JDBC Developer's Guide and Reference,
11g Release 1 (11.1)
B31224-04
July 2008
This book describes how to use Oracle JDBC drivers to develop powerful Java database applications.
Oracle Database JDBC Developer's Guide and Reference, 11g Release 1 (11.1)
B31224-04
Copyright © 1999, 2008, Oracle. All rights reserved.
Primary Author: Tulika Das, Venkatasubramaniam Iyer, Elizabeth Hanes Perry, Brian Wright, Thomas Pfaeffle
Contributing Author: Brian Martin
Contributor: Kuassi Mensah, Douglas Surber, Paul Lo, Ed Shirk, Tong Zhou, Jean de Lavarene, Rajkumar Irudayaraj, Ashok Shivarudraiah, Angela Barone, Rosie Chen, Sunil Kunisetty, Joyce Yang, Mehul Bastawala, Luxi Chidambaran, Srinath Krishnaswamy, Longxing Deng, Magdi Morsi, Ron Peterson, Ekkehard Rohwedder, Catherine Wong, Scott Urman, Jerry Schwarz, Steve Ding, Soulaiman Htite, Anthony Lai, Prabha Krishna, Ellen Siegal, Susan Kraft, Sheryl Maring
The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability with other independently created software or as specified by law, is prohibited.
The information contained in this document is subject to change without notice. If you find any problems in the documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.
If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.
Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party.
This preface introduces you to the Oracle Database JDBC Developer's Guide and Reference discussing the intended audience, structure, and conventions of this document. A list of related Oracle documents is also provided.
The Oracle Database JDBC Developer's Guide and Reference is intended for developers of Java Database Connectivity (JDBC)-based applications and applets. This book can be read by anyone with an interest in JDBC programming, but assumes at least some prior knowledge of the following:
Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, 7 days a week. For TTY support, call 800.446.2398. Outside the United States, call +1.407.458.2479.
The following books are also available from the Oracle Java Platform group:
This book introduces the basic concepts of Java and provides general information about server-side configuration and functionality. Information that pertains to the Oracle Java platform as a whole, rather than to a particular product (such as JDBC) is in this book. This book also discusses Java stored procedures, which were formerly discussed in a standalone book.
This book describes how to use the Oracle JPublisher utility to translate object types and other user-defined types to Java classes. If you are developing JDBC applications that use object types, VARRAY types, nested table types, or object reference types, then JPublisher can generate custom Java classes to map to them.
The following OC4J documents, for Oracle Application Server releases, are also available from the Oracle Java Platform group:
This book provides some overview and general information for OC4J; primer chapters for servlets, JSP pages, and EJBs; and general configuration and deployment instructions.
This book provides information for JSP developers who want to run their pages in OC4J. It includes a general overview of JSP standards and programming considerations, as well as discussion of Oracle value-added features and steps for getting started in the OC4J environment.
This book provides conceptual information and detailed syntax and usage information for tag libraries, JavaBeans, and other Java utilities provided with OC4J.
This book provides information for servlet developers regarding use of servlets and the servlet container in OC4J. It also documents relevant OC4J configuration files.
This book provides information about basic Java services supplied with OC4J, such as JTA, JNDI, and the Oracle Application Server Java Object Cache.
This book provides information about the EJB implementation and EJB container in OC4J.
The following documents are from the Oracle Server Technologies group:
The following documents from the Oracle Application Server group may also be of some interest:
The following are available from the JDeveloper group:
Printed documentation is available for sale in the Oracle Store at:
http://oraclestore.oracle.com/
To download free release notes, installation documentation, white papers, or other collateral, visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at
http://otn.oracle.com/membership/
If you already have a user name and password for OTN, then you can go directly to the documentation section of the OTN Web site at
http://otn.oracle.com/documentation/
The following resources are available from Sun Microsystems:
jdbc-interest
discussion group for JDBC To subscribe, send an e-mail to listserv@java.sun.com
with the following line in the body of the message:
We recommend that you request only the daily digest of the posted e-mails. To do this add the following line to the message body as well:
This section describes the conventions used in the text and code examples of this documentation set. The following table describes those conventions and provides examples of their use.
Convention	Meaning	Example
Bold	Bold typeface indicates terms that are defined in the text or terms that appear in a glossary, or both.	When you specify this clause, you create an index-organized table.
Italics	Italic typeface indicates book titles or emphasis.	Oracle Database Concepts Ensure that the recovery catalog and target database do not reside on the same disk.
UPPERCASE monospace (fixed-width) font	Uppercase monospace typeface indicates elements supplied by the system. Such elements include parameters, privileges, data types, RMAN keywords, SQL keywords, SQL*Plus or utility commands, packages and methods, as well as system-supplied column names, database objects and structures, user names, and roles.	You can specify this clause only for a NUMBER column. You can back up the database by using the Query the Use the
lowercase monospace (fixed-width) font	Lowercase monospace typeface indicates executables, filenames, directory names, and sample user-supplied elements. Such elements include computer and database names, net service names, and connect identifiers, as well as user-supplied database objects and structures, column names, packages and classes, user names and roles, program units, and parameter values. Note: Some programmatic elements use a mixture of UPPERCASE and lowercase. Enter these elements as shown.	Enter sqlplus to start SQL*Plus. The password is specified in the Back up the datafiles and control files in the The Set the Connect as The
lowercase italic monospace (fixed-width) font	Lowercase italic monospace font represents placeholders or variables.	You can specify the parallel_clause . Run
The changes in Oracle Database 11g Release 1 (11.1) can be divided into the following categories:		
In this release, Oracle JDBC drivers support the following new features:		
The Oracle JDBC Thin and OCI drivers have been enhanced to provide support for JDK 1.5 and 1.6. The server-side JDBC drivers provide support for only JDK 1.5.		
Oracle JDBC drivers provide support for most of the JDBC 4.0 standard features. Refer to "Support for JDBC 4.0 Standard" for more information about the JDBC 4.0 standard features		
This release of Oracle JDBC drivers provides a Java interface to access SYS.ANYTYPE		
and SYS.ANYDATA		
Oracle types. For more information refer "Oracle SYS.ANYTYPE and SYS.ANYDATA Types" Types .		
Oracle Advanced Security provides confidentiality, integrity, and availability features. This release of Oracle JDBC drivers have been enhanced to support all the features of Oracle Advanced Security. This feature is covered in Chapter 9, "JDBC Client-Side Security Features".		
Java/JDBC applications get richer SecureFiles LOB data manipulation API and performance enhancements such as versioning, sliding inserts, sliding delete, fragment move, in-place data replacement, compression, encryption, sharing, and client-side read. This feature is covered in "Oracle SecureFiles".		
This release of Oracle JDBC drivers provides a Java interface to Oracle Streams Advanced Queuing (AQ). This feature is covered in Chapter 25, "Oracle Advanced Queuing".		
Starting from this release, you can start up and shut down an Oracle Database instance from your JDBC application in the same way as you would from SQL*Plus. This feature is covered in "Database Startup and Shutdown".		
In this release the JDBC drivers have been enhanced by including new diagnosabilty features and improving existing diagnosabilty features. These features enable users to diagnose problems in the applications that use Oracle JDBC drivers and the problems in the drivers themselves. This feature is covered in detail in Chapter 30, "Diagnosability in JDBC".		
This release of Oracle JDBC drivers provide support for the Database Change Notification feature of Oracle Database. Using this functionality of the JDBC drivers, multi-tier systems can take advantage of the Database Change Notification feature to maintain a data cache as updated as possible by receiving invalidation events from the JDBC drivers. This feature is covered in detail in "Database Change Notification".		
The Dynamic Monitoring Service (DMS) metrics generated in Oracle JDBC 11.1 release are different from 10.2, 10.1, 9.2, and earlier versions of Oracle JDBC as it makes no attempt to retain compatibility with earlier versions. For more information refer "Accessing DMS Metrics Using JMX".		
Starting from this release, RowSets are also supported in the server-side drivers, in addition to the Thin and OCI drivers. For more information refer "Overview of JDBC RowSets".		
This release of Oracle JDBC drivers provide support for Result Cache feature, which is very different from traditional caching and presummarization mechanisms. For more information refer "Result Set Caching".		
From this release onwards, Oracle JDBC drivers will not support JDK versions earlier than 1.5.		
In this release, the oracle.jdbc.OracleConnection		
interface has been enhanced. For better visibility and clarity, all connection properties are defined as constants in this interface.		
The oracle.jdbc.driver		
package, which was deprecated in Oracle Database release 9.0.1, is desupported in this release. Code having references to this package will not compile and run. You can use oracle.jdbc		
package instead of this package.		
The chapters in this part introduce the concept of Java Database Connectivity (JDBC) and provide an overview of the Oracle implementation of JDBC. This part provides basic information about installation and configuration of the Oracle client with reference to JDBC drivers. This part also covers the basic steps in creating and running any JDBC application.		
Part I contains the following chapters:		
Java Database Connectivity (JDBC) is a Java standard that provides the interface for connecting from Java to relational databases. The JDBC standard is defined by Sun Microsystems and implemented through the standard java.sql		
interfaces. This allows individual providers to implement and extend the standard with their own JDBC drivers. JDBC is based on the X/Open SQL Call Level Interface (CLI). JDBC 4.0 complies with the SQL 2003 standard.		
This chapter provides an overview of the Oracle implementation of JDBC, covering the following topics:		
In addition to supporting the standard JDBC application programming interfaces (APIs), Oracle drivers have extensions to support Oracle-specific data types and to enhance performance.		
Oracle provides the following JDBC drivers:		
It is a pure Java driver used on the client-side, without an Oracle client installation. It can be used with both applets and applications.		
It is used on the client-side with an Oracle client installation. It can be used only with applications.		
It is functionally similar to the client-side Thin driver. However, it is used for code that runs on the database server and needs to access another session either on the same server or on a remote server on any tier.		
It is used for code that runs on the database server and accesses the same session. That is, the code runs and accesses data from a single Oracle session.		
Figure 1-1 illustrates the architecture of Oracle JDBC drivers and Oracle Database.		
This section covers the following topics:		
The server-side and client-side Oracle JDBC drivers provide the same basic functionality.		
The JDBC Thin and OCI drivers support Java Development Kit (JDK) 1.5 and 1.6. The server-side internal drivers support only JDK 1.5. All the JDBC drivers support the following standards and features:		
Oracle JDBC drivers implement the standard java.sql		
interfaces. You can access the Oracle-specific features, in addition to the standard features, by using the oracle.jdbc		
package.		
JDBC Thin Driver		
The JDBC Thin driver is a pure Java, Type IV driver that can be used in applications and applets. It is platform-independent and does not require any additional Oracle software on the client-side. The JDBC Thin driver communicates with the server using SQL*Net to access Oracle Database.		
The JDBC Thin driver allows a direct connection to the database by providing an implementation of SQL*Net on top of Java sockets. The driver supports the TCP/IP protocol and requires a TNS listener on the TCP/IP sockets on the database server.		
JDBC OCI Driver		
The JDBC OCI driver is a Type II driver used with Java applications. It requires an Oracle client installation and, therefore, is Oracle platform-specific. It supports all installed Oracle Net adapters, including interprocess communication (IPC), named pipes, TCP/IP, and Internetwork Packet Exchange/Sequenced Packet Exchange (IPX/SPX).		
The JDBC OCI driver, written in a combination of Java and C, converts JDBC invocations to calls to OCI, using native methods to call C-entry points. These calls communicate with the database using SQL*Net.		
The JDBC OCI driver uses the OCI libraries, C-entry points, Oracle Net, core libraries, and other necessary files on the client computer where it is installed.		
OCI is an API that enables you to create applications that use the native procedures or function calls of a third-generation language to access Oracle Database and control all phases of the SQL statement processing.		
JDBC Server-Side Thin Driver		
The JDBC server-side Thin driver offers the same functionality as the JDBC Thin driver that runs on the client-side. However, the JDBC server-side Thin driver runs inside Oracle Database and accesses a remote database or a different session on the same database.		
This driver is useful in the following scenarios:		
The use of JDBC Thin driver from a client application or from inside a server does not affect the code.		
JDBC Server-Side Internal Driver		
The JDBC server-side internal driver supports any Java code that runs inside Oracle Database, such as in a Java stored procedure, and must access the same database. It lets the Java Virtual Machine (JVM) to communicate directly with the SQL engine. This driver supports only JDK 1.5.		
The JDBC server-side internal driver, the Oracle JVM, the database, and the SQL engine all run within the same address space, and therefore, the issue of network round-trips is irrelevant. The programs access the SQL engine by using function calls.		
Note: The server-side internal driver does not support thecancel and setQueryTimeout methods of the Statement class.		
The JDBC server-side internal driver is fully consistent with the client-side drivers and supports the same features and extensions.		
Consider the following when choosing a JDBC driver for your application or applet:		
Table 1-1 lists the features that are specific either to the JDBC OCI or JDBC Thin driver in Oracle Database 11g Release 1 (11.1).		
Table 1-1 Feature Differences Between JDBC OCI and JDBC Thin Drivers		
JDBC OCI Driver	JDBC Thin Driver	
---	---	
OCI connection pooling	Default support for Native XA	
Transparent Application Failover (TAF)		
OCI Client Result Cache		
Note:		
This section provides a brief discussion of the following topics:		
In Oracle Database 11g Release 1 (11.1), all the JDBC drivers are compatible with JDK 1.5. The JDBC Thin and OCI drivers also support JDK 1.6. All versions of JDK earlier than 1.5 are no longer supported. Support for JDK 1.5 and 1.6 is provided through the ojdbc5.jar		
and ojdbc6.jar		
files, respectively.		
The JDBC OCI driver uses the standard Java Native Interface (JNI) to call OCI C libraries. You can use the JDBC OCI driver with JVMs other than that of Sun Microsystems, in particular, with Microsoft and IBM JVMs.		
The Oracle JDeveloper Suite provides developers with a single, integrated set of products to build, debug, and deploy component-based database applications for the Internet. The Oracle JDeveloper environment contains integrated support for JDBC, including the JDBC Thin driver and the native OCI driver. The database component of Oracle JDeveloper uses the JDBC drivers to manage the connection between the application running on the client and the server.		
Table 1-2 lists the features and the versions in which they were first supported for each of the three Oracle JDBC drivers: server-side internal driver, JDBC OCI driver, and JDBC Thin driver.		
Table 1-2 Feature List		
Feature	Server-Side Internal	JDBC OCI
---	---	---
JDK 1.0	7.2.2	7.2.2
JDBC 1.0.2	7.2.2	7.2.2
JDK 1.1.1	8.0.6	8.0.6
JDBC 1.22 (No new features; just minor revisions)	8.0.6	8.0.6
defineColumnType	8.0.6	8.0.6
Row Prefetch	8.0.6	8.0.6
Oracle Batching	8.0.6	8.0.6
Java Native Interface	8.1.6	
JDK 1.2	9.0.1	8.1.6
JDBC 2.0 SQL3 Types (8.1.5	8.1.5
Native LOB	8.1.6	9.2.0
Index-by Tables	10.2.0	8.1.6
JDBC 2.0 Scrollable Result Sets	8.1.6	8.1.6
JDBC 2.0 Updatable Result Sets	8.1.6	8.1.6
JDBC 2.0 Standard Batching	8.1.6	8.1.6
JDBC 2.0 Connection Pooling	NA	8.1.6
JDBC 2.0 XA	8.1.6	8.1.6
Server-side Thin driver	8.1.6	NA
JDBC 2.0 RowSets	9.0.1	9.0.1
Implicit Statement Caching	8.1.7	8.1.7
Explicit Statement Caching	8.1.7	8.1.7
Temporary LOBs	9.0.1	9.0.1
Object Type Inheritance	9.0.1	9.0.1
Multilevel Collections	9.0.1	9.0.1
oracle.jdbc Interfaces	9.0.1	9.0.1
Native XA	9.0.1	10.1.0
OCI Connection Pooling	NA	9.0.1
OCI Client Result Cache	11.1.0	
Server Result Cache	11.1.0	11.1.0
TAF	NA	9.0.1
NLS Support	9.0.1	9.0.1
JDK 1.3	9.2.0	9.2.0
JDK 1.4	10.1.0	9.2.0
JDBC 3.0 Savepoints	9.2.0	9.2.0
New Statement Caching API	9.2.0	9.2.0
ConnectionCacheImpl connection cache	NA	8.1.7
Implicit Connection Cache	NA	10.1.0
Fast Connection Failover	10.1.0.3	10.1.0.3
Connection Wrapping	9.2.0	9.2.0
DMS	9.2.0	9.2.0
Service Names in URLs	9.2.0	10.2.0
JDBC 3.0 Connection Pooling Properties	NA	10.1.0
JDBC 3.0 Updatable BLOB, CLOB, REF	10.1.0	10.1.0
JDBC 3.0 Multiple Open Result Sets	10.2.0	10.2.0
JDBC 3.0 Parameter Metadata	10.1.0	10.1.0
JDBC 3.0 Set/Get Stored Procedures Parameters by Name	10.1.0	10.1.0
JDBC 3.0 Statement Pooling	10.1.0	10.1.0
Set Statement Parameters by Name	10.1.0	10.1.0
End-to-End Tracing	10.1.0	10.1.0
Web RowSet	10.1.0	10.1.0
Proxy Authentication	10.2.0	10.1.0
JDBC 3.0 Auto Generated Keys	10.2.0	10.2.0
JDBC 3.0 Holdable Cursors	10.2.0	10.2.0
JDBC 3.0 Local/Global Transaction Switching	9.2.0	9.2.0
Run-time Connection Load Balancing	NA	10.2.0
Extended	10.2.0	10.2.0
XA Connection Cache	NA	10.2.0
DML Returning	10.2.0	10.2.0
JSR 114 RowSets	10.2.0	10.2.0
SSL Encryption	9.2.0	10.2.0
SSL Authentication	9.2.0	11.1
Radius Authentication	10.2.0	
JDK 1.5	10.2	10.2
JDK 1.6	11.1	11.1
JDBC 4.0	11.1	11.1
Database startup and shutdown	NA	11.1
Java interface to Streams AQ	11.1	
Note:		
This chapter discusses the compatibility of Oracle Java Database Connectivity (JDBC) driver versions, database versions, and Java Development Kit (JDK) versions. It also describes the basics of testing a client installation and configuration and running a simple application. This chapter contains the following sections:		
This section discusses the general JDBC version compatibility issues.		
Backward Compatibility		
The JDBC drivers are certified to work with the currently supported versions of Oracle Database. For example, the JDBC Thin drivers in Oracle Database 11g Release 1 (11.1) are certified to work with the 10.2.x, 10.1.x, 9.2.x, and 9.0.1.x Oracle Database releases. However, they are not certified to work with older, unsupported database releases, such as 8.0.x and 7.x.		
Forward Compatibility		
Existing and supported JDBC drivers are certified to work with Oracle Database 11g Release 1 (11.1).		
Note:		
To verify a JDBC client installation, you must do all of the following:		
Installation of an Oracle JDBC driver is platform-specific. Follow the installation instructions for the driver you want to install in your platform-specific documentation.		
This section describes the steps for verifying an Oracle client installation of the JDBC drivers, assuming that you have already installed the driver of your choice.		
If you have installed the JDBC Thin driver, then no further installation on the client computer is necessary.		
Note: The JDBC Thin driver requires a TCP/IP listener to be running on the computer where the database is installed.		
If you have installed the JDBC Oracle Call Interface (OCI) driver, then you must also install the Oracle client software. This includes Oracle Net and the OCI libraries.		
Installing the Oracle Java products creates, among other things, the following directories:		
ORACLE_HOME		
/jdbc		
ORACLE_HOME		
/jlib		
Check whether or not the following directories and files have been created and populated in the ORACLE_HOME		
/jdbc		
directory:		
demo		
This directory contains a compressed file, demo.zip		
or demo.tar		
. When you uncompress this compressed file, the samples		
directory and the Samples-Readme.txt		
file are created. The samples		
directory contains sample programs, including examples of how to use SQL92 and Oracle SQL syntax, PL/SQL blocks, streams, user-defined types, additional Oracle type extensions, and Oracle performance extensions.		
doc		
This directory contains the javadoc.zip		
file, which is the Oracle JDBC application programming interface (API) documentation.		
lib		
The lib		
directory contains the following required Java classes:		
orai18n.jar		
and orai18n-mapping.jar		
Contain classes for globalization and multibyte character sets support		
ojdbc5.jar		
, ojdbc5_g.jar		
, ojdbc6.jar		
, and ojdbc6_g.jar		
Contain the JDBC driver classes for use with JDK 1.5 and JDK 1.6		
Note:		
Readme.txt		
This file contains late-breaking and release-specific information about the drivers, which may not have been included in other documentation on the product.		
Check whether or not the following directories have been created and populated in the ORACLE_HOME		
/jlib		
directory:		
jta.jar		
and jndi.jar		
These files contain classes for the Java Transaction API (JTA) and the Java Naming and Directory Interface (JNDI). These are required only if you are using JTA features for distributed transaction management or JNDI features for naming services.		
Note: These files can also be obtained from the Sun Microsystems Web site. However, it is recommended that you use the versions supplied by Oracle, which have been tested with the Oracle drivers.		
This section describes the environment variables that must be set for the JDBC OCI driver and the JDBC Thin driver, focusing on the Sun Solaris, Linux, and Microsoft Windows platforms.		
You must set the CLASSPATH		
environment variable for your installed JDBC OCI or Thin driver. Include the following in the CLASSPATH		
environment variable:		
Note: If you use the JTA features and the JNDI features, then you must specifyjta.jar and jndi.jar in your CLASSPATH environment variable.		
JDBC OCI Driver		
If you are installing the JDBC OCI driver, then you must also set the following value for the library path environment variable:		
LD_LIBRARY_PATH		
environment variable as follows: This directory contains the libocijdbc11.so		
shared object library.		
Note: If you are running a 32-bit Java Virtual Machine (JVM) against a 64-bit client or database, then you must also addORACLE_HOME /lib32 to the LD_LIBRARY_PATH environment variable .		
PATH		
environment variable as follows: This directory contains the ocijdbc11.dll		
dynamic link library.		
All of the JDBC OCI demonstration programs can be run in the Instant Client mode by including the JDBC OCI Instant Client data shared library on the library path environment variable.		
JDBC Thin Driver		
If you are installing the JDBC Thin driver, then you do not have to set any other environment variables. However, to use the JDBC server-side Thin driver, you need to set permission.		
Setting Permission for the Server-Side Thin Driver		
The JDBC server-side Thin driver opens a socket for its connection to the database. Because Oracle Database enforces the Java security model, a check is performed for a SocketPermission		
object.		
To use the JDBC server-side Thin driver, the connecting user must be granted the appropriate permission. The following is an example of how the permission can be granted for the user SCOTT		
:		
Note that JDBCTHIN		
in the grant_permission		
call must be in uppercase. The asterisk (*		
) is a pattern. You can restrict the user by granting permission to connect to only specific computers or ports.		
To further ensure that Java is set up properly on your client system, go to the samples		
directory under the ORACLE_HOME		
/jdbc/demo		
directory. Now, type the following commands on the command line, one after the other, to see if the Java compiler and the Java interpreter run without error. :		
Each of the preceding commands should display a list of options and parameters and then exit. Ideally, verify that you can compile and run a simple test program, such as jdbc/demo/samples/generic/SelectExample		
.		
You can determine the version of the JDBC driver that you installed, by calling the getDriverVersion		
method of the OracleDatabaseMetaData		
class.		
The following sample code shows how to determine the driver version:		
You can also determine the version of the JDBC driver by executing the following commands:		
java -jar ojdbc5.jar		
java -jar ojdbc6.jar		
The samples		
directory contains sample programs for a particular Oracle JDBC driver. One of the programs, JdbcCheckup.java		
, is designed to test JDBC and the database connection. The program queries for the user name, password, and the name of the database to which you want to connect. The program connects to the database, queries for the string "Hello World		
", and prints it to the screen.		
Go to the samples		
directory, and compile and run the JdbcCheckup.java		
program. If the results of the query print without error, then your Java and JDBC installations are correct.		
Although JdbcCheckup.java		
is a simple program, it demonstrates several important functions by performing the following:		
DataSource		
instance The JdbcCheckup.java		
program, which uses the JDBC OCI driver, is as follows:		
After verifying the JDBC client installation, you can start creating your JDBC applications. When using Oracle JDBC drivers, you must include certain driver-specific information in your programs. This section describes, in the form of a tutorial, where and how to add the information. The tutorial guides you through the steps to create code that connects to and queries a database from the client.		
You must write code to perform the following tasks:		
Note: You must supply Oracle driver-specific information for the first three tasks, which allow your program to use the JDBC application programming interface (API) to access a database. For the other tasks, you can use standard JDBC Java code, as you would for any Java application.		
Regardless of which Oracle JDBC driver you use, include the import		
statements shown in Table 2-1 at the beginning of your program.		
Table 2-1 Import Statements for JDBC Driver		
Import statement	Provides	
---	---	
Standard JDBC packages.		
The		
Oracle extensions to JDBC. This is optional.		
Oracle type extensions. This is optional.		
The Oracle packages listed as optional provide access to the extended functionality provided by Oracle JDBC drivers, but are not required for the example presented in this section.		
Note: It is better to import only the classes your application needs, rather than using the wildcard asterisk (*). This guide uses the asterisk (*) for simplicity, but this is not the recommended way of importing classes and interfaces.		
First, you must create an OracleDataSource		
instance. Then, open a connection to the database using the OracleDataSource.getConnection		
method. The properties of the retrieved connection are derived from the OracleDataSource		
instance. If you set the URL connection property, then all other properties, including TNSEntryName		
, DatabaseName		
, ServiceName		
, ServerName		
, PortNumber		
, Network Protocol		
, and driver type are ignored.		
Specifying a Database URL, User Name, and Password		
The following code sets the URL, user name, and password for a data source:		
The following example connects user scott		
with password tiger		
to a database with service orcl		
through port 1521 of the host myhost		
, using the JDBC Thin driver:		
Note: The user name and password specified in the arguments override any user name and password specified in the URL.		
Specifying a Database URL that Includes User Name and Password		
The following example connects user scott		
with password tiger		
to a database host whose Transparent Network Substrate (TNS) entry is myTNSEntry		
, using the JDBC Oracle Call Interface (OCI) driver. In this case, the URL includes the user name and password and is the only input parameter.		
If you want to connect using the Thin driver, then you must specify the port number. For example, if you want to connect to the database on the host myhost		
that has a TCP/IP listener on port 1521 and the service identifier is orcl		
, then provide the following code:		
Once you connect to the database and, in the process, create a Connection		
object, the next step is to create a Statement		
object. The createStatement		
method of the JDBC Connection		
object returns an object of the JDBC Statement		
type. To continue the example from the previous section, where the Connection		
object conn		
was created, here is an example of how to create the Statement		
object:		
To query the database, use the executeQuery		
method of the Statement		
object. This method takes a SQL statement as input and returns a JDBC ResultSet		
object.		
Note:		
To continue the example, once you create the Statement		
object stmt		
, the next step is to run a query that returns a ResultSet		
object with the contents of the ename		
column of a table of employees named EMP		
:		
Once you run your query, use the next()		
method of the ResultSet		
object to iterate through the results. This method steps through the result set row by row, detecting the end of the result set when it is reached.		
To pull data out of the result set as you iterate through it, use the appropriate get		
XXX		
methods of the ResultSet		
object, where XXX		
corresponds to a Java data type.		
For example, the following code will iterate through the ResultSet		
object, rset		
, from the previous section and will retrieve and print each employee name:		
The next()		
method returns false		
when it reaches the end of the result set. The employee names are materialized as Java String		
values.		
You must explicitly close the ResultSet		
and Statement		
objects after you finish using them. This applies to all ResultSet		
and Statement		
objects you create when using Oracle JDBC drivers. The drivers do not have finalizer methods. The cleanup routines are performed by the close		
method of the ResultSet		
and Statement		
classes. If you do not explicitly close the ResultSet		
and Statement		
objects, serious memory leaks could occur. You could also run out of cursors in the database. Closing both the result set and the statement releases the corresponding cursor in the database. If you close only the result set, then the cursor is not released.		
For example, if your ResultSet		
object is rset		
and your Statement		
object is stmt		
, then close the result set and statement with the following lines of code:		
When you close a Statement		
object that a given Connection		
object creates, the connection itself remains open.		
Note: Typically, you should putclose statements in a finally clause.		
DML Operations		
To perform DML (Data Manipulation Language) operations, such as INSERT or UPDATE operations, you can create either a Statement		
object or a PreparedStatement		
object. PreparedStatement		
objects enable you to run a statement with varying sets of input parameters. The prepareStatement		
method of the JDBC Connection		
object lets you define a statement that takes variable bind parameters and returns a JDBC PreparedStatement		
object with your statement definition.		
Use the set		
XXX		
methods on the PreparedStatement		
object to bind data to the prepared statement to be sent to the database.		
The following example shows how to use a prepared statement to run INSERT		
operations that add two rows to the EMP		
table.		
DDL Operations		
To perform data definition language (DDL) operations, you can create either a Statement		
object or a PreparedStatement		
object. The following example shows how to create a table in the database using a Statement		
object.		
If your code involves reexecuting a DDL operation, then, before reexecuting the statement, you must prepare it again. The following example shows how to prepare your DDL statements before any reexecution:		
By default, data manipulation language (DML) operations are committed automatically as soon as they are run. This is known as the auto-commit mode. However, you can disable auto-commit mode with the following method call on the Connection		
object:		
If you disable the auto-commit mode, then you must manually commit or roll back changes with the appropriate method call on the Connection		
object:		
or:		
A COMMIT		
or ROLLBACK		
operation affects all DML statements run since the last COMMIT		
or ROLLBACK		
.		
Note:		
You must close the connection to the database after you have performed all the required operations and no longer require the connection. You can close the connection by using the close		
method of the Connection		
object, as follows:		
Note: Typically, you should putclose statements in a finally clause.		
The steps in the preceding sections are illustrated in the following example, which uses the Oracle JDBC Thin driver to create a data source, connects to the database, creates a Statement		
object, runs a query, and processes the result set.		
Note that the code for creating the Statement		
object, running the query, returning and processing the ResultSet		
object, and closing the statement and connection uses the standard JDBC API.		
If you want to adapt the code for the OCI driver, then replace the call to the OracleDataSource.setURL		
method with the following:		
where, MyHostString		
is an entry in the TNSNAMES.ORA		
file.		
This section describes how Oracle JDBC drivers support the following kinds of stored procedures:		
Oracle JDBC drivers support the processing of PL/SQL stored procedures and anonymous blocks. They support PL/SQL block syntax and most of SQL92 escape syntax. The following PL/SQL calls would work with any Oracle JDBC driver:		
As an example of using the Oracle syntax, here is a PL/SQL code snippet that creates a stored function. The PL/SQL function gets a character sequence and concatenates a suffix to it:		
The function invocation in your JDBC program should look like the following:		
You can use JDBC to call Java stored procedures through the SQL and PL/SQL engines. The syntax for calling Java stored procedures is the same as the syntax for calling PL/SQL stored procedures, presuming they have been properly published. That is, you have written call specifications to publish them to the Oracle data dictionary. Applications can call Java stored procedures using the Native Java Interface for direct invocation of static		
Java methods.		
To handle error conditions, Oracle JDBC drivers throw SQL exceptions, producing instances of the java.sql.SQLException		
class or its subclass. Errors can originate either in the JDBC driver or in the database itself. Resulting messages describe the error and identify the method that threw the error. Additional run-time information can also be appended.		
JDBC 3.0 defines only a single exception, SQLException		
. However, there are large categories of errors and it is useful to distinguish them. Therefore, in JDBC 4.0, a set of subclasses of the SQLException		
exception is introduced to identify the different categories of errors. To know more about this feature, see Support for JDBC 4.0 Standard.		
Basic exception handling can include retrieving the error message, retrieving the error code, retrieving the SQL state, and printing the stack trace. The SQLException		
class includes functionality to retrieve all of this information, when available.		
Retrieving Error Information		
You can retrieve basic error information with the following methods of the SQLException		
class:		
The following example prints output from a getMessage		
method call:		
This would print the output, such as the following, for an error originating in the JDBC driver:		
Note: Error message text is available in alternative languages and character sets supported by Oracle.		
Printing the Stack Trace		
The SQLException		
class provides the printStackTrace()		
method for printing a stack trace. This method prints the stack trace of the throwable object to the standard error stream. You can also specify a java.io.PrintStream		
object or java.io.PrintWriter		
object for output.		
The following code fragment illustrates how you can catch SQL exceptions and print the stack trace.		
To illustrate how the JDBC drivers handle errors, assume the following code uses an incorrect column index:		
Assuming the column index is incorrect, running the program would produce the following error text:		
This part includes chapters that discuss the different Java Database Connectivity (JDBC) versions that Oracle Database 11g supports. It also includes chapters that cover features specific to JDBC Thin driver, JDBC Oracle Call Interface (OCI) driver, and the server-side internal driver.		
Part II contains the following chapters:		
The Oracle Java Database Connectivity (JDBC) drivers support different versions of the JDBC standard features. In Oracle Database 11g Release 1 (11.1), Oracle JDBC drivers have been enhanced to provide support for the JDBC 4.0 standards. These features are provided through the oracle.jdbc		
and oracle.sql		
packages. These packages support Java Development Kit (JDK) releases 1.5 and 1.6. This chapter discusses the JDBC standards support in Oracle JDBC drivers. It contains the following sections:		
Standard JDBC 2.0 features are supported by JDK 1.2 and later versions. There are three areas to consider:		
java.sql		
package. Connection		
, ResultSet		
, and PreparedStatement		
, under JDK 1.2.x and later. This section covers the following topics:		
Note: Versions of JDK earlier than 1.5 are no longer supported. The packageoracle.jdbc2 has been removed.		
Oracle JDBC fully supports JDK 1.5 and JDK 1.6, which includes standard JDBC 2.0 functionality through implementation of interfaces in the standard java.sql		
package. These interfaces are implemented as appropriate by classes in the oracle.sql		
and oracle.jdbc		
packages.		
In a JDK 1.5 environment, using the JDBC classes in ojdbc5.jar		
, JDBC 2.0 features, such as scrollable result sets, updatable result sets, and update batching, are supported through methods specified by standard JDBC 2.0 interfaces.		
Features of the JDBC 2.0 optional package, including data sources, connection pooling, and distributed transactions, are supported in a JDK 1.2.x or later environment.		
The standard javax.sql		
package and classes that implement its interfaces are included in the Java Archive (JAR) files packaged with Oracle Database.		
The following performance enhancements are available under JDBC 2.0, which had previously been available only as Oracle extensions:		
In each case, you have the option of using the standard model or the Oracle model. Oracle recommends that you use the JDBC standard model whenever possible. Do not, however, try to mix usage of the standard model and Oracle model within a single application for either of these features.		
Standard JDBC 3.0 features are supported by JDK 1.4 and later versions. Table 3-1 lists the JDBC 3.0 features supported by Oracle Database 11g Release 1 (11.1) and gives references to a detailed discussion of each feature.		
Table 3-1 Key Areas of JDBC 3.0 Functionality		
Feature	Comments and References	
---	---	
Transaction savepoints	See "Transaction Savepoints" for information.	
Statement caching	Reuse of prepared statements by connection pools. See Chapter 20, "Statement and Result Set Caching".	
Switching between local and global transactions		
LOB modification		
Named SQL parameters	See "Interface oracle.jdbc.OracleCallableStatement" and "Interface oracle.jdbc.OraclePreparedStatement" .	
RowSets		
Retrieving auto-generated keys		
Result set holdability		
The following JDBC 3.0 features supported by Oracle JDBC drivers are covered in this section:		
The JDBC 3.0 specification supports savepoints, which offer finer demarcation within transactions. Applications can set a savepoint within a transaction and then roll back all work done after the savepoint. Savepoints relax the atomicity property of transactions. A transaction with a savepoint is atomic in the sense that it appears to be a single unit outside the context of the transaction, but code operating within the transaction can preserve partial states.		
Note: Savepoints are supported for local transactions only. Specifying a savepoint within a global transaction causes aSQLException exception to be thrown.		
You create a savepoint using the Connection.setSavepoint		
method, which returns a java.sql.Savepoint		
instance.		
A savepoint is either named or unnamed. You specify the name of a savepoint by supplying a string to the setSavepoint		
method. If you do not specify a name, then the savepoint is assigned an integer ID. You retrieve a name using the getSavepointName		
method. You retrieve an ID using the getSavepointId		
method.		
Note: Attempting to retrieve a name from an unnamed savepoint or attempting to retrieve an ID from a named savepoint throws aSQLException exception.		
You roll back to a savepoint using the Connection.rollback(Savepoint svpt)		
method. If you try to roll back to a savepoint that has been released, then a SQLException		
exception is thrown.		
You remove a savepoint using the Connection.releaseSavepoint(Savepoint svpt)		
method.		
You query if savepoints are supported by your database by calling the oracle.jdbc.OracleDatabaseMetaData.supportsSavepoints		
method, which returns true		
if savepoints are available, false		
otherwise.		
When using savepoints, you must consider the following:		
SQLException		
exception to be thrown. Many database systems automatically generate a unique key field when a row is inserted. Oracle Database provides the same functionality with the help of sequences and triggers. JDBC 3.0 introduces the retrieval of auto-generated keys feature that enables you to retrieve such generated values. In JDBC 3.0, the following interfaces are enhanced to support the retrieval of auto-generated keys feature:		
java.sql.DatabaseMetaData		
java.sql.Connection		
java.sql.Statement		
These interfaces provide methods that support retrieval of auto-generated keys. However, this feature is supported only when INSERT		
statements are processed. Other data manipulation language (DML) statements are processed, but without retrieving auto-generated keys.		
Note: The Oracle server-side internal driver does not support the retrieval of auto-generated keys feature.		
If key columns are not explicitly indicated, then Oracle JDBC drivers cannot identify which columns need to be retrieved. When a column name or column index array is used, Oracle JDBC drivers can identify which columns contain auto-generated keys that you want to retrieve. However, when the Statement.RETURN_GENERATED_KEYS		
integer flag is used, Oracle JDBC drivers cannot identify these columns. When the integer flag is used to indicate that auto-generated keys are to be returned, the ROWID		
pseudo column is returned as key. The ROWID		
can be then fetched from the ResultSet		
object and can be used to retrieve other columns.		
The following code illustrates retrieval of auto-generated keys:		
In the preceding example, a sequence, SEQ01		
, is created to generate values for the ORDER_ID		
column starting from 1000		
and incrementing by 1		
each time the sequence is processed to generate the next value. An OraclePreparedStatement		
object is created to insert a row in to the ORDERS		
table.		
Auto-generated keys are implemented using the DML returning clause. So, they are subjected to the following limitations:		
ResultSet		
object returned from getGeneratedKeys		
method by position only and no bind variable names should be used as columns in the ResultSet		
object. Table 3-2 and Table 3-3 show the conversions between Oracle proprietary methods and JDBC 3.0 standard methods.		
Table 3-2 BLOB Method Equivalents		
Oracle Proprietary Method	JDBC 3.0 Standard Method	
---	---	
Table 3-3 CLOB Method Equivalents		
Oracle Proprietary Method	JDBC 3.0 Standard Method	
---	---	
not applicable		
Result set holdability was introduced since JDBC 3.0. This feature enables applications to decide whether the ResultSet		
objects should be open or closed, when a commit operation is performed. The commit operation could be either implicit or explicit.		
Oracle Database supports only HOLD_CURSORS_OVER_COMMIT		
. Therefore, it is the default value for Oracle JDBC drivers. Any attempt to change holdability will throw a SQLException		
exception.		
The JDBC 4.0 standard support is provided by JDK 1.6 and later versions. Oracle Database 11g Release 1 (11.1) JDBC drivers provide support for the JDBC 4.0 standard.		
Note: You need to have theojdbc6*.jar in your classpath environment variable in order to have JDBC 4.0 standard support.		
Some of the new features available in Oracle Database 11g Release 1 (11.1) JDBC drivers are the following:		
This document provides only an overview of these new features. For detailed information about these features, see "Java 2 Platform, Standard Edition (JSE) 6.0 specification" at		
Wrapper Pattern Support		
Wrapper pattern is a common coding pattern used in Java applications to provide extensions beyond the traditional JDBC API that are specific to a data source. You may need to use these extensions to access the resources that are wrapped as proxy class instances representing the actual resources. JDBC 4.0 introduces the Wrapper		
interface that describes a standard mechanism to access these wrapped resources represented by their proxy, to permit direct access to the resource delegates.		
The Wrapper		
interface provides the following two methods:		
public boolean isWrapperFor(Class<?> iface) throws SQLException;		
public <T> T unwrap(Class<T> iface) throws SQLException;		
The other JDBC 4.0 interfaces, except those that represent SQL data, all implement this interface. These include Connection		
, Statement		
and its subtypes, ResultSet		
, and the metadata interfaces.		
Enhanced Exception Hierarchy and SQLException		
JDBC 3.0 defines only a single exception, SQLException		
. However, there are large categories of errors and it is useful to distinguish them. This feature provides subclasses of the SQLException		
class to identify the different categories of errors. The primary distinction is between permanent errors and transient errors. Permanent errors are a result of the correct operation of the system and will always occur. Transient errors are the result of failures, including timeouts, of some part of the system and may not reoccur.		
New exceptions have been added to represent transient and permanent errors and the different categories of these errors.		
Also, the SQLException		
class and its subclasses have been enhanced to provide support for the J2SE chained exception functionality.		
The RowId Data Type		
JDBC 4.0 provides the java.sql.RowId		
data type to represent SQL ROWID		
values. You can retrieve a RowId		
value using the getter methods defined in the ResultSet		
and CallableStatement		
interfaces. You can also use a RowId		
value in a parameterized PreparedStatement		
to set a parameter with a RowId		
object or in an updatable result set to update a column with a specific RowId		
value.		
A RowId		
object is valid until the identified row is not deleted. A RowId		
object may also be valid for the following:		
The lifetime of the RowId object can be determined by calling the DatabaseMetaData.getRowIdLifetime		
method.		
LOB Creation		
In JDBC 4.0, the Connection		
interface has been enhanced to provide support for the creation of BLOB		
, CLOB		
, and NCLOB		
objects. The interface provides the createBlob		
, createClob		
, and createNClob		
methods that enable you to create Blob		
, Clob		
, and NClob		
objects.		
The created large objects (LOBs) do not contain any data. You can add data in these objects by calling the appropriate set		
XXX		
methods. To retrieve the data from these objects, you can call the getBlob		
, getClob		
, and getNClob		
methods defined in the ResultSet		
and CallableStatement		
interfaces. You can either retrieve the entire content or a part of the content from these objects. The following code snippet illustrates how to retrieve 100 bytes of data from a BLOB		
object starting at offset 200:		
You can also pass LOBs as input parameters to a PreparedStatement		
object using the setBlob		
, setClob		
, and setNClob		
methods. You can use the updateBlob		
, updateClob		
, and updateNClob		
methods to update a column value in an updatable result set.		
LOBs remain valid for at least the duration of the transaction in which they are created. This may result in unwarranted use of memory during a long running transaction. You can release LOBs by calling their free		
method, as follows:		
National Language Character Set Support		
JDBC 4.0 introduces the NCHAR		
, NVARCHAR		
, LONGNVARCHAR		
, and NCLOB		
JDBC types to access the national character set types. These types are similar to the CHAR		
, VARCHAR		
, LONGVARCHAR		
, and CLOB		
types, except that the values are encoded using the national character set.		
Oracle provides Java classes and interfaces that extend the Java Database Connectivity (JDBC) standard implementation, enabling you to access and manipulate Oracle data types and use Oracle performance extensions. Compared to standard JDBC, the Oracle extensions offer greater flexibility in manipulating the data. This chapter provides an overview of the classes and interfaces provided by Oracle that extend the JDBC standard implementation. It also describes some of the key support features of the extensions.		
This chapter contains the following sections:		
Note: This chapter focuses on type extensions, as opposed to performance extensions, which are discussed in detail in Chapter 23, "Performance Extensions".		
Beyond standard features, Oracle JDBC drivers provide Oracle-specific type extensions and performance extensions. These extensions are provided through the following Java packages:		
oracle.sql		
Provides classes that represent SQL data in Oracle format		
oracle.jdbc		
Provides interfaces to support database access and updates in Oracle type formats		
The Oracle extensions to JDBC include a number of features that enhance your ability to work with Oracle Databases. These include the following:		
Oracle Database 11g Release 1 (11.1) introduces new JDBC methods, startup		
and shutdown		
, in the oracle.jdbc.OracleConnection		
interface that enable you to start up and shut down an Oracle Database instance. You also have support for the Database Change Notification feature of Oracle Database. These new features have been discussed in details in "Database Management".		
One of the features of the Oracle JDBC extensions is the type support in the oracle.sql		
package. This package includes classes that are an exact representation of the data in Oracle format. Keep the following important points in mind, when you use oracle.sql		
types in your program:		
BigDecimal		
type to minimize any data loss issues. oracle.sql		
types to standard Java types. oracle.sql		
types are slightly faster as compared to standard Java types. But, if your program involves even a simple data manipulation opearation like compare or print, then standard Java types are faster. oracle.sql.CHAR		
is not an exact representation of the data in Oracle format. oracle.sql.CHAR		
is constructed from java.lang.String		
. There is no advantage of using oracle.sql.CHAR		
because java.lang.String		
is always faster and represents the same character sets, excluding a couple of desupported character sets. Note: Oracle strongly recommends you to use standard Java types and convert any existingoracle.sql type of data to standard Java types. Internally, the Oracle JDBC drivers strive to maximize the performance of Java standard types. oracle.sql types are supported only for backward compatibility and their use is discouraged.		
Oracle JDBC supports the use of structured objects in the database, where an object data type is a user-defined type with nested attributes. For example, a user application could define an Employee		
object type, where each Employee		
object has a firstname		
attribute (character string), a lastname		
attribute (character string), and an employeenumber		
attribute (integer).		
Oracle JDBC supports Oracle object data types. When you work with Oracle object data types in a Java application, you must consider the following:		
Oracle objects can be mapped either to the weak java.sql.Struct		
type or to strongly typed customized classes. These strong types are referred to as custom Java classes, which must implement either the standard java.sql.SQLData		
interface or the Oracle extension oracle.sql.ORAData		
interface. Each interface specifies methods to convert data between SQL and Java.		
Note: TheORAData interface has replaced the CustomDatum interface. The latter interface is desupported in Oracle Database release 11.1.		
Oracle recommends the use of the Oracle JPublisher utility to create custom Java classes to correspond to your Oracle objects. Oracle JPublisher performs this task seamlessly with command-line options and can generate either SQLData		
or ORAData		
interface implementations.		
For SQLData		
interface implementations, a type map defines the correspondence between Oracle object data types and Java classes. Type maps are objects that specify which Java class corresponds to each Oracle object data type. Oracle JDBC uses these type maps to determine which Java class to instantiate and populate when it retrieves Oracle object data from a result set.		
Note: Oracle recommends using theORAData interface, instead of the SQLData interface, in situations where portability is not a concern. The ORAData interface works more easily and flexibly in conjunction with other features of the Oracle platform offerings using Java.		
JPublisher automatically defines get		
XXX		
methods of the custom Java classes, which retrieve data into your Java application.		
Oracle object data type classes have the ability to accept and return fully qualified schema names. A fully qualified schema name has this syntax:		
Where, schema_name		
is the name of the schema and sql_type_name		
is the SQL type name of the object. schema_name		
and sql_type_name		
are separated by a period (.		
).		
To specify an object type in JDBC, use its fully qualified name. It is not necessary to enter a schema name if the type name is in the current naming space, that is, the current schema. Schema naming follows these rules:		
CORPORATE.EMPLOYEE		
, the type name must be quoted. For example, assume that user Scott creates a type called person.address		
and then wants to use it in his session. Scott may want to skip the schema name and pass in person.address		
to the JDBC driver. In this case, if person.address		
is not within quotation marks, then the period will be detected and the JDBC driver will mistakenly interpret person		
as the schema name and address		
as the type name.		
For example, if Scott.PersonType		
is passed to the JDBC driver as an object type name, then the JDBC driver will pass the string to the database unchanged. As another example, if there is white space between characters in the type name string, then the JDBC driver will not remove the white space.		
Oracle Database supports the use of the RETURNING		
clause with data manipulation language (DML) statements. This enables you to combine two SQL statements into one. Both the Oracle JDBC Oracle Call Interface (OCI) driver and the Oracle JDBC Thin driver support DML returning.		
This section describes the following Java packages, which support the Oracle JDBC extensions:		
The oracle.sql		
package supports direct access to data in SQL format. This package consists primarily of classes that provide Java mappings to SQL data types and their support classes. Essentially, the classes act as Java containers for SQL data.		
Each of the oracle.sql.*		
data type classes extends oracle.sql.Datum		
, a superclass that encapsulates functionality common to all the data types. Some of the classes are for JDBC 2.0-compliant data types. These classes, as Table 4-1 indicates, implement standard JDBC 2.0 interfaces in the java.sql		
package, as well as extending the oracle.sql.Datum		
class.		
Note: Oracle recommends the use of standard JDBC types or Java types whenever possible. The types in the packageoracle.sql.* are provided primarily for backward compatibility or for support of a few Oracle specific features such as OPAQUE , OraData , TIMESTAMPTZ , and so on.		
Classes of the oracle.sql Package		
Table 4-1 lists the oracle.sql		
data type classes and their corresponding Oracle SQL types.		
Table 4-1 Oracle Data Type Classes		
Java Class	Oracle SQL Types and Interfaces Implemented	
---	---	
SQL		
Note: TheLONG and LONG RAW SQL types and REF CURSOR type category have no oracle.sql.* classes. Use standard JDBC functionality for these types. For example, retrieve LONG or LONG RAW data as input streams using the standard JDBC result set and callable statement methods getBinaryStream and getCharacterStream . Use the getCursor method for REF CURSOR types.		
In addition to the data type classes, the oracle.sql		
package includes the following support classes and interfaces, primarily for use with objects and collections:		
oracle.sql.ArrayDescriptor		
This class is used in constructing oracle.sql.ARRAY		
objects. It describes the SQL type of the array.		
oracle.sql.StructDescriptor		
This class is used in constructing oracle.sql.STRUCT		
objects, which you can use as a default mapping to Oracle objects in the database.		
oracle.sql.ORAData		
and oracle.sql.ORADataFactory		
These interfaces are used in Java classes implementing the Oracle ORAData		
scenario of Oracle object support.		
oracle.sql.OpaqueDescriptor		
This class is used to obtain the metadata for an instance of the oracle.sql.OPAQUE		
class.		
oracle.sql.TypeDescriptor		
This class is used to represent transient and persistent SQL types in Java.		
General oracle.sql.* Data Type Support		
Each of the Oracle data type classes provides, among other things, the following:		
getBytes()		
method, which returns the SQL data as a byte array toJdbc()		
method that converts the data into an object of a corresponding Java class as defined in the JDBC specification The JDBC driver does not convert Oracle-specific data types that are not part of the JDBC specification, such as BFILE		
. The driver returns the object in the corresponding oracle.sql.*		
format.		
xxx		
Value		
methods to convert SQL data to Java type. For example, stringValue		
, intValue		
, booleanValue		
, dateValue		
, and bigDecimalValue		
get		
XXX		
and set		
XXX		
, as appropriate, for the functionality of the data type, such as methods in the large object (LOB) classes that get the data as a stream and methods in the REF		
class that get and set object data through the object reference. Overview of Class oracle.sql.STRUCT		
For any given Oracle object type, it is usually desirable to define a custom mapping between SQL and Java. For example, if you use a SQLData		
custom Java class, then the mapping must be defined in a type map.		
If you choose not to define a mapping, however, then data from the object type will be materialized in Java in an instance of the oracle.sql.STRUCT		
class.		
The STRUCT		
class implements the standard JDBC 2.0 java.sql.Struct		
interface and extends the oracle.sql.Datum		
class.		
A STRUCT		
object is a Java representation of the raw bytes of an Oracle object. It contains the SQL type name of the Oracle object and an array of oracle.sql.Datum		
objects that hold the attribute values in SQL format.		
If you want to create a STRUCT		
object, then use the createStruct		
method of the oracle.jdbc.OracleConnection		
interface. The signature of this factory method for creating STRUCT		
objects is as follows:		
The parameters in this signature are as follows:		
typeName		
parameter is the SQL type name of the SQL structured type to which the STRUCT object maps. The typeName		
is the name of a user-defined type that has been defined for this database. It is the value returned by the Struct.getSQLTypeName		
method. attributes		
parameter specifies the attributes that populate the returned object. You can materialize attributes of a STRUCT		
object as oracle.sql.Datum[]		
objects, if you use the getOracleAttributes		
method, or as java.lang.Object[]		
objects, if you use the getAttributes		
method. Materializing the attributes as oracle.sql.*		
objects gives you the following advantages of the oracle.sql.*		
format:		
oracle.sql.STRUCT		
data in oracle.sql.*		
format completely preserves data by maintaining it in SQL format. No translation is performed. This is useful if you want to access data but not necessarily display it. Overview of Class oracle.sql.REF		
The oracle.sql.REF		
class is the generic class that supports Oracle object references. This class, as with all oracle.sql.*		
data type classes, is a subclass of the oracle.sql.Datum		
class. It implements the standard JDBC 2.0 java.sql.Ref		
interface.		
The REF		
class has methods to retrieve and pass object references. However, selecting an object reference retrieves only a pointer to an object. This does not materialize the object itself. But the REF		
class also includes methods to retrieve and pass the object data.		
You cannot create REF		
objects in your JDBC application. You can only retrieve existing REF		
objects from the database.		
Overview of Class oracle.sql.ARRAY		
The oracle.sql.ARRAY		
class supports Oracle collections, either VARRAYs or nested tables. If you select either a VARRAY or a nested table from the database, then the JDBC driver materializes it as an object of the ARRAY		
class. The structure of the data is equivalent in either case. The oracle.sql.ARRAY		
class extends the oracle.sql.Datum		
class and implements the standard JDBC 2.0 java.sql.Array		
interface.		
You can use the setARRAY		
method of the OraclePreparedStatement		
or OracleCallableStatement		
interface to pass an ARRAY		
as an input parameter to a prepared statement. Similarly, you can use the createARRAY		
method of the OracleConnection		
interface to create an ARRAY		
object to pass it to a prepared statement or callable statement, perhaps to insert into the database.		
Overview of Classes oracle.sql.BLOB, oracle.sql.CLOB, oracle.sql.BFILE		
Binary large objects (BLOBs), character large objects (CLOBs), and binary files (BFILEs) are for data items that are too large to store directly in a database table. Instead, the database table stores a locator that points to the location of the actual data.		
The oracle.sql		
package supports these data types in several ways:		
oracle.sql.BLOB		
class. oracle.sql.CLOB		
class. oracle.sql.BFILE		
class. BFiles are read-only. You can select a BLOB, CLOB, or BFILE locator from the database using a standard SELECT		
statement. However, you receive only the locator, and not the data. Additional steps are necessary to retrieve the data.		
Classes oracle.sql.DATE, oracle.sql.NUMBER, and oracle.sql.RAW		
These classes map to primitive SQL data types, which are a part of standard JDBC, and supply conversions to and from the corresponding JDBC Java types.		
Because Java Double		
and Float		
NaN		
values do not have an equivalent Oracle NUMBER		
representation, a NullPointerException		
is thrown whenever a Double.NaN		
value or a Float.NaN		
value is converted into an Oracle NUMBER		
using the oracle.sql.NUMBER		
class. For instance, the following code throws a NullPointerException		
:		
Classes oracle.sql.TIMESTAMP, oracle.sql.TIMESTAMPTZ, and oracle.sql.TIMESTAMPLTZ		
The JDBC drivers support the following date/time data types:		
TIMESTAMP		
(TIMESTAMP		
) TIMESTAMP WITH TIME ZONE		
(TIMESTAMPTZ		
) TIMESTAMP WITH LOCAL TIME ZONE		
(TIMESTAMPLTZ		
) The JDBC drivers allow conversions between DATE		
and date/time data types. For example, you can access a TIMESTAMP WITH TIME ZONE		
column as a DATE		
value.		
The JDBC drivers support the most popular time zone names used in the industry as well as most of the time zone names defined in the JDK. Time zones are specified by using the java.util.Calendar		
class.		
Note: Do not useTimeZone.getTimeZone to create time zone objects. The Oracle time zone data types support more time zone names than does the JDK.		
The following code shows how the TimeZone		
and Calendar		
objects are created for US_PACIFIC		
, which is a time zone name not defined in the JDK:		
The following Java classes represent the SQL date/time types:		
oracle.sql.TIMESTAMP		
oracle.sql.TIMESTAMPTZ		
oracle.sql.TIMESTAMPLTZ		
Before accessing TIMESTAMP WITH LOCAL TIME ZONE		
data, call the OracleConnection.setSessionTimeZone(String regionName)		
method to set the session time zone. When this method is called, the JDBC driver sets the session time zone of the connection and saves the session time zone so that any TIMESTAMP WITH LOCAL TIME ZONE		
data accessed through JDBC can be adjusted using the session time zone.		
Class oracle.sql.OPAQUE		
The oracle.sql.OPAQUE		
class gives you the name and characteristics of the OPAQUE		
type and any attributes. The OPAQUE		
type provides access only to the uninterrupted bytes of the instance.		
Note: There is minimal support for theOPAQUE type.		
The interfaces of the oracle.jdbc		
package define the Oracle extensions to the interfaces in java.sql		
. These extensions provide access to Oracle SQL-format data and other Oracle-specific functionality, including Oracle performance enhancements.		
Oracle character data types include the SQL CHAR and NCHAR data types. The following sections describe how these data types can be accessed using the oracle.sql.*		
classes:		
The SQL CHAR data types include CHAR		
, VARCHAR2		
, and CLOB		
. These data types let you store character data in the database character set encoding scheme. The character set of the database is established when you create the database.		
The SQL NCHAR		
data types were created for Globalization Support. The SQL NCHAR		
data types include NCHAR		
, NVARCHAR2		
, and NCLOB		
. These data types allow you to store Unicode data in the database NCHAR		
character set encoding. The NCHAR		
character set, which never changes, is established when you create the database.		
Note: Because theUnicodeStream class is deprecated in favor of the CharacterStream class, the setUnicodeStream and getUnicodeStream methods are not supported for NCHAR data type access. Use the setCharacterStream method and the getCharacterStream method if you want to use stream access.		
The usage of SQL NCHAR		
data types is similar to that of the SQL CHAR		
data types. JDBC uses the same classes and methods to access SQL NCHAR		
data types that are used for the corresponding SQL CHAR		
data types. Therefore, there are no separate, corresponding classes defined in the oracle.sql		
package for SQL NCHAR		
data types. Similarly, there is no separate, corresponding constant defined in the oracle.jdbc.OracleTypes		
class for SQL NCHAR		
data types.		
The following code shows how to access SQL NCHAR		
data:		
The oracle.sql.CHAR		
class is used by Oracle JDBC in handling and converting character data. This class provides the Globalization Support functionality to convert character data. This class has two key attributes: Globalization Support character set and the character data. The Globalization Support character set defines the encoding of the character data. It is a parameter that is always passed when a CHAR		
object is constructed. Without the Globalization Support character set information, the data bytes in the CHAR		
object are meaningless. The oracle.sql.CHAR		
class is used for both SQL CHAR		
and SQL NCHAR		
data types.		
Note: In versions of Oracle JDBC drivers prior to 10g release 1 (10.1), there were performance advantages to using theoracle.SQL.CHAR . Starting from Oracle Database 10g, there are no longer any such advantages. In fact, optimum performance is achieved using the java.lang.String . All Oracle JDBC drivers handle all character data in the Java UCS2 character set. Using the oracle.sql.CHAR does not prevent conversions between the database character set and UCS2 character set.		
The only remaining use of the oracle.sql.CHAR		
class is to handle character data in the form of raw bytes encoded in an Oracle Globalization Support character set. All character data retrieved from Oracle Database should be accessed using the java.lang.String		
class. When processing byte data from another source, you can use an oracle.sql.CHAR		
to convert the bytes to java.lang.String		
.		
To convert an oracle.sql.CHAR		
, you must provide the data bytes and an oracle.sql.CharacterSet		
instance that represents the Globalization Support character set used to encode the data bytes.		
The CHAR		
objects that are Oracle object attributes are returned in the database character set.		
JDBC application code rarely needs to construct CHAR		
objects directly, because the JDBC driver automatically creates CHAR		
objects as needed.		
To construct a CHAR		
object, you must provide character set information to the CHAR		
object by way of an instance of the CharacterSet		
class. Each instance of this class represents one of the Globalization Support character sets that Oracle supports. A CharacterSet		
instance encapsulates methods and attributes of the character set, mainly involving functionality to convert to or from other character sets.		
Constructing an oracle.sql.CHAR Object		
Follow these general steps to construct a CHAR		
object:		
CharacterSet		
object by calling the static		
CharacterSet.make		
method. This method is a factory for the character set instance. The make		
method takes an integer as input, which corresponds to a character set ID that Oracle supports. For example:		
Each character set that Oracle supports has a unique, predefined Oracle ID.		
CHAR		
object. Pass a string, or the bytes that represent the string, to the factory method along with the CharacterSet		
object that indicates how to interpret the bytes based on the character set. For example:		
There are multiple factory methods for CHAR		
, which can take a String		
, a byte		
array, or an object as input along with the CharacterSet		
object. In the case of a String		
, the string is converted to the character set indicated by the CharacterSet		
object before being placed into the CHAR		
object.		
oracle.sql.CHAR Conversion Methods		
The CHAR		
class provides the following methods for translating character data to strings:		
getString		
This method converts the sequence of characters represented by the CHAR		
object to a string, returning a Java String		
object. If you enter an invalid OracleID		
, then the character set will not be recognized and the getString		
method will throw a SQLException		
exception.		
toString		
This method is identical to the getString		
method. But if you enter an invalid OracleID		
, then the character set will not be recognized and the toString		
method will return a hexadecimal representation of the CHAR		
data and will not throw a SQLException		
exception.		
getStringWithReplacement		
This method is identical to the getString		
method, except a default replacement character replaces characters that have no unicode representation in the CHAR		
object character set. This default character varies from character set to character set, but is often a question mark (?		
).		
The database server and the client, or application running on the client, can use different character sets. When you use the methods of the CHAR		
class to transfer data between the server and the client, the JDBC drivers must convert the data from the server character set to the client character set or vice versa. To convert the data, the drivers use Globalization Support.		
Oracle JDBC drivers support the Oracle-specific BFILE		
and ROWID		
data types and REF		
CURSOR		
types, which are not part of the standard JDBC specification. This section describes the ROWID		
and REF CURSOR		
type extensions. The ROWID		
is supported as a Java string, and REF		
CURSOR		
types are supported as JDBC result sets.		
This section covers the following topics:		
A ROWID is an identification tag unique for each row of an Oracle Database table. The ROWID can be thought of as a virtual column, containing the ID for each row.		
The oracle.sql.ROWID		
class is supplied as a container for ROWID		
SQL data type.		
ROWIDs provide functionality similar to the getCursorName		
method specified in the java.sql.ResultSet		
interface and the setCursorName		
method specified in the java.sql.Statement		
interface.		
If you include the ROWID pseudo-column in a query, then you can retrieve the ROWIDs with the result set getString		
method. You can also bind a ROWID to a PreparedStatement		
parameter with the setString		
method. This enables in-place updating, as in the example that follows.		
Note: Theoracle.sql.ROWID class replaces oracle.jdbc.driver.ROWID , which was used in previous releases of Oracle JDBC. But, use the former class only when using J2SE 1.5. For JSE 6, use the java.sql.RowId interface instead.		
Example		
The following example shows how to access and manipulate ROWID data:		
A cursor variable holds the memory location of a query work area, rather than the contents of the area. Declaring a cursor variable creates a pointer. In SQL, a pointer has the data type REF		
x		
, where REF		
is short for REFERENCE		
and x		
represents the entity being referenced. A REF CURSOR		
, then, identifies a reference to a cursor variable. Because many cursor variables might exist to point to many work areas, REF		
CURSOR		
can be thought of as a category or data type specifier that identifies many different types of cursor variables.		
Note: REF CURSOR instances are not scrollable.		
To create a cursor variable, begin by identifying a type that belongs to the REF		
CURSOR		
category. For example:		
Then, create the cursor variable by declaring it to be of the type DeptCursorTyp		
:		
REF		
CURSOR		
, then, is a category of data types, rather than a particular data type.		
Stored procedures can return cursor variables of the REF		
CURSOR		
category. This output is equivalent to a database cursor or a JDBC result set. A REF CURSOR		
essentially encapsulates the results of a query.		
In JDBC, a		
REF CURSOR		
is materialized as a ResultSet		
object and can be accessed as follows:		
REF CURSOR		
. getCursor		
method of the OracleCallableStatement		
class to materialize the REF CURSOR		
as a JDBC ResultSet		
object. Important: The cursor associated with aREF CURSOR is closed whenever the statement object that produced the REF CURSOR is closed. Unlike in past releases, the cursor associated with a		
Example		
This example shows how to access REF CURSOR		
data.		
In the preceding example:		
CallableStatement		
object is created by using the prepareCall		
method of the connection class. REF CURSOR		
. OracleTypes.CURSOR		
for a REF CURSOR		
. REF CURSOR		
. CallableStatement		
object is cast to OracleCallableStatement		
to use the getCursor		
method, which is an Oracle extension to the standard JDBC API, and returns the REF CURSOR		
into a ResultSet		
object. The Oracle BINARY_FLOAT		
and BINARY_DOUBLE		
types are used to store IEEE 574 float and double data. These correspond to the Java float		
and double		
scalar types with the exception of negative zero and NaN		
.		
If you include a BINARY_DOUBLE		
column in a query, then the data is retrieved from the database in the binary format. Also, the getDouble		
method will return the data in the binary format. In contrast, for a NUMBER		
data type column, the number bits are returned and converted to the Java double		
data type.		
Note: The Oracle representation for the SQLFLOAT , DOUBLE PRECISION , and REAL data types use the Oracle NUMBER representation. The BINARY_FLOAT and BINARY_DOUBLE data types can be regarded as proprietary types.		
A call to the JDBC standard setDouble(int, double)		
method of the PreparedStatement		
interface converts the Java double		
argument to Oracle NUMBER		
style bits and send them to the database. In contrast, the setBinaryDouble(int, double)		
method of the oracle.jdbc.OraclePreparedStatement		
interface converts the data to the internal binary bits and sends them to the database.		
You must ensure that the data format used matches the type of the target parameter of the PreparedStatement		
interface. This will result in correct data and least use of CPU. If you use setBinaryDouble		
for a NUMBER		
parameter, then the binary bits are sent to the server and converted to NUMBER		
format. The data will be correct, but server CPU load will be increased. If you use setDouble		
for a BINARY_DOUBLE		
parameter, then the data will first be converted to NUMBER		
bits on the client and sent to the server, where it will be converted back to binary format. This will increase the CPU load on both client and server and can result in data corruption as well.		
The SetFloatAndDoubleUseBinary		
connection property when set to true		
causes the JDBC standard APIs, setFloat(int, float)		
, setDouble(int, double)		
, and all the variations, to send internal binary bits instead of NUBMER		
bits.		
Note: Although this section largely discussesBINARY_DOUBLE , the same is true for BINARY_FLOAT .		
Oracle Database 11g Release 1 (11.1) provides a Java interface to access the SYS.ANYTYPE		
and SYS.ANYDATA		
Oracle types.		
See Also: For information about these Oracle types, refer Oracle Database PL/SQL Packages and Types Reference		
An instance of the SYS.ANYTYPE		
type contains a type description of any SQL type, persistent or transient, named or unnamed, including object types and collection types. You can use the oracle.sql.TypeDescriptor		
class to access the SYS.ANYTYPE		
type. An ANYTYPE		
instance can be retrieved from a PL/SQL procedure or a SQL SELECT		
statement where SYS.ANYTYPE		
is used as a column type. To retrieve an ANYTYPE		
instance from the database, use the getObject		
method. This method returns an instance of the TypeDescriptor		
.		
The retrieved ANYTYPE		
instance could be any of the following:		
Example 4-1 Code Snippet for Accessing SYS.ANYTYPE Type		
The following code snippet illustrates how to retrieve an instance on ANYTYPE		
from the database:		
Example 4-2 Creating a Transient Object Type Through PL/SQL and Retrieving Through JDBC		
This example provides a code snippet illustrating how to retrieve a transient object type through JDBC.		
Example 4-3 Calling a PL/SQL Stored Procedure That Takes an ANYTPE as IN Parameter		
The following code snippet illustrates how to call a PL/SQL stored procedure that takes an ANYTYPE		
as IN		
parameter:		
The oracle.sql.ANYDATA		
class enables you to access SYS.ANYDATA		
instances from the database. An instance of this class can be obtained from any valid instance of oracle.sql.Datum		
class. The convertDatum		
factory method takes an instance of Datum		
and returns an instance of ANYDATA		
. The syntax for this factory method is as follows:		
The following is sample code for creating an instance of oracle.sql.ANYDATA		
:		
Example 4-4 Accessing an Instance of ANYDATA from the Database		
Example 4-5 Inserting an Object as ANYDATA in a Database Table		
Consider the following table and object type definition:		
To create an instance of the EMPLOYEE		
SQL object type and to insert it into anydata_tab		
:		
Example 4-6 Selecting an ANYDATA Column from a Database Table		
The interfaces of the oracle.jdbc		
package define the Oracle extensions to the interfaces in java.sql		
. These extensions provide access to SQL-format data as described in this chapter. They also provide access to other Oracle-specific functionality, including Oracle performance enhancements.		
For the oracle.jdbc		
package, Table 4-2 lists key interfaces and classes used for connections, statements, and result sets.		
Table 4-2 Key Interfaces and Classes of the oracle.jdbc Package		
Name	Interface or Class	Key Functionality
---	---	---
Class	Implements	
Interface	Provides methods to start and stop an Oracle Database instance and to return Oracle statement objects and methods to set Oracle performance extensions for any statement run in the current connection. Implements	
Interface	Provides methods to set Oracle performance extensions for individual statement. Is a supertype of Implements	
Interface	Provides Implements Extends Is a supertype of	
Interface	Provides Implements Extends	
Interface	Provides Implements	
Interface	Provides methods to get metadata information about Oracle result sets, such as column names and data types. Implements	
Class	Provides methods to get metadata information about the database, such as database product name and version, table information, and default transaction isolation level. Implements	
Class	Defines integer constants used to identify SQL types. For standard types, it uses the same values as the standard	
This section covers the following topics:		
This interface extends standard JDBC connection functionality to create and return Oracle statement objects, set flags and options for Oracle performance extensions, support type maps for Oracle objects, and support client identifiers.		
In Oracle Database 11g Release 1 (11.1), new methods have been added to this interface that enable the starting up and shutting down of an Oracle Database instance. Also, for better visibility and clarity, all connection properties are defined as constants in the OracleConnection		
interface.		
This interface also defines factory methods for constructing oracle.sql		
data values like DATE		
and NUMBER		
. Remember the following points while using factory methods:		
oracle.sql		
types should use the Oracle extension factory methods. For example, ARRAY		
, BFILE		
, DATE		
, INTERVALDS		
, NUMBER		
, STRUCT		
, TIME		
, TIMESTAMP		
, and so on. CLOB		
, BLOB		
, NCLOB		
, and so on. CHAR		
, JAVA_STRUCT		
, ArrayDescriptor		
, and StructDescriptor.		
These types are for internal driver use only. Client Identifiers		
In a connection pooling environment, the client identifier can be used to identify the lightweight user using the database session currently. A client identifier can also be used to share the Globally Accessed Application Context between different database sessions. The client identifier set in a database session is audited when database auditing is turned on.		
The following oracle.jdbc.OracleConnection		
methods are Oracle-defined extensions:		
cancel		
Performs an immediate (asynchronous) termination of any currently executing operation on this connection		
commit		
Commits the transaction with the given options		
getDefaultExecuteBatch		
Retrieves the default update-batching value for this connection		
setDefaultExecuteBatch		
Sets the default update-batching value for this connection		
getDefaultRowPrefetch		
Retrieves the default row-prefetch value for this connection		
setDefaultRowPrefetch		
Sets the default row-prefetch value for this connection		
This interface extends standard JDBC statement functionality and is the superinterface of the OraclePreparedStatement		
and OracleCallableStatement		
classes. Extended functionality includes support for setting flags and options for Oracle performance extensions on a statement-by-statement basis, as opposed to the OracleConnection		
interface that sets these on a connectionwide basis.		
The following oracle.jdbc.OracleStatement		
methods are Oracle-defined extensions:		
defineColumnType		
Defines the type you will use to retrieve data from a particular database table column		
Note: This method is no longer needed or recommended for use with the JDBC Thin driver.		
getRowPrefetch		
Retrieves the row-prefetch value for this statement		
setRowPrefetch		
Sets the row-prefetch value for this statement		
This interface extends the OracleStatement		
interface and extends standard JDBC prepared statement functionality. Also, the oracle.jdbc.OraclePreparedStatement		
interface is extended by the OracleCallableStatement		
interface. Extended functionality consists of set		
XXX		
methods for binding oracle.sql.*		
types and objects to prepared statements, and methods to support Oracle performance extensions on a statement-by-statement basis.		
Note: Do not use thePreparedStatement interface to create a trigger that refers to a :NEW or :OLD column. Use Statement instead. Using PreparedStatement will cause execution to fail with the message java.sql.SQLException: Missing IN or OUT parameter at index:: 1		
This interface extends the OraclePreparedStatement		
interface, which extends the OracleStatement		
interface and incorporates standard JDBC callable statement functionality.		
Note: Do not use theCallableStatement interface to create a trigger that refers to a :NEW or :OLD column. Use Statement instead; using CallableStatement will cause execution to fail with the message java.sql.SQLException: Missing IN or OUT parameter at index::1		
Note:		
This interface extends standard JDBC result set functionality, implementing get		
XXX		
methods for retrieving data into oracle.sql.*		
objects.		
This interface extends standard JDBC result set metadata functionality to retrieve information about Oracle result set objects.		
The OracleTypes		
class defines constants that JDBC uses to identify SQL types. Each variable in this class has a constant integer value. The oracle.jdbc.OracleTypes		
class duplicates the type code definitions of the standard Java java.sql.Types		
class and contains these additional type codes for Oracle extensions:		
OracleTypes.BFILE		
OracleTypes.ROWID		
OracleTypes.CURSOR		
(for REF CURSOR		
types) As in java.sql.Types		
, all the variable names are in uppercase text.		
JDBC uses the SQL types identified by the elements of the OracleTypes		
class in two main areas: registering output parameters and in the setNull		
method of the PreparedStatement		
class.		
OracleTypes and Registering Output Parameters		
The type codes in java.sql.Types		
or oracle.jdbc.OracleTypes		
identify the SQL types of the output parameters in the registerOutParameter		
method of the java.sql.CallableStatement		
and oracle.jdbc.OracleCallableStatement		
interfaces.		
These are the forms that the registerOutputParameter		
method can take for the CallableStatement		
and OracleCallableStatement		
interfaces		
In these signatures, index		
represents the parameter index, sqlType		
is the type code for the SQL data type, sql_name		
is the name given to the data type, for user-defined types, when sqlType		
is a STRUCT		
, REF		
, or ARRAY		
type code, and scale		
represents the number of digits to the right of the decimal point, when sqlType		
is a NUMERIC		
or DECIMAL		
type code.		
The following example uses a CallableStatement		
interface to call a procedure named charout		
, which returns a CHAR		
data type. Note the use of the OracleTypes.CHAR		
type code in the registerOutParameter		
method.		
The next example uses a CallableStatement		
interface to call structout		
, which returns a STRUCT		
data type. The form of registerOutParameter		
requires you to specify the type code, Types.STRUCT		
or OracleTypes.STRUCT		
, as well as the SQL name, EMPLOYEE		
.		
The example assumes that no type mapping has been declared for the EMPLOYEE		
type, so it is retrieved into a STRUCT		
data type. To retrieve the value of EMPLOYEE		
as an oracle.sql.STRUCT		
object, the statement object cs		
is cast to OracleCallableStatement		
and the Oracle extension getSTRUCT		
method is invoked.		
OracleTypes and the setNull Method		
The type codes in Types		
and OracleTypes		
identify the SQL type of the data item, which the setNull		
method sets to NULL		
. The setNull		
method can be found in the java.sql.PreparedStatement		
and oracle.jdbc.OraclePreparedStatement		
interfaces.		
These are the forms that the setNull		
method can take for the PreparedStatement		
and OraclePreparedStatement		
objects:		
In these signatures, index		
represents the parameter index, sqlType		
is the type code for the SQL data type, and sql_name		
is the name given to the data type, for user-defined types, when sqlType		
is a STRUCT		
, REF		
, or ARRAY		
type code. If you enter an invalid sqlType		
, a ParameterTypeConflict		
exception is thrown.		
The following example uses a prepared statement to insert a null value into the database. Note the use of OracleTypes.NUMERIC		
to identify the numeric object set to NULL		
. Alternatively, Types.NUMERIC		
can be used.		
In this example, the prepared statement inserts a NULL		
STRUCT		
object of type EMPLOYEE		
into the database.		
The getJavaSqlConnection		
method of the oracle.sql.*		
classes returns java.sql.Connection		
. This method is available for the following Oracle data type classes:		
Note: ThegetConnection method used in Oracle 8i and earlier versions of JDBC driver returns oracle.jdbc.driver.OracleConnection . The use of the classes in the oracle.jdbc.driver package was deprecated in favor of the oracle.jdbc package in Oracle 9i release. In Oracle Database 11g Release 1 (11.1), the classes in the package oracle.jdbc.driver have been desupported.		
oracle.sql.ARRAY		
oracle.sql.BFILE		
oracle.sql.BLOB		
oracle.sql.CLOB		
oracle.sql.OPAQUE		
oracle.sql.REF		
oracle.sql.STRUCT		
The following code snippet shows the getJavaSqlConnection		
method in the Array		
class:		
The DML returning feature provides more functionality compared to retrieval of auto-generated keys. It can be used to retrieve not only auto-generated keys, but also other columns or values that the application may use.		
Note:		
The following sections explain the support for DML returning:		
The OraclePreparedStatement		
interface is enhanced with Oracle-specific application programming interfaces (APIs) to support DML returning. The registerReturnParameter		
and getReturnResultSet		
methods have been added to the oracle.jdbc.OraclePreparedStatement		
interface, to register parameters that are returned and data retrieved by DML returning.		
The registerReturnParameter		
method is used to register the return parameter for DML returning. The method throws a SQLException		
instance if an error occurs. You must pass a positive integer specifying the index of the return parameter. You also must specify the type of the return parameter. You can also specify the maximum bytes or characters of the return parameter. This method can be used only with char		
or RAW		
types. You can also specify the fully qualified name of a SQL structure type.		
Note: If you do not know the maximum size of the return parameters, then you should useregisterReturnParameter(int paramIndex, int externalType) , which picks the default maximum size. If you know the maximum size of return parameters, using registerReturnParameter(int paramIndex, int externalType, int maxSize) can reduce memory consumption.		
The getReturnResultSet		
method fetches the data returned from DML returning and returns it as a ResultSet		
object. The method throws a SQLException		
exception if an error occurs.		
Note: The Oracle-specific APIs for the DML returning feature are inojdbc5.jar for Java Development Kit (JDK) 1.5 and in ojdbc6.jar for JDK 1.6.		
Before running a DML returning statement, the JDBC application must call one or more of the registerReturnParameter		
methods. The method provides the JDBC drivers with information, such as type and size, of the return parameters. The DML returning statement is then processed using one of the standard JDBC APIs, executeUpdate		
or execute		
. You can then fetch the returned parameters as a ResultSet		
object using the getReturnResultSet		
method of the oracle.jdbc.OraclePreparedStatement		
interface.		
In order to read the values in the ResultSet		
object, the underlying Statement		
object must be open. When the underlying Statement		
object is closed, the returned ResultSet		
object is also closed. This is consistent with ResultSet		
objects that are retrieved by processing SQL query statements.		
When a DML returning statement is run, the concurrency of the ResultSet		
object returned by the getReturnResultSet		
method must be CONCUR_READ_ONLY		
and the type of the ResultSet		
object must be TYPE_FORWARD_ONLY		
or TYPE_SCROLL_INSENSITIVE		
.		
This section provides two code examples of DML returning.		
The following code example illustrates the use of DML returning. In this example, assume that the maximum size of the name		
column is 100 characters. Because the maximum size of the name		
column is known, the registerReturnParameter(int paramIndex, int externalType, int maxSize)		
method is used.		
The following code example also illustrates the use of DML returning. However, in this case, the maximum size of the return parameters is not known. Therefore, the registerReturnParameter(int paramIndex, int externalType)		
method is used.		
When using DML returning, be aware of the following:		
getReturnResultSet		
method returns when it is invoked more than once. You should not rely on any specific action in this regard. ResultSet		
objects returned from the execution of DML returning statements do not support the ResultSetMetaData		
type. Therefore, the applications must know the information of return parameters before running DML returning statements. Oracle JDBC drivers enable JDBC applications to make PL/SQL calls with index-by table parameters. This section covers the following topics:		
Note: Index-by tables of PL/SQL records are not supported.		
Oracle JDBC drivers support PL/SQL index-by tables of scalar data types. Table 4-3 displays the supported scalar types and the corresponding JDBC type codes.		
Table 4-3 PL/SQL Types and Corresponding JDBC Types		
PL/SQL Types	JDBC Types	
---	---	
Note: Oracle JDBC does not supportRAW , DATE , and PL/SQL RECORD as element types.		
Typical Oracle JDBC input binding, output registration, and data access methods do not support PL/SQL index-by tables. This chapter introduces additional methods to support these types.		
The OraclePreparedStatement		
and OracleCallableStatement		
classes define the additional methods. These methods include the following:		
These methods handle PL/SQL index-by tables as IN		
, OUT		
, or IN OUT		
parameters, including function return values.		
To bind a PL/SQL index-by table parameter in the IN		
parameter mode, use the setPlsqlIndexTable		
method defined in the OraclePreparedStatement		
and OracleCallableStatement		
classes.		
Table 4-4 describes the arguments of the setPlsqlIndexTable		
method.		
Table 4-4 Arguments of the setPlsqlIndexTable Method		
Argument	Description	
---	---	
Indicates the parameter position within the statement.		
Is an array of values to be bound to the PL/SQL index-by table parameter. The value is of type		
Specifies the maximum table length of the index-by table bind value that defines the maximum possible		
Specifies the actual size of the index-by table bind value in		
Specifies the index-by table element type based on the values defined in the		
Specifies the index-by table element maximum length in case the element type is		
The following code example uses the setPlsqlIndexTable		
method to bind an index-by table as an IN		
parameter:		
This section describes how to register a PL/SQL index-by table as an OUT		
parameter. In addition, it describes how to access the OUT		
bind values in various mapping styles.		
Registering the OUT Parameters		
To register a PL/SQL index-by table as an OUT		
parameter, use the registerIndexTableOutParameter		
method defined in the OracleCallableStatement		
class.		
Table 4-5 describes the arguments of the registerIndexTableOutParameter		
method.		
Table 4-5 Arguments of the registerIndexTableOutParameter Method		
Argument	Description	
---	---	
Indicates the parameter position within the statement.		
Specifies the maximum table length of the index-by table bind value to be returned.		
Specifies the index-by table element type based on the values defined in the		
Specifies the index-by table element maximum length in case the element type is		
The following code example uses the registerIndexTableOutParameter		
method to register an index-by table as an OUT		
parameter:		
Accessing the OUT Parameter Values		
To access the OUT		
bind value, the OracleCallableStatement		
class defines multiple methods that return the index-by table values in different mapping styles. There are three mapping choices available in JDBC drivers:		
This section covers the following topics:		
JDBC Default Mappings		
The getPlsqlIndexTable(int)		
method returns index-by table elements using the JDBC default mappings. The syntax for this method is the following:		
Table 4-6 describes the argument of the getPlsqlIndexTable		
method.		
Table 4-6 Argument of the getPlsqlIndexTable Method		
Argument	Description	
---	---	
This argument indicates the parameter position within the statement.		
The return value is a Java array. The elements of this array are of the default Java type corresponding to the SQL type of the elements. For example, for an index-by table with elements of NUMERIC		
type code, the element values are mapped to BigDecimal		
by Oracle JDBC driver, and the getPlsqlIndexTable		
method returns a BigDecimal[]		
array. For a JDBC application, you must cast the return value to BigDecimal[]		
to access the table element values.		
The following code example uses the getPlsqlIndexTable		
method to return index-by table elements with JDBC default mapping:		
Oracle Mappings		
The getOraclePlsqlIndexTable		
method returns index-by table elements using Oracle mapping.		
Table 4-7 describes the argument of the getOraclePlsqlIndexTable		
method.		
Table 4-7 Argument of the getOraclePlsqlIndexTable Method		
Argument	Description	
---	---	
Indicates the parameter position within the statement.		
The return value is an oracle.sql.Datum		
array, and the elements in the array are of the default Datum		
type corresponding to the SQL type of the element. For example, the element values of an index-by table of numeric elements are mapped to the oracle.sql.NUMBER		
type in Oracle mapping, and the getOraclePlsqlIndexTable		
method returns an oracle.sql.Datum		
array that contains oracle.sql.NUMBER		
elements.		
The following code example uses the getOraclePlsqlIndexTable		
method to access the elements of a PL/SQL index-by table OUT		
parameter, using Oracle mapping:		
Java Primitive Type Mappings		
The getPlsqlIndexTable(int, Class)		
method returns index-by table elements in Java primitive types. The return value is a Java array. The syntax for this method is the following:		
Table 4-8 describes the arguments of the getPlsqlIndexTable		
method.		
Table 4-8 Arguments of the getPlsqlIndexTable Method		
Argument	Description	
---	---	
Indicates the parameter position within the statement.		
Specifies a Java primitive type to which the index-by table elements are to be converted. For example, if you specify The following are the possible values of this parameter:		
The following code example uses the getPlsqlIndexTable		
method to access the elements of a PL/SQL index-by table of numbers. In the example, the second parameter specifies java.lang.Integer.TYPE		
and the return value of the getPlsqlIndexTable		
method is an int		
array.		
This chapter introduces the Java Database Connectivity (JDBC) Thin client and covers the features supported only by the JDBC Thin driver. It also provides basic information about working with Oracle JDBC applets. This following topics are covered in this chapter:		
The JDBC Thin client is a pure Java, Type IV driver. It is lightweight and easy to install. It provides high performance, comparable to the performance provided by the JDBC Oracle Call Interface (OCI) driver. The JDBC Thin driver is written entirely in Java, and therefore, it is platform-independent. Also, this driver does not require any additional Oracle software on the client-side.		
The JDBC Thin driver communicates with the server using TTC, a protocol developed by Oracle to access data from Oracle Database. It can be used for application servers as well as for applets. The driver allows a direct connection to the database by providing an implementation of TCP/IP that implements Oracle Net and TTC on top of Java sockets. Both of these protocols are lightweight implementation versions of their counterparts on the server. The Oracle Net protocol runs over TCP/IP only.		
The JDBC Thin driver can be used on both the client-side and the server-side. On the client-side, drivers can be used in Java applications or Java applets that run either on the client or in the middle tier of a three-tier configuration. On the server-side, this driver is used to access a remote Oracle Database instance or another session on the same database.		
The JDBC Thin driver supports all standard JDBC features. The JDBC Thin driver also provides support for the following additional features:		
The JDBC Thin driver is the only Oracle JDBC driver that provides support for applets. This driver can be downloaded along with the Java applet that is being run in a browser.		
Note: When the JDBC Thin driver is used with an applet, the browser used on the client-side must have the capability to support Java sockets.		
The HTTP protocol, which is usually used for communication over a network, is stateless. However, the JDBC Thin driver is not stateless. Therefore, the initial HTTP request to download the applet and the JDBC Thin driver is stateless. After the JDBC Thin driver establishes the database connection, the communication between the browser and the database is stateful and in a two-tier configuration.		
Similar to the JDBC OCI driver, the JDBC Thin driver also provides support for Native XA. However, the JDBC Thin driver provides support for Native XA by default. This is unlike the case of the JDBC OCI driver, in which the support for Native XA is not enabled by default.		
You can use only the Oracle JDBC Thin driver for an applet. This section describes what you must do to connect an applet to a database. This description includes how to use the Connection Manager feature of Oracle Database, or signed applets if you are connecting to a database that is running on a different host from the Web server. It also describes how your applet can connect to a database through a firewall. The section concludes with how to package and deploy the applet.		
The following topics are covered:		
The most common task of an applet using the JDBC driver is to connect to and query a database. Because of applet security restrictions, unless particular steps are taken, an applet can open TCP/IP sockets only to the host from which it was downloaded. This is the host on which the Web server is running. This means that without these steps, your applet can connect only to a database that is running on the same host as the Web server.		
If your database and Web server are running on the same host, then there is no issue and no special steps are required. You can connect to the database as you would from an application.		
As with connecting from an application, there are two ways in which you can specify the connection information to the driver. You can provide it in the form of host:port:sid		
or in the form of TNS keyword-value syntax.		
For example, if the database to which you want to connect resides on host prodHost		
, at port 1521		
, and system identifier (SID) ORCL		
, and you want to connect with user name scott		
and password tiger		
, then use either of the two following connection strings:		
host:port:sid		
syntax: If you use the TNS keyword-value pair to specify the connection information to the JDBC Thin driver, then you must declare the protocol as TCP.		
However, a Web server and database server both require many resources. You seldom find both servers running on the same computer. Usually, your applet connects to a database on a host other than the one on which the Web server runs. If you want your applet to connect to a database running on a different computer, then you have the following options:		
Your applet can also take advantage of the data encryption and integrity checksum features of the Advanced Security option of Oracle Database.		
If you are connecting to a database on a host other than the one on which the Web server is running, then you must overcome applet security restrictions. You can do this in the following ways:		
The Oracle Connection Manager is a lightweight, highly scalable program that can receive Oracle Net packets and retransmit them to a different server. To a client running Oracle Net, the Connection Manager looks exactly like a database server. An applet that uses the JDBC Thin driver can connect to a Connection Manager running on the Web server host and have the Connection Manager redirect the Oracle Net packets to an Oracle server running on a different host.		
Figure 5-1 illustrates the relationship between the applet, the Oracle Connection Manager, and the database.		
Using the Oracle Connection Manager requires two steps:		
Installing and Running the Oracle Connection Manager		
You must install the Connection Manager, available on the Oracle distribution media, onto the Web server host.		
On the Web server host, create a CMAN.ORA		
file in the ORACLE_HOME		
/NET8/ADMIN		
directory. The options you can declare in a CMAN.ORA		
file include firewall and connection pooling support.		
Here is an example of a very simple CMAN.ORA		
file. Replace web-server-host		
with the name of your Web server host. The fourth line in the file indicates that the Connection Manager is listening on port 1610		
. You must use the same port number in your connection string for JDBC.		
After you create the file, start the Connection Manager at the operating system prompt with the following command:		
To use your applet, you must now write the connection string for it.		
Writing the URL that Targets the Connection Manager		
The following text describes how to write the URL in your applet, so that the applet connects to the Connection Manager and the Connection Manager connects with the database. In the URL, you specify an address list that lists the protocol, port, and name of the Web server host on which the Connection Manager is running, followed by the protocol, port, and name of the host on which the database is running.		
The following example describes the configuration illustrated in Figure 5-1. The Web server on which the Connection Manager is running is on host webHost		
and is listening on port 1610		
. The database to which you want to connect is running on host oraHost		
, listening on port 1521		
, and SID ORCL		
. You write the URL in TNS keyword-value format:		
The first element in the address_list		
entry represents the connection to the Connection Manager. The second element represents the database to which you want to connect. The order in which you list the addresses is important.		
When your applet uses a URL, such as the preceding one, it will function exactly as if it were connected directly to the database on the host oraHost		
.		
Connecting Through Multiple Connection Managers		
Your applet can reach its target database even if it first has to go through multiple Connection Managers. For example, if the Connection Managers form a proxy chain. To do this, add the addresses of the Connection Managers to the address list, in the order that you plan to access them. The database listener should be the last address on this list.		
In a Java Development Kit (JDK) 1.2.x-based or later browser, an applet can request socket connection privileges and connect to a database running on a different host than the Web server host. Starting from Netscape 4.0, you perform this by signing your applet, that is, writing a signed applet. You must follow these steps:		
If you are using Netscape, then your code would include a statement like this:		
For information about the Java Security API, including signed applet examples, see the following Sun Microsystems site:		
Under standard circumstances, an applet that uses the JDBC Thin driver cannot access the database through a firewall. In general, the purpose of a firewall is to prevent unauthorized clients from reaching the server. In the case of applets trying to connect to the database, the firewall prevents the opening of a TCP/IP socket to the database.		
In general, firewalls are rule-based. They have a list of rules that define which clients can connect, and which cannot. Firewalls compare the host name of the client with the rules and, based on this comparison, either grant the client access or deny access. If the host name lookup fails, then the firewall tries again. This time, the firewall extracts the IP address of the client and compares it to the rules. The firewall is designed to do this so that users can specify rules that include host names as well as IP addresses.		
You can solve the firewall issue by using an Oracle Net-compliant firewall and connection strings that comply with the firewall configuration. Oracle Net-compliant firewalls are available from many leading vendors.		
An unsigned applet can access only the same host from which it is downloaded. In this case, the Oracle Net-compliant firewall must be installed on that host. In contrast, a signed applet can connect to any host. In this case, the firewall on the target host controls the access.		
Connecting through a firewall requires two steps, as described in the following sections:		
The instructions in this section assume that you are running an Oracle Net-compliant firewall.		
Java applets do not have access to the local system. Because of the security limitations, applets cannot access the host name or environment variables on the local system. As a result, the JDBC Thin driver cannot access the host name on which it is running. The firewall cannot be provided with the host name. To allow requests from JDBC Thin clients to go through the firewall, you must do the following to the list of firewall rules:		
__jdbc__		
", never appears in the firewall rules. This host name has been hard-coded as a false host name inside the driver to force an IP address lookup. If you do enter this host name in the list of rules, then every applet using the JDBC Thin driver will be able to go through your firewall. To write a URL that enables you to connect through a firewall, you must specify the name of the firewall host and the name of the database host to which you want to connect.		
For example, if you want to connect to a database on host oraHost		
, listening on port 1521		
, with SID ORCL		
, and you are going though a firewall on host fireWallHost		
, listening on port 1610		
, then use the following URL:		
Note: To connect through a firewall, you cannot specify the URL inhost:port:sid syntax. For example, a URL specified as follows will not work: String connString = "jdbc:oracle:thin:@example.us.oracle.com:1521:orcl"; OracleDataSource ods = new OracleDataSource(); ods.setURL(connString); ods.setUser("scott"); ods.setPassword("tiger"); Connection conn = ods.getConnection();		
The first element in the address_list		
represents the connection to the firewall. The second element represents the database to which you want to connect. Note that the order in which you specify the addresses is important.		
You can also write the preceding URL in the following format:		
When your applet uses a URL similar to the preceding URL, it will act as if it were connected to the database on host oraHost		
.		
Note: All the parameters shown in the preceding example are required. Inaddress_list , the firewall address must precede the database server address.		
After you have coded your applet, you must package it and make it available to users. To package an applet, you will need your applet class files and the JDBC driver class files contained in the ojdbc5.jar		
or ojdbc6.jar		
files.		
Follow these steps:		
ojdbc5.jar		
or ojdbc6.jar		
to an empty directory. If your applet connects to a database with a non-US7ASCII		
and non-WE8ISO8859P1		
character set and uses Oracle object types, then also move the orai18n.jar		
file to the same directory.		
ojdbc5.jar		
or ojdbc6.jar		
files and required class files from the orai18n.jar		
files, if the applet requires Globalization Support You can now make the applet available to users. One way to do this is to add the APPLET		
tag to the HTML page from which the applet will be run. For example:		
The APPLET		
tag specifies an applet that runs in the context of an HTML page. The APPLET		
tag can have the following attributes: CODE		
, ARCHIVE		
, CODEBASE		
, WIDTH		
, and HEIGHT		
. These attributes are described in the following sections:		
The HTML page that runs the applet must have an APPLET		
tag with an initial width and height to specify the size of the applet display area. You use the HEIGHT		
and WIDTH		
attributes to specify the size, measured in pixels. This size should not count any windows or dialog boxes that the applet opens.		
The APPLET		
tag must also specify the name of the file that contains the compiled applet. Specify the file name with the CODE		
attribute. Any path specified must be relative to the base URL of the applet. The path cannot be absolute.		
In the following example, JdbcApplet.class		
is the name of the compiled applet:		
If you use this form of the CODE		
attribute, then the classes for the applet and the JDBC Thin driver must be in the same directory as the HTML page.		
Note: Do not include the file name extension,.class , in the CODE attribute.		
The CODEBASE		
attribute is optional. It specifies the base URL of the applet, that is, the name of the directory that contains the code of the applet. If it is not specified, then the URL of the document is used. This means that the classes for the applet and the JDBC Thin driver must be in the same directory as the HTML page. For example, if the current directory is my_Dir		
:		
The attribute, CODEBASE="."		
, indicates that the applet resides in the current directory, my_Dir		
.		
Now, consider that the value of CODEBASE		
is set to Applet_Samples		
, as follows:		
This would indicate that the applet resides in the my_Dir		
/Applet_Samples		
directory.		
The ARCHIVE		
attribute is optional. It specifies the name of the archive file that contains the applet classes and resources the applet needs. Oracle recommends using an archive file, which saves many extra round-trips to the server.		
The archive file will be preloaded. If you have more than one archive file in the list, separate them with commas. In the following example, the class files are stored in the archive file, JdbcApplet.zip		
:		
Note: Version 3.0 browsers do not support theARCHIVE attribute.		
This chapter introduces the features specific to the Java Database Connectivity (JDBC) Oracle Call Interface (OCI) driver. It also describes the OCI Instant Client. This chapter contains the following sections:		
The OCI connection pooling feature is an Oracle-designed extension. The connection pooling provided by the JDBC OCI driver enables applications to have multiple logical connections, all of which are using a small set of physical connections. Each call on a logical connection is routed on to the physical connection that is available at the given time.		
Client result cache feature enables client-side caching of SQL query result sets in client memory. In this way, OCI applications can use client memory to take advantage of the client result cache to improve response times of repetitive queries.		
You must annotate a query with a /*+ result_cache */		
hint to indicate that results are to be stored in the client result cache. For example, look at the following code snippet:		
In the preceding example, the client result cache hint /*+ result_cache */		
is annotated to the actual query, that is, select * from emp where empno < : 1		
. So, the first execution of the query goes to the database and the result set is cached for the remaining nine executions of the query. This improves the performance of your application significantly.		
You must use JDBC statement caching or cache statements at the application level when using the JDBC OCI client result cache.		
Validation of the JDBC OCI client result cache can be achieved in the following ways:		
JDBC OCI driver periodically sends statistics related to the client result cache to the server. These statistics that contain information such as the number of result sets successfully cached, number of cache hits, and number of cached result sets invalidated are stored in CLIENT_RESULT_CACHE_STATS$		
.		
The Transparent Application Failover feature of JDBC OCI driver enables you to automatically reconnect to a database if the database instance to which the connection is made goes down. The new database connection, though created by a different node, is identical to the original.		
The JDBC OCI driver also provides a feature called Native XA.		
This section covers the following topics:		
The Instant Client feature makes it extremely easy to deploy OCI, Oracle C++ Call Interface (OCCI), Open Database Connectivity (ODBC), and JDBC-OCI based customer applications, by eliminating the need for an Oracle home. The storage space requirement of a JDBC OCI application running in the Instant Client mode is significantly reduced compared to the same application running on a full client-side installation. The Instant Client shared libraries occupy only about one-fourth the disk space used by a full client installation.		
Table 6-1 shows the Oracle client-side files required to deploy a JDBC OCI application. Library names of release 11.1 are used in the table. The number part of library names will change in future releases to agree with the release.		
Table 6-1 OCI Instant Client Shared Libraries		
Linux and UNIX Systems	Description for Linux and UNIX Systems	Microsoft Windows
---	---	---
Client Code Library		
Forwarding functions that applications link with		
OCI Instant Client Data Shared Library		
Data and code		
Security Library		
Security Library		
OCI Instant Client JDBC Library		
OCI Instant Client JDBC Library		
ALL JDBC Java Archive (JAR) files	See Also: "Check the Environment Variables"	All JDBC JAR files
Note: To provide Native XA functionality, you must copy the JDBC XA class library. On UNIX systems, this library,libheteroxa11.so , is located in the ORACLE_HOME /jdbc/lib directory. On Microsoft Windows, this library, heteroxa11.dll , is located in the ORACLE_HOME \bin directory.		
The benefits of Instant Client are the following:		
The Instant Client libraries can be installed by choosing the Instant Client option from Oracle Universal Installer. The Instant Client libraries can also be downloaded from the Oracle Technology Network Web site. The installation process is as follows:		
instantclient		
. LD_LIBRARY_PATH		
environment variable to instantclient		
. On Microsoft Windows, set the PATH		
environment variable to locate the instantclient		
directory. CLASSPATH		
environment variable. After completing these steps you are ready to run the JDBC OCI application.		
The JDBC OCI application operates in the Instant Client mode when the OCI and JDBC shared libraries are accessible through the library path environment variable. In the Instant Client mode, there is no dependency on the ORACLE_HOME		
and none of the other code and data files provided in ORACLE_HOME		
is needed by JDBC OCI, except for the tnsnames.ora		
file.		
Instant Client can be also installed from Oracle Universal Installer by selecting the Instant Client option. The Instant Client files should always be installed in an empty directory. As with the OTN installation, you must set the LD_LIBRARY_PATH		
environment variable to the Instant Client directory to operate in the Instant Client mode.		
If you have done a complete client installation by choosing the Admin		
option, then the Instant Client shared libraries are also installed. The location of the Instant Client shared libraries and JDBC class libraries in a full client installation is:		
On Linux or UNIX systems:		
libociei.so		
library is in $ORACLE_HOME/instantclient		
libclnstsh.so.11.1		
, libocijdbc11.so		
, and libnnz11.so		
are in $ORACLE_HOME/lib		
$ORACLE_HOME/jdbc/lib		
On Microsoft Windows:		
oraociei11.dll		
library is in ORACLE_HOME\instantclient		
oci.dll		
, ocijdbc11.dll		
, and orannzsbb11.dll		
are in ORACLE_HOME\bin		
ORACLE_HOME\jdbc\lib		
By copying these files to a different directory, setting the library path to locate this directory, and adding the path names of the JDBC class libraries to the CLASSPATH		
environment variable, you can enable running the JDBC OCI application in the Instant Client mode.		
Note:		
Instant Client is a deployment feature and should be used for running production applications. For development, a full installation is necessary to access demonstration programs and so on. In general, all JDBC OCI functionality is available to an application being run in the Instant Client mode, except that the Instant Client mode is for client-side operation only. Therefore, server-side external procedures cannot operate in the Instant Client mode.		
Because Instant Client is a deployment feature, the emphasis has been on reducing the number and size of files required to run a JDBC OCI application. Therefore, all files needed to patch Instant Client shared libraries are not available in an Instant Client deployment. An ORACLE_HOME		
based full client installation is needed to patch the Instant Client shared libraries. The opatch		
utility will take care of patching the Instant Client shared libraries.		
Note: On Microsoft Windows, you cannot patch the shared libraries.		
After applying the patch in an ORACLE_HOME		
environment, copy the files listed in Table 6-1, "OCI Instant Client Shared Libraries" to the instant client directory as described in "JDBC OCI Instant Client Installation Process".		
Instead of copying individual files, you can generate Instant Client ZIP files for OCI, OCCI, JDBC, and SQL*Plus as described in "Regeneration of Data Shared Library and ZIP files". Then, you can copy the ZIP files to the target computer and unzip them as described in "JDBC OCI Instant Client Installation Process".		
The opatch		
utility stores the patching information of the ORACLE_HOME		
installation in libclnstsh.so.11.1		
. This information can be retrieved by the following command:		
Note that if the computer from where Instant Client is deployed does not have the genezi		
utility, then it must be copied from the ORACLE_HOME		
/bin		
directory on the computer that has the ORACLE_HOME		
installation.		
The OCI Instant Client Data Shared Library, libociei.so		
, can be regenerated by performing the following steps in an Administrator Installation of ORACLE_HOME		
:		
A new version of the libociei.so		
Data Shared Library based on the current files in the ORACLE_HOME		
is then placed in the ORACLE_HOME		
/rdbms/install/instantclient		
directory.		
Note that the location of the regenerated Data Shared Library, libociei.so		
, is different from that of the original Data Shared Library, libociei.so		
, which is located in the ORACLE_HOME		
/instantclient		
directory.The preceding steps also generate Instant Client ZIP files for OCI, OCCI, JDBC, and SQL*Plus.		
Regeneration of data shared library and ZIP files is not available on Microsoft Windows platforms.		
All Oracle Net naming methods that do not require the ORACLE_HOME		
or TNS_ADMIN		
environment variables to locate configuration files, such as tnsnames.ora		
or sqlnet.ora		
, work in the Instant Client mode. In particular, the connection string can be specified in the following formats:		
For example:		
For example:		
Naming methods that require TNS_ADMIN		
to locate configuration files continue to work if the TNS_ADMIN		
environment variable is set.		
See Also: Oracle Database Net Services Administrator's Guide for more information about connection formats		
If the TNS_ADMIN		
environment variable is not set and TNSNAMES		
entries, such as inst1		
, are used, then the ORACLE_HOME		
environment variable must be set and the configuration files are expected to be in the $ORACLE_HOME/network/admin		
directory.		
Note: In this case, theORACLE_HOME environment variable is used only for locating Oracle Net configuration files. No other component of Client Code Library uses the value of the ORACLE_HOME environment variable.		
The empty connection string is not supported. However, an alternate way to use the empty connection string is to set the TWO_TASK		
environment variable on UNIX systems, or the LOCAL		
variable on Microsoft Windows, to either a tnsnames.ora		
entry or an Oracle Net keyword-value pair. If TWO_TASK		
or LOCAL		
is set to a tnsnames.ora		
entry, then the tnsnames.ora		
file must be loaded by the TNS_ADMIN		
or ORACLE_HOME		
setting.		
Example		
Consider that the listener.ora		
file on the database server contains the following information:		
You can connect to this server in one of the following ways:		
or:		
Alternatively, you can set the TWO_TASK		
environment variable to any of the connection strings and connect to the database server without specifying the connection string along with the sqlplus		
command. For example, set the TWO_TASK		
environment in one of the following ways:		
or:		
Now, you can connect to the database server using the following URL:		
The connection string can also be stored in the tnsnames.ora		
file. For example, consider that the tnsnames.ora		
file contains the following:		
If this tnsnames.ora		
file is located in the /home/webuser/instantclient		
directory, then you can set the TNS_ADMIN		
environment variable (or LOCAL		
on Microsoft Windows) as follows:		
Now, you can connect as follows:		
Note: TheTNS_ADMIN environment variable specifies the directory where the tnsnames.ora file is located. However, TNS_ADMIN does not specify the full path of the tnsnames.ora file, instead it specifies the directory.		
If this tnsnames.ora		
file is located in the /network/server6/home/dba/oracle/network/admin		
directory in the Oracle home, then instead of using TNS_ADMIN		
to locate the tnsnames.ora		
file, you can set the ORACLE_HOME		
environment variable as follows:		
Now, you can connect with either of the conn_str		
connection strings, as specified previously.		
If tnsnames.ora		
can be located by TNS_ADMIN		
or ORACLE_HOME		
, then TWO_TASK		
can be set to:		
You can then connect with the following URL:		
The ORACLE_HOME		
environment variable no longer determines the location of the Globalization Support files and error message files. An OCI-only application does not require the ORACLE_HOME		
environment variable to be set. However, if the variable is set, then it does not have an impact on the operation of the OCI driver. OCI will always obtain its data from the Data Shared Library. If the Data Shared Library is not available, only then is the ORACLE_HOME		
environment variable used and a full client installation is assumed. Even though the ORACLE_HOME		
environment variable is not required to be set, if it is set, then it must be set to a valid operating system path name that identifies a directory.		
Environment variables ORA_NLS10		
and ORA_NLSPROFILES33		
are ignored in the Instant Client mode.		
In the Instant Client mode, if the ORA_TZFILE		
variable is not set, then the smaller, default, timezone.dat		
file from the Data Shared Library is used. If the larger timezlrg.dat		
file is to be used from the Data Shared Library, then set the ORA_TZFILE		
environment variable to the name of the file without any absolute or relative path names. That is:		
On UNIX systems:		
On Microsoft Windows:		
If the driver is not operating in the Instant Client mode, then the ORA_TZFILE		
variable, if set, names a complete path name, as it does in previous Oracle Database releases.		
If TNSNAMES		
entries are used, then, as mentioned earlier, the TNS_ADMIN		
directory must contain the TNSNAMES		
configuration files, and if TNS_ADMIN		
is not set, then the ORACLE_HOME/network/admin		
directory must contain Oracle Net Services configuration files.		
The lightweight version of Instant Client is called Instant Client Light (English). Instant Client Light is the short name. Instant Client Light is a significantly smaller version of Instant Client. This reduces the disk space requirements of the client installation by about 63 MB. This is achieved by the lightweight Data Shared Library, libociicus.so		
on UNIX systems, which is 4 MB in size and a subset of the data shared library, libociei.so		
, which is 67 MB in size.		
The lightweight data shared library supports only a few character sets and error messages that are only in English. Therefore, the name Instant Client Light (English). Instant Client Light is designed for applications that require English-only error messages and use either US7ASCII, WE8DEC, or one of the Unicode character sets.		
Table 6-2 lists the names of the data shared libraries for Instant Client and Instant Client Light (English) on different platforms. The table also specifies the size of each data shared library in parentheses following the library file name.		
Table 6-2 Data Shared Library for Instant Client and Instant Client Light (English)		
Platform	Instant Client	Instant Client Light (English)
---	---	---
Sun Solaris		
Linux		
Microsoft Windows		
This section covers the following topics:		
The NLS_LANG		
setting determines the language, territory, and character set as language		
_		
territory		
.		
characterset		
. In Instant Client Light, language		
can only be American		
, territory		
can be any that is supported, and characterset		
can be any one of the following:		
Specifying character set or national character set other than those listed as the client or server character set or setting the language in NLS_LANG		
on the client will throw one of the following errors:		
ORA-12734		
ORA-12735		
ORA-12736		
ORA-12737		
With Instant Client Light, the error messages obtained are only in English. Therefore, the valid values for the NLS_LANG		
setting are of the type:		
where, territory		
can be any valid and supported territory and characterset		
can be any one the previously listed character sets.		
Instant Client Light can operate with the OCI environment handles created in the OCI_UTF16 mode.		
To operate in the Instant Client Light mode, an application must set the LD_LIBARARY_PATH		
environment variable in UNIX systems or the PATH		
environment variable in Microsoft Windows to a location containing the client and data shared libraries. OCI applications by default look for the OCI Data Shared Library, libociei.so		
in the LD_LIBRARY_PATH		
environment variable in UNIX systems or the oraociei11.dll		
Data Shared Library in the PATH		
environment variable in Microsoft Windows, to determine if the application should operate in the Instant Client mode. In case this library is not found, then OCI tries to load the Instant Client Light Data Shared Library, libociicus.so		
in UNIX systems or libociicus11.dll		
in Microsoft Windows. If this library is found, then the application operates in the Instant Client Light mode. Otherwise, a non-Instant Client mode is assumed.		
Instant Client Light can be installed in one of the following ways:		
You can download the required file from		
http://www.oracle.com/technology/tech/oci/instantclient/instantclient.html		
For Instant Client Light, instead of downloading and expanding the Basic package, download and unzip the Basic Light package. The instantclient_11_1		
directory in which the lightweight libraries are unzipped should be empty before unzipping the files.		
Instead of copying libociei.so		
or oraociei11.dll		
from the ORACLE_HOME		
/instantclient		
directory, copy libociicus.so		
or oraociic10.dll		
from the ORACLE_HOME		
/instantclient/light		
directory. That is, the Instant Client directory on the LD_LIBRARY_PATH		
environment variable, in UNIX systems, should contain the Instant Client Light Data Shared Library, libociicus.so		
, instead of the larger OCI Instant Client Data Shared Library, libociei.so		
. In Microsoft Windows, the PATH		
environment variable should contain oraociicus11.dll		
instead of oraociei11.dll		
.		
If the Instant Client option is selected from Oracle Universal Installer, then libociei.so		
(or oraociei11.dll		
on Microsoft Windows) is installed in the base directory of the installation which is going to be placed on the LD_LIBRARY_PATH		
environment variable. This is so that Instant Client Light is not enabled by default. The Instant Client Light Data Shared Library, libociicus.so		
(or oraociicus11.dll		
on Microsoft Windows), is installed in the light		
subdirectory of the base directory. Therefore, to operate in the Instant Client Light mode, the OCI Data Shared Library, libociei.so		
(or oraociei11.dll		
on Windows) must be deleted or renamed and the Instant Client Light Data Shared Library must be copied from the light		
subdirectory to the base directory of the installation.		
For example, if Oracle Universal Installer has installed the Instant Client in my_oraic_11_1		
directory on the LD_LIBRARY_PATH		
environment variable, then one would need to do the following to operate in the Instant Client Light mode:		
Note: All the Instant Client files should always be copied or installed in an empty directory. This is to ensure that no incompatible binaries exist in the installation.		
This chapter covers the following topics:		
The server-side internal driver is intrinsically tied to Oracle Database and to the Java Virtual Machine (JVM). The driver runs as part of the same process as the database. It also runs within the default session, the same session in which the JVM was started.		
The server-side internal driver is optimized to run within the database server and provide direct access to SQL data and PL/SQL subprograms on the local database. The entire JVM operates in the same address space as the database and the SQL engine. Access to the SQL engine is a function call. This enhances the performance of your Java Database Connectivity (JDBC) applications and is much faster than running a remote Oracle Net call to access the SQL engine.		
The server-side internal driver supports the same features, application programming interfaces (APIs), and Oracle extensions as the client-side drivers. This makes application partitioning very straightforward. For example, if you have a Java application that is data-intensive, then you can easily move it into the database server for better performance, without having to modify the application-specific calls.		
As described in the preceding section, the server-side internal driver runs within a default session. Therefore, you are already connected. There are two methods to access the default connection:		
OracleDataSource.getConnection		
method, with any of the following forms as the URL string: jdbc:oracle:kprb		
jdbc:default:connection		
jdbc:oracle:kprb:		
jdbc:default:connection:		
defaultConnection		
method of the OracleDriver		
class. Using defaultConnection		
is generally recommended.		
Note: You are no longer required to register theOracleDriver class for connecting with the server-side internal driver.		
Connecting with the OracleDriver Class defaultConnection Method		
The defaultConnection		
method of the oracle.jdbc.OracleDriver		
class is an Oracle extension and always returns the same connection object. Even if you call this method multiple times, assigning the resulting connection object to different variable names, then only a single connection object is reused.		
You need not include a connection string in the defaultConnection		
call. For example:		
Note that there is no conn.close		
call in the example. When JDBC code is running inside the target server, the connection is an implicit data channel, not an explicit connection instance as from a client. It should not be closed.		
If you do call the close		
method, then be aware of the following:		
defaultConnection		
method, which actually reference the same database connection, will be closed and unavailable for further use, with state and resource cleanup as appropriate. Running defaultConnection		
afterward would result in a new connection object. Connecting with the OracleDataSource.getConnection Method		
To connect to the internal server connection from code that is running within the target server, you can use the OracleDataSource.getConnection		
method with either of the following URLs:		
or:		
or:		
or:		
Any user name or password you include in the URL is ignored in connecting to the default server connection.		
The OracleDataSource.getConnection		
method returns a new Java Connection		
object every time you call it. The fact that OracleDataSource.getConnection		
returns a new connection object every time you call it is significant if you are working with object maps or type maps. A type map is associated with a specific Connection		
object and with any state that is part of the object. If you want to use multiple type maps as part of your program, then you can call getConnection		
to create a new Connection		
object for each type map.		
Note: Although theOracleDataSource.getConnection method is returning a new object every time you call it, it is not creating a new database connection every time.		
The server-side internal driver, in addition to having standard exception-handling capabilities, such as getMessage()		
, getErrorCode()		
, and getSQLState()		
, provides the oracle.jdbc.driver.OracleSQLException		
class, which is a legacy from the earliest server-side internal driver. This class is a subclass of the standard java.sql.SQLException		
class and is not available to the client-side JDBC drivers or the server-side Thin driver.		
When an error condition occurs in the server, it often results in a series of related errors being placed in an internal error stack. The JDBC server-side internal driver retrieves errors from the stack and places them in a chain of OracleSQLException		
objects.		
You can use the following methods in processing these exceptions:		
SQLException getNextException()		
This method returns the next exception in the chain or a null value if there are no further exceptions. You can start with the first exception you receive and work through the chain. This is a standard method.		
int getNumParameters()		
(Oracle extension) Errors from the server usually include parameters, or variables, that are part of the error message. These may indicate what type of error occurred, what kind of operation was being attempted, or the invalid or affected values. This method returns the number of parameters included with this error. It is an Oracle extension.		
Object[] getParameters()		
(Oracle extension) This method returns a Java Object[]		
array containing the parameters included with this error. It is an Oracle extension.		
However, in 11g release 1, only a subset of the exceptions thrown by the driver are instances of this class. In 11g release 1 (11.1), this class is deprecated and will be removed in the next release.		
Note: Oracle strongly discourages the use of this class.		
Exception-handling differs depending on the version of JDK you are using.		
The server-side driver operates within a default session and default transaction context. The default session is the session in which the JVM was started. In effect, you are already connected to the database on the server. This is different from the client-side where there is no default session. You must explicitly connect to the database.		
Auto-commit mode is disabled in the server. You must manage transaction COMMIT		
and ROLLBACK		
operations explicitly by using the appropriate methods on the connection object:		
or:		
Note: As a best practice, it is recommended not to commit or rollback a transaction inside the server.		
Almost any JDBC program that can run on a client can also run on the server. All the programs in the samples		
directory can be run on the server, with only minor modifications. Usually, these modifications concern only the connection statement.		
Consider the following code fragment which obtains a connection to a database:		
We can modify this code fragment for use in the server-side internal driver. In the server-side internal driver, no user, password, or database information is necessary. For the connection statement, you use:		
However, the most convenient way to get a connection is to call the OracleDriver.defaultConnection		
method, as follows:		
When loading an application into the server, you can load .class		
files that you have already compiled on the client or you can load .java		
source files and have them automatically compiled on the server.		
In either case, use the loadjava		
utility to load your files. You can either specify source file names on the command line or put the files into a Java Archive (JAR) file and specify the JAR file name on the command line.		
The loadjava		
script, which runs the actual utility, is in the bin		
directory in your Oracle home. This directory should already be in your path once Oracle has been installed.		
Note: Theloadjava utility supports compressed files.		
Loading Class Files into the Server		
Consider a case where you have the following three class files in your application: Foo1.class		
, Foo2.class		
, and Foo3.class		
. Each class is written into its own class schema object in the server.		
You can load the class files using the default JDBC Oracle Call Interface (OCI) driver in the following ways:		
You can load the files using the JDBC Thin driver, as follows:		
Note: Because the server-side embedded JVM uses Java Development Kit (JDK) 1.5, it is advisable to compile classes under JDK 1.5, if they will be loaded into the server. This will catch incompatibilities during compilation, instead of at run time.		
Loading Source Files into the Server		
If you enable the loadjava -resolve		
option when loading a .java		
source file, then the server-side compiler will compile your application as it is loaded, resulting in both a source schema object for the original source code and one or more class schema objects for the compiled output.		
If you do not specify -resolve		
, then the source is loaded into a source schema object without any compilation. In this case, however, the source is implicitly compiled the first time an attempt is made to use a class defined in the source.		
For example, run loadjava		
as follows to load and compile Foo.java		
, using the default JDBC OCI driver:		
Or, use the following command to load using the JDBC Thin driver:		
Either of these will result in appropriate class schema objects being created in addition to the source schema object.		
Note: Oracle generally recommends compiling source on the client, whenever possible, and loading the.class files instead of the source files into the server.		
This part consists of chapters that discuss the use of data sources and URLs to connect to the database. It also includes chapters that discuss the security features supported by the Oracle Java Database Connectivity (JDBC) Oracle Call Interface (OCI) and Thin drivers, Secure Sockets Layer (SSL) support in JDBC Thin driver, and middle-tier authentication through proxy connections.		
Part III contains the following chapters:		
This chapter discusses connecting applications to databases using Java Database Connectivity (JDBC) data sources, as well as the URLs that describe databases. This chapter contains the following sections:		
Data sources are standard, general-use objects for specifying databases or other resources to use. The JDBC 2.0 extension application programming interface (API) introduced the concept of data sources. For convenience and portability, data sources can be bound to Java Naming and Directory Interface (JNDI) entities, so that you can access databases by logical names.		
The data source facility provides a complete replacement for the previous JDBC DriverManager		
facility. You can use both facilities in the same application, but it is recommended that you transition your application to data sources.		
This section covers the following topics:		
The JNDI standard provides a way for applications to find and access remote services and resources. These services can be any enterprise services. However, for a JDBC application, these services would include database connections and services.		
JNDI allows an application to use logical names in accessing these services, removing vendor-specific syntax from application code. JNDI has the functionality to associate a logical name with a particular source for a desired service.		
All Oracle JDBC data sources are JNDI-referenceable. The developer is not required to use this functionality, but accessing databases through JNDI logical names makes the code more portable.		
Note: Using JNDI functionality requires thejndi.jar file to be in the CLASSPATH environment variable. This file is included with the Java products on the installation CD. You must add it to the CLASSPATH environment variable separately. You can also obtain it from the Sun Microsystems Web site, but it is advisable to use the version from Oracle, because it has been tested with the Oracle drivers.		
By using the data source functionality with JNDI, you do not need to register the vendor-specific JDBC driver class name and you can use logical names for URLs and other properties. This ensures that the code for opening database connections is portable to other environments.		
The DataSource Interface and Oracle Implementation		
A JDBC data source is an instance of a class that implements the standard javax.sql.DataSource		
interface:		
Oracle implements this interface with the OracleDataSource		
class in the oracle.jdbc.pool		
package. The overloaded getConnection		
method returns a connection to the database.		
To use other values, you can set properties using appropriate setter methods. For alternative user names and passwords, you can also use the getConnection		
method that takes these parameters as input. This would take priority over the property settings.		
Note: TheOracleDataSource class and all subclasses implement the java.io.Serializable and javax.naming.Referenceable interfaces.		
The		
OracleDataSource		
class, as with any class that implements the DataSource		
interface, provides a set of properties that can be used to specify a database to connect to. These properties follow the JavaBeans design pattern.		
Table 8-1 and Table 8-2 list OracleDataSource		
properties. The properties in Table 8-1 are standard properties according to the Sun Microsystems specification. The properties in Table 8-2 are Oracle extensions.		
Note: Oracle does not implement the standardroleName property.		
Table 8-1 Standard Data Source Properties		
Name	Type	Description
---	---	---
Name of the particular database on the server. Also known as the SID in Oracle terminology.		
Name of the underlying data source class. For connection pooling, this is an underlying pooled connection data source class. For distributed transactions, this is an underlying XA data source class.		
Description of the data source.		
Network protocol for communicating with the server. For Oracle, this applies only to the JDBC Oracle Call Interface (OCI) drivers and defaults to		
Password for the connecting user.		
Number of the port where the server listens for requests		
Name of the database server		
Name for the login		
The OracleDataSource		
class implements the following setter and getter methods for the standard properties:		
public synchronized void setDatabaseName(String dbname)		
public synchronized String getDatabaseName()		
public synchronized void setDataSourceName(String dsname)		
public synchronized String getDataSourceName()		
public synchronized void setDescription(String desc)		
public synchronized String getDescription()		
public synchronized void setNetworkProtocol(String np)		
public synchronized String getNetworkProtocol()		
public synchronized void setPassword(String pwd)		
public synchronized void setPortNumber(int pn)		
public synchronized int getPortNumber()		
public synchronized void setServerName(String sn)		
public synchronized String getServerName()		
public synchronized void setUser(String user)		
public synchronized String getUser()		
Table 8-2 Oracle Extended Data Source Properties		
Name	Type	Description
---	---	---
Specifies the name of the cache. This cannot be changed after the cache has been created.		
Specifies properties for implicit connection cache.		
Specifies whether implicit connection cache is in use.		
Specifies the connection properties.		
Specifies Oracle JDBC driver type. It can be one of		
Specifies whether Fast Connection Failover is in use.		
Specifies whether the implicit statement connection cache is enabled.		
Specifies the maximum time in seconds that this data source will wait while attempting to connect to a database.		
Specifies the log writer for this data source.		
Specifies the maximum number of statements in the application cache.		
Specifies the database service name for this data source.		
Specifies the TNS entry name, relevant only for the OCI driver. The TNS entry name corresponds to the TNS entry specified in the Enable this		
Specifies the URL of the database connection string. Provided as a convenience, it can help you migrate from an older Oracle Database. You can use this property in place of the Oracle		
Allows an This		
Specifies the ONS configuration string that is used to remotely subscribe to FaN/ONS events.		
Note:		
The OracleDataSource		
class implements the following set		
XXX		
and get		
XXX		
methods for the Oracle extended properties:		
String getConnectionCacheName()		
java.util.Properties getConnectionCacheProperties()		
void setConnectionCacheProperties(java.util.Properties cp)		
java.util.Properties getConnectionProperties()		
void setConnectionProperties(java.util.Properties cp)		
Note: Use thesetConnectionProperties method to set the properties of the connection and the setConnectionCacheProperties method to set the properties of the connection cache. For more information about the properties of the connection refer to "Supported Connection Properties". For more information about the properties of the connection refer to "Connection Cache Properties".		
boolean getConnectionCachingEnabled()		
void setImplicitCachingEnabled()		
String getDriverType()		
void setDriverType(String dt)		
String getURL()		
void setURL(String url)		
String getTNSEntryName()		
void setTNSEntryName(String tns)		
boolean getNativeXA()		
void setNativeXA(boolean nativeXA)		
String getONSConfiguration()		
void setONSConfiguration(String onsConfig)		
If you are using the server-side internal driver, that is, the driverType		
property is set to kprb		
, then any other property settings are ignored.		
If you are using the JDBC Thin or OCI driver, then note the following:		
user		
and password		
, as in the following example, in which case this takes precedence over individual user		
and password		
property settings: user		
and password		
are required, either directly through the URL setting or through the getConnection		
call. The user		
and password		
settings in a getConnection		
call take precedence over any property settings. url		
property is set, then any tnsEntry		
, driverType		
, portNumber		
, networkProtocol		
, serverName		
, and databaseName		
property settings are ignored. tnsEntry		
property is set, which presumes the url		
property is not set, then any databaseName		
, serverName		
, portNumber		
, and networkProtocol		
settings are ignored. driverType		
property is set to oci		
, and the networkProtocol		
is set to ipc		
, then any other property settings are ignored. Also, note that getConnectionCacheName()		
will return the name of the cache only if the ConnectionCacheName		
property of the data source is set after caching is enabled on the data source.		
This section shows an example of the most basic use of a data source to connect to a database, without using JNDI functionality. Note that this requires vendor-specific, hard-coded property settings.		
Create an OracleDataSource		
instance, initialize its connection properties as appropriate, and get a connection instance, as in the following example:		
Or, optionally, override the user name and password, as follows:		
This section exhibits JNDI functionality in using data sources to connect to a database. Vendor-specific, hard-coded property settings are required only in the portion of code that binds a data source instance to a JNDI logical name. From that point onward, you can create portable code by using the logical name in creating data sources from which you will get your connection instances.		
Note: Creating and registering data sources is typically handled by a JNDI administrator, not in a JDBC application.		
Initialize Data Source Properties		
Create an OracleDataSource		
instance, and then initialize its properties as appropriate, as in the following example:		
Once you have initialized the connection properties of the OracleDataSource		
instance ods		
, as shown in the preceding example, you can register this data source instance with JNDI, as in the following example:		
Calling the JNDI InitialContext()		
constructor creates a Java object that references the initial JNDI naming context. System properties, which are not shown, instruct JNDI which service provider to use.		
The ctx.bind		
call binds the OracleDataSource		
instance to a logical JNDI name. This means that anytime after the ctx.bind		
call, you can use the logical name jdbc/sampledb		
in opening a connection to the database described by the properties of the OracleDataSource		
instance ods		
. The logical name jdbc/sampledb		
is logically bound to this database.		
The JNDI namespace has a hierarchy similar to that of a file system. In this example, the JNDI name specifies the subcontext jdbc		
under the root naming context and specifies the logical name sampledb		
within the jdbc		
subcontext.		
The Context		
interface and InitialContext		
class are in the standard javax.naming		
package.		
Note: The JDBC 2.0 Specification requires that all JDBC data sources be registered in thejdbc naming subcontext of a JNDI namespace or in a child subcontext of the jdbc subcontext.		
To perform a lookup and open a connection to the database logically bound to the JNDI name, use the logical JNDI name. Doing this requires casting the lookup result, which is otherwise a Java Object		
, to OracleDataSource		
and then using its getConnection		
method to open the connection.		
Here is an example:		
For a detailed list of connection properties that Oracle JDBC drivers support, see the Javadoc.		
To specify the role for the SYS		
login, use the internal_logon		
connection property. To logon as SYS		
, set the internal_logon		
connection property to SYSDBA		
or SYSOPER		
.		
Note: The ability to specify a role is supported only for thesys user name.		
For a bequeath connection, we can get a connection as SYS		
by setting the internal_logon		
property. For a remote connection, we need additional password file setting procedures.		
Before the JDBC Thin driver can connect to the database as SYSDBA		
, you must configure the user, because Oracle Database security system requires a password file for remote connections as an administrator. Perform the following:		
orapwd		
password utility. You can add a password file for user sys		
as follows: sid_name		
.ora entries=200file		
must be the name of the password file. password		
is the password for the user SYS		
. It can be altered using the ALTER USER		
statement in SQL Plus. You should set entries		
to a value higher than the number of entries you expect.		
The syntax for the password file name is different on Microsoft Windows and UNIX.		
sysdba		
. This step grants SYSDBA		
and SYSOPER		
system privileges to individual users and lets them connect as themselves. Stop the database, and add the following line to init		
service_name		
.ora		
, in UNIX, or init.ora		
, in Microsoft Windows:		
The init		
service_name		
.ora		
file is located at ORACLE_HOME		
/dbs/		
and also at ORACLE_HOME		
/admin/db_name/pfile/		
. Ensure that you keep the two files synchronized.		
The init.ora		
file is located at %ORACLE_BASE%\ADMIN\db_name\pfile\		
.		
SYS		
user. This is an optional step. SYS		
has the SYSDBA		
privilege. Example 8-1 Using SYS Login To Make a Remote Connection		
The following example illustrates how to use the internal_logon		
and SYSDBA		
arguments to specify the SYS		
login. This example works regardless of the database's national-language settings of the database.		
Some of the connection properties are for use with Oracle performance extensions. Setting these properties is equivalent to using corresponding methods on the OracleConnection		
object, as follows:		
defaultRowPrefetch		
property is equivalent to calling setDefaultRowPrefetch		
. remarksReporting		
property is equivalent to calling setRemarksReporting		
. defaultBatchValue		
property is equivalent to calling setDefaultExecuteBatch		
Example		
The following example shows how to use the put		
method of the java.util.Properties		
class, in this case, to set Oracle performance extension parameters.		
Database URLs are strings. The complete URL syntax is:		
Note:		
The first part of the URL specifies which JDBC driver is to be used. The supported driver_type		
values are thin		
, oci		
, and kprb		
.		
The remainder of the URL contains an optional user name and password separated by a slash, an @, and the database specifier, which uniquely identifies the database to which the application is connected. Some database specifiers are valid only for the JDBC Thin driver, some only for the JDBC OCI driver, and some for both.		
Database Specifiers		
Table 8-3, shows the possible database specifiers, listing which JDBC drivers support each specifier.		
Note:		
Table 8-3 Supported Database Specifiers		
Specifier	Supported Drivers	Example
---	---	---
Oracle Net connection descriptor	Thin, OCI	Thin, using an address list: url="jdbc:oracle:thin:@(DESCRIPTION= (LOAD_BALANCE=on) (ADDRESS_LIST= (ADDRESS=(PROTOCOL=TCP)(HOST=host1) (PORT=1521)) (ADDRESS=(PROTOCOL=TCP)(HOST=host2)(PORT=1521))) (CONNECT_DATA=(SERVICE_NAME=service_name)))" OCI, using a cluster: "jdbc:oracle:oci:@(DESCRIPTION= (ADDRESS=(PROTOCOL=TCP)(HOST=cluster_alias) (PORT=1521)) (CONNECT_DATA=(SERVICE_NAME=service_name)))"
Thin-style service name	Thin	Refer to "Thin-style Service Name Syntax" for details. "jdbc:oracle:thin:scott/tiger@//myhost:1521/myservicename"
LDAP syntax	Thin	Refer to LDAP Syntax for details.
Bequeath connection	OCI	Empty. That is, nothing after @ "jdbc:oracle:oci:scott/tiger/@"
TNSNames alias	Thin, OCI	Refer to "TNSNames Alias Syntax" for details.
Thin-style Service Name Syntax		
Thin-style service names are supported only by the JDBC Thin driver. The syntax is:		
For example:		
TNSNames Alias Syntax		
You can find the available TNSNAMES		
entries listed in the tnsnames.ora		
file on the client computer from which you are connecting. On Windows, this file is located in the ORACLE_HOME		
\NETWORK\ADMIN		
directory. On UNIX systems, you can find it in the ORACLE_HOME		
directory or the directory indicated in your TNS_ADMIN		
environment variable.		
For example, if you want to connect to the database on host myhost		
as user scott		
with password tiger		
that has a TNSNAMES		
entry of MyHostString		
, then write the following:		
The oracle.net.tns_admin		
system property must be set to the location of the tnsnames.ora		
file so that the JDBC Thin driver can locate the tnsnames.ora		
file. For example:		
Note: When using TNSNames with the JDBC Thin driver, you must set theoracle.net.tns_admin property to the directory that contains your tnsnames.ora file. java -Doracle.net.tns_admin=$ORACLE_HOME/network/admin		
An example of database specifier using the Lightweight Directory Access Protocol (LDAP) syntax is as follows:		
When using SSL, change this to:		
Note: The JDBC Thin driver can use LDAP over SSL to communicate with Oracle Internet Directory if you substituteldaps: for ldap: in the database specifier. The LDAP server must be configured to use SSL. If it is not, then the connection attempt will hang.		
The JDBC Thin driver supports failover of a list of LDAP servers during the service name resolution process, without the need for a hardware load balancer. Also, client-side load balancing is supported for connecting to LDAP servers. A list of space separated LDAP URLs syntax is used to support failover and load balancing.		
When a list of LDAP URLs is specified, both failover and load balancing are enabled by default. The oracle.net.ldap_loadbalance		
connection property can be used to disable load balancing, and the oracle.net.ldap_failover		
connection property can be used to disable failover.		
An example, which uses failover, but with client-side load balancing disabled, is as follows:		
The JDBC Thin driver supports LDAP nonanonymous bind. A set of JNDI environment properties, which contains authentication information, can be specified for a data source. If a LDAP server is configured as not allowing anonymous bind, then authentication information must be provided to connect to the LDAP server. The following example shows a simple clear-text password authentication:		
Since JDBC passes down the three properties to JNDI, the authentication mechanism chosen by client is consistent with how these properties are interpreted by JNDI. For example, if the client specifies authentication information without explicitly specifying the java.naming.security.authentication		
property, then the default authentication mechanism is "simple". Please refer to relevant JDNI documentation for details.		
This chapter discusses support in the Oracle Java Database Connectivity (JDBC) Oracle Call Interface (OCI) and JDBC Thin drivers for login authentication, data encryption, and data integrity, particularly, with respect to features of the Oracle Advanced Security option.		
Oracle Advanced Security, previously known as the Advanced Networking Option (ANO) or Advanced Security Option (ASO), provides industry standards-based data encryption, data integrity, third-party authentication, single sign-on, and access authorization. From 11g release 1 (11.1), both the JDBC OCI and Thin drivers support all the Oracle Advanced Security features. Earlier releases of the JDBC drivers did not support some of the ASO features.		
Note: This discussion is not relevant to the server-side internal driver, given that all communication through that driver is completely internal to the server.		
This chapter contains the following sections:		
Oracle Advanced Security provides the following security features:		
Sensitive information communicated over enterprise networks and the Internet can be protected by using encryption algorithms, which transform information into a form that can be deciphered only with a decryption key. Some of the supported encryption algorithms are RC4, DES, 3DES, and AES.		
To ensure data integrity during transmission, Oracle Advanced Security generates a cryptographically secure message digest, using MD5 or SHA-1 hashing algorithms, and includes it with each message sent across a network. This protects the communicated data from attacks, such as data modification, deleted packets, and replay attacks.		
To ensure network security in distributed environments, it is necessary to authenticate the user and check his credentials. Password authentication is the most common means of authentication. Oracle Advanced Security enables strong authentication with Oracle authentication adapters, which support various third-party authentication services, including SSL with digital certificates. Oracle Advanced Security supports the following industry-standard authentication methods:		
JDBC OCI Driver Support for Oracle Advanced Security		
If you are using the JDBC OCI driver, which presumes you are running from a computer with an Oracle client installation, then support for Oracle Advanced Security and incorporated third-party features is fairly similar to the support provided by in any Oracle client situation. Your use of Advanced Security features is determined by related settings in the sqlnet.ora		
file on the client computer.		
Starting from Oracle Database 11g Release 1 (11.1), the JDBC OCI driver attempts to use external authentication if you try connecting to a database without providing a password. The following are some examples using the JDBC OCI driver to connect to a database without providing a password:		
SSL Authentication		
Example 9-1 uses SSL authentication to connect to the database.		
Example 9-1		
Using Data Source		
Example 9-2 uses a data source to connect to the database.		
Example 9-2		
Note: The key exception to the preceding, with respect to Java, is that the Secure Sockets Layer (SSL) protocol is supported by the Oracle JDBC OCI drivers only if you use native threads in your application. This requires special attention, because green threads are generally the default.		
JDBC Thin Driver Support for Oracle Advanced Security		
The JDBC Thin driver cannot assume the existence of an Oracle client installation or the presence of the sqlnet.ora		
file. Therefore, it uses a Java approach to support Oracle Advanced Security. Java classes that implement Oracle Advanced Security are included in the ojdbc5.jar		
and ojdbc6.jar		
files. Security parameters for encryption and integrity, usually set in sqlnet.ora		
, are set using a Java Properties		
object or through system properties.		
Basic login authentication through JDBC consists of user names and passwords, as with any other means of logging in to an Oracle server. Specify the user name and password through a Java properties object or directly through the getConnection		
method call. This applies regardless of which client-side Oracle JDBC driver you are using, but is irrelevant if you are using the server-side internal driver, which uses a special direct connection and does not require a user name or password.		
Starting with 11g release 1 (11.1), the Oracle JDBC Thin driver implements a challenge-response protocol to authenticate the user.		
Oracle Advanced Security enables Oracle Database users to authenticate externally. External authentication can be with RADIUS, KERBEROS, Certificate-Based Authentication, Token Cards, Smart Cards, and DCE. This is called strong authentication. Oracle JDBC drivers provide support for the following strong authentication methods:		
Operating System (OS) authentication allows Oracle to pass control of user authentication to the operating system. It allows the users to connect to the database by authenticating their OS username in the database. No password is associated with the account since it is assumed that OS authentication is sufficient. In other words, the server delegates the authentication to the client OS. You need to perform the following steps to achieve this:		
OS_AUTHENT_PREFIX		
initialization parameter: Note: Remember the OS authentication prefix. You need to create a database user to allow an OS authenticated connection, where the username must be the prefix value concatenated to the OS username.		
t_init1.ora		
file: When a connection is attempted from the local database server, the OS username is passed to the Oracle server. If the username is recognized, the Oracle the connection is accepted, otherwise the connection is rejected.		
The configuration steps necessary to set up OS authentication on Linux are the following:		
w_rose		
: The configuration steps necessary to set up OS authentication on Windows are the following:		
w_rose		
, using the Computer Management dialog box. For this you have to do the following: Note: The preceding steps are only for creating a local user. Domain users can be created in Active Directory.		
Note: When you create the database user in Windows environment, the user name should be in the following format:<OS_authentication_prefix_parameter>$<DOMAIN>\<OS_user_name>		
When using a Windows server, there is an additional consideration. The following option must be set in the %ORACLE_HOME%\network\admin\sqlnet.ora		
file:		
Now that you have set up OS authentication to connect to the database, you can use the following JDBC code for connecting to the database:		
The preceding code assumes that it is executed by p_floyd		
on the client machine. The JDBC drivers retrieve the OS username from the user.name		
system property that is set by the JVM. As a result, the following thin driver-specific error no longer exists:		
Note: By default, the JDBC driver retrieves the OS username from theuser.name system property, which is set by the JVM. If the JDBC driver is unable to retrieve this system property or if you want to override the value of this system property, then you can use the OracleConnection.CONNECTION_PROPERTY_THIN_VSESSION_OSUSER connection property. For more information, see Oracle Javadoc.		
You can use Oracle Advanced Security data encryption and integrity features in your Java database applications, depending on related settings in the server. When using the JDBC OCI driver, set parameters as you would in any Oracle client situation. When using the Thin driver, set parameters through a Java properties object.		
Encryption is enabled or disabled based on a combination of the client-side encryption-level setting and the server-side encryption-level setting. Similarly, integrity is enabled or disabled based on a combination of the client-side integrity-level setting and the server-side integrity-level setting.		
Encryption and integrity support the same setting levels, REJECTED		
, ACCEPTED		
, REQUESTED		
, and REQUIRED		
. Table 9-1 shows how these possible settings on the client-side and server-side combine to either enable or disable the feature. By default, remote OS authentication (through TCP) is disabled in the database for obvious security reasons.		
Table 9-1 Client/Server Negotiations for Encryption or Integrity		
Client Rejected	Client Accepted (default)	Client Requested
---	---	---
Server Rejected	OFF	OFF
Server Accepted (default)	OFF	OFF
Server Requested	OFF	ON
Server Required	connection fails	ON
Table 9-1 shows, for example, that if encryption is requested by the client, but rejected by the server, it is disabled. The same is true for integrity. As another example, if encryption is accepted by the client and requested by the server, it is enabled. And, again, the same is true for integrity.		
Note: The term checksum still appears in integrity parameter names, but is no longer used otherwise. For all intents and purposes, checksum and integrity are synonymous.		
This section covers the following topics:		
If you are using the JDBC OCI driver, which presumes an Oracle-client setting with an Oracle client installation, then you can enable or disable data encryption or integrity and set related parameters as you would in any Oracle client situation, through settings in the SQLNET.ORA		
file on the client.		
To summarize, the client parameters are shown in Table 9-2:		
Table 9-2 OCI Driver Client Parameters for Encryption and Integrity		
Parameter Description	Parameter Name	Possible Settings
---	---	---
Client encryption level		
Client encryption selected list		
(see Note)		
Client integrity level		
Client integrity selected list		
Note: For the Oracle Advanced Security domestic edition only, settings ofRC4_128 and RC4_256 are also possible.		
The JDBC Thin driver support for data encryption and integrity parameter settings parallels the JDBC OCI driver support discussed in the preceding section. Corresponding parameters can be set through a Java properties object that you would then be used when opening a database connection.		
Table 9-3 lists the parameter information for the JDBC Thin driver. These parameters are defined in the oracle.jdbc.OracleConnection		
interface.		
Table 9-3 Thin Driver Client Parameters for Encryption and Integrity		
Parameter Name	Parameter Type	Possible Settings
---	---	---
Note:		
Use a Java properties object, that is, an instance of java.util.Properties		
, to set the data encryption and integrity parameters supported by the JDBC Thin driver.		
The following example instantiates a Java properties object, uses it to set each of the parameters in Table 9-3, and then uses the properties object in opening a connection to the database:		
The parentheses around the values encryption type and checksum type allow for lists of values. When multiple values are supplied, the server and the client negotiate to determine which value is to be actually used.		
Example 9-3 is a complete class that sets data encryption and integrity parameters before connecting to a database to perform a query.		
Note: In the example, the string "REQUIRED" is retrieved dynamically through functionality of theAnoServices and Service classes. You have the option of retrieving the strings in this manner or hardcoding them as in the previous examples		
Before running this example, you must turn on encryption in the sqlnet.ora		
file. For example, the following lines will turn on AES256, AES192, and AES128 for the encryption and MD5 and SHA1 for the checksum:		
Example 9-3 Setting Data Encryption and Integrity Parameters		
Oracle Database 11g provides support for the Secure Sockets Layer (SSL) protocol. SSL is a widely used industry standard protocol that provides secure communication over a network. SSL provides authentication, data encryption, and data integrity. It provides a secure enhancement to the standard TCP/IP protocol, which is used for Internet communication..		
SSL uses digital certificates that comply with the X.509v3 standard for authentication and a public and private key pair for encryption. SSL also uses secret key cryptography and digital signatures to ensure privacy and integrity of data. When a network connection over SSL is initiated, the client and server perform an SSL handshake that includes the following steps:		
Note: In Oracle Database 11g Release 1 (11.1), SSL authentication is supported in the thin driver. So, you do not need to provide a username/password pair if you are using SSL authentication.		
SSL Terminology		
The following terms are commonly used in the SSL context:		
Java Version of SSL		
The Java Secure Socket Extension (JSSE) provides a framework and an implementation for a Java version of the SSL and TLS protocols. JSSE provides support for data encryption, server and client authentication, and message integrity. It abstracts the complex security algorithms and handshaking mechanisms and simplifies application development by providing a building block for application developers, which they can directly integrate into their applications. JSSE is integrated into Java Development Kit (JDK) 1.4 and later, and supports SSL version 2.0 and 3.0.		
Oracle strongly recommends that you have a clear understanding of the JavaTM Secure Socket Extension (JSSE) framework by Sun Microsystems before using SSL in the Oracle JDBC drivers.		
The JSSE standard application programming interface (API) is available in the javax.net		
, javax.net.ssl		
, and javax.security.cert		
packages. These packages provide classes for creating and configuring sockets, server sockets, SSL sockets, and SSL server sockets. The packages also provide a class for secure HTTP connections, a public key certificate API compatible with JDK1.1-based platforms, and interfaces for key and trust managers.		
SSL works the same way, as in any networking environment, in Oracle Database 11g. This section covers the following:		
To establish an SSL connection with a JDBC client, Thin or OCI, Oracle database server sends its certificate, which is stored in its wallet. The client may or may not need a certificate or wallet depending on the server configuration.		
The Oracle JDBC Thin driver uses the JSSE framework to create an SSL connection. It uses the default provider (SunJSSE) to create an SSL context. However you can provide your own provider.		
You do not need a certificate for the client, unless the SSL_CLIENT_AUTHENTICATION		
parameter is set on the server.		
Java clients can use multiple types of containers such as Oracle wallets, JKS, PKCS12, and so on, as long as a provider is available. For Oracle wallets, OraclePKI provider must be used because the PKCS12 support provided by SunJSSE provider does not support all the features of PKCS12. In order to use OraclePKI provider, the following JARs are required:		
oraclepki.jar		
osdt_cert.jar		
osdt_core.jar		
All these JAR files should be under $ORACLE_HOME/jlib directory		
.		
Oracle Database 11g Release 1 (11.1) introduces support for Kerberos. Kerberos is a network authentication protocol that provides the tools of authentication and strong cryptography over the network. Kerberos helps you secure your information systems across your entire enterprise by using secret-key cryptography. The Kerberos protocol uses strong cryptography so that a client or a server can prove its identity to its server or client across an insecure network connection. After a client and server have used Kerberos to prove their identity, they can also encrypt all of their communications to assure privacy and data integrity as they go about their business.		
The Kerberos architecture is centered around a trusted authentication service called the key distribution center, or KDC. Users and services in a Kerberos environment are referred to as principals; each principal shares a secret, such as a password, with the KDC. A principal can be a user such as scott		
or a database server instance.		
Perform the following steps to configure Oracle Database to use Kerberos:		
CLIENT@US.ORACLE.COM		
that is identified externally: sysdba		
and dismount it: $T_WORK/t_init1.ora		
file: sqlnet.ora		
file to include the following lines: This following example demonstrates the new Kerberos authentication feature that is part of Oracle Database 11g Release 1 (11.1) JDBC thin driver. This demo covers two scenarios:		
connectWithDefaultUser()		
. Note:		
connectWithSpecificUser().		
Note: To run this demo, you need to have a working setup, that is, a Kerberos server up and running, and an Oracle database server that is configured to use Kerberos authentication. You then need to change the URLs used in the example to compile and run it.		
Example 9-4		
Oracle Database 11g Release 1 (11.1) introduces support for Remote Authentication Dial-In User Service (RADIUS). RADIUS is a client/server security protocol that is most widely known for enabling remote authentication and access. Oracle Advanced Security uses this standard in a client/server network environment to enable use of any authentication method that supports the RADIUS protocol. RADIUS can be used with a variety of authentication mechanisms, including token cards and smart cards. This section contains the following sections:		
Perform the following steps to configure Oracle Database to use RADIUS:		
aso		
from within a database: sysdba		
and dismount it: t_init1.ora		
file: Note: Once the test is over, you need to revert the preceding changes made to the t_init1.ora file.		
sqlnet.ora		
file so that it contains only these lines: This example demonstrates the new RADIUS authentication feature that is a part of Oracle Database 11g Release 1 (11.1) JDBC thin driver. You need to have a working setup, that is, a RADIUS server up and running, and an Oracle database server that is configured to use RADIUS authentication. You then need to change the URLs given in the example to compile and run it.		
Example 9-5		
As an alternative for large-scale deployments where applications use password credentials to connect to databases, it is possible to store such credentials in a client-side Oracle wallet. An Oracle wallet is a secure software container that is used to store authentication and signing credentials.		
Storing database password credentials in a client-side Oracle wallet eliminates the need to embed user names and passwords in application code, batch jobs, or scripts. This reduces the risk of exposing passwords in the clear in scripts and application code, and simplifies maintenance because you need not change your code each time user names and passwords change. In addition, not having to change application code also makes it easier to enforce password management policies for these user accounts.		
When you configure a client to use the external password store, applications can use the following syntax to connect to databases that use password authentication:		
Note that you need not specify database login credentials in this CONNECT		
statement. Instead your system looks for database login credentials in the client wallet.		
See Also: Oracle Database Advanced Security Administrator's Guide for information about configuring your client to use secure external password store and for information about managing credentials in it.		
Oracle Java Database Connectivity (JDBC) provides proxy authentication, also called N-tier authentication. This feature is supported through both the JDBC Oracle Call Interface (OCI) driver and the JDBC Thin driver. This chapter contains the following sections:		
Note: Oracle Database supports proxy authentication functionality in three tiers only. It does not support it across multiple middle tiers.		
Proxy authentication is the process of using a middle-tier for user authentication. You can design a middle-tier server to proxy clients in a secure fashion by using the following three forms of proxy authentication:		
In all cases, an administrator must authorize the middle-tier server to proxy a client, that is, to act on behalf of the client. Operations done on behalf of a client by a middle-tier server can be audited. Issue the following command to authorize the middle-tier server to proxy a client:		
where, scott		
is the name of the proxy user.		
You can also:		
The role clause limits the access only to those database objects that are mentioned in the list of the roles. The list of roles can be empty.		
PROXY_USERS		
data dictionary view. REVOKE CONNECT THROUGH		
clause of ALTER USER		
command. Note: In this chapter, a JDBC connection to a database is a user session in the database and vice versa.		
You need to use the different fields and methods present in the oracle.jdbc.OracleConnection		
interface to set up the different types of proxy connections.		
You can create proxy connections using any one of the following options:		
USER NAME		
This is done by supplying the user name or the password or both. The SQL statement for specifying authentication using password is:		
In this case, jeff		
is the user name and scott		
is the proxy for jeff		
.		
The password option exists for additional security. Having no authenticated		
clause implies default authentication, which is using only the user name without the password. The SQL statement for specifying default authentication is:		
DISTINGUISHED NAME		
This is a global name in lieu of the password of the user being proxied for. An example of the corresponding SQL statement using a distinguished name is:		
The string that follows the identified globally as		
clause is the distinguished name. It is then necessary to authenticate using this distinguished name. The corresponding SQL statement to specify authentication using distinguished name is:		
CERTIFICATE		
This is a more encrypted way of passing the credentials of the user, who is to be proxied, to the database. The certificate contains the distinguished name encoded in it. One way of generating the certificate is by creating a wallet and then decoding the wallet to get the certificate. The wallet can be created using runutl mkwallet		
. It is then necessary to authenticate using the generated certificate. The SQL statement for specifying authentication using certificate is:		
Note: The use of certificates for proxy authentication will be desupported in future Oracle Database releases.		
Note:		
A user, say jeff		
, has to connect to the database through another user, say scott		
. The proxy user, scott		
, should have an active authenticated connection. A proxy session is then created on this active connection, with the driver issuing a command to the server to create a session for the user, jeff		
. The server returns the new session id, and the driver sends a session switch command to switch to this new session.		
The JDBC OCI and Thin driver switch sessions in the same manner. The drivers permanently switch to the new session, jeff		
. As a result, the proxy session, scott		
, is not available until the new session, jeff		
, is closed.		
Note: You can use theisProxySession method from the oracle.jdbc.OracleConnection interface to check if the current session associated with your connection is a proxy session. This method returns true if the current session associated with the connection is a proxy session.		
A new proxy session is opened by using the following method from the oracle.jdbc.OracleConnection		
interface:		
Where,		
type		
is the type of the proxy session and can have the following values:		
OracleConnection.PROXYTYPE_USER_NAME		
This type is used for specifying the user name.		
OracleConnection.PROXYTYPE_DISTINGUISHED_NAME		
This type is used for specifying the distinguished name of the user.		
OracleConnection.PROXYTYPE_CERTIFICATE		
This type is used for specifying the proxy certificate.		
prop		
is the property value of the proxy session and can have the following values:		
PROXY_USER_NAME		
This property value should be used with the type OracleConnection.PROXYTYPE_USER_NAME		
. The value should be a java.lang.String		
.		
PROXY_DISTINGUISHED_NAME		
This property value should be used with the type OracleConnection.PROXYTYPE_DISTINGUISHED_NAME		
. The value should be a java.lang.String		
.		
PROXY_CERTIFICATE		
This property value should be used with the type OracleConnection.PROXYTYPE_CERTIFICATE		
. The value is a bytep[]		
array that contains the certificate.		
PROXY_ROLES		
This property value can be used with the following types:		
OracleConnection.PROXYTYPE_USER_NAME		
OracleConnection.PROXYTYPE_DISTINGUISHED_NAME		
OracleConnection.PROXYTYPE_CERTIFICATE		
The value should be a java.lang.String		
.		
PROXY_SESSION		
This property value is used with the close		
method to close the proxy session.		
PROXY_USER_PASSWORD		
This property value should be used with the type OracleConnection.PROXYTYPE_USER_NAME		
. The value should be a java.lang.String		
.		
The following code snippet shows the use of the openProxySession		
method:		
You can close the proxy session opened with the OracleConnection.openProxySession		
method by passing the OracleConnection.PROXY_SESSION		
parameter to the OracleConnection.close		
method in the following way:		
OracleConnection.close		
(OracleConnection.PROXY_SESSION);This is similar to closing a proxy session on a non-cached connection. The standard close		
method must be called explicitly to close the connection itself. If the close		
method is called directly, without closing the proxy session, then both the proxy session and the connection are closed. This can be achieved in the following way:		
Proxy connections, like standard connections, can be cached. Caching proxy connections enhances the performance. To cache a proxy connection, you need to create a connection using one of the getConnection		
methods on a cache enabled OracleDataSource		
object.		
A proxy connection may be cached in the connection cache using the connection attributes feature of the connection cache. Connection attributes are name/value pairs that are user-defined and help tag a connection before returning it to the connection cache for reuse. When the tagged connection is retrieved, it can be directly used without having to do a round-trip to create or close a proxy session. Implicit connection cache supports caching of any user/password authenticated connection. Therefore, any user authenticated proxy connection can be cached and retrieved.		
It is recommended that proxy connections should not be closed without applying the connection attributes. If a proxy connection is closed without applying the connection attributes, the connection is returned to the connection cache for reuse, but cannot be retrieved. The connection caching mechanism does not remember or reset session state.		
A proxy connection can be removed from the connection cache by closing the connection directly.		
This part provides a chapter that discusses about accessing and manipulating Oracle data. It also includes chapters that provide information about Java Database Connectivity (JDBC) support for user-defined object types, large object (LOB) and binary file (BFILE) locators and data, object references, and Oracle collections, such as nested tables. This part also provides chapters that discuss the result set functionality in JDBC, JDBC row sets, and globalization support provided by Oracle JDBC drivers.		
Part IV contains the following chapters:		
This chapter describes data access in oracle.sql.*		
formats, as opposed to standard Java formats. Using oracle.sql.*		
formats involves casting your result sets and statements to OracleResultSet		
, OracleStatement		
, OraclePreparedStatement		
, and OracleCallableStatement		
, as appropriate, and using the getOracleObject		
, setOracleObject		
, get		
XXX		
, and set		
XXX		
methods of these classes, where XXX		
corresponds to the types in the oracle.sql		
package.		
This chapter covers the following topics:		
The Oracle JDBC drivers support standard JDBC types as well as Oracle-specific data types. This section documents standard and Oracle-specific SQL-Java default type mappings. This section contains the following topics:		
Table 11-1 shows the default mappings between SQL data types, JDBC type codes, standard Java types, and Oracle extended types.		
The SQL Data Types column lists the SQL types that exist in Oracle Database 11g. The JDBC Type Codes column lists data type codes supported by the JDBC standard and defined in the java.sql.Types		
class or by Oracle in the oracle.jdbc.OracleTypes		
class. For standard type codes, the codes are identical in these two classes.		
The Standard Java Types column lists standard types defined in the Java language. The Oracle Extension Java Types column lists the oracle.sql.*		
Java types that correspond to each SQL data type in the database. These are Oracle extensions that let you retrieve all SQL data in the form of a oracle.sql.*		
Java type. Manipulating SQL data as oracle.sql.*		
data types minimizes conversions, improving performance and eliminating conversion losses.		
Table 11-1 Default Mappings Between SQL Types and Java Types		
SQL Data Types	JDBC Type Codes	Standard Java Types
---	---	---
STANDARD JDBC TYPES:		
user-defined object		
user-defined reference		
user-defined collection		
java.sql.RowId		
java.sql.Types.NCLOB		
java.sql.Types.NCHAR	java.lang.String	
ORACLE EXTENSIONS:		
NA		
Note: For database versions, such as 8.1.7, which do not support theTIMESTAMP data type, TIMESTAMP is mapped to DATE .		
This section provides further detail regarding mappings for NUMBER		
and user-defined types.		
NUMBER Types		
For the different type codes that an Oracle NUMBER		
value can correspond to, call the getter routine that is appropriate for the size of the data for mapping to work properly. For example, call getByte		
to get a Java tinyint		
value for an item x, where -128 < x < 128.		
User-Defined Types		
User-defined types, such as objects, object references, and collections, map by default to weak Java types, such as java.sql.Struct		
, but alternatively can map to strongly typed custom Java classes. Custom Java classes can implement one of two interfaces:		
java.sql.SQLData		
oracle.sql.ORAData		
When JDBC programs retrieve SQL data into Java, you can use standard Java types, or you can use types of the oracle.sql		
package. This section covers the following topics:		
The Oracle data types in oracle.sql		
store data in the same bit format as used by the database. In versions of the Oracle JDBC drivers prior to Oracle Database 10g, the Oracle data types were generally more efficient. The Oracle Database 10g JDBC drivers were substantially updated. As a result, in most cases the standard Java types are preferred to the data types in oracle.sql		
. In particular, java.lang.String		
is much more efficient than oracle.sql.CHAR		
.		
In general, Oracle recommends that you use the Java standard types. The exceptions to this are:		
oracle.sql.OraData		
rather than the java.sql.SqlData		
if the OraData functionality better suits your needs. oracle.sql.NUMBER		
rather than java.lang.Double		
if you need to retain the exact values of floating point numbers. Oracle NUMBER		
is a decimal representation and Java Double		
and Float		
are binary representations. Conversion from one format to the other can result in slight variations in the actual value represented. Additionally, the range of values that can be represented using the two formats is different. oracle.sql.DATE		
or oracle.sql.TIMESTAMP		
rather than java.sql.Date		
or java.sql.Timestamp		
if you are using JDK 1.5 or earlier versions or require maximum performance. You may also use the oracle.sql		
data type if you want to read many date values or compute or display only a small percentage. Due to a bug in all versions of Java prior to JDK 1.6, construction of java.lang.Date		
and java.lang.Timestamp		
objects is slow, especially in multithreaded environments. This bug is fixed in JDK 1.6. Note: If you convert anoracle.sql data type to a Java standard data type, then the benefits of using the oracle.sql data type are lost.		
Java represents a SQL NULL		
datum by the Java value null		
. Java data types fall into two categories: primitive types, such as byte		
, int		
, and float		
, and object types, such as class instances. The primitive types cannot represent null		
. Instead, they store null		
as the value zero, as defined by the JDBC specification. This can lead to ambiguity when you try to interpret your results.		
In contrast, Java object types can represent null		
. The Java language defines an object container type corresponding to every primitive type that can represent null		
. The object container types must be used as the targets for SQL data to detect SQL NULL		
without ambiguity.		
You cannot use a relational operator to compare NULL		
values with each other or with other values. For example, the following SELECT		
statement does not return any row even if the COMM		
column contains one or more NULL		
values.		
The next example shows how to compare values for equality when some return values might be NULL		
. The following code returns all the ENAMES		
from the EMP		
table that are NULL		
, if there is no value of 100 for COMM		
.		
The JDBC Statement		
object returns an OracleResultSet		
object, typed as a java.sql.ResultSet		
. If you want to apply only standard JDBC methods to the object, then keep it as a ResultSet		
type. However, if you want to use the Oracle extensions on the object, then you must cast it to OracleResultSet		
. All of the Oracle Result Set extensions are in the oracle.jdbc.OracleResultSet		
interface and all the Statement		
extensions are in the oracle.jdbc.OracleStatement		
interface.		
For example, assuming you have a standard Statement		
object stmt		
, do the following if you want to use only standard JDBC ResultSet		
methods:		
If you need the extended functionality provided by the Oracle extensions to JDBC, you can select the results into a standard ResultSet		
variable and then cast that variable to OracleResultSet		
later.		
Key extensions to the result set and statement classes include the getOracleObject		
and setOracleObject		
methods, used to access and manipulate data in oracle.sql.*		
formats.		
This section describes get		
and set		
methods, particularly the JDBC standard getObject		
and setObject		
methods and the Oracle-specific getOracleObject		
and setOracleObject		
methods, and how to access data in oracle.sql.*		
format compared with Java format.		
Although there are specific get		
XXX		
methods for all the Oracle SQL types, you can use the general get		
methods for convenience or simplicity, or if you are not certain in advance what type of data you will receive.		
This section covers the following topics:		
Note: You cannot qualify a column name with a table name and pass it as a parameter to theget XXX method. For example: ResultSet rset = stmt.executeQuery("SELECT emp.deptno, dept.deptno FROM emp, dept"); rset.getInt("emp.deptno"); The		
The standard getObject		
method of a result set or callable statement has a return type of java.lang.Object		
. The class of the object returned is based on its SQL type, as follows:		
getObject		
returns the default Java type corresponding to the SQL type of the column, following the mapping in the JDBC specification. getObject		
returns an object of the appropriate oracle.sql.*		
class, such as oracle.sql.ROWID		
. getObject		
returns a Java object of the class specified in your type map. Type maps specify a mapping from database named types to Java classes. The getObject(
parameter_index		
)		
method uses the default type map of the connection. The getObject(
parameter_index		
,		
map		
)		
enables you to pass in a type map. If the type map does not provide a mapping for a particular Oracle object, then getObject		
returns an oracle.sql.STRUCT		
object. If you want to retrieve data from a result set or callable statement as an oracle.sql.*		
object, then you must follow a special process. For a Result Set, you must cast the Result Set itself to oracle.jdbc.OracleResultSet		
and then call getOracleObject		
instead of getObject		
. The same applies to CallableStatement		
and oracle.jdbc.OracleCallableStatement		
.		
The return type of getOracleObject		
is oracle.sql.Datum		
. The actual returned object is an instance of the appropriate oracle.sql.*		
class. The method signature is:		
p		
arameter_index)When you retrieve data into a Datum		
variable, you can use the standard Java instanceof		
operator to determine which oracle.sql.*		
type it really is.		
Example: Using getOracleObject with a Result Set		
The following example creates a table that contains a column of CHAR		
data and a column containing a BFILE		
locator. A SELECT		
statement retrieves the contents of the table as a result set. The getOracleObject		
then retrieves the CHAR		
data into the char_datum		
variable and the BFILE		
locator into the bfile_datum		
variable. Note that because getOracleObject		
returns a Datum		
object, the return values must be cast to CHAR		
and BFILE		
, respectively.		
Example: Using getOracleObject in a Callable Statement		
The following example prepares a call to the procedure myGetDate		
, which associates a character string with a date. The program passes "SCOTT"		
to the prepared call and registers the DATE		
type as an output parameter. After the call is run, getOracleObject		
retrieves the date associated with "SCOTT"		
. Note that because getOracleObject		
returns a Datum		
object, the results are cast to DATE		
.		
Table 11-2 lists the underlying return types for the getObject		
and getOracleObject		
methods for each Oracle SQL type.		
Keep in mind the following when you use these methods:		
getObject		
always returns data into a java.lang.Object		
instance getOracleObject		
always returns data into an oracle.sql.Datum		
instance You must cast the returned object to use any special functionality.		
Table 11-2 getObject and getOracleObject Return Types		
Oracle SQL Type	getObject Underlying Return Type	getOracleObject Underlying Return Type
---	---	---
(not supported)		
Oracle object	class specified in type map or	
Oracle object reference		
collection (varray or nested table)		
Footnote 1 ResultSet.getObject		
returns java.sql.Timestamp		
only if the oracle.jdbc.J2EE13Compliant		
connection property is set to TRUE		
, else the method returns oracle.sql.TIMESTAMP		
.		
Note: TheResultSet.getObject method returns java.sql.Timestamp for the TIMESTAMP SQL type, only when the connection property oracle.jdbc.J2EE13Compliant is set to TRUE . This property has to be set when the connection is obtained. If this connection property is not set or if it is set after the connection is obtained, then the ResultSet.getObject method returns oracle.sql.TIMESTAMP for the TIMESTAMP SQL type. The		
When the		
See Also: Table A-1, "Valid SQL Data Type-Java Class Mappings", for information about type compatibility between all SQL and Java types.		
Standard JDBC provides a get		
XXX		
for each standard Java type, such as getByte		
, getInt		
, getFloat		
, and so on. Each of these returns exactly what the method name implies.		
In addition, the OracleResultSet		
and OracleCallableStatement		
classes provide a full complement of get		
XXX		
methods corresponding to all the oracle.sql.*		
types. Each get		
XXX		
method returns an oracle.sql.		
XXX		
object. For example, getROWID		
returns an oracle.sql.ROWID		
object.		
There is no performance advantage in using the specific get		
XXX		
methods. However, they do save you the trouble of casting, because the return type is specific to the object being returned.		
This section covers the following topics:		
Refer to the Java doc to know the return types for each get		
XXX		
method and also which are Oracle extensions under Java Development Kit (JDK) 1.6. You must cast the returned object to OracleResultSet		
or OracleCallableStatement		
to use methods that are Oracle extensions.		
This section provides additional details about some get		
XXX		
methods.		
getBigDecimal		
JDBC 2.0 simplified method signatures for the getBigDecimal		
method. The previous input signatures were:		
The simplified input signature is:		
The scale		
parameter, used to specify the number of digits to the right of the decimal, is no longer necessary. The Oracle JDBC drivers retrieve numeric values with full precision.		
getBoolean		
Because there is no BOOLEAN		
database type, when you use getBoolean		
a data type conversion always occurs. The getBoolean		
method is supported only for numeric columns. When applied to these columns, getBoolean		
interprets any zero value as false		
and any other value as true		
. When applied to any other sort of column, getBoolean		
raises the exception java.lang.NumberFormatException		
.		
The return type of getObject		
is java.lang.Object		
. The returned value is an instance of a subclass of java.lang.Object		
. Similarly, the return type of getOracleObject		
is oracle.sql.Datum		
, and the class of the returned value is a subclass of oracle.sql.Datum		
. You typically cast the returned object to the appropriate class to use particular methods and functionality of that class.		
In addition, you have the option of using a specific get		
XXX		
method instead of the generic getObject		
or getOracleObject		
methods. The get		
XXX		
methods enable you to avoid casting, because the return type of get		
XXX		
corresponds to the type of object returned. For example, the return type of getCLOB		
is oracle.sql.CLOB		
, as opposed to java.lang.Object		
.		
Example of Casting Return Values		
This example assumes that you have fetched data of the NUMBER		
type as the first column of a result set. Because you want to manipulate the NUMBER		
data without losing precision, cast your result set to OracleResultSet		
and use getOracleObject		
to return the NUMBER		
data in oracle.sql.*		
format. If you do not cast your result set, then you have to use getObject		
, which returns your numeric data into a Java Float		
and loses some of the precision of your SQL data.		
The getOracleObject		
method returns an oracle.sql.NUMBER		
object into an oracle.sql.Datum		
return variable unless you cast the output. Cast the getOracleObject		
output to oracle.sql.NUMBER		
if you want to use a NUMBER		
return variable and any of the special functionality of that class.		
Just as there is a standard getObject		
and Oracle-specific getOracleObject		
in result sets and callable statements, there are also standard setObject		
and Oracle-specific setOracleObject		
methods in OraclePreparedStatement		
and OracleCallableStatement		
. The setOracleObject		
methods take oracle.sql.*		
input parameters.		
To bind standard Java types to a prepared statement or callable statement, use the setObject		
method, which takes a java.lang.Object		
as input. The setObject		
method does support a few of the oracle.sql.*		
types. However, the method has been implemented so that you can enter instances of the oracle.sql.*		
classes that correspond to the following JDBC standard types: Blob		
, Clob		
, Struct		
, Ref		
, and Array		
.		
To bind oracle.sql.*		
types to a prepared statement or callable statement, use the setOracleObject		
method, which takes a subclass of oracle.sql.Datum		
as input. To use setOracleObject		
, you must cast your prepared statement or callable statement to OraclePreparedStatement		
or OracleCallableStatement		
.		
Example of Using setObject and setOracleObject		
For a prepared statement, the setOracleObject		
method binds the oracle.sql.CHAR		
data represented by the charVal		
variable to the prepared statement. To bind the oracle.sql.*		
data, the prepared statement must be cast to OraclePreparedStatement		
. Similarly, the setObject		
method binds the Java String		
data represented by the variable strVal		
.		
t		
ext_of_prepared_statement");As with the get		
XXX		
methods, there are several specific set		
XXX		
methods. Standard set		
XXX		
methods are provided for binding standard Java types, and Oracle-specific set		
XXX		
methods are provided for binding Oracle-specific types.		
Similarly, there are two forms of the setNull		
method:		
void setNull(int		
parameterIndex,		
int		
sqlType		
)		
This is specified in the standard java.sql.PreparedStatement		
interface. This signature takes a parameter index and a SQL type code defined by the java.sql.Types		
or oracle.jdbc.OracleTypes		
class. Use this signature to set an object other than a REF		
, ARRAY		
, or STRUCT		
to NULL		
.		
void setNull(int		
parameterIndex		
, int		
sqlType		
, String		
sql_type_name		
) With JDBC 2.0, this signature is also specified in the standard java.sql.PreparedStatement		
interface. This method takes a SQL type name in addition to a parameter index and a SQL type code. Use this method when the SQL type code is java.sql.Types.REF		
, ARRAY		
, or STRUCT		
. If the type code is other than REF		
, ARRAY		
, or STRUCT		
, then the given SQL type name is ignored.		
Similarly, the registerOutParameter		
method has a signature for use with REF		
, ARRAY		
, or STRUCT		
data:		
Binding Oracle-specific types using the appropriate setXXX		
methods, instead of the methods used for binding standard Java types, may offer some performance advantage.		
This section covers the following topics:		
There are three way to bind data for input:		
The three kinds of binding have some differences in performance and have an impact on batching. Direct binding is fast and batching is fine. Stream binding is slower, may require multiple round trips, and turns batching off. LOB binding is very slow and requires many round trips. Batching works, but might be a bad idea. They also have different size limits, depending on the type of the SQL statement.		
For SQL parameters, the length of standard parameter types, such as RAW		
and VARCHAR2		
, is fixed by the size of the target column. For PL/SQL parameters, the size is limited to a fixed number of bytes, which is 32766.		
In Oracle Database 10g release 2 (10.2), certain changes were made to the setString		
, setCharacterStream		
, setAsciiStream		
, setBytes		
, and setBinaryStream		
methods of PreparedStatement		
. The original behavior of these APIs were:		
setString		
: Direct bind of characters setCharacterStream		
: Stream bind of characters setAsciiStream		
: Stream bind of bytes setBytes		
: Direct bind of bytes setBinaryStream		
: Stream bind of bytes Starting from Oracle Database 10g release 2 (10.2), automatic switching between binding modes, based on the data size and on the type of the SQL statement is provided.		
setBytes and setBinaryStream		
For SQL, direct bind is used for size up to 2000 and stream bind for larger.		
For PL/SQL direct bind is used for size up to 32766 and LOB bind is used for larger.		
setString, setCharacterStream, and setAsciiStream		
For SQL, direct bind is used up to 32766 Java characters and stream bind is used for larger. This is independent of character set.		
For PL/SQL, you must be careful about the byte size of the character data in the database character set or the national character set depending on the setting of the form of use parameter. Direct bind is used for data where the byte length is less than 32766 and LOB bind is used for larger.		
For fixed length character sets, multiply the length of the Java character data by the fixed character size in bytes and compare that to the restrictive values. For variable length character sets, there are three cases based on the Java character length, as follows:		
Note: When a PL/SQL procedure is embedded in a SQL statement, the binding action is different. Refer to "Data Interface for LOBs" for more information.		
The server-side internal driver has the following additional limitations:		
setString		
, setCharacterStream		
, and setASCIIStream		
APIs are not supported for SQL CLOB columns when the data size in characters is over 4000 bytes setBytes		
and setBinaryStream		
APIs are not supported for SQL BLOB columns when the data size is over 2000 bytes Important: Do not use these APIs with the server-side internal driver, without careful checking of the datasize in client code.		
See Also: JDBC Release Notes for further discussion and possible workarounds		
CHAR		
data in the database is padded to the column width. This leads to a limitation in using the setCHAR		
method to bind character data into the WHERE		
clause of a SELECT		
statement. The character data in the WHERE		
clause must also be padded to the column width to produce a match in the SELECT		
statement. This is especially troublesome if you do not know the column width.		
To remedy this, Oracle has added the setFixedCHAR		
method to the OraclePreparedStatement		
class. This method runs a non-padded comparison.		
Note:		
Example		
The following example demonstrates the difference between the setCHAR		
and setFixedCHAR		
methods.		
The oracle.jdbc.OracleResultSetMetaData		
interface is JDBC 2.0-compliant but does not implement the getSchemaName		
and getTableName		
methods because Oracle Database does not make this feasible..		
The following code snippet uses several of the methods in the OracleResultSetMetadata		
interface to retrieve the number of columns from the EMP		
table and the numerical type and SQL type name of each column:		
The program returns the following output:		
You can use the CALL statement to execute a routine from within SQL.		
Note: A routine is a procedure or a function that is standalone or is defined within a type or package. You must haveEXECUTE privilege on the standalone routine or on the type or package in which the routine is defined. Refer to the "Oracle Database SQL Language Reference" for more information about using the CALL statement.		
You can execute a routine in two ways:		
routine_clause		
object_access_expression		
inside the type of an expression You can specify one or more arguments to the routine, if the routine takes arguments. You can use positional, named, or mixed notation for argument.		
CALL INTO Statement		
The INTO		
clause applies only to calls to functions. You can use the following types of variables with this clause:		
PL/SQL Blocks		
The basic unit in PL/SQL is a block. All PL/SQL programs are made up of blocks, which can be nested within each other. A PL/SQL block has three parts: a declarative part, an executable part, and an exception-handling part. You get the following advantages by using PL/SQL blocks in your application:		
This chapter describes how the Oracle Java Database Connectivity (JDBC) drivers handle Java streams for several data types. Data streams enable you to read LONG		
column data of up to 2 gigabytes (GB). Methods associated with streams let you read the data incrementally.		
This chapter covers the following topics:		
Oracle JDBC drivers support the manipulation of data streams in either direction between server and client. The drivers support all stream conversions: binary, ASCII, and Unicode. Following is a brief description of each type of stream:		
Used for RAW		
bytes of data, and corresponds to the getBinaryStream		
method		
Used for ASCII bytes in ISO-Latin-1 encoding, and corresponds to the getAsciiStream		
method		
Used for Unicode bytes with the UTF-16		
encoding, and corresponds to the getUnicodeStream		
method		
The getBinaryStream		
, getAsciiStream		
, and getUnicodeStream		
methods return the bytes of data in an InputStream		
object.		
When a query selects one or more LONG		
or LONG		
RAW		
columns, the JDBC driver transfers these columns to the client in streaming mode. After a call to executeQuery		
or next		
, the data of the LONG		
column is waiting to be read.		
Note: Oracle recommends avoidingLONG and LONG RAW columns. Use LOB instead.		
To access the data in a LONG		
column, you can get the column as a Java InputStream		
object and use the read		
method of the InputStream		
object. As an alternative, you can get the data as a String		
or byte		
array. In this case, the driver will do the streaming for you.		
You can get LONG		
and LONG		
RAW		
data with any of the three stream types. The driver performs conversions for you, depending on the character set of the database and the driver.		
Note: Do not create tables withLONG columns. Use large object (LOB) columns, CLOB , NCLOB , and BLOB , instead. LONG columns are supported only for backward compatibility. Oracle recommends that you convert existing LONG columns to LOB columns. LOB columns are subject to far fewer restrictions than LONG columns.		
This section covers the following topics:		
A call to getBinaryStream		
returns RAW		
data. A call to getAsciiStream		
converts the RAW		
data to hexadecimal and returns the ASCII representation. A call to getUnicodeStream		
converts the RAW		
data to hexadecimal and returns the Unicode characters.		
When you get LONG		
data with getAsciiStream		
, the drivers assume that the underlying data in the database uses an US7ASCII		
or WE8ISO8859P1		
character set. If the assumption is true, then the drivers return bytes corresponding to ASCII characters. If the database is not using an US7ASCII		
or WE8ISO8859P1		
character set, a call to getAsciiStream		
returns meaningless information.		
When you get LONG		
data with getUnicodeStream		
, you get a stream of Unicode characters in the UTF-16		
encoding. This applies to all underlying database character sets that Oracle supports.		
When you get LONG		
data with getBinaryStream		
, there are two possible cases:		
US7ASCII		
or WE8ISO8859P1		
, then a call to getBinaryStream		
returns UTF-8		
. If the client character set is US7ASCII		
or WE8ISO8859P1		
, then the call returns a US7ASCII		
stream of bytes. US7ASCII		
or WE8ISO8859P1		
, then a call to getBinaryStream		
returns UTF-8		
. If the server-side character set is US7ASCII		
or WE8ISO8859P1		
, then the call returns a US7ASCII		
stream of bytes. Note: ReceivingLONG or LONG RAW columns as a stream requires you to pay special attention to the order in which you retrieve columns from the database.		
Table 12-1 summarizes LONG		
and LONG		
RAW		
data conversions for each stream type.		
Table 12-1 LONG and LONG RAW Data Conversions		
Data type	BinaryStream	AsciiStream
---	---	---
LONG	Bytes representing characters in Unicode	Bytes representing characters in ISO-Latin-1 (
LONG RAW	unchanged data	ASCII representation of hexadecimal bytes
One of the features of a get		
XXX		
Stream		
method is that it enables you to fetch data incrementally. In contrast, getBytes		
fetches all the data in one call. This section contains two examples of getting a stream of binary data. The first version uses the getBinaryStream		
method to obtain LONG		
RAW		
data, and the second version uses the getBytes		
method.		
Getting a LONG RAW Data Column with getBinaryStream		
This example writes the contents of a LONG		
RAW		
column to a file on the local file system. In this case, the driver fetches the data incrementally.		
The following code creates the table that stores a column of LONG		
RAW		
data associated with the name LESLIE:		
The following Java code snippet writes the data from the LONG		
RAW		
column into a file called leslie.gif:		
In this example, the InputStream		
object returned by the call to getBinaryStream		
reads the data directly from the database connection.		
Getting a LONG RAW Data Column with getBytes		
This example gets the content of the GIFDATA		
column with getBytes		
instead of getBinaryStream		
. In this case, the driver fetches all the data in one call and stores it in a byte array. The code snippet is as follows:		
Because a LONG RAW		
column can contain up to 2 gigabytes of data, the getBytes		
example can use much more memory than the getBinaryStream		
example. Use streams if you do not know the maximum size of the data in your LONG		
or LONG RAW		
columns.		
The JDBC driver automatically streams any LONG		
and LONG RAW		
columns. However, there may be situations where you want to avoid data streaming. For example, if you have a very small LONG		
column, then you may want to avoid returning the data incrementally and, instead, return the data in one call.		
To avoid streaming, use the defineColumnType		
method to redefine the type of the LONG		
column. For example, if you redefine the LONG		
or LONG RAW		
column as VARCHAR		
or VARBINARY		
type, then the driver will not automatically stream the data.		
If you redefine column types with defineColumnType		
, then you must declare the types of the columns in the query. If you do not declare the types of the columns, then executeQuery		
will fail. In addition, you must cast the Statement		
object to oracle.jdbc.OracleStatement		
.		
As an added benefit, using defineColumnType		
saves the OCI and KPRB drivers a database round-trip when running the query. Without defineColumnType		
, these JDBC drivers must request the data types of the column types. The JDBC Thin driver derives no benefit from defineColumnType		
, because it always uses the minimum number of round-trips.		
Using the example from the previous section, the Statement		
object stmt		
is cast to OracleStatement		
and the column containing LONG RAW		
data is redefined to be of the type VARBINARAY		
. The data is not streamed. Instead, it is returned in a byte array. The code snippet is as follows:		
If you use the defineColumnType		
Oracle extension to redefine a CHAR		
, VARCHAR		
, or RAW		
column as a LONGVARCHAR		
or LONGVARBINARY		
, then you can get the column as a stream. The program will behave as if the column were actually of type LONG		
or LONG RAW		
. Note that there is not much point to this, because these columns are usually short.		
If you try to get a CHAR		
, VARCHAR		
, or RAW		
column as a data stream without redefining the column type, then the JDBC driver will return a Java InputStream		
, but no real streaming occurs. In the case of these data types, the JDBC driver fully fetches the data into an in-memory buffer during a call to the executeQuery		
method or the next		
method. The get		
XXX		
Stream		
entry points return a stream that reads data from this buffer.		
The term large object (LOB) refers to a data item that is too large to be stored directly in a database table. Instead, a locator is stored in the database table, which points to the location of the actual data. External files are managed similarly. The JDBC drivers can support the following types through the use of streams:		
For unstructured binary data		
For character data		
For national character data		
For external files		
LOBs and BFILEs behave differently from the other types of streaming data described in this chapter. Instead of storing the actual data in the table, a locator is stored. The actual data can be manipulated using this locator, including reading and writing the data as a stream. Even when streaming, only the necessary bits of data move across the network. By contrast, when streaming a LONG		
or LONG RAW		
, all the data always moves across the network.		
Streaming BLOBs, CLOBs, and NCLOBs		
When a query fetches one or more BLOB		
, CLOB		
, or NCLOB		
columns, the JDBC driver transfers the data to the client. This data can be accessed as a stream. To manipulate BLOB		
, CLOB		
, or NCLOB		
data from JDBC, use methods in the Oracle extension classes oracle.sql.BLOB		
, oracle.sql.CLOB		
and oracle.sql.NCLOB		
. These classes provide specific functionality, such as reading from the BLOB		
, CLOB		
, or NCLOB		
into an input stream, writing from an output stream into a BLOB		
, CLOB		
, or NCLOB		
, determining the length of a BLOB		
, CLOB		
, or NCLOB		
, and closing a BLOB		
, CLOB		
, or NCLOB		
.		
Streaming BFILEs		
An external file, or BFILE, is used to store a locator to a file outside the database. The file can be stored somewhere on the file system of the data server. The locator points to the actual location of the file.		
When a query fetches one or more BFILE		
columns, the JDBC driver transfers the file to the client as required. The data can be accessed as a stream To manipulate BFILE data from JDBC, use methods in the Oracle extension class oracle.sql.BFILE		
. This class provides specific functionality, such as reading from the BFILE into an input stream, writing from an output stream into a BFILE, determining the length of a BFILE, and closing a BFILE.		
If a query fetches multiple columns and one of the columns contains a data stream, then the contents of the columns following the stream column are not available until the stream has been read, and the stream column is no longer available once any following column is read. Any attempt to read a column beyond a streaming column closes the streaming column.		
Streaming Example with Multiple Columns		
Consider the following code:		
The incoming data for each row has the following shape:		
As you process each row of the result set, you must complete any processing of the stream column before reading the number column.		
Bypassing Streaming Data Columns		
There may be situations where you want to avoid reading a column that contains streaming data. If you do not want to read such data, then call the close		
method of the stream object. This method discards the stream data and enables the driver to continue reading data from all the columns that contain non-streaming data and follow the column containing streaming data. Even though you are intentionally discarding the stream, it is a good programming practice to retrieve the columns in the same order as in the SELECT		
statement.		
In the following example, the stream data in the LONG		
column is discarded and the data from only the DATE		
and NUMBER		
column is recovered:		
You can discard the data from a stream at any time by calling the close		
method. It is a good programming practice to close the connection when you no longer need it.		
Note: Closing a stream has little performance effect on a LONG or LONG RAW column. All of the data still move across the network and the driver can read the bits from the network.		
This section discusses several cautionary issues regarding the use of streams:		
This section describes some of the precautions you must take to ensure that you do not accidentally discard or lose your stream data. The drivers automatically discard stream data if you perform any JDBC operation that communicates with the database, other than reading the current stream. Two common precautions are:		
To recover the data from a column containing a data stream, it is not enough to fetch the column. You must immediately process the contents of the column. Otherwise, the contents will be discarded when you fetch the next column.		
Call the stream column in the same order as in the SELECT		
statement.		
If your query fetches multiple columns, the database sends each row as a set of bytes representing the columns in the SELECT		
order. If one of the columns contains stream data, then the database sends the entire data stream before proceeding to the next column.		
If you do not use the order as in the SELECT		
statement to access data, then you can lose the stream data. That is, if you bypass the stream data column and access data in a column that follows it, then the stream data will be lost. For example, if you try to access the data for the NUMBER		
column before reading the data from the stream data column, then the JDBC driver first reads then discards the streaming data automatically. This can be very inefficient if the LONG		
column contains a large amount of data.		
If you try to access the LONG		
column later in the program, then the data will not be available and the driver will return a "Stream Closed		
" error.		
The later point is illustrated in the following example:		
If you get the stream but do not use it before you get the NUMBER		
column, then the stream still closes automatically:		
Starting from Oracle Database 10g, the size limitation on data that may be used with setBytes		
and setString		
have been reduced and, in certain cases, eliminated. Any Java byte		
array can be passed to setBytes		
, and any Java String		
can be passed to setString		
. The JDBC driver automatically switches to using setBinaryStream		
or setCharacterStream		
or to using setBytesForBlob		
or setStringForClob		
, depending on the size of the data, whether the statement is SQL or PL/SQL, and the driver used.		
There are some limitation with earlier versions of Oracle Database and in the server-side internal driver.		
This chapter describes the Java Database Connectivity (JDBC) support for user-defined object types. It discusses functionality of the generic, weakly typed oracle.sql.STRUCT		
class, as well as how to map to custom Java classes that implement either the JDBC standard SQLData		
interface or the Oracle ORAData		
interface.		
The following topics are covered:		
Oracle object types provide support for composite data structures in the database. For example, you can define a Person		
type that has the attributes name		
of CHAR		
type, phoneNumber		
of CHAR		
type, and employeeNumber		
of NUMBER		
type.		
Oracle provides tight integration between its Oracle object features and its JDBC functionality. You can use a standard, generic JDBC type to map to Oracle objects, or you can customize the mapping by creating custom Java type definition classes.		
Custom object classes can implement either a standard JDBC interface or an Oracle extension interface to read and write data. JDBC materializes Oracle objects as instances of particular Java classes. Two main steps in using JDBC to access Oracle objects are:		
STRUCT		
object. This includes customizing your Java classes for object data. The driver then must be able to populate instances of the custom object classes that you specify. This imposes a set of constraints on the Java classes. To satisfy these constraints, you can define your classes to implement either the JDBC standard java.sql.SQLData		
interface or the Oracle extension oracle.sql.ORAData		
interface.		
You can use the Oracle JPublisher utility to generate custom Java classes.		
Note: When you use theSQLData interface, you must use a Java type map to specify your SQL-Java mapping, unless weakly typed java.sql.Struct objects will suffice.		
If you choose not to supply a custom Java class for your SQL-Java mapping for an Oracle object, then Oracle JDBC will materialize the object as an instance of the oracle.sql.STRUCT		
class.		
You would typically want to use STRUCT		
objects, instead of custom Java objects, in situations where you do not know the actual SQL type. For example, your Java application might be a tool to manipulate arbitrary object data within the database, as opposed to being an end-user application. You can select data from the database into STRUCT		
objects and create STRUCT		
objects for inserting data into the database. STRUCT		
objects completely preserve data, because they maintain the data in SQL format. Using STRUCT		
objects is more efficient and more precise in situations where you do not need the information in an application specific form.		
This section covers the following topics:		
This section discusses standard versus Oracle-specific features of the oracle.sql.STRUCT		
class, introduces STRUCT		
descriptors, and lists methods of the STRUCT		
class to give an overview of its functionality.		
Standard java.sql.Struct Methods		
If your code must comply with standard JDBC 2.0, then use a java.sql.Struct		
instance and use the following standard methods:		
getAttributes(map)		
This method retrieves the values of the attributes, using entries in the specified type map to determine the Java classes to use in materializing any attribute that is a structured object type. The Java types for other attribute values would be the same as for a getObject		
call on data of the underlying SQL type.		
getAttributes		
This method is the same as the preceding getAttributes(map)		
method, except it uses the default type map for the connection.		
getSQLTypeName		
This method returns a Java String		
that represents the fully qualified name of the Oracle object type that this Struct		
represents.		
Oracle oracle.sql.STRUCT Class Methods		
If you want to take advantage of the extended functionality offered by Oracle-defined methods, then use an oracle.sql.STRUCT		
instance.		
The oracle.sql.STRUCT		
class implements the java.sql.Struct		
interface and provides extended functionality beyond the JDBC 2.0 standard.		
The STRUCT		
class includes the following methods in addition to standard Struct		
functionality:		
getOracleAttributes		
Retrieves the values of the values array as oracle.sql.*		
objects		
getDescriptor		
Returns the StructDescriptor		
object for the SQL type that corresponds to this STRUCT		
object		
getJavaSQLConnection		
Returns the current connection instance		
toJdbc		
Consults the default type map of the connection to determine what class to map to and, then, uses toClass		
toJdbc(map)		
Consults the specified type map to determine what class to map to, and then uses toClass		
This section discusses how to retrieve and manipulate Oracle objects and their attributes, using either Oracle-specific features or JDBC 2.0 standard features.		
Retrieving an Oracle Object as an oracle.sql.STRUCT Object		
You can retrieve an Oracle object directly into an oracle.sql.STRUCT		
instance. In the following example, getObject		
is used to get a type_struct		
object from the col1		
column of the table struct_table		
. Because getObject		
returns an Object		
type, the return is cast to oracle.sql.STRUCT		
. This example assumes that the Statement		
object stmt		
has already been created.		
Another way to return the object as a STRUCT		
object is to cast the result set to OracleResultSet		
and use the Oracle extension getSTRUCT		
method:		
Retrieving an Oracle Object as a java.sql.Struct Object		
Alternatively, in the preceding example, you can use standard JDBC functionality, such as getObject		
, to retrieve an Oracle object from the database as an instance of java.sql.Struct		
. Because getObject		
returns a java.lang.Object		
, you must cast the output of the method to Struct		
. For example:		
Retrieving Attributes as oracle.sql Types		
If you want to retrieve Oracle object attributes from a STRUCT		
or Struct		
instance as oracle.sql		
types, then use the getOracleAttributes		
method of the oracle.sql.STRUCT		
class, as follows:		
or:		
Retrieving Attributes as Standard Java Types		
If you want to retrieve Oracle object attributes as standard Java types from a STRUCT		
or Struct		
instance, use the standard getAttributes		
method:		
Note: Oracle JDBC drivers cache array and structure descriptors. This provides enormous performance benefits. However, it means that if you change the underlying type definition of a structure type in the database, the cached descriptor for that structure type will become stale and your application will receive aSQLException exception.		
This section describes how to create STRUCT		
objects.		
Steps in Creating StructDescriptor and STRUCT Objects		
To create a STRUCT		
object, you must:		
StructDescriptor		
object for the given Oracle object type, if it does not already exist. StructDescriptor		
to construct the STRUCT		
object. A StructDescriptor		
is an instance of the oracle.sql.StructDescriptor		
class and describes a type of Oracle object. Only one StructDescriptor		
is necessary for each Oracle object type. The driver caches StructDescriptor		
objects to avoid re-creating them if the type has already been encountered.		
Before you can construct a STRUCT		
object, a StructDescriptor		
must first exist for the given Oracle object type. If a StructDescriptor		
object does not exist, then you can create one by calling the static StructDescriptor.createDescriptor		
method. This method requires you to pass in the SQL type name of the Oracle object type and a connection object, as follows:		
The sql_type_name		
parameter is a Java String		
containing the name of the Oracle object type, such as EMPLOYEE		
, and connection		
is the connection object.		
Once you have your StructDescriptor		
object for the Oracle object type, you can construct the STRUCT		
object. To do this, provide the Connection		
object, the StructDescriptor		
object, and an array of Java objects containing the attributes you want the STRUCT		
to contain.		
The following constructors of STRUCT		
are available:		
The structDesc		
parameter is the StructDescriptor		
object created previously and conn		
is your Connection		
object. The attributes can be passed as an array of java.lang.Object		
or as a java.util.Map		
object.		
The following code illustrates the use of the constructor that takes an Object		
array:		
The following code illustrates the use of the constructor that takes a Map		
object:		
To bind an oracle.sql.STRUCT		
object to a prepared statement or callable statement, you can either use the standard setObject		
method (specifying the type code), or cast the statement object to an Oracle statement type and use the Oracle extension setOracleObject		
method. For example:		
or:		
Oracle JDBC driver furnishes public methods to enable and disable buffering of STRUCT		
attributes.		
The following methods are included with the oracle.sql.STRUCT		
class:		
The setAutoBuffering(boolean)		
method enables or disables auto-buffering. The getAutoBuffering		
method returns the current auto-buffering mode. By default, auto-buffering is disabled.		
It is advisable to enable auto-buffering in a JDBC application when the STRUCT		
attributes will be accessed more than once by the getAttributes		
and getArray		
methods, presuming the ARRAY		
data is able to fit into the Java Virtual Machine (JVM) memory without overflow.		
Note: Buffering the converted attributes may cause the JDBC application to consume a significant amount of memory.		
When you enable auto-buffering, the oracle.sql.STRUCT		
object keeps a local copy of all the converted attributes. This data is retained so that subsequent access of this information does not require going through the data format conversion process.		
If you want to create custom object classes for your Oracle objects, then you must define entries in the type map that specify the custom object classes that the drivers will instantiate for the corresponding Oracle objects.		
You must also provide a way to create and populate instances of the custom object class from the Oracle object and its attribute data. The driver must be able to read from a custom object class and write to it. In addition, the custom object class can provide get		
XXX		
and set		
XXX		
methods corresponding to the attributes of the Oracle object, although this is not necessary. To create and populate the custom classes and provide these read/write capabilities, you can choose between the following interfaces:		
SQLData		
interface ORAData		
and ORADataFactory		
interfaces provided by Oracle The custom object class you create must implement one of these interfaces. The ORAData		
interface can also be used to implement the custom reference class corresponding to the custom object class. However, if you are using the SQLData		
interface, then you can use only weak reference types in Java, such as java.sql.Ref		
or oracle.sql.REF		
. The SQLData		
interface is for mapping SQL objects only.		
As an example, assume you have an Oracle object type, EMPLOYEE		
, in the database that consists of two attributes: Name		
, which is of the CHAR		
type and EmpNum		
, which is of the NUMBER		
type. You use the type map to specify that the EMPLOYEE		
object should map to a custom object class that you call JEmployee		
. You can implement either the SQLData		
or ORAData		
interface in the JEmployee		
class.		
You can create custom object classes yourself, but the most convenient way to create them is to use the Oracle JPublisher utility to create them for you. JPublisher supports the standard SQLData		
interface as well as the Oracle-specific ORAData		
interface, and is able to generate classes that implement either one.		
This section covers the following topics:		
In deciding which of the two interface implementations to use, you need to consider the advantages of ORAData		
and SQLData		
.		
The SQLData		
interface is for mapping SQL objects only. The ORAData		
interface is more flexible, enabling you to map SQL objects as well as any other SQL type for which you want to customize processing. You can create a ORAData		
object from any data type found in Oracle Database. This could be useful, for example, for serializing RAW		
data in Java.		
The advantages of ORAData		
are:		
ORAData		
from an oracle.sql.STRUCT		
. This is more efficient because it avoids unnecessary conversions to native Java types. Datum		
object from the ORAData		
object, using the toDatum		
method. ORAData		
works directly with Datum		
types, which is the internal format used by the driver to hold Oracle objects. SQLData		
is a JDBC standard that makes your code portable.		
If you use the SQLData		
interface in a custom object class, then you must create type map entries that specify the custom object class to use in mapping the Oracle object type to Java. You can either use the default type map of the connection object or a type map that you specify when you retrieve the data from the result set. The getObject		
method of the ResultSet		
interface has a signature that lets you specify a type map. You can use either of the following:		
When using a SQLData implementation, if you do not include a type map entry, then the object will map to the oracle.sql.STRUCT		
class by default. ORAData		
implementations, by contrast, have their own mapping functionality so that a type map entry is not required. When using an ORAData		
implementation, use the Oracle getORAData		
method instead of the standard getObject		
method.		
The type map relates a Java class to the SQL type name of an Oracle object. This one-to-one mapping is stored in a hash table as a keyword-value pair. When you read data from an Oracle object, the JDBC driver considers the type map to determine which Java class to use to materialize the data from the Oracle object type. When you write data to an Oracle object, the JDBC driver gets the SQL type name from the Java class by calling the getSQLTypeName		
method of the SQLData		
interface. The actual conversion between SQL and Java is performed by the driver.		
The attributes of the Java class that corresponds to an Oracle object can use either Java native types or Oracle native types to store attributes.		
When using a SQLData		
implementation, the JDBC applications programmer is responsible for providing a type map, which must be an instance of a class that implements the standard java.util.Map		
interface.		
You have the option of creating your own class to accomplish this, but the standard java.util.Hashtable		
class meets the requirement.		
Hashtable		
and other classes used for type maps implement a put		
method that takes keyword-value pairs as input, where each key is a fully qualified SQL type name and the corresponding value is an instance of a specified Java class.		
A type map is associated with a connection instance. The standard java.sql.Connection		
interface and the Oracle-specific oracle.jdbc.OracleConnection		
interface include a getTypeMap		
method. Both return a Map		
object.		
This section covers the following topics:		
When a connection instance is first established, the default type map is empty. You must populate it.		
Perform the following general steps to add entries to an existing type map:		
getTypeMap		
method of your OracleConnection		
object to return the type map object of the connection. The getTypeMap		
method returns a java.util.Map		
object. For example, presuming an OracleConnection		
instance oraconn		
: Note: If the type map in theOracleConnection instance has not been initialized, then the first call to getTypeMap returns an empty map.		
put		
method of the type map to add map entries. The put		
method takes two arguments: a SQL type name string and an instance of a specified Java class that you want to map to. The sqlTypeName		
is a string that represents the fully qualified name of the SQL type in the database. The classObject		
is the Java class object to which you want to map the SQL type. Get the class object with the Class.forName		
method, as follows:		
For example, if you have a PERSON		
SQL data type defined in the CORPORATE		
database schema, then map it to a Person		
Java class defined as Person		
with this statement:		
The map has an entry that maps the PERSON		
SQL data type in the CORPORATE		
database to the Person		
Java class.		
Note: SQL type names in the type map must be all uppercase, because that is how Oracle Database stores SQL names.		
Perform the following general steps to create a new type map. This example uses an instance of java.util.Hashtable		
, which extends java.util.Dictionary		
and implements java.util.Map		
.		
put		
method of the type map object to add entries to the map. For example, if you have an EMPLOYEE		
SQL type defined in the CORPORATE		
database, then you can map it to an Employee		
class object defined by Employee.java		
, as follows: setTypeMap		
method of the OracleConnection		
object to overwrite the existing type map of the connection. For example: In this example, setTypeMap		
overwrites the original map of the oraconn		
connection object with newMap		
.		
Note: The default type map of a connection instance is used when mapping is required but no map name is specified, such as for a result setgetObject call that does not specify the map as input.		
If you do not provide a type map with an appropriate entry when using a getObject		
call, then the JDBC driver will materialize an Oracle object as an instance of the oracle.sql.STRUCT		
class. If the Oracle object type contains embedded objects and they are not present in the type map, then the driver will materialize the embedded objects as instances of oracle.sql.STRUCT		
as well. If the embedded objects are present in the type map, then a call to the getAttributes		
method will return embedded objects as instances of the specified Java classes from the type map.		
One of the choices in making an Oracle object and its attribute data available to Java applications is to create a custom object class that implements the SQLData		
interface. Note that if you use this interface, you must supply a type map that specifies the Oracle object types in the database and the names of the corresponding custom object classes that you will create for them.		
The SQLData		
interface defines methods that translate between SQL and Java for Oracle database objects. Standard JDBC provides a SQLData		
interface and companion SQLInput		
and SQLOutput		
interfaces in the java.sql		
package.		
If you create a custom object class that implements SQLData		
, then you must provide a readSQL		
method and a writeSQL		
method, as specified by the SQLData		
interface.		
The JDBC driver calls your readSQL		
method to read a stream of data values from the database and populate an instance of your custom object class. Typically, the driver would use this method as part of an OracleResultSet		
object getObject		
call.		
Similarly, the JDBC driver calls your writeSQL		
method to write a sequence of data values from an instance of your custom object class to a stream that can be written to the database. Typically, the driver would use this method as part of an OraclePreparedStatement		
object setObject		
call.		
Understanding the SQLInput and SQLOutput Interfaces		
The JDBC driver includes classes that implement the SQLInput		
and SQLOutput		
interfaces. It is not necessary to implement the SQLOutput		
or SQLInput		
objects. The JDBC drivers will do this for you.		
The SQLInput		
implementation is an input stream class, an instance of which is passed to the readSQL		
method. SQLInput		
includes a read		
XXX		
method for every possible Java type that attributes of an Oracle object may be converted to, such as readObject		
, readInt		
, readLong		
, readFloat		
, readBlob		
, and so on. Each read		
XXX		
method converts SQL data to Java data and returns it as the result with the corresponding Java type. For example, readInt		
returns an int		
.		
The SQLOutput		
implementation is an output stream class, an instance of which is passed in to the writeSQL		
method. SQLOutput		
includes a write		
XXX		
method for each of these Java types. Each write		
XXX		
method converts Java data to SQL data, taking as input a parameter of the relevant Java type. For example, writeString		
would take as input a String		
attribute from your Java class.		
Implementing readSQL and writeSQL Methods		
When you create a custom object class that implements SQLData		
, you must implement the readSQL		
and writeSQL		
methods, as described here.		
You must implement readSQL		
as follows:		
readSQL		
method takes as input a SQLInput		
stream and a string that indicates the SQL type name of the data, that is, the name of the Oracle object type, such as EMPLOYEE		
. When your Java application calls getObject		
, the JDBC driver creates a SQLInput		
stream object and populates it with data from the database. The driver can also determine the SQL type name of the data when it reads it from the database. When the driver calls readSQL		
, it passes in these parameters.		
readSQL		
must call the appropriate read		
XXX		
method of the SQLInput		
stream that is passed in. For example, if you are reading EMPLOYEE		
objects that have an employee name as a CHAR		
variable and an employee number as a NUMBER		
variable, then you must have a readString		
call and a readInt		
call in your readSQL		
method. JDBC calls these methods according to the order in which the attributes appear in the SQL definition of the Oracle object type.		
readSQL		
method takes the data that the read		
XXX		
methods read and convert and assigns them to the appropriate fields or elements of a custom object class instance. You must implement writeSQL		
as follows:		
writeSQL		
method takes as input a SQLOutput		
stream. When your Java application calls setObject		
, the JDBC driver creates a SQLOutput		
stream object. When the driver calls writeSQL		
, it passes in this stream parameter.		
writeSQL		
must call the appropriate write		
XXX		
method of the SQLOutput		
stream that is passed in. For example, if you are writing to EMPLOYEE		
objects that have an employee name as a CHAR		
variable and an employee number as a NUMBER		
variable, then you must have a writeString		
call and a writeInt		
call in your writeSQL		
method. These methods must be called according to the order in which attributes appear in the SQL definition of the Oracle object type.		
writeSQL		
method then writes the data to the SQLOutput		
stream by calling the write		
XXX		
methods so that it can be sent to the database once you execute the prepared statement. This section describes how to read data from an Oracle object or write data to an Oracle object if your corresponding Java class implements SQLData		
.		
Reading SQLData Objects from a Result Set		
The following text summarizes the steps to read data from an Oracle object into your Java application when you choose the SQLData		
implementation for your custom object class.		
These steps assume you have already defined the Oracle object type, created the corresponding custom object class, updated the type map to define the mapping between the Oracle object and the Java class, and defined a statement object stmt		
.		
The PERSONNEL		
table contains one column, EMP_COL		
, of SQL type EMP_OBJECT		
. This SQL type is defined in the type map to map to the Java class Employee		
.		
getObject		
method of your result set to populate an instance of your custom object class with data from one row of the result set. The getObject		
method returns the user-defined SQLData		
object because the type map contains an entry for Employee		
. Note that if the type map did not have an entry for the object, then getObject		
would return an oracle.sql.STRUCT		
object. Cast the output to type STRUCT		
, because the getObject		
method signature returns the generic java.lang.Object		
type.		
The getObject		
method calls readSQL		
, which, in turn, calls read		
XXX		
from the SQLData		
interface.		
Note: If you want to avoid using the defined type map, then use thegetSTRUCT method. This method always returns a STRUCT object, even if there is a mapping entry in the type map.		
get		
methods in your custom object class, then use them to read data from your object attributes. For example, if EMPLOYEE		
has the attributes EmpName		
of type CHAR		
and EmpNum		
of type NUMBER		
, then provide a getEmpName		
method that returns a Java String		
and a getEmpNum		
method that returns an int		
value. Then call them in your Java application, as follows: Retrieving SQLData Objects from a Callable Statement OUT Parameter		
Consider you have an OracleCallableStatement		
instance, ocs		
, that calls a PL/SQL function GETEMPLOYEE		
. The program passes an employee number to the function. The function returns the corresponding Employee		
object. To retrieve this object you do the following:		
OracleCallableStatement		
to call the GETEMPLOYEE		
function, as follows: empnumber		
as the input parameter to GETEMPLOYEE		
. Register the SQLData		
object as the OUT		
parameter, with the type code OracleTypes.STRUCT		
. Then, run the statement. This can be done as follows: getObject		
method to retrieve the employee object. The following code assumes that there is a type map entry to map the Oracle object to the Java type Employee		
: If there is no type map entry, then getObject		
would return an oracle.sql.STRUCT		
object. Cast the output to the STRUCT		
type, because the getObject		
method returns an instance of the generic java.lang.Object		
class. This is done as follows:		
Passing SQLData Objects to a Callable Statement as an IN Parameter		
Suppose you have a PL/SQL function addEmployee(?)		
that takes an Employee		
object as an IN		
parameter and adds it to the PERSONNEL		
table. In this example, emp		
is a valid Employee		
object.		
OracleCallableStatement		
to call the addEmployee(?)		
function. setObject		
to pass the emp		
object as an IN		
parameter to the callable statement. Then, call the statement. Writing Data to an Oracle Object Using a SQLData Implementation		
The following text describes the steps in writing data to an Oracle object from your Java application when you choose the SQLData		
implementation for your custom object class.		
This description assumes you have already defined the Oracle object type, created the corresponding Java class, and updated the type map to define the mapping between the Oracle object and the Java class.		
set		
methods in your custom object class, then use them to write data from Java variables in your application to attributes of your Java data type object. This statement uses the emp		
object and the empname		
and empnumber		
variables assigned in the preceding example.		
This assumes conn		
is your connection object.		
setObject		
method of the prepared statement to bind your Java data type object to the prepared statement. One of the choices in making an Oracle object and its attribute data available to Java applications is to create a custom object class that implements the oracle.sql.ORAData		
and oracle.sql.ORADataFactory		
interfaces. The ORAData		
and ORADataFactory		
interfaces are supplied by Oracle and are not a part of the JDBC standard.		
Note: The JPublisher utility supports the generation of classes that implement theORAData and ORADataFactory interfaces.		
Understanding ORAData Features		
The ORAData		
interface has the following advantages:		
ORAData		
uses oracle.sql.Datum		
types directly. ORAData		
works directly with Datum		
types, the internal format the driver uses to hold Oracle objects. The ORAData		
and ORADataFactory		
interfaces do the following:		
toDatum		
method of the ORAData		
class transforms the data into an oracle.sql.*		
representation. ORADataFactory		
specifies a create		
method equivalent to a constructor for your custom object class. It creates and returns an ORAData		
instance. The JDBC driver uses the create		
method to return an instance of the custom object class to your Java application or applet. It takes as input an oracle.sql.Datum		
object and an integer indicating the corresponding SQL type code as specified in the OracleTypes		
class. ORAData		
and ORADataFactory		
have the following definitions:		
Where conn		
represents the Connection object, d		
represents an object of type oracle.sql.Datum		
and sql_Type_Code		
represents the SQL type code of the Datum		
object.		
Retrieving and Inserting Object Data		
The JDBC drivers provide the following methods to retrieve and insert object data as instances of ORAData		
.		
You can retrieve the object data in one of the following ways:		
getORAData		
method of the Oracle-specific OracleResultSet		
class: This method takes as input the column index of the data in your result set and a ORADataFactory		
instance. For example, you can implement a getORAFactory		
method in your custom object class to produce the ORADataFactory		
instance to input to getORAData		
. The type map is not required when using Java classes that implement ORAData		
.		
getObject(
index		
,		
map		
)		
method specified by the ResultSet		
interface to retrieve data as instances of ORAData		
. In this case, you must have an entry in the type map that identifies the factory class to be used for the given object type and its corresponding SQL type name. You can insert object data in one of the following ways:		
setORAData		
method of the Oracle-specific OraclePreparedStatement		
class: This method takes as input the parameter index of the bind variable and the name of the object containing the variable.		
setObject		
method specified by the PreparedStatement		
interface. You can also use this method, in its different forms, to insert ORAData		
instances without requiring a type map. The following sections describe the getORAData		
and setORAData		
methods.		
To continue the example of an Oracle object EMPLOYEE		
, you might have something like the following in your Java application:		
In this example, ors		
is an Oracle result set, getORAData		
is a method in the OracleResultSet		
class used to retrieve a ORAData		
object, and the EMPLOYEE		
is in column 1 of the result set. The static		
Employee.getORAFactory		
method will return a ORADataFactory		
to the JDBC driver. The JDBC driver will call create(
) from this object, returning to your Java application an instance of the Employee		
class populated with data from the result set.		
Note:		
This section describes how to read data from an Oracle object or write data to an Oracle object if your corresponding Java class implements ORAData
.
Reading Data from an Oracle Object Using a ORAData Implementation
The following text summarizes the steps in reading data from an Oracle object into your Java application. These steps apply whether you implement ORAData
manually or use JPublisher to produce your custom object classes.
These steps assume you have already defined the Oracle object type, created the corresponding custom object class or had JPublisher create it for you, and defined a statement object stmt
.
Where PERSONNEL
is a one-column table. The column name is Emp_col
of type Employee_object
.
getORAData
method of your Oracle result set to populate an instance of your custom object class with data from one row of the result set. The getORAData
method returns an oracle.sql.ORAData
object, which you can cast to your specific custom object class. or:
This example assumes that Employee
is the name of your custom object class and ors
is the name of your OracleResultSet
object.
In case you do not want to use getORAData
, the JDBC drivers let you use the getObject
method of a standard JDBC ResultSet
to retrieve ORAData
data. However, you must have an entry in the type map that identifies the factory class to be used for the given object type and its corresponding SQL type name.
For example, if the SQL type name for your object is EMPLOYEE
, then the corresponding Java class is Employee
, which will implement ORAData
. The corresponding Factory class is EmployeeFactory
, which will implement ORADataFactory
.
Use this statement to declare the EmployeeFactory
entry for your type map:
Then use the form of getObject
where you specify the map object:
If the default type map of the connection already has an entry that identifies the factory class to be used for the given object type and its corresponding SQL type name, then you can use this form of getObject
:
get
methods in your custom object class, then use them to read data from your object attributes into Java variables in your application. For example, if EMPLOYEE
has EmpName
of type CHAR
and EmpNum
of type NUMBER
, provide a getEmpName
method that returns a Java String
and a getEmpNum
method that returns an integer. Then call them in your Java application as follows: Note: Alternatively, you can fetch data using a callable statement object. TheOracleCallableStatement class also has a getORAData method. |
Writing Data to an Oracle Object Using a ORAData Implementation
The following text summarizes the steps in writing data to an Oracle object from your Java application. These steps apply whether you implement ORAData
manually or use JPublisher to produce your custom object classes.
These steps assume you have already defined the Oracle object type and created the corresponding custom object class.
Note: The type map is not used when you are performing databaseINSERT and UPDATE operations. |
set
methods in your custom object class, then use them to write data from Java variables in your application to attributes of your Java data type object. This assumes conn
is your Connection
object.
setORAData
method of the Oracle prepared statement to bind your Java data type object to the prepared statement. The setORAData
method calls the toDatum
method of the custom object class instance to retrieve an oracle.sql.STRUCT
object that can be written to the database.
In this step you could also use the setObject
method to bind the Java data type. For example:
Note: You can use your Java data type objects as eitherIN or OUT bind variables. |
The ORAData
interface offers far more flexibility than the SQLData
interface. The SQLData
interface is designed to let you customize the mapping of only Oracle object types to Java types of your choice. Implementing the SQLData
interface lets the JDBC driver populate fields of a custom Java class instance from the original SQL object data, and the reverse, after performing the appropriate conversions between Java and SQL types.
The ORAData
interface goes beyond supporting the customization of Oracle object types to Java types. It lets you provide a mapping between Java object types and any SQL type supported by the oracle.sql
package.
It may be useful to provide custom Java classes to wrap oracle.sql.*
types and perhaps implement customized conversions or functionality as well. The following are some possible scenarios:
DATE
field to java.util.Date
format For example, use ORAData
to store instances of Java objects that do not correspond to a particular SQL object type in the database in columns of SQL type RAW
. The create
method in ORADataFactory
would have to implement a conversion from an object of type oracle.sql.RAW
to the desired Java object. The toDatum
method in ORAData
would have to implement a conversion from the Java object to an oracle.sql.RAW
object. This can be done, for example, by using Java serialization.
Upon retrieval, the JDBC driver transparently retrieves the raw bytes of data in the form of an oracle.sql.RAW
and calls the create
method of ORADataFactory
to convert the oracle.sql.RAW
object to the desired Java class.
When you insert the Java object into the database, you can simply bind it to a column of type RAW
to store it. The driver transparently calls the ORAData
.toDatum
method to convert the Java object to an oracle.sql.RAW
object. This object is then stored in a column of type RAW
in the database.
Support for the ORAData
interfaces is also highly efficient because the conversions are designed to work using oracle.sql.*
formats, which happen to be the internal formats used by the JDBC drivers. Moreover, the type map, which is necessary for the SQLData
interface, is not required when using Java classes that implement ORAData
.
After the oracle.jdbc
interfaces were introduced in Oracle9i Database as an alternative to the oracle.jdbc.driver
classes, the oracle.sql.CustomDatum
and oracle.sql.CustomDatumFactory
interfaces, formerly used to access customized objects, were deprecated. Oracle recommends you use the new interfaces, oracle.sql.ORAData
and oracle.sql.ORADataFactory
.
Object-type inheritance allows a new object type to be created by extending another object type. The new object type is then a subtype of the object type from which it extends. The subtype automatically inherits all the attributes and methods defined in the supertype. The subtype can add attributes and methods and overload or override methods inherited from the supertype.
Object-type inheritance introduces substitutability. Substitutability is the ability of a slot declared to hold a value of type T
in addition to any subtype of type T
. Oracle JDBC drivers handle substitutability transparently.
A database object is returned with its most specific type without losing information. For example, if the STUDENT_T
object is stored in a PERSON_T
slot, Oracle JDBC driver returns a Java object that represents the STUDENT_T
object.
This section covers the following topics:
Create custom object classes if you want to have Java classes that explicitly correspond to the Oracle object types. If you have a hierarchy of object types, you may want a corresponding hierarchy of Java classes.
The most common way to create a database subtype in JDBC is to run a SQL CREATE TYPE
command using the execute
method of the java.sql.Statement
interface. For example, you want to create a type inheritance hierarchy for:
The JDBC code for this can be as follows:
In the following code, the foo
member procedure in type ST
is overloaded and the member procedure print
overwrites the copy it inherits from type T
.
Once the subtypes have been created, they can be used as both columns of a base table as well as attributes of a object type.
In most cases, a customized Java class represents a database object type. When you create a customized Java class for a subtype, the Java class can either mirror the database object type hierarchy or not.
You can use either the ORAData
or SQLData
solution in creating classes to map to the hierarchy of object types.
This section covers the following topics:
Customized mapping where Java classes implement the oracle.sql.ORAData
interface is the recommended mapping. ORAData
mapping requires the JDBC application to implement the ORAData
and ORADataFactory
interfaces. The class implementing the ORADataFactory
interface contains a factory method that produces objects. Each object represents a database object.
The hierarchy of the class implementing the ORAData
interface can mirror the database object type hierarchy. For example, the Java classes mapping to PERSON_T
and STUDENT_T
are as follows:
Person.java using ORAData
Code for the Person.java
class which implements the ORAData
and ORADataFactory
interfaces:
Student.java extending Person.java
Code for the Student.java
class, which extends the Person.java
class:
Customized classes that implement the ORAData
interface do not have to mirror the database object type hierarchy. For example, you could have declared the Student
class without a superclass. In this case, Student
would contain fields to hold the inherited attributes from PERSON_T
as well as the attributes declared by STUDENT_T
.
ORADataFactory Implementation
The JDBC application uses the factory class in querying the database to return instances of Person
or its subclasses, as in the following example:
A class implementing the ORADataFactory
interface should be able to produce instances of the associated custom object type, as well as instances of any subtype, or at least all the types you expect to support.
In the following example, the PersonFactory.getORADataFactory
method returns a factory that can handle PERSON_T
, STUDENT_T
, and PARTTIMESTUDENT_T
objects, by returning person
, student
, or parttimestudent
Java instances.
The following example assumes a table tabl1
, such as the following:
The customized classes that implement the java.sql.SQLData
interface can mirror the database object type hierarchy. The readSQL
and writeSQL
methods of a subclass typically call the corresponding superclass methods to read or write the superclass attributes before reading or writing the subclass attributes. For example, the Java classes mapping to PERSON_T
and STUDENT_T
are as follows:
Person.java using SQLData
Code for the Person.java
class, which implements the SQLData
interface:
Student.java extending Student.java
Code for the Student.java
class, which extends the Person.java
class:
Although not required, it is recommended that the customized classes, which implement the SQLData
interface, mirror the database object type hierarchy. For example, you could have declared the Student
class without a superclass. In this case, Student
would contain fields to hold the inherited attributes from PERSON_T
as well as the attributes declared by STUDENT_T
.
Student.java using SQLData
Code for the Student.java
class, which does not extend the Person.java
class, but implements the SQLData interface directly:
Even though you can manually create customized classes that implement the SQLData
, ORAData
, and ORADataFactory
interfaces, it is recommended that you use Oracle JPublisher to automatically generate these classes. The customized classes generated by Oracle JPublisher that implement the SQLData
, ORAData
, and ORADataFactory
interfaces, can mirror the inheritance hierarchy.
In a typical JDBC application, a subtype object is returned as one of the following:
OUT
parameter You can use either the default mapping or the SQLData
mapping or the ORAData
mapping to retrieve a subtype.
Using Default Mapping
By default, a database object is returned as an instance of the oracle.sql.STRUCT
class. This instance may represent an object of either the declared type or subtype of the declared type. If the STRUCT
class represents a subtype object in the database, then it contains the attributes of its supertype as well as those defined in the subtype.
Oracle JDBC driver returns database objects in their most specific type. The JDBC application can use the getSQLTypeName
method of the STRUCT
class to determine the SQL type of the STRUCT
object. The following code shows this:
Using SQLData Mapping
With SQLData
mapping, the JDBC driver returns the database object as an instance of the class implementing the SQLData
interface.
To use SQLData
mapping in retrieving database objects, do the following:
SQLData
interface for the desired object types. getObject
method to access the SQL object values. The JDBC driver checks the type map for an entry match. If one exists, then the driver returns the database object as an instance of the class implementing the SQLData
interface.
The following code shows the whole SQLData customized mapping process:
The JDBC drivers check the connection type map for each call to the following:
getObject
method of the java.sql.ResultSet
and java.sql.CallableStatement
interfaces getAttribute
method of the java.sql.Struct
interface getArray
method of the java.sql.Array
interface getValue
method of the oracle.sql.REF
interface Using ORAData Mapping
With ORAData
mapping, the JDBC driver returns the database object as an instance of the class implementing the ORAData
interface.
Oracle JDBC driver needs to be informed of what Java class is mapped to the Oracle object type. The following are the two ways to inform Oracle JDBC drivers:
getORAData(int idx, ORADataFactory f)
method to access database objects. The second parameter of the getORAData
method specifies an instance of the factory class that produces the customized class. The getORAData
method is available in the OracleResultSet
and OracleCallableStatement
classes. getObject
method is used to access the Oracle object values. The second approach involves the use of the standard getObject
method. The following code example demonstrates the first approach:
There are cases where JDBC applications create database subtype objects with JDBC drivers. These objects are sent either to the database as bind variables or are used to exchange information within the JDBC application.
With customized mapping, the JDBC application creates either SQLData
- or ORAData
-based objects, depending on the approach you choose, to represent database subtype objects. With default mapping, the JDBC application creates STRUCT
objects to represent database subtype objects. All the data fields inherited from the supertype as well as all the fields defined in the subtype must have values. The following code demonstrates this:
s
is initialized with data fields inherited from PERSON_T
and STUDENT_T
, and data fields defined in PARTTIMESTUDENT_T
.
In a typical JDBC application, a Java object that represents a database object is sent to the databases as one of the following:
IN
parameter The Java object can be an instance of the STRUCT
class or an instance of the class implementing either the SQLData
or ORAData
interface. Oracle JDBC driver will convert the Java object into the linearized format acceptable to the database SQL engine. Binding a subtype object is the same as binding a standard object.
While the logic to access subtype data fields is part of the customized class, this logic for default mapping is defined in the JDBC application itself. The database objects are returned as instances of the oracle.sql.STRUCT
class. The JDBC application needs to call one of the following access methods in the STRUCT
class to access the data fields:
Object[] getAttribute()
oracle.sql.Datum[] getOracleAttribute()
Subtype Data Fields from the getAttribute Method
The getAttribute
method of the java.sql.Struct
interface is used in JDBC 2.0 to access object data fields. This method returns a java.lang.Object
array, where each array element represents an object attribute. You can determine the individual element type by referencing the corresponding attribute type in the JDBC conversion matrix, as listed in Table 4-1. For example, a SQL NUMBER
attribute is converted to a java.math.BigDecimal
object. The getAttribute
method returns all the data fields defined in the supertype of the object type as well as data fields defined in the subtype. The supertype data fields are listed first followed by the subtype data fields.
Subtype Data Fields from the getOracleAttribute Method
The getOracleAttribute
method is an Oracle extension method and is more efficient than the getAttribute
method. The getOracleAttribute
method returns an oracle.sql.Datum
array to hold the data fields. Each element in the oracle.sql.Datum
array represents an attribute. You can determine the individual element type by referencing the corresponding attribute type in the Oracle conversion matrix, as listed in Table 4-1. For example, a SQL NUMBER
attribute is converted to an oracle.sql.NUMBER
object. The getOracleAttribute
method returns all the attributes defined in the supertype of the object type, as well as attributes defined in the subtype. The supertype data fields are listed first followed by the subtype data fields.
The following code shows the use of the getAttribute
method:
Oracle JDBC drivers provide a set of metadata methods to access inheritance properties. The inheritance metadata methods are defined in the oracle.sql.StructDescriptor
and oracle.jdbc.StructMetaData
classes.
The StructMetaData
class provides inheritance metadata methods for subtype attributes. The getMetaData
method of the StructDescriptor
class returns an instance of StructMetaData
of the type. The StructMetaData
class contains the following inheritance metadata methods:
A convenient way to create custom object classes, as well as other kinds of custom Java classes, is to use the Oracle JPublisher utility. It generates a full definition for a custom Java class, which you can instantiate to hold the data from an Oracle object. JPublisher-generated classes include methods to convert data from SQL to Java and from Java to SQL, as well as getter and setter methods for the object attributes.
This section covers the following topics:
You can direct JPublisher to create custom object classes that implement either the SQLData
interface or the ORAData
interface, according to how you set the JPublisher type mappings.
If you use the ORAData
interface, then JPublisher will also create a custom reference class to map to object references for the Oracle object type. If you use the SQLData
interface, then JPublisher will not produce a custom reference class. You would use standard java.sql.Ref
instances instead.
If you want additional functionality, you can subclass the custom object class and add features as desired. When you run JPublisher, there is a command-line option for specifying both a generated class name and the name of the subclass you will implement. For the SQL-Java mapping to work properly, JPublisher must know the subclass name, which is incorporated into some of the functionality of the generated class.
Note: Hand-editing the JPublisher-generated class, instead of subclassing it, is not recommended. If you hand-edit this class and later have to re-run JPublisher for some reason, you would have to re-implement your changes. |
JPublisher offers various choices for how to map user-defined types and their attribute types between SQL and Java. This section lists categories of SQL types and the mapping options available for each category.
JPublisher categorizes SQL types into the following groups, with corresponding JPublisher options as specifies:
This includes Oracle objects, references, and collections. You use the JPublisher -usertypes
option to specify the type-mapping implementation for UDTs, either a standard SQLData
implementation or an Oracle-specific ORAData
implementation.
This includes anything stored in the database as the NUMBER
SQL type. You use the JPublisher -numbertypes
option to specify type-mapping for numeric types.
This includes the SQL types, BLOB
and CLOB
. You use the JPublisher -lobtypes
option to specify type-mapping for LOB types.
This includes anything stored in the database as a SQL type not covered by the preceding categories. For example, CHAR
, VARCHAR2
, LONG
, and RAW
. You use the JPublisher -builtintypes
option to specify type-mapping for built-in types.
JPublisher defines the following type-mapping modes, two of which apply to numeric types only:
jdbc
) Uses standard default mappings between SQL types and Java native types. For a custom object class, uses a SQLData
implementation.
oracle
) Uses corresponding oracle.sql
types to map to SQL types. For a custom object, reference, or collection class, uses a ORAData
implementation.
objectjdbc
) Is an extension of the JDBC mapping. Where relevant, object-JDBC mapping uses numeric object types from the standard java.lang
package, such as java.lang.Integer
, Float
, and Double
, instead of primitive Java types, such as int
, float
, and double
. The java.lang
types are nullable, while the primitive types are not.
BigDecimal
mapping (setting bigdecimal
) Uses java.math.BigDecimal
to map to all numeric attributes. This is appropriate if you are dealing with large numbers but do not want to map to the oracle.sql.NUMBER
class.
Note: UsingBigDecimal mapping can significantly degrade performance. |
Mapping the Oracle object type to Java
Use the JPublisher -usertypes
option to determine how JPublisher will implement the custom Java class that corresponds to a Oracle object type:
-usertypes=oracle
, which is the default setting, instructs JPublisher to create a ORAData
implementation for the custom object class. This will also result in JPublisher producing a ORAData
implementation for the corresponding custom reference class. -usertypes=jdbc
instructs JPublisher to create a SQLData
implementation for the custom object class. No custom reference class can be created. You must use java.sql.Ref
or oracle.sql.REF
for the reference type. Note: You can also use JPublisher with a-usertypes=oracle setting in creating ORAData implementations to map SQL collection types. The |
Mapping Attribute Types to Java
If you do not specify mappings for the attribute types of the Oracle object type, then JPublisher uses the following defaults:
If you want alternate mappings, then use the -numbertypes
, -lobtypes
, and -builtintypes
options, as necessary, depending on the attribute types you have and the mappings you desire.
If an attribute type is itself an Oracle object type, then it will be mapped according to the -usertypes
setting.
Important: Be aware that if you specify anSQLData implementation for the custom object class and want the code to be portable, then you must be sure to use portable mappings for the attribute types. The defaults for numeric types and built-in types are portable, but for LOB types you must specify -lobtypes=jdbc . |
Summary of SQL Type Categories and Mapping Settings
Table 13-1 summarizes JPublisher categories for SQL types, the mapping settings relevant for each category, and the default settings.
Table 13-1 JPublisher SQL Type Categories, Supported Settings, and Defaults
SQL Type Category | JPublisher Mapping Option | Mapping Settings | Default |
---|---|---|---|
UDT types | -usertypes | oracle, jdbc | oracle |
numeric types | -numbertypes | oracle, jdbc, objectjdbc, bigdecimal | objectjdbc |
LOB types | -lobtypes | oracle, jdbc | oracle |
built-in types | -builtintypes | oracle, jdbc | jdbc |
Oracle JDBC includes functionality to retrieve information about a structured object type regarding its attribute names and types. This is similar conceptually to retrieving information from a result set about its column names and types, and in fact uses an almost identical method.
This section covers the following topics:
The oracle.sql.StructDescriptor
class includes functionality to retrieve metadata about a structured object type. The StructDescriptor
class has a getMetaData
method with the same functionality as the standard getMetaData
method available in result set objects. It returns a set of attribute information, such as attribute names and types. Call this method on a StructDescriptor
object to get metadata about the Oracle object type that the StructDescriptor
object describes.
The signature of the StructDescriptor
class getMetaData
method is the same as the signature specified for getMetaData
in the standard ResultSet
interface. The signature is as follows:
However, this method actually returns an instance of oracle.jdbc.StructMetaData
, a class that supports structured object metadata in the same way that the standard java.sql.ResultSetMetaData
interface specifies support for result set metadata.
The following method is also supported by StructMetaData
:
This method returns the fully qualified name of the oracle.sql.Datum
subclass whose instances are manufactured if the OracleResultSet
class getOracleObject
method is called to retrieve the value of the specified attribute. For example, oracle.sql.NUMBER
.
To use the getOracleColumnClassName
method, you must cast the ResultSetMetaData
object, which that was returned by the getMetaData
method, to StructMetaData
.
Note: In all the preceding method signatures,column is something of a misnomer. Where you specify a value of 4 for column , you really refer to the fourth attribute of the object. |
Create or acquire a StructDescriptor
instance that describes the relevant structured object type.
getMetaData
method on the StructDescriptor
instance. Call the metadata getter methods, getColumnName
, getColumnType
, and getColumnTypeName
, as desired.
Example
The following method shows how to retrieve information about the attributes of a structured object type. This includes the initial step of creating a StructDescriptor
instance.
This chapter describes how to use Java Database Connectivity (JDBC) and the oracle.sql.*
classes to access and manipulate large object (LOB) and binary file (BFILE) locators and data. This chapter contains the following sections:
Notes:
|
LOBs are stored in a way that optimizes space and provides efficient access. The JDBC drivers provide support for three types of LOB: binary large object (BLOB), which is used for unstructured binary data, character large object (CLOB), which is used for character data, and national character large object (NCLOB), which is used for national character data. BLOB, CLOB, and NCLOB data is accessed and referenced by using a locator that is stored in the database table and points to the BLOB, CLOB, and NCLOB data, which is outside the table.
BFILEs are large binary data objects stored in operating system files outside of database tablespaces. These files use reference semantics. They can also be located on tertiary storage devices, such as hard disks, CD-ROMs, PhotoCDs, and DVDs. As with BLOB, CLOB, and NCLOBs, a BFILE is accessed and referenced by a locator which is stored in the database table and points to the BFILE data.
To work with LOB data, you must first obtain a LOB locator. Then you can read or write LOB data and perform data manipulation.
The JDBC drivers support the following oracle.sql.*
classes for BLOBs, CLOBs, NCLOBs, and BFILEs:
oracle.sql.BLOB
oracle.sql.CLOB
oracle.sql.NCLOB
oracle.sql.BFILE
The oracle.sql.BLOB
, oracle.sql.CLOB
, and oracle.sql.NCLOB classes implement the java.sql.Blob
, java.sql.Clob
, and java.sql.NClob
interfaces, respectively. In contrast, BFILE
is an Oracle extension, without a corresponding java.sql
interface.
Instances of these classes contain only the locators for these data types, not the data. After accessing the locators, you must perform some additional steps to access the data.
Note: If you want to create a newLOB , then use the factory methods from oracle.jdbc.OracleConnection interface. |
This section describes how to read and write data to and from BLOBs, CLOBs, and NCLOBs in Oracle Database, using LOB locators. This section covers the following topics:
Standard as well as Oracle-specific getter and setter methods are available for retrieving or passing LOB locators from or to the database. This section covers the following topics:
Given a standard JDBC result set or callable statement that includes BLOB, CLOB, or NCLOB locators, you can access the locators by using standard getter methods. You can use the standard getBlob
, getClob
, and getNClob
methods, which return java.sql.Blob
, Clob
, and NClob
objects, respectively.
Note: All the standard and Oracle-specific getter methods discussed here take either anint column index or a String column name as input. |
If you retrieve or cast the result set or the callable statement to OracleResultSet
or OracleCallableStatement
, then you can use Oracle extensions, as follows:
getBLOB
, getCLOB
, and getNCLOB
, which return oracle.sql.BLOB
, CLOB
, and NCLOB
objects, respectively. getOracleObject
method, which returns an oracle.sql.Datum
object, and cast the output appropriately. Example: Getting BLOB, CLOB, and NCLOB Locators from a Result Set
Assume the database has a table called lob_table
with a column for a BLOB locator, blob_col
, a column for a CLOB locator, clob_col
, and a column for a NCLOB locator, nclob_col
. This example assumes that you have already created the Statement
object, stmt
.
First, select the LOB locators into a standard result set, then get the LOB data into appropriate Java classes:
The output is cast to java.sql.Blob
, java.sql.Clob
, and java.sql.NClob
. As an alternative, you can cast the output to oracle.sql.BLOB
, oracle.sql.CLOB
, and oracle.sql.NCLOB
to take advantage of extended functionality offered by the oracle.sql.*
classes. For example, you can rewrite the preceding code to get the LOB locators as:
Example: Getting a CLOB Locator from a Callable Statement
The callable statement methods for retrieving LOBs are identical to the result set methods.
For example, if you have an OracleCallableStatement
instance, ocs
, that calls a function func
that has a CLOB output parameter, then set up the callable statement as in the following example.
This example registers OracleTypes.CLOB
as the type code of the output parameter.
Given a standard JDBC prepared statement or callable statement, you can use standard setter methods to pass LOB locators. These methods are defined as follows:
Given an Oracle-specific OraclePreparedStatement
or OracleCallableStatement
, then you can use Oracle extensions as follows:
setBLOB
, setCLOB
, and setNClob
, which take oracle.sql.BLOB
, CLOB
and NCLOB
locators as input, respectively. setOracleObject
method, which simply specifies an oracle.sql.Datum
input. Example: Passing a BLOB Locator to a Prepared Statement
If you have an OraclePreparedStatement
object ops
and a BLOB named my_blob
, then write the BLOB to the database as follows:
Example: Passing a CLOB Locator to a Callable Statement
If you have an OracleCallableStatement
object ocs
and a CLOB named my_clob
, then input the CLOB to the stored procedure proc
as follows:
Example: Passing an NCLOB Locator to a Callable Statement
If you have an OracleCallableStatement
object ocs
and an NCLOB named my_nclob
, then input the NCLOB to the stored procedure proc
as follows:
Once you have a LOB
locator, you can use JDBC methods to read and write the LOB
data. LOB
data is materialized as a Java array or stream. Unlike LONG
and LONG RAW
data, you can access the LOB
data at any time during the life of the connection.
To read and write the LOB
data, use the methods in the java.sql.BLOB
, java.sql.CLOB
, and java.sql.NCLOB
class, as appropriate. These classes provide functionality such as reading from the LOB
into an input stream, writing from an output stream into a LOB
, determining the length of a LOB
, and closing a LOB
.
Notes: To writeLOB data, the application must acquire a write lock on the LOB object. One way to accomplish this is through a SELECT FOR UPDATE . Also, you must disable auto-commit mode. |
To read and write LOB
data, you can use these methods:
BLOB
, use the getBinaryStream
method of an java.sql.BLOB
object to retrieve the entire BLOB
as an input stream. This returns a java.io.InputStream
object. As with any InputStream
object, use one of the overloaded read
methods to read the LOB
data and use the close
method when you finish.
BLOB
, use the setBinaryStream
method of an java.sql.BLOB
object to retrieve the BLOB
as an output stream. This returns a java.io.OutputStream
object to be written back to the BLOB
. As with any OutputStream
object, use one of the overloaded write
methods to update the LOB data and use the close
method when you finish.
getAsciiStream
or getCharacterStream
method of an java.sql.CLOB
object to retrieve the entire CLOB as an input stream. The getAsciiStream
method returns an ASCII input stream in a java.io.InputStream
object. The getCharacterStream
method returns a Unicode
input stream in a java.io.Reader
object. As with any InputStream
or Reader
object, use one of the overloaded read
methods to read the LOB data and use the close
method when you finish.
You can also use the getSubString
method of java.sql.CLOB
object to retrieve a subset of the CLOB as a character string of type java.lang.String
.
setAsciiStream
or setCharacterStream
method of an java.sql.CLOB
object to retrieve the CLOB as an output stream to be written back to the CLOB. The setAsciiStream
method returns an ASCII output stream in a java.io.OutputStream
object. The setCharacterStream
method returns a Unicode output stream in a java.io.Writer
object. As with any Stream
or Writer
object, use one of the overloaded write
methods to update the LOB
data and use the flush
and close
methods when you finish.
getAsciiStream
or getCharacterStream
method of an java.sql.NCLOB
object to retrieve the entire NCLOB as an input stream. The getAsciiStream
method returns an ASCII input stream in a java.io.InputStream
object. The getCharacterStream
method returns a Unicode
input stream in a java.io.Reader
object. As with any InputStream
or Reader
object, use one of the overloaded read
methods to read the LOB data and use the close
method when you finish.
You can also use the getSubString
method of java.sql.NCLOB
object to retrieve a subset of the NCLOB as a character string of type java.lang.String
.
setAsciiStream
or setCharacterStream
method of an oracle.sql.NCLOB
object to retrieve the NCLOB as an output stream to be written back to the NCLOB. The setAsciiStream
method returns an ASCII output stream in a java.io.OutputStream
object. The setCharacterStream
method returns a Unicode output stream in a java.io.Writer
object. As with any Stream
or Writer
object, use one of the overloaded write
methods to update the LOB
data and use the flush
and close
methods when you finish.
Example: Reading BLOB Data
Use the getBinaryStream
method of the oracle.sql.BLOB
class to read BLOB data. The getBinaryStream
method provides access to the BLOB data through a binary stream.
The following example uses the getBinaryStream
method to read BLOB data through a byte stream and then reads the byte stream into a byte array, returning the number of bytes read, as well.
Example: Reading CLOB Data
The following example uses the getCharacterStream
method to read CLOB
data into a Unicode character stream. It then reads the character stream into a character array, returning the number of characters read, as well.
Example: Reading NCLOB Data
The following example uses the getCharacterStream
method to read NCLOB
data into a Unicode character stream. It then reads the character stream into a character array, returning the number of characters read, as well.
The next example uses the getAsciiStream
method of the oracle.sql.NCLOB
class to read NCLOB data through an ASCII character stream. It then reads the ASCII stream into a byte array, returning the number of bytes read, as well.
Example: Writing BLOB Data
Use the setBinaryOutputStream
method of an oracle.sql.BLOB
object to write BLOB data.
The following example reads a vector of data into a byte array, then uses the setBinaryOutputStream
method to write an array of character data to a BLOB.
Example: Writing CLOB Data
Use the setCharacterStream
method or the setAsciiStream
method to write data to a CLOB. The setCharacterStream
method returns a Unicode
output stream. The setAsciiStream
method returns an ASCII output stream.
The following example reads a vector of data into a character array, then uses the setCharacterStream
method to write the array of character data to a CLOB.
The next example reads a vector of data into a byte array, then uses the setAsciiStream
method to write the array of ASCII data to a CLOB.
Example: Writing NCLOB Data
Use the setCharacterStream
method or the setAsciiStream
method to write data to an NCLOB. The setCharacterStream
method returns a Unicode
output stream. The setAsciiStream
method returns an ASCII output stream.
The following example reads a vector of data into a character array, then uses the setCharacterStream
method to write the array of character data to an NCLOB.
The next example reads a vector of data into a byte array, then uses the setAsciiStream
method to write the array of ASCII data to an NCLOB.
Create and populate aBLOB
, CLOB
, or NCLOB
column in a table by using SQL statements.
Note: You cannot construct a new BLOB, CLOB, or NCLOB locator in your application with a Javanew statement. You must create the locator through a SQL operation, and then select it into your application or use the factory methods from oracle.jdbc.OracleConnection interface. |
Create a BLOB, CLOB, or NCLOB column in a table with the SQL CREATE TABLE
statement, then populate the LOB. This includes creating the LOB entry in the table, obtaining the LOB locator, and then copying the data into the LOB.
Creating a BLOB, CLOB, or NCLOB Column in a New Table
To create a BLOB, CLOB, or NCLOB column in a new table, run the SQL CREATE TABLE
statement. The following example code creates a BLOB
column in a new table. This example assumes that you have already created your Connection
object conn
and Statement
object stmt
:
In this example, the VARCHAR2
column designates a row number, such as 1 or 2, and the BLOB
column stores the locator of the BLOB data.
Populating a BLOB, CLOB, or NCLOB Column in a New Table
This example demonstrates how to populate a BLOB, CLOB, or NCLOB column by reading data from a stream. These steps assume that you have already created your Connection
object conn
and Statement
object stmt
. The table my_blob_table
is the table that was created in the previous section.
The following example writes the john.gif
file to a BLOB:
empty_blob
function to create the BLOB locator. Note: You must disable auto-commit mode. |
john.gif
file, then print the length of the file. This value will be used later to ensure that the entire file is read into the BLOB. Next, create a FileInputStream
object to read the contents of the file, and an OutputStream
object to retrieve the BLOB as a stream. getBufferSize
to retrieve the ideal buffer size to use in writing to the BLOB, then create the buffer
byte array. read
method to read the file to the byte array buffer
, then use the write
method to write it to the BLOB. When you finish, close the input and output streams and commit the changes. Once your data is in the BLOB, CLOB, or NCLOB, you can manipulate the data.
Once you have your BLOB, CLOB, or NCLOB locator in a table, you can access and manipulate the data to which it points. To access and manipulate the data, you first must select their locators from a result set or from a callable statement.
After you select the locators, you can retrieve the BLOB, CLOB, or NCLOB data. After retrieving the BLOB, CLOB, or NCLOB data, you can manipulate it however you want.
This example is a continuation of the example in the previous section. It uses the SQL SELECT
statement to select the BLOB locator from the table my_blob_table
into a result set. The result of the data manipulation is to print the length of the BLOB in bytes.
The data interface for LOBs provides a streamlined mechanism for writing and reading the entire LOB contents. It is simpler to code and faster in many cases. It does not provide the random access capability or access beyond 2147483648 elements as do the standard java.sql.Blob
and java.sql.Clob
interfaces and the Oracle extensions, oracle.sql.BLOB
, oracle.sql.BFILE
, and oracle.sql.CLOB
.
Input
In Oracle Database 11g release 1 (11.1), the setBytes
, setBinaryStream
, setString
, setCharacterStream
, and setAsciiStream
methods of PreparedStatement
are extended for BLOB
and CLOB
parameters.
For the JDBC Oracle Call Interface (OCI) and Thin drivers there is no limitation on the size of the byte
array or String
and no limit on the length specified for the stream functions except the limits imposed by the Java language, which is that array sizes are limited to positive Java int
or 2147483648 elements.
For the server-side internal driver there is currently a limitation of 4000 bytes for operations on SQL statements, such as an INSERT
statement. The limitation does not apply for PL/SQL statements. There is a simple workaround for an INSERT
statement, which is to wrap it in a PL/SQL block, as follows:
You must bear in mind the following automatic switching of the input mode for large data:
setBytes
switches to setBinaryStream
for data larger than 2000 bytes setString
switches to setCharacterStream
for data larger than 32766 characters setBytes
switches to setBinaryStream
for data larger than 2000 bytes and to setBytesForBlob
for data larger that 32766 bytes setString
switches to setStringForClob
for string data larger than 32766 bytes in the database character set setNClob
or setObject
is used for large national character set type data. If the setObject
method is used , the target data type must be specified as Types.NCHAR
, Types.NCLOB
, Types.NVARCHAR
, or Types.LONGNVARCHAR
. This will have impact on some programs, which formerly got ORA-17157
errors for attempts to use setString
for String
values larger than 32766 characters. Now, depending on the type of the target parameter an error may occur while the application is executed or the operation may succeed.
Another impact is that the automatic switching may result in additional server-side parsing to adapt to the change in the parameter type. This would result in a performance effect if the data sizes vary above and below the limit for repeated executions of the statement. Switching to the stream modes will effect batching as well.
Oracle Database 10g release 1 (10.1) has the SetBigStringTryClob
connection property. Setting this property causes the standard setString
method to switch to setStringForClob
method for large data. This property is no longer used or needed. The setBytesForBlob
and setStringForClob
methods create temporary LOBs, which are automatically freed when the statement is executed or closed before execution.
However, when a PL/SQL procedure or function is embedded in a SQL statement, data less than 4 KB is bound as String
, which is the standard. When data is greater than 4KB, the driver binds the data as a String
as for any SQL statement. This will throw an error. The workaround is to use setClob
or setCharacterStream
instead of setString
or setStringForClob
. You can also create a callable statement.
Output
The getBytes
, getBinaryStream
, getSting
, getCharacterStream
, and getAsciiStream
methods of ResultSet
and CallableStatement
are extended to work with BLOB
, CLOB
, and BFILE
columns or OUT
parameters. These methods will work for any LOB of length less than 2147483648. This operates entirely on the client-side and will work with any supported version of the database, that is, Oracle Database 8.1.7 and later.
BLOB
, BFILE
, or CLOB
data can be read and written using the same streaming mechanism as for LONG RAW
and LONG
data. To read, use defineColumnType(nn, Types.LONGVARBINARY)
or defineColumnType(nn,Types.LONGVARCHAR)
on the column. This produces a direct stream on the data as if it were a LONG RAW
or LONG
column. This technique is limited to Oracle Database 10g release 1 (10.1) and later.
CallableSatement and IN OUT Parameter
It is a PL/SQL requirement that the Java types used as input and output for an IN OUT parameter must be the same. The automatic switching of types done by the extensions described in this chapter may cause problems with this.
Consider that you have an IN OUT CLOB
parameter of a stored procedure and you wish to use setString
for setting the value for this parameter. For any IN
and OUT
parameter, the binds must be of the same type. The automatic switching of the input mode will cause problems unless you are sure of the data sizes. For example, if it is known that neither the input nor output data will ever be larger than 32766 bytes, then you could use setString
for the input parameter and register the OUT
parameter as Types.VARCHAR
and use getString
for the output parameter.
A better solution is to change the stored procedure to have separate IN
and OUT
parameters. That is, if you have:
then, change it to:
Another workaround is to use a container block to make the call. The clob_proc
procedure can be wrapped with a Java string to use for the prepareCall
statement, as follows:
In either case you may use setString
on the first parameter and registerOutParameter
with Types.CLOB
on the second.
Size Limitations
Please be aware of the effect on the performance of the Java memory management system due to creation of very large byte
array or String
. Please read the information provided by your Java virtual machine (JVM) vendor about the impact of very large data elements on memory management, and consider using the stream interfaces instead.
You can use temporary LOBs to store transient data. The data is stored in temporary table space rather than regular table space. You should free temporary LOBs after you no longer need them. If you do not, then the space the LOB consumes in temporary table space will not be reclaimed.
You can insert temporary LOBs into a table. When you do this, a permanent copy of the LOB is created and stored. Inserting a temporary LOB may be preferable for some situations. For example, if the LOB data is relatively small so that the overhead of copying the data is less than the cost of a database round trip to retrieve the empty locator. Remember that the data is initially stored in the temporary table space on the server and then moved into permanent storage.
You create a temporary LOB with the static
method createTemporary(Connection, boolean, int)
. This method is defined in both the oracle.sql.BLOB
and oracle.sql.CLOB
classes. You free a temporary LOB with the freeTemporary
method.
The duration must be either DURATION_SESSION
or DURATION_CALL
as defined in the oracle.sql.BLOB
or oracle.sql.CLOB
class. In client applications, DURATION_SESSION
is appropriate. In Java stored procedures, you can use either DURATION_SESSION
or DURATION_CALL
, which ever is appropriate.
You can test whether a LOB is temporary by calling the isTemporary
method. If the LOB was created by calling the createTemporary
method, then the isTemporary
method returns true
, else it returns false
.
You can free a temporary LOB by calling the freeTemporary
method. Free any temporary LOBs before ending the session or call. Otherwise, the storage used by the temporary LOB will not be reclaimed.
Notes:
|
Creating Temporary NCLOBs in JDK 1.5
You create temporary national character large objects (NCLOBs) using a variant of the createTemporary
method.
The form
argument specifies whether the created LOB is a CLOB or an NCLOB. If form
equals oracle.jdbc.OraclePreparedStatement.FORM_NCHAR
, then the method creates an NCLOB. If form
equals oracle.jdbc.OraclePreparedStatement.FORM_CHAR
, then the method creates a CLOB.
Creating Temporary NCLOBs in JDK 1.6
JDBC 4.0 supports NCLOBs directly. You can use the standard factory method of java.sql.Connection
interface to create an NCLOB.
You do not have to open and close your LOBs. You may choose to open and close them for performance reasons.
If you do not wrap LOB operations inside an Open/Close call operation, then each modification to the LOB will implicitly open and close the LOB, thereby firing any triggers on a domain index. Note that in this case, any domain indexes on the LOB will become updated as soon as LOB modifications are made. Therefore, domain LOB indexes are always valid and may be used at any time.
If you wrap your LOB operations inside the Open/Close call operation, then triggers will not be fired for each LOB modification. Instead, the trigger on domain indexes will be fired at the Close call. For example, you might design your application so that domain indexes are not be updated until you call the close
method. However, this means that any domain indexes on the LOB will not be valid in-between the Open/Close calls.
You open a LOB by calling the open
or open(int)
method. You may then read and write the LOB without any triggers associated with that LOB firing. When you are done accessing the LOB, close the LOB by calling the close
method. When you close the LOB, any triggers associated with the LOB will fire. You can see if a LOB is open or closed by calling the isOpen
method. If you open the LOB by calling the open(int)
method, the value of the argument must be either MODE_READONLY
or MODE_READWRITE
, as defined in the oracle.sql.BLOB
and oracle.sql.CLOB
classes. If you open the LOB with MODE_READONLY
, any attempt to write to the LOB will result in a SQL exception.
Note: An error occurs if you commit the transaction before closing all LOBs that were opened by the transaction. The openness of the open LOBs is discarded, but the transaction is successfully committed. Hence, all the changes made to the LOB and non-LOB data in the transaction are committed, but the triggers for domain indexing are not fixed. |
This section describes how to read data to BFILEs, using file locators. This section covers the following topics:
Getter and setter methods are available for retrieving or passing BFILE locators from or to the database.
Retrieving BFILE Locators
Given a standard JDBC result set or callable statement object that includes BFILE locators, you can access the locators by using the standard result set
getObject
method. This method returns an oracle.sql.BFILE
object.
You can also access the locators by casting your result set to OracleResultSet
or your callable statement to OracleCallableStatement
and using the getOracleObject
or getBFILE
method.
Notes:
|
Example: Getting a BFILE locator from a Result Set
Assume that the database has a table called bfile_table
with a single column for the BFILE locator bfile_col
. This example assumes that you have already created your Statement
object stmt
.
Select the BFILE locator into a standard result set. If you cast the result set to OracleResultSet
, then you can use getBFILE
to get the BFILE locator, as follows:
Note that as an alternative, you can use getObject
to return the BFILE locator. In this case, because getObject
returns a java.lang.Object
, cast the results to BFILE
. For example:
Example: Getting a BFILE Locator from a Callable Statement
Assume you have an OracleCallableStatement
object ocs
that calls a function func
that has a BFILE
output parameter. The following code example sets up the callable statement, registers the output parameter as OracleTypes.BFILE
, runs the statement, and retrieves the BFILE locator:
Passing BFILE Locators
To pass a BFILE locator to a prepared statement or callable statement, you can do one of the following:
setObject
method. OraclePreparedStatement
or OracleCallableStatement
, and use the setOracleObject
or setBFILE
method. These methods take the parameter index and an oracle.sql.BFILE
object as input.
Example: Passing a BFILE Locator to a Prepared Statement
Assume you want to insert a BFILE locator into a table, and you have an OraclePreparedStatement
object ops
to insert data into a table. The first column is a string, the second column is a BFILE, and you have a valid oracle.sql.BFILE
object, bfile
. Write the BFILE to the database, as follows:
Example: Passing a BFILE Locator to a Callable Statement
Passing a BFILE locator to a callable statement is similar to passing it to a prepared statement. In this case, the BFILE locator is passed to the myGetFileLength
procedure, which returns the BFILE length as a numeric value.
To read BFILE data, you must first get the BFILE locator. You can get the locator from either a callable statement or a result set. Once you obtain the locator, you can call a number of methods on the BFILE without opening it. For example, you can use the
oracle.sql.BFILE
methods fileExists()
and isFileOpen()
to determine whether the BFILE exists and if it is open. However, if you want to read and manipulate the data, then you must open and close the BFILE, as follows:
openFile
method of the oracle.sql.BFILE
class to open a BFILE. closeFile
method of the BFILE
class. BFILE data is through a Java stream. To read from a BFILE, use the getBinaryStream
method of an oracle.sql.BFILE
object to access the file as an input stream. This returns a java.io.InputStream
object.
As with any InputStream
object, use one of the overloaded read
methods to read the file data and use the close
method when you finish.
Notes:
|
Example: Reading BFILE Data
The following example uses the getBinaryStream
method of an oracle.sql.BFILE
object to read BFILE data into a byte stream and then read the byte stream into a byte array. The example assumes that the BFILE has already been opened.
This section discusses how to create a BFILE
column in a table with SQL operations and specify the location where the BFILE resides. The examples in this section assume that you have already created your Connection
object conn
and Statement
object stmt
.
Creating a BFILE Column in a New Table
To work with BFILE data, create a BFILE
column in a table, and specify the location of the BFILE. To specify the location of the BFILE, use the SQL CREATE DIRECTORY
...AS
statement to specify an alias for the directory where the BFILE resides. In this example, the directory alias is test_dir
and the BFILE resides in the /home/work
directory.
Use the SQL CREATE
TABLE
statement to create a table containing a BFILE
column. In this example, the name of the table is my_bfile_table
.
In this example, the VARCHAR2
column designates a row number and the BFILE
column stores the locator of the BFILE data.
Populating a BFILE Column
Use the SQL INSERT INTO...VALUES
statement to populate the VARCHAR2
and BFILE
fields. The BFILE
column is populated with the locator to the BFILE data. To populate the BFILE
column, use the bfilename
function to specify the directory alias and the name of the BFILE file.
In this example, the name of the directory alias is test_dir
. The locator of the BFILE file1.data
is loaded into the BFILE
column on row one
, and the locator of the BFILE
jdbcTest.data
is loaded into the bfile
column on row two
.
As an alternative, you may want to create the row for the row number and BFILE locator now, but wait until later to insert the locator. In this case, insert the row number into the table and null
as a place holder for the BFILE locator.
Here, three
is inserted into the row number column and null
is inserted as the place holder. Later in your program, insert the BFILE locator into the table by using a prepared statement.
First get a valid BFILE locator into the bfile
object:
Then, create your prepared statement. Note that because this example uses the setBFILE
method to identify the BFILE, the prepared statement must be cast to OraclePreparedStatement
:
Now row two
and row three
contain the same BFILE.
Once you have the BFILE locators available in a table, you can access and manipulate the BFILE data.
Once you have the BFILE locator in a table, you can access and manipulate the data to which it points. To access and manipulate the data, you must first select its locator from a result set or a callable statement.
The following code continues the example from the preceding section, getting the locator of the BFILE from row two
of a table into a result set. The result set is cast to OracleResultSet
so that oracle.sql.*
methods can be used on it. Several of the methods applied to the BFILE, such as getDirAlias
and getName
, do not require you to open the BFILE. Methods that manipulate the BFILE data, such as reading, getting the length, and displaying, do require you to open the BFILE.
When you finish manipulating the BFILE data, you must close the BFILE.
In Oracle Database 11g Release 1 (11.1), Oracle SecureFiles, a completely redesigned storage for LOBs, provide the following capabilities:
These features are implemented in the database and are transparenly available to JDBC programs through the existing APIs.
The new setLobOptions
and getLobOptions
APIs are described in the PL/SQL Packages and Types Reference, and may be accessed from JDBC through callable statements.
This chapter describes Oracle extensions to standard Java Database Connectivity (JDBC) that let you access and manipulate object references. The following topics are discussed:
Oracle supports the use of references to database objects. Oracle JDBC provides support for object references as:
SELECT
clause IN
or OUT
bind variables In SQL, an object reference (REF
) is strongly typed. For example, a reference to an EMPLOYEE
object would be defined as an EMPLOYEE REF
, not just a REF
.
When you select an object reference in Oracle JDBC, be aware that you are retrieving only a pointer to an object, not the object itself. You have the choice of materializing the reference as a weakly typed oracle.sql.REF
instance, or a java.sql.Ref
instance for portability, or materializing it as an instance of a custom Java class that you have created in advance, which is strongly typed. Custom Java classes used for object references are referred to as custom reference classes and must implement the oracle.sql.ORAData
interface. The oracle.sql.REF
class implements the standard java.sql.Ref
interface.
You can retrieve a REF
instance through a result set or callable statement object, and pass an updated REF
instance back to the database through a prepared statement or callable statement object. The REF
class includes functionality to get and set underlying object attribute values, and get the SQL base type name of the underlying object.
Custom reference classes include this same functionality, as well as having the advantage of being strongly typed. This can help you find coding errors during compilation that might not otherwise be discovered until run time.
Note:
|
To access and update object data through an object reference, you must obtain the reference instance through a result set or callable statement and then pass it back as a bind variable in a prepared statement or callable statement. It is the reference instance that contains the functionality to access and update object attributes.
This section covers the following topics:
You can use the result set, callable statement, and prepared statement methods to retrieve and pass object references.
Result Set and Callable Statement Getter Methods
The OracleResultSet
and OracleCallableStatement
classes support getREF
and getRef
methods to retrieve REF
objects as output parameters. REF
objects can be retrieved either as oracle.sql.REF
instances or java.sql.Ref
instances. You can also use the getObject
method. These methods take as input a String
column name or int
column index.
Prepared and Callable Statement Setter Methods
The OraclePreparedStatement
and OracleCallableStatement
classes support setREF
and setRef
methods to take REF
objects as bind variables and pass them to the database. You can also use the setObject
method. These methods take as input a String
parameter name or int
parameter index as well as an oracle.sql.REF
instance or a java.sql.Ref
instance.
You can use the following oracle.sql.REF
class methods to retrieve the SQL object type name and retrieve and pass the underlying object data:
getBaseTypeName
Retrieves the fully qualified SQL structured type name of the referenced object. This is a standard method specified by the java.sql.Ref
interface.
getValue
Retrieves the referenced object from the database, enabling you to access its attribute values. It optionally takes a type map object. You can use the default type map of the database connection object. This method is an Oracle extension.
setValue
Sets the referenced object in the database, allowing you to update its attribute values. It takes an instance of the object type, either a STRUCT
instance or an instance of a custom object class, as input. This method is an Oracle extension.
This section discusses JDBC functionality for retrieving and passing object references. It covers the following topics:
To demonstrate how to retrieve object references, the following example first defines an Oracle object type ADDRESS
, which is then referenced in the PEOPLE
table:
The ADDRESS
object type has two attributes: a street name and a house number. The PEOPLE
table has three columns: a column for character data, a column for numeric data, and a column containing a reference to an ADDRESS
object.
To retrieve an object reference, follow these general steps:
SELECT
statement to retrieve the reference from a database table REF
column. getREF
to get the address reference from the result set into a REF
object. Address
be the Java custom class corresponding to the SQL object type ADDRESS
. Address
and the SQL type ADDRESS
to your type map. getValue
method to retrieve the contents of the Address
reference. Cast the output to Address
. The PEOPLE
database table is defined earlier in this section. The code for the preceding steps, except the step of adding Address
to the type map, is as follows:
Note: In the preceding code,stmt is a previously defined statement object. |
As with other SQL types, you could retrieve the reference with the getObject
method of your result set. Note that this would require you to cast the output. For example:
There are no performance advantages in using getObject
instead of getREF
; however, using getREF
enables you to avoid casting the output.
To retrieve an object reference as an OUT
parameter in PL/SQL blocks, you must register the bind type for your OUT
parameter.
OracleCallableStatement
, as follows: OUT
parameter with the following form of the registerOutParameter
method: param_index
is the parameter index and sql_type
is the SQL type code. The sql_type_name
is the name of the structured object type that this reference is used for. For example, if the OUT
parameter is a reference to an ADDRESS
object, then ADDRESS
is the sql_type_name
that should be passed in.
Pass an object reference to a prepared statement in the same way as you would pass any other SQL type. Use either the setObject
method or the setREF
method of a prepared statement object.
Use a prepared statement to update an address reference based on ROWID
, as follows:
You can use the REF
object setValue
method to update the value of an object in the database through an object reference. To do this, you must first retrieve the reference to the database object and create a Java object that corresponds to the database object.
For example, you can use the code in "Retrieving and Passing an Object Reference", to retrieve the reference to a database ADDRESS
object, as follows:
Then, you can create a Java Address
object that corresponds to the database ADDRESS
object. Use the setValue
method of the REF
class to set the value of the database object, as follows:
Here, the setValue
method updates the database ADDRESS
object immediately.
This chapter primarily describes the functionality of the oracle.sql.REF
class, but it is also possible to access Oracle object references through custom Java classes or, more specifically, custom reference classes.
Custom reference classes offer all the functionality described earlier in this chapter, as well as the advantage of being strongly typed. A custom reference class must satisfy three requirements:
oracle.sql.ORAData
interface. Note that the standard JDBC SQLData
interface, which is an alternative for custom object classes, is not intended for custom reference classes. oracle.sql.ORADataFactory
interface, for creating instances of the custom reference class. oracle.sql.REF
attribute. You can create custom reference classes yourself, but the most convenient way to produce them is through the Oracle JPublisher utility. If you use JPublisher to generate a custom object class to map to an Oracle object and you specify that JPublisher use a ORAData
implementation, then JPublisher will also generate a custom reference class that implements ORAData
and ORADataFactory
and includes an oracle.sql.REF
attribute. The ORAData
implementation will be used if the JPublisher -usertypes
mapping option is set to oracle
, which is the default.
Custom reference classes are strongly typed. For example, if you define an Oracle object EMPLOYEE
, then JPublisher can generate an Employee
custom object class and an EmployeeRef
custom reference class. Using EmployeeRef
instances instead of generic oracle.sql.REF
instances makes it easier to catch errors during compilation instead of at run time. For example, if you accidentally assign some other kind of object reference into an EmployeeRef
variable.
Be aware that the standard SQLData
interface supports only SQL object mappings. For this reason, if you instruct JPublisher to implement the standard SQLData
interface in creating a custom object class, then JPublisher will not generate a custom reference class. In this case, your only option is to use standard java.sql.Ref
instances or oracle.sql.REF
instances to map to your object references.
This chapter describes Oracle extensions to standard Java Database Connectivity (JDBC) that let you access and manipulate Oracle collections, which map to Java arrays, and their data. The following topics are discussed:
An Oracle collection, either a variable array (VARRAY) or a nested table in the database, maps to an array in Java. JDBC 2.0 arrays are used to materialize Oracle collections in Java. The terms collection and array are sometimes used interchangeably. However, collection is more appropriate on the database side and array is more appropriate on the JDBC application side.
Oracle supports only named collections, where you specify a SQL type name to describe a type of collection. JDBC enables you to use arrays as any of the following:
SELECT
clause IN
or OUT
bind variables This section covers the following topics:
In your application, you have the choice of materializing a collection as an instance of the oracle.sql.ARRAY
class, which is weakly typed, or materializing it as an instance of a custom Java class that you have created in advance, which is strongly typed. Custom Java classes used for collections are referred to as custom collection classes. A custom collection class must implement the Oracle oracle.sql.ORAData
interface. In addition, the custom class or a companion class must implement oracle.sql.ORADataFactory
. The standard java.sql.SQLData
interface is for mapping SQL object types only.
The oracle.sql.ARRAY
class implements the standard java.sql.Array
interface.
The ARRAY
class includes functionality to retrieve the array as a whole, retrieve a subset of the array elements, and retrieve the SQL base type name of the array elements. However, you cannot write to the array, because there are no setter methods.
Custom collection classes, as with the ARRAY
class, enable you to retrieve all or part of the array and get the SQL base type name. They also have the advantage of being strongly typed, which can help you find coding errors during compilation that might not otherwise be discovered until run time.
Furthermore, custom collection classes produced by JPublisher offer the feature of being writable, with individually accessible elements.
Note: There is no difference in the code between accessing VARRAYs and accessing nested tables.ARRAY class methods can determine if they are being applied to a VARRAY or nested table, and respond by taking the appropriate actions. |
See Also: For more information about custom collection classes, see "Custom Collection Classes with JPublisher". |
Because Oracle supports only named collections, you must declare a particular VARRAY
type name or nested table type name. VARRAY and nested table are not types themselves, but categories of types.
A SQL type name is assigned to a collection when you create it using the SQL CREATE TYPE
statement:
A VARRAY is an array of varying size. It has an ordered set of data elements, and all the elements are of the same data type. Each element has an index, which is a number corresponding to the position of the element in the VARRAY. The number of elements in a VARRAY is the size of the VARRAY. You must specify a maximum size when you declare the VARRAY
type. For example:
This statement defines myNumType
as a SQL type name that describes a VARRAY of NUMBER
values that can contain no more than 10 elements.
A nested table is an unordered set of data elements, all of the same data type. The database stores a nested table in a separate table which has a single column, and the type of that column is a built-in type or an object type. If the table is an object type, then it can also be viewed as a multi-column table, with a column for each attribute of the object type. You can create a nested table as follows:
This statement identifies myNumList
as a SQL type name that defines the table type used for the nested tables of the type INTEGER
.
The most common way to create a new multilevel collection type in JDBC is to pass the SQL CREATE TYPE
statement to the execute
method of the java.sql.Statement
class. The following code creates a one-level nested table, first_level
, and a two- levels nested table, second_level
:
Once the multilevel collection types have been created, they can be used as both columns of a base table as well as attributes of a object type.
You can obtain collection data in an array instance through a result set or callable statement and pass it back as a bind variable in a prepared statement or callable statement.
The oracle.sql.ARRAY
class, which implements the standard java.sql.Array
interface, provides the necessary functionality to access and update the data of an Oracle collection.
This section covers Array Getter and Setter Methods. Use the following result set, callable statement, and prepared statement methods to retrieve and pass collections as Java arrays.
Result Set and Callable Statement Getter Methods
The OracleResultSet
and OracleCallableStatement
classes support getARRAY
and getArray
methods to retrieve ARRAY
objects as output parameters, either as oracle.sql.ARRAY
instances or java.sql.Array
instances. You can also use the getObject
method. These methods take as input a String
column name or int
column index.
Prepared and Callable Statement Setter Methods
The OraclePreparedStatement
and OracleCallableStatement
classes support setARRAY
and setArray
methods to take updated ARRAY
objects as bind variables and pass them to the database. You can also use the setObject
method. These methods take as input a String
parameter name or int
parameter index as well as an oracle.sql.ARRAY
instance or a java.sql.Array
instance.
This section discusses the following topics:
The oracle.sql.ARRAY
class contains methods that return array elements as Java primitive types. These methods allow you to access collection elements more efficiently than accessing them as Datum
instances and then converting each Datum
instance to its Java primitive value.
Note: These specialized methods of theoracle.sql.ARRAY class are restricted to numeric collections. |
Each method using the first signature returns collection elements as an XXX
[]
, where XXX
is a Java primitive type. Each method using the second signature returns a slice of the collection containing the number of elements specified by count
, starting at the index
location.
Oracle JDBC driver provides public methods to enable and disable buffering of ARRAY
contents.
The following methods are included with the oracle.sql.ARRAY
class:
It is advisable to enable auto-buffering in a JDBC application when the ARRAY
elements will be accessed more than once by the getAttributes
and getArray
methods, presuming the ARRAY
data is able to fit into the Java Virtual Machine (JVM) memory without overflow.
Important: Buffering the converted elements may cause the JDBC application to consume a significant amount of memory. |
When you enable auto-buffering, the oracle.sql.ARRAY
object keeps a local copy of all the converted elements. This data is retained so that a second access of this information does not require going through the data format conversion process.
If an array is in auto-indexing mode, then the array object maintains an index table to hasten array element access.
The oracle.sql.ARRAY
class contains the following methods to support automatic array-indexing:
By default, auto-indexing is not enabled. For a JDBC application, enable auto-indexing for ARRAY
objects if random access of array elements may occur through the getArray
and getResultSet
methods.
This section discusses how to create array objects and how to retrieve and pass collections as array objects, including the following topics.
Note: Oracle JDBC does not support the JDBC 4.0 methodcreateArrayOf method of java.sql.Connection interface. This method only allows anonymous array types, while all Oracle array types are named. Use the Oracle specific method createArray of oracle.jdbc.OracleConnection instead. |
This section describes how to create ARRAY
objects. This section covers the following topics:
Steps in Creating ARRAY Objects
Starting from Oracle Database 11g Release 1 (11.1), you can use the createArray
factory method of oracle.jdbc.OracleConnection
interface to create an array object. The factory method for creating arrays has been defined as follows:
where, typeName
is the name of the SQL type of the created object and elements
is the elements of the created object.
Perform the following to create an array:
CREATE TYPE
statement as follows: The two possibilities for the contents of elements
are:
int[]
. xxx
[]
, where xxx
is the name of a Java class. For example, Integer[]
. ARRAY
object by passing the Java string specifying the user-defined SQL type name of the array and a Java object containing the individual elements you want the array to contain. Creating Multilevel Collections
As with single-level collections, the JDBC application can create an oracle.sql.ARRAY
instance to represent a multilevel collection, and then send the instance to the database. The same createArray
factory method you use to create single-level collections, can be used to create multilevel collections as well. To create a single-level collection, the elements are a one dimensional Java array, while to create a multilevel collection, the elements can be either an array of oracle.sql.ARRAY[]
elements or a nested Java array or the combinations.
The following code shows how to create collection types with a nested Java array:
This section first discusses how to retrieve an ARRAY
instance as a whole from a result set, and then how to retrieve the elements from the ARRAY
instance. This section covers the following topics:
You can retrieve a SQL array from a result set by casting the result set to OracleResultSet
and using the getARRAY
method, which returns an oracle.sql.ARRAY
object. If you want to avoid casting the result set, then you can get the data with the standard getObject
method specified by the java.sql.ResultSet
interface and cast the output to oracle.sql.ARRAY
.
Once you have an ARRAY
object, you can retrieve the data using one of these three overloaded methods of the oracle.sql.ARRAY
class:
Oracle also provides methods that enable you to retrieve all the elements of an array, or a subset.
Note: In case you are working with an array of structured objects, Oracle provides versions of these three methods that enable you to specify a type map so that you can choose how to map the objects to Java. |
getOracleArray
The getOracleArray
method is an Oracle-specific extension that is not specified in the standard Array
interface. The getOracleArray
method retrieves the element values of the array into a Datum[]
array. The elements are of the oracle.sql.*
data type corresponding to the SQL type of the data in the original array.
For an array of structured objects, this method will use oracle.sql.STRUCT
instances for the elements.
Oracle also provides a getOracleArray(
index
,
count
)
method
to get a subset of the array elements.
getResultSet
The getResultSet
method returns a result set that contains elements of the array designated by the ARRAY
object. The result set contains one row for each array element, with two columns in each row. The first column stores the index into the array for that element, and the second column stores the element value. In the case of VARRAYs, the index represents the position of the element in the array. In the case of nested tables, which are by definition unordered, the index reflects only the return order of the elements in the particular query.
Oracle recommends using getResultSet
when getting data from nested tables. Nested tables can have an unlimited number of elements. The ResultSet
object returned by the method initially points at the first row of data. You get the contents of the nested table by using the next
method and the appropriate get
XXX
method. In contrast, getArray
returns the entire contents of the nested table at one time.
The getResultSet
method uses the default type map of the connection to determine the mapping between the SQL type of the Oracle object and its corresponding Java data type. If you do not want to use the default type map of the connection, another version of the method, getResultSet(
map
)
, enables you to specify an alternate type map.
Oracle also provides the getResultSet(
index
,
count
)
and getResultSet(
index
,
count
,
map
)
methods to retrieve a subset of the array elements.
getArray
The getArray
method is a standard JDBC method that returns the array elements as a java.lang.Object
, which you can cast as appropriate. The elements are converted to the Java types corresponding to the SQL type of the data in the original array.
Oracle also provides a getArray(
index
,
count
)
method to retrieve a subset of the array elements.
If you use getOracleArray
to return the array elements, then the use by that method of oracle.sql.Datum
instances avoids the expense of data conversion from SQL to Java. The non-character data inside the instance of a Datum
class or any of its subclass remains in raw SQL format.
If you use getResultSet
to return an array of primitive data types, then the JDBC driver returns a ResultSet
object that contains, for each element, the index into the array for the element and the element value. For example:
In this case, the result set contains one row for each array element, with two columns in each row. The first column stores the index into the array and the second column stores the element value.
If the elements of an array are of a SQL type that maps to a Java type, then getArray
returns an array of elements of this Java type. The return type of the getArray
method is java.lang.Object
. Therefore, the result must be cast before it can be used.
Here intArray
is an oracle.sql.ARRAY
, corresponding to a VARRAY of type NUMBER
. The values
array contains an array of elements of type java.math.BigDecimal
, because the SQL NUMBER
data type maps to Java BigDecimal
, by default, according to Oracle JDBC drivers.
Note: UsingBigDecimal is a resource-intensive operation in Java. Because Oracle JDBC maps numeric SQL data to BigDecimal by default, using getArray may impact performance, and is not recommended for numeric collections. |
By default, if you are working with an array whose elements are structured objects, and you use getArray
or getResultSet
, then the Oracle objects in the array will be mapped to their corresponding Java data types according to the default mapping. This is because these methods use the default type map of the connection to determine the mapping.
However, if you do not want default behavior, then you can use the getArray(
map
)
or getResultSet(
map
)
method to specify a type map that contains alternate mappings. If there are entries in the type map corresponding to the Oracle objects in the array, then each object in the array is mapped to the corresponding Java type specified in the type map. For example:
Where objArray
is an oracle.sql.ARRAY
object and map
is a java.util.Map
object.
If the type map does not contain an entry for a particular Oracle object, then the element is returned as an oracle.sql.STRUCT
object.
The getResultSet(
map
)
method behaves similarly to the getArray(
map
)
method.
If you do not want to retrieve the entire contents of an array, then you can use signatures of getArray
, getResultSet
, and getOracleArray
that let you retrieve a subset. To retrieve a subset of the array, pass in an index and a count to indicate where in the array you want to start and how many elements you want to retrieve. As previously described, you can specify a type map or use the default type map for your connection to convert to Java types. For example:
Similar examples using getResultSet
are:
A similar example using getOracleArray
is:
Where arr
is an oracle.sql.ARRAY
object, index
is type long
, count
is type int
, and map
is a java.util.Map
object.
Note: There is no performance advantage in retrieving a subset of an array, as opposed to the entire array. |
Use getOracleArray
to return an oracle.sql.Datum[]
array. The elements of the returned array will be of the oracle.sql.*
type that correspond to the SQL data type of the elements of the original array. For example:
arr
is an oracle.sql.ARRAY
object.
The following example assumes that a connection object conn
and a statement object stmt
have already been created. In the example, an array with the SQL type name NUM_ARRAY
is created to store a VARRAY of NUMBER
data. The NUM_ARRAY
is in turn stored in a table VARRAY_TABLE
.
A query selects the contents of the VARRAY_TABLE
. The result set is cast to OracleResultSet
; getARRAY
is applied to it to retrieve the array data into my_array
, which is an oracle.sql.ARRAY
object.
Because my_array
is of type oracle.sql.ARRAY
, you can apply the methods getSQLTypeName
and getBaseType
to it to return the name of the SQL type of each element in the array and its integer code.
The program then prints the contents of the array. Because the contents of NUM_ARRAY
are of the SQL data type NUMBER
, the elements of my_array
are of the type, BigDecimal
. Before you can use the elements, they must first be cast to BigDecimal
. In the for
loop, the individual values of the array are cast to BigDecimal
and printed to standard output.
Note that if you use getResultSet
to obtain the array, then you must would first get the result set object, and then use the next
method to iterate through it. Notice the use of the parameter indexes in the getInt
method to retrieve the element index and the element value.
The oracle.sql.ARRAY
class provides three methods, which are overloaded, to access collection elements. The JDBC drivers extend these methods to support multilevel collections. These methods are:
getArray
method getOracleArray
method getResultSet
method The getArray
method returns a Java array that holds the collection elements. The array element type is determined by the collection element type and the JDBC default conversion matrix.
For example, the getArray
method returns a java.math.BigDecimal
array for collection of SQL NUMBER
. The getOracleArray
method returns a Datum
array that holds the collection elements in Datum
format. For multilevel collections, the getArray
and getOracleArray
methods both return a Java array of oracle.sql.ARRAY
elements.
The getResultSet
method returns a ResultSet
object that wraps the multilevel collection elements. For multilevel collections, the JDBC applications use the getObject
, getARRAY
, or getArray
method of the ResultSet
class to access the collection elements as instances of oracle.sql.ARRAY
.
The following code shows how to use the getOracleArray
, getArray
, and getResultSet
methods:
This section discusses how to pass arrays to prepared statement objects or callable statement objects.
Passing an Array to a Prepared Statement
Pass an array to a prepared statement as follows.
Note: you can use arrays as eitherIN or OUT bind variables. |
oracle.sql.ARRAY
object. sql_type_name
is a Java string specifying the user-defined SQL type name of the array and elements
is a java.lang.Object
containing a Java array of the elements.
java.sql.PreparedStatement
object containing the SQL statement to be run. OraclePreparedStatement
, and use setARRAY
to pass the array to the prepared statement. parameterIndex
is the parameter index and array
is the oracle.sql.ARRAY
object you constructed previously.
Passing an Array to a Callable Statement
To retrieve a collection as an OUT
parameter in PL/SQL blocks, perform the following to register the bind type for your OUT
parameter.
OracleCallableStatement
, as follows: OUT
parameter with the following form of the registerOutParameter
method: param_index
is the parameter index, sql_type
is the SQL type code, and sql_type_name
is the name of the array type. In this case, the sql_type
is OracleTypes.ARRAY
.
If your array contains Oracle objects, then you can use a type map to associate the objects in the array with the corresponding Java class. If you do not specify a type map, or if the type map does not contain an entry for a particular Oracle object, then each element is returned as an oracle.sql.STRUCT
object.
If you want the type map to determine the mapping between the Oracle objects in the array and their associated Java classes, then you must add an appropriate entry to the map.
The following example illustrates how you can use a type map to map the elements of an array to a custom Java object class. In this case, the array is a nested table. The example begins by defining an EMPLOYEE
object that has a name attribute and employee number attribute. EMPLOYEE_LIST
is a nested table type of EMPLOYEE
objects. Then an EMPLOYEE_TABLE
is created to store the names of departments within a corporation and the employees associated with each department. In the EMPLOYEE_TABLE
, the employees are stored in the form of EMPLOYEE_LIST
tables.
If you want to retrieve all the employees belonging to the SALES
department into an array of instances of the custom object class EmployeeObj
, then you must add an entry to the type map to specify mapping between the EMPLOYEE
SQL type and the EmployeeObj
custom object class.
To do this, first create your statement and result set objects, then select the EMPLOYEE_LIST
associated with the SALES
department into the result set. Cast the result set to OracleResultSet
so you can use the getARRAY
method to retrieve the EMPLOYEE_LIST
into an ARRAY
object (employeeArray
in the following example).
The EmployeeObj
custom object class in this example implements the SQLData
interface.
Now that you have the EMPLOYEE_LIST
object, get the existing type map and add an entry that maps the EMPLOYEE
SQL type to the EmployeeObj
Java type.
Next, retrieve the SQL EMPLOYEE
objects from the EMPLOYEE_LIST
. To do this, call the getArray
method of the employeeArray
array object. This method returns an array of objects. The getArray
method returns the EMPLOYEE
objects into the employees
object array.
Finally, create a loop to assign each of the EMPLOYEE
SQL objects to the EmployeeObj
Java object emp
.
This chapter primarily describes the functionality of the oracle.sql.ARRAY
class, but it is also possible to access Oracle collections through custom Java classes or, more specifically, custom collection classes.
You can create custom collection classes yourself, but the most convenient way is to use the Oracle JPublisher utility. Custom collection classes generated by JPublisher offer all the functionality described earlier in this chapter, as well as the following advantages:
ARRAY
class, allow you to get and set individual elements using the getElement
and setElement
methods. A custom collection class must satisfy three requirements:
oracle.sql.ORAData
interface. Note that the standard JDBC SQLData
interface, which is an alternative for custom object classes, is not intended for custom collection classes. oracle.sql.ORADataFactory
interface, for creating instances of the custom collection class. oracle.sql.ARRAY
attribute for this purpose. A JPublisher-generated custom collection class implements ORAData
and ORADataFactory
and indirectly includes an oracle.sql.ARRAY
attribute. The custom collection class will have an oracle.jpub.runtime.MutableArray
attribute. The MutableArray
class has an oracle.sql.ARRAY
attribute.
Note: When you use JPublisher to create a custom collection class, you must use theORAData implementation. This will be true if the JPublisher -usertypes mapping option is set to oracle , which is the default. You cannot use a |
As an example of custom collection classes being strongly typed, if you define an Oracle collection MYVARRAY
, then JPublisher can generate a MyVarray
custom collection class. Using MyVarray
instances, instead of generic oracle.sql.ARRAY
instances, makes it easier to catch errors during compilation instead of at run time. For example, if you accidentally assign some other kind of array into a MyVarray
variable.
If you do not use custom collection classes, then you would use standard java.sql.Array
instances, or oracle.sql.ARRAY
instances, to map to your collections.
Standard Java Database Connectivity (JDBC) 2.0 features in Java Development Kit (JDK) 1.2.x include enhancements to result set functionality, such as processing forward or backward, positioning relatively or absolutely, seeing changes to the database made internally or externally, and updating result set data and then copying the changes to the database.
This chapter discusses these features, including the following topics:
This section provides an overview of JDBC 2.0 result set functionality and categories, and some discussion of implementation requirements for Oracle JDBC drivers. This section covers the following topics:
Result set functionality in JDBC 2.0 includes enhancements for scrollability and positioning, sensitivity to changes by others, and updatability.
Specify the desired result set type and concurrency type when you create the statement object that will produce the result set.
Together, the various result set types and concurrency types provide for six different categories of result set.
Scrollability, Positioning, and Sensitivity
Scrollability refers to the ability to move backward as well as forward through a result set. Associated with scrollability is the ability to move to any particular position in the result set, through either relative positioning or absolute positioning.
Relative positioning enables you to move a specified number of rows forward or backward from the current row. Absolute positioning enables you to move to a specified row number, counting from either the beginning or the end of the result set.
Under JDBC 2.0, scrollable/positionable result sets are also available.
When creating a scrollable/positionable result set, you must also specify sensitivity. This refers to the ability of a result set to detect and reveal changes made to the underlying database from outside the result set.
A sensitive result set can see changes made to the database while the result set is open, providing a dynamic view of the underlying data. Changes made to the underlying columns values of rows in the result set are visible.
An insensitive result set is not sensitive to changes made to the database while the result set is open, providing a static view of the underlying data. You would need to retrieve a new result set to see changes made to the database.
Result Set Types for Scrollability and Sensitivity
When you create a result set under JDBC 2.0 functionality, you must choose a particular result set type to specify whether the result set is scrollable/positional and sensitive to underlying database changes.
If the JDBC 1.0 functionality is all you desire, JDBC 2.0 continues to support this through the forward-only result set type. A forward-only result set cannot be sensitive.
If you want a scrollable result set, then you must also specify sensitivity. Specify the scroll-sensitive type for the result set to be scrollable and sensitive to underlying changes. Specify the scroll-insensitive type for the result set to be scrollable but not sensitive to underlying changes.
To summarize, the following result set types are available with JDBC 2.0:
This is a JDBC 1.0 functionality. This type of result set is not scrollable, not positionable, and not sensitive.
This type of result set is scrollable and positionable. It is also sensitive to underlying database changes.
This type of result set is scrollable and positionable, but not sensitive to underlying database changes.
Note: The sensitivity of a scroll-sensitive result set is affected by fetch size. |
Updatability
Updatability refers to the ability to update data in a result set and then copy the changes to the database. This includes inserting new rows into the result set or deleting existing rows.
Updatability might also require database write locks to mediate access to the underlying database. Because you cannot have multiple write locks concurrently, updatability in a result set is associated with concurrency in database access.
Result sets can optionally be updatable under JDBC 2.0
Note: Updatability is independent of scrollability and sensitivity. Although, it is typical for an updatable result set to also be scrollable so that you can position it to particular rows that you want to update or delete. |
Concurrency Types for Updatability
The concurrency type of a result set determines whether it is updatable. Under JDBC 2.0, the following concurrency types are available:
In this case, updates, inserts, and deletes can be performed on the result set and copied to the database.
The result set cannot be modified in any way.
Summary of Result Set Categories
Because scrollability and sensitivity are independent of updatability, the three result set types and two concurrency types combine for a total of six result set categories, as follows:
Note: A forward-only updatable result set has no positioning functionality. You can only update rows as you iterate through them with thenext method. |
This section discusses key aspects of the Oracle JDBC implementation of result set enhancements for scrollability, through use of a client-side cache, and for updatability, through use of ROWID
s.
It is permissible for customers to implement their own client-side caching mechanism, and Oracle provides an interface to use in doing so.
Oracle JDBC Implementation for Result Set Scrollability
Because the underlying server does not support scrollable cursors, Oracle JDBC must implement scrollability in a separate layer.
It is important to be aware that this is accomplished by using a client-side memory cache to store rows of a scrollable result set.
Important: Because all rows of any scrollable result set are stored in the client-side cache, a situation where the result set contains many rows, many columns, or very large columns might cause the client-side Java Virtual Machine (JVM) to fail. Do not specify scrollability for a large result set. |
Oracle JDBC Implementation for Result Set Updatability
To support updatability, Oracle JDBC uses ROWID
to uniquely identify database rows that appear in a result set. For every query into an updatable result set, Oracle JDBC driver automatically retrieves the ROWID
along with the columns you select.
Note: Client-side caching is not required by updatability in and of itself. In particular, a forward-only updatable result set will not require a client-side cache. |
Implementing a Custom Client-Side Cache for Scrollability
There is some flexibility in how to implement client-side caching in support of JDBC 2.0 scrollable result sets.
Although Oracle JDBC provides a complete implementation, it also supplies an interface, OracleResultSetCache
, that you can implement as desired:
If you implement this interface with your own class, then your application code must instantiate your class and then use the setResultSetCache
method of an OracleStatement
, OraclePreparedStatement
, or OracleCallableStatement
object to set the caching mechanism to use your implementation. Following is the method signature:
Call this method prior to running a query. The result set produced by the query will then use your specified caching mechanism.
In using JDBC 2.0 result set enhancements, you may specify the result set type and the concurrency type when you create a generic statement or prepare a prepared statement or callable statement that will run a query.
This section discusses the creation of result sets to use JDBC 2.0 enhancements. It covers the following topics:
Under JDBC 2.0, the Connection
class has the following methods that take a result set type and a concurrency type as input:
Statement createStatement(int resultSetType, int resultSetConcurrency)
PreparedStatement prepareStatement(String sql, int resultSetType, int resultSetConcurrency)
CallableStatement prepareCall(String sql, int resultSetType, int resultSetConcurrency)
The statement objects created will have the intelligence to produce the appropriate kind of result sets.
You can specify one of the following static
constant values for result set type:
ResultSet.TYPE_FORWARD_ONLY
ResultSet.TYPE_SCROLL_INSENSITIVE
ResultSet.TYPE_SCROLL_SENSITIVE
And you can specify one of the following static
constant values for concurrency type:
ResultSet.CONCUR_READ_ONLY
ResultSet.CONCUR_UPDATABLE
After creating a Statement
, PreparedStatement
, or CallableStatement
object, you can verify its result set type and concurrency type by calling the following methods on the statement object:
int getResultSetType() throws SQLException
int getResultSetConcurrency() throws SQLException
Example 17-1 Prepared Statement Object With Result Set
Following is an example of a prepared statement object that specifies a scroll-sensitive and updatable result set for queries run through that statement:
Some types of result sets are not feasible for certain kinds of queries. If you specify an unfeasible result set type or concurrency type for the query you run, then the JDBC driver follows a set of rules to determine the best feasible types to use instead.
The actual result set type and concurrency type are determined when the statement is run, with the driver issuing a SQLWarning
on the statement object if the desired result set type or concurrency type is not feasible. The SQLWarning
object will contain the reason why the requested type was not feasible. Check for warnings to verify whether you received the type of result set that you requested.
The following limitations are placed on queries for enhanced result sets. Failure to follow these guidelines will result in the JDBC driver choosing an alternative result set type or concurrency type.
To produce an updatable result set:
In addition, for inserts to be feasible, the query must select all non-nullable columns and all columns that do not have a default value.
SELECT *
. However, there is a workaround for this.
It cannot select derived columns or aggregates, such as the SUM
or MAX
of a set of columns.
To produce a scroll-sensitive result set:
SELECT *
. However, there is a workaround for this.
Scrollable and updatable result sets cannot have any column as Stream
. When the server has to fetch a Stream
column, it reduces the fetch size to one and blocks all columns following the Stream
column until the Stream
column is read. As a result, columns cannot be fetched in bulk and scrolled through.
Workaround
As a workaround for the SELECT *
limitation, you can use table aliases, as shown in the following example:
Note: There is a simple way to determine if your query will probably produce a scroll-sensitive or updatable result set: If you can legally add aROWID column to the query list, then the query is probably suitable for either a scroll-sensitive or an updatable result set. |
If the specified result set type or concurrency type is not feasible, then Oracle JDBC driver uses the following rules in choosing alternate types:
TYPE_SCROLL_SENSITIVE
, but the JDBC driver cannot fulfill that request, then the driver attempts a downgrade to TYPE_SCROLL_INSENSITIVE
. TYPE_SCROLL_INSENSITIVE
, but the JDBC driver cannot fulfill that request, then the driver attempts a downgrade to TYPE_FORWARD_ONLY
. CONCUR_UPDATABLE
, but the JDBC driver cannot fulfill that request, then the JDBC driver attempts a downgrade to CONCUR_READ_ONLY
. Note: Any manipulations of the result set type and concurrency type by the JDBC driver are independent of each other. |
Verifying Result Set Type and Concurrency Type
After a query has been run, you can verify the result set type and concurrency type that the JDBC driver actually used, by calling methods on the result set object.
int getType() throws SQLException
This method returns an int
value for the result set type used for the query. ResultSet.TYPE_FORWARD_ONLY
, ResultSet.TYPE_SCROLL_SENSITIVE
, or ResultSet.TYPE_SCROLL_INSENSITIVE
are the possible values.
int getConcurrency() throws SQLException
This method returns an int
value for the concurrency type used for the query. ResultSet.CONCUR_READ_ONLY
or ResultSet.CONCUR_UPDATABLE
are the possible values.
Scrollable result sets enable you to iterate through them, either forward or backward, and to position the result set to any desired row.
This section discusses positioning within a scrollable result set and how to process a scrollable result set backward, instead of forward. It covers the following sections:
In a scrollable result set, you can use several result set methods to move to a desired position and to check the current position.
Note: You cannot position a forward-only result set. Any attempt to position it or to determine the current position will result in aSQLException exception. |
Methods for Moving to a New Position
The following result set methods are available for moving to a new position in a scrollable result set:
void beforeFirst() throws SQLException
Positions to before the first row of the result set, or has no effect if there are no rows in the result set. This is where you would typically start iterating through a result set to process it going forward and is the default initial position for any kind of result set.
You are outside the result set bounds after a beforeFirst()
call. There is no valid current row, and you cannot position relatively from this point.
void afterLast() throws SQLException
Positions to after the last row of the result set, or has no effect if there are no rows in the result set. This is where you would typically start iterating through a result set to process it going backward.
You are outside the result set bounds after an afterLast()
call. There is no valid current row, and you cannot position relatively from this point.
boolean first() throws SQLException
Positions to the first row of the result set, or returns false
if there are no rows in the result set.
boolean last() throws SQLException
Positions to the last row of the result set, or returns false
if there are no rows in the result set.
boolean absolute(int row) throws SQLException
Positions to an absolute row from either the beginning or end of the result set. If you enter a positive number, then it positions from the beginning. If you enter a negative number, then it positions from the end. This method returns false
if there are no rows in the result set.
Attempting to move forward beyond the last row, such as an absolute(11)
call if there are 10 rows, will position to after the last row, having the same effect as an afterLast()
call.
Attempting to move backward beyond the first row, such as an absolute(-11)
call if there are 10 rows, will position to before the first row, having the same effect as a beforeFirst()
call.
Note: Callingabsolute(1) is equivalent to calling first() ; calling absolute(-1) is equivalent to calling last() . |
boolean relative(int row) throws SQLException
Moves to a position relative to the current row, forward if you enter a positive number or backward if you enter a negative number, or returns false
if there are no rows in the result set.
The result set must be at a valid current row for use of the relative
method.
Attempting to move forward beyond the last row will position to after the last row, having the same effect as an afterLast()
call.
Attempting to move backward beyond the first row will position to before the first row, having the same effect as a beforeFirst()
call.
A relative(0)
call is valid but has no effect.
Note: You cannot position relatively from before the first row, which is the default initial position, or after the last row. Attempting relative positioning from either of these positions would result in aSQLException exception. |
Methods for Checking the Current Position
The following result set methods are available for checking the current position in a scrollable result set:
boolean isBeforeFirst() throws SQLException
Returns true
if the position is before the first row.
boolean isAfterLast() throws SQLException
Returns true
if the position is after the last row.
boolean isFirst() throws SQLException
Returns true
if the position is at the first row.
boolean isLast() throws SQLException
Returns true
if the position is at the last row.
int getRow() throws SQLException
Returns the row number of the current row, or returns 0 if there is no valid current row.
Note: Theboolean methods, isFirst() , isLast() , isAfterFirst() , and isAfterLast() , all return false . Also, they do not throw an exception if there are no rows in the result set. |
In a scrollable result set you can iterate backward instead of forward as you process the result set. The following methods are available:
The previous()
method works similarly to the next()
method, in that it returns true
as long as the new current row is valid, and false
as soon as it runs out of rows, that is, has passed the first row.
Backward versus Forward Processing
You can process the entire result set going forward, using the next()
method. The default initial position in the result set is before the first row, appropriately, but you can call the beforeFirst()
method if you have moved elsewhere since the result set was created.
To process the entire result set going backward, call afterLast()
, then use the previous()
method. For example:
Unlike relative positioning, you can use next()
from before the first row and previous()
from after the last row. You do not have to be at a valid current row to use these methods.
Note: In a non-scrollable result set, you can process only with thenext() method. Attempting to use the previous() method will cause a SQLException exception. |
Presetting the Fetch Direction
The JDBC 2.0 standard allows the ability to pre-specify the direction, known as the fetch direction, for use in processing a result set. This allows the JDBC driver to optimize its processing. The following result set methods are specified:
void setFetchDirection(int direction) throws SQLException
int getFetchDirection() throws SQLException
Oracle JDBC drivers support only the forward preset value, which you can specify by entering the ResultSet.FETCH_FORWARD
static constant value.
The values ResultSet.FETCH_REVERSE
and ResultSet.FETCH_UNKNOWN
are not supported. Attempting to specify them causes a SQL warning, and the settings are ignored.
A concurrency type of CONCUR_UPDATABLE
enables you to update rows in the result set, delete rows from the result set, or insert rows into the result set.
After you perform an UPDATE
or INSERT
operation in a result set, you propagate the changes to the database in a separate step that you can skip if you want to cancel the changes.
However, a DELETE
operation in a result set is immediately run, but not necessarily committed, in the database as well.
Note: When using an updatable result set, it is typical to also make it scrollable. This enables you to position to any row that you want to change. With a forward-only updatable result set, you can change rows only as you iterate through them with thenext() method. |
This section covers the following topics:
The result set deleteRow
method will delete the current row. Following is the method signature:
Note: UnlikeUPDATE and INSERT operations in a result set, which require a separate step to propagate the changes to the database, a DELETE operation in a result set is immediately run in the corresponding row in the database as well. Once you call |
Presuming the result set is also scrollable, you can position to a row using any of the available positioning methods, except beforeFirst
method and afterLast
method, which do not go to a valid current row, and then delete that row, as in the following example:
Important: The deleted row remains in the result set object even after it has been deleted from the database.In a scrollable result set, by contrast, a |
Performing a result set UPDATE
operation requires two separate steps to first update the data in the result set and then copy the changes to the database.
Presuming the result set is also scrollable, you can position to a row using any of the available positioning methods, except beforeFirst()
and afterLast()
, which do not go to a valid current row, and then update that row as desired.
Here are the steps for updating a row in the result set and database:
update
XXX
methods to update the data in the columns you want to change. With JDBC 2.0, a result set object has an update
XXX
method for each data type, as with the set
XXX
methods previously available for updating the database directly.
Each of these methods takes an int
for the column number or a string for the column name and then an item of the appropriate data type to set the new value. Following are a couple of examples for a result set rs
:
updateRow
method to copy the changes to the database or the cancelRowUpdates
method to cancel the changes. Once you call the updateRow
method, the changes are run and are made permanent with the next transaction COMMIT
operation. Be aware that by default, the auto-commit flag is set to true
so that any operation run is committed immediately.
If you choose to cancel the changes before copying them to the database, then call the cancelRowUpdates
method instead. This will also revert to the original values for that row in the local result set object. Note that once you call the updateRow
method, the changes are written to the transaction and cannot be canceled unless you roll back the transaction.
Note: Auto-commit must be disabled to allow aROLLBACK operation. |
Positioning to a different row before calling updateRow
also cancels the changes and reverts to the original values in the result set.
Before calling updateRow
, you can call the usual get
XXX
methods to verify that the values have been updated correctly. These methods take an int
column index or string column name as input. For example:
Note: Result setUPDATE operations are visible in the local result set object for all result set types, forward-only, scroll-sensitive, and scroll-insensitive. |
Example
Following is an example of a result set UPDATE
operation that is also copied to the database. The tenth row is updated. The column number is used to specify column 1, and the column name, sal
, is used to specify column 2.
Result set INSERT
operations use what is called the result set insert-row, which is a staging area that holds the data for the inserted row until it is copied to the database. You must explicitly move to this row to write the data that will be inserted.
As with UPDATE
operations, result set INSERT
operations require separate steps to first write the data to the insert-row and then copy it to the database.
Following are the steps in running a result set INSERT
operation.
moveToInsertRow
method. UPDATE
operations, use the appropriate update
XXX
methods to write data to the columns. For example: You can specify a string for column name, instead of an integer for column number.
Important: Each column value in the insert-row is undefined until you call theupdate XXX method for that column. You must call this method and specify a non-null value for all non-nullable columns, or else attempting to copy the row into the database will result in a SQLException exception. However, it is permissible to not call |
insertRow
method. Once you call insertRow
, the insert is processed and will be made permanent with the next transaction COMMIT
operation.
Positioning to a different row before calling insertRow
cancels the insert and clears the insert-row.
Before calling insertRow
you can call the usual get
XXX
methods to verify that the values have been set correctly in the insert-row. These methods take an int
column index or string column name as input. For example:
Note: No result set type can see a row inserted by a result setINSERT operation. |
Example
The following example performs a result set INSERT
operation, moving to the insert-row, writing the data, copying the data into the database, and then returning to what was the current row prior to going to the insert-row. The column number is used to specify column 1, and the column name, sal
, is used to specify column 2.
It is important to be aware of the following facts regarding updatable result sets with the JDBC drivers:
DELETE
or UPDATE
operation. A conflict will occur if you try to perform a DELETE
or UPDATE
operation on a row updated by another committed transaction.
Oracle JDBC drivers use the ROWID
to uniquely identify a row in a database table. As long as the ROWID
is valid when a driver tries to send an UPDATE
or DELETE
operation to the database, the operation will be run.
The driver will not report any changes made by another committed transaction. Any conflicts are silently ignored and your changes will overwrite the previous changes.
To avoid such conflicts, use the Oracle FOR UPDATE
feature when running the query that produces the result set. This will avoid conflicts, but will also prevent simultaneous access to the data. Only a single write lock can be held concurrently on a data item.
By default, when Oracle JDBC runs a query, it retrieves a result set of 10 rows at a time from the database cursor. This is the default Oracle row fetch size value. You can change the number of rows retrieved with each trip to the database cursor by changing the row fetch size value.
JDBC 2.0 also enables you to specify the number of rows fetched with each database round-trip for a query, and this number is referred to as the fetch size. In Oracle JDBC, the row-prefetch value is used as the default fetch size in a statement object. Setting the fetch size overrides the row-prefetch setting and affects subsequent queries run through that statement object.
Fetch size is also used in a result set. When the statement object run a query, the fetch size of the statement object is passed to the result set object produced by the query. However, you can also set the fetch size in the result set object to override the statement fetch size that was passed to it.
Note: Changes made to the fetch size of a statement object after a result set is produced will have no affect on that result set. |
The result set fetch size, either set explicitly, or by default equal to the statement fetch size that was passed to it, determines the number of rows that are retrieved in any subsequent trips to the database for that result set. This includes any trips that are still required to complete the original query, as well as any refetching of data into the result set. Data can be refetched, either explicitly or implicitly, to update a scroll-sensitive or scroll-insensitive/updatable result set.
The following methods are available in all Statement
, PreparedStatement
, CallableStatement
, and ResultSet
objects for setting and getting the fetch size:
To set the fetch size for a query, call setFetchSize
on the statement object prior to running the query. If you set the fetch size to N, then N rows are fetched with each trip to the database.
After you have run the query, you can call setFetchSize
on the result set object to override the statement object fetch size that was passed to it. This will affect any subsequent trips to the database to get more rows for the original query, as well as affecting any later refetching of rows.
The result set refreshRow
method is supported for some types of result sets for refetching data. This consists of going back to the database to re-obtain the database rows that correspond to n rows in the result set, starting with the current row, where n is the fetch size. This lets you see the latest updates to the database that were made outside of your result set, subject to the isolation level of the enclosing transaction.
Because refetching re-obtains only rows that correspond to rows already in your result set, it does nothing about rows that have been inserted or deleted in the database since the original query. It ignores rows that have been inserted, and rows will remain in your result set even after the corresponding rows have been deleted from the database. When there is an attempt to refetch a row that has been deleted in the database, the corresponding row in the result set will maintain its original values.
Note: If you declare aTYPE_SCROLL_SENSITIVE Result Set based on a query with certain criteria and then externally update the row so that the column values no longer match the query criteria, the driver behaves as if the row has been deleted from the database and the row is not retrieved by the query issued. So, you do not see the updates to the particular row when you call the refreshRow method. |
Following is the signature of the refreshRow
method:
You must be at a valid current row when you call this method, not outside the row bounds and not at the insert-row.
The refreshRow
method is supported for the following result set categories:
Note: Scroll-sensitive result set functionality is implemented through implicit calls torefreshRow . |
This section discusses the ability of a result set to see the following:
Note: External changes are referred to as other's changes in the Sun Microsystems JDBC 2.0 specification. |
This section covers the following topics:
The ability of an updatable result set to see its own changes depends on both the result set type and the kind of change. This is summarized as follows:
DELETE
operations are visible for scrollable result sets, but are not visible for forward-only result sets. After you delete a row in a scrollable result set, the preceding row becomes the new current row, and subsequent row numbers are updated accordingly.
UPDATE
operations are always visible, regardless of the result set type. INSERT
operations are never visible, regardless of the result set type. An internal change being visible essentially means that a subsequent get
XXX
call will see the data changed by a preceding update
XXX
call on the same data item.
JDBC 2.0 DatabaseMetaData
objects include the following methods to verify this:
boolean ownDeletesAreVisible(int) throws SQLException
boolean ownUpdatesAreVisible(int) throws SQLException
boolean ownInsertsAreVisible(int) throws SQLException
Each takes a result set type, ResultSet.TYPE_FORWARD_ONLY
, ResultSet.TYPE_SCROLL_SENSITIVE
, or ResultSet.TYPE_SCROLL_INSENSITIVE
, as input.
Note: When you make an internal change that causes a trigger to run, the trigger changes are effectively external changes. However, if the trigger affects data in the row you are updating, then you will see those changes for any scrollable/updatable result set, because an implicit row refetch occurs after the update. |
Only a scroll-sensitive result set can see external changes to the underlying database, and it can only see the changes from external UPDATE
operations. Changes from external DELETE or INSERT
operations are never visible.
Note: Any discussion of seeing changes from outside the enclosing transaction presumes the transaction itself has an isolation level setting that allows the changes to be visible. |
JDBC 2.0 DatabaseMetaData
objects include the following methods to verify this:
boolean othersDeletesAreVisible(int) throws SQLException
boolean othersUpdatesAreVisible(int) throws SQLException
boolean othersInsertsAreVisible(int) throws SQLException
Each takes a result set type, ResultSet.TYPE_FORWARD_ONLY
, ResultSet.TYPE_SCROLL_SENSITIVE
, or ResultSet.TYPE_SCROLL_INSENSITIVE
, as input.
Note: Explicit use of therefreshRow method is distinct from this discussion of visibility. For example, even though external updates are invisible to a scroll-insensitive result set, you can explicitly refetch rows in a scroll-insensitive/updatable result set and retrieve external changes that have been made. Visibility refers only to the fact that the scroll-insensitive/updatable result set would not see such changes automatically and implicitly. |
Regarding changes made to the underlying database by external sources, there are two similar but distinct concepts with respect to visibility of the changes from your local result set:
A change being "visible" means that when you look at a row in the result set, you can see new data values from changes made by external sources to the corresponding row in the database.
A change being "detected", however, means that the result set is aware that this is a new value since the result set was first populated.
Even when an Oracle result set sees new data, as with an external UPDATE
in a scroll-sensitive result set, it has no awareness that this data has changed since the result set was populated. Such changes are not detected.
JDBC 2.0 DatabaseMetaData
objects include the following methods to verify this:
boolean deletesAreDetected(int) throws SQLException
boolean updatesAreDetected(int) throws SQLException
boolean insertsAreDetected(int) throws SQLException
Each takes a result set type, ResultSet.TYPE_FORWARD_ONLY
, ResultSet.TYPE_SCROLL_SENSITIVE
, or ResultSet.TYPE_SCROLL_INSENSITIVE
, as input.
It follows, then, that result set methods specified by JDBC 2.0 to detect changes, rowDeleted
, rowUpdated
, and rowInserted
, will always return false
. There is no use in calling them.
Table 17-1 summarizes the discussion in the preceding sections regarding whether a result set object in the Oracle JDBC implementation can see changes made internally through the result set itself, and changes made externally to the underlying database from elsewhere in your transaction or from other committed transactions.
Table 17-1 Visibility of Internal and External Changes for Oracle JDBC
Result Set Type | Can See Internal DELETE? | Can See Internal UPDATE? | Can See Internal INSERT? | Can See External DELETE? | Can See External UPDATE? | Can See External INSERT? |
---|---|---|---|---|---|---|
forward-only | no | yes | no | no | no | no |
scroll-sensitive | yes | yes | no | no | yes | no |
scroll-insensitive | yes | yes | no | no | no | no |
Note:
|
The Oracle implementation of scroll-sensitive result sets involves the concept of a window, with a window size that is based on the fetch size. The window size affects how often rows are updated in the result set.
Once you establish a current row by moving to a specified row, the window consists of the n rows in the result set starting with that row, where n is the fetch size being used by the result set. Note that there is no current row, and therefore no window, when a result set is first created. The default position is before the first row, which is not a valid current row.
As you move from row to row, the window remains unchanged as long as the current row stays within that window. However, once you move to a new current row outside the window, you redefine the window to be the N rows starting with the new current row.
Whenever the window is redefined, the N rows in the database corresponding to the rows in the new window are automatically refetched through an implicit call to the refreshRow
method, thereby updating the data throughout the new window.
So external updates are not instantaneously visible in a scroll-sensitive result set. They are only visible after the automatic refetches just described.
Note: Because this kind of refetching is not a highly efficient or optimized methodology, there are significant performance concerns. Consider carefully before using scroll-sensitive result sets as currently implemented. There is also a significant trade-off between sensitivity and performance. The most sensitive result set is one with a fetch size of 1, which would result in the new current row being refetched every time you move between rows. However, this would have a significant impact on the performance of your application. |
This chapter contains the following sections:
A RowSet is an object that encapsulates a set of rows from either java Database Connectivity (JDBC) result sets or tabular data sources. RowSets support component-based development models like JavaBeans, with a standard set of properties and an event notification mechanism.
RowSets were introduced in JDBC 2.0 through the optional packages. However, the implementation of RowSets was standardized in the JDBC RowSet Implementations Specification (JSR-114), which is available as non-optional package since Java Platform, Standard Edition (Java SE) 5.0. Java SE 6.0 RowSets contain more APIs supporting features like RowId, National Language Charactersets, and so on. The Java SE Javadocs provide information about the standard interfaces and base classes for JDBC RowSet implementations.
See Also:
|
Note: In case of any conflict, the JSR-114 specification takes precedence over the JDK 5.0 Javadoc. |
The JSR-114 specification includes implementation details for five types of RowSet:
Oracle JDBC supports all five types of RowSets through the interfaces and classes present in the oracle.jdbc.rowset
package. Oracle Database 11g Release 1 (11.1) adds RowSets support in the server-side drivers. Therefore, starting from Oracle Database 11g Release 1 (11.1), RowSets support is uniform across all Oracle JDBC driver types. The standard Oracle JDBC Java Archive (JAR) files, for example, ojdbc5.jar
and ojdbc6.jar
contain the oracle.jdbc.rowset
package.
Note:
|
To use the Oracle RowSet implementations, you need to import either the entire oracle.jdbc.rowset
package or specific classes and interfaces from the package for the required RowSet type. For client-side usage, you also need to include the standard Oracle JAR files like ojdbc5.jar
or ojdbc6.jar
in the CLASSPATH
environment variable.
See Also: "Check the Environment Variables" for information about setting theCLASSPATH environment variable. |
This section covers the following topics:
The javax.sql.RowSet
interface provides a set of JavaBeans properties that can be altered to access the data in the data source through a single interface. Example of properties are connection string, user name, password, type of connection, and the query string.
For a complete list of properties and property descriptions, refer to the Java2 Platform, Standard Edition (J2SE) Javadoc for javax.sql.RowSet
at http://java.sun.com/j2se/1.5.0/docs/api/javax/sql/RowSet.html
The interface provides standard accessor methods for setting and retrieving the property values. The following code illustrates setting some of the RowSet
properties:
In this example, the URL, user name, password, and SQL query are set as the RowSet
properties to retrieve the employee number, employee name, and salary of all the employees into the RowSet
object.
RowSets support JavaBeans events. The following types of events are supported by the RowSet
interface:
cursorMoved
This event is generated whenever there is a cursor movement. For example, when the next
or previous
method is called.
rowChanged
This event is generated when a row is inserted, updated, or deleted from the RowSet.
rowSetChanged
This event is generated when the whole RowSet is created or changed. For example, when the execute
method is called.
An application component can implement a RowSet listener to listen to these RowSet events and perform desired operations when the event occurs. Application components, which are interested in these events, must implement the standard javax.sql.RowSetListener
interface and register such listener objects with a RowSet
object. A listener can be registered using the RowSet.addRowSetListener
method and unregistered using the RowSet.removeRowSetListener
method. Multiple listeners can be registered with the same RowSet
object.
The following code illustrates the registration of a RowSet listener:
The following code illustrates a listener implementation:
Applications that need to handle only selected events can implement only the required event handling methods by using the oracle.jdbc.rowset.OracleRowSetListenerAdapter
class, which is an abstract class with empty implementation for all the event handling methods. In the following code, only the rowSetChanged
event is handled, while the remaining events are not handled by the application:
The command
property of a RowSet
object typically represents a SQL query string, which when processed would populate the RowSet
object with actual data. Like in regular JDBC processing, this query string can take input or bind parameters. The javax.sql.RowSet
interface also provides methods for setting input parameters to this SQL query. After the required input parameters are set, the SQL query can be processed to populate the RowSet
object with data from the underlying data source. The following code illustrates this simple sequence:
In the preceding example, the employee number 7839 is set as the input or bind parameter for the SQL query specified in the command
property of the RowSet
object. When the SQL query is processed, the RowSet
object is filled with the employee name and salary information of the employee whose employee number is 7839.
The javax.sql.RowSet
interface extends the java.sql.ResultSet
interface. The RowSet
interface, therefore, provides cursor movement and positioning methods, which are inherited from the ResultSet
interface, for traversing through data in a RowSet
object. Some of the inherited methods are absolute
, beforeFirst
, afterLast
, next
, and previous
.
The RowSet
interface can be used just like a ResultSet
interface for retrieving and updating data. The RowSet
interface provides an optional way to implement a scrollable and updatable result set. All the fields and methods provided by the ResultSet
interface are implemented in RowSet
.
Note: The Oracle implementation ofResultSet provides the scrollable and updatable properties of the java.sql.ResultSet interface. |
The following code illustrates how to scroll through a RowSet:
In the preceding code, the cursor position is initialized to the position before the first row of the RowSet by the beforeFirst
method. The rows are retrieved in forward direction using the next
method.
The following code illustrates how to scroll through a RowSet in the reverse direction:
In the preceding code, the cursor position is initialized to the position after the last row of the RowSet
. The rows are retrieved in reverse direction using the previous
method of RowSet
.
Inserting, updating, and deleting rows are supported by the Row Set feature as they are in the Result Set feature. In order to make the Row Set updatable, you must call the setReadOnly(false)
and acceptChanges
methods.
The following code illustrates the insertion of a row at the fifth position of a Row Set:
In the preceding code, a call to the absolute
method with a parameter 5
takes the cursor to the fifth position of the RowSet and a call to the moveToInsertRow
method creates a place for the insertion of a new row into the RowSet. The update
XXX
methods are used to update the newly created row. When all the columns of the row are updated, the insertRow
is called to update the RowSet. The changes are committed through acceptChanges
method.
A CachedRowSet is a RowSet in which the rows are cached and the RowSet is disconnected, that is, it does not maintain an active connection to the database. The oracle.jdbc.rowset.OracleCachedRowSet
class is the Oracle implementation of CachedRowSet. It can interoperate with the reference implementation of Sun Microsystems. The OracleCachedRowSet
class in the ojdbc5.jar
and ojdbc6.jar
files implements the standard JSR-114 interface javax.sql.rowset.CachedRowSet
.
In the following code, an OracleCachedRowSet
object is created and the connection URL, user name, password, and the SQL query for the RowSet
object is set as properties. The RowSet
object is populated using the execute
method. After the execute
method has been processed, the RowSet
object can be used as a java.sql.ResultSet
object to retrieve, scroll, insert, delete, or update data.
To populate a CachedRowSet
object with a query, complete the following steps:
OracleCachedRowSet
. Url
, which is the connection URL, Username
, Password
, and Command
, which is the query string, properties for the RowSet
object. You can also set the connection type, but it is optional. execute
method to populate the CachedRowSet
object. Calling execute
runs the query set as a property on this RowSet. A CachedRowSet
object can be populated with an existing ResultSet
object, using the populate
method. To do so, complete the following steps:
OracleCachedRowSet
. ResultSet
object to the populate
method to populate the RowSet
object. In the preceding example, a ResultSet
object is obtained by running a query and the retrieved ResultSet
object is passed to the populate
method of the CachedRowSet
object to populate the contents of the result set into the CachedRowSet.
Note: Connection properties, like transaction isolation or the concurrency mode of the result set, and the bind properties cannot be set in the case where a pre-existentResultSet object is used to populate the CachedRowSet object, because the connection or result set on which the property applies would have already been created. |
The following code illustrates how an OracleCachedRowSet
object is serialized to a file and then retrieved:
In the preceding code, a FileOutputStream
object is opened for an emp_tab.dmp
file, and the populated OracleCachedRowSet
object is written to the file using ObjectOutputStream
. The serialized OracleCachedRowSet
object is retrieved using the FileInputStream
and ObjectInputStream
objects.
OracleCachedRowSet
takes care of the serialization of non-serializable form of data like InputStream
, OutputStream
, binary large objects (BLOBs), and character large objects (CLOBs). OracleCachedRowSets
also implements metadata of its own, which could be obtained without any extra server round-trip. The following code illustrates how you can obtain metadata for the RowSet:
Because the OracleCachedRowSet
class is serializable, it can be passed across a network or between Java Virtual Machines (JVMs), as done in Remote Method Invocation (RMI). Once the OracleCachedRowSet
class is populated, it can move around any JVM, or any environment that does not have JDBC drivers. Committing the data in the RowSet requires the presence of JDBC drivers.
The complete process of retrieving the data and populating it in the OracleCachedRowSet
class is performed on the server and the populated RowSet is passed on to the client using suitable architectures like RMI or Enterprise Java Beans (EJB). The client would be able to perform all the operations like retrieving, scrolling, inserting, updating, and deleting on the RowSet without any connection to the database. Whenever data is committed to the database, the acceptChanges
method is called, which synchronizes the data in the RowSet to that in the database. This method makes use of JDBC drivers, which require the JVM environment to contain JDBC implementation. This architecture would be suitable for systems involving a Thin client like a Personal Digital Assistant (PDA).
After populating the CachedRowSet
object, it can be used as a ResultSet
object or any other object, which can be passed over the network using RMI or any other suitable architecture.
Some of the other key-features of CachedRowSet are the following:
CachedRowSet Constraints
All the constraints that apply to an updatable result set are applicable here, except serialization, because OracleCachedRowSet
is serializable. The SQL query has the following constraints:
In addition, a SQL query should also satisfy the following conditions, if new rows are to be inserted:
Note: TheCachedRowSet cannot hold a large quantity of data, because all the data is cached in memory. Oracle, therefore, recommends against using OracleCachedRowSet with queries that could potentially return a large volume of data. |
Connection properties like, transaction isolation and concurrency mode of the result set, cannot be set after populating the RowSet, because the properties cannot be applied to the connection after retrieving the data from the same.
A JdbcRowSet is a RowSet that wraps around a ResultSet
object. It is a connected RowSet that provides JDBC interfaces in the form of a JavaBean interface. The Oracle implementation of JdbcRowSet is oracle.jdbc.rowset.OracleJDBCRowSet
. The OracleJDBCRowSet
class in ojdbc5.jar
and ojdbc6.jar
implements the standard JSR-114 interface javax.sql.rowset.JdbcRowSet
.
Table 18-1 shows how the JdbcRowSet
interface differs from CachedRowSet
interface.
Table 18-1 The JDBC and Cached Row Sets Compared
RowSet Type | Serializable | Connected to Database | Movable Across JVMs | Synchronization of data to database | Presence of JDBC Drivers |
---|---|---|---|---|---|
JDBC | Yes | Yes | No | No | Yes |
Cached | Yes | No | Yes | Yes | No |
JdbcRowSet is a connected RowSet, which has a live connection to the database and all the calls on the JdbcRowSet are percolated to the mapping call in the JDBC connection, statement, or result set. A CachedRowSet does not have any connection to the database open.
JdbcRowSet requires the presence of JDBC drivers unlike a CachedRowSet, which does not require JDBC drivers during manipulation. However, both JdbcRowSet and CachedRowSet require JDBC drivers during population of the RowSet and while committing the changes of the RowSet.
The following code illustrates how a JdbcRowSet is used:
In the preceding example, the connection URL, user name, password, and SQL query are set as properties of the RowSet
object, the SQL query is processed using the execute
method, and the rows are retrieved and printed by traversing through the data populated in the RowSet
object.
A WebRowSet is an extension to CachedRowSet. It represents a set of fetched rows or tabular data that can be passed between tiers and components in a way such that no active connections with the data source need to be maintained. The WebRowSet
interface provides support for the production and consumption of result sets and their synchronization with the data source, both in Extensible Markup Language (XML) format and in disconnected fashion. This allows result sets to be shipped across tiers and over Internet protocols.
The Oracle implementation of WebRowSet is oracle.jdbc.rowset.OracleWebRowSet
. This class, which is in the ojdbc5.jar
and ojdbc6.jar
files, implements the standard JSR-114 interface javax.sql.rowset.WebRowSet
. This class also extends the oracle.jdbc.rowset.OracleCachedRowSet
class. Besides the methods available in OracleCachedRowSet
, the OracleWebRowSet
class provides the following methods:
OracleWebRowSet
object, which is initialized with the default values for an OracleCachedRowSet
object, a default OracleWebRowSetXmlReader
, and a default OracleWebRowSetXmlWriter
. OracleWebRowSet
object to the supplied Writer
or OutputStream
object in the XML format that conforms to the JSR-114 XML schema. In addition to the RowSet data, the properties and metadata of the RowSet are written. OracleWebRowSet
object, populate it with the data in the given ResultSet
object, and write it to the supplied Writer
or OutputStream
object in the XML format that conforms to the JSR-114 XML schema. OracleWebRowSet
object in the XML format according to its JSR-114 XML schema, using the supplied Reader
or InsputStream
object. The Oracle WebRowSet implementation supports Java API for XML Processing (JAXP) 1.2. Both Simple API for XML (SAX) 2.0 and Document Object Model (DOM) JAXP-conforming XML parsers are supported. It follows the current JSR-114 W3C XML schema for WebRowSet from Sun Microsystems, which is at: http://java.sun.com/xml/ns/jdbc/webrowset.xsd
See Also:
|
Applications that use the readXml(...)
methods should set one of the following two standard JAXP system properties before calling the methods:
javax.xml.parsers.SAXParserFactory
This property is for a SAX parser.
javax.xml.parsers.DocumentBuilderFactory
This property is for a DOM parser.
The following code illustrates the use of OracleWebRowSet
for both writing and reading in XML format:
Note: The preceding code uses the Oracle SAX XML parser, which supports schema validation. |
A FilteredRowSet is an extension to WebRowSet that provides programmatic support for filtering its content. This enables you to avoid the overhead of supplying a query and the processing involved. The Oracle implementation of FilteredRowSet is oracle.jdbc.rowset.OracleFilteredRowSet
. The OracleFilteredRowSet
class in the ojdbc5.jar
and ojdbc6.jar
files implements the standard JSR-114 interface javax.sql.rowset.FilteredRowSet
.
The OracleFilteredRowSet
class defines the following new methods:
Predicate
object that defines the filtering criteria active on the OracleFilteredRowSet
object. Predicate
object as a parameter. The Predicate
object defines the filtering criteria to be applied on the OracleFilteredRowSet
object. The methods throws a SQLException
exception. The predicate set on an OracleFilteredRowSet
object defines a filtering criteria that is applied to all the rows in the object to obtain the set of visible rows. The predicate also defines the criteria for inserting, deleting, and modifying rows. The set filtering criteria acts as a gating mechanism for all views and updates to the OracleFilteredRowSet
object. Any attempt to update the OracleFilteredRowSet
object, which violates the filtering criteria, throws a SQLException
exception.
The filtering criteria set on an OracleFilteredRowSet
object can be modified by applying a new Predicate
object. The new criteria is immediately applied on the object, and all further views and updates must adhere to this new criteria. A new filtering criteria can be applied only if there are no reference to the OracleFilteredRowSet
object.
Rows that fall outside of the filtering criteria set on the object cannot be modified until the filtering criteria is removed or a new filtering criteria is applied. Also, only the rows that fall within the bounds of the filtering criteria will be synchronized with the data source, if an attempt is made to persist the object.
The following code example illustrates the use of OracleFilteredRowSet. Assume a table, test_table
, with two NUMBER
columns, col1
and col2
. The code retrieves those rows from the table that have value of col1
between 50
and 100
and value of col2
between 100
and 200
.
The predicate defining the filtering criteria is as follows:
The predicate defined in the preceding code is used for filtering content in an OracleFilteredRowSet
object, as follows:
A JoinRowSet is an extension to WebRowSet that consists of related data from different RowSets. There is no standard way to establish a SQL JOIN
between disconnected RowSets without connecting to the data source. A JoinRowSet addresses this issue. The Oracle implementation of JoinRowSet is the oracle.jdbc.rowset.OracleJoinRowSet
class. This class, which is in the ojdbc5.jar
and ojdbc6.jar
files, implements the standard JSR-114 interface javax.sql.rowset.JoinRowSet
.
Any number of RowSet
objects, which implement the Joinable
interface, can be added to a JoinRowSet
object, provided they can be related in a SQL JOIN
. All five types of RowSet support the Joinable
interface. The Joinable
interface provides methods for specifying the columns based on which the JOIN
will be performed, that is, the match columns.
A match column can be specified in the following ways:
setMatchColumn
method This method is defined in the Joinable
interface. It is the only method that can be used to set the match column before a RowSet
object is added to a JoinRowSet
object. This method can also be used to reset the match column at any time.
addRowSet
method This is an overloaded method in JoinRowSet
. Four of the five implementations of this method take a match column as a parameter. These four methods can be used to set or reset a match column at the time a RowSet
object is being added to a JoinRowSet
object.
In addition to the inherited methods, OracleJoinRowSet
provides the following methods:
RowSet
object to the OracleJoinRowSet
object. You can pass one or more RowSet
objects to be added to the OracleJoinRowSet
object. You can also pass names or indexes of one or more columns, which need to be set as match column. RowSet
objects added to the OracleJoinRowSet
object. The method returns a java.util.Collection
object that contains the RowSet
objects. RowSet
objects that are added to the OracleJoinRowSet
object. OracleJoinRowSet
object supports the corresponding JOIN
type. JOIN
type on the OracleJoinRowSet
object. It takes an integer constant as defined in the javax.sql.rowset.JoinRowSet
interface that specifies the JOIN
type. JOIN
type set on the OracleJoinRowSet
object. This method throws a SQLException
exception. CachedRowSet
object containing the data in the OracleJoinRowSet
object. WHERE
clause used in the OracleJoinRowSet
object. This methods throws a SQLException
exception. The following code illustrates how OracleJoinRowSet
is used to perform an inner join on two RowSets, whose data come from two different tables. The resulting RowSet contains data as if they were the result of an inner join on these two tables. Assume that there are two tables, an Order
table with two NUMBER
columns Order_id
and Person_id
, and a Person
table with a NUMBER
column Person_id
and a VARCHAR2
column Name
.
The Oracle Java Database Connectivity (JDBC) drivers provide globalization support, formerly known as National Language Support (NLS). Globalization support enables you retrieve data or insert data into a database in any character set that Oracle supports. If the clients and the server use different character sets, then the driver provides the support to perform the conversions between the database character set and the client character set.
This chapter contains the following sections:
The basic Java Archive (JAR) files, ojdbc5.jar
and ojdbc6.jar
, contain all the necessary classes to provide complete globalization support for:
CHAR
, VARCHAR
, LONGVARCHAR
, or CLOB
data that is not being retrieved or inserted as a data member of an Oracle object or collection type. CHAR
or VARCHAR
data members of object and collection for the character sets US7ASCII
, WE8DEC
, WE8ISO8859P1
, WE8MSWIN1252
, and UTF8
. To use any other character sets in CHAR
or VARCHAR
data members of objects or collections, you must include orai18n.jar
in the CLASSPATH
environment variable of your application.
Note: Previous releases depended on thenls_charset12.zip file. This file is now obsolete. |
Compressing orai18n.jar
The orai18n.jar
file contains many important character set and globalization support files. You can reduce the size of orai18n.jar
using the built-in customization tool, as follows:
For example, if you want to create a custom character set file, custom_orai18n_ja.jar
, that includes the JA16SJIS and JA16EUC character sets, then issue the following command:
The output of the command is as follows:
If you do not specify a file name for your custom JAR/ZIP file, then a file with the name jdbc_orai18n_cs.jar
is created in the current working directory. Also, for your custom JAR/ZIP file, you cannot specify a name that starts with orai18n
.
If any invalid or unsupported character set name is specified in the command, then no output JAR/ZIP file will be created. If the custom JAR/ZIP file exists, then the file will not be updated or removed.
The custom character set JAR/ZIP does not accept any command. However, it prints the version information and the command that was used to generate the JAR/ZIP file. For example, you have jdbc_orai18n_cs.zip
, the command that displays the information and the displayed information is as follows:
The limitation to the number of character sets that can be specified depends on that of the shell or command prompt of the operating system. It is certified that all supported character sets can be specified with the command.
Note: If you are using a custom character set, then you need to perform the following so that JDBC supports the custom character set:
For more information about creating a custom character set, refer to Oracle Database Globalization Support Guide. |
By default, the oracle.jdbc.OraclePreparedStatement
interface treats the data type of all the columns in the same way as they are encoded in the database character set. However, since Oracle Database 10g, if you set the value of oracle.jdbc.defaultNChar
system property to true
, then JDBC treats all character columns as being national-language.
The default value of defaultNChar
is false. If the value of defaultNChar
is false, then you must call the setFormOfUse(<column_Index>, OraclePreparedStatement.FORM_NCHAR)
method for those columns that specifically need national-language characters. For example:
If you want to set the value of defaultNChar
to true
, then specify the following at the command-line:
If you prefer, then you can also specify defaultNChar
as a connection property and access NCHAR
, NVARCHAR2
, or NCLOB
data.
If the value of defaultNChar
is true
, then you should call the setFormOfUse(<column_Index>, OraclePreparedStatement.FORM_CHAR)
for columns that do not need national-language characters. For example:
Note:
|
Note: In Oracle Database, SQL strings are converted to the database character set. Therefore you need to keep in mind the following:
|
JDBC 4.0 introduces support for the following four additional SQL types to access the national character set types:
NCHAR
NVARCHAR
LONGNVARCHAR
NCLOB
These types are similar to the CHAR
, VARCHAR
, LONGVARCHAR
, and CLOB
types, except that the values are encoded using the national character set. The JDBC specification uses the String
class to represent NCHAR
, NVARCHAR
, and LONGNVARCHAR
data, and the NClob
class to represent NCLOB
values.
To retrieve a national character value, an application calls one of the following methods:
getNString
getNClob
getNCharacterStream
getObject
To specify a value for a parameter marker of national character type, an application calls one of the following methods:
Note: You can use thesetFormOfUse method to specify a national character value in JDK 1.6. But this practice is discouraged because this method will be deprecated in future release. So, Oracle recommends you to use the methods disucssed in this section. |
setNString
setNCharacterStream
setNClob
setObject
Tip: If thesetObject method is used, then the target data type must be specified as Types.NCHAR , Types.NCLOB , Types.NVARCHAR , or Types.LONGNVARCHAR . |
This part consists of chapters that discuss the Oracle Java Database Connectivity (JDBC) features that enhance performance, such as Statement caching, implicit connection caching, run-time connection load balancing, and Oracle Call Interface (OCI) connection pooling. It also includes a chapter that provides information about Oracle performance extensions, such as update batching and row prefetching.
Part V contains the following chapters:
This chapter describes the benefits and use of Statement caching, an Oracle Java Database Connectivity (JDBC) extension.
This chapter contains the following sections:
Note: In Oracle9i Database 9.2.0 and later Releases, Oracle JDBC provides a new Statement cache interface and implementation, replacing the application programming interface (API) supported in Oracle9i Database release 1 (9.0.1). The previous API is now deprecated. |
Statement caching improves performance by caching executable statements that are used repeatedly, such as in a loop or in a method that is called repeatedly. Starting from JDBC 3.0, JDBC standards define a statement-caching interface.
Statement caching can do the following:
This section covers the following topics:
Note: Oracle strongly recommends you use the implicit Statement cache. Oracle JDBC drivers are designed on the assumption that the implicit Statement cache is enabled. So, not using the Statement cache will have a negative impact on performance. |
Applications use the Statement cache to cache statements associated with a particular physical connection. The cache is associated with an OracleConnection
object. OracleConnection
includes methods to enable Statement caching. When you enable Statement caching, a statement object is cached when you call the close
method.
Because each physical connection has its own cache, multiple caches can exist if you enable Statement caching for multiple physical connections. When you enable Statement caching on a connection cache, the logical connections benefit from the Statement caching that is enabled on the underlying physical connection. If you try to enable Statement caching on a logical connection held by a connection cache, then this will throw an exception.
There are two types of Statement caching: implicit and explicit. Each type of Statement cache can be enabled or disabled independent of the other. You can have either, neither, or both in effect. Both types of Statement caching share a single cache per connection.
When you enable implicit Statement caching, JDBC automatically caches the prepared or callable statement when you call the close
method of this statement object. The prepared and callable statements are cached and retrieved using standard connection object and statement object methods.
Plain statements are not implicitly cached, because implicit Statement caching uses a SQL string as a key and plain statements are created without a SQL string. Therefore, implicit Statement caching applies only to the OraclePreparedStatement
and OracleCallableStatement
objects, which are created with a SQL string. You cannot use implicit Statement caching with OracleStatement
. When you create an OraclePreparedStatement
or OracleCallableStatement
, the JDBC driver automatically searches the cache for a matching statement. The match criteria are the following:
If a match is found during the cache search, then the cached statement is returned. If a match is not found, then a new statement is created and returned. In either case, the statement, along with its cursor and state are cached when you call the close
method of the statement object.
When a cached OraclePreparedStatement
or OracleCallableStatement
object is retrieved, the state and data information are automatically reinitialized and reset to default values, while metadata is saved. Statements are removed from the cache to conform to the maximum size using a Least Recently Used (LRU) algorithm.
Note: The JDBC driver does not clear metadata. However, although metadata is saved for performance reasons, it has no semantic impact. A statement that comes from the implicit cache appears as if it were newly created. |
You can prevent a particular statement from being implicitly cached.
Explicit Statement caching enables you to cache and retrieve selected prepared and callable statements. Explicit Statement caching relies on a key, an arbitrary Java String
that you provide.
Note: Plain statements cannot be cached. |
Because explicit Statement caching retains statement data and state as well as metadata, it has a performance edge over implicit Statement caching, which retains only metadata. However, you must be cautious when using this type of caching, because explicit Statement caching saves all three types of information for reuse and you may not be aware of what data and state are retained from prior use of the statements.
Implicit and explicit Statement caching can be differentiated on the following points:
In the case of implicit Statement caching, you take no special action to retrieve statements from a cache. Instead, whenever you call prepareStatement
or prepareCall
, JDBC automatically checks the cache for a matching statement and returns it if found. However, in the case of explicit Statement caching, you use specialized Oracle WithKey methods to cache and retrieve statement objects.
Implicit Statement caching uses the SQL string of a prepared or callable statement as the key, requiring no action on your part. In contrast, explicit Statement caching requires you to provide a Java String
, which it uses as the key.
During implicit Statement caching, if the JDBC driver cannot find a statement in cache, then it will automatically create one. However, during explicit Statement caching, if the JDBC driver cannot find a matching statement in cache, then it will return a null
value.
Table 20-1 compares the different methods employed in implicit and explicit Statement caching.
This section discusses the following topics:
When using the OracleConnection
API, implicit and explicit Statement caching can be enabled or disabled independent of one other. You can have either, neither, or both in effect.
Enabling Implicit Statement Caching
Enable implicit Statement caching in one of the following two ways:
setImplicitCachingEnabled(true)
on the connection OracleDataSource.getConnection
with the ImplicitCachingEnabled
property set to true
. You set ImplicitCachingEnabled
by calling OracleDataSource.setImplicitCachingEnabled(true)
In addition to calling one of these methods, you also need to call OracleConnection.setStatementCacheSize
on the physical connection. The argument you supply is the maximum number of statements in the cache. An argument of 0
specifies no caching.
To determine whether implicit caching is enabled, call getImplicitCachingEnabled
, which returns true
if implicit caching is enabled, false
otherwise.
Note: Enabling Statement caching enables both implicit and explicit Statement caching. |
Disabling Implicit Statement Caching
Disable implicit Statement caching by calling setImplicitCachingEnabled(false)
on the connection or by setting the ImplicitCachingEnabled
property to false
.
Enabling Explicit Statement Caching
To enable explicit Statement caching you must first set the Statement cache size. For setting the cache size, call OracleConnection.setStatementCacheSize
method on the physical connection. The argument you supply is the maximum number of statements in the cache. An argument of 0
specifies no caching. To check the cache size, use the getStatementCacheSize
method in the following way:
The following code specifies a cache size of ten statements:
Enable explicit Statement caching by calling setExplicitCachingEnabled(true)
on the connection.
To determine whether explicit caching is enabled, call getExplicitCachingEnabled
, which returns true
if explicit caching is enabled, false
otherwise.
Note:
|
Disabling Explicit Statement Caching
Disable explicit Statement caching by calling setExplicitCachingEnabled(false)
. Disabling caching or closing the cache purges the cache. The following example disables explicit Statement caching:
Perform the following to close a Satement and assure that it is not returned to the cache:
close
method of the statement object Physically Closing a Cached Statement
With implicit Statement caching enabled, you cannot physically close statements manually. The close
method of a statement object caches the statement instead of closing it. The statement is physically closed automatically under one of following three conditions:
close
method on a statement for which Statement caching is disabled Once you enable implicit Statement caching, by default, all prepared and callable statements are automatically cached. Implicit Statement caching includes the following steps:
close
method. Allocating a Statement for Implicit Caching
To allocate a statement for implicit Statement caching, use either the prepareStatement
or prepareCall
method as you would typically.
The following code allocates a new statement object called pstmt
:
Disabling Implicit Statement Caching for a Particular Statement
With implicit Statement caching enabled for a connection, by default, all callable and prepared statements of that connection are automatically cached. To prevent a particular callable or prepared statement from being implicitly cached, use the setDisableStatementCaching
method of the statement object. You can manage cache space by calling the setDisableStatementCaching
method on any infrequently used statement.
The following code disables implicit Statement caching for pstmt
:
Note: If you are using JSE 6, then you can disable Statement caching by using the standard JDBC 4.0 methodsetPoolable : PreparedStatement.setPoolable(false); Use the following to check whether the Statement.isPoolable(); |
Implicitly Caching a Statement
To cache an allocated statement, call the close
method of the statement object. When you call the close
method on an OraclePreparedStatement
or OracleCallableStatement
object, the JDBC driver automatically puts this statement in cache, unless you have disabled caching for this statement.
The following code caches the pstmt
statement:
Retrieving an Implicitly Cached Statement
To retrieve an implicitly cached statement, call either the prepareStatement
or prepareCall
method, depending on the statement type.
The following code retrieves pstmt
from cache using the prepareStatement
method:
Table 20-2 describes the methods used to allocate statements and retrieve implicitly cached statements.
Table 20-2 Methods Used in Statement Allocation and Implicit Statement Caching
Method | Functionality for Implicit Statement Caching |
---|---|
Performs a cache search that either finds and returns the desired cached | |
Performs a cache search that either finds and returns the desired cached |
A prepared or callable statement can be explicitly cached when you enable explicit Statement caching. Explicit Statement caching includes the following steps:
closeWithKey
method. closeWithKey
method. Each time a cached statement is closed, it is re-cached with its key. Allocating a Statement for Explicit Caching
To allocate a statement for explicit Statement caching, use either the createStatement
, prepareStatement
, or prepareCall
method as you would typically.
The following code allocates a new statement object called pstmt
:
Explicitly Caching a Statement
To explicitly cache an allocated statement, call the closeWithKey
method of the statement object, specifying a key. The key is an arbitrary Java String
that you provide. The closeWithKey
method caches a statement as is. This means the data, state, and metadata are retained and not cleared.
The following code caches the pstmt
statement with the key "mykey"
:
Retrieving an Explicitly Cached Statement
To recall an explicitly cached statement, call either the getStatementWithKey
or getCallWithKey
methods depending on the statement type.
If you retrieve a statement with a specified key, then the JDBC driver searches the cache for the statement, based on the specified key. If a match is found, then the matching statement is returned along with its state, data, and metadata. This information is as it was when the statement was last closed. If a match is not found, then the JDBC driver returns null
.
The following code recalls pstmt
from cache using the "mykey"
key with the getStatementWithKey
method. Recall that the pstmt
statement object was cached with the "mykey"
key.
If you call the creationState
method on the pstmt
statement object, then the method returns EXPLICIT
.
Important: When you retrieve an explicitly cached statement, ensure that you use the method that is appropriate for your statement type when specifying the key. For example, if you used theprepareStatement method to allocate a statement, then use the getStatementWithKey method to retrieve that statement from cache. The JDBC driver does not verify the type of statement it is returning. |
Table 20-3 describes the methods used to retrieve explicitly cached statements.
The JDBC 3.0 specification introduces the feature of statement pooling that allows an application to reuse a PreparedStatement
object in the same way as it uses a Connection
object. The PreparedStatement
objects can be reused by multiple logical connections in a transparent manner.
This section covers the following topics:
An application can find out whether a data source supports statement pooling by calling the isPoolable
method from the Statement
interface. If the return value is true
, then the application knows that the PreparedStatement
object is being pooled. The application can also request a statement to be pooled or not pooled by using the setPoolable
method from the Statement
interface.
Reusing of pooled statement should be completely transparent to the application, that is, the application code should remain the same whether a PreparedStatement
object participates in statement pooling or not. If an application closes a PreparedStatement
object, it must still call Connection.prepareStatement
method in order to reuse it.
Note: An application has no direct control over how statements are pooled. A pool of statements is associated with aPooledConnection object, whose behavior is determined by the properties of the ConnectionPoolDataSource object that produced it. |
An application closes a pooled statement exactly the same way it closes a nonpooled statement. Once a statement is closed, whether is it pooled or nonpooled, it is no longer available for use by the application and an attempt to reuse it causes an exception to be thrown. The only difference visible is that an application cannot directly close a physical statement that is being pooled. This is done by the pool manager. The method PooledConnection.closeAll
closes all of the statements open on a given physical connection, which releases the resources associated with those statements.
The following methods can close a pooled statement:
close
This java.sql.Statement
interface method is called by an application. If the statement is being pooled, then it closes the logical statement used by the application but does not close the physical statement being pooled.
close
This java.sql.Connection
interface method is called by an application. This method acts differently depending upon whether the connection using the statement is being pooled or not:
This method closes the physical connection and all statements created by that connection. This is necessary because the garbage collection mechanism is unable to detect when externally managed resources can be released.
This method closes the logical connection and the logical statements it returned, but leaves open the underlying PooledConnection
object and any associated pooled statements
PooledConnection.closeAll
This method is called by the connection pool manager to close all of the physical statements being pooled by the PooledConnection
object
Your applications sometime send repetitive queries to the database. To improve the response time of repetitive queries, results of queries, query fragments, and PL/SQL functions can be cached in memory. A result cache stores the results of queries shared across all sessions. When these queries are executed repeatedly, the results are retrieved directly from the cache memory.
You must annotate a query or query fragment with a result cache hint to indicate that results are to be stored in the query result cache.
The query result set can be cached in the following ways:
Oracle Database 11g Release 1 (11.1) provides support for server-side Result Set caching for both JDBC types. The server-side result cache is used to cache the results of the current queries, query fragments, and PL/SQL functions in memory and then to use the cached results in future executions of the query, query fragment, or PL/SQL function. The cached results reside in the result cache memory portion of the SGA. A cached result is automatically invalidated whenever a database object used in its creation is successfully modified. The server-side caching can be of the following two types:
See Also:
|
Oracle Database 11g Release 1 (11.1) introduces support for client result cache for JDBC OCI client. The client result cache improves performance of applications by caching query result sets in a way that subsequent query executions can access the cached result set without fetching rows from the server. This eliminates many round-trips to the server for cached results and reduces CPU usage. The client result cache transparently keeps the result set consistent with any session state or database changes that can affect the cached result sets. This allows significant improvements in response time for frequent client SQL query executions and for fetching rows. The scalability on the server is increased since it expends less CPU time.
Connection caching, generally implemented in the middle tier, is a means of keeping and using the cache of physical database connections.
Note: The previous cache architecture, based onOracleConnectionCache and OracleConnectionCacheImpl , is deprecated. Oracle recommends that you take advantage of the new architecture, which is more powerful and offers better performance. |
The implicit connection cache is an improved Java Database Connectivity (JDBC) 3.0-compliant connection cache implementation for DataSource
. Java and Java2 Platform, Enterprise Edition (J2EE) applications benefit from transparent access to the cache, support for multiple users, and the ability to request connections based on user-defined profiles.
An application turns the implicit connection cache on by calling setConnectionCachingEnabled(true)
on an OracleDataSource
. After implicit caching is turned on, the first connection request to the OracleDataSource
transparently creates a connection cache. There is no need for application developers to write their own cache implementations.
This chapter is divided into the following sections:
Note: The concept of connection caching is not relevant to the server-side internal driver, where you always use the default connection. Connection caching is relevant only to the client-side JDBC drivers and the server-side Thin driver. |
The connection cache uses the concept of physical connections and logical connections. Physical connections are the actual connections returned by the database and logical connections are containers used by the cache to manipulate physical connections. You can think of logical connections as handles. The caches always return logical connections, which implement the same interfaces as physical connections.
The implicit connection cache offers the following:
Both the JDBC Thin and JDBC Oracle Call Interface (OCI) drivers support the implicit connection cache.
After an application turns implicit caching on, it uses the standard OracleDataSource
application programming interfaces (APIs) to get connections. With caching enabled, all connection requests are serviced from the connection cache.
When an application calls the OracleConnection.close
method to close the logical connection, the physical connection is returned to the cache.
OracleDataSource
instance When connection caching is turned on, each cache-enabled OracleDataSource
has exactly one cache associated with it. All connections obtained through that data source, no matter what user name and password are used, are returned to the cache. When an application requests a connection from the data source, the cache either returns an existing connection or creates a new connection with matching authentication information.
Note: Caches cannot be shared betweenDataSource instances. There is a one-to-one mapping between cache-enabled DataSource instances and caches. |
Unlike the previous cache implementation, all connections obtained through the same data source are stored in a common cache, no matter what user name and password the connection requests.
Cache properties define the behavior of the cache. The supported properties set timeouts, the number of connections to be held in the cache, and so on. Using these properties, applications can reclaim and reuse abandoned connections. The implicit connection cache supports all the JDBC 3.0 connection cache properties.
The new OracleConnectionCacheManager
class provides a rich set of administrative APIs that applications can use to manage the connection cache. Each virtual machine has one distinguished instance of OracleConnectionCacheManager
. Applications manage a cache through the single OracleConnectionCacheManager
instance.
The implicit connection cache supports user-defined connection attributes that can be used to determine which connections are retrieved from the cache. Connection attributes can be thought of as labels whose semantics are defined by the application, not by the caching mechanism.
The implicit connection cache provides a mechanism for users to define cache behavior when a connection is returned to the cache, when handling abandoned connections, and when a connection is requested but none is available in the cache.
Implicit connection caching provides connect-time load balancing when a connection is first created by the application. The database listener distributes connection creation across Oracle Real Application Clusters instances that would perform the best at the time of connection creation.
Run-time connection load balancing of work requests uses Service Metrics to route work requests to an Oracle Real Application Clusters instance that offers the best performance. Selecting a connection from the cache based on service, to execute a work request, greatly increases the throughput and scalability.
This section discusses how applications use the implicit connection cache. It covers the following topics:
An application turns the implicit connection cache on by calling OracleDataSource.setConnectionCachingEnabled(true)
. After implicit caching is turned on, the first connection request to the OracleDataSource
class transparently creates a connection cache.
Example 21-1 provides a sample code that uses the implicit connection cache.
Example 21-1 Using the Implicit Connection Cache
After you have turned connection caching on, whenever you retrieve a connection through the OracleDataSource.getConnection
method, the JDBC drivers check to see if a connection is available in the cache.
The getConnection
method checks if there are any free physical connections in the cache that match the specified criteria. If a match is found, then a logical connection is returned, wrapping the physical connection. If no physical connection match is found, then a new physical connection is created, wrapped in a logical connection, and returned.
There are four variations on getConnection
, two that make no reference to the connection cache and two that specify which sort of connections the cache may return. The non-cache-specific getConnection
methods behave in the standard manner.
Note: When implicit connection cache is enabled, the connection returned byOracleDataSource.getConnection may not have the state reset. You must, therefore, reset all the connection states, such as auto-commit, batch size, prefetch size, transaction status, and transaction isolation, before putting the connection back into the cache. |
The ConnectionCacheName
property of OracleDataSource
is an optional property used by the Connection Cache Manager to manage a connection cache. You can set this property by calling the following method:
When this property is set, the name is used to uniquely identify the cache accessed by the cache-enabled OracleDataSource
. If the property is not set, then a default cache name is created using the convention DataSourceName#HexRepresentationOfNumberOfCaches
.
Note: ThegetConnectionCacheName() method will return the name of the connection cache only if the setConnectionCacheName method is called after the setConnectionCachingEnabled method is called. |
You can fine-tune the behavior of the implicit connection cache using the setConnectionCacheProperties
method to set various connection properties.
Note:
|
An application returns a connection to the cache by calling the close
method. There are two variants of the close
method: one with no arguments and one that takes a Connection
object as argument.
Note:
|
Example 21-2 demonstrates creating a data source, setting its caching and data source properties, retrieving a connection, and closing that connection in order to return it to the cache.
Example 21-2 Connection Cache Example
Each connection obtained from a data source can have user-defined attributes. Attributes are specified by the application developer and are java.lang.Properties
name and value pairs.
An application can use connection attributes to supply additional semantics to identify connections. For instance, an application may create an attribute named connection_type
and then assign it the value payroll
or inventory
.
Note: The semantics of connection attributes are entirely application-defined. The connection cache itself enforces no restrictions on the key or value of connection attributes. |
The methods that get and set connection attributes are found on the OracleConnection
interface. This section covers the following topics:
The first connection you retrieve has no attributes. You must set them. After you have set attributes on a connection, you can request the connection by specifying its attribute, using the specialized forms of the getConnection
method:
getConnection(java.util.Properties cachedConnectionAttributes
Requests a database connection that matches the specified cachedConnectionAttributes
.
getConnection(java.lang.String user, java.lang.String password, java.util.Properties cachedConnectionAttributes)
Requests a database connection from the implicit connection cache that matches the specified user
, password
and cachedConnectionAttributes
. If null values are passed for user
and password
, the DataSource
defaults are used.
Attribute Matching Rules
The rules for matching connectionAttributes
come in two variations:
In this variation, the cache is searched to retrieve the connection that matches the attributes. The connection search mechanism as follows:
ClosestConnectionMatch
data source property is set, then the connection with the closest match is returned. The closest matched connection is one that has the highest number of the original attributes matched. Note that the closest matched connection may match a subset of the original attributes, but does not have any attributes that are not part of the original list. For example, if the original list of attributes is A, B and C, then a closest match may have A and B set, but never a D. DataSource
. If getConnection(String, String, java.util.Properties)
is called, then the user name and password passed as arguments are used to open the new connection. In this variation, the attributes may be associated with weights. The connection search mechanism is similar to the basic connectionAttributes
based search, except that the connections are searched not only based on the connectionAttributes
, but also using a set of weights that are associated with the keys on the connectionAttributes
. These weights are assigned to the keys as a one-time operation and is supported as a connection cache property, AttributeWeights
.
An application sets connection attributes using the following:
No validation is done on connAttr
. Applying connection attributes is cumulative. Each time you call applyConnectionAttributes
, the connAttr
attribute you supply is added to those previously in force.
When an application requests a connection with specified attributes, it is possible that no match will be found in the connection cache. When this happens, the connection cache creates a connection with no attributes and returns it. The connection cache cannot create a connection with the requested attributes, because the Connection Cache manager is ignorant of the semantics of the attributes.
Note: If theclosestConnectionMatch property has been set, then the cache manager looks for close attribute matches rather than exact matches. |
For this reason, applications should always check the attributes of a returned connection. To do this, use the getUnMatchedConnectionAttributes
method, which returns a list of any attributes that were not matched in retrieving the connection. If the return value of this method is null
, you know that you must set all the connection attributes.
Example 21-3 illustrates using connection attributes.
Example 21-3 Using Connection Attributes
The connection cache properties govern the characteristics of a connection cache. This section lists the supported connection cache properties. It covers the following topics:
Applications set cache properties in one of the following ways:
OracleDataSource
method setConnectionCacheProperties
OracleConnectionCacheManager
OracleConnectionCacheManager
These properties control the size of the cache.
InitialLimit
Sets how many connections are created in the cache when it is created or reinitialized. When this property is set to an integer value greater than 0, creating or reinitializing the cache automatically creates the specified number of connections, filling the cache in advance of need.
Default: 0
MaxLimit
Sets the maximum number of connection instances the cache can hold. The default value is Integer.MAX_VALUE
, meaning that there is no limit enforced by the connection cache, so that the number of connections is limited only by the number of database sessions configured for the database.
Default: Integer.MAX_VALUE
(no limit)
Note: If the number of concurrent connections exceeds the maximum number of sessions configured at the database server, then you will getORA-00018 error. To avoid this error, you must set a value for the MaxLimit property. This value should be less than the value of the SESSIONS parameter configured for the database server. |
MaxStatementsLimit
Sets the maximum number of statements that a connection keeps open. When a cache has this property set, reinitializing the cache or closing the data source automatically closes all cursors beyond the specified MaxStatementsLimit
.
Default: 0
MinLimit
Sets the minimum number of connections the cache maintains.
Default: 0
Note:
|
These properties control the lifetime of an element in the cache.
InactivityTimeout
Sets the maximum time a physical connection can remain idle in a connection cache. An idle connection is one that is not active and does not have a logical handle associated with it. When InactivityTimeout
expires, the underlying physical connection is closed. However, the size of the cache is not allowed to shrink below minLimit
, if it has been set.
Default: 0 (no timeout in effect)
TimeToLiveTimeout
Sets the maximum time in seconds that a logical connection can remain open. When TimeToLiveTimeout
expires, the logical connection is unconditionally closed, the relevant statement handles are canceled, and the underlying physical connection is returned to the cache for reuse.
Default: 0 (no timeout in effect)
AbandonedConnectionTimeout
Sets the maximum time that a connection can remain unused before the connection is closed and returned to the cache. A connection is considered unused if it has not had SQL database activity.
When AbandonedConnectionTimeout
is set, JDBC monitors SQL database activity on each logical connection. For example, when stmt.execute
is called on the connection, a heartbeat is registered to convey that this connection is active. The heartbeats are set at each database execution. If a connection has been inactive for the specified amount of time, the underlying connection is reclaimed and returned to the cache for reuse.
Default: 0 (no timeout in effect)
PropertyCheckInterval
Sets the time interval at which the Connection Cache Manager inspects and enforces all specified cache properties. PropertyCheckInterval
is set in seconds.
Default: 900 seconds
These properties control miscellaneous cache behavior.
AttributeWeights
AttributeWeights
sets the weight for each attribute set on the connection.
ClosestConnectionMatch
ClosestConnectionMatch
causes the connection cache to retrieve the connection with the closest approximation to the specified connection attributes.
ConnectionWaitTimeout
Specifies cache behavior when a connection is requested and there are already MaxLimit connections active. If ConnectionWaitTimeout
is equal to zero, then each connection request waits for zero seconds, that is, null
connection is returned immediately. If ConnectionWaitTimeout
is greater than zero, then each connection request waits for the specified number of seconds or until a connection is returned to the cache. If no connection is returned to the cache before the timeout elapses, then the connection request returns null
.
Default: zero
LowerThresholdLimit
Sets the lower threshold limit on the cache. The default is 20 percent of the MaxLimit
on the connection cache. This property is used whenever a releaseConnection(
) cache callback method is registered.
ValidateConnection
Setting ValidateConnection
to true
causes the connection cache to test every connection it retrieves against the underlying database. If a valid connection cannot be retrieved, then an exception is thrown.
Default: false
Example 21-4 demonstrates how an application uses connection properties.
Example 21-4 Using Connection Properties
OracleConnectionCacheManager
provides administrative APIs that the middle tier can use to manage available connection caches. This section provides an example of using the Connection Cache Manager.
Example of ConnectionCacheManager Use
Example 21-5 demonstrates the OracleConnectionCacheManager
interface.
Example 21-5 Connection Cache Manager Example
This section discusses cache functionality that is useful for advanced users, but is not essential to understanding or using the implicit connection cache. This section covers the following topics:
There are two connection cache properties that enable the developer to specify which connections in the connection cache are accepted in response to a getConnection
request. When you set the ClosestConnectionMatch
property to true
, you are telling the Connection Cache Manager to return connections that match only some of the attributes you have specified.
If you do not specify attributeWeights
, then the Connection Cache Manager returns the connection that matches the highest number of attributes. If you specify attributeWeights
, then you can control the priority the manager uses in matching attributes.
ClosestConnectionMatch
Setting ClosestConnectionMatch
to true
causes the connection cache to retrieve the connection with the closest approximation to the specified connection attributes. This can be used in combination with AttributeWeights
to specify what is considered a closest match.
Default: false
AttributeWeights
Sets the weights for each connectionAttribute
. This property is used when ClosestConnectionMatch
is set to true
to determine which attributes are given highest priority when searching for matches. An attribute with a high weight is given more importance in determining a match than an attribute with a low weight.
AttributeWeights
contains a set of String
s representing key-value pairs. Each key/value pair sets the weights for each connectionAttribute
for which the user intends to request a connection. Each String
is in the format written by the java.util.Properties.Store(OutputStream, String)
method, and thus can be read by the java.util.Properties.load(InputStream)
method. The Key
is a connectionAttribute
and the Value
is the weight. A weight must be an integer value greater than 0. The default weight is 1.
For example, TRANSACTION_ISOLATION
could be assigned a weight of 10 and ROLE
a weight of 5. If ClosestConnectionMatch
is set to true
, when a connectionAttribute
based connection request is made on the cache, connections with a matching TRANSACTION_ISOLATION
will be favored over connections with a matching ROLE
.
Default: No AttributeWeights
The implicit connection cache offers a way for the application to specify callbacks to be called by the connection cache. Callback methods are supported with the OracleConnectionCacheCallback
interface. This callback mechanism is useful to take advantage of the special knowledge of the application about particular connections, supplementing the default behavior when handling abandoned connections or when the cache is empty.
OracleConnectionCacheCallback
is an interface that must be implemented by the user and registered with OracleConnection
. The registration API is as follows:
In this interface, cbk
is the user implementation of the OracleConnectionCacheCallback
interface. The usrObj
parameter contains any parameters that the user wants supplied. This user object is passed back, unmodified, when the callback method is called. The cbkflag
parameter specifies which callback method should be called. It must be one of the following values:
OracleConnection.ABANDONED_CONNECTION_CALLBACK
OracleConnection.RELEASE_CONNECTION_CALLBACK
OracleConnection.ALL_CALLBACKS
When ALL_CALLBACKS
is set, all the connection cache callback methods are called. For example,
An application can register a ConnectionCacheCallback
on an OracleConnection
. When a callback is registered, the connection cache calls the handleAbandonedConnection
method of the callback before reclaiming the connection. If the callback returns true
, then the connection is reclaimed. If the callback returns false
, then the connection remains active.
The UserConnectionCacheCallback
interface supports two callback methods to be implemented by the user, releaseConnection
and handleAbandonedConnection
.
The following are the use cases for the TimeToLiveTimeout
and AbandonedConnectionTimeout
timeout mechanisms when used with implicit connection cache. Note that these timeout mechanisms are applicable to the logical connection when it is retrieved from the connection cache.
When the connections are stateless, either of the timeout mechanisms can be used. The connections for which the timeout expires are put back into the connection cache for reuse. These connections are valid for reuse because there is no session state associated with them.
In this case, TimeToLiveTimeout
cannot be used. There is no way for the connection cache to ensure that a connection returned to the cache is in a reusable condition.However, AbandonedConnectionTimeout
can be used in this scenario, only if OracleConnectionCacheCallback
is registered on the connection. The handleAbandonedConnection
callback method is implemented by the application and ensures that the necessary cleanup is done. The connection is closed when the timeout processing invokes this callback method. The closing of this connection by the callback method causes the connection to be put back into the connection cache in a state where it is reusable.
Note: Do not to close the connection after calling handleAbandonedConnection method because the connection could be in an invalid state. JDBC internally knows how to reclaim a connection even when it is in an invalid state. |
The use of either of the timeout mechanisms is not recommended.
Oracle Database 11g provides the run-time connection load balancing feature. This chapter contains the following sections:
In an Oracle Real Application Clusters environment, a connection could belong to any instance that provides the relevant service. In the best case, all instances perform equally well and randomly retrieving a connection from the cache is appropriate. However, when one instance performs better than others, random selection of a connection is inefficient. The run-time connection load balancing feature enables routing of work requests to an instance that offers the best performance, minimizing the need to relocate work.
Figure 22-1 illustrates run-time connection load balancing. When run-time connection load balancing is enabled on the implicit connection cache, the following steps occur:
getConnection
method on the DataSource
object. Connection retrieval based on the load balancing advisory is automatic. A request for a connection is serviced by selecting a connection based on the service goal as determined by the Load Balancing Advisory. The service goal determines whether the connection provides best service quality, that is, how efficiently a single transaction completes, or best throughput, that is, how efficiently an entire job or long-running query completes. The advisory is used by the connection cache as long as the events are posted by Oracle Real Application Clusters. When the events stop arriving, the connection cache reverts to random retrieval of connections from the cache.
Run-time connection load balancing relies on the Oracle Notification Service (ONS) infrastructure. It uses the same out-of-band ONS event mechanism that is used for Fast Connection Failover processing. As a result, run-time connection load balancing is enabled by default when Fast Connection Failover is enabled. There is no additional setup or configuration of ONS required to benefit from run-time connection load balancing.
To enable and use run-time connection load balancing, you must configure the Oracle Real Application Clusters database in the following manner:
SHORT
. These goals must be set when calling dbms_service.create_service
or dbms_service.modify_service
. The service goal can be set using the goal
parameter, and the connection balancing goal can be set using the clb_goal
parameter.
Note: You can set the connection balancing goal toLONG . However, this is mostly useful for closed workloads, that is, when the rate of completing work is equal to the rate of starting new work. |
This chapter describes the Oracle performance extensions to the Java Database Connectivity (JDBC) standard.
This chapter covers the following topics:
You can reduce the number of round-trips to the database, thereby improving application performance, by grouping multiple UPDATE
, DELETE
, or INSERT
statements into a single batch and having the whole batch sent to the database and processed in one trip. This is referred to as update batching.
Note: The JDBC 2.0 specification refers to update batching as batch updates. |
This is especially useful with prepared statements, when you are repeating the same statement with different bind variables.
Oracle JDBC supports two distinct models for update batching:
Note: It is important to be aware that you cannot mix these models. In any single application, you can use one model or the other, but not both. Oracle JDBC driver will throw exceptions when you mix these. |
This section covers the following topics:
This section compares and contrasts the general models and types of statements supported for standard update batching and Oracle update batching.
Oracle Model Versus Standard Model
Oracle update batching uses a batch value that typically results in implicit processing of a batch. The batch value is the number of operations you want to add to a batch for each trip to the database. As soon as that many operations have been added to the batch, the batch is processed. Note the following:
Standard update batching is a manual, explicit model. There is no batch value. You manually add operations to the batch, and then, explicitly choose when to process the batch.
Oracle update batching is a more efficient model because the driver knows ahead of time how many operations will be batched. In this sense, the Oracle model is more static and predictable. With the standard model, the driver has no way of knowing in advance how many operations will be batched. In this sense, the standard model is more dynamic in nature.
If you want to use update batching, then you can choose between the two models on the basis of the following:
As implemented by Oracle, update batching is intended for use with prepared statements, when you are repeating the same statement with different bind variables. Be aware of the following:
OUT
parameters, and generic statements, as well as prepared statements. You can migrate standard update batching into an Oracle JDBC application without difficulty. UPDATE
, INSERT
, or DELETE
operations. Processing a batch that includes an operation that attempts to return a result set will cause an exception. Note: The Oracle implementation of standard update batching does not implement true batching for generic statements and callable statements. Although Oracle JDBC supports the use of standard batching syntax forStatement and CallableStatement objects, you will see performance improvement for only PreparedStatement objects. |
The Oracle update batching feature associates a batch value with each prepared statement object. With Oracle update batching, instead of the JDBC driver running a prepared statement each time the executeUpdate
method is called, the driver adds the statement to a batch of accumulated processing requests. The driver will pass all the operations to the database for processing once the batch value is reached. For example, if the batch value is 10, then each batch of 10 operations will be sent to the database and processed in one trip.
A method in the OracleConnection
class enables you to set a default batch value for the Oracle connection as a whole, and this batch value applies to any Oracle prepared statement in the connection. For any particular Oracle prepared statement, a method in the OraclePreparedStatement
class enables you to set a statement batch value that overrides the connection batch value. You can also override both batch values by choosing to manually process the pending batch.
Note the following limitations and implementation details regarding Oracle update batching:
sendBatch
method of an Oracle prepared statement in any of the following circumstances: COMMIT
request, either as a result of calling the commit
method or as a result of auto-commit mode. close
request. close
request. Note: A connectionCOMMIT request, statement close, or connection close has an effect on a pending batch only if you use Oracle update batching. However, if you use standard update batching, then it has no effect on a pending batch. |
ROLLBACK
request before sendBatch
has been called, then the pending batched operations are not removed. You must explicitly call clearBatch
to do this. You can specify a default batch value for any Oracle prepared statement in your Oracle connection. To do this, use the setDefaultExecuteBatch
method of the OracleConnection
object. For example, the following code sets the default batch value to 20 for all prepared statement objects associated with the conn
connection object:
Even though this sets the default batch value for all the prepared statements of the connection, you can override it by calling the setExecuteBatch
method of the oracle.jdbc.OraclePreparedStatement
interface on individual Oracle prepared statements.
The connection batch value will apply to statement objects created after this batch value was set.
Note that instead of calling the setDefaultExecuteBatch
method, you can set the defaultBatchValue
Java property if you use a Java Properties
object in establishing the connection.
Use the following steps to set the statement batch value for a particular Oracle prepared statement. This will override any connection batch value set using the setDefaultExecuteBatch
method of the OracleConnection
instance for the connection in which the statement is processed.
OraclePreparedStatement
, and apply the setExecuteBatch
method. In this example, the batch size of the statement is set to 2. If you wish, insert the getExecuteBatch
method at any point in the program to check the default batch value for the statement, as follows:
executeUpdate
will be equal to the batch value of 2. The data will be sent to the database, and both rows will be inserted in a single round-trip. To check the overall connection batch value of an Oracle connection instance, use the OracleConnection
class getDefaultExecuteBatch
method:
To check the particular statement batch value of an Oracle prepared statement, use the OraclePreparedStatement
class getExecuteBatch
method:
Note: If no statement batch value has been set, thengetExecuteBatch will return the connection batch value. |
If you want to process accumulated operations before the batch value in effect is reached, then use the sendBatch
method of the OraclePreparedStatement
object.
For this example, presume you set the connection batch value to 20. This sets the default batch value for all prepared statement objects associated with the connection to 20. You can accomplish this by casting your connection to OracleConnection
and applying the setDefaultExecuteBatch
method for the connection, as follows:
Override the batch value as follows:
The batch is not processed at this point. The ps.executeUpdate
method returns 0
.
executeUpdate
again, then the data will still not be sent to the database, because the batch value in effect for the statement is the connection batch value, which is 20
. Note that the value of rows
in the println
statement is 0
.
sendBatch
method at this point, then the two previously batched operations will be sent to the database in a single round-trip. The sendBatch
method also returns the total number of updated rows. This property of sendBatch
is used by println
to print the number of updated rows. After you process the batch, you must still commit the changes, presuming auto-commit is disabled as recommended.
Calling commit
on the connection object in Oracle batching not only commits operations in batches that have been processed, but also issues an implicit sendBatch
call to process all pending batches. So commit
effectively commits changes for all operations that have been added to a batch.
In a nonbatching situation, the executeUpdate
method of an OraclePreparedStatement
object will return the number of database rows affected by the operation.
In an Oracle batching situation, this method returns the number of rows affected at the time the method is invoked, as follows:
executeUpdate
call results in the operation being added to the batch, then the method returns a value of 0, because nothing was written to the database yet. executeUpdate
call results in the batch value being reached and the batch being processed, then the method will return the total number of rows affected by all operations in the batch. Similarly, the sendBatch
method of an OraclePreparedStatement
object returns the total number of rows affected by all operations in the batch.
Example 23-1 illustrates the use of Oracle update batching.
Example 23-1 Oracle Update Batching
The following example illustrates how you use the Oracle update batching feature. It assumes you have imported the oracle.driver.*
interfaces.
Note: Updates deferred through batching can affect the results of other queries. In the following example, if the first query is deferred due to batching, then the second will return unexpected results:UPDATE emp SET name = "Sue" WHERE name = "Bob"; SELECT name FROM emp WHERE name = "Sue"; |
If any one of the batched operations fails to complete successfully or attempts to return a result set during an executeBatch
call, then the processing stops and a java.sql.BatchUpdateException
is generated.
If the exception is raised, you can call the getUpdateCounts
method on the BatchUpdateException
object to retrieve the update count. This method returns an int
array of update counts, just as the executeBatch
method does.
In Oracle Database 11g Release 1 (11.1), the integer array returned contains n Statement.EXECUTE_FAILED
entries, where n is the size of the batch. However, this does not indicate where in the batch the error occurred. The only option you have is to roll back the transaction.
In Oracle Database 11g Release 1 (11.1), the integer array returned contains n Statement.SUCCESS_NO_INFO
entries, where n is the number of elements in the batch that have been successfully executed.
Note: The execution of the batch always stops with the first element of the batch that generates an error. |
Oracle implements the standard update batching model according to the JDBC 2.0 specification.
This model, unlike the Oracle update batching model, depends on explicitly adding statements to the batch using an addBatch
method and explicitly processing the batch using an executeBatch
method. In the Oracle model, you call executeUpdate
as in a nonbatching situation, but whether an operation is added to the batch or the whole batch is processed is typically determined implicitly, depending on whether or not a predetermined batch value is reached.
Note:
|
This section discusses the limitations and implementation details regarding the Oracle implementation of standard update batching.
In Oracle JDBC applications, update batching is intended for use with prepared statements that are being processed repeatedly with different sets of bind values.
The Oracle implementation of standard update batching does not implement true batching for generic statements and callable statements. Even though Oracle JDBC supports the use of standard batching for Statement
and CallableStatement
objects, you are unlikely to see performance improvement.
When any statement object is first created, its statement batch is empty. Use the standard addBatch
method to add an operation to the statement batch. This method is specified in the standard java.sql.Statement
, PreparedStatement
, and CallableStatement
interfaces, which are implemented by the oracle.jdbc.OracleStatement
, OraclePreparedStatement
, and OracleCallableStatement
interfaces, respectively.
For a Statement
object, the addBatch
method takes a Java String
with a SQL operation as input. For example:
At this point, three operations are in the batch.
Note: Remember, however, that in the Oracle implementation of standard update batching, you will probably see no performance improvement in batching generic statements. |
For prepared statements, update batching is used to batch multiple runs of the same statement with different sets of bind parameters. For a PreparedStatement
or OraclePreparedStatement
object, the addBatch
method takes no input. It simply adds the operation to the batch using the bind parameters last set by the appropriate set
XXX
methods. This is also true for CallableStatement
or OracleCallableStatement
objects, but remember that in the Oracle implementation of standard update batching, you will probably see no performance improvement in batching callable statements.
For example:
At this point, two operations are in the batch.
Because a batch is associated with a single prepared statement object, you can batch only repeated runs of a single prepared statement, as in this example.
To process the current batch of operations, use the executeBatch
method of the statement object. This method is specified in the standard Statement
interface, which is extended by the standard PreparedStatement
and CallableStatement
interfaces.
Following is an example that repeats the prepared statement addBatch
calls shown previously and then processes the batch:
Starting from Oracle Database 11g Release 1 (11.1), the executeBatch
method has been improved so that when an error occurs in the middle of the batch execution, the BatchUpdateExecution
exception that is thrown contains the position of the error in the batch. The BatchUpdateExecution.getUpdateCounts
method returns an array of int
containing the update counts for the updates that were executed successfully before this error occurred. So if an error occurs in the 5th element of the batch, then the size of the array returned is 4 and each value is Statement.SUCCESS_NO_INFO.
After you process the batch, you must still commit the changes, presuming auto-commit is disabled as recommended.
Calling commit
, commits nonbatched operations and batched operations for statement batches that have been processed, but for the Oracle implementation of standard batching, has no effect on pending statement batches that have not been processed.
To clear the current batch of operations instead of processing it, use the clearBatch
method of the statement object. This method is specified in the standard Statement
interface, which is extended by the standard PreparedStatement
and CallableStatement
interfaces.
Keep the following things in mind:
addBatch
, you must call either executeBatch
or clearBatch
before a call to executeUpdate
, otherwise there will be a SQL exception. clearBatch
or executeBatch
call resets the statement batch to empty. ROLLBACK
request. You must explicitly call clearBatch
to reset it. Note:
|
clearBatch
method after a rollback works for all releases. executeBatch
call closes the current result set of the statement object, if one exists. clearBatch
method. Following is an example that repeats the prepared statement addBatch
calls shown previously but then clears the batch under certain circumstances:
If a statement batch is processed successfully, then the integer array, or update counts array, returned by the statement executeBatch
call will always have one element for each operation in the batch. In the Oracle implementation of standard update batching, the values of the array elements are as follows:
-2
. According to the JDBC 2.0 specification, a value of -2
indicates that the operation was successful but the number of rows affected is unknown. 1
as the update count, irrespective of the number rows affected by each operation. In your code, upon successful processing of a batch, you should be prepared to handle either -2
, 1
, or true update counts in the array elements. For a successful batch processing, the array contains either all -2
, 1, or all positive integers.
Example 23-2 illustrates the use of standard update batching.
Example 23-2 Standard Update Batching
This example combines the sample fragments in the previous sections, accomplishing the following steps:
You can process the update counts array to determine if the batch processed successfully.
If any one of the batched operations fails to complete successfully or attempts to return a result set during an executeBatch
call, then the processing stops and a java.sql.BatchUpdateException
is generated.
After a batch exception, the update counts array can be retrieved using the getUpdateCounts
method of the BatchUpdateException
object. This returns an int
array of update counts, just as the executeBatch
method does. In the Oracle implementation of standard update batching, contents of the update counts array are as follows, after a batch is processed:
-3
. According to the JDBC 2.0 specification, a value of -3
indicates that an operation did not complete successfully. In this case, it was presumably just one operation that actually failed, but because the JDBC driver does not know which operation that was, it labels all the batched operations as failures. You should always perform a ROLLBACK
operation in this situation.
For example, if there were 20 operations in the batch, the first 13 succeeded, and the 14th generated an exception, then the update counts array will have 13 elements, containing actual update counts of the successful operations.
You can either commit or roll back the successful operations in this situation, as you prefer.
In your code, upon failed processing of a batch, you should be prepared to handle either -3
or true update counts in the array elements when an exception occurs. For a failed batch processing, you will have either a full array of -3
or a partial array of positive integers.
You cannot call executeUpdate
for regular, nonbatched processing of an operation if the statement object has a pending batch of operations.
However, you can intermix batched operations and nonbatched operations in a single statement object if you process nonbatched operations either prior to adding any operations to the statement batch or after processing the batch. Essentially, you can call executeUpdate
for a statement object only when its update batch is empty. If the batch is non-empty, then an exception will be generated.
For example, it is valid to have a sequence, such as the following:
Intermixing nonbatched operations on one statement object and batched operations on another statement object within your code is permissible. Different statement objects are independent of each other with regard to update batching operations. A COMMIT
request will affect all nonbatched operations and all successful operations in processed batches, but will not affect any pending batches.
Premature batch flush happens due to a change in cached metadata. Cached metadata can be changed due to various reasons, such as the following:
The premature batch flush count is summed to the return value of the next executeUpdate
or sendBatch
method.
The old functionality lost all these batch flush values which can be obtained now. To switch back to the old functionality, you can set the AccumulateBatchResult
property to false
, as follows:
Note: TheAccumulateBatchResult property is set to true by default. |
Example 23-3 illustrates premature batch flushing.
Example 23-3 Premature Batch Flushing
In addition to update batching, Oracle JDBC drivers support the following extensions that improve performance by reducing round-trips to the database:
This reduces round-trips to the database by fetching multiple rows of data each time data is fetched. The extra data is stored in client-side buffers for later access by the client. The number of rows to prefetch can be set as desired.
This avoids an inefficiency in the standard JDBC protocol for performing and returning the results of queries.
TABLE_REMARKS
columns This avoids an expensive outer join operation.
Oracle provides several extensions to connection properties objects to support these performance extensions. These extensions enable you to set the remarksReporting
flag and default values for row prefetching and update batching.
This section covers the following topics:
There is no maximum prefetch setting. The default value is 10. Larger or smaller values may be appropriate depending on the number of rows and columns expected from the query. You can set the default connection row-prefetch value using a Properties
object.
When a statement object is created, it receives the default row-prefetch setting from the associated connection. Subsequent changes to the default connection row-prefetch setting will have no effect on the statement row-prefetch setting.
If a column of a result set is of data type LONG
, LONG RAW
or LOB
s returned through the data interface, that is, the streaming types, then JDBC changes the statement row-prefetch setting to 1, even if you never actually read a value of either of these types.
Setting the prefetch size can affect the performance of an application. Increasing the prefetch size will reduce the number of round-trips required to get all the data, but will increase memory usage. This will depend on the number and size of the columns in the query and the number of rows expected to be returned. It will also depend on the memory and CPU loading of the JDBC client machine. The optimum for a standalone client application will be different from a heavily loaded application server. Please consider also the speed and latency of the network connection.
Note: Starting from Oracle Database 11g Release 1 (11.1), the Thin driver can fetch the firstprefetch_size number of rows from the server in the very first roundtrip. This saves one round-trip in select statements. |
If you are migrating an application from earlier releases of Oracle JDBC drivers to 10g Release 1 (10.1) or later releases of Oracle JDBC drivers, then you should revisit the optimizations that you had done earlier, because the memory usage and performance characteristics may have changed substantially.
A common situation that you may encounter is, say, you have a query that selects a unique key. The query will return only zero or one row. Setting the prefetch size to 1 will decrease memory and CPU usage and cannot increase round-trips. However, you must be careful to avoid the error of requesting an extra fetch by writing while(rs.next())
instead of if(rs.next())
.
If you are using the JDBC Thin driver, then in the case where only zero or one row is expected, use the useFetchSizeWithLongColumn
connection property, because it will perform PARSE
, EXECUTE
, and FETCH
in a single round-trip.
Tuning of the prefetch size should be done along with tuning of memory management in your JVM under realistic loads of the actual application.
Note:
|
The implementation of defineColumnType
changed significantly in Oracle Database 10g. Previously, defineColumnType
was used both as a performance optimization and to force data type conversion. In previous releases, all of the drivers benefited from calls to defineColumnType
. Starting from Oracle Database 10g, the JDBC Thin driver no longer needs the information provided. The JDBC Thin driver achieves maximum performance without calls to defineColumnType
. The JDBC Oracle Call Interface (OCI) and server-side internal drivers still get better performance when the application uses defineColumnType
.
If your code is used with both the JDBC Thin and OCI drivers, you can disable the defineColumnType
method when using the Thin driver by setting the connection property disableDefineColumnType
to true
. Doing this makes defineColumnType
have no effect. Do not set this connection property to true
when using the JDBC OCI or server-side internal drivers.
You can also use defineColumnType
to control how much memory the client-side allocates or to limit the size of variable-length data.
Follow these general steps to define column types for a query:
OracleStatement
, OraclePreparedStatement
, or OracleCallableStatement
, as applicable. clearDefines
method of your Statement
object to clear any previous column definitions for this Statement
object. defineColumnType
method of your Statement
object, passing it these parameters: Use the static
constants of the java.sql.Types
class or oracle.jdbc.OracleTypes
class, such as Types.INTEGER
, Types.FLOAT
, Types.VARCHAR
, OracleTypes.VARCHAR
, and OracleTypes.ROWID
. Type codes for standard types are identical in these two classes.
For structured objects, object references, and arrays, you must also specify the type name. For example, Employee
, EmployeeRef
, or EmployeeArray
.
Optionally specify a maximum data length for this column.
You cannot specify a maximum field size parameter if you are defining the column type for a structured object, object reference, or array. If you try to include this parameter, it will be ignored.
Optionally specify a form of use for the column. This can be OraclePreparedStatement.FORM_CHAR
to use the database character set or OraclePreparedStatement.FORM_NCHAR
to use the national character set. If this parameter is omitted, the default is FORM_CHAR
.
For example, assuming stmt
is an Oracle statement, use:
If the column is VARCHAR
or equivalent and you know the length limit:
For an NVARCHAR
column where the original maximum length is desired and conversion to the database character set is requested:
For structured object, object reference, and array columns:
Set a maximum field size if you do not want to receive the full default length of the data. Calling the setMaxFieldSize
method of the standard JDBC Statement
class sets a restriction on the amount of data returned. Specifically, the size of the data returned will be the minimum of the following:
defineColumnType
setMaxFieldSize
After you complete these steps, use the executeQuery
method of the statement to perform the query.
Note: It is no longer necessary to specify a data type for each column of the expected result set. |
Example 23-4 illustrates the use of this feature. It assumes you have imported the oracle.jdbc.*
interfaces.
Example 23-4 Defining Column Types
As this example shows, you must cast the Statement
object, stmt
, to OracleStatement
in the invocation of the defineColumnType
method. The createStatement
method of the connection returns an object of type java.sql.Statement
, which does not have the defineColumnType
and clearDefines
methods. These methods are provided only in the OracleStatement
implementation.
The define-extensions use JDBC types to specify the desired types. The allowed define types for columns depend on the internal Oracle type of the column.
All columns can be defined to their natural JDBC types. In most cases, they can be defined to the Types.CHAR
or Types.VARCHAR
type code.
Table 23-1 lists the valid column definition arguments you can use in the defineColumnType
method.
Table 23-1 Valid Column Type Specifications
If the column has Oracle SQL type: | You can use defineColumnType to define it as: |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
It is always valid to use defineColumnType
with the original data type of the column.
The getColumns
, getProcedureColumns
, getProcedures
, and getTables
methods of the database metadata classes are slow if they must report TABLE_REMARKS
columns, because this necessitates an expensive outer join. For this reason, the JDBC driver does not report TABLE_REMARKS
columns by default.
You can enable TABLE_REMARKS
reporting by passing a true
argument to the setRemarksReporting
method of an OracleConnection
object.
Equivalently, instead of calling setRemarksReporting
, you can set the remarksReporting
Java property if you use a Java Properties
object in establishing the connection.
If you are using a standard java.sql.Connection
object, you must cast it to OracleConnection
to use setRemarksReporting
.
Example 23-5 illustrates how to enable TABLE_REMARKS
reporting.
Example 23-5 TABLE_REMARKS Reporting
Assuming conn
is the name of your standard Connection
object, the following statement enables TABLE_REMARKS
reporting:
Considerations for getColumns
By default, the getColumns
method does not retrieve information about the columns if a synonym is specified. To enable the retrieval of information if a synonym is specified, you must call the setIncludeSynonyms
method on the connection as follows:
This will cause all subsequent getColumns
method calls on the connection to include synonyms. This is similar to setRemarksReporting
. Alternatively, you can set the includeSynonyms
connection property. This is similar to the remarksReporting
connection property.
However, bear in mind that if includeSynonyms
is true
, then the name of the object returned in the table_name
column will be the synonym name, if a synonym exists. This is true even if you pass the table name to getColumns
.
Considerations for getProcedures and getProcedureColumns Methods
According to JDBC versions 1.1 and 1.2, the methods getProcedures
and getProcedureColumns
treat the catalog
, schemaPattern
, columnNamePattern
, and procedureNamePattern
parameters in the same way. In the Oracle definition of these methods, the parameters are treated differently:
catalog
Oracle does not have multiple catalogs, but it does have packages. Consequently, the catalog
parameter is treated as the package name. This applies both on input, which is the catalog
parameter, and the output, which is the catalog
column in the returned ResultSet
. On input, the construct "
"
, which is an empty string, retrieves procedures and arguments without a package, that is, standalone objects. A null
value means to drop from the selection criteria, that is, return information about both standalone and packaged objects. That is, it has the same effect as passing in the percent sign (%
). Otherwise, the catalog
parameter should be a package name pattern, with SQL wild cards, if desired.
schemaPattern
All objects within Oracle database must have a schema, so it does not make sense to return information for those objects without one. Thus, the construct "
"
, which is an empty string, is interpreted on input to mean the objects in the current schema, that is, the one to which you are currently connected. To be consistent with the behavior of the catalog
parameter, null
is interpreted to drop the schema from the selection criteria. That is, it has the same effect as passing in %
. It can also be used as a pattern with SQL wild cards.
procedureNamePattern
and columnNamePattern
The empty string (" ") does not make sense for either parameter, because all procedures and arguments must have names. Thus, the construct "
"
will raise an exception. To be consistent with the behavior of other parameters, null
has the same effect as passing in percent sign (%
).
The Java Database Connectivity (JDBC) Oracle Call Interface (OCI) driver connection pooling functionality is part of the JDBC client. This functionality is provided by the OracleOCIConnectionPool
class.
A JDBC application can have multiple pools at the same time. Multiple pools can correspond to multiple application servers or pools to different data sources. The connection pooling provided by the JDBC OCI driver enables applications to have multiple logical connections, all using a small set of physical connections. Each call on a logical connection gets routed on to the physical connection that is available at the time of call.
This chapter contains the following sections:
Note: Use OCI connection pooling if you need session multiplexing. Otherwise, Oracle recommends using the implicit connection cache functionality. |
The Oracle JDBC OCI driver provides several transaction monitor capabilities, such as the fine-grained management of Oracle sessions and connections. It is possible for a high-end application server or transaction monitor to multiplex several sessions over fewer physical connections on a call-level basis, thereby achieving a high degree of scalability by pooling of connections and back-end Oracle server processes.
The connection pooling provided by the OracleOCIConnectionPool
interface simplifies the session/connection separation interface hiding the management of the physical connection pool. The Oracle sessions are the OracleOCIConnection
objects obtained from OracleOCIConnectionPool
. The connection pool itself is usually configured with a much smaller shared pool of physical connections, translating to a back-end server pool containing an identical number of dedicated server processes. Note that many more Oracle sessions can be multiplexed over this pool of fewer shared connections and back-end Oracle processes.
In some ways, what OCI driver connection pooling offers on the middle tier is similar to what shared server processes offer on the back end. OCI driver connection pooling makes a dedicated server instance behaves as a shared instance by managing the session multiplexing logic on the middle tier. Therefore, the pooling of dedicated server processes and incoming connections into the dedicated server processes is controlled by the OCI connection pool on the middle tier.
The main difference between OCI connection pooling and shared servers is that in the case of shared servers, the connection from the client is typically to a dispatcher in the database instance. The dispatcher is responsible for directing the client request to an appropriate shared server. On the other hand, the physical connection from the OCI connection pool is established directly from the middle tier to the Oracle dedicated server process in the back-end server pool.
Note that OCI connection pool is mainly beneficial only if the middle tier is multithreaded. Each thread could maintain a session to the database. The actual connections to the database are maintained by OracleOCIConnectionPool
, and these connections, including the pool of dedicated database server processes, are shared among all the threads in the middle tier.
An OCI connection pool is created at the beginning of the application. Creating connections from a pool is quite similar to creating connections using the OracleDataSource
class.
The oracle.jdbc.pool.OracleOCIConnectionPool
class, which extends the OracleDataSource
class, is used to create OCI connection pools. From an OracleOCIConnectionPool
instance, you can obtain logical connection objects. These connection objects are of the OracleOCIConnection
class type. This class implements the OracleConnection
interface. The Statement
objects you create from the OracleOCIConnection
instance have the same fields and methods as OracleStatement
objects you create from OracleConnection
instances.
The following code shows header information for the OracleOCIConnectionPool
class:
Importing the oracle.jdbc.pool and oracle.jdbc.oci Packages
Before you create an OCI connection pool, import the following to have Oracle OCI connection pooling functionality:
Creating an OCI Connection Pool
The following code show how you create an instance of the OracleOCIConnectionPool
class called cpool
:
poolConfig
is a set of properties that specify the connection pool. If poolConfig
is null, then the default values are used. For example, consider the following:
poolConfig.put (OracleOCIConnectionPool.CONNPOOL_MIN_LIMIT, "4");
poolConfig.put (OracleOCIConnectionPool.CONNPOOL_MAX_LIMIT, "10");
poolConfig.put (OracleOCIConnectionPool.CONNPOOL_INCREMENT, "2");
As an alternative to the constructor call, you can create an instance of the OracleOCIConnectionPool
class using individual methods to specify the user, password, and connection string.
Setting the OCI Connection Pool Parameters
The connection pool configuration is determined by the following OracleOCIConnectionPool
class attributes:
CONNPOOL_MIN_LIMIT
Specifies the minimum number of physical connections that can be maintained by the pool.
CONNPOOL_MAX_LIMIT
Specifies the maximum number of physical connections that can be maintained by the pool.
CONNPOOL_INCREMENT
Specifies the incremental number of physical connections to be opened when all the existing ones are busy and a call needs one more connection; the increment is done only when the total number of open physical connections is less than the maximum number that can be opened in that pool.
CONNPOOL_TIMEOUT
Specifies how much time must pass before an idle physical connection is disconnected; this does not affect a logical connection.
CONNPOOL_NOWAIT
Specifies, if enabled, that an error is returned if a call needs a physical connection while the maximum number of connections in the pool are busy. If disabled, a call waits until a connection is available. Once this attribute is set to true
, it cannot be reset to false
.
You can configure all of these attributes dynamically. Therefore, an application has the flexibility of reading the current load, that is number of open connections and number of busy connections, and adjusting these attributes appropriately, using the setPoolConfig
method.
Note: The default values for theCONNPOOL_MIN_LIMIT , CONNPOOL_MAX_LIMIT , and CONNPOOL_INCREMENT parameters are 1 , 1 , and 0 , respectively. |
The setPoolConfig
method is used to configure OCI connection pool properties. The following is a typical example of how the OracleOCIConnectionPool
class attributes can be set:
Observe the following rules when setting these attributes:
CONNPOOL_MIN_LIMIT
, CONNPOOL_MAX_LIMIT
, and CONNPOOL_INCREMENT
are mandatory. CONNPOOL_MIN_LIMIT
must be a value greater than zero. CONNPOOL_MAX_LIMIT
must be a value greater than or equal to CONNPOOL_MIN_LIMIT
plus CONNPOOL_INCREMENT
. CONNPOOL_INCREMENT
must be a value greater than or equal to zero. CONNPOOL_TIMEOUT
must be a value greater than zero. CONNPOOL_NOWAIT
must be true
or false.
Checking the OCI Connection Pool Status
To check the status of the connection pool, use the following methods from the OracleOCIConnectionPool
class:
int getMinLimit()
Retrieves the minimum number of physical connections that can be maintained by the pool.
int getMaxLimit()
Retrieves the maximum number of physical connections that can be maintained by the pool.
int getConnectionIncrement()
Retrieves the incremental number of physical connections to be opened when all the existing ones are busy and a call needs a connection.
int getTimeout()
Retrieves the specified time (in seconds) that a physical connection in a pool can remain idle before it is disconnected; the age of a connection is based on the Least Recently Used (LRU) algorithm.
String getNoWait()
Retrieves if the NOWAIT
property is enabled. It returns a string of "true
" or "false
".
int getPoolSize()
Retrieves the number of physical connections that are open. This should be used only as an estimate and for statistical analysis.
int getActiveSize()
Retrieves the number of physical connections that are open and busy. This should be used only as an estimate and for statistical analysis.
boolean isPoolCreated()
Retrieves if the pool has been created. The pool is actually created when OracleOCIConnection(user, password, url, poolConfig)
is called or when setUser
, setPassword
, and setURL
has been done after calling OracleOCIConnection()
.
The OracleOCIConnectionPool
class, through a getConnection
method call, creates an instance of the OracleOCIConnection
class. This instance represents a connection.
Because the OracleOCIConnection
class extends OracleConnection
class, it has the functionality of this class too. Close the OracleOCIConnection
objects once the user session is over, otherwise, they are closed when the pool instance is closed.
There are two ways of calling getConnection
:
OracleConnection getConnection()
If you do not supply the user name and password, then the default user name and password used for the creation of the connection pool are used while creating the connection objects.
OracleConnection getConnection(String user, String password)
If you this method, you will get a logical connection identified with the specified user name and password, which can be different from that used for pool creation.
The following code shows the signatures of the overloaded getConnection
method:
As an enhancement to OracleConnection
, the following new method is added into OracleOCIConnection
as a way to change the password for the user:
The following code illustrates the use of OCI connection pooling in a sample application:
Statement caching is supported with OracleOCIConnectionPool
. The caching improves performance by not having to open, parse, and close cursors. When OracleOCIConnection.prepareStatement
("a_SQL_query
") is processed, the statement cache is searched for a statement that matches the SQL query. If a match is found, then you can reuse the Statement
object instead of incurring the cost of creating another Statement
object. The cache size can be dynamically increased or decreased. The default cache size is zero.
Note: TheOracleStatement object created from OracleOCIConnection has the same behavior as one that is created from OracleConnection . |
The Java Naming and Directory Interface (JNDI) feature makes the properties of a Java object persist, therefore these properties can be used to construct a new instance of the object, such as cloning the object. The benefit is that the old object can be freed, and at a later time a new object with exactly the same properties can be created. The InitialContext.bind
method makes the properties persist, either on file or in a database, while the InitialContext.lookup
method retrieves the properties from the persistent store and creates a new object with these properties.
OracleOCIConnectionPool
objects can be bound and looked up using the JNDI feature. No new interface calls in OracleOCIConnectionPool
are necessary.
Oracle Advanced Queuing (AQ) provides database-integrated message queuing functionality. It is built on top of Oracle Streams and optimizes the functions of Oracle Database so that messages can be stored persistently, propagated between queues on different computers and databases, and transmitted using Oracle Net Services, HTTP, and HTTPS. Because Oracle AQ is implemented in database tables, all operational benefits of high availability, scalability, and reliability are also applicable to queue data. This chapter provides information about the Java interface to Oracle AQ.
This chapters covers the following topics:
Oracle Database 11g Release 1 (11.1) provides a fast Java interface to AQ by introducing a new Java package, oracle.jdbc.aq
. This package contains the following:
AQDequeueOptions
Specifies the options available for the dequeue operation
AQEnqueueOptions
Specifies the options available for the enqueue operation
AQFactory
Is a factory class for AQ
AQNotificationEvent
Is created whenever a new message is enqueued in a queue for which you have registered your interest
AQAgent
Used to represent and identify a user of the queue or a producer or consumer of the message
AQMessage
Represents a message that is enqueued or dequeued
AQMessageProperties
Contains message properties such as Correlation, Sender, Delay and Expiration, Recipients, and Priority and Ordering
AQNotificationListener
Is a listener interface for receiving AQ notification events
AQNotificationRegistration
Represents your interest in being notified when a new message is enqueued in a particular queue
These classes and interfaces enable you to access an existing queue, create messages, and enqueue and dequeue messages.
Note: Oracle JDBC drivers do not provide any API to create a queue. Queues must be created through theDBMS_AQADM PL/SQL package. |
See Also: For more information about the APIs, refer to the Javadoc. |
A JDBC application can do the following:
Registered clients are notified asynchronously when events are triggered or on an explicit AQ enqueue (or a new message is enqueued in a queue for which you have registered your interest). Clients do not need to be connected to a database.
Example
Example 25-1 illustrates the use of the new JDBC AQ interface which is new feature of the JDBC Thin driver in release 11.1. It shows how to enqueue and dequeue from a RAW
type single-consumer and multiple-consumer queue. It also shows how AQ asynchronous notification works. In this example, the SCOTT
user is connecting to the database. Therefore, in the database, you must grant the following privileges to the user:
Example 25-1 AQ Asynchronous Event Notification Example
Before you enqueue a message, you must create the message. An instance of a class implementing the AQMessage
interface represents an AQ message. An AQ message contains properties (metadata) and a payload (data). Perform the following to create an AQ message:
AQMessageProperties
. AQMessageProperties
object. AQ Message Properties
The properties of the AQ message are represented by an instance of the AQMessageProperties
interface. You can set or get the following message properties:
WAITING
state. After the specified delay, the message is in the READY
state and available for dequeuing. Dequeuing a message by using the message ID (msgid) overrides the delay specification. Note: Delay is not supported with buffered messaging. |
max_retries
. READY
state. If the message is not dequeued before it expires, then it is moved to the exception queue in the EXPIRED
state. AQAgent
objects that represent the recipients. The default recipients are the queue subscribers. This parameter is valid only for multiple-consumer queues. AQAgent
. dequeueArray
method. The following code snippet illustrates how to create an AQMessageProperties
object and create an AQ message using it:
AQ Message Payload
Depending on the type of the queue, the payload of the AQ message can be specified using the setPayload
method of the AQMessage
interface. The following code snippet illustrates how to set the payload:
You can retrieve the payload of an AQ message using the getPayload
method or the appropriate get
XXX
Payload
method. These methods are defined in the AQMessage
interface.
After you create a message and set the message properties and payload, you can enqueue the message using the enqueue
method of the OracleConnection
interface. Before you enqueue the message, you can specify some enqueue options. The AQEnqueueOptions
class enables you to specify the following enqueue options:
ENQUEUE_PERSISTENT
) or buffered (ENQUEUE_BUFFERED
). Note: Transformations must be created in PL/SQL usingDBMS_TRANSFORM.CREATE_TRANSFORMATION(...) . |
ENQUEUE_ON_COMMIT
. It indicates that the enqueue operation is part of the current transaction. ENQUEUE_IMMEDIATE
indicates that the enqueue operation is an autonomous transaction, which commits at the end of the operation. For buffered messaging, you must use ENQUEUE_IMMEDIATE
. The following code snippet illustrates how to set the enqueue options and enqueue the message:
Enqueued messages can be dequeued using the dequeue
method of the OracleConnection
interface. Before you dequeue a message you must set the dequeue options. The AQDequeueOptions
class enables you to specify the following dequeue options:
Boolean
expression using syntax similar to the WHERE
clause of a SQL query. Note: If the queue is a single-consumer queue, do not set this option. |
DEQUEUE_BUFFERED
) or persistent messages only (DEQUEUE_PERSISTENT
), which is the default, or both (DEQUEUE_PERSISTENT_OR_BUFFERED
). DequeueMode.BROWSE
: Message is dequeued without acquiring any lock. DequeueMode.LOCKED
: Message is dequeued with a write lock that lasts for the duration of the transaction. DequeueMode.REMOVE
: (default) Message is dequeued and deleted. The message can be retained in the queue based on the retention properties. DequeueMode.REMOVE_NO_DATA
: Message is marked as updated or deleted. RAW
queue. The default maximum is DEFAULT_MAX_PAYLOAD_LENGTH
but it can be changed to any other nonzero value. If the buffer is not large enough to contain the entire message, then the exceeding bytes will be silently ignored. NavigationOption.FIRST_MESSAGE
: The first available message matching the search criteria is dequeued. NavigationOption.NEXT_MESSAGE
: (default) The next available message matching the search criteria is dequeued. If the previous message belongs to a message group, then the next available message matching the search criteria in the message group is dequeued. NavigationOption.NEXT_TRANSACTION
: Messages in the current transaction group are skipped, and the first message of the next transaction group is dequeued. This setting can be used only if message grouping is enabled for the queue. Note: Transformations must be created in PL/SQL usingDBMS_TRANSFORM.CREATE_TRANSFORMATION(...) . |
VisibilityOption.ON_COMMIT
: (default) The dequeue operation is part of the current transaction. VisibilityOption.IMMEDIATE
: The dequeue operation is an autonomous transaction that commits at the end of the operation. Note: The Visibility option is ignored in theDequeueMode.BROWSE dequeue mode. If the delivery filter is DEQUEUE_BUFFERED or DEQUEUE_PERSISTENT_OR_BUFFERED , then this option must be set to VisibilityOption.IMMEDIATE . |
DEQUEUE_WAIT_FOREVER
indicating that the operation waits forever. If set to DEQUEUE_NO_WAIT
, then the operation does not wait. If a number is specified, then the dequeue operation waits for the specified number of seconds. Note: If you useDEQUEUE_WAIT_FOREVER , then the dequeue operation will not return until a message that matches the search criterion is available in the queue. However, you can interrupt the dequeue operation by calling the cancel method on the OracleConnection object. |
The following code snippet illustrates how to set the dequeue options and dequeue the message:
This section provides a few examples that illustrate how to enqueue and dequeue messages.
Example 25-2 illustrates how to enqueue a message, and Example 25-3 illustrates how to dequeue a message.
Example 25-2 Enqueuing a Single Message
This example illustrates how to obtain access to a queue, create a message, and enqueue it.
Example 25-3 Dequeuing a Single Message
This example illustrates how to obtain access to a queue, set the dequeue options, and dequeue the message.
This section provides information about the high-availability features of Oracle Database 11g. It discusses the Fast Connection Failover and Transparent Application Failover (TAF) features
Part VI contains the following chapters:
The Fast Connection Failover mechanism depends on the implicit connection cache feature. As a result, for Fast Connection Failover to be available, implicit connection caching must be enabled.
This chapter is divided into the following sections:
Fast Connection Failover offers a driver-independent way for your Java Database Connectivity (JDBC) application to take advantage of the connection failover facilities offered by Oracle Database 11g. The advantages of Fast Connection Failover include the following:
Fast Connection Failover supports both the JDBC Thin and JDBC Oracle Call Interface (OCI) drivers.
The two features work together synergistically to improve application performance and high availability.
This provides superior Real Application Clusters/high availability event notification mechanisms.
You only need to enable Fast Connection Failover and no further configuration is required.
Fast Connection Failover Features
When enabled, Fast Connection Failover provides the following:
Applications manage Fast Connection Failover through DataSource
instances.
This section covers the following topics:
Fast Connection Failover is available under the following circumstances:
Fast Connection Failover works in conjunction with the JDBC connection caching mechanism. This helps applications manage connections to ensure high availability.
The application cannot use service identifiers.
If failover events are not propagated, then connection failover cannot occur.
JDBC depends on ONS to propagate database events and notify JDBC of them.
oracle.ons.oraclehome
set to point to your ORACLE_HOME
. In order for Fast Connection Failover to work, you must configure ONS correctly. ONS is shipped as part of Oracle Database 11g.
This section covers the following topics:
ONS configuration is controlled by the ONS configuration file, ORACLE_HOME
/opmn/conf/ons.config
. This file tells the ONS daemon details about how it should behave and who it should talk to. Configuration information within ons.config
is defined in simple name and value pairs. There are three values that should always be configured within ons.config
. The first is localport
, the port that ONS binds to on the localhost interface to talk to local clients. An example of the localport
configuration is the following:
The second value is remoteport
, the port that ONS binds to on all interfaces for talking to other ONS daemons. An example of the remoteport
configuration is the following:
The third value specifies nodes
, a list of other ONS daemons to talk to. Node values are given as a comma-delimited list of either host names or IP addresses plus ports. Note that the port value that is given is the remote port that each ONS instance is listening on. In order to maintain an identical file on all nodes, the host:port
of the current ONS node can also be listed in the nodes list. It will be ignored when reading the list.
The nodes listed in the nodes line correspond to the individual nodes in the RAC instance. Listing the nodes ensures that the middle-tier node can communicate with the RAC nodes. At least one middle-tier node and one node in the RAC instance must be configured to see one another. As long as one node on each side is aware of the other, all nodes are visible. You need not list every single cluster and middle-tier node in the ONS config file of each Oracle RAC node. In particular, if one ONS config file cluster node is aware of the middle tier, then all nodes in the cluster are aware of it.
An example of the nodes configuration is the following:
There are also several optional values that can be provided in ons.config
.The first optional value is a loglevel
. This specifies the level of messages that should be logged by ONS. This value is an integer that ranges from 1
, which indicates least messages logged, to 9
, which indicates most messages logged. The default value is 3
. The following is an example:
The second optional value is a logfile
name. This specifies a log file that ONS should use for logging messages. The default value for logfile
is $ORACLE_HOME
/opmn/logs/ons.log
. The following is an example:
The third optional value is a walletfile
name. A wallet file is used by the Oracle Secure Sockets Layer (SSL) to store SSL certificates. If a wallet file is specified to ONS, it will use SSL when communicating with other ONS instances and require SSL certificate authentication from all ONS instances that try to connect to it. This means that if you want to turn on SSL for one ONS instance, then you must turn it on for all instances that are connected. This value should point to the directory where your ewallet.p12
file is located. The following is an example:
One optional value is reserved for use on the server-side. useocr=on
is used to tell ONS to store all Oracle RAC nodes and port numbers in Oracle Cluster Registry (OCR) instead of in the ONS configuration file. Do not use this option on the client-side.
The ons.config
file allows blank lines and comments on lines that begin with the number sign (#
).
You can access the client-side ONS through ORACLE_HOME
/opmn
. On the client-side, there are two ways to set up ONS:
Example 26-1 illustrates how a sample configuration file may look.
Example 26-1 Example of a Sample ons.config File
After configuring ONS, you start the ONS daemon with the onsctl
command. It is the user's responsibility to make sure that an ONS daemon is running at all times.
Using the onsctl Command
After configuring, use ORACLE_HOME
/opmn/bin/onsctl
to start, stop, reconfigure, and monitor the ONS daemon. Table 26-1 is a summary of the commands that onsctl
supports.
Table 26-1 onsctl Commands
Command | Effect | Output |
---|---|---|
| Starts the ONS daemon |
|
| Stops the ONS daemon |
|
| Verifies whether or not the ONS daemon is running |
|
| Triggers a reload of the ONS configuration without shutting down the ONS daemon | |
| Prints a help summary message for onsctl | |
| Prints a detailed help message for onsctl |
You can access the server-side ONS through ORA_CRS_HOME
/opmn
. You configure the server-side by using racgons
to add the middle-tier node information to OCR. This command is found in ORA_CRS_HOME/bin/racgons
. Before using racgons
, you must edit ons.config
to set useocr=on
.
The middle-tier nodes should be configured in OCR, so that all nodes share the configuration, and no matter which Oracle RAC nodes are up they can communicate to the middle-tier. When running on a cluster, always configure the ONS hosts and ports not by using the ONS configuration files but using racgons
. The racgons
command stores the ONS hosts and ports in OCR, where every node can see it. That way, you do not need to edit a file on every node to change the configuration, just run a single command on one of the cluster nodes.
The racogns
command enables you to specify hosts and ports on one node, then propagate your changes among all nodes in a cluster. The command takes two forms:
The add_config
version adds the listed host name(s), the remove_config
version removes them. Both commands propagate the changes among all instances in a cluster.
If multiple port numbers are configured for a host, the specified port number is removed from hostname
. If only hostname
is specified, all port numbers for that host are removed.
Other Uses of racgons
You should run racgons
whenever you add a new node to the cluster.
The advantages of remote ONS subscription are the following:
DataSource
property When using remote ONS subscription for Fast Connection Failover, the application invokes the following method on an OracleDataSource
instance:
The remoteONSConfig
parameter is a list of name and value pairs of the form name
=
value
that are separated by a new line character (\n). name
can be one of nodes
, walletfile
, or walletpassword
. This parameter should specify at least the nodes
ONS configuration attribute, which is a list of host
:
port
pairs, each pair separated by comma (,). The hosts and ports denote the remote ONS daemons available on the Oracle RAC nodes.
SSL could be used in communicating with the ONS daemons when the walletfile
attribute is specified as an Oracle wallet file. In such cases, if the walletpassword
attribute is not specified, single sign-on (SSO) would be assumed.
Following are a few examples, assuming ods
is an OracleDataSource
instance:
Note: Theons.jar file must be in the CLASSPATH on the client. In the case of Oracle Application Server, ONS is embedded in Oracle Process Manager and Notification Server (OPMN), as before, and JDBC Fast Connection Failover continues to work as before. |
An application enables Fast Connection Failover by calling setFastConnectionFailoverEnabled(true)
on a DataSource
instance, before retrieving any connections from that instance.
You cannot enable Fast Connection Failover when reinitializing a connection cache. You must enable it before using the OracleDataSource
instance.
Example 26-2 illustrates how to enable Fast Connection Failover.
Note: After a cache is Fast Connection Failover-enabled, you cannot disable Fast Connection Failover during the lifetime of that cache. |
To enable Fast Connection Failover, you must perform the following:
ONSException
is thrown at the first getConnection
request. FastConnectionFailoverEnabled
property before making the first getConnection
request to an OracleDataSource
. When Fast Connection Failover is enabled, the failover applies to all connections in the connection cache. If your application explicitly creates a connection cache using the Connection Cache Manager, then you must first set FastConnectionFailoverEnabled
before retrieving any connections. OracleDataSource
url
property. Example 26-2 Enabling Fast Connection Failover
An application determines if Fast Connection Failover is enabled by calling OracleDataSource.getFastConnectionFailoverEnabled
, which returns true
if failover is enabled, false
otherwise.
After Fast Connection Failover is enabled, the mechanism is automatic; no application intervention is needed. This section discusses how a connection failover is presented to an application and what steps the application takes to recover.
This section covers the following topics:
By the time an Oracle RAC service failure is propagated to the JDBC application, the database already rolls back the local transaction. The cache manager then cleans up all invalid connections. When an application holding an invalid connection tries to do work through that connection, it is possible to receive SQLException, ORA-17008, Closed Connection
.
When an application receives a Closed Connection
error message, it should do the following:
Note: The application should not try to roll back the transaction. The transaction was already rolled back in the database by the time the application received the exception. |
Under Fast Connection Failover, each connection in the cache maintains a mapping to a service, instance, database, and host name.
When a database generates an Oracle RAC event, that event is forwarded to the JVM in which JDBC is running. A daemon thread inside the JVM receives the Oracle RAC event and passes it on to the Connection Cache Manager. The Connection Cache Manager then throws SQL exceptions to the applications affected by the Oracle RAC event.
A typical failover scenario may work like the following:
Fast Connection Failover differs from Transparent Application Failover (TAF) in the following ways:
Fast Connection Failover supports application-level connection retries. This gives the application control of responding to connection failovers. The application can choose whether to retry the connection or to rethrow the exception. TAF supports connection retries only at the OCI/Net layer.
Fast Connection Failover is well-integrated with the implicit connection cache, which allows the Connection Cache Manager to manage the cache for high availability. For example, failed connections are automatically invalidated in the cache. TAF works at the network level on a per-connection basis, which means that the connection cache cannot be notified of failures.
Fast Connection Failover is based on the Oracle RAC event mechanism. This means that Fast Connection Failover is efficient and detects failures quickly for both active and inactive connections.
Fast Connection Failover supports UP event load balancing of connections and run-time work request distribution across active Oracle RAC instances.
Note: Oracle recommends not to use TAF and Fast Connection Failover in the same application. |
This chapter contains the following sections:
Transparent Application Failover (TAF) is a feature of the Java Database Connectivity (JDBC) Oracle Call Interface (OCI) driver. It enables the application to automatically reconnect to a database, if the database instance to which the connection is made fails. In this case, the active transactions roll back.
When an instance to which a connection is established fails or is shut down, the connection on the client-side becomes stale and would throw exceptions to the caller trying to use it. TAF enables the application to transparently reconnect to a preconfigured secondary instance, creating a fresh connection, but identical to the connection that was established on the first original instance. That is, the connection properties are the same as that of the earlier connection. This is true regardless of how the connection was lost.
Note:
|
The following are possible failover events in the OracleOCIFailover
interface:
FO_SESSION
Is equivalent to FAILOVER_MODE=SESSION
in the tnsnames.ora
file CONNECT_DATA
flags. This means that only the user session is authenticated again on the server side, while open cursors in the OCI application need to be reprocessed.
FO_SELECT
Is equivalent to FAILOVER_MODE=SELECT
in tnsnames.ora
file CONNECT_DATA
flags. This means that not only the user session is re-authenticated on the server side, but open cursors in the OCI can continue fetching. This implies that the client-side logic maintains fetch-state of each open cursor.
FO_NONE
Is equivalent to FAILOVER_MODE=NONE
in the tnsnames.ora
file CONNECT_DATA
flags. This is the default, in which no failover functionality is used. This can also be explicitly specified to prevent failover from happening. Additionally, FO_TYPE_UNKNOWN
implies that a bad failover type was returned from the OCI driver.
FO_BEGIN
Indicates that failover has detected a lost connection and failover is starting.
FO_END
Indicates successful completion of failover.
FO_ABORT
Indicates that failover was unsuccessful and there is no option of retrying.
FO_REAUTH
Indicates that a user handle has been re-authenticated.
FO_ERROR
Indicates that failover was temporarily unsuccessful, but it gives the application the opportunity to handle the error and retry failover. The usual method of error handling is to issue the sleep
method and retry by returning the value FO_RETRY
.
FO_RETRY
Indicates that the application should retry failover.
FO_EVENT_UNKNOWN
Indicates a bad failover event.
TAF callbacks are used in the event of the failure of one database connection, and failover to another database connection. TAF callbacks are callbacks that are registered in case of failover. The callback is called during the failover to notify the JDBC application of events generated. The application also has some control of failover.
Note: The callback setting is optional. |
The OracleOCIFailover
interface includes the callbackFn
method, supporting the following types and events:
Handling the FO_ERROR Event
In case of an error while failing over to a new connection, the JDBC application is able to retry failover. Typically, the application sleeps for a while and then it retries, either indefinitely or for a limited amount of time, by having the callback return FO_RETRY
.
Handling the FO_ABORT Event
Callback registered should return the FO_ABORT
event if the FO_ERROR
event is passed to it.
This part provides information about transaction management in Oracle Java Database Connectivity (JDBC). It includes a chapter that discusses the Oracle JDBC implementation of distributed transactions.
Part VII contains the following chapter:
This chapter discusses the Oracle Java Database Connectivity (JDBC) implementation of distributed transactions. These are multiphased transactions, often using multiple databases, which must be committed in a coordinated way. There is also related discussion of XA, which is a general standard, and not specific to Java, for distributed transactions.
The following topics are discussed:
Note: This chapter discusses features of the JDBC 2.0 Optional Package, formerly known as the JDBC 2.0 Standard Extension application programming interface (API), which is available through thejavax packages from Sun Microsystems. |
For further introductory and general information about distributed transactions, refer to the Sun Microsystems specifications for the JDBC 2.0 Optional Package and the Java Transaction API (JTA).
A distributed transaction, sometimes referred to as a global transaction, is a set of two or more related transactions that must be managed in a coordinated way. The transactions that constitute a distributed transaction might be in the same database, but more typically are in different databases and often in different locations. Each individual transaction of a distributed transaction is referred to as a transaction branch.
For example, a distributed transaction might consist of money being transferred from an account in one bank to an account in another bank. You would not want either transaction committed without assurance that both will complete successfully.
In the JDBC 2.0 extension API, distributed transaction functionality is built on top of connection pooling functionality. This distributed transaction functionality is also built upon the open XA standard for distributed transactions. XA is part of the X/Open standard and is not specific to Java.
JDBC is used to connect to database resources. However, to include all changes to multiple databases within a transaction, you must use the JDBC connections within a JTA global transaction. The process of including database SQL updates within a transaction is referred to as enlisting a database resource.
The section covers the following topics:
In reading the remainder of the distributed transactions section, it will be helpful to keep the following points in mind:
Many vendors offer XA-compliant JTA modules, including Oracle, which includes JTA in Oracle9i Application Server and Oracle Application Server 10g.
In many scenarios, the application server and transaction manager will be together on the middle tier, possibly together with some of the application code as well.
Note: Using JTA functionality requiresjta.jar to be in the CLASSPATH environment variable. This file is located at ORACLE_HOME /jlib . Oracle includes this file with the JDBC product. You can also obtain it from the Sun Microsystems Web site, but it is advisable to use the version from Oracle, because that has been tested with the Oracle drivers. |
When you use XA functionality, the transaction manager uses XA resource instances to prepare and coordinate each transaction branch and then to commit or roll back all transaction branches appropriately.
XA functionality includes the following key components:
These are extensions of connection pool data sources and other data sources, and similar in concept and functionality.
There will be one XA data source instance for each resource manager that will be used in the distributed transaction. You will typically create XA data source instances in your middle-tier software.
XA data sources produce XA connections.
These are extensions of pooled connections and similar in concept and functionality. An XA connection encapsulates a physical database connection. Individual connection instances are temporary handles to these physical connections.
An XA connection instance corresponds to a single Oracle session, although the session can be used in sequence by multiple logical connection instances, as with pooled connection instances.
You will typically get an XA connection instance from an XA data source instance in your middle-tier software. You can get multiple XA connection instances from a single XA data source instance if the distributed transaction will involve multiple sessions in the same database.
XA connections produce OracleXAResource
instances and JDBC connection instances.
These are used by a transaction manager in coordinating the transaction branches of a distributed transaction.
You will get one OracleXAResource
instance from each XA connection instance, typically in your middle-tier software. There is a one-to-one correlation between OracleXAResource
instances and XA connection instances. Equivalently, there is a one-to-one correlation between OracleXAResource
instances and Oracle sessions.
In a typical scenario, the middle-tier component will hand off OracleXAResource
instances to the transaction manager, for use in coordinating distributed transactions.
Because each OracleXAResource
instance corresponds to a single Oracle session, there can be only a single active transaction branch associated with an OracleXAResource
instance at any given time. However, there can be additional suspended transaction branches.
Each OracleXAResource
instance has the functionality to start, end, prepare, commit, or roll back the operations of the transaction branch running in the session with which the OracleXAResource
instance is associated.
The prepare step is the first step of a two-phase commit operation. The transaction manager will issue a PREPARE
to each OracleXAResource
instance. Once the transaction manager sees that the operations of each transaction branch have prepared successfully, it will issue a COMMIT
to each OracleXAResource
instance to commit all the changes.
These are used to identify transaction branches. Each ID includes a transaction branch ID component and a distributed transaction ID component. This is how a branch is associated with a distributed transaction. All OracleXAResource
instances associated with a given distributed transaction would have a transaction ID that includes the same distributed transaction ID component.
OracleXAResource.ORATRANSLOOSE
Start a loosely coupled transaction with transaction ID xid
.
As of JDBC 3.0, applications can share connections between local and global transactions. Applications can also switch connections between local transactions and global transactions.
A connection is always in one of the following modes:
NO_TXN
No transaction is actively using this connection.
LOCAL_TXN
A local transaction with auto-commit turned off or disabled is actively using this connection.
GLOBAL_TXN
A global transaction is actively using this connection.
Each connection switches automatically between these modes depending on the operations carried out on the connection. A connection is always in NO_TXN
mode when it is instantiated.
Note: The modes are maintained internally by the JDBC drivers in association with Oracle Database. |
Table 28-1 describes the connection mode transition rules.
Table 28-1 Connection Mode Transitions
Current Mode | Switches to NO_TXN When | Switches to LOCAL_TXN When | Switches to GLOBAL_TXN When |
---|---|---|---|
| NA | Auto-commit mode is false and an Oracle data manipulation language (DML) statement is run. |
|
| Any of the following happens:
| NA | NEVER |
| Within a global transaction open on this connection, | NEVER | NA |
If none of these rules is applicable, then the mode does not change.
Mode Restrictions on Operations
The current connection mode restricts which operations are valid within a transaction.
LOCAL_TXN
mode, applications must not call start
, prepare
, commit
, rollback
, forget
, or end
on an XAResource
. Doing so causes an XAException
to be thrown. GLOBAL_TXN
mode, applications must not call commit
, rollback
, rollback(Savepoint)
, setAutoCommit(true)
, or setSavepoint
on a java.sql.Connection
, and must not call OracleSetSavepoint
or oracleRollback
on an oracle.jdbc.OracleConnection
. Doing so causes a SQLException
to be thrown. Note: This mode-restriction error checking is in addition to the standard error checking on the transaction and savepoint APIs. |
Oracle supplies the following three packages that have classes to implement distributed transaction functionality according to the XA standard:
oracle.jdbc.xa
oracle.jdbc.xa.client
oracle.jdbc.xa.server
Classes for XA data sources, XA connections, and XA resources are in both the client
package and the server
package. An abstract class for each is in the top-level package. The OracleXid
and OracleXAException
classes are in the top-level oracle.jdbc.xa
package, because their functionality does not depend on where the code is running.
In middle-tier scenarios, you will import OracleXid
, OracleXAException
, and the oracle.jdbc.xa.client
package.
If you intend your XA code to run in the target Oracle Database, however, you will import the oracle.jdbc.xa.server
package instead of the client
package.
If code that will run inside a target database must also access remote databases, then do not import either package. Instead, you must fully qualify the names of any classes that you use from the client
package to access a remote database or from the server
package to access the local database. Class names are duplicated between these packages.
This section discusses the XA components, that is, standard XA interfaces specified in the JDBC 2.0 Optional Package, and the Oracle classes that implement them. The following topics are covered:
The javax.sql.XADataSource
interface outlines standard functionality of XA data sources, which are factories for XA connections. The overloaded getXAConnection
method returns an XA connection instance and optionally takes a user name and password as input:
Oracle JDBC implements the XADataSource
interface with the OracleXADataSource
class, located both in the oracle.jdbc.xa.client package
and the oracle.jdbc.xa.server
package.
The OracleXADataSource
classes also extend the OracleConnectionPoolDataSource
class, which extends the OracleDataSource
class, and therefore, include all the connection properties.
The getXAConnection
methods of the OracleXADataSource
class returns the Oracle implementation of XA connection instances, which are OracleXAConnection
instances.
Note: You can register XA data sources in Java Naming Directory and Interface (JNDI) using the same naming conventions as discussed previously for nonpooling data sources. |
See Also: For information about Fast Connection Failover, see Chapter 26, "Fast Connection Failover". |
An XA connection instance, as with a pooled connection instance, encapsulates a physical connection to a database. This would be the database specified in the connection properties of the XA data source instance that produced the XA connection instance.
Each XA connection instance also has the facility to produce the OracleXAResource
instance that will correspond to it for use in coordinating the distributed transaction.
An XA connection instance is an instance of a class that implements the standard javax.sql.XAConnection
interface:
As you see, the XAConnection
interface extends the javax.sql.PooledConnection
interface, so it also includes the getConnection
, close
, addConnectionEventListener
, and removeConnectionEventListener
methods.
Oracle JDBC implements the XAConnection
interface with the OracleXAConnection
class, located both in the oracle.jdbc.xa.client package
and the oracle.jdbc.xa.server
package.
The OracleXAConnection
classes also extend the OraclePooledConnection
class.
The OracleXAConnection
class getXAResource
method returns the Oracle implementation of an OracleXAResource
instance, which is an OracleXAResource
instance. The getConnection
method returns an OracleConnection
instance.
A JDBC connection instance returned by an XA connection instance acts as a temporary handle to the physical connection, as opposed to encapsulating the physical connection. The physical connection is encapsulated by the XA connection instance. The connection obtained from an XAConnection
object behaves exactly like a regular connection, until it participates in a global transaction. At that time, auto-commit status is set to false
. After the global transaction ends, auto-commit status is returned to the value it had before the global transaction. The default auto-commit status on a connection obtained from XAConnection
is false
in all releases prior to Oracle Database 10g. Starting from Oracle Database 10g, the default status is true
.
Each time an XA connection instance getConnection
method is called, it returns a new connection instance that exhibits the default behavior, and closes any previous connection instance that still exists and had been returned by the same XA connection instance. However, it is advisable to explicitly close any previous connection instance before opening a new one.
Calling the close
method of an XA connection instance closes the physical connection to the database. This is typically performed in the middle tier.
The transaction manager uses OracleXAResource
instances to coordinate all the transaction branches that constitute a distributed transaction.
Each OracleXAResource
instance provides the following key functionality, typically invoked by the transaction manager:
OracleXAResource
instance. Essentially, it associates distributed transactions with the physical connection or session encapsulated by the XA connection instance. This is done through use of transaction IDs. Note:
|
An OracleXAResource
instance is an instance of a class that implements the standard javax.transaction.xa.XAResource
interface. Oracle JDBC implements the XAResource
interface with the OracleXAResource
class, located both in the oracle.jdbc.xa.client
package and the oracle.jdbc.xa.server
package.
Oracle JDBC driver creates and returns an OracleXAResource
instance whenever the getXAResource
method of the OracleXAConnection
class is called, and it is Oracle JDBC driver that associates an OracleXAResource
instance with a connection instance and the transaction branch being run through that connection.
This method is how an OracleXAResource
instance is associated with a particular connection and with the transaction branch being run in that connection.
The OracleXAResource
class has several methods to coordinate a transaction branch with the distributed transaction with which it is associated. This functionality usually involves two-phase commit operations.
A transaction manager, receiving OracleXAResource
instances from a middle-tier component, such as an application server, typically invokes this functionality.
Each of these methods takes a transaction ID as input, in the form of an Xid
instance, which includes a transaction branch ID component and a distributed transaction ID component. Every transaction branch has a unique transaction ID, but transaction branches belonging to the same global transaction have the same global transaction component as part of their transaction IDs.
Starts work on behalf of a transaction branch, associating the transaction branch with a distributed transaction.
The flags
parameter must be one or more of the following values:
XAResource.TMNOFLAGS
Flag the start of a new transaction branch for subsequent operations in the session associated with this XA resource instance. This branch will have the transaction ID xid
, which is an OracleXid
instance created by the transaction manager. This will map the transaction branch to the appropriate distributed transaction.
XAResource.TMJOIN
Join subsequent operations in the session associated with this XA resource instance to the existing transaction branch specified by xid
.
XAResource.TMRESUME
Resume the transaction branch specified by xid
.
Note: A transaction branch can be resumed only if it had been suspended earlier. |
OracleXAResource.ORATMSERIALIZABLE
Start a serializable transaction with transaction ID xid
.
OracleXAResource.ORATMREADONLY
Start a read-only transaction with transaction ID xid
.
OracleXAResource.ORATMREADWRITE
Start a read/write transaction with transaction ID xid
.
OracleXAResource.ORATRANSLOOSE
Start a loosely coupled transaction with transaction ID xid
.
TMNOFLAGS
, TMJOIN
, TMRESUME
, ORATMSERIALIZABLE
, ORATMREADONLY
, and ORATMREADWRITE
are defined as static
members of the XAResource
interface and OracleXAResource
class. ORATMSERIALIZABLE
, ORATMREADONLY
, and ORATMREADWRITE
are the isolation-mode flags. The default isolation behavior is READ COMMITTED
.
Note:
|
Note that to create an appropriate transaction ID in starting a transaction branch, the transaction manager must know to which distributed transaction the transaction branch belongs. The mechanics of this are handled between the middle tier and transaction manager.
Ends work on behalf of the transaction branch specified by xid
, disassociating the transaction branch from its distributed transaction.
The flags
parameter can have one of the following values:
XAResource.TMSUCCESS
This is to indicate that this transaction branch is known to have succeeded.
XAResource.TMFAIL
This is to indicate that this transaction branch is known to have failed.
XAResource.TMSUSPEND
This is to suspend the transaction branch specified by xid
. By suspending transaction branches, you can have multiple transaction branches in a single session. Only one can be active at any given time, however. Also, this tends to be more expensive in terms of resources than having two sessions.
TMSUCCESS
, TMFAIL
, and TMSUSPEND
are defined as static members of the XAResource
interface and OracleXAResource
class.
Note:
|
Prepares the changes performed in the transaction branch specified by xid
. This is the first phase of a two-phase commit operation, to ensure that the database is accessible and that the changes can be committed successfully.
This method returns an integer value as follows:
XAResource.XA_RDONLY
This is returned if the transaction branch runs only read-only operations such as SELECT
statements.
XAResource.XA_OK
This is returned if the transaction branch runs updates that are all prepared without error.
No value is returned if the transaction branch runs updates and any of them encounters errors during preparation. In this case, an XA exception is thrown.
XA_RDONLY
and XA_OK
are defined as static
members of the XAResource
interface and OracleXAResource
class.
Note:
|
Commits prepared changes in the transaction branch specified by xid
. This is the second phase of a two-phase commit and is performed only after all transaction branches have been successfully prepared.
Set the onePhase
parameter as follows:
true
This is to use one-phase instead of two-phase protocol in committing the transaction branch. This is appropriate if there is only one transaction branch in the distributed transaction; the prepare
step would be skipped.
false
This is to use two-phase protocol in committing the transaction branch.
Rolls back prepared changes in the transaction branch specified by xid
.
Tells the resource manager to forget about a heuristically completed transaction branch.
The transaction manager calls this method during recovery to obtain the list of transaction branches that are currently in prepared or heuristically completed states.
Note: Values forflag other than TMSTARTRSCAN , TMENDRSCAN , or TMNOFLAGS , cause an exception to be thrown, otherwise flag is ignored. |
The resource manager returns zero or more Xid
s for the transaction branches that are currently in a prepared or heuristically completed state. If an error occurs during the operation, then the resource manager throws the appropriate XAException
.
Note: Therecover method requires SELECT privilege on DBA_PENDING_TRANSACTIONS and EXECUTE privilege on SYS.DBMS_XA in Oracle database server. For database versions prior to Oracle Database 11g Release 1 (11.1), where an Oracle patch including a fix for bug 5945463 is not available or it is infeasible to apply the patch for the particular application scenario, the recover method further requires EXECUTE privilege on SYS.DBMS_SYSTEM in Oracle database. |
To determine if two OracleXAResource
instances correspond to the same resource manager, call the isSameRM
method from one OracleXAResource
instance, specifying the other OracleXAResource
instance as input. In the following example, presume xares1
and xares2
are OracleXAResource
instances:
The transaction manager creates transaction ID instances and uses them in coordinating the branches of a distributed transaction. Each transaction branch is assigned a unique transaction ID, which includes the following information:
A format identifier specifies a Java transaction manager. For example, there could be a format identifier ORCL
. This field cannot be null. The size of a format identifier is 4 bytes.
It is also known as a distributed transaction ID component. The size of a global transaction identifier is 64 bytes.
It is also known as transaction branch ID component. The size of a branch qualifier is 64 bytes.
The 64-byte global transaction identifier value will be identical in the transaction IDs of all transaction branches belonging to the same distributed transaction. However, the overall transaction ID is unique for every transaction branch.
An XA transaction ID instance is an instance of a class that implements the standard javax.transaction.xa.Xid
interface, which is a Java mapping of the X/Open transaction identifier XID structure.
Oracle implements this interface with the OracleXid
class in the oracle.jdbc.xa
package. OracleXid
instances are employed only in a transaction manager, transparent to application programs or an application server.
Note: Oracle does not require the use ofOracleXid for OracleXAResource calls. Instead, use any class that implements the javax.transaction.xa.Xid interface. |
A transaction manager may use the following in creating an OracleXid
instance:
fId
is an integer value for the format identifier, gId[]
is a byte array for the global transaction identifier, and bId[]
is a byte array for the branch qualifier.
The Xid
interface specifies the following getter methods:
public int getFormatId()
public byte[] getGlobalTransactionId()
public type[] getBranchQualifier()
This section focuses on the functionality of XA exceptions and error handling and the Oracle optimizations in its XA implementation. It covers the following topics:
The exception and error-handling discussion includes the standard XA exception class and the Oracle-specific XA exception class, as well as particular XA error codes and error-handling techniques.
XA methods throw XA exceptions, as opposed to general exceptions or SQLExceptions
. An XA exception is an instance of the standard class javax.transaction.xa.XAException
or a subclass.
An Oracle XAException is an instance that consists of an Oracle error portion and an XA error portion. Oracle provides the oracle.jdbc.xa.OracleXAException
subclasse of the standard javax.transaction.xa.XAException class. An OracleXAException
instance is constructed using one of the following constructors:
The error value is an error code that combines an Oracle SQL error value and an XA error value. The JDBC driver determines exactly how to combine the Oracle and XA error values.
The OracleXAException
class has the following methods:
public int getOracleError()
This method returns the Oracle SQL error code pertaining to the exception, a standard ORA error number or 0 if there is no Oracle SQL error.
public int getXAError()
This method returns the XA error code pertaining to the exception. XA error values are defined in the javax.transaction.xa.XAException
class.
Oracle errors correspond to XA errors in OracleXAException
instances as documented in Table 28-2.
Table 28-2 Oracle-XA Error Mapping
Oracle Error Code | XA Error Code |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
all other |
|
The following example uses the OracleXAException
class to process an XA exception:
In case the XA operations did not throw an Oracle-specific XA exception, the code drops through to process a generic XA exception.
Oracle JDBC has functionality to improve performance if two or more branches of a distributed transaction use the same database instance, meaning that the OracleXAResource
instances associated with these branches are associated with the same resource manager.
In such a circumstance, the prepare
method of only one of these OracleXAResource
instances will return XA_OK
or will fail. The rest will return XA_RDONLY
, even if updates are made. This allows the transaction manager to implicitly join all the transaction branches and commit or roll back, in case of failure, the joined transaction through the OracleXAResource
instance that returned XA_OK
or failed.
The transaction manager can use the OracleXAResource
class isSameRM
method to determine if two OracleXAResource
instances are using the same resource manager. This way it can interpret the meaning of XA_RDONLY
return values.
This section provides an example of how to implement a distributed transaction using Oracle XA functionality. This section covers the following topics:
You must import the following for Oracle XA functionality:
The oracle.jdbc.pool
package has classes for connection pooling functionality, some of which have XA-related classes as subclasses.
Alternatively, if the code will run inside Oracle Database and access that database for SQL operations, you must import oracle.jdbc.xa.server
instead of oracle.jdbc.xa.client
.
If your application must access another Oracle Database as part of an XA transaction using the server-side Thin driver, then your code can use the fully qualified names of the oracle.xa.client
classes.
The client
and server
packages each have versions of the OracleXADataSource
, OracleXAConnection
, and OracleXAResource
classes. Abstract versions of these three classes are in the top-level oracle.jdbc.xa
package.
This example uses a two-phase distributed transaction with two transaction branches, each to a separate database.
Note that for simplicity, this example combines code that would typically be in a middle tier with code that would typically be in a transaction manager, such as the OracleXAResource
method invocations and the creation of transaction IDs.
For brevity, the specifics of creating transaction IDs and performing SQL operations are not shown here. The complete example is shipped with the product.
This example performs the following sequence:
In general, XA commands can be sent to the server in the following ways:
There is a huge performance difference between the two methods of sending XA commands to the server. The use of native APIs provides high performance gains as compared to the use of PL/SQL procedures.
Prior to Oracle Database 10g, the Thin driver used PL/SQL procedures to send XA commands to the server because Thin native APIs were not available. Starting from Oracle Database 10g, the Thin native APIs are available and are used by default to send XA commands.
This section covers the following topics:
Native XA is enabled through the use of the tnsEntry
and nativeXA
properties of the OracleXADataSource
class.
Note: Currently, OCI Native XA does not work in a multithreaded environment. The OCI driver uses the C/XA library of Oracle to support distributed transactions, which requires that an XAConnection be obtained for each thread before resuming a global transaction. |
Configuration and Installation
On a Sun Solaris or Linux system, you need the shared libraries, libheteroxa11.so
and libheteroxa11_g.so
, to enable the Native XA feature. In order for the Native XA feature to work properly, these libraries must be installed and available in the Sun Solaris search path.
On a Microsoft Windows system, you need the heteroxa11.dll
and heteroxa11_g.dll
files to enable the Native XA feature. These files must be installed and available in the Windows DLL path for the Native XA feature to work properly.
Note: Libraries with the_g suffix are debug libraries. |
Exception Handling
When using the Native XA feature in distributed transactions, it is recommended that the application simply check for XAException
or SQLException
, rather than OracleXAException
or OracleSQLException
.
Note: The mapping from SQL error codes to standard XA error codes does not apply to the Native XA feature. |
Native XA Code Example
The following portion of code shows how to enable the Native XA feature:
Like the JDBC OCI driver, the JDBC Thin driver also provides support for Native XA. However, the JDBC Thin driver provides support for Native XA by default. This is unlike the case of the JDBC OCI driver in which the support for Native XA is not enabled by default.
You can disable Native XA by calling setNativeXA(false)
on the XA data source as follows:
For example, you may need to disable Native XA as a workaround for a bug in the Native XA code.
This part discusses the database management and diagnosability support in Oracle Java Database Connectivity (JDBC) drivers.
Part VIII contains the following chapters:
Oracle Database 11g Release 1 (11.1) provides many new features for managing the database. This chapter describes the following:
Oracle Database 11g Release 1 (11.1) introduces two new JDBC methods, startup
and shutdown
, in oracle.jdbc.OracleConnection
that enable you to start up and shut down an Oracle Database instance. This is similar to the way you would start up or shut down a database instance from SQL*Plus.
To use these methods, you must have a dedicated connection to the server. You cannot be connected to a shared server through a dispatcher.
To use the startup
and shutdown
methods, you must be connected as SYSDBA
or SYSOPER
. To connect as SYSDBA
or SYSOPER
with Oracle JDBC drivers, you need to set the internal_logon
connection property accordingly.
To log on as SYSDBA
with the JDBC Thin driver you must configure the server to use the password file. For example, to configure system/manager
to connect as sysdba
with the JDBC Thin driver, perform the following:
SYSDBA
and run the following commands from SQL*Plus: init.ora
and add the following line: As opposed to the JDBC Thin driver, the JDBC OCI driver can connect as SYSDBA
or SYSOPER
locally without specifying a password file on the server.
To start a database instance using the startup
method, the application must first connect to the database as a SYSDBA
or SYSOPER
in the PRELIM_AUTH
mode, which is the only connection mode that is permitted when the database is down. You can do this by setting the new connection property prelim_auth
to true
. In the PRELIM_AUTH
mode, you can only start up a database instance that is down. You cannot run any SQL statements in this mode.
The startup
method only starts up a database instance. It does not mount it nor open it. You have to reconnect as SYSDBA
or SYSOPER
, but without the PRELIM_AUTH
mode, and run the following commands to mount and open the database instance:
Note: Thestartup method will start up the database using the server parameter file. Oracle JDBC drivers do not support database startup using the client parameter file. |
The startup
method takes a parameter that specifies the database startup option. Table 29-1 lists the supported database startup options. These options are defined in the oracle.jdbc.OracleConnection.DatabaseStartupMode
class.
Table 29-1 Supported Database Startup Options
Option | Description |
---|---|
| Shuts down the database in the abort mode before starting a new instance. |
| Starts up the database with no restrictions. |
| Starts up the database and allows database access only to users with both the |
The shutdown
method enables you to shut down an Oracle Database instance. To use this method, you must be connected to the database as a SYSDBA
or SYSOPER
.
Like the startup
method, the shutdown
method also takes a parameter. In this case, the parameter specifies the database shutdown option. Table 29-2 lists the supported database shutdown options. These options are defined in the oracle.jdbc.OracleConnection.DatabaseShutdownMode
class.
Table 29-2 Supported Database Shutdown Options
Option | Description |
---|---|
| Does not wait for current calls to complete or users to disconnect from the database. |
| Refuses any new connection and waits for existing connection to end. |
| Shuts down the database. |
| Does not wait for current calls to complete or users to disconnect from the database. |
| Refuses new transactions and waits for active transactions to end. |
| Refuses new local transactions and waits for active local transactions to end. |
For shutdown options other than ABORT
and FINAL
, you must call the shutdown
method again with the FINAL
option to actually shut down the database.
Note: Theshutdown(DatabaseShutdownMode.FINAL) method must be preceded by another call to the shutdown method with one of the following options: CONNECT , TRANSACTIONAL , TRANSACTIONAL_LOCAL , or IMMEDIATE . Otherwise the call hangs. |
A standard way to shut down the database is as follows:
CONNECT
, TRANSACTIONAL
, TRANSACTIONAL_LOCAL
, or IMMEDIATE
. ALTER DATABASE
command. FINAL
option. In special circumstances to shut down the database as fast as possible, the ABORT
option can be used. This is the equivalent to SHUTDOWN ABORT
in SQL*Plus.
Example
Example 29-1 illustrates the use of the startup
and shutdown
methods.
Example 29-1 Database Startup and Shutdown
Generally, a middle-tier data cache duplicates some data from the back-end database server. Its goal is to avoid redundant queries to the database. However, this is efficient only when the data rarely changes in the database. The data cache has to be updated or invalidated when the data changes in the database. The 11g Release 1 (11.1) Oracle JDBC drivers provide support for the Database Change Notification feature of Oracle Database. Using this functionality of the JDBC drivers, multi-tier systems can take advantage of the Database Change Notification feature to maintain a data cache as updated as possible by receiving invalidation events from the JDBC drivers.
The JDBC drivers can register SQL queries with the database and receive notifications in response to the following:
The notifications are published when the DML or DDL transaction commits (changes made in a local transaction do not generate any event until they are comitted).
To use Oracle JDBC driver support for Database Change Notification, perform the following:
Also, you need to grant the CHANGE NOTIFICATION
privilege to the user. For example, if you connect to the database using the SCOTT
user name, then you need to run the following command in the database:
Creating a Registration
Creating a registration is a one-time process and is done outside of the currently used transaction. The API for creating a registration in the server is executed in its own transaction and is committed immediately. You need a JDBC connection to create a registration, however, the registration is not attached to the connection. You can close the connection after creating a registration, and the registration survives. In an Oracle RAC environment, a registration is a persistent entity that exists on all nodes. If a node goes down, then the registration continues to exist and will be notified when the tables change.
There are two ways to create a registration:
Note: There is no way to remove one particular object (table) from an existing registration. A workaround would be to either create a new registration without this object or ignore the events that are related to this object. |
You can use the registerDatabaseChangeNotification
method of the oracle.jdbc.OracleConnection
interface to create a JDBC-style of registration. You can set certain registration options through the options
parameter of this method. Table 29-3 lists some of the registration options that can be set. To set these options, use the java.util.Properties
object. These options are defined in the oracle.jdbc.OracleConnection
interface. The registration options have a direct impact on the notification events that the JDBC drivers will create. Example 29-1 illustrates how to use the Database Change Notification feature.
The registerDatabaseChangeNotification
method creates a new database change registration in the database server with the given options. It returns a DatabaseChangeRegistration
object, which can then be used to associate a statement with this registration. It also opens a listener socket that will be used by the database to send notifications.
Note: If a listener socket (created by a different registration) exists, then this socket will be used by the new database change registration as well. |
Table 29-3 Database Change Notification Registration Options
Option | Description |
---|---|
| If set to |
| If set to |
| If set to |
| Specifies the number of transactions by which the client is willing to lag behind. Note: If this option is set to any value other than |
| Database change events will include row-level details, such as operation type and |
| Activates query change notification instead of object change notification. Note: This option is available only when running against an 11.0 database. |
| Specifies the IP address of the computer that will receive the notifications from the server. |
| Specifies the TCP port that the driver should use for the listener socket. |
| Specifies if the registration should be expunged on the first notification event. |
| Specifies whether or not to make the notifications persistent, which comes at a performance cost. |
| Specifies the time in seconds after which the registration will be automatically expunged by the database. |
If there exists a registration, then you can also use the getDatabaseChangeRegistration
method to map the existing registration with a new DatabaseChangeRegistration
object. This method is particularly useful if you have created a registration using PL/SQL and want to associate a statement with it.
See: Refer to the Javadoc for more information about the APIs. |
Associating a Query with a Registration
After you have created a registration or mapped to an existing registration, you can associate a query with it. Like creating a registration, associating a query with a registration is a one-time process and is done outside of the currently used registration. The query will be associated even if the local transaction is rolled back.
You can associate a query with registration using the setDatabaseChangeRegistration
method defined in the OracleStatement
class. This method takes a DatabaseChangeRegistration
object as parameter. The following code snippet illustrates how to associate a query with a registration:
Notifying Database Change Events
To receive database change notifications, attach a listener to the registration. When a database change event occurs, the database server notifies the JDBC driver. The driver then constructs a new Java event, identifies the registration to be notified, and notifies the listeners attached to the registration. The event contains the object ID of the database object that has changed and the type of operation that caused the change. Depending on the registration options, the event may also contain row-level detail information. The listener code can then use the event to make decisions about the data cache.
Note: The listener code must not slow down the JDBC notification mechanism. If the code is time-consuming, for example, if it refreshes the data cache by querying the database, then it needs to be executed within its own thread. |
You can attach a listener to a registration using the addListener
method. The following code snippet illustrates how to attach a listener to a registration:
Deleting a Registration
You need to explicitly unregister a registration to delete it from the server and release the resources in the driver. You can unregister a registration using a connection different from one that was used for creating it. To unregister a registration, you can use the unregisterDatabaseChangeNotification
method defined in oracle.jdbc.OracleConnection
.
You must pass the DatabaseChangeRegistration
object as a parameter to this method. This method deletes the registration from the server and the driver and closes the listener socket.
If the registration was created outside of JDBC, say using PL/SQL, then you must pass the registration ID instead of the DatabaseChangeRegistration
object. The method will delete the registration from the server, however, it does not free any resources in the driver.
Example
Example 29-2 illustrates how to use the Database Change Notification feature. In this example, the SCOTT
user is connecting to the database. Therefore in the database you need to grant the following privilege to the user:
Example 29-2 Database Change Notification
This code will also work with Oracle Database 10g Release 2 (10.2). This code uses table registration. That is, when you register a SELECT
query, what you register is the name of the tables involved and not the query itself. In other words, you might select one single row of a table and if another row is updated, you will be notified although the result of your query has not changed.
When using Oracle Database 11g, you can use a different option, the query registration with finer granularity. This can be done by setting the DCN_QUERY_CHANGE_NOTIFICATION
option.
In this example, if you leave the registration open instead of closing it, then the database change notification thread continues to run. Now if you run a DML query that changes the SCOTT.DEPT
table and commit it, say from SQL*Plus, then the Java program prints the notification.
In Oracle Database 11g, the JDBC drivers have been enhanced by including new diagnosabilty features and improving existing diagnosabilty features. These features enable users to diagnose problems in the applications that use Oracle JDBC drivers and the problems in the drivers themselves. They also reduce the effort required to develop and maintain Java applications that access an Oracle Database instance using Oracle JDBC drivers.
Oracle JDBC drivers provide the following diagnosabilty features that enable users to identify and fix problems in their JDBC applications:
Note: The diagnosability features of the JDBC drivers are based on the standardjava.util.logging framework and the javax.management MBean framework. Information about these standard frameworks is not covered in this document. Readers are advised to refer to the Sun Microsystems Web site to obtain information about these standard frameworks. Also refer to the Javadoc for java.util.logging for information about the various configuration options available. |
This feature logs information about events that occur when JDBC driver code runs. Events can include user-visible events, such as SQL exceptions, running of SQL statements, and detailed JDBC internal events, such as entry to and exit from internal JDBC methods. Users can enable this feature to log specific events or all the events.
Prior to Oracle Database 11g, JDBC drivers supported J2SE 2.0 and 3.0. These versions of J2SE did not include java.util.logging
. Therefore, the logging feature provided by JDBC driver releases prior to Oracle Database 11g, differs from the java.util.logging
framework.
In Oracle Database 11g, the JDBC drivers no longer support J2SE 2.0 and 3.0. Therefore, the logging feature of JDBC drivers makes full use of the standard java.util.logging
package. The enhanced logging system makes effective use of log levels to enable users to restrict log output to things of interest. It logs specific classes of information more consistently, making it easier for the user to understand the log file.
This feature does not introduce new APIs or configuration files. Only new parameters are added to the existing standard java.util.logging
configuration file. These parameters are identical in use to the existing parameters and are intrinsic to using java.util.logging
.
Note: Oracle does not guarantee the exact content of the generated logs. To a large extent the log content is dependent on the details of the implementation. The details of the implementation change with every release, and therefore, the exact content of the logs are likely to change from release to release. |
Before you can start debugging your Java application, you must enable and configure JDBC logging. This section covers the steps you must perform to enable and use JDBC logging. It describes the following:
Oracle ships several JAR files for each version of the JDBC drivers. The optimized JAR files do not contain any logging code and, therefore, do not generate any log output when used. To get log output, you must use the debug JAR files, which are indicated with a "_g" in the file name, like ojdbc5_g.jar
or ojdbc6_g.jar
. The debug JAR file must be included in the CLASSPATH
environment variable.
Note: Ensure that the debug JAR file, sayojdbc5_g.jar or ojdbc6_g.jar , is the only Oracle JDBC JAR file in the CLASSPATH environment variable. |
You can enable logging in the following ways:
You can enable logging by setting the oracle.jdbc.Trace
system property.
Setting the system property enables global logging, which means that logging is enabled for the entire application. You can use global logging if you want to debug the entire application, or if you cannot or do not want to change the source code of the application.
You can programmatically enable or disable logging in the following way:
First, get the ObjectName
of the Diagnosability MBean. The ObjectName
is
where, loader
is a filtered version of the result of calling toString
on the context ClassLoader
.
Now, write the following lines of code:
Programmatic enabling and disabling of logging helps you to control what parts of your application need to generate log output.
Note: Enabling logging using either of the methods would only generate a minimal log of serious errors. Usually this is not of much use. To generate a more useful and detailed log, you must configurejava.util.logging . |
To generate a useful and detailed log, you must configure java.util.logging
. This can be done either through a configuration file or programmatically.
A sample configuration file, OracleLog.properties
, is provided as part of the JDBC installation in the demo
directory. It contains basic information about how to configure java.util.logging
and provides some initial settings that you can start with. You may use this sample file as is, edit the file and use it, rename the file and edit it, or create an entirely new file of any name.
To use a configuration file, you must identify it to the Java run-time. This can be done by setting a system property. For example:
It is read by the java.util.logging
system. This file can reside anywhere.
You can use both java.util.logging.config.file
and oracle.jdbc.Trace
at the same time.
You can use the default OracleLog.properties
file. It may or may not get you the desired output. You can also create and use your own configuration file by following these steps:
myConfig.properties
. You can use any name you choose. filepath
is the path of the folder where you have saved the myConfig.properties
file.
You can also configure java.util.logging
to dump the log output into a file. To do so, modify the configuration file as follows:
This will generate exactly the same log output and save it in a file named jdbc.log
in the current directory.
You can control the amount of detail by changing the level settings. The defined levels from the least detailed to the most detailed are the following:
OFF
Turns off logging.
SEVERE
Logs SQLExceptions and internal errors.
WARNING
Logs SQLWarnings and bad but not fatal internal conditions.
INFO
Logs infrequent but significant events and errors. It produces a relatively low volume of log messages.
CONFIG
Logs SQL strings that are executed.
FINE
Logs the entry and exit to every public method providing a detailed trace of JDBC operations. It produces a fairly high volume of log messages.
FINER
Logs calls to internal methods.
FINEST
Logs calls to high volume internal methods.
ALL
Logs all the details. This is the most detailed level of logging.
Note: Levels more detailed thanFINE generate huge log volumes. |
In the example provided earlier, to reduce the amount of detail, change the java.util.logging.FileHandler.level
setting from ALL
to INFO
:
Although you can, it is not necessary to change the level of the oracle.jdbc
logger. Setting the FileHandler
level will control what log messages are dumped into the log file.
Setting the level reduces all the logging output from JDBC. However, sometimes you need a lot of output from one part of the code and very little from other parts. To do that you must understand more about loggers.
Loggers exist in a tree structure defined by their names. The root logger is named "", the empty string. If you look at the first line of the configuration file you see .level=SEVERE
. This is setting the level of the root logger. The next line is oracle.jdbc.level=INFO
. This sets the level of the logger named oracle.jdbc
. The oracle.jdbc
logger is a member of the logger tree. Its parent is named oracle
. The parent of the oracle
logger is the root logger (the empty string).
Logging messages are sent to a particular logger, for example, oracle.jdbc
. If the message passes the level check at that level, then the message is passed to the handler at that level, if any, and to the parent logger. So a log message sent to oracle.log
is compared against that logger's level, INFO
if you are following along. If the level is the same or less (less detailed) then it is sent to the FileHandler and to the parent logger, 'oracle'. Again it is checked against the level. If as in this case, the level is not set then it uses the parent level, SEVERE
. If the message level is the same or less it is passed to the handler, which there is not one, and sent to the parent. In this case the parent in the root logger.All this tree structure did not help you reduce the amount of output. What will help is that the JDBC drivers use several subloggers. If you restrict the log messages to one of the subloggers you will get substantially less output. The loggers used by Oracle JDBC drivers include the following:
oracle.jdbc
oracle.jdbc.driver
oracle.jdbc.pool
oracle.jdbc.rowset
oracle.jdbc.xa
oracle.sql
Note: The loggers used by the drivers may vary from release to release. |
Suppose you want to trace what is happening in the oracle.sql
component and also want to capture some basic information about the rest of the driver. This is a more complex use of logging. The following are the entries in the config
file:
Let us consider what each line in the configuration file is doing.
Sets the logging level of the root logger to SEVERE
. We do not want to see any logging from other, non-Oracle components unless something fails badly. Therefore, we set the default level for all loggers to SEVERE
. Each logger inherits its level from its parent unless set explicitly. By setting the level of the root logger to SEVERE
we ensure that all other loggers inherit that level except for the ones we set otherwise.
We want log output from both the oracle.sql
and oracle.jdbc.driver
loggers. Their common ancestor is oracle
. Therefore, we set the level of the oracle
logger to INFO
. We will control the detail more explicitly at lower levels.
We only want to see the SQL execution from oracle.jdbc.driver
. Therefore, we set the level to INFO
. This is a fairly low volume level, but will help us to keep track of what our test is doing.
We are using a DataSource
in our test and do not want to see all of that logging. Therefore, we turn it OFF
.
We do not want to see the logging from the oracle.jdbc.util
package. If we were using XA or rowsets we would turn them off as well.
We want to see what is happening in oracle.sql
. Therefore, we set the level to INFO
. This provides a lot of information about the public method calls without overwhelming detail.
We are going to dump everything to stderr
. When we run the test we will redirect stderr
to a file.
We want to dump everything to the console which is System.err
. In this case, we are doing the filtering with the loggers rather than the handler.
We will use a simple, more or less human readable format.
When you run your test with this configuration file, you will get moderately detailed information from the oracle.sql
package, a little bit of information from the core driver code, and nothing from any other code.
You can also use XMLFormatter
. XMLFormatter
is the best choice for logs that you send to Oracle Support, because it enables us to more easily use automated processing of the log output.
Although the logging feature enables you to trace or debug your application and generate detail log output, it has certain performance, scalability, and security issues.
Performance and Scalability Issues
Logging has substantial impact on performance. However, JDBC logging is generally not enabled in production systems. When logging is disabled, it will have no impact on performance.
It also has a negative impact on scalability. Logging involves protected access to a number of shared resources resulting in severely reduced scalability. This is intrinsic to the java.util.logging
framework. However, in a typical production system, JDBC logging is not enabled and, therefore, will not have an impact on scalability.
Security Concerns
When full logging is enabled, it is almost guaranteed that all sensitive information will be exposed in the log files. This is intrinsic to the logging feature. However, only certain JDBC JAR files include the JDBC logging feature. The following JAR files include full logging and should not be used in a sensitive environment:
ojdbc5_g.jar
ojdbc5dms_g.jar
ojdbc6_g.jar
ojdbc6dms_g.jar
The following JAR files include a limited logging capability:
ojdbc5dms.jar
ojdbc6dms.jar
Note: Database user names and passwords do not appear in log files created by these JAR files. However, sensitive user data that is part of a SQL statement, a defined value, or a bind value can appear in a log created using one of these JAR files. |
The JDBC diagnosability management feature introduces an MBean, oracle.jdbc.driver.OracleDiagnosabilityMBean
. This MBean provides means to enable and disable JDBC logging.
See Also: Refer to the JDBC JavaDoc for information about theOracleDiagnosabilityMBean API. |
In future releases, the MBean will be enhanced to provide additional statistics about JDBC internals.
Security Concerns
This feature can enable JDBC logging. Enabling JDBC logging does not require any special permission. However, once logging is enabled, generating any log output requires the standard Java permission LoggingPermission
. Without this permission, any JDBC operation that would generate log output will throw a security exception. This is a standard Java mechanism.
There are two kinds of metrics, end-to-end metrics and Dynamic Monitoring Service (DMS) metrics. End-to-end metrics are used for tagging application activity from the entry into the application code through JDBC to the database and back. DMS metrics are used to measure the performance of application components. Customer use of end-to-end metrics in JDBC is generally discouraged.
This chapter discusses the DMS metrics generated by Oracle JDBC 11.1 the in following sections:
Starting with Oracle Database 10g, Oracle Java Database Connectivity (JDBC) supports end-to-end metrics. In Oracle Database 11g Release 1 (11.1), the end-to-end metrics can be set directly by an application only when it is not using a DMS-enabled JAR files. But, if your application is using a DMS-enabled JAR file, the end-to-end metrics can be set only through DMS. All DMS metrics are available in the following DMS-enabled JAR files:
ojdbc15dms.jar
ojdbc15dms_g.jar
ojdbc6dms.jar
ojdbc6dms_g.jar
Any other JDBC JAR files do not generate any DMS metrics. The metrics generated in the Oracle JDBC 11.1 release are different from 10.2, 10.1, 9.2, and earlier versions of Oracle JDBC as it makes no attempt to retain compatibility with earlier versions. There are also no compatibility modes. A system that is dependent on the exact details of the DMS metrics generated by earlier versions of JDBC may have unexpected behavior when processing the metrics generated by Oracle JDBC 11.1. This is by design and cannot be changed.
Statement metrics can be reported consolidated for all statements in a connection or individually for each statement. All DMS metrics, except those related to individual statements, are enabled at all times.
Note: You can enable or disable theSQLText statement metric. It is disabled by default. If enabled, it is enabled for all statements. |
To determine whether to use consolidated or individual metrics, JDBC checks the DMSConsole sensor weight. If the sensor weight is less than or equal to DMSConsole.NORMAL
, then JDBC generates consolidated statement metrics. If the sensor weight is greater than DMSConsole.NORMAL
, then JDBC generates individual statement metrics.
JDBC checks the DMSConsole sensor weight when creating a Prepared or Callable statement and depending on the sensor weight at the time the statement is created, the metrics are generated. Changing the value of the sensor weight, after the statement has been created, does not cause a statement to switch between consolidated and individual metrics.
Note: In the presence of Statement caching, it may appear that changing sensor weight has no impact as statements are retrieved from the cache rather than created anew. |
There is only one list of statement metrics that is generated for both consolidated and individual statement metrics. The only difference between these two lists is the aggregation of the statements. When individual statement metrics are generated, one set of metrics is generated for each distinct statement object created by the JDBC driver. On the other hand, when consolidated statement metrics are generated, all statements created by a given connection use the same set of statement metrics. For example, consider an 'execute
' phase event. If individual statement metrics are used, then each statement created will have a distinct 'execute
' phase event. So, from two such statements, it will be possible to distinguish the execution statistics for the two separate statements. If one has an execution time of 1 second and the other an execution time of 3 seconds, then there will be two distinct 'execute' phase events, one with a total time and average of 1 second and the other with a total time and average of 3 seconds. But, if consolidated statement metrics are used, all statements will use the single 'execute
' phase event common to the connection. So, from two such statements created by the same connection, it will not be possible to distinguish the execution statistics for the two statements. If one has an execution time of 1 second and the other an execution time of 3 seconds, then the common 'execute
' phase event will report a total execution time of 4 seconds and an average of 2 seconds.
Depending on the version of DMS, there are two mechanisms for determining the generating of the SQLText statement metrics:
classpath
environment variable, then JDBC checks the DMS update SQL text flag. If this flag is true
, then the SQLText
metric is updated. classpath
environment variable, then JDBC uses the value of the DMSStatementMetrics
connection property. If this statement property is true
, then SQLText
metric is updated. The default value of this connection property is false
. Whether or not the SQLText metric will be generated is independent of the use of the type of statement metrics used, that is, individual statement metrics or consolidated statement metrics.
JMX (Java Management Extensions) is a Java technology that supplies tools for managing and monitoring applications, system objects, devices, service-oriented networks, and the JVM (Java Virtual Machine). You can easily access DMS metrics at run time using a management application that supports JMX. For more information about using JMX to access DMS data, go to the following URL http://www.oracle.com/technology/products/ias/toplink/doc/1013/main/_html/optimiz004.htm#BEEFGGBE
This part consists of appendixes that discuss Java Database Connectivity (JDBC) reference information, tips for coding JDBC applications, JDBC error messages, and troubleshooting JDBC applications.
Part IX contains the following appendixes:
This appendix contains detailed Java Database Connectivity (JDBC) reference information, including the following topics:
Table 11-1 describes the default mappings between Java classes and SQL data types supported by Oracle JDBC drivers. Compare the contents of the JDBC Type Codes, Standard Java Types, and SQL Data Types columns in Table 11-1 with the contents of Table A-1.
Table A-1 lists all the possible Java types to which a given SQL data type can be validly mapped. Oracle JDBC drivers will support these nondefault mappings. For example, to materialize SQL CHAR
data in an oracle.sql.CHAR
object, use the getCHAR
method. To materialize it as a java.math.BigDecimal
object, use the getBigDecimal
method.
Note: For classes whereoracle.sql.ORAData appears in italic, these can be generated by JPublisher. |
Table A-1 Valid SQL Data Type-Java Class Mappings
These SQL data types: | Can be materialized as these Java types: |
---|---|
|
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
|
| |
| |
| |
| |
|
|
| |
| |
| |
| |
| |
| |
| |
| |
|
|
|
|
| |
|
|
| |
| |
|
|
|
|
| |
|
|
| |
|
|
|
|
|
|
Object types |
|
| |
| |
| |
Reference types |
|
| |
| |
Nested table types and |
|
| |
|
Note:
|
The tables in this section list SQL and PL/SQL data types, and whether Oracle JDBC drivers support them. Table A-2 describes Oracle JDBC driver support for SQL data types.
Table A-2 Support for SQL Data Types
SQL Data Type | Supported by JDBC Drivers? |
---|---|
BFILE | yes |
BLOB | yes |
CHAR | yes |
CLOB | yes |
DATE | yes |
NCHAR | no (see Note) |
NCHAR VARYING | no |
NUMBER | yes |
NVARCHAR2 | no (see Note) |
RAW | yes |
REF | yes |
ROWID | yes |
UROWID | no |
VARCHAR2 | yes |
Note: The typesNCHAR and NVARCHAR2 are supported indirectly. There is no corresponding java.sql.Types type, but if your application calls formOfUse(NCHAR) , then these types can be accessed. |
Table A-3 describes Oracle JDBC support for the ANSI-supported SQL data types.
Table A-3 Support for ANSI-92 SQL Data Types
ANSI-Supported SQL Data Type | Supported by JDBC Drivers? |
---|---|
CHARACTER | yes |
DEC | yes |
DECIMAL | yes |
DOUBLE PRECISION | yes |
FLOAT | yes |
INT | yes |
INTEGER | yes |
NATIONAL CHARACTER | no |
NATIONAL CHARACTER VARYING | no |
NATIONAL CHAR | yes |
NATIONAL CHAR VARYING | no |
NCHAR | yes |
NCHAR VARYING | no |
NUMERIC | yes |
REAL | yes |
SMALLINT | yes |
VARCHAR | yes |
Table A-4 describes Oracle JDBC driver support for SQL User-Defined types.
Table A-4 Support for SQL User-Defined Types
SQL User-Defined type | Supported by JDBC Drivers? |
---|---|
OPAQUE | yes |
Reference types | yes |
Object types (| yes |
Nested table types and VARRAY types | yes |
Table A-5 describes Oracle JDBC driver support for PL/SQL data types. Note that PL/SQL data types include these categories:
BOOLEAN
and DATE
data types Table A-5 Support for PL/SQL Data Types
PL/SQL Data Type | Supported by JDBC Drivers? |
---|---|
Scalar Types: | |
BINARY INTEGER | yes |
DEC | yes |
DECIMAL | yes |
DOUBLE PRECISION | yes |
FLOAT | yes |
INT | yes |
INTEGER | yes |
NATURAL | yes |
NATURALn | no |
NUMBER | yes |
NUMERIC | yes |
PLS_INTEGER | yes |
POSITIVE | yes |
POSITIVEn | no |
REAL | yes |
SIGNTYPE | yes |
SMALLINT | yes |
Scalar Character Types: | |
CHAR | yes |
CHARACTER | yes |
LONG | yes |
LONG RAW | yes |
NCHAR | no (see Note) |
NVARCHAR2 | no (see Note) |
RAW | yes |
ROWID | yes |
STRING | yes |
UROWID | no |
VARCHAR | yes |
VARCHAR2 | yes |
BOOLEAN | yes |
DATE | yes |
Composite Types: | |
RECORD | no |
TABLE | no |
VARRAY | yes |
Reference Types: | |
REF CURSOR types | yes |
object reference types | yes |
LOB Types: | |
BFILE | yes |
BLOB | yes |
CLOB | yes |
NCLOB | yes |
Note:
|
Oracle JDBC drivers support some embedded SQL92 syntax, which is the syntax that you specify between curly braces. The current support is basic. This section describes the support offered by the drivers for the following SQL92 constructs:
Where driver support is limited, these sections also describe possible workarounds.
Disabling Escape Processing
Escape processing for SQL92 syntax is enabled by default, which results in the JDBC driver performing escape substitution before sending the SQL code to the database. If you want the driver to use regular Oracle SQL syntax, which is more efficient than SQL92 syntax and escape processing, then use this statement:
Databases differ in the syntax they use for date, time, and timestamp literals. JDBC supports dates and times written only in a specific format. This section describes the formats you must use for date, time, and timestamp literals in SQL statements.
The JDBC drivers support date literals in SQL statements written in the format:
Where yyyy-mm-dd
represents the year, month, and day. For example:
The JDBC drivers will replace this escape clause with the equivalent Oracle representation: "22 OCT 1995".
The following code snippet contains an example of using a date literal in a SQL statement.
The JDBC drivers support time literals in SQL statements written in the format:
where, hh:mm:ss
represents the hours, minutes, and seconds. For example:
The JDBC drivers will replace this escape clause with the equivalent Oracle representation: "05:10:45".
If the time is specified as:
Then the equivalent Oracle representation would be "14:20:50", assuming the server is using a 24-hour clock.
This code snippet contains an example of using a time literal in a SQL statement.
The JDBC drivers support timestamp literals in SQL statements written in the format:
where yyyy-mm-dd hh:mm:ss.f...
represents the year, month, day, hours, minutes, and seconds. The fractional seconds portion (.f...
) is optional and can be omitted. For example: {ts '1997-11-01 13:22:45'}
represents, in Oracle format, NOV 01 1997 13:22:45.
This code snippet contains an example of using a timestamp literal in a SQL statement.
Mapping SQL DATE Data type to Java
Oracle Database 8i and earlier versions did not support TIMESTAMP
data, but Oracle DATE
data used to have a time component as an extension to the SQL standard. So, Oracle Database 8i and earlier versions of JDBC drivers mapped oracle.sql.DATE
to java.sql.Timestamp
to preserve the time component. Starting with Oracle Database 9.0.1, TIMESTAMP
support was included and 9i JDBC drivers started mapping oracle.sql.DATE
to java.sql.Date
. This mapping was incorrect as it truncated the time component of Oracle DATE
data. To overcome this problem, Oracle Database 11.1 introduces a new flag mapDateToTimestamp
. The default value of this flag is true
, which means that by default the drivers will correctly map oracle.sql.DATE
to java.sql.Timestamp
, retaining the time information. If you still want the incorrect but 10g compatible oracle.sql.DATE
to java.sql.Date
mapping, then you can get it by setting the value of mapDateToTimestamp
flag to false
.
Note: To overcome the problem oforacle.sql.DATE to java.sql.Date mapping, Oracle Database 9.2 had introduced a flag, V8Compatible . The default value of this flag was false , which allowed the mapping of Oracle DATE data to java.sql.Date data. But, users could retain the time component of the Oracle DATE data by setting the value of this flag to true . This flag is deprecated in 11g because it controlled Oracle Database 8i compatibility, which is no longer supported. |
Oracle JDBC drivers do not support all scalar functions. To find out which functions the drivers support, use the following methods supported by the Oracle-specific oracle.jdbc.OracleDatabaseMetaData
class and the standard Java java.sql.DatabaseMetadata
interface:
getNumericFunctions()
Returns a comma-delimited list of math functions supported by the driver. For example, ABS
, COS
, SQRT
.
getStringFunctions()
Returns a comma-delimited list of string functions supported by the driver. For example, ASCII
, LOCATE
.
getSystemFunctions()
Returns a comma-delimited list of system functions supported by the driver. For example, DATABASE
, USER
.
getTimeDateFunctions()
Returns a comma-delimited list of time and date functions supported by the driver. For example, CURDATE
, DAYOFYEAR
, HOUR
.
Note: Oracle JDBC drivers supportfn , the function keyword. |
The characters %
and _
have special meaning in SQL LIKE
clauses. You use %
to match zero or more characters and _
to match exactly one character. If you want to interpret these characters literally in strings, then you precede them with a special escape character. For example, if you want to use ampersand (&
) as the escape character, then you identify it in the SQL statement as:
Note: If you want to use the backslash character (\) as an escape character, then you must enter it twice, that is, \\. For example:ResultSet rset = stmt.executeQuery("SELECT empno FROM emp WHERE ename LIKE '_%' {escape '\\'}"); |
Oracle JDBC drivers do not support the outer join syntax. The workaround is to use Oracle outer join syntax:
Instead of:
Use Oracle SQL syntax:
Oracle JDBC drivers support the following procedure and function call syntax:
Procedure calls:
Function calls:
You can write a simple program to translate SQL92 syntax to standard SQL syntax. The following program prints the comparable SQL syntax for SQL92 statements for function calls, date literals, time literals, and timestamp literals. In the program, the oracle.jdbc.OracleSql
class parse()
method performs the conversions.
The following code is the output that prints the comparable SQL syntax.
The following limitations exist in the Oracle JDBC implementation, but all of them are either insignificant or have easy workarounds. This section covers the following topics:
Oracle JDBC drivers do not support the get getCursorName
and setCursorName
methods, because there is no convenient way to map them to Oracle constructs. Oracle recommends using ROWID
instead.
Oracle JDBC drivers do not support SQL92 outer join escapes. Use Oracle SQL syntax with + instead.
It is not feasible for Oracle JDBC drivers to support calling arguments or return values of the PL/SQL RECORD
, BOOLEAN
, or table with non-scalar element types. However, Oracle JDBC drivers support PL/SQL index-by table of scalar element types.
As a workaround to PL/SQL RECORD
, BOOLEAN
, or non-scalar table types, create container procedures that handle the data as types supported by JDBC. For example, to wrap a stored procedure that uses PL/SQL boolean, create a stored procedure that takes a character or number from JDBC and passes it to the original procedure as BOOLEAN
or, for an output parameter, accepts a BOOLEAN
argument from the original procedure and passes it as a CHAR
or NUMBER
to JDBC. Similarly, to wrap a stored procedure that uses PL/SQL records, create a stored procedure that handles a record in its individual components, such as CHAR
and NUMBER
, or in a structured object type. To wrap a stored procedure that uses PL/SQL tables, break the data into components or perhaps use Oracle collection types.
See Also: "Boolean Parameters in PL/SQL Stored Procedures" for an example of a workaround forBOOLEAN . |
The arithmetic for the Oracle NUMBER
type does not comply with the IEEE 754 standard for floating-point arithmetic. Therefore, there can be small disagreements between the results of computations performed by Oracle and the same computations performed by Java.
Oracle stores numbers in a format compatible with decimal arithmetic and guarantees 38 decimal digits of precision. It represents zero, minus infinity, and plus infinity exactly. For each positive number it represents, it represents a negative number of the same absolute value.
It represents every positive number between 10-30 and (1 – 10-38) * 10126 to full 38-digit precision.
Certain DatabaseMetaData
methods define a catalog
parameter. This parameter is one of the selection criteria for the method. Oracle does not have multiple catalogs, but it does have packages.
See Also: "DatabaseMetaData TABLE_REMARKS Reporting" for information about how Oracle JDBC drivers treat thecatalog argument. |
The java.sql.SQLWarning
class provides information about a database access warning. Warnings typically contain a description of the warning and a code that identifies the warning. Warnings are silently chained to the object whose method caused it to be reported. Oracle JDBC drivers generally do not support SQLWarning
. As an exception to this, scrollable result set operations do generate SQL warnings, but the SQLWarning
instance is created on the client, not in the database.
Binding by name is not supported when using the set
XXX
methods. Under certain circumstances, previous versions of Oracle JDBC drivers have allowed binding statement variables by name when using the set
XXX
methods. In the following statement, the named variable EmpId
would be bound to the integer 314159
.
This capability to bind by name using the set
XXX
methods is not part of the JDBC specification, and Oracle does not support it. The JDBC drivers can throw a SQLException
or produce unexpected results. Starting from Oracle Database 10g JDBC drivers, bind by name is supported using the set
XXX
AtName
methods.
The bound values are not copied by the drivers until you call the execute
method. So, changing the bound value before calling the execute
method could change the bound value. For example, consider the folllowing code snippet:
This code snippet inserts Date(0)
in the database instead of Date(1181676033917L)
because the bound values are not copied by JDBC driver implementation for performance reasons.
Retaining Bound Values
Before Oracle9i Database, Oracle JDBC drivers did not retain bound values from one call of execute
to the next as specified in JDBC 1.0. All releases after Oracle9i Database have retained bound values. For example:
Previously, a SQLException
would be thrown by the second execute
call because no value was bound to the second argument. Starting from Oracle Database 10g, the second execute
will return the correct value, retaining the binding of the second argument to the string SALES
.
If the retained bound value is a stream, then Oracle JDBC drivers will not reset the stream. Unless the application code resets, repositions, or otherwise modifies the stream, the subsequent calls to execute
will send NULL
as the value of the argument.
This appendix describes methods to optimize a Java Database Connectivity (JDBC) application or applet. It includes the following topics:
Oracle JDBC drivers provide full support for, and are highly optimized for, applications that use Java multithreading. Controlled serial access to a connection, such as that provided by connection caching, is both necessary and encouraged. However, Oracle strongly discourages sharing a database connection among multiple threads. Avoid allowing multiple threads to access a connection simultaneously. If multiple threads must share a connection, use a disciplined begin-using/end-using protocol.
You can significantly enhance the performance of your JDBC programs by using any of these features:
Auto-commit mode indicates to the database whether to issue an automatic COMMIT
operation after every SQL operation. Being in auto-commit mode can be expensive in terms of time and processing effort if, for example, you are repeating the same statement with different bind variables.
By default, new connection objects are in auto-commit mode. However, you can disable auto-commit mode with the setAutoCommit
method of the connection object, either java.sql.Conection
or oracle.jdbc.OracleConnection
.
In auto-commit mode, the COMMIT
operation occurs either when the statement completes or the next execute occurs, whichever comes first. In the case of statements returning a ResultSet
object, the statement completes when the last row of the Result Set has been retrieved or when the Result Set has been closed. In more complex cases, a single statement can return multiple results as well as output parameter values. Here, the COMMIT
occurs when all results and output parameter values have been retrieved.
If you disable auto-commit mode with a setAutoCommit(false)
call, then you must manually commit or roll back groups of operations using the commit
or rollback
method of the connection object.
Example
The following example illustrates loading the driver and connecting to the database. Because new connections are in auto-commit mode by default, this example shows how to disable auto-commit. In the example, conn
represents the Connection
object, and stmt
represents the Statement
object.
Oracle JDBC connection and statement objects allow you to specify the number of rows to prefetch into the client with each trip to the database while a result set is being populated during a query. You can set a value in a connection object that affects each statement produced through that connection, and you can override that value in any particular statement object. The default value in a connection object is 10. Prefetching data into the client reduces the number of round-trips to the server.
Similarly, and with more flexibility, JDBC 2.0 enables you to specify the number of rows to fetch with each trip, both for statement objects (affecting subsequent queries) and for result set objects (affecting row refetches). By default, a result set uses the value for the statement object that produced it. If you do not set the JDBC 2.0 fetch size, then the Oracle connection row-prefetch value is used by default.
Oracle JDBC drivers allow you to accumulate INSERT
, DELETE
, and UPDATE
operations of prepared statements at the client and send them to the server in batches. This feature reduces round-trips to the server. You can either use Oracle update batching, which typically processes a batch implicitly once a pre-set batch value is reached, or standard update batching, where the batch is processed explicitly.
Statement caching improves performance by caching executable statements that are used repeatedly, such as in a loop or in a method that is called repeatedly. Applications use the statement cache to cache statements associated with a particular physical connection. When you enable Statement caching, a statement object is cached when you call the close
method. Because each physical connection has its own cache, multiple caches can exist if you enable Statement caching for multiple physical connections.
When you enable Statement caching on a connection cache, the logical connections benefit from the Statement caching that is enabled on the underlying physical connection. If you try to enable Statement caching on a logical connection held by a connection cache, then this will throw an exception.
The SQL built-in types are those types with system-defined names, such as NUMBER
, and CHAR
, as opposed to the Oracle objects, varray, and nested table types, which have user-defined names. In JDBC programs that access data of built-in SQL types, all type conversions are unambiguous, because the program context determines the Java type to which a SQL datum will be converted.
Table B-1 is a subset of the information presented in Table 11-1. The table lists the one-to-one type-mapping of the SQL database type to its Java oracle.sql.*
representation.
Table B-1 Mapping of SQL Data Types to Java Classes that Represent SQL Data Types
SQL Data Type | ORACLE Mapping - Java Classes Representing SQL Data Types |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
nested table |
|
varray |
|
SQL object value | If there is no entry for the object value in the type map:
If there is an entry for the object value in the type map:
|
REF to SQL object type | class that implements |
This mapping provides the most efficient conversion between SQL and Java data representations. It stores the usual representations of SQL data as byte arrays. It avoids re-formatting the data. It is information-preserving. This Oracle mapping is the most efficient type-mapping for applications that "shovel" data from SQL to Java, or vice versa.
The most efficient way to access numeric data is as primitive Java types like int
, float
, long
, and double
. However, the range of values of these types do not exactly match the range of values of the SQL NUMBER
data type. As a result, there may be some loss of information.
All character data is converted to the UCS2 character set of Java. The most efficient way to access character data is as java.lang.String
. In worst case, this can cause a loss of information when two or more characters in the database character set map to a single UCS2 character. In Oracle Database 11g, all characters in the character set map to the characters in the UCS2 character set. However, some characters do map to surrogate pairs.
Read-only connections are supported by the Oracle server, but not by Oracle JDBC drivers.
For transactions, the Oracle server supports only the TRANSACTION_READ_COMMITTED
and TRANSACTION_SERIALIZABLE
transaction isolation levels. The default is TRANSACTION_READ_COMMITTED
. Use the following methods of the oracle.jdbc.OracleConnection
interface to get and set the level:
This appendix briefly discusses the general structure of Java Database Connectivity (JDBC) error messages, then lists general JDBC error messages and TTC error messages that Oracle JDBC drivers can return. The appendix is organized as follows:
Each of the message lists is first sorted by ORA
number, and then alphabetically.
The general JDBC error message structure allows run-time information to be appended to the end of a message, following a colon, as follows:
For example, a "closed statement" error might be displayed as follows:
This indicates that the exception was thrown during a call to the next
method (of a result set object).
In some cases, the user can find the same information in a stack trace.
This section lists general JDBC error messages, first sorted by the ORA
number, and then in alphabetic order in the following subsections:
The following table lists the JDBC error messages sorted by the ORA
number:
ORA Number | Message |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The following table lists the JDBC error messages sorted in alphabetic order:
ORA Number | Message |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The following sections cover the JDBC error messages that are specific to the Native XA feature:
The following table lists the Native XA messages sorted by the ORA
number:
ORA Number | Message |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The following table lists the Native XA messages sorted in the alphabetic order:
ORA Number | Message |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
This section lists TTC error messages, first sorted by the ORA
number and then in alphabetic order in the following subsections:
The following table lists the TTC messages sorted by the ORA
number:
ORA Number | Message |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The following table lists the TTC messages in the alphabetic order:
ORA Number | Message |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
This appendix describes how to troubleshoot a Java Database Connectivity (JDBC) application or applet, and contains the following topics:
This section describes some common problems that you might encounter while using Oracle JDBC drivers. These problems include:
In PL/SQL, when a CHAR
or a VARCHAR2
column is defined as a OUT
or IN/OUT
variable, the driver allocates a CHAR
array of 32512 chars. This can cause a memory consumption problem. JDBC Thin driver does not allocate memory when using VARCHAR2
output type. But JDBC OCI driver allocates memory for both CHAR
and VARCHAR2
types. So, CPU load in OCI driver is higher than Thin driver.
At previous releases, the solution to the problem was to invoke the Statement.setMaxFieldSize
method. A better solution is to use OracleCallableStatement.registerOutParameter
. Oracle encourages you always to call registerOutParameter (int paramIndex, int sqlType, int scale, int maxLength)
on each CHAR
or VARCHAR2
column. This method is defined in oracle.jdbc.driver.OracleCallableStatement
. Use the fourth argument, maxLength
, to limit the memory consumption. This parameter tells the driver how many characters are necessary to store this column. The column is truncated if the character array cannot hold the column data. The third argument, scale
, is ignored by the driver.
If you receive messages that you are running out of cursors or that you are running out of memory, make sure that all your Statement
and ResultSet
objects are explicitly closed. Oracle JDBC drivers do not have finalizer methods. They perform cleanup routines by using the close
method of the ResultSet
and Statement
classes. If you do not explicitly close your result set and statement objects, significant memory leaks can occur. You could also run out of cursors in the database. Closing a statement releases the corresponding cursor in the database.
Similarly, you must explicitly close Connection
objects to avoid leaking and running out of cursors on the server-side. When you close the connection, the JDBC driver closes any open statement objects associated with it, thus releasing the cursor on the server-side.
The JDBC drivers do not support the passing of BOOLEAN
parameters to PL/SQL stored procedures. If a PL/SQL procedure contains BOOLEAN
values, you can work around the restriction by wrapping the PL/SQL procedure with a second PL/SQL procedure that accepts the argument as an INT
and passes it to the first stored procedure. When the second procedure is called, the server performs the conversion from INT
to BOOLEAN
.
The following is an example of a stored procedure, BOOLPROC
, that attempts to pass a BOOLEAN
parameter, and a second procedure, BOOLWRAP
, that performs the substitution of an INT
value for the BOOLEAN
.
You might find that you are not able to open more than approximately 16 JDBC-OCI connections for a process at any given time. The most likely reasons for this would be either that the number of processes on the server exceeded the limit specified in the initialization file, or that the per-process file descriptors limit was exceeded. It is important to note that one JDBC-OCI connection can use more than one file descriptor (it might use anywhere between 3 and 4 file descriptors).
If the server allows more than 16 processes, then the problem could be with the per-process file descriptor limit. The possible solution would be to increase this limit.
The JDBC standard method Statement.cancel
attempts to cleanly stop the execution of a SQL statement by sending a message to the database. In response, the database stops execution and replies with an error message. The Java thread that invoked Statement.execute
waits on the server, and continues execution only when it receives the error reply message invoked by the other thread's call to Statement.cancel
.
As a result, Statement.cancel
relies on the correct functioning of the network and the database. If either the network connection is broken or the database server is hung, the client does not receive the error reply to the cancel message. Frequently, when the server process dies, JDBC receives an IOException
that frees the thread that invoked Statement.execute
. In some circumstances, the server is hung, but JDBC does not receive an IOException
. Statement.cancel
does not free the thread that initiated the Statement.execute
.
When JDBC does not receive an IOException
, Oracle Net may eventually time out and close the connection. This causes an IOException
and frees the thread. This process can take many minutes. For information about how to control this time-out, see the description of the readTimeout
property for OracleDatasource.setConnectionProperties
. You can also tune this time-out with certain Oracle Net settings. See the Oracle Database Net Services Administrator's Guide for more information.
The JDBC standard method Statement.setQueryTimeout
relies on Statement.cancel
. If execution continues longer than the specified time-out interval, then the monitor thread calls Statement.cancel
. This is subject to all the same limitations described previously. As a result, there are cases when the time-out does not free the thread that invoked Statement.execute
.
The length of time between execution and cancellation is not precise. This interval is no less than the specified time-out interval but can be several seconds longer. If the application has active threads running at high priority, then the interval can be arbitrarily longer. The monitor thread runs at high priority, but other high priority threads may keep it from running indefinitely. Note that the monitor thread is started only if there are statements executed with non zero time-out. There is only one monitor thread that monitors all Oracle JDBC statement execution.
Statement.cancel
and Statement.setQueryTimeout
are not supported in the server-side internal driver. The server-side internal driver runs in the single-threaded server process; the Oracle JVM implements Java threads within this single-threaded process. If the server-side internal driver is executing a SQL statement, then no Java thread can call Statement.cancel
. This also applies to the Oracle JDBC monitor thread.
Firewall timeout for idle-connections may sever a connection. This can cause JDBC applications to hang while waiting for a connection. You can perform one or more of the following actions to avoid connections from being severed due to firewall timeout:
oracle.net.READ_TIMEOUT
as connection property to enable read timeout on socket. The timeout value is in milliseconds. ENABLE=BROKEN
parameter in the DESCRIPTION
clause in the connect descriptor. Also, set a lower value for tcp_keepalive_interval
. SQLNET.EXPIRE_TIME=1
in the sqlnet.ora
file on the server-side. This section describes strategies for debugging a JDBC program:
For information about processing SQL exceptions, including printing stack traces to aid in debugging, see "Processing SQL Exceptions".
You can enable client and server Oracle-Net trace to trap the packets sent over Oracle Net. You can use client-side tracing only for the JDBC OCI driver; it is not supported for the JDBC Thin driver. You can find more information about tracing and reading trace files in the Oracle Net Services Administrator's Guide.
The trace facility produces a detailed sequence of statements that describe network events as they execute. "Tracing" an operation lets you obtain more information about the internal operations of the event. This information is printed to a readable file that identifies the events that led to the error. Several Oracle Net parameters in the SQLNET.ORA
file control the gathering of trace information. After setting the parameters in SQLNET.ORA
, you must make a new connection for tracing to be performed.
The higher the trace level, the more detail is captured in the trace file. Because the trace file can be hard to understand, start with a trace level of 4 when enabling tracing. The first part of the trace file contains connection handshake information, so look beyond this for the SQL statements and error messages related to your JDBC program.
Note: The trace facility uses a large amount of disk space and might have significant impact upon system performance. Therefore, enable tracing only when necessary. |
Set the following parameters in the SQLNET.ORA
file on the client system.
Purpose:
Turns tracing on/off to a certain specified level.
Default Value:
0 or OFF
Available Values:
Example:
TRACE_LEVEL_CLIENT=10
Purpose:
Specifies the destination directory of the trace file.
Default Value:
ORACLE_HOME
/network/trace
Example:
UNIX: TRACE_DIRECTORY_CLIENT=/oracle/traces
Windows: TRACE_DIRECTORY_CLIENT=C:\ORACLE\TRACES
Purpose:
Specifies the name of the client trace file.
Default Value:
SQLNET.TRC
Example:
TRACE_FILE_CLIENT=cli_Connection1.trc
Note: Ensure that the name you choose for theTRACE_FILE_CLIENT file is different from the name you choose for the TRACE_FILE_SERVER file. |
Purpose:
Gives each client-side trace a unique name to prevent each trace file from being overwritten with the next occurrence of a client trace. The PID is attached to the end of the file name.
Default Value:
OFF
Example:
TRACE_UNIQUE_CLIENT = ON
Set the following parameters in the SQLNET.ORA
file on the server system. Each connection will generate a separate file with a unique file name.
Purpose:
Turns tracing on/off to a certain specified level.
Default Value:
0 or OFF
Available Values:
OFF
- No trace output USER
- User trace information ADMIN
- Administration trace information SUPPORT
- WorldWide Customer Support trace information Example:
TRACE_LEVEL_SERVER=10
Purpose:
Specifies the destination directory of the trace file.
Default Value:
ORACLE_HOME
/network/trace
Example:
TRACE_DIRECTORY_SERVER=/oracle/traces
Purpose:
Specifies the name of the server trace file.
Default Value:
SERVER.TRC
Example:
TRACE_FILE_SERVER= svr_Connection1.trc
Note: Ensure that the name you choose for theTRACE_FILE_SERVER file is different from the name you choose for the TRACE_FILE_CLIENT file. |
Copyright © 1994-2016, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.
If this document is in private preproduction status:
The information contained in this document is for informational sharing purposes only and should be considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described in this document remains at the sole discretion of Oracle.
This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle Master Agreement, Oracle License and Services Agreement, Oracle PartnerNetwork Agreement, Oracle distribution agreement, or other license agreement which has been executed by you and Oracle and with which you agree to comply. This document and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.