SQL Callback

RAW OCI callback receives
the XML data in the
payload.

XML data is formatted as a
SOAP message and e-mailed to
the registered e-mail address.

PL/SQL callback receives the
XML data in the payload.

Oracle object type OCI callback receives
the XML data in the
payload.

XML data is formatted as a
SOAP message and e-mailed to
the registered e-mail address.

PL/SQL callback receives the
XML data in the payload.

Restrictions on Nonpersistent Queues

Nonpersistent Queues A-3

Propagation is not supported from nonpersistent queues. When retrieving messages,
you cannot use the dequeue call, but must instead employ the asynchronous
notification mechanism, registering for the notification by mean of
OCISubscriptionRegister.

The visibility attribute of enqueue_options must be set to IMMEDIATE for
nonpersistent messages.

See Also: "Enqueue Options" on page 10-2

Restrictions on Nonpersistent Queues

A-4 Oracle Streams Advanced Queuing User’s Guide

Index-1

Index

Symbols
(G)V$BUFFERED_PUBLISHERS

All Buffered Publishers in the Instance, 9-9
(G)V$BUFFERED_SUBSCRIBERS

Subscribers for All Buffered Queues in the
Instance, 9-9

(G)V$PERSISTENT_PUBLISHERS
All Active Publishers of the Persistent Queues in

the Database, 9-9
(G)V$PERSISTENT_QUEUES

All Active Persistent Queues in the Database, 9-9
(G)V$PERSISTENT_SUBSCRIBERS

All Active Subscribers of the Persistent Queues in
the Database, 9-9

(G)V$PROPAGATION_RECEIVER
Buffer Queue Propagation Schedules on the

Receiving (Destination) Side, 9-10
(G)V$PROPAGATION_SENDER

Buffer Queue Propagation Schedules on the
Sending (Source) Side, 9-10

(G)V$QUEUEMETRIC
Queue Metrics for the Most Recent Interval, 9-11

(G)V$QUEUEMETRIC_HISTORY
Queue Metrics Over Past Hour, 9-11

(G)V$STREAMSMETRIC
Streams Metrics for the Most Recent

Interval, 9-10
(G)V$STREAMSMETRIC_HISTORY

Streams Metrics Over Past Hour, 9-11
(G)V$SUBSCR_REGISTRATION_STATS

Diagnosability of Notifications, 9-10

A
access

object types, 4-3
access control

destination level in JMS, 11-8
queue-level, 1-2
system level, 1-2

in JMS, 11-7
adding subscribers, 8-20
administration

Messaging Gateway, 17-3
administrative interfaces to Oracle Streams AQ

comparison, 3-6
AdtMessage

about, 11-13
creating, 15-4

agent user
creating Messaging Gateway agent, 18-4

agents
AQjms agent

creating, 15-8
Messaging Gateway

about, 17-4
configuring agent, 19-1
monitoring, 21-3
running agent on RAC, 19-5
shutting down agent, 19-3
starting agent, 19-3

alias
adding to LDAP server, 8-30
deleting from LDAP server, 8-30
parameters

alias, 8-30
obj_location, 8-30

ALL_QUEUE_SUBSCRIBERS, 9-7
ALL_QUEUE_TABLES

Queue Tables Queue Accessible to the Current
User, 9-3

ALL_QUEUES, 9-3
altering

AQ agents, 8-29
propagations, 8-26
queue tables, 8-8
queues, 8-15
subscribers, 8-22
transformations, 8-17

ANYDATA datatype
apply process, configuring, 23-6
dequeuing

examples, 22-8, 23-15
explicit, configuring, 23-10
using JMS, 22-4
using OCI, 22-4
using PL/SQL, 22-4

enqueuing
examples, 22-6, 23-13
procedures, creating, 23-4
using JMS, 22-3

Index-2

using OCI, 22-3
using PL/SQL, 22-2

message propagation, 22-5
propagation examples, 22-9, 22-12
queue table, 8-5
queues

about, 22-1
creating, 23-2

wrapper for messages, 22-2
ANYDATA.ConvertObject, 22-2
application development

about, 1-5
client/server communication, 1-6
Internet operations, 1-5
publish/subscribe, 1-10
third-party messaging, 1-5
workflows, 1-9

apply process
configuring, 23-6
query for applied messages, 23-15

AQ agents
adding to LDAP server, 10-24
altering, 8-29
creating, 8-29
dropping, 8-29
parameters

agent_name, 8-29
certificate_location, 8-29
enable_anyp, 8-29
enable_http, 8-29

removing from LDAP server, 10-25
AQ Message Properties Type, 2-5
AQ servlet

deploying, 6-4
responses using HTTP, 6-3

AQ system privilege
granting, 8-18

in JMS, 12-13
revoking, 8-19

in JMS, 12-13
AQ$_AGENT, 2-2
AQ$_AGENT_LIST_T, 2-3
AQ$_POST_INFO_LIST, 2-3
AQ$_QUEUE_TABLE_NAME_D, 8-5
AQ$_QUEUE_TABLE_NAME_E, 8-4
AQ$_QUEUE_TABLE_NAME_H, 8-4
AQ$_QUEUE_TABLE_NAME_I, 8-4
AQ$_QUEUE_TABLE_NAME_P, 8-5
AQ$_QUEUE_TABLE_NAME_S, 8-4
AQ$_QUEUE_TABLE_NAME_T, 8-4
AQ$_RECIPIENT_LIST_T, 2-3
AQ$_REG_INFO_LIST, 2-3
AQ$_SUBSCRIBER_LIST_T, 2-3
AQ$INTERNET_USERS, 9-8
AQ$QUEUE_TABLE_NAME, 9-4
AQ$QUEUE_TABLE_NAME_R, 9-7
AQ$QUEUE_TABLE_NAME_S, 9-6
AQ_ADMINISTRATOR_ROLE

and LDAP, 11-3
and registerConnectionFactory, 12-3

definition, 4-2
needed for JMS, 3-5
security, 4-2

AQ_MsgProperties, 19-26
AQ_TM_PROCESSES parameter, 2-8
AQ_USER_ROLE

definition, 4-2
needed for JMS, 3-5
security, 4-2

AQjms agent
creating, 15-8

AQXmlPublish method, 6-9
AQXmlReceive method, 6-11
AQXmlSend method, 6-9
architecture

application development, 1-5
Internet operations, 1-36, 6-1
Messaging Gateway, 17-3

arrays
dequeuing

about, 1-22
buffered messages, 10-21
demonstration, 1-38
syntax, 10-20

enqueuing
about, 1-19
demonstration, 1-38
syntax, 10-11

asynchronous notifications
about, 1-16
buffered messages, 1-17
designated port, 1-17
purge following, 1-17
RAW payload delivery, 1-16
reliability, 1-16
timeout, 1-17

asynchronous receive in JMS, 11-25

B
batch dequeuing, 10-20
batch enqueuing, 10-11
BFILE objects

propagating, 4-9
Boolean message property (JMS)

getting, 15-14
setting, 15-5

broadcasting
definition, 1-11

buffered messages
about, 1-12
dequeuing, 1-14

options, 1-14
enqueuing, 1-13
exception handling, 1-16
flow control, 1-14
listen_delivery_mode, 10-12
MSG_STATE parameter, 9-4
notification, 1-17
ordering, 1-14

Index-3

propagation, 1-14
queue-to-queue propagation, 1-15
restrictions, 1-15
tuning, 5-4
types supported, 1-13
views, 1-13
visibility, 1-14
with Messaging Gateway, 17-5
with Oracle JMS, 11-15
with Real Application Clusters, 1-15

buffered queues, 8-5
byte message property (JMS)

getting, 15-15
setting, 15-6

BytesMessage
about, 11-12
creating, 15-3
example, 16-5

C
catxlcr.sql, 22-3
CLASSPATH

Messaging Gateway, 18-10
closing

JMS Connection, 15-16
JMS Session, 15-16
message consumer, 15-16
MessageProducer, 15-16

commit
all operations in JMS Session, 15-2
transaction, 6-13

commit-time ordering
about, 1-19
example, 8-7
requirements, 8-4

compatibility
about, 4-1
and Real Application Clusters, 1-5
migrating queue tables, 8-11
nonpersistent queues, A-2
security, 4-3

concurrent processes
tuning for Oracle Streams AQ, 5-2

Connection (JMS)
creating

with default ConnectionFactory
parameters, 13-2, 14-2

with username/password, 13-1, 14-2
getting JDBC connection from JMS Session, 15-2

ConnectionFactory
getting

in LDAP, 12-8
objects, 11-2
registering

through database using JDBC connection
parameters, 12-1

through database using JDBC URL, 12-2
through LDAP using JDBC connection

parameters, 12-3

through LDAP using JDBC URL, 12-4
unregistering

in LDAP through LDAP, 12-5
in LDAP through the database, 12-5
through database, 12-5
through LDAP, 12-5

using JNDI to look up, 11-2
conversion

JMS messages, about, 20-14
message headers, 20-2
non-JMS messages, about, 20-1
TIB/Rendezvous messages, 20-10
WebSphere MQ messages, 20-6

correlation identifier
about, 1-19, 1-21
and transaction grouping, 1-23
and Virtual Private Database, 4-8
as dequeue condition, 10-14
as message property, 10-4
as MessageSelector, 11-17
dequeuing by specifying, 1-21
getting in JMS, 15-13
setting in JMS, 15-4
with queue table indexes, 5-3

creating
AQ agents, 8-29
AQjms agent, 15-8
DurableSubscriber, 14-8, 14-9, 14-10, 14-11
JMS AdtMessage, 15-4
JMS BytesMessage, 15-3
JMS Connection, 13-1, 13-2, 14-2
JMS MapMessage, 15-3
JMS Message, 15-4
JMS ObjectMessage, 15-3
JMS Session, 13-3, 14-3
JMS StreamMessage, 15-3
JMS TextMessage, 15-3
Messaging Gateway administration user, 18-4
Messaging Gateway agent user, 18-4
Messaging Gateway propagation

subscriber, 19-16
nonpersistent queues, A-1
point-to-point queue in JMS, 12-10
propagations, 8-24
publish/subscribe Topic in JMS, 12-11
queue tables, 8-1

in JMS, 12-9
QueueBrowser, 13-6, 13-7
QueueConnection, 13-2, 13-3
QueueReceiver, 13-9
queues, 8-12

in JMS, 12-10
QueueSender, 13-4
QueueSession, 13-4
subscribers, 8-20
TIB/Rendezvous link, 19-11
TopicConnection, 14-2, 14-3
TopicPublisher, 14-4
TopicSession, 14-4
transformations, 8-17

Index-4

WebSphere MQ base Java link, 19-6
WebSphere MQ JMS link, 19-7

D
data pump, 4-6
database

disabling access, 8-30
enabling access, 8-29

database connection
configuring Messaging Gateway connection

information, 18-5
Messaging Gateway, 19-2

DBA_ATTRIBUTE_TRANSFORMATIONS, 9-8
DBA_HIST_QUEUEMETRIC

Queue Metric History, 9-12
DBA_HIST_STREAMSMETRIC

Streams Metric History, 9-11
DBA_QUEUE_SCHEDULES, 9-3
DBA_QUEUE_SUBSCRIBERS, 9-7
DBA_QUEUE_TABLES

All Queue Tables in Database, 9-3
DBA_QUEUES, 9-3
DBA_SUBSCR_REGISTRATIONS

All Subscription Registrations, 9-8
DBA_TRANSFORMATIONS, 9-8
DBMS_AQ procedures

BIND_AGENT, 10-24
DEQUEUE, 10-13
DEQUEUE_ARRAY, 10-20
ENQUEUE, 10-2
ENQUEUE_ARRAY, 10-11
LISTEN, 10-12
POST, 10-23
REGISTER, 10-22
UNBIND_AGENT, 10-25
UNREGISTER, 10-23

DBMS_AQADM procedures
ADD_ALIAS_TO_LDAP, 8-30
ADD_SUBSCRIBER, 8-20
ALTER_AQ_AGENT, 8-29
ALTER_PROPAGATION_SCHEDULE, 8-26
ALTER_QUEUE, 8-15
ALTER_QUEUE_TABLE, 8-8
ALTER_SUBSCRIBER, 8-22
CREATE_AQ_AGENT, 8-29
CREATE_NP_QUEUE, A-1
CREATE_QUEUE, 8-12
CREATE_QUEUE_TABLE, 8-1
CREATE_TRANSFORMATION, 8-17
DEL_ALIAS_FROM_LDAP, 8-30
DISABLE_DB_ACCESS, 8-30
DISABLE_PROPAGATION_SCHEDULE, 8-27
DROP_AQ_AGENT, 8-29
DROP_QUEUE, 8-16
DROP_QUEUE_TABLE, 8-9
DROP_TRANSFORMATION, 8-18
ENABLE_DB_ACCESS, 8-29
ENABLE_JMS_TYPES, 22-3
ENABLE_PROPAGATION_SCHEDULE, 8-27

GRANT_QUEUE_PRIVILEGE, 8-19
GRANT_SYSTEM_PRIVILEGE, 8-18
MIGRATE_QUEUE_TABLE, 8-11
MODIFY_TRANSFORMATION, 8-17
PURGE_QUEUE_TABLE, 8-9
REMOVE_SUBSCRIBER, 8-23
REVOKE_QUEUE_PRIVILEGE, 8-20
REVOKE_SYSTEM_PRIVILEGE, 8-19
SCHEDULE_PROPAGATION, 8-24
START_QUEUE, 8-15
STOP_QUEUE, 8-16
UNSCHEDULE_PROPAGATION, 8-28
VERIFY_QUEUE_TYPES, 1-31, 8-26

DBMS_AQ.BUFFERED, 10-12
DBMS_AQIN, 12-1
DBMS_AQ.PERSISTENT, 10-12
DBMS_AQ.PERSISTENT_OR_BUFFERED, 10-12
DBMS_MGWADM package

about, 17-3
ADD_SUBSCRIBER, 19-16, 19-26
ALTER_AGENT, 19-3
ALTER_MSGSYSTEM_LINK, 19-11, 19-23
ALTER_SUBSCRIBER, 19-26
CREATE_MSGSYSTEM_LINK, 19-6, 19-7, 19-11,

19-23
DB_CONNECT_INFO, 18-5, 19-2
DISABLE_PROPAGATION_SCHEDULE, 19-16
DOMAIN_QUEUE, 19-13
DOMAIN_TOPIC, 19-13
ENABLE_PROPAGATION_SCHEDULE, 19-16
JMS_CONNECTION, 19-7
JMS_QUEUE_CONNECTION, 19-7
JMS_TOPIC_CONNECTION, 19-7
MQSERIES_BASE_JAVA_INTERFACE, 19-6
REGISTER_FOREIGN_QUEUE, 19-13, 19-25
REMOVE_MSGSYSTEM_LINK, 19-12
RESET_SUBSCRIBER, 19-17
SHUTDOWN, 19-3
STARTUP, 19-3
UNREGISTER_FOREIGN_QUEUE, 19-14

DBMS_MGWMSG.LCR_TO_XML, 20-4
DBMS_RULE_ADM.GRANT_SYSTEM_

PRIVILEGE, 23-2
DBMS_STREAMS_ADM.SET_UP_QUEUE, 22-3,

23-2
DBMS_TRANSFORM.CREATE_

TRANSFORMATION, 22-11
delays

during dequeuing, 1-24
specifying in JMS, 11-22

demonstrations
about, 1-37
Oracle Streams AQ, 1-37
Oracle Streams AQ JMS, 1-38
Oracle Streams AQ XML, 1-39

dequeue condition
and Virtual Private Database, 4-8
with queue table indexes, 5-3

dequeuing
ANYDATA queues

Index-5

examples, 22-8, 23-15, 23-16
using JMS, 22-4
using OCI, 22-4
using PL/SQL, 22-4

buffered messages, 1-14
by multiple consumers, 1-7
concurrent processes, 1-21
demonstration, 1-37
features, 1-20
IDAP client request, 6-11
IDAP server response to request, 6-14
message arrays, 1-22, 10-20
message states, 1-22
messages, 10-13
methods, 1-21
modes

about, 1-21
navigation of messages, 1-23
options, 10-13

buffered messages, 1-14
parameters

array_size, 10-20
dequeue_options, 10-13, 10-20

retries with delays, 1-24
transaction protection, 1-25
waiting for messages, 1-23

destination (JMS)
altering, 12-17
dropping, 12-17
starting, 12-16
stopping, 12-16

disabling
database access, 8-30
propagations, 8-27

double message property (JMS)
getting, 15-14
setting, 15-6

dropping
AQ agents, 8-29
propagations, 8-28
queue tables, 8-9
queues, 8-16
transformations, 8-18

DurableSubscriber
about, 11-18
creating

for JMS Topic, 14-8, 14-9
for Oracle object type Topic, 14-10, 14-11

unsubscribing
for a local subscriber, 14-16
for a remote subscriber, 14-17

E
e-mail notification, 6-16

demonstration, 1-38
enabling

database access, 8-29
propagations, 8-27

enqueuing

ANYDATA queues
examples, 22-6, 23-13, 23-16
procedures, creating, 23-4
using JMS, 22-3
using OCI, 22-3
using PL/SQL, 22-2

buffered messages, 1-13
client request for, 6-9
correlation identifier, 1-19
demonstration, 1-37
features, 1-18
IDAP client request, 6-9
IDAP server response to request, 6-14
message array, 1-19, 10-11
message expiration, 1-20
message grouping, 1-20
message properties, 10-3
messages, 10-2
options, 10-2
parameters

array_size, 10-11
enqueue_options, 10-2
message_properties, 10-2
message_properties_array, 10-11
payload, 10-2
payload_array, 10-11

priority and ordering of messages, 1-19
sender identification, 1-20

enumerated constants
about, 2-6
delay, 2-7
delivery_mode, 2-7
dequeue mode, 2-7
expiration, 2-7
message_grouping, 2-7
namespace, 2-7
navigation, 2-7
operational interface, 2-7
queue_type, 2-7
retention, 2-7
state, 2-7
visibility, 2-7
wait, 2-7

environment variables
CLASSPATH, 18-10
Messaging Gateway, 18-10
MGW_PRE_PATH, 18-10
ORACLE_SID, 18-10

error conditions
Messaging Gateway, 21-7

error handling
error messages, 7-2
IDAP, 6-15
propagations, 1-31

error messages, 7-2
Messaging Gateway, 21-4
Messaging Gateway agent, 21-9

errors (JMS)
getting codes, 15-17
getting number, 15-17

Index-6

event journals, 1-35
exception (JMS)

exception linked to a JMS exception,
getting, 15-17

exception listener
getting, 15-18
setting, 15-17

printing stack trace, 15-17
exception handling

buffered messages, 1-16
exception queues, 1-25, 11-25
Messaging Gateway, 21-3
propagations in JMS, 11-28

exception queues
about, 1-25
in JMS, 11-25

expiration
setting during enqueuing, 1-20
specifying in JMS, 11-22

exporting
queue tables

about, 4-4
data pump, 4-6
modes, 4-5
multiple recipients, 4-4

F
float message property (JMS)

getting, 15-15
setting, 15-6

flow control
about, 1-14

G
getting (JMS)

ConnectionFactory, 12-6
correlation identifier, 15-13
error codes, 15-17
error numbers, 15-17
exceptions, 15-17
JDBC connection, 15-2
JMS Connection, 15-2
message identifier, 15-13
OracleOCIConnectionPool, 15-2
Queue in LDAP, 12-9
queue table, 12-10
QueueConnectionFactory, 12-6

in LDAP, 12-8
with JDBC connection parameters, 12-7
with JDBC URL, 12-6

Topic in LDAP, 12-9
TopicConnectionFactory, 12-6

with JDBC connection parameters, 12-8
with JDBC URL, 12-7

GLOBAL_AQ_USER_ROLE
and registerConnectionFactory, 11-3, 12-3

granting
AQ system privilege, 8-18

in JMS, 12-13

queue privilege, 8-19
in JMS, 12-14

Topic privilege in JMS, 12-14
grouping

messages, 1-20
GV$AQ, 11-9

H
HTTP

AQ operations over, 6-1
AQ servlet responses, 6-3
client requests, 6-3
headers, 6-8
propagation, 6-4
propagation using, 1-33
response, 6-9
transactions, 6-3
user sessions, 6-3

I
IDAP

client request
commit transaction, 6-13
dequeue, 6-11
enqueue, 6-9
registration, 6-13
roll back transaction, 6-14

error handling, 6-15
message, 6-9
notification, 6-15
request and response documents, 6-9
server response

commit transaction, 6-15
dequeue request, 6-14
enqueue request, 6-14
register request, 6-15
roll back transaction, 6-15

importing
queue tables

about, 4-5
data pump, 4-6
IGNORE parameter, 4-5
multiple recipients, 4-5

inboxes, 1-28
indexes

tuning for Oracle Streams AQ, 5-3
initialization parameters

Messaging Gateway, 18-9
INIT.ORA parameter, 2-8
integer message property (JMS)

getting, 15-14
setting, 15-5

interfaces to Oracle Streams AQ
about, 1-37
administrative, 3-6
AQ XML servlet, 3-6
comparison, 3-1, 3-6
JMS, 3-4
OCCI, 3-3

Index-7

OCI, 3-3
OCI security, 4-3
OO4O, 3-3
operational, 3-7
PL/SQL, 3-2

Internet Data Access Presentation
about, 6-7

Internet operations
and application development, 1-5
AQ servlet responses, 6-3
architecture, 1-36, 6-1
client requests, 6-3
deploying AQ servlet, 6-4
IDAP client request

commit transaction, 6-13
dequeue, 6-11
enqueue, 6-9
registration, 6-13
roll back transaction, 6-14

IDAP errors, 6-15
IDAP notification, 6-15
IDAP request and response documents, 6-9
IDAP server response

commit transaction, 6-15
dequeue request, 6-14
enqueue request, 6-14
register request, 6-15
roll back transaction, 6-15

Internet Data Access Presentation, 6-7
JMS types, 6-2
notification by e-mail, 6-16
object type queues, 6-2
payloads, 6-2
propagation, 6-4
RAW queues, 6-2
SOAP

body, 6-7
envelope, 6-7
message structure, 6-7
method invocation, 6-8

transactions, 6-3
user authentication, 6-3
user sessions, 6-3

I/O
configuring for Oracle Streams AQ, 5-2

J
J2EE compliance, 11-29
Java properties

Messaging Gateway, 18-11
oracle.mgw.batch_size, 18-11
oracle.mgw.polling_interval, 18-11
oracle.mgw.tibrv.advMsgCallback, 18-12
oracle.mgw.tibrv.encoding, 18-11
oracle.mgw.tibrv.intraProcAdvSubjects, 18-12

JDBC connection
getting from JMS Session, 15-2
registering ConnectionFactory using JDBC

parameters through the database, 12-1

using to register ConnectionFactory through
LDAP, 12-3

JDBC OCI driver
needed for JMS, 3-5

JDBC thin driver
needed for JMS, 3-5

JDBC URL
registering ConnectionFactory using JDBC URL

through LDAP, 12-4
registering through the database, 12-2

JMS
about, 11-1
and Real Application Clusters, 11-8
ANYDATA messages

dequeuing, 23-16
enqueuing, 23-16

asynchronous receive, 11-25
buffered messages, 11-15
Connection, 11-1
exception queues, 11-25
J2EE compliance, 11-29
JDBC OCI driver needed, 3-5
JDBC thin driver needed, 3-5
message bodies, 11-12
message consumer features, 11-22
message headers, 11-9
message properties, 11-10
message types, 11-9
MessageProducer features, 11-21
point-to-point features, 11-16
propagation schedules, 12-17
publish/subscribe features, 11-17
queue tables

creating, 12-9
getting, 12-10

queues. creating, 12-10
recipient lists, 11-19
Session, 11-1
statistics views support, 11-9
structured payloads, 11-9
troubleshooting, 15-17

JMS Connection
about, 11-3
closing, 15-16
getting, 15-2
getting OracleOCIConnectionPool from, 15-2
starting, 15-2
stopping, 15-16

JMS correlation identifier
setting, 15-4

JMS Destination
about, 11-6
managing, 12-16
methods, 11-7
using JMS Session to obtain, 11-6
using JNDI to look up, 11-7

JMS examples
BytesMessage, 16-5
MapMessage, 16-15
setting up, 16-1

Index-8

StreamMessage, 16-10
TextMessage, 16-21

JMS message property
Boolean, 15-5, 15-14
byte, 15-6, 15-15
double, 15-6, 15-14
float, 15-6, 15-15
integer, 15-5, 15-14
long, 15-6, 15-15
object, 15-7, 15-15
short, 15-7, 15-15
string, 15-5, 15-14

JMS messages
browsing, 11-24

with a TopicBrowser, 14-22
correlation identifier, 15-13
creating

AdtMessage, 15-4
BytesMessage, 15-3
JMS Message, 15-4
MapMessage, 15-3
ObjectMessage, 15-3
StreamMessage, 15-3
TextMessage, 15-3

delay, specifying, 11-22
expiration, specifying, 11-22
grouping, 11-22
message consumer, closing, 15-16
message identifier, 15-13
message listener

specifying at JMS Session, 15-13
specifying at message consumer, 15-12

message property
getting, 15-13
setting, 15-4

MessageProducer, closing, 15-16
navigating in receive, 11-23
navigation mode for receiving, specifying, 15-11
Priority

setting default, 15-8
priority and ordering, 11-21
propagation with Messaging Gateway

inbound, 20-15
outbound, 20-15

publishing
specifying a recipient list, 14-7
specifying delivery mode, priority, and time to

live, 14-6
specifying Topic, 14-5
with minimal specification, 14-4

QueueBrowser for, creating, 13-6, 13-7
QueueReceiver for, creating, 13-9
receiving

about, 11-23
asynchronously, 15-12, 15-13
from a destination using a

transformation, 15-10
synchronously, 15-8, 15-10
with a message consumer, 15-8, 15-10

remote subscribers for, creating, 14-13

remove no data, 11-24
retry with delay, 11-24
sending using a QueueSender, 13-4, 13-5
TimeToLive

setting default, 15-7
TopicBrowser for, creating, 14-19, 14-20
TopicReceiver for, creating, 14-17, 14-18
transformation with JMS AQ, 11-29

JMS propagations
about, 11-26
altering, 12-19
disabling, 12-19
enabling, 12-18
exception handling, 11-28
RemoteSubscriber, 11-26
scheduling, 11-26, 12-18
unscheduling, 12-20

JMS publish/subscribe
setting up, 11-20

JMS Session
about, 11-5
closing, 15-16
committing all operations, 15-2
creating, 13-3, 14-3
getting JDBC connection from, 15-2
rolling back all operations, 15-2
specifying message listener, 15-13
using to obtain Destination object, 11-6

JMS type queues/topics, 6-2
JMS types

ANYDATA queues, 22-3
Internet operations, 6-2

JMS_DeliveryMode, 19-26
JMS_NoLocal, 19-27
JNDI

using to look up ConnectionFactory objects, 11-2
using to look up Destination object, 11-7

JOB_QUEUE_PROCESSES, 4-9

L
LDAP

and AQ_ADMINISTRATOR_ROLE, 11-3
queue/topic connection factory, 12-8
registering ConnectionFactory, 12-4
unregistering ConnectionFactory, 12-5

LDAP server
adding alias, 8-30
adding AQ agents, 10-24
deleting alias, 8-30
removing AQ agents, 10-25

links
altering, 19-11
configuring Messaging Gateway links, 19-5
MGW_LINKS view, 19-12
MGW_MQSERIES_LINK view, 19-12
MGW_TIBRV_LINKS view, 19-12
removing, 19-12
TIB/Rendezvous, creating, 19-11
WebSphere MQ base Java, creating, 19-6

Index-9

WebSphere MQ JMS, creating, 19-7
listener.ora

modifying for Messaging Gateway, 18-2, 18-3
modifying for TIB/Rendezvous, 18-7
modifying for WebSphere MQ, 18-7

listening
about, 1-23
application development, 1-11
demonstration, 1-37
parameters

agent_list, 10-12
listen_delivery_mode, 10-12
wait, 10-12

syntax, 10-12
LOBs

propagation, 1-30
log file

Messaging Gateway, 21-1
log_directory, 18-9
log_level, 18-9
logical change records

Messaging Gateway, 20-4
long message property (JMS)

getting, 15-15
setting, 15-6

M
managing

nonpersistent queues, A-2
propagations, 4-8, 8-23
queue tables, 8-1
queues, 8-12
subscribers, 8-20
transformations, 8-16

MapMessage
about, 11-13
creating, 15-3
example, 16-15

message headers
conversion with Messaging Gateway, 20-2
WebSphere MQ mappings, 20-6

message identifier
about, 1-21
and transaction grouping, 1-23
getting in JMS, 15-13

message properties
TIB/Rendezvous, 20-12
using with message types in JMS, 11-14

message types in JMS
about, 11-9
AdtMessage, 11-13
BytesMessage, 11-12
MapMessage, 11-13
ObjectMessage, 11-13
StreamMessage, 11-12
TextMessage, 11-13

MessageListener, 11-25
MessageProducer

closing, 15-16

features, 11-21, 11-29
setting default Priority, 15-8
setting default TimeToLive, 15-7

messages
array dequeuing, 1-22, 10-20
array enqueuing, 1-19, 10-11
bodies in JMS, 11-12
browsing in JMS, 11-24, 14-22
correlation identifier

about, 1-21
correlation identifiers, 1-19

in JMS, 15-13
creating in JMS, 15-3, 15-4
creating remote subscribers in JMS, 14-14
delay, specifying in JMS, 11-22
dequeuing

features, 1-20
methods, 1-21
modes, 1-21
syntax, 10-13
using JMS, 23-16
with concurrent processes, 1-21

enqueuing
features, 1-18
options, 10-2
syntax, 10-2
using JMS, 23-16

exception queues, 1-25
expiration

about, 1-20
specifying in JMS, 11-22

format transformations, 1-33
grouping, 1-20

in JMS, 11-22
header conversion with Messaging

Gateway, 20-2
headers in JMS, 11-9
history and retention in JMS, 11-8
identifier

about, 1-21
JMS message conversion, 20-14
JMS message property

getting, 15-13
JMS message property, setting, 15-4
message consumer in JMS, closing, 15-16
message identifier in JMS, 15-13
MessageProducer in JMS, closing, 15-16
navigating in JMS, 11-23
navigation during dequeuing, 1-23
navigation in receive, 11-23
navigation mode, specifying in JMS, 15-11
non-JMS message conversion, 20-1
nonrepudiation, 1-35
object type support, 1-3
ordering

buffered messages, 1-14
ordering during propagation, 1-28
payload restrictions, 4-7
persistence

for security, 1-3

Index-10

metadata analysis, 1-3
scheduling, 1-3

priority and ordering, 1-19
in JMS, 11-21

priority during propagation, 1-28
Priority, setting in JMS, 15-8
propagation

ANYDATA, 22-5
errors, 1-31
features, 1-26
inboxes and outboxes, 1-28
LOBs, 1-30
remote consumers, 1-27
scheduling, 1-29
statistics, 1-30
using HTTP, 1-33
with RAC, 1-32

properties, 10-3
in JMS, 11-10

publishing in JMS, 14-4, 14-5, 14-6, 14-7
QueueBrowser for, creating, 13-6, 13-7
QueueReceiver for, creating, 13-9
receiving in JMS, 11-23
receiving synchronously in JMS, 15-8, 15-10
recipients

about, 1-8
remote subscirbers, creating in JMS, 14-13
remove no data in JMS, 11-24
retention and history, 1-35
retries during dequeuing, 1-24
retry with delay in JMS, 11-24
sender identification, 1-20
sending in JMS, 13-4, 13-5
states during dequeuing, 1-22
third-party propagation support, 1-32
TIB/Rendezvous conversion, 20-10
TimeToLive, setting in JMS, 15-7
TopicBrowser for, creating, 14-19, 14-20, 14-21
TopicReceiver for, creating, 14-17, 14-18
tracking, 1-35
transaction protection, 1-25
transformations, 1-33

in JMS, 11-29
using types with properties in JMS, 11-14
waiting during dequeuing, 1-23
WebSphere MQ conversion, 20-6
XML transformations, 1-33

MessageSelector
about, 11-17

Messaging Gateway
about, 17-1
administration, 17-3
administration user

creating, 18-4
agent

about, 17-4
configuring, 19-1
error messages, 21-9
shutting down, 19-3
starting, 19-3

agent user
creating, 18-4

and JMS, 17-1
and non-Oracle messaging systems, 17-4
architecture, 17-3
buffered messages, 17-5
canonical types, 20-2
database connection, 19-2
database connection information,

configuring, 18-5
environment variables, 18-10
error conditions, 21-7
error messages, 21-4
exception handling, 21-3
features, 17-1
in a RAC environment, 18-5
initialization file, 18-3

about, 18-9
initialization parameters, 18-9
integration with Oracle Database, 17-4
Java properties, 18-11
links

altering, 19-11
loading, 18-1
log file, 21-1
logical change records, 20-4
message conversion (JMS), 20-14
message conversion (non-JMS), 20-1
messaging system links

configuring, 19-5
modifying listener.ora, 18-2, 18-3
monitoring agent status, 21-3
non-Oracle messaging

configuration properties, 19-20
optional link configuration properties, 19-23

non-Oracle messaging queues
configuring, 19-12

non-Oracle queue
unregistering, 19-14

optional foreign queue configuration
properties, 19-25

optional subscriber configuration
properties, 19-26

propagation, 17-4
propagation disabling, 19-16
propagation enabling, 19-16
propagation resetting, 19-17
propagation schedule

removing, 19-17
propagation subscriber

creating, 19-16
removing, 19-17

propagation subscribers, 19-15
propagations, 19-14

monitoring, 21-8
registering non-Oracle queue, 19-13
removing a link, 19-12
resource limits, 19-3
running agent on RAC, 19-5
setting up for TIB/Rendezvous, 18-7

Index-11

setting up for WebSphere MQ, 18-7
setting up third-party messaging, 18-6
setup

procedure, 18-1
verifying, 18-8

unloading, 18-8
view for non-Oracle queues, 19-14
views, 21-3
views for links, 19-12

Messaging Gateway user
and MGW_AGENT_ROLE, 18-4

MGW_ADMINISTRATOR_ROLE
and Messaging Gateway administration

user, 18-4
creating, 18-2

MGW_AGENT_OPTIONS
Supplemental Options and Properties, 9-14

MGW_AGENT_ROLE, 19-2
and Messaging Gateway user, 18-4
creating, 18-2

MGW_BASIC_MSG_T, 20-2
MGW_FOREIGN_QUEUES, 19-14

Foreign Queues, 9-16
MGW_GATEWAY, 19-3, 21-3

Configuration and Status Information, 9-13
MGW_JOBS

Messaging Gateway Propagation Jobs, 9-16
MGW_LINKS, 19-12

Names and Types of Messaging System
Links, 9-14

MGW_MQSERIES_LINK, 19-12
MGW_MQSERIES_LINKS

WebSphere MQ Messaging System Links, 9-15
MGW_PRE_PATH, 18-10
MGW_SCHEDULES

Information about Schedules, 9-19
MGW_SUBSCRIBERS

Information for Subscribers, 9-18
MGW_TIBRV_LINKS, 19-12

TIB/Rendezvous Messaging System Links, 9-15
MGW_TIBRV_MSG_T, 20-2
mgw.ora

about, 18-9
comment lines, 18-12
environment variables, 18-10
Java properties, 18-11
modifying for TIB/Rendezvous, 18-7
modifying for WebSphere MQ, 18-8
parameters, 18-9
setting up, 18-3

migrating
queue tables, 8-11

modifying
listener.ora for Messaging Gateway, 18-2, 18-3
transformations, 8-17

monitoring
Messaging Gateway, 21-1

propagations, 21-8
Messaging Gateway agent status, 21-3

MQ_BrokerControlQueue, 19-23

MQ_BrokerPubQueue, 19-23
MQ_BrokerQueueManager, 19-24
MQ_BrokerVersion, 19-24
MQ_ccsid, 19-24
MQ_CharacterSet, 19-26
MQ_JmsDurSubQueue, 19-24, 19-26
MQ_JmsTargetClient, 19-26
MQ_openOptions, 19-26
MQ_PubAckInterval, 19-24
MQ_ReceiveExit, 19-24
MQ_ReceiveExitInit, 19-24
MQ_SecurityExit, 19-24
MQ_SecurityExitInit, 19-25
MQ_SendExit, 19-25
MQ_SendExitInit, 19-25
MsgBatchSize, 19-27
multicasting

definition, 1-11
multiconsumer dequeuing, 1-7

N
names

queue tables
length, 8-2
mixed case, 8-2

queues
length, 8-13
mixed case, 8-13

navigation
during dequeuing, 1-23
modes

FIRST_MESSAGE, 1-23
NEXT_MESSAGE, 1-23
NEXT_TRANSACTION, 1-23

specifying mode in JMS, 15-11
nonpersistent queues

compatibility, A-2
creating, A-1
managing, A-2
notifications, A-2
restrictions, A-2

nonrepudiation
about, 1-35

notifications
about, 1-16
buffered messages, 1-17
designated port, 1-17
e-mail, 6-16
IDAP, 6-15
nonpersistent queues, A-2
parameters

post_count, 10-23
post_list, 10-23
reg_count, 10-22
reg_list, 10-22

posting, 10-23
purge following, 1-17
RAW payload delivery, 1-16
registering, 10-22

Index-12

reliability, 1-16
timeout, 1-17
unregistering, 10-23

O
object message property (JMS)

getting, 15-15
setting, 15-7

object types
access, 4-3
support for, 1-3
synonyms, 4-8

object_name, 2-1
ObjectMessage

about, 11-13
creating, 15-3

OCCI
interface to Oracle Streams AQ, 3-3
Oracle type translator, 3-3

OCI
interface to Oracle Streams AQ, 3-3
Oracle type translator, 3-3

OO4O
interface to Oracle Streams AQ, 3-3

operational interfaces to Oracle Streams AQ, 3-7
options

dequeuing, 10-13
enqueuing, 10-2

Oracle AQ Views, 9-1
Oracle Enterprise Manager

and Oracle Streams AQ, 1-35
support for, 4-6

Oracle Internet Directory
and Oracle Streams AQ, 1-34
Oracle Streams AQ integration, 1-4

Oracle JMS
about, 11-1

Oracle Messaging Gateway Views, 9-2
Oracle object (ADT) type queues

Internet operations, 6-2
Oracle Real Application Clusters

and JMS, 11-8
message propagation, 1-32

Oracle type translator, 3-3
ORACLE_SID

Messaging Gateway, 18-10
oracle.mgw.batch_size, 18-11
oracle.mgw.polling_interval, 18-11
oracle.mgw.tibrv.advMsgCallback, 18-12
oracle.mgw.tibrv.encoding, 18-11
oracle.mgw.tibrv.intraProcAdvSubjects, 18-12
OracleOCIConnectionPool

getting from JMS Connection, 15-2
ordering

commit-time, 1-19
during propagation, 1-28
messages in JMS, 11-21
specifying during enqueuing, 1-19

outboxes, 1-28

P
parameters

admin_option, 8-18
agent_list, 10-12
agent_name, 8-29
alias, 8-30
AQ_TM_PROCESSES, 2-8
array_size, 10-11, 10-20
attempts, 10-4
attribute_number, 8-17
certificate, 10-24
certificate_location, 8-29
comment, 8-2, 8-13
compatibility, 4-1
compatible, 8-3
consumer_name, 10-13
correlation, 10-4, 10-14
db_username, 8-29
delay, 10-3
delivery_mode, 8-20, 10-3, 10-4, 10-15
deq_condition, 10-14
dequeue, 8-15, 8-16
dequeue_mode, 10-13
dequeue_options, 10-13, 10-20
dest_queue_name, 8-26
destination, 8-24, 8-26
destination_queue, 8-24
duration, 8-24
enable_anyp, 8-29
enable_http, 8-29
enqueue, 8-15, 8-16
enqueue_options, 10-2
enqueue_time, 10-4
exception_queue, 10-4
expiration, 10-4
from_schema, 8-17
from_type, 8-17
grant_option, 8-19
grantee, 8-18
latency, 8-24
listen_delivery_mode, 10-12
log_directory, 18-9
log_level, 18-9
max_retries, 8-13
message_grouping, 8-2
message_properties, 10-2
message_properties_array, 10-11
MSG_STATE, 9-4
msgid, 10-14
multiple_consumers, 8-2
name, 10-24
namespace, 10-24
navigation, 10-13
next_time, 8-24
obj_location, 8-30
original_msgid, 10-5
OWNER_INSTANCE, 1-15
payload, 10-2, 10-24
payload_array, 10-11
post_count, 10-23

Index-13

post_list, 10-23
primary_instance, 8-2
priority, 10-3
purge_condition, 8-10
purge_options, 8-10
queue_name, 8-13
queue_payload_type, 8-2
queue_table, 8-2, 8-13
queue_to_queue, 8-20
queue_type, 8-13
recipient_list, 10-4
reg_count, 10-22
reg_list, 10-22
relative_msgid, 10-3
REMOTE_LISTENER, 1-15
retention_time, 8-13
retry_delay, 8-13
rule, 8-20
secondary_instance, 8-2
secure, 8-3
sender_id, 10-5
sequence_deviation, 10-3
sort_list, 8-2
src_queue_name, 8-26
start_time, 8-24
state, 10-5
storage_clause, 8-2
streams_pool_size, 1-13
to_schema, 8-17
to_type, 8-17
transaction_group, 10-5
transformation, 8-17, 8-20, 10-15
user_property, 10-5
visibility, 10-2, 10-14
wait, 10-12, 10-14

payloads
ANYDATA wrappers for, 22-2
Internet operations, 6-2
restrictions, 4-7
structured, 1-4
transformations with Messaging Gateway, 20-2
XMLType, 1-4

performance
about, 1-2
buffered messages, 5-4
concurrent processes, 5-2
configuring I/O, 5-2
Oracle Streams AQ and RAC, 5-1
persistent messaging, 5-1
propagation tuning, 5-4
queue table indexes, 5-3
serial processes, 5-3
shared servers, 5-2
storage parameters, 5-2

persistent messaging
compared to buffered, 1-12
performance, 5-1
tuning, 5-2

point-to-point messages
about, 11-16

port
designated for notification, 1-17

posting for notification, 10-23
PreserveMessageID, 19-27
priority

during propagation, 1-28
specifying during enqueuing, 1-19

Priority (JMS)
about, 11-21
setting for all messages from a

MessageProducer, 15-8
privileges

AQ system privilege
granting, 8-18
granting in JMS, 12-13
revoking, 8-19
revoking in JMS, 12-13

DBMS_AQIN, 12-1
parameters

admin_option, 8-18
grant_option, 8-19
grantee, 8-18

queue privilege
granting, 8-19
granting in JMS, 12-14
revoking, 8-20
revoking in JMS, 12-15

required for propagation, 4-8
security, 4-3
SELECT_ANY_DICTIONARY, 23-2
Topic privileges

granting in JMS, 12-14
revoking in JMS, 12-14

programmatic interfaces
about, 1-37
ANYDATA queues, 22-2
AQ XML servlet, 3-6
comparison, 3-1, 3-6
JMS, 3-4
OCCI, 3-3
OCI, 3-3
OCI security, 4-3
OO4O, 3-3
PL/SQL, 3-2

propagations
about, 1-26

in JMS, 11-26
altering, 8-26

in JMS, 12-19
ANYDATA queues

about, 22-5
examples, 22-9, 22-12

BFILE objects, 4-9
buffered messages, 1-14
creating, 8-24
debugging, 7-1
disabling, 8-27

in JMS, 12-19
with Messaging Gateway, 19-16

dropping, 8-28

Index-14

enabling, 8-27
in JMS, 12-18
with Messaging Gateway, 19-16

error handling, 1-31
in JMS, 11-28

features, 1-26
inboxes and outboxes, 1-28
JMS messages with Messaging Gateway

inbound, 20-15
outbound, 20-15

managing, 4-8, 8-23
messages with LOBs, 1-30
Messaging Gateway

configuring for, 19-14
monitoring, 21-8
resetting with, 19-17
subscribers, about, 19-15
subscribers, creating, 19-16
subscribers, removing, 19-17

optimizing, 4-9
parameters

destination, 8-24
destination_queue, 8-24
duration, 8-24
latency, 8-24
next_time, 8-24
start_time, 8-24

priority and ordering of messages, 1-28
privileges required, 4-8
queue-to-dblink

about, 1-27
scheduling, 1-29
with RAC, 1-32

queue-to-queue
about, 1-27
buffered messages, 1-15
scheduling, 1-29
with RAC, 1-32

remote consumers
about, 1-27

schedules
about, 1-29
altering, 1-30
creating syntax, 8-24
in JMS, 11-26, 12-17
removing with Messaging Gateway, 19-17

scheduling
in JMS, 12-18

security, 4-4
statistics, 1-30
third-party support, 1-32
TIB/Rendezvous, 20-12, 20-13
tuning, 5-4
unscheduling, 8-28

in JMS, 12-20
using HTTP, 1-33, 6-4
using HTTP and HTTPS, 6-4
WebSphere MQ, 20-9
with Messaging Gateway, 17-4
with RAC, 1-32

publishing JMS messages
specifying a recipient list, 14-7
specifying delivery mode, priority, and time to

live, 14-6
specifying Topic, 14-5
with minimal specification, 14-4

publish/subscribe, 11-17
about, 1-10
setting up, 1-11, 11-20

purge
following notification, 1-17

purging
queue tables, 8-9

Q
Queue (JMS)

getting in LDAP, 12-9
queue monitor coordinator, 1-34
queue privilege

granting, 8-19
in JMS, 12-14

revoking, 8-20
in JMS, 12-15

queue tables
altering, 8-8
creating, 8-1

in JMS, 12-9
data pump, 4-6
dropping, 8-9
export

modes, 4-5
exporting

about, 4-4
getting in JMS, 12-10
importing

about, 4-4, 4-5
IGNORE parameter, 4-5
multiple recipients, 4-5

managing, 8-1
migrating, 8-11
multiple recipients

exporting, 4-4
names

length, 8-2
mixed case, 4-1, 8-2

parameters
comment, 8-2
compatible, 8-3
message_grouping, 8-2
multiple_consumers, 8-2
primary_instance, 8-2
queue_payload type, 8-2
queue_table, 8-2
secondary_instance, 8-2
secure, 8-3
sort_list, 8-2
storage_clause, 8-2

payload types, 8-3
purging, 8-9

Index-15

restrictions, 4-8
security, 8-3
sort key, 8-4
storage clause, 8-3
tuning indexes for performance, 5-3

QUEUE_PRIVILEGES, 9-3
QueueBrowser

about, 11-17
creating for Oracle object type messages, 13-7
creating for standard JMS type messages, 13-6,

13-7
QueueConnection

creating with default ConnectionFactory
parameters, 13-3

creating with open JDBC connection, 13-2
creating with open

OracleOCIConnectionPool, 13-3
creating with username/password, 13-2

QueueConnectionFactory
getting

in LDAP, 12-8
getting with JDBC connection parameters, 12-7
getting with JDBC URL, 12-6
registering

through database using JDBC connection
parameters, 12-1

through database using JDBC URL, 12-2
through LDAP using JDBC connection

parameters, 12-3
through LDAP using JDBC URL, 12-4

unregistering
through database, 12-5
through LDAP, 12-5

QueueReceiver
about, 11-16
creating for Oracle object type messages, 13-9
creating for standard JMS type messages, 13-9

queues
altering, 8-15
ANYDATA

about, 22-1
creating, 23-2
JMS types supported, 22-3
programmatic interfaces, 22-2
propagation, 22-5

cleaning up, 1-35
creating, 8-12

in JMS, 12-10
dropping, 8-16
exception, 1-25

in JMS, 11-25
listening, 10-12
management restrictions, 4-7
managing, 8-12
monitor coordinator, 1-34
names

length, 8-13
mixed case, 4-1, 8-13

non-Oracle
configuring, 19-12

registering, 19-13
nonpersistent, A-1

compatibility, A-2
managing, A-2
notifications, A-2
restrictions, A-2

parameters
comment, 8-13
dequeue, 8-15, 8-16
enqueue, 8-15, 8-16
max_retries, 8-13
queue_name, 8-13
queue_table, 8-13
queue_type, 8-13
retention_time, 8-13
retry_delay, 8-13

point-to-point
creating in JMS, 12-10

restrictions, 4-7, 4-8
secure, 10-2
security, 4-3
starting, 8-15
stopping, 8-16
subscribers

about, 1-7
type, verifying, 8-26

QueueSender
about, 11-16
creating, 13-4
sending messages and specifying options, 13-5
sending messages with default options, 13-4

QueueSession
creating, 13-4

queue/topic connection factory
getting in LDAP, 12-8

queuing
and Oracle Database, 1-2
definition, 1-1

R
RAC

buffered messages, 1-15
configuring Messaging Gateway, 18-5
performance with Oracle Streams AQ, 5-1
queue service name, 1-15
running Messaging Gateway agent, 19-5

RAW
payload delivery with notification, 1-16
using RAW queues for Internet operations, 6-2

Real Application Clusters
support for, 1-5

recipients
about, 1-8
recipient lists in JMS, 11-19

recovery
restrictions, 4-8

REF payloads
restrictions, 4-7

registerConnectionFactory

Index-16

and AQ_ADMINISTRATOR_ROLE, 12-3
and GLOBAL_AQ_USER_ROLE, 12-3
using JDBC connection parameters through

LDAP, 12-3
using JDBC connection parameters through the

database, 12-1
using JDBC URL through LDAP, 12-4

registering
for notification, 10-22
through the database, JDBC URL, 12-2

registration
client request for, 6-9
IDAP client request, 6-13
IDAP server response to request, 6-15

reliability
notifications, 1-16

remote consumers
propagation, 1-27

remote subscribers
restrictions, 4-7

RemoteSubscriber, 11-19, 11-26
resource limits

Messaging Gateway, 19-3
restrictions

buffered messages, 1-15
message payloads, 4-7
nonpersistent queues, A-2
point-in-time recovery, 4-8
queue management, 4-7
REF payloads, 4-7
remote subscribers, 4-7
subscribers, 4-7
synonyms, 4-8
virtual private database, 4-8

retention
of messages, 1-35

in JMS, 11-8
retries

during dequeuing, 1-24
multiple sessions dequeuing, 1-24

revoking
AQ system privilege, 8-19

in JMS, 12-13
queue privilege, 8-20

in JMS, 12-15
roles

AQ_ADMINISTRATOR_ROLE, 3-5, 4-2, 12-3
AQ_USER_ROLE, 3-5, 4-2
GLOBAL_AQ_USER_ROLE, 11-3, 12-3
MGW_ADMINISTRATOR_ROLE, 18-2, 18-4
MGW_AGENT_ROLE, 18-2, 18-4
SELECT_CATALOG_ROLE, 23-2

rollback
all operations in JMS Session, 15-2

RV_discardAmount, 19-27
RV_limitPolicy, 19-27
RV_maxEvents, 19-27

S
scalability

about, 1-3
schedules

enabling and disabling propagation with
Messaging Gateway, 19-16

scheduling
about propagation scheduling, 1-29
propagations using SCHEDULE_

PROPAGATION, 8-24
secure queues, 10-2
security, 4-2

at destination level in JMS, 11-8
at system level in JMS, 11-7
compatibility parameter, 4-3
message persistence, 1-3
OCI applications, 4-3
propagations, 4-4
queue privileges, 4-3
queue tables

secure parameter, 8-3
roles, 4-2

sender identification
during enqueuing, 1-20

serial processes
tuning for Oracle Streams AQ, 5-3

Session (JMS)
creating, 13-3, 14-3

shared servers
performance with Oracle Streams AQ, 5-2

short message property (JMS)
getting, 15-15
setting, 15-7

SOAP
ANYDATA queues, 22-5
body, 6-7
envelope, 6-7
header, 6-7
message structure, 6-7
method invocation, 6-8

stack trace
printing in JMS, 15-17

starting
JMS Connection, 15-2
Messaging Gateway agent, 19-3
queues, 8-15

statistics
propagation, 1-30

stopping
JMS Connection, 15-16
queues, 8-16

storage parameters
tuning Oracle Streams AQ, 5-2

StreamMessage
about, 11-12
creating, 15-3
example, 16-10

string message property (JMS)
getting, 15-14
setting, 15-5

Index-17

structured payloads, 1-4
about, 1-4
in JMS, 11-9

subscribers
about, 1-7
adding, 8-20
altering, 8-22
creating, 8-20
creating JMS remote subscriber for Oracle object

type messages, 14-14
creating remote subscriber for JMS

messages, 14-13
creating with Messaging Gateway, 19-16
in Messaging Gateway propagations, 19-15
managing, 8-20
names

mixed case, 4-1
ordering, 1-7
parameters

delivery_mode, 8-20
queue_to_queue, 8-20
rule, 8-20
transformation, 8-20

removing, 8-23
restrictions, 4-7
specifying transformations for in JMS, 14-12,

14-15
unsubscribing DurableSubscribers, 14-16, 14-17

synonyms
restrictions, 4-8

SYS.AQ$_DESCRIPTOR, 2-5
SYS.AQ$_POST_INFO, 2-6
SYS.AQ$_REG_INFO, 2-3
SYS.MGW_MQSERIES_PROPERTIES, 19-20
SYS.MGW_TIBRV_PROPERTIES, 19-22
system privilege

granting, 8-18
in JMS, 12-13

revoking, 8-19
in JMS, 12-13

T
TextMessage

about, 11-13
creating, 15-3, 15-4
example, 16-21

third-party messaging
and application development, 1-5
and Messaging Gateway, 17-4
configuration properties, 19-20
optional foreign queue configuration

properties, 19-25
optional link configuration properties, 19-23
optional subscriber configuration

properties, 19-26
queues

configuring, 19-12
registering, 19-13
unregistering, 19-14

setting up, 18-6
view for registered queues, 19-14

TIB/Rendezvous
AQ_MsgProperties, 19-26
links

creating, 19-11
listener.ora, modifying, 18-7
message conversion, 20-10
message property mapping, 20-12
Messaging Gateway. setting up for, 18-7
mgw.ora, modifying, 18-7
MsgBatchSize, 19-27
PreserveMessageID, 19-27
propagation

inbound, 20-13
outbound, 20-12

RV_discardAmount, 19-27
RV_limitPolicy, 19-27
RV_maxEvents, 19-27
Subject

registering, 19-14
unregistering, 19-14

system properties, 19-22
time specification

during enqueuing, 1-20
timeout

notifications, 1-17
TimeToLive

setting for all messages from a
MessageProducer, 15-7

Topic
creating DurableSubscriber for, 14-8, 14-9, 14-10,

14-11
creating in JMS, 12-11
getting in LDAP, 12-9
granting Topic privilege in JMS, 12-14
revoking Topic privilege in JMS, 12-14
specifying transformations for subscribers, 14-12

TopicBrowser, 11-20
browsing messages using, 14-22
creating for Topic of Oracle type messages, 14-21
creating for Topic of standard JMS type

messages, 14-19, 14-20
TopicConnection

creating with open JDBC connection, 14-3
creating with open

OracleOCIConnectionPool, 14-3
creating with username/password, 14-2

TopicConnectionFactory
getting

in LDAP, 12-8
with JDBC connection parameters, 12-8
with JDBC URL, 12-7

registering
through database using JDBC connection

parameters, 12-1
through database using JDBC URL, 12-2
through LDAP using JDBC connection

parameters, 12-3
through LDAP using JDBC URL, 12-4

Index-18

unregistering
through database, 12-5
through LDAP, 12-5

TopicPublisher
about, 11-19
creating, 14-4

TopicReceiver
about, 11-19
creating for Topic of Oracle object type

messages, 14-18
creating for Topic of standard JMS type

messages, 14-17
TopicSession

creating, 14-4
transaction

IDAP client request
commit, 6-13
roll back, 6-14

protection during dequeuing, 1-25
transformations

about, 1-33
altering, 8-17
creating, 8-17
dropping, 8-18
for remote subscribers, specifying in JMS, 14-15
for Topic subscribers, specifying in JMS, 14-12
managing, 8-16
Messaging Gateway, 20-2
modifying, 8-17
parameters

attribute_number, 8-17
from_schema, 8-17
from_type, 8-17
to_schema, 8-17
to_type, 8-17
transformation, 8-17

XML, 1-33
troubleshooting

in JMS, 15-17
tuning

buffered messages, 5-4
persistent messaging, 5-2

type_name, 2-2
types

access, 4-3
AQ agent, 2-2
AQ agent list, 2-3
AQ notification descriptor, 2-5
AQ post informatin list, 2-3
AQ post information, 2-6
AQ post information list, 2-3
AQ recipient list, 2-3
AQ registration information, 2-3
AQ registration information list, 2-3
AQ subscriber list, 2-3
aq$_purge_options_t, 8-10
buffered messaging support, 1-13
Messaging Gateway, 20-2
MGW_BASIC_MSG_T, 20-2
MGW_TIBRV_MSG_T, 20-2

oracle.xdb.XMLType, 22-4
support for, 1-3
SYS.LCR$_DDL_RECORD, 22-2
SYS.LCR$_ROW_RECORD, 22-2

U
unregistering

ConnectionFactory in LDAP, 12-5
notification, 10-23

unscheduling
propagations, 8-28

in JMS, 12-20
user authentication

Internet operations, 6-3
USER_ATTRIBUTE_TRANSFORMATIONS

User Transformation Functions, 9-8
USER_QUEUE_SCHEDULES, 9-3
USER_QUEUE_SUBSCRIBERS, 9-7
USER_QUEUE_TABLES, 9-3
USER_QUEUES, 9-3
USER_SUBSCR_REGISTRATIONS

User Subscription Registrations, 9-8
USER_TRANSFORMATIONS, 9-8
users

Messaging Gateway agent, 18-4

V
V$METRICGROUP

Information about the Metric Group, 9-10
verifying

Messaging Gateway setup, 18-8
queue type, 8-26

views
all propagation schedules, 9-3
all queue subscribers in database, 9-7
all queues in database, 9-3
all transformation functions, 9-8
all transformations, 9-8
AQ agents registered for Internet access, 9-8
messages in queue table, 9-4
Messaging Gateway, 19-3
Messaging Gateway agent, 21-3
Messaging Gateway links, 19-12
propagation schedules in user schema, 9-3
queue subscribers, 9-6
queue subscribers and their rules, 9-7
queue subscribers for queues where user has

queue privileges, 9-7
queue subscribers in user schema, 9-7
queue tables in user schema, 9-3
queues for which user has any privilege, 9-3
queues for which user has queue privilege, 9-3
queues in user schema, 9-3
registered non-Oracle queues, 19-14
user transformations, 9-8

virtual private database
restrictions, 4-8

visibility
about, 6-10, 6-12

Index-19

buffered messages, 1-14
dequeue options, 10-14
enqueue options, 10-2
rollback opertations, 6-14

W
waiting

during dequeuing, 1-23
WebSphere MQ

base Java link, creating, 19-6
base Java queue

registering, 19-13
unregistering, 19-14

JMS link, creating, 19-7
JMS Queue or Topic

registering, 19-13
unregistering, 19-14

JMS_DeliveryMode, 19-26
JMS_NoLocal, 19-27
listener .ora, modifying, 18-7
message conversion, 20-6
message header mappings, 20-6
Messaging Gateway, setting up for, 18-7
mgw.ora, modifying, 18-8
MQ_BrokerControlQueue, 19-23
MQ_BrokerPubQueue, 19-23
MQ_BrokerQueueManager, 19-24
MQ_BrokerVersion, 19-24
MQ_ccsid, 19-24
MQ_CharacterSet, 19-26
MQ_JmsDurSubQueue, 19-24, 19-26
MQ_JmsTargetClient, 19-26
MQ_openOptions, 19-26
MQ_PubAckInterval, 19-24
MQ_ReceiveExit, 19-24
MQ_ReceiveExitInit, 19-24
MQ_SecurityExit, 19-24
MQ_SecurityExitInit, 19-25
MQ_SendExit, 19-25
MQ_SendExitInit, 19-25
MsgBatchSize, 19-27
optional link configuration properties, 19-23
PreserveMessageID, 19-27
propagation

inbound, 20-9
outbound, 20-9

system properties, 19-20

X
XA

using with Oracle Streams AQ, 4-6
XML, 6-1

deploying AQ servlet, 6-4
message format transformations, 1-33

Index-20

	Contents
	List of Examples
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What’s New in Oracle Streams AQ?
	Notification Enhancements
	Better Diagnosability and Manageability
	Transition from Job Queue Processes to Database Scheduler
	Messaging Gateway Enhancements

	Part I Oracle Streams AQ Fundamentals
	1 Introduction to Oracle Streams AQ
	What Is Queuing?
	Oracle Streams AQ Leverages Oracle Database
	Oracle Streams AQ in Integrated Application Environments
	Oracle Streams AQ Client/Server Communication
	Multiconsumer Dequeuing of the Same Message
	Oracle Streams AQ Implementation of Workflows
	Oracle Streams AQ Implementation of Publish/Subscribe

	Buffered Messaging
	Asynchronous Notifications
	Views on Registration
	Event-Based Notification
	Notification Grouping by Time

	Enqueue Features
	Dequeue Features
	Propagation Features
	Message Format Transformation
	Other Oracle Streams AQ Features
	Interfaces to Oracle Streams AQ
	Oracle Streams AQ Demonstrations

	2 Basic Components
	Object Name
	Type Name
	AQ Agent Type
	AQ Recipient List Type
	AQ Agent List Type
	AQ Subscriber List Type
	AQ Registration Information List Type
	AQ Post Information List Type
	AQ Registration Information Type
	AQ Notification Descriptor Type
	AQ Message Properties Type
	AQ Post Information Type
	AQ$_NTFN_MSGID_ARRAY Type
	Enumerated Constants in the Oracle Streams AQ Administrative Interface
	Enumerated Constants in the Oracle Streams AQ Operational Interface
	AQ Background Processes
	Queue Monitor Processes
	Job Queue Processes

	3 Oracle Streams AQ: Programmatic Interfaces
	Programmatic Interfaces for Accessing Oracle Streams AQ
	Using PL/SQL to Access Oracle Streams AQ
	Using OCI to Access Oracle Streams AQ
	Using OCCI to Access Oracle Streams AQ
	Using Visual Basic (OO4O) to Access Oracle Streams AQ
	Using Oracle Java Message Service (OJMS) to Access Oracle Streams AQ
	Accessing Standard and Oracle JMS Applications

	Using Oracle Streams AQ XML Servlet to Access Oracle Streams AQ
	Comparing Oracle Streams AQ Programmatic Interfaces
	Oracle Streams AQ Administrative Interfaces
	Oracle Streams AQ Operational Interfaces

	Part II Managing and Tuning Oracle Streams AQ
	4 Managing Oracle Streams AQ
	Oracle Streams AQ Compatibility Parameters
	Queue Security and Access Control
	Oracle Streams AQ Security
	Administrator Role
	User Role
	Access to Oracle Streams AQ Object Types

	Queue Security
	Queue Privileges and Access Control
	OCI Applications and Queue Access
	Security Required for Propagation

	Queue Table Export-Import
	Exporting Queue Table Data
	Importing Queue Table Data
	Data Pump Export and Import

	Oracle Enterprise Manager Support
	Using Oracle Streams AQ with XA
	Restrictions on Queue Management
	Subscribers
	DML Not Supported on Queue Tables or Associated IOTs
	Propagation from Object Queues with REF Payload Attributes
	Collection Types in Message Payloads
	Synonyms on Queue Tables and Queues
	Synonyms on Object Types
	Tablespace Point-in-Time Recovery
	Virtual Private Database

	Managing Propagation
	EXECUTE Privileges Required for Propagation
	Propagation from Object Queues
	Optimizing Propagation
	Handling Failures in Propagation

	5 Oracle Streams AQ Performance and Scalability
	Persistent Messaging Performance Overview
	Oracle Streams AQ and Oracle Real Application Clusters
	Oracle Streams AQ in a Shared Server Environment

	Persistent Messaging Basic Tuning Tips
	Using Storage Parameters
	I/O Configuration
	Running Enqueue and Dequeue Processes Concurrently in a Single Queue Table
	Running Enqueue and Dequeue Processes Serially in a Single Queue Table
	Creating Indexes on a Queue Table
	Other Tips

	Propagation Tuning Tips
	Buffered Messaging Tuning
	Performance Views

	6 Internet Access to Oracle Streams AQ
	Overview of Oracle Streams AQ Operations over the Internet
	Oracle Streams AQ Internet Operations Architecture
	Internet Message Payloads
	Configuring the Web Server to Authenticate Users Sending POST Requests
	Client Requests Using HTTP
	User Sessions and Transactions

	Oracle Streams AQ Servlet Responses Using HTTP
	Oracle Streams AQ Propagation Using HTTP and HTTPS

	Deploying the Oracle Streams AQ XML Servlet
	Internet Data Access Presentation (IDAP)
	SOAP Message Structure
	SOAP Envelope
	SOAP Header
	SOAP Body

	SOAP Method Invocation
	HTTP Headers
	Method Invocation Body
	Results from a Method Request

	Request and Response IDAP Documents
	IDAP Client Requests for Enqueue
	IDAP Client Requests for Dequeue
	IDAP Client Requests for Registration
	IDAP Client Requests to Commit a Transaction
	IDAP Client Requests to Roll Back a Transaction
	IDAP Server Response to an Enqueue Request
	IDAP Server Response to a Dequeue Request
	IDAP Server Response to a Register Request
	IDAP Commit Response
	IDAP Rollback Response
	IDAP Notification
	IDAP Response in Case of Error

	Notification of Messages by e-mail

	7 Troubleshooting Oracle Streams AQ
	Debugging Oracle Streams AQ Propagation Problems
	Oracle Streams AQ Error Messages

	Part III Oracle Streams AQ Administrative and Operational Interfaces
	8 Oracle Streams AQ Administrative Interface
	Managing Queue Tables
	Creating a Queue Table
	Altering a Queue Table
	Dropping a Queue Table
	Purging a Queue Table
	Migrating a Queue Table

	Managing Queues
	Creating a Queue
	Altering a Queue
	Starting a Queue
	Stopping a Queue
	Dropping a Queue

	Managing Transformations
	Creating a Transformation
	Modifying a Transformation
	Dropping a Transformation

	Granting and Revoking Privileges
	Granting Oracle Streams AQ System Privileges
	Revoking Oracle Streams AQ System Privileges
	Granting Queue Privileges
	Revoking Queue Privileges

	Managing Subscribers
	Adding a Subscriber
	Altering a Subscriber
	Removing a Subscriber

	Managing Propagations
	Scheduling a Queue Propagation
	Verifying Propagation Queue Type
	Altering a Propagation Schedule
	Enabling a Propagation Schedule
	Disabling a Propagation Schedule
	Unscheduling a Queue Propagation

	Managing Oracle Streams AQ Agents
	Creating an Oracle Streams AQ Agent
	Altering an Oracle Streams AQ Agent
	Dropping an Oracle Streams AQ Agent
	Enabling Database Access
	Disabling Database Access

	Adding an Alias to the LDAP Server
	Deleting an Alias from the LDAP Server

	9 Oracle Streams AQ & Messaging Gateway Views
	DBA_QUEUE_TABLES: All Queue Tables in Database
	USER_QUEUE_TABLES: Queue Tables in User Schema
	ALL_QUEUE_TABLES: Queue Tables Queue Accessible to the Current User
	DBA_QUEUES: All Queues in Database
	USER_QUEUES: Queues In User Schema
	ALL_QUEUES: Queues for Which User Has Any Privilege
	DBA_QUEUE_SCHEDULES: All Propagation Schedules
	USER_QUEUE_SCHEDULES: Propagation Schedules in User Schema
	QUEUE_PRIVILEGES: Queues for Which User Has Queue Privilege
	AQ$Queue_Table_Name: Messages in Queue Table
	AQ$Queue_Table_Name_S: Queue Subscribers
	AQ$Queue_Table_Name_R: Queue Subscribers and Their Rules
	DBA_QUEUE_SUBSCRIBERS: All Queue Subscribers in Database
	USER_QUEUE_SUBSCRIBERS: Queue Subscribers in User Schema
	ALL_QUEUE_SUBSCRIBERS: Subscribers for Queues Where User Has Queue Privileges
	DBA_TRANSFORMATIONS: All Transformations
	DBA_ATTRIBUTE_TRANSFORMATIONS: All Transformation Functions
	USER_TRANSFORMATIONS: User Transformations
	USER_ATTRIBUTE_TRANSFORMATIONS: User Transformation Functions
	DBA_SUBSCR_REGISTRATIONS: All Subscription Registrations
	USER_SUBSCR_REGISTRATIONS: User Subscription Registrations
	AQ$INTERNET_USERS: Oracle Streams AQ Agents Registered for Internet Access
	(G)V$AQ: Number of Messages in Different States in Database
	(G)V$BUFFERED_QUEUES: All Buffered Queues in the Instance.
	(G)V$BUFFERED_SUBSCRIBERS: Subscribers for All Buffered Queues in the Instance
	(G)V$BUFFERED_PUBLISHERS: All Buffered Publishers in the Instance
	(G)V$PERSISTENT_QUEUES: All Active Persistent Queues in the Instance
	(G)V$PERSISTENT_SUBSCRIBERS: All Active Subscribers of the Persistent Queues in the Instance
	(G)V$PERSISTENT_PUBLISHERS: All Active Publishers of the Persistent Queues in the Instance
	(G)V$PROPAGATION_SENDER: Buffer Queue Propagation Schedules on the Sending (Source) Side
	(G)V$PROPAGATION_RECEIVER: Buffer Queue Propagation Schedules on the Receiving (Destination) Side
	(G)V$SUBSCR_REGISTRATION_STATS: Diagnosability of Notifications
	V$METRICGROUP: Information about the Metric Group
	(G)V$STREAMSMETRIC: Streams Metrics for the Most Recent Interval
	(G)V$STREAMSMETRIC_HISTORY: Streams Metrics Over Past Hour
	(G)V$QUEUEMETRIC: Queue Metrics for the Most Recent Interval
	(G)V$QUEUEMETRIC_HISTORY: Queue Metrics Over Past Hour
	DBA_HIST_STREAMSMETRIC: Streams Metric History
	DBA_HIST_QUEUEMETRIC: Queue Metric History
	MGW_GATEWAY: Configuration and Status Information
	MGW_AGENT_OPTIONS: Supplemental Options and Properties
	MGW_LINKS: Names and Types of Messaging System Links
	MGW_MQSERIES_LINKS: WebSphere MQ Messaging System Links
	MGW_TIBRV_LINKS: TIB/Rendezvous Messaging System Links
	MGW_FOREIGN_QUEUES: Foreign Queues
	MGW_JOBS: Messaging Gateway Propagation Jobs
	MGW_SUBSCRIBERS: Information for Subscribers
	MGW_SCHEDULES: Information about Schedules

	10 Oracle Streams AQ Operations Using PL/SQL
	Using Secure Queues
	Enqueuing Messages
	Enqueuing an Array of Messages
	Listening to One or More Queues
	Dequeuing Messages
	Dequeuing an Array of Messages
	Registering for Notification
	Unregistering for Notification
	Posting for Subscriber Notification
	Adding an Agent to the LDAP Server
	Removing an Agent from the LDAP Server

	Part IV Using Oracle JMS and Oracle Streams AQ
	11 Introducing Oracle JMS
	General Features of JMS and Oracle JMS
	JMS Connection and Session
	ConnectionFactory Objects
	Using AQjmsFactory to Obtain ConnectionFactory Objects
	Using JNDI to Look Up ConnectionFactory Objects
	JMS Connection
	JMS Session

	JMS Destination
	Using a JMS Session to Obtain Destination Objects
	Using JNDI to Look Up Destination Objects
	JMS Destination Methods

	System-Level Access Control in JMS
	Destination-Level Access Control in JMS
	Retention and Message History in JMS
	Supporting Oracle Real Application Clusters in JMS
	Supporting Statistics Views in JMS

	Structured Payload/Message Types in JMS
	JMS Message Headers
	JMS Message Properties
	JMS Message Bodies
	StreamMessage
	BytesMessage
	MapMessage
	TextMessage
	ObjectMessage
	AdtMessage

	Using Message Properties with Different Message Types
	Buffered Messaging with Oracle JMS

	JMS Point-to-Point Model Features
	JMS Publish/Subscribe Model Features
	JMS Publish/Subscribe Overview
	DurableSubscriber
	RemoteSubscriber
	TopicPublisher
	Recipient Lists
	TopicReceiver
	TopicBrowser
	Setting Up JMS Publish/Subscribe Operations

	JMS MessageProducer Features
	Priority and Ordering of Messages
	Specifying a Message Delay
	Specifying a Message Expiration
	Message Grouping

	JMS Message Consumer Features
	Receiving Messages
	Message Navigation in Receive
	Browsing Messages
	Remove No Data
	Retry with Delay Interval
	Asynchronously Receiving Messages Using MessageListener
	Exception Queues

	JMS Propagation
	RemoteSubscriber
	Scheduling Propagation
	Enhanced Propagation Scheduling Capabilities
	Exception Handling During Propagation

	Message Transformation with JMS AQ
	J2EE Compliance

	12 Oracle JMS Basic Operations
	EXECUTE Privilege on DBMS_AQIN
	Registering a ConnectionFactory
	Registering Through the Database Using JDBC Connection Parameters
	Registering Through the Database Using a JDBC URL
	Registering Through LDAP Using JDBC Connection Parameters
	Registering Through LDAP Using a JDBC URL

	Unregistering a Queue/Topic ConnectionFactory
	Unregistering Through the Database
	Unregistering Through LDAP

	Getting a QueueConnectionFactory or TopicConnectionFactory
	Getting a QueueConnectionFactory with JDBC URL
	Getting a QueueConnectionFactory with JDBC Connection Parameters
	Getting a TopicConnectionFactory with JDBC URL
	Getting a TopicConnectionFactory with JDBC Connection Parameters
	Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP

	Getting a Queue or Topic in LDAP
	Creating a Queue Table
	Getting a Queue Table
	Creating a Queue
	Creating a Point-to-Point Queue
	Creating a Publish/Subscribe Topic

	Granting and Revoking Privileges
	Granting Oracle Streams AQ System Privileges
	Revoking Oracle Streams AQ System Privileges
	Granting Publish/Subscribe Topic Privileges
	Revoking Publish/Subscribe Topic Privileges
	Granting Point-to-Point Queue Privileges
	Revoking Point-to-Point Queue Privileges

	Managing Destinations
	Starting a Destination
	Stopping a Destination
	Altering a Destination
	Dropping a Destination

	Propagation Schedules
	Scheduling a Propagation
	Enabling a Propagation Schedule
	Altering a Propagation Schedule
	Disabling a Propagation Schedule
	Unscheduling a Propagation

	13 Oracle JMS Point-to-Point
	Creating a Connection with Username/Password
	Creating a Connection with Default ConnectionFactory Parameters
	Creating a QueueConnection with Username/Password
	Creating a QueueConnection with an Open JDBC Connection
	Creating a QueueConnection with Default ConnectionFactory Parameters
	Creating a QueueConnection with an Open OracleOCIConnectionPool
	Creating a Session
	Creating a QueueSession
	Creating a QueueSender
	Sending Messages Using a QueueSender with Default Send Options
	Sending Messages Using a QueueSender by Specifying Send Options
	Creating a QueueBrowser for Standard JMS Type Messages
	Creating a QueueBrowser for Standard JMS Type Messages, Locking Messages
	Creating a QueueBrowser for Oracle Object Type Messages
	Creating a QueueBrowser for Oracle Object Type Messages, Locking Messages
	Creating a QueueReceiver for Standard JMS Type Messages
	Creating a QueueReceiver for Oracle Object Type Messages

	14 Oracle JMS Publish/Subscribe
	Creating a Connection with Username/Password
	Creating a Connection with Default ConnectionFactory Parameters
	Creating a TopicConnection with Username/Password
	Creating a TopicConnection with Open JDBC Connection
	Creating a TopicConnection with an Open OracleOCIConnectionPool
	Creating a Session
	Creating a TopicSession
	Creating a TopicPublisher
	Publishing Messages with Minimal Specification
	Publishing Messages Specifying Topic
	Publishing Messages Specifying Delivery Mode, Priority and TimeToLive
	Publishing Messages Specifying a Recipient List
	Creating a DurableSubscriber for a JMS Topic Without Selector
	Creating a DurableSubscriber for a JMS Topic With Selector
	Creating a DurableSubscriber for an Oracle Object Type Topic Without Selector
	Creating a DurableSubscriber for an Oracle Object Type Topic With Selector
	Specifying Transformations for Topic Subscribers
	Creating a Remote Subscriber for JMS Messages
	Creating a Remote Subscriber for Oracle Object Type Messages
	Specifying Transformations for Remote Subscribers
	Unsubscribing a Durable Subscription for a Local Subscriber
	Unsubscribing a Durable Subscription for a Remote Subscriber
	Creating a TopicReceiver for a Topic of Standard JMS Type Messages
	Creating a TopicReceiver for a Topic of Oracle Object Type Messages
	Creating a TopicBrowser for Standard JMS Messages
	Creating a TopicBrowser for Standard JMS Messages, Locking Messages
	Creating a TopicBrowser for Oracle Object Type Messages
	Creating a TopicBrowser for Oracle Object Type Messages, Locking Messages
	Browsing Messages Using a TopicBrowser

	15 Oracle JMS Shared Interfaces
	Oracle Streams AQ JMS Operational Interface: Shared Interfaces
	Starting a JMS Connection
	Getting a JMS Connection
	Committing All Operations in a Session
	Rolling Back All Operations in a Session
	Getting the JDBC Connection from a Session
	Getting the OracleOCIConnectionPool from a JMS Connection
	Creating a BytesMessage
	Creating a MapMessage
	Creating a StreamMessage
	Creating an ObjectMessage
	Creating a TextMessage
	Creating a JMS Message
	Creating an AdtMessage
	Setting JMS Correlation Identifier

	Specifying JMS Message Properties
	Setting a Boolean Message Property
	Setting a String Message Property
	Setting an Integer Message Property
	Setting a Double Message Property
	Setting a Float Message Property
	Setting a Byte Message Property
	Setting a Long Message Property
	Setting a Short Message Property
	Setting an Object Message Property

	Setting Default TimeToLive for All Messages Sent by a MessageProducer
	Setting Default Priority for All Messages Sent by a MessageProducer
	Creating an AQjms Agent
	Receiving a Message Synchronously
	Using a Message Consumer by Specifying Timeout
	Using a Message Consumer Without Waiting
	Receiving Messages from a Destination Using a Transformation

	Specifying the Navigation Mode for Receiving Messages
	Receiving a Message Asynchronously
	Specifying a Message Listener at the Message Consumer
	Specifying a Message Listener at the Session

	Getting Message ID
	Getting the Correlation Identifier
	Getting the Message Identifier

	Getting JMS Message Properties
	Getting a Boolean Message Property
	Getting a String Message Property
	Getting an Integer Message Property
	Getting a Double Message Property
	Getting a Float Message Property
	Getting a Byte Message Property
	Getting a Long Message Property
	Getting a Short Message Property
	Getting an Object Message Property

	Closing and Shutting Down
	Closing a MessageProducer
	Closing a Message Consumer
	Stopping a JMS Connection
	Closing a JMS Session
	Closing a JMS Connection

	Troubleshooting
	Getting a JMS Error Code
	Getting a JMS Error Number
	Getting an Exception Linked to a JMS Exception
	Printing the Stack Trace for a JMS Exception
	Setting an Exception Listener
	Getting an Exception Listener

	16 Oracle JMS Types Examples
	How to Run the Oracle Streams AQ JMS Type Examples
	Setting Up the Examples

	JMS BytesMessage Examples
	JMS StreamMessage Examples
	JMS MapMessage Examples
	More Oracle Streams AQ JMS Examples

	Part V Using Messaging Gateway
	17 Introducing Oracle Messaging Gateway
	Introducing Oracle Messaging Gateway
	Oracle Messaging Gateway Features
	Oracle Messaging Gateway Architecture
	Administration Package DBMS_MGWADM
	Oracle Messaging Gateway Agent
	Oracle Database
	Non-Oracle Messaging Systems

	Propagation Processing Overview
	Oracle Streams AQ Buffered Messages and Messaging Gateway

	18 Getting Started with Oracle Messaging Gateway
	Oracle Messaging Gateway Prerequisites
	Loading and Setting Up Oracle Messaging Gateway
	Loading Database Objects into the Database
	Modifying listener.ora for the External Procedure
	Modifying tnsnames.ora for the External Procedure
	Setting Up a mgw.ora Initialization File
	Creating an Oracle Messaging Gateway Administration User
	Creating an Oracle Messaging Gateway Agent User
	Configuring Oracle Messaging Gateway Connection Information
	Configuring Oracle Messaging Gateway in a RAC Environment
	Configuring Connection Information for the MGW Agent Connections
	Setting the RAC Instance for the Messaging Gateway Agent

	Setting Up Non-Oracle Messaging Systems
	Setting Up for TIB/Rendezvous
	Setting Up for WebSphere MQ Base Java or JMS

	Verifying the Oracle Messaging Gateway Setup
	Unloading Oracle Messaging Gateway
	Understanding the mgw.ora Initialization File
	mgw.ora Initialization Parameters
	mgw.ora Environment Variables
	mgw.ora Java Properties
	mgw.ora Comment Lines

	19 Working with Oracle Messaging Gateway
	Configuring the Oracle Messaging Gateway Agent
	Creating a Messaging Gateway Agent
	Removing a Messaging Gateway Agent
	Database Connection
	Resource Limits

	Starting and Shutting Down the Oracle Messaging Gateway Agent
	Starting the Oracle Messaging Gateway Agent
	Shutting Down the Oracle Messaging Gateway Agent
	Oracle Messaging Gateway Agent Scheduler Job
	Running the Oracle Messaging Gateway Agent on RAC

	Configuring Messaging System Links
	Creating a WebSphere MQ Base Java Link
	Creating a WebSphere MQ JMS Link
	Creating a WebSphere MQ Link to Use SSL
	Creating a TIB/Rendezvous Link
	Altering a Messaging System Link
	Removing a Messaging System Link
	Views for Messaging System Links

	Configuring Non-Oracle Messaging System Queues
	Registering a Non-Oracle Queue
	Registering a WebSphere MQ Base Java Queue
	Registering a WebSphere MQ JMS Queue or Topic
	Registering a TIB/Rendezvous Subject

	Unregistering a Non-Oracle Queue
	View for Registered Non-Oracle Queues

	Configuring Oracle Messaging Gateway Propagation Jobs
	Propagation Job Overview
	Creating an Oracle Messaging Gateway Propagation Job
	Enabling and Disabling a Propagation Job
	Resetting a Propagation Job
	Altering a Propagation Job
	Removing a Propagation Job

	Propagation Jobs, Subscribers, and Schedules
	Propagation Job, Subscriber, Schedule Interface Interoperability
	Propagation Job, Subscriber, Schedule Views
	Single Consumer Queue As Propagation Source

	Configuration Properties
	WebSphere MQ System Properties
	TIB/Rendezvous System Properties
	Optional Link Configuration Properties
	Optional Foreign Queue Configuration Properties
	Optional Job Configuration Properties

	20 Oracle Messaging Gateway Message Conversion
	Converting Oracle Messaging Gateway Non-JMS Messages
	Overview of the Non-JMS Message Conversion Process
	Oracle Messaging Gateway Canonical Types
	Message Header Conversion
	Handling Arbitrary Payload Types Using Message Transformations
	Handling Logical Change Records

	Message Conversion for WebSphere MQ
	WebSphere MQ Message Header Mappings
	WebSphere MQ Outbound Propagation
	WebSphere MQ Inbound Propagation

	Message Conversion for TIB/Rendezvous
	AQ Message Property Mapping for TIB/Rendezvous
	TIB/Rendezvous Outbound Propagation
	TIB/Rendezvous Inbound Propagation

	JMS Messages
	JMS Outbound Propagation
	JMS Inbound Propagation

	21 Monitoring Oracle Messaging Gateway
	Oracle Messaging Gateway Log Files
	Sample Oracle Messaging Gateway Log File
	Interpreting Exception Messages in an Oracle Messaging Gateway Log File

	Monitoring the Oracle Messaging Gateway Agent Status
	MGW_GATEWAY View
	Oracle Messaging Gateway Irrecoverable Error Messages
	Other Oracle Messaging Gateway Error Conditions

	Monitoring Oracle Messaging Gateway Propagation
	Oracle Messaging Gateway Agent Error Messages

	Part VI Using Oracle Streams with Oracle Streams AQ
	22 Using ANYDATA Queues for User Messages
	ANYDATA Queues and User Messages
	ANYDATA Wrapper for User Messages Payloads
	Programmatic Interfaces for Enqueue and Dequeue of User Messages
	Enqueuing User Messages Using PL/SQL
	Enqueuing User Messages Using OCI or JMS
	Dequeuing User Messages Using PL/SQL
	Dequeuing User Messages Using OCI or JMS

	Message Propagation and ANYDATA Queues
	Enqueuing User Messages in ANYDATA Queues
	Dequeuing User Messages from ANYDATA Queues
	Propagating User Messages from ANYDATA Queues to Typed Queues
	Propagating User-Enqueued LCRs from ANYDATA Queues to Typed Queues

	23 Oracle Streams Messaging Example
	Overview of Messaging Example
	Setting Up Users and Creating an ANYDATA Queue
	Creating Enqueue Procedures
	Configuring an Apply Process
	Configuring Explicit Dequeue
	Enqueuing Messages
	Dequeuing Messages Explicitly and Querying for Applied Messages
	Enqueuing and Dequeuing Messages Using JMS

	A Nonpersistent Queues
	Creating Nonpersistent Queues
	Managing Nonpersistent Queues
	Compatibility of Nonpersistent Queues
	Nonpersistent Queue Notification
	Restrictions on Nonpersistent Queues

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

