
[image: Oracle Corporation]

Oracle® Data Guard

Concepts and Administration

11g Release 1 (11.1)

B28294-03

August 2008

Oracle Data Guard Concepts and Administration, 11g Release 1 (11.1)

B28294-03

Copyright © 1999, 2008, Oracle. All rights reserved.

Primary Author: Kathy Rich

Contributors: Andy Adams, Beldalker Anand, Rick Anderson, Andrew Babb, Pam Bantis, Tammy Bednar, Barbara Benton, Chipper Brown, Larry Carpenter, George Claborn, Laurence Clarke, Jay Davison, Jeff Detjen, Ray Dutcher, B.G. Garin, Mahesh Girkar, Yosuke Goto, Ray Guzman, Susan Hillson, Mark Johnson, Rajeev Jain, Joydip Kundu, J. William Lee, Steve Lee, Steve Lim, Nitin Karkhanis, Steve McGee, Bob McGuirk, Joe Meeks, Steve Moriarty, Muthu Olagappan, Deborah Owens, Ashish Ray, Antonio Romero, Mike Schloss, Vivian Schupmann, Mike Smith, Vinay Srihali, Morris Tao, Lawrence To, Doug Utzig, Ric Van Dyke, Doug Voss, Ron Weiss, Jingming Zhang

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party.

List of Examples

	3-1 Primary Database: Primary Role Initialization Parameters
	3-2 Primary Database: Standby Role Initialization Parameters
	3-3 Modifying Initialization Parameters for a Physical Standby Database
	4-1 Primary Database: Logical Standby Role Initialization Parameters
	4-2 Modifying Initialization Parameters for a Logical Standby Database
	9-1 Real-time query
	12-1 Monitoring Events with DBA_LOGSTDBY_EVENTS
	15-1 Automatically Failing Over to an Alternate Destination
	15-2 Defining an Alternate Oracle Net Service Name to the Same Standby Database
	A-1 Setting a Retry Time and Limit
	A-2 Specifying an Alternate Destination
	A-3 Warning Messages Reported for ITL Pressure
	C-1 PL/SQL Skip Procedure for RegisterSchema
	E-1 Sample Use of Initialization Parameters in Cascaded Destinations

Part I

Concepts and Administration

This part contains the following chapters:

	
Chapter 1, "Introduction to Oracle Data Guard"

	
Chapter 2, "Getting Started with Data Guard"

	
Chapter 3, "Creating a Physical Standby Database"

	
Chapter 4, "Creating a Logical Standby Database"

	
Chapter 5, "Data Guard Protection Modes"

	
Chapter 6, "Redo Transport Services"

	
Chapter 7, "Apply Services"

	
Chapter 8, "Role Transitions"

	
Chapter 9, "Managing Physical and Snapshot Standby Databases"

	
Chapter 10, "Managing a Logical Standby Database"

	
Chapter 11, "Using RMAN to Back Up and Restore Files"

	
Chapter 12, "Using SQL Apply to Upgrade the Oracle Database"

	
Chapter 13, "Data Guard Scenarios"

3 Creating a Physical Standby Database

This chapter steps you through the process of creating a physical standby database. It includes the following main topics:

	
Preparing the Primary Database for Standby Database Creation

	
Step-by-Step Instructions for Creating a Physical Standby Database

	
Post-Creation Steps

The steps described in this chapter configure the standby database for maximum performance mode, which is the default data protection mode. Chapter 5 provides information about configuring the different data protection modes.

	
See Also:

	
Oracle Database Administrator's Guide for information about creating and using server parameter files

	
Oracle Data Guard Broker and the Enterprise Manager online help system for information about using the graphical user interface to automatically create a physical standby database

	
Appendix F for information about creating a standby database with Recovery Manager (RMAN)

3.1 Preparing the Primary Database for Standby Database Creation

Before you create a standby database you must first ensure the primary database is properly configured.

Table 3-1 provides a checklist of the tasks that you perform on the primary database to prepare for physical standby database creation. There is also a reference to the section that describes the task in more detail.

Table 3-1 Preparing the Primary Database for Physical Standby Database Creation

	Reference	Task
	
Section 3.1.1

	
Enable Forced Logging

	
Section 3.1.2

	
Configure Redo Transport Authentication

	
Section 3.1.3

	
Configure the Primary Database to Receive Redo Data

	
Section 3.1.4

	
Set Primary Database Initialization Parameters

	
Section 3.1.5

	
Enable Archiving

	
Note:

Perform these preparatory tasks only once. After you complete these steps, the database is prepared to serve as the primary database for one or more standby databases.

3.1.1 Enable Forced Logging

Place the primary database in FORCE LOGGING mode after database creation using the following SQL statement:

SQL> ALTER DATABASE FORCE LOGGING;

This statement can take a considerable amount of time to complete, because it waits for all unlogged direct write I/O to finish.

3.1.2 Configure Redo Transport Authentication

Data Guard uses Oracle Net sessions to transport redo data and control messages between the members of a Data Guard configuration. These redo transport sessions are authenticated using either the Secure Sockets Layer (SSL) protocol or a remote login password file.

SSL is used to authenticate redo transport sessions between two databases if:

	
The databases are members of the same Oracle Internet Directory (OID) enterprise domain and it allows the use of current user database links

	
The LOG_ARCHIVE_DEST_n, FAL_SERVER, and FAL_CLIENT database initialization parameters that correspond to the databases use Oracle Net connect descriptors configured for SSL

	
Each database has an Oracle wallet or supported hardware security module that contains a user certificate with a distinguished name (DN) that matches the DN in the OID entry for the database

If the SSL authentication requirements are not met, each member of a Data Guard configuration must be configured to use a remote login password file and every physical standby database in the configuration must have an up-to-date copy of the password file from the primary database.

Note that whenever you grant or revoke the SYSDBA or SYSOPER privilege or change the login password of a user who has these privileges, you must replace the password file at each physical or snapshot standby database in the configuration with a fresh copy of the password file from the primary database.

	
See Also:

	
Oracle Database Administrator's Guide for more information about remote login password files

	
Oracle Database Advanced Security Administrator's Guide

	
Oracle Database Net Services Administrator's Guide

3.1.3 Configure the Primary Database to Receive Redo Data

Although this task is optional, Oracle recommends that a primary database be configured to receive redo data when a Data Guard configuration is created. By following this best practice, your primary database will be ready to quickly transition to the standby role and begin receiving redo data.

See Section 6.2.3 for a complete discussion of how to configure a database to receive redo data.

3.1.4 Set Primary Database Initialization Parameters

On the primary database, you define initialization parameters that control redo transport services while the database is in the primary role. There are additional parameters you need to add that control the receipt of the redo data and apply services when the primary database is transitioned to the standby role.

Example 3-1 shows the primary role initialization parameters that you maintain on the primary database. This example represents a Data Guard configuration with a primary database located in Chicago and one physical standby database located in Boston. The parameters shown in Example 3-1 are valid for the Chicago database when it is running in either the primary or the standby database role. The configuration examples use the names shown in the following table:

	Database	DB_UNIQUE_NAME	Oracle Net Service Name
	Primary	chicago	chicago
	Physical standby	boston	boston

Example 3-1 Primary Database: Primary Role Initialization Parameters

DB_NAME=chicago
DB_UNIQUE_NAME=chicago
LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,boston)'
CONTROL_FILES='/arch1/chicago/control1.ctl', '/arch2/chicago/control2.ctl'
LOG_ARCHIVE_DEST_1=
 'LOCATION=/arch1/chicago/
 VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_2=
 'SERVICE=boston ASYNC
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE
LOG_ARCHIVE_FORMAT=%t_%s_%r.arc
LOG_ARCHIVE_MAX_PROCESSES=30

These parameters control how redo transport services transmit redo data to the standby system and the archiving of redo data on the local file system. Note that the example specifies asynchronous (ASYNC) network transmission to transmit redo data on the LOG_ARCHIVE_DEST_2 initialization parameter. These are the recommended settings and require standby redo log files (see Section 3.1.3, "Configure the Primary Database to Receive Redo Data").

Example 3-2 shows the additional standby role initialization parameters on the primary database. These parameters take effect when the primary database is transitioned to the standby role.

Example 3-2 Primary Database: Standby Role Initialization Parameters

FAL_SERVER=boston
FAL_CLIENT=chicago
DB_FILE_NAME_CONVERT='boston','chicago'
LOG_FILE_NAME_CONVERT=
 '/arch1/boston/','/arch1/chicago/','/arch2/boston/','/arch2/chicago/'
STANDBY_FILE_MANAGEMENT=AUTO

Specifying the initialization parameters shown in Example 3-2 sets up the primary database to resolve gaps, converts new datafile and log file path names from a new primary database, and archives the incoming redo data when this database is in the standby role. With the initialization parameters for both the primary and standby roles set as described, none of the parameters need to change after a role transition.

The following table provides a brief explanation about each parameter setting shown in Example 3-1 and Example 3-2.

	Parameter	Recommended Setting
	DB_NAME	Specify an 8-character name. Use the same name for all standby databases.
	DB_UNIQUE_NAME	Specify a unique name for each database. This name stays with the database and does not change, even if the primary and standby databases reverse roles.
	LOG_ARCHIVE_CONFIG	Specify the DG_CONFIG attribute on this parameter to list the DB_UNIQUE_NAME of the primary and standby databases in the Data Guard configuration; this enables the dynamic addition of a standby database to a Data Guard configuration that has an Oracle RAC primary database running in either maximum protection or maximum availability mode. By default, the LOG_ARCHIVE_CONFIG parameter enables the database to send and receive redo.
	CONTROL_FILES	Specify the path name for the control files on the primary database. Example 3-1 shows how to do this for two control files. It is recommended that a second copy of the control file is available so an instance can be easily restarted after copying the good control file to the location of the bad control file.
	LOG_ARCHIVE_DEST_n	Specify where the redo data is to be archived on the primary and standby systems. In Example 3-1:
	
LOG_ARCHIVE_DEST_1 archives redo data generated by the primary database from the local online redo log files to the local archived redo log files in /arch1/chicago/.

	
LOG_ARCHIVE_DEST_2 is valid only for the primary role. This destination transmits redo data to the remote physical standby destination boston.

Note: If a flash recovery area was configured (with the DB_RECOVERY_FILE_DEST initialization parameter) and you have not explicitly configured a local archiving destination with the LOCATION attribute, Data Guard automatically uses the LOG_ARCHIVE_DEST_10 initialization parameter as the default destination for local archiving. Also, see Chapter 15 for complete LOG_ARCHIVE_DEST_n information.

	LOG_ARCHIVE_DEST_STATE_n	Specify ENABLE to allow redo transport services to transmit redo data to the specified destination.
	REMOTE_LOGIN_PASSWORDFILE	This parameter must be set to EXCLUSIVE or SHARED if a remote login password file is used to authenticate administrative users or redo transport sessions.
	LOG_ARCHIVE_FORMAT	Specify the format for the archived redo log files using a thread (%t), sequence number (%s), and resetlogs ID (%r).
	LOG_ARCHIVE_MAX_PROCESSES =integer	Specify the maximum number (from 1 to 30) of archiver (ARCn) processes you want Oracle software to invoke initially. The default value is 4.
	FAL_SERVER	Specify the Oracle Net service name of the FAL server (typically this is the database running in the primary role). When the Chicago database is running in the standby role, it uses the Boston database as the FAL server from which to fetch (request) missing archived redo log files if Boston is unable to automatically send the missing log files.
	FAL_CLIENT	Specify the Oracle Net service name of the Chicago database. The FAL server (Boston) copies missing archived redo log files to the Chicago standby database.
	DB_FILE_NAME_CONVERT	Specify the path name and filename location of the primary database datafiles followed by the standby location. This parameter converts the path names of the primary database datafiles to the standby datafile path names. If the standby database is on the same system as the primary database or if the directory structure where the datafiles are located on the standby site is different from the primary site, then this parameter is required. Note that this parameter is used only to convert path names for physical standby databases. Multiple pairs of paths may be specified by this parameter.
	LOG_FILE_NAME_CONVERT	Specify the location of the primary database online redo log files followed by the standby location. This parameter converts the path names of the primary database log files to the path names on the standby database. If the standby database is on the same system as the primary database or if the directory structure where the log files are located on the standby system is different from the primary system, then this parameter is required. Multiple pairs of paths may be specified by this parameter.
	STANDBY_FILE_MANAGEMENT	Set to AUTO so when datafiles are added to or dropped from the primary database, corresponding changes are made automatically to the standby database.

	
Caution:

Review the initialization parameter file for additional parameters that may need to be modified. For example, you may need to modify the dump destination parameters if the directory location on the standby database is different from those specified on the primary database.

3.1.5 Enable Archiving

If archiving is not enabled, issue the following statements to put the primary database in ARCHIVELOG mode and enable automatic archiving:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;
SQL> ALTER DATABASE ARCHIVELOG;
SQL> ALTER DATABASE OPEN;

See Oracle Database Administrator's Guide for information about archiving.

3.2 Step-by-Step Instructions for Creating a Physical Standby Database

This section describes the tasks you perform to create a physical standby database.

Table 3-2 provides a checklist of the tasks that you perform to create a physical standby database and the database or databases on which you perform each task. There is also a reference to the section that describes the task in more detail.

Table 3-2 Creating a Physical Standby Database

	Reference	Task	Database
	
Section 3.2.1

	
Create a Backup Copy of the Primary Database Datafiles

	
Primary

	
Section 3.2.2

	
Create a Control File for the Standby Database

	
Primary

	
Section 3.2.3

	
Prepare an Initialization Parameter File for the Standby Database

	
Primary

	
Section 3.2.4

	
Copy Files from the Primary System to the Standby System

	
Primary

	
Section 3.2.5

	
Set Up the Environment to Support the Standby Database

	
Standby

	
Creating a Logical Standby Database

4 Creating a Logical Standby Database

This chapter steps you through the process of creating a logical standby database. It includes the following main topics:

	
Prerequisite Conditions for Creating a Logical Standby Database

	
Step-by-Step Instructions for Creating a Logical Standby Database

	
Post-Creation Steps

	
See Also:

	
Oracle Database Administrator's Guide for information about creating and using server parameter files

	
Oracle Data Guard Broker and the Oracle Enterprise Manager online help system for information about using the graphical user interface to automatically create a logical standby database

4.1 Prerequisite Conditions for Creating a Logical Standby Database

Before you create a logical standby database, you must first ensure the primary database is properly configured. Table 4-1 provides a checklist of the tasks that you perform on the primary database to prepare for logical standby database creation.

Table 4-1 Preparing the Primary Database for Logical Standby Database Creation

	Reference	Task
	
Section 4.1.1

	
Determine Support for Data Types and Storage Attributes for Tables

	
Section 4.1.2

	
Ensure Table Rows in the Primary Database Can Be Uniquely Identified

Note that a logical standby database uses standby redo logs (SRLs) for redo received from the primary database, and also writes to online redo logs (ORLs) as it applies changes to the standby database. Thus, logical standby databases often require additional ARCn processes to simultaneously archive SRLs and ORLs. Additionally, because archiving of ORLs takes precedence over archiving of SRLs, a greater number of SRLs may be needed on a logical standby during periods of very high workload.

4.1.1 Determine Support for Data Types and Storage Attributes for Tables

Before setting up a logical standby database, ensure the logical standby database can maintain the data types and tables in your primary database. See Appendix C for a complete list of data type and storage type considerations.

4.1.2 Ensure Table Rows in the Primary Database Can Be Uniquely Identified

The physical organization in a logical standby database is different from that of the primary database, even though the logical standby database is created from a backup copy of the primary database. Thus, ROWIDs contained in the redo records generated by the primary database cannot be used to identify the corresponding row in the logical standby database.

Oracle uses primary-key or unique-constraint/index supplemental logging to logically identify a modified row in the logical standby database. When database-wide primary-key and unique-constraint/index supplemental logging is enabled, each UPDATE statement also writes the column values necessary in the redo log to uniquely identify the modified row in the logical standby database.

	
If a table has a primary key defined, then the primary key is logged along with the modified columns as part of the UPDATE statement to identify the modified row.

	
In the absence of a primary key, the shortest nonnull unique-constraint/index is logged along with the modified columns as part of the UPDATE statement to identify the modified row.

	
In the absence of both a primary key and a nonnull unique constraint/index, all columns of bounded size are logged as part of the UPDATE statement to identify the modified row. In other words, all columns except those with the following types are logged: LONG, LOB, LONG RAW, object type, and collections.

	
A function-based index, even though it is declared as unique, cannot be used to uniquely identify a modified row. However, logical standby databases support replication of tables that have function-based indexes defined, as long as modified rows can be uniquely identified.

Oracle recommends that you add a primary key or a nonnull unique index to tables in the primary database, whenever possible, to ensure that SQL Apply can efficiently apply redo data updates to the logical standby database.

Perform the following steps to ensure SQL Apply can uniquely identify rows of each table being replicated in the logical standby database.

Step 1 Find tables without unique logical identifier in the primary database.

Query the DBA_LOGSTDBY_NOT_UNIQUE view to display a list of tables that SQL Apply may not be able to uniquely identify. For example:

SQL> SELECT OWNER, TABLE_NAME FROM DBA_LOGSTDBY_NOT_UNIQUE
 2> WHERE (OWNER, TABLE_NAME) NOT IN
 3> (SELECT DISTINCT OWNER, TABLE_NAME FROM DBA_LOGSTDBY_UNSUPPORTED)
 4> AND BAD_COLUMN = 'Y'

Step 2 Add a disabled primary-key RELY constraint.

If your application ensures the rows in a table are unique, you can create a disabled primary key RELY constraint on the table. This avoids the overhead of maintaining a primary key on the primary database.

To create a disabled RELY constraint on a primary database table, use the ALTER TABLE statement with a RELY DISABLE clause. The following example creates a disabled RELY constraint on a table named mytab, for which rows can be uniquely identified using the id and name columns:

SQL> ALTER TABLE mytab ADD PRIMARY KEY (id, name) RELY DISABLE;

When you specify the RELY constraint, the system will assume that rows are unique. Because you are telling the system to rely on the information, but are not validating it on every modification done to the table, you must be careful to select columns for the disabled RELY constraint that will uniquely identify each row in the table. If such uniqueness is not present, then SQL Apply will not correctly maintain the table.

To improve the performance of SQL Apply, add a unique-constraint/index to the columns to identify the row on the logical standby database. Failure to do so results in full table scans during UPDATE or DELETE statements carried out on the table by SQL Apply.

	
See Also:

	
Oracle Database Reference for information about the DBA_LOGSTDBY_NOT_UNIQUE view

	
Oracle Database SQL Language Reference for information about the ALTER TABLE statement syntax and creating RELY constraints

	
Section 10.7.1, "Create a Primary Key RELY Constraint" for information about RELY constraints and actions you can take to increase performance on a logical standby database

4.2 Step-by-Step Instructions for Creating a Logical Standby Database

This section describes the tasks you perform to create a logical standby database.

Table 4-2 provides a checklist of the tasks that you perform to create a logical standby database and specifies on which database you perform each task. There is also a reference to the section that describes the task in more detail.

Table 4-2 Creating a Logical Standby Database

	Reference	Task	Database
	
Section 4.2.1

	
Create a Physical Standby Database

	
Primary

	
Section 4.2.2

	
Stop Redo Apply on the Physical Standby Database

	
Standby

	
Section 4.2.3

	
Prepare the Primary Database to Support a Logical Standby Database

	
Primary

	
Section 4.2.4

	
Transition to a Logical Standby Database

	
Standby

	
Section 4.2.5

	
Open the Logical Standby Database

	
Standby

	
Section 4.2.6

	
Verify the Logical Standby Database Is Performing Properly

	
Standby

4.2.1 Create a Physical Standby Database

You create a logical standby database by first creating a physical standby database and then transitioning it to a logical standby database. Follow the instructions in Chapter 3, "Creating a Physical Standby Database" to create a physical standby database.

4.2.2 Stop Redo Apply on the Physical Standby Database

You can run Redo Apply on the new physical standby database for any length of time before converting it to a logical standby database. However, before converting to a logical standby database, stop Redo Apply on the physical standby database. Stopping Redo Apply is necessary to avoid applying changes past the redo that contains the LogMiner dictionary (described in Section 4.2.3.2, "Build a Dictionary in the Redo Data").

To stop Redo Apply, issue the following statement on the physical standby database. If the database is an Oracle RAC database comprised of multiple instances, then you must first stop all Oracle RAC instances except one before issuing this statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

4.2.3 Prepare the Primary Database to Support a Logical Standby Database

This section contains the following topics:

	
Prepare the Primary Database for Role Transitions

	
Build a Dictionary in the Redo Data

4.2.3.1 Prepare the Primary Database for Role Transitions

In Section 3.1.4, "Set Primary Database Initialization Parameters", you set up several standby role initialization parameters to take effect when the primary database is transitioned to the physical standby role.

	
Note:

This step is necessary only if you plan to perform switchovers.

If you plan to transition the primary database to the logical standby role, then you must also modify the parameters shown in bold typeface in Example 4-1, so that no parameters need to change after a role transition:

	
Change the VALID_FOR attribute in the original LOG_ARCHIVE_DEST_1 destination to archive redo data only from the online redo log and not from the standby redo log.

	
Include the LOG_ARCHIVE_DEST_3 destination on the primary database. This parameter only takes effect when the primary database is transitioned to the logical standby role.

Example 4-1 Primary Database: Logical Standby Role Initialization Parameters

LOG_ARCHIVE_DEST_1=
 'LOCATION=/arch1/chicago/
 VALID_FOR=(ONLINE_LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_3=
 'LOCATION=/arch2/chicago/
 VALID_FOR=(STANDBY_LOGFILES,STANDBY_ROLE)
 DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

To dynamically set these initialization parameter, use the SQL ALTER SYSTEM SET statement and include the SCOPE=BOTH clause so that the changes take effect immediately and persist after the database is shut down and started up again.

The following table describes the archival processing defined by the changed initialization parameters shown in Example 4-1.

	
	When the Chicago Database Is Running in the Primary Role	When the Chicago Database Is Running in the Logical Standby Role
	LOG_ARCHIVE_DEST_1	Directs archiving of redo data generated by the primary database from the local online redo log files to the local archived redo log files in /arch1/chicago/.	Directs archiving of redo data generated by the logical standby database from the local online redo log files to the local archived redo log files in /arch1/chicago/.
	LOG_ARCHIVE_DEST_3	Is ignored; LOG_ARCHIVE_DEST_3 is valid only when chicago is running in the standby role.	Directs archiving of redo data from the standby redo log files to the local archived redo log files in /arch2/chicago/.

4.2.3.2 Build a Dictionary in the Redo Data

A LogMiner dictionary must be built into the redo data so that the LogMiner component of SQL Apply can properly interpret changes it sees in the redo. As part of building the LogMiner dictionary, supplemental logging is automatically set up to log primary key and unique-constraint/index columns. The supplemental logging information ensures each update contains enough information to logically identify each row that is modified by the statement.

To build the LogMiner dictionary, issue the following statement:

SQL> EXECUTE DBMS_LOGSTDBY.BUILD;

The DBMS_LOGSTDBY.BUILD procedure waits for all existing transactions to complete. Long-running transactions executed on the primary database will affect the timeliness of this command.

	
See Also:

	
The DBMS_LOGSTDBY.BUILD PL/SQL package in Oracle Database PL/SQL Packages and Types Reference

	
The UNDO_RETENTION initialization parameter in Oracle Database Reference

4.2.4 Transition to a Logical Standby Database

This section describes how to prepare the physical standby database to transition to a logical standby database. It contains the following topics:

	
Convert to a Logical Standby Database

	
Adjust Initialization Parameters for the Logical Standby Database

4.2.4.1 Convert to a Logical Standby Database

The redo logs contain the information necessary to convert your physical standby database to a logical standby database.

	
Note:

If you have an Oracle RAC physical standby database, shut down all but one instance, set CLUSTER_DATABASE to FALSE, and start the standby database as a single instance in MOUNT EXCLUSIVE mode, as follows:

SQL> ALTER SYSTEM SET CLUSTER_DATABASE=FALSE SCOPE=SPFILE;
SQL> SHUTDOWN ABORT;
SQL> STARTUP MOUNT EXCLUSIVE;

To continue applying redo data to the physical standby database until it is ready to convert to a logical standby database, issue the following SQL statement:

SQL> ALTER DATABASE RECOVER TO LOGICAL STANDBY db_name;

For db_name, specify a database name to identify the new logical standby database. If you are using a server parameter file (spfile) at the time you issue this statement, then the database will update the file with appropriate information about the new logical standby database. If you are not using an spfile, then the database issues a message reminding you to set the name of the DB_NAME parameter after shutting down the database.

	
Note:

If you are creating a logical standby database in the context of performing a rolling upgrade of Oracle software with a physical standby database, you should issue the following command instead:

SQL> ALTER DATABASE RECOVER TO LOGICAL STANDBY KEEP IDENTITY;

A logical standby database created with the KEEP IDENTITY clause retains the same DB_NAME and DBID as that of its primary database. Such a logical standby database can only participate in one switchover operation, and thus should only be created in the context of a rolling upgrade with a physical standby database.

Note that the KEEP IDENTITY clause is available only if the database being upgraded is running Oracle Database release 11.1 or later.

The statement waits, applying redo data until the LogMiner dictionary is found in the log files. This may take several minutes, depending on how long it takes redo generated in Section 4.2.3.2, "Build a Dictionary in the Redo Data" to be transmitted to the standby database, and how much redo data needs to be applied. If a dictionary build is not successfully performed on the primary database, this command will never complete. You can cancel the SQL statement by issuing the ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL statement from another SQL session.

	
Caution:

In earlier releases, you needed to create a new password file before you opened the logical standby database. This is no longer needed. Creating a new password file at the logical standby database will cause redo transport services to not work properly.

4.2.4.2 Adjust Initialization Parameters for the Logical Standby Database

	
Note:

If you started with an Oracle RAC physical standby database, set CLUSTER_DATABASE back to TRUE, as follows:

SQL> ALTER SYSTEM SET CLUSTER_DATABASE=TRUE SCOPE=SPFILE;

On the logical standby database, shutdown the instance and issue the STARTUP MOUNT statement to start and mount the database. Do not open the database; it should remain closed to user access until later in the creation process. For example:

SQL> SHUTDOWN;
SQL> STARTUP MOUNT;

You need to modify the LOG_ARCHIVE_DEST_n parameters because, unlike physical standby databases, logical standby databases are open databases that generate redo data and have multiple log files (online redo log files, archived redo log files, and standby redo log files). It is good practice to specify separate local destinations for:

	
Archived redo log files that store redo data generated by the logical standby database. In Example 4-2, this is configured as the LOG_ARCHIVE_DEST_1=LOCATION=/arch1/boston destination.

	
Archived redo log files that store redo data received from the primary database. In Example 4-2, this is configured as the LOG_ARCHIVE_DEST_3=LOCATION=/arch2/boston destination.

Example 4-2 shows the initialization parameters that were modified for the logical standby database. The parameters shown are valid for the Boston logical standby database when it is running in either the primary or standby database role.

Example 4-2 Modifying Initialization Parameters for a Logical Standby Database

LOG_ARCHIVE_DEST_1=
 'LOCATION=/arch1/boston/
 VALID_FOR=(ONLINE_LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_2=
 'SERVICE=chicago ASYNC
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_3=
 'LOCATION=/arch2/boston/
 VALID_FOR=(STANDBY_LOGFILES,STANDBY_ROLE)
 DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE
LOG_ARCHIVE_DEST_STATE_3=ENABLE

	
Note:

If database compatibility is set to 11.1, you can also use the Flash Recovery Area to store the remote archived logs. To do this, set the following parameters (assuming you have already appropriately set DB_RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE):

LOG_ARCHIVE_DEST_1=
 'LOCATION=USE_DB_RECOVERY_FILE_DEST
 VALID_FOR=(ONLINE_LOGFILES, ALL_ROLES)
 DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_3=
 'LOCATION=USE_DB_RECOVERY_FILE_DEST
 VALID_FOR=(STANDBY_LOGFILES, STANDBY_ROLE)
 DB_UNIQUE_NAME=boston'

The following table describes the archival processing defined by the initialization parameters shown in Example 4-2.

	
	When the Boston Database Is Running in the Primary Role	When the Boston Database Is Running in the Logical Standby Role
	LOG_ARCHIVE_DEST_1	Directs archival of redo data generated by the primary database from the local online redo log files to the local archived redo log files in /arch1/boston/.	Directs archival of redo data generated by the logical standby database from the local online redo log files to the local archived redo log files in /arch1/boston/.
	LOG_ARCHIVE_DEST_2	Directs transmission of redo data to the remote logical standby database chicago.	Is ignored; LOG_ARCHIVE_DEST_2 is valid only when boston is running in the primary role.
	LOG_ARCHIVE_DEST_3	Is ignored; LOG_ARCHIVE_DEST_3 is valid only when boston is running in the standby role.	Directs archival of redo data received from the primary database to the local archived redo log files in /arch2/boston/.

	
Note:

The DB_FILE_NAME_CONVERT initialization parameter is not honored once a physical standby database is converted to a logical standby database. If necessary, you should register a skip handler and provide SQL Apply with a replacement DDL string to execute by converting the path names of the primary database datafiles to the standby datafile path names. See the DBMS_LOGSTDBY package in Oracle Database PL/SQL Packages and Types Reference. for information about the SKIP procedure.

4.2.5 Open the Logical Standby Database

To open the new logical standby database, you must open it with the RESETLOGS option by issuing the following statement:

SQL> ALTER DATABASE OPEN RESETLOGS;

	
Note:

If you started with a Oracle RAC physical standby database, you can start up all other standby instances at this point.

	
Caution:

If you are co-locating the logical standby database on the same computer system as the primary database, you must issue the following SQL statement before starting SQL Apply for the first time, so that SQL Apply skips the file operations performed at the primary database. The reason this is necessary is that SQL Apply has access to the same directory structure as the primary database, and datafiles that belong to the primary database could possibly be damaged if SQL Apply attempted to reexecute certain file-specific operations.

SQL> EXECUTE DBMS_LOGSTDBY.SKIP('ALTER TABLESPACE');

The DB_FILENAME_CONVERT parameter that you set up while co-locating the physical standby database on the same system as the primary database, is ignored by SQL Apply. See Oracle Database PL/SQL Packages and Types Reference for information about DBMS_LOGSTDBY.SKIP and equivalent behavior in the context of a logical standby database.

Because this is the first time the database is being opened, the database's global name is adjusted automatically to match the new DB_NAME initialization parameter.

Issue the following statement to begin applying redo data to the logical standby database. For example:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

4.2.6 Verify the Logical Standby Database Is Performing Properly

See the following sections for help verifying that the logical standby database is performing properly:

	
Chapter 6, "Redo Transport Services"

	
Chapter 10, "Managing a Logical Standby Database"

4.3 Post-Creation Steps

At this point, the logical standby database is running and can provide the maximum performance level of data protection. The following list describes additional preparations you can take on the logical standby database:

	
Upgrade the data protection mode

The Data Guard configuration is initially set up in the maximum performance mode (the default).

	
Enable Flashback Database

Flashback Database removes the need to re-create the primary database after a failover. Flashback Database enables you to return a database to its state at a time in the recent past much faster than traditional point-in-time recovery, because it does not require restoring datafiles from backup nor the extensive application of redo data. You can enable Flashback Database on the primary database, the standby database, or both. See Section 13.2, "Converting a Failed Primary Into a Standby Database Using Flashback Database" and Section 13.3, "Using Flashback Database After Issuing an Open Resetlogs Statement" for scenarios showing how to use Flashback Database in a Data Guard environment. Also, see Oracle Database Backup and Recovery User's Guide for more information about Flashback Database.

Data Guard Protection Modes

5 Data Guard Protection Modes

This chapter contains the following sections:

	
Data Guard Protection Modes

	
Setting the Data Protection Mode of a Primary Database

5.1 Data Guard Protection Modes

This section describes the Data Guard protection modes.

In these descriptions, a synchronized standby database is meant to be one that meets the minimum requirements of the configured data protection mode and that does not have a redo gap. Redo gaps are discussed in Section 6.3.3.

Maximum Availability

This protection mode provides the highest level of data protection that is possible without compromising the availability of a primary database. Transactions do not commit until all redo data needed to recover those transactions has been written to the online redo log and to at least one synchronized standby database. If the primary database cannot write its redo stream to at least one synchronized standby database, it operates as if it were in maximum performance mode to preserve primary database availability until it is again able to write its redo stream to a synchronized standby database.

This mode ensures that no data loss will occur if the primary database fails, but only if a second fault does not prevent a complete set of redo data from being sent from the primary database to at least one standby database.

Maximum Performance

This protection mode provides the highest level of data protection that is possible without affecting the performance of a primary database. This is accomplished by allowing transactions to commit as soon as all redo data generated by those transactions has been written to the online log. Redo data is also written to one or more standby databases, but this is done asynchronously with respect to transaction commitment, so primary database performance is unaffected by delays in writing redo data to the standby database(s).

This protection mode offers slightly less data protection than maximum availability mode and has minimal impact on primary database performance.

This is the default protection mode.

Maximum Protection

This protection mode ensures that zero data loss occurs if a primary database fails. To provide this level of protection, the redo data needed to recover a transaction must be written to both the online redo log and to at least one synchronized standby database before the transaction commits. To ensure that data loss cannot occur, the primary database will shut down, rather than continue processing transactions, if it cannot write its redo stream to at least one synchronized standby database.

Because this data protection mode prioritizes data protection over primary database availability, Oracle recommends that a minimum of two standby databases be used to protect a primary database that runs in maximum protection mode to prevent a single standby database failure from causing the primary database to shut down.

5.2 Setting the Data Protection Mode of a Primary Database

Perform the following steps to change the data protection mode of a primary database:

Step 1 Select a data protection mode that meets your availability, performance and data protection requirements.

See Section 5.1 for a description of the available modes.

Step 2 Verify that redo transport is configured to at least one standby database

The value of the LOG_ARCHIVE_DEST_n database initialization parameter that corresponds to the standby database must include the redo transport attributes listed in Table 5-1 for the data protection mode that you are moving to.

If the primary database has more than one standby database, only one of those standby databases must use the redo transport settings listed in Table 5-1.

The standby database must also have a standby redo log.

See Chapter 6, "Redo Transport Services" for more information about configuring redo transport and standby redo logs.

Table 5-1 Required Redo Transport Attributes for Data Protection Modes

	Maximum Availability	Maximum Performance	Maximum Protection
	
AFFIRM

	
NOAFFIRM

	
AFFIRM

	
SYNC

	
ASYNC

	
SYNC

	
DB_UNIQUE_NAME

	
DB_UNIQUE_NAME

	
DB_UNIQUE_NAME

Step 3 Verify that the DB_UNIQUE_NAME database initialization parameter has been set to a unique name on the primary and standby database.

For example, if the DB_UNIQUE_NAME parameter has not been defined on either database, the following SQL statements might be used to assign a unique name to each database.

Execute this SQL statement on the primary database:

SQL> ALTER SYSTEM SET DB_UNIQUE_NAME='CHICAGO' SCOPE=SPFILE;

Execute this SQL statement on the standby database:

SQL> ALTER SYSTEM SET DB_UNIQUE_NAME='BOSTON' SCOPE=SPFILE;

Step 4 Verify that the LOG_ARCHIVE_CONFIG database initialization parameter has been defined on the primary and standby database and that its value includes a DG_CONFIG list that includes the DB_UNIQUE_NAME of the primary and standby database.

For example, if the LOG_ARCHIVE_CONFIG parameter has not been defined on either database, the following SQL statement could be executed on each database to configure the LOG_ARCHIVE_CONFIG parameter:

SQL> ALTER SYSTEM SET
 2> LOG_ARCHIVE_CONFIG='DG_CONFIG=(CHICAGO,BOSTON)';

Step 5 Shut down the primary database and restart it in mounted mode if the protection mode is being set to Maximum Protection or being changed from Maximum Performance to Maximum Availability. If the primary database is an Oracle Real Applications Cluster, shut down all of the instances and then start and mount a single instance.

For example:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;

Step 6 Set the data protection mode.

Execute the following SQL statement on the primary database:

SQL> ALTER DATABASE
 2> SET STANDBY DATABASE TO MAXIMIZE {AVAILABILITY | PERFORMANCE | PROTECTION};

If the primary database is an Oracle Real Applications Cluster, any instances stopped in Step 5 can now be restarted.

Step 7 Open the primary database.

If the database was restarted in Step 5, open the database:

SQL> ALTER DATABASE OPEN;

Step 8 Confirm that the primary database is operating in the new protection mode.

Perform the following query on the primary database to confirm that it is operating in the new protection mode:

SQL> SELECT PROTECTION_MODE FROM V$DATABASE;

Role Transitions

8 Role Transitions

A Data Guard configuration consists of one database that functions in the primary role and one or more databases that function in the standby role. Typically, the role of each database does not change. However, if Data Guard is used to maintain service in response to a primary database outage, you must initiate a role transition between the current primary database and one standby database in the configuration. To see the current role of the databases, query the DATABASE_ROLE column in the V$DATABASE view.

The number, location, and type of standby databases in a Data Guard configuration and the way in which redo data from the primary database is propagated to each standby database determine the role-management options available to you in response to a primary database outage.

This chapter describes how to manage role transitions in a Data Guard configuration. It contains the following topics:

	
Introduction to Role Transitions

	
Role Transitions Involving Physical Standby Databases

	
Role Transitions Involving Logical Standby Databases

	
Using Flashback Database After a Role Transition

The role transitions described in this chapter are invoked manually using SQL statements. You can also use the Oracle Data Guard broker to simplify role transitions and automate failovers.

	
See Also:

Oracle Data Guard Broker for information about using the Oracle Data Guard broker to:
	
Simplify switchovers and failovers by allowing you to invoke them using either a single key click in Oracle Enterprise Manager or a single command in the DGMGRL command-line interface.

	
Enable fast-start failover to fail over automatically when the primary database becomes unavailable. When fast-start failover is enabled, the Data Guard broker determines if a failover is necessary and initiates the failover to the specified target standby database automatically, with no need for DBA intervention.

8.1 Introduction to Role Transitions

A database operates in one of the following mutually exclusive roles: primary or standby. Data Guard enables you to change these roles dynamically by issuing the SQL statements described in this chapter, or by using either of the Data Guard broker's interfaces. Oracle Data Guard supports the following role transitions:

	
Switchover

Allows the primary database to switch roles with one of its standby databases. There is no data loss during a switchover. After a switchover, each database continues to participate in the Data Guard configuration with its new role.

	
Failover

Changes a standby database to the primary role in response to a primary database failure. If the primary database was not operating in either maximum protection mode or maximum availability mode before the failure, some data loss may occur. If Flashback Database is enabled on the primary database, it can be reinstated as a standby for the new primary database once the reason for the failure is corrected.

Section 8.1.1, "Preparing for a Role Transition" helps you choose the role transition that best minimizes downtime and risk of data loss. Switchovers and failovers are described in more detail in Section 8.1.3, "Switchovers" and Section 8.1.4, "Failovers", respectively.

8.1.1 Preparing for a Role Transition

Before starting any role transition, perform the following preparations:

	
Verify that each database is properly configured for the role that it is about to assume. See Chapter 3, "Creating a Physical Standby Database" and Chapter 4, "Creating a Logical Standby Database" for information about how to configure database initialization parameters, archivelog mode, standby redo logs, and online redo logs on primary and standby databases.

	
Note:

You must define the LOG_ARCHIVE_DEST_n and LOG_ARCHIVE_DEST_STATE_n parameters on each standby database so that when a switchover or failover occurs, all standby sites continue to receive redo data from the new primary database.

	
Ensure temporary files exist on the standby database that match the temporary files on the primary database.

	
Remove any delay in applying redo that may be in effect on the standby database that will become the new primary database.

	
Before performing a switchover from an Oracle RAC primary database to a physical standby database, shut down all but one primary database instance. Any primary database instances shut down at this time can be started after the switchover completes.

Before performing a switchover or a failover to an Oracle RAC physical standby database, shut down all but one standby database instance. Any standby database instances shut down at this time can be restarted after the role transition completes.

8.1.2 Choosing a Target Standby Database for a Role Transition

For a Data Guard configuration with multiple standby databases, there are a number of factors to consider when choosing the target standby database for a role transition. These include the following:

	
Locality of the standby database.

	
The capability of the standby database (hardware specifications—such as the number of CPUs, I/O bandwidth available, and so on).

	
The time it will take to perform the role transition. This is affected by how far behind the standby database is in terms of application of redo data, and how much flexibility you have in terms of trading off application availability with data loss.

	
Standby database type.

The type of standby chosen as the role transition target determines how other standby databases in the configuration will behave after the role transition. If the new primary was a physical standby before the role transition, all other standby databases in the configuration will become standbys of the new primary. If the new primary was a logical standby before the role transition, then all other logical standbys in the configuration will become standbys of the new primary, but physical standbys in the configuration will continue to be standbys of the old primary and will therefore not protect the new primary. In the latter case, a future switchover or failover back to the original primary database will return all standbys to their original role as standbys of the current primary. For the reasons described above, a physical standby is generally the best role transition target in a configuration that contains both physical and logical standbys.

	
Note:

A snapshot standby cannot be the target of a role transition.

Data Guard provides the V$DATAGUARD_STATS view that can be used to evaluate each standby database in terms of the currency of the data in the standby database, and the time it will take to perform a role transition if all available redo data is applied to the standby database. For example:

SQL> COLUMN NAME FORMAT A18
SQL> COLUMN VALUE FORMAT A16
SQL> COLUMN TIME_COMPUTED FORMAT A24
SQL> SELECT * FROM V$DATAGUARD_STATS;
NAME VALUE TIME_COMPUTED
------------------ ---------------- ------------------------
apply finish time +00 00:00:02.4 15-MAY-2005 10:32:49
 second(1)
 interval
apply lag +00 0:00:04 15-MAY-2005 10:32:49
 second(0)
 interval
transport lag +00 00:00:00 15-MAY-2005 10:32:49
 second(0)
 interval

The time at which each of the statistics is computed is shown in the TIME_COMPUTED column. The V$DATATGUARD_STATS.TIME_COMPUTED column is a timestamp taken when the metric in a V$DATATGUARD_STATS row is computed. This column indicates the freshness of the associated metric. This shows that for this standby database, there is no transport lag, that apply services has not applied the redo generated in the last 4 seconds (apply lag), and that it will take apply services 2.4 seconds to finish applying the unapplied redo (apply finish time). The APPLY LAG and TRANSPORT LAG metrics are computed based on information received from the primary database, and these metrics become stale if communications between the primary and standby database are disrupted. An unchanging value in this column for the APPLY LAG and TRANSPORT LAG metrics indicates that these metrics are not being updated (or have become stale), possibly due to a communications fault between the primary and standby databases.

8.1.3 Switchovers

A switchover is typically used to reduce primary database downtime during planned outages, such as operating system or hardware upgrades, or rolling upgrades of the Oracle database software and patch sets (described in Chapter 12, "Using SQL Apply to Upgrade the Oracle Database").

A switchover takes place in two phases. In the first phase, the existing primary database undergoes a transition to a standby role. In the second phase, a standby database undergoes a transition to the primary role.

Figure 8-1 shows a two-site Data Guard configuration before the roles of the databases are switched. The primary database is in San Francisco, and the standby database is in Boston.

Figure 8-1 Data Guard Configuration Before Switchover

[image: Description of Figure 8-1 follows]

Figure 8-2 shows the Data Guard environment after the original primary database was switched over to a standby database, but before the original standby database has become the new primary database. At this stage, the Data Guard configuration temporarily has two standby databases.

Figure 8-2 Standby Databases Before Switchover to the New Primary Database

[image: Description of Figure 8-2 follows]

Figure 8-3 shows the Data Guard environment after a switchover took place. The original standby database became the new primary database. The primary database is now in Boston, and the standby database is now in San Francisco.

Figure 8-3 Data Guard Environment After Switchover

[image: Description of Figure 8-3 follows]

Preparing for a Switchover

Ensure the prerequisites listed in Section 8.1.1 are satisfied. In addition, the following prerequisites must be met for a switchover:

	
For switchovers involving a physical standby database, verify that the primary database is open and that redo apply is active on the standby database. See Section 7.3, "Applying Redo Data to Physical Standby Databases" for more information about Redo Apply.

	
For switchovers involving a logical standby database, verify both the primary and standby database instances are open and that SQL Apply is active. See Section 7.4, "Applying Redo Data to Logical Standby Databases" for more information about SQL Apply.

8.1.4 Failovers

A failover is typically used only when the primary database becomes unavailable, and there is no possibility of restoring it to service within a reasonable period of time. The specific actions performed during a failover vary based on whether a logical or a physical standby database is involved in the failover, the state of the Data Guard configuration at the time of the failover, and on the specific SQL statements used to initiate the failover.

Figure 8-4 shows the result of a failover from a primary database in San Francisco to a physical standby database in Boston.

Figure 8-4 Failover to a Standby Database

[image: Description of Figure 8-4 follows]

Preparing for a Failover

If possible, before performing a failover, you should transfer as much of the available and unapplied primary database redo data as possible to the standby database.

Ensure the prerequisites listed in Section 8.1.1, "Preparing for a Role Transition" are satisfied. In addition, the following prerequisites must be met for a failover:

	
If a standby database currently running in maximum protection mode will be involved in the failover, first place it in maximum performance mode by issuing the following statement on the standby database:

SQL> ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE PERFORMANCE;

Then, if appropriate standby databases are available, you can reset the desired protection mode on the new primary database after the failover completes.

This is required because you cannot fail over to a standby database that is in maximum protection mode. In addition, if a primary database in maximum protection mode is still actively communicating with the standby database, issuing the ALTER DATABASE statement to change the standby database from maximum protection mode to maximum performance mode will not succeed. Because a failover removes the original primary database from the Data Guard configuration, these features serve to protect a primary database operating in maximum protection mode from the effects of an unintended failover.

	
Note:

Do not fail over to a standby database to test whether or not the standby database is being updated correctly. Instead:
	
See Section 3.2.7, "Verify the Physical Standby Database Is Performing Properly"

	
See Section 4.2.6, "Verify the Logical Standby Database Is Performing Properly"

8.1.5 Role Transition Triggers

The DB_ROLE_CHANGE system event is signaled whenever a role transition occurs. This system event is signaled immediately if the database is open when the role transition occurs, or the next time the database is opened if it is closed when a role transition occurs.

The DB_ROLE_CHANGE system event can be used to fire a trigger that performs a set of actions whenever a role transition occurs.

8.2 Role Transitions Involving Physical Standby Databases

This section describes how to perform a switchover or failover to a physical standby database.

8.2.1 Performing a Switchover to a Physical Standby Database

This section describes how to perform a switchover to a physical standby database.A switchover is initiated on the primary database and is completed on the target standby database.

Step 1 Verify that the primary database can be switched to the standby role.

Query the SWITCHOVER_STATUS column of the V$DATABASE view on the primary database.For example:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

 TO STANDBY
 1 row selected

A value of TO STANDBY or SESSIONS ACTIVE indicates that the primary database can be switched to the standby role. If neither of these values is returned, a switchover is not possible because redo transport is either misconfigured or is not functioning properly. See Chapter 6 for information about configuring and monitoring redo transport.

Step 2 Initiate the switchover on the primary database.

Issue the following SQL statement on the primary database to switch it to the standby role:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY WITH
SESSION SHUTDOWN;

This statement converts the primary database into a physical standby database. The current control file is backed up to the current SQL session trace file before the switchover. This makes it possible to reconstruct a current control file, if necessary.

	
Note:

The WITH SESSION SHUTDOWN clause can be omitted from the switchover statement if the query performed in the previous step returned TO STANDBY.

Step 3 Shut down and then mount the former primary database.

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;

At this point in the switchover process, the original primary database is a physical standby database (see Figure 8-2).

Step 4 Verify that the switchover target is ready to be switched to the primary role.

Query the SWITCHOVER_STATUS column of the V$DATABASE view on the standby database.

For example:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

TO_PRIMARY
1 row selected

A value of TO PRIMARY or SESSIONS ACTIVE indicates that the standby database is ready to be switched to the primary role. If neither of these values is returned, verify that redo apply is active and that redo transport is configured and working properly. Continue to query this column until the value returned is either TO PRIMARY or SESSIONS ACTIVE.

Step 5 Switch the target physical standby database role to the primary role.

Issue the following SQL statement on the target physical standby database:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY WITH SESSION SHUTDOWN;

	
Note:

The WITH SESSION SHUTDOWN clause can be omitted from the switchover statement if the query performed in the previous step returned TO PRIMARY.

Step 6 Open the new primary database.

SQL> ALTER DATABASE OPEN;

Step 7 Start redo apply on the new physical standby database.

For example:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT LOGFILE
 DISCONNECT FROM SESSION;

8.2.2 Performing a Failover to a Physical Standby Database

Step 1 Identify and resolve any redo gaps.

Query the V$ARCHIVE_GAP view to determine if there are any redo gaps on the target standby database.

For example:

SQL> SELECT THREAD#, LOW_SEQUENCE#, HIGH_SEQUENCE# FROM V$ARCHIVE_GAP;
THREAD# LOW_SEQUENCE# HIGH_SEQUENCE#
---------- ------------- --------------
 1 90 92

In this example the gap comprises archived redo log files with sequences 90, 91, and 92 for thread 1.

If possible, copy any missing archived redo log files to the target standby database from the primary database and register them. This must be done for each thread.

For example:

SQL> ALTER DATABASE REGISTER PHYSICAL LOGFILE 'filespec1';

Step 2 Repeat Step 1 until all gaps are resolved.

The query executed in Step 1 displays information for the highest gap only. After resolving a gap, you must repeat the query until no more rows are returned.

Step 3 Copy any other missing archived redo log files.

To determine if there are any other missing archived redo log files, query the V$ARCHIVED_LOG view on the target standby database to obtain the highest sequence number for each thread.

For example:

SQL> SELECT UNIQUE THREAD# AS THREAD, MAX(SEQUENCE#)
 2> OVER (PARTITION BY thread#) AS LAST from V$ARCHIVED_LOG;

 THREAD LAST
---------- ----------
 1 100

If possible, copy any archived redo log files from the primary database that have sequence numbers higher than the highest sequence number available on the target standby database to the target standby database and register them. This must be done for each thread.

For example:

SQL> ALTER DATABASE REGISTER PHYSICAL LOGFILE 'filespec1';

If any missing archived redo log files are copied to the target standby database, go back to Step 1 to verify that no additional gaps have been introduced.

If, after performing Step 1 through Step 3, you are not able to resolve all gaps in the archived redo log files (for example, because you do not have access to the system that hosted the failed primary database), some data loss will occur during the failover.

Step 4 Stop Redo Apply.

Issue the following SQL statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

Step 5 Finish applying all received redo data.

Issue the following SQL statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE FINISH;

If this statement completes without error, proceed to Step 6.

If an error occurs, some received redo data was not applied. Try to resolve the cause of the error and re-issue the statement before proceeding to the next step.

If the error condition cannot be resolved, a failover can still be performed (with some data loss) by issuing the following SQL statement:

SQL> ALTER DATABASE ACTIVATE PHYSICAL STANDBY DATABASE;

Proceed to Step 8 when the ACTIVATE statement completes.

Step 6 Verify that the target standby database is ready to become a primary database.

Query the SWITCHOVER_STATUS column of the V$DATABASE view on the target standby database.

For example:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

TO PRIMARY
1 row selected

A value of either TO PRIMARY or SESSIONS ACTIVE indicates that the standby database is ready to be switched to the primary role. If neither of these values is returned, verify that redo apply is active and continue to query this view until either TO PRIMARY or SESSIONS ACTIVE is returned.

Step 7 Switch the physical standby database to the primary role.

Issue the following SQL statement:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY WITH SESSION SHUTDOWN;

	
Note:

The WITH SESSION SHUTDOWN clause can be omitted from the switchover statement if the query of the SWITCHOVER_STATUS column performed in the previous step returned TO PRIMARY.

Step 8 Open the new primary database.

SQL> ALTER DATABASE OPEN;

Step 9 Back up the new primary database.

Oracle recommends that a full backup be taken of the new primary database.

Step 10 Optionally, restore the failed primary database.

After a failover, the original primary database can be converted into a physical standby database of the new primary database using the method described in Section 13.2 or Section 13.7, or it can be re-created as a physical standby database from a backup of the new primary database using the method described in Section 3.2.

Once the original primary database is running in the standby role, a switchover can be performed to restore it to the primary role.

8.3 Role Transitions Involving Logical Standby Databases

This section describes how to perform switchovers and failovers involving a logical standby database.

8.3.1 Performing a Switchover to a Logical Standby Database

When you perform a switchover that changes roles between a primary database and a logical standby database, always initiate the switchover on the primary database and complete it on the logical standby database. These steps must be performed in the order in which they are described or the switchover will not succeed.

Step 1 Verify it is possible to perform a switchover on the primary database.

On the current primary database, query the SWITCHOVER_STATUS column of the V$DATABASE fixed view on the primary database to verify it is possible to perform a switchover.

For example:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

TO STANDBY
1 row selected

A value of TO STANDBY or SESSIONS ACTIVE in the SWITCHOVER_STATUS column indicates that it is possible to switch the primary database to the logical standby role. If one of these values is not displayed, then verify the Data Guard configuration is functioning correctly (for example, verify all LOG_ARCHIVE_DEST_n parameter values are specified correctly). See Oracle Database Reference for information about other valid values for the SWITCHOVER_STATUS column of the V$DATABASE view.

Step 2 Prepare the current primary database for the switchover.

To prepare the current primary database for a logical standby database role, issue the following SQL statement on the primary database:

SQL> ALTER DATABASE PREPARE TO SWITCHOVER TO LOGICAL STANDBY;

This statement notifies the current primary database that it will soon switch to the logical standby role and begin receiving redo data from a new primary database. You perform this step on the primary database in preparation to receive the LogMiner dictionary to be recorded in the redo stream of the current logical standby database, as described in step 3.

The value PREPARING SWITCHOVER is displayed in the V$DATABASE.SWITCHOVER_STATUS column if this operation succeeds.

Step 3 Prepare the target logical standby database for the switchover.

Use the following statement to build a LogMiner dictionary on the logical standby database that is the target of the switchover:

SQL> ALTER DATABASE PREPARE TO SWITCHOVER TO PRIMARY;

This statement also starts redo transport services on the logical standby database that begins transmitting its redo data to the current primary database and to other standby databases in the Data Guard configuration. The sites receiving redo data from this logical standby database accept the redo data but they do not apply it.

Depending on the work to be done and the size of the database, the switchover can take some time to complete.

The V$DATABASE.SWITCHOVER_STATUS on the logical standby database initially shows PREPARING DICTIONARY while the LogMiner dictionary is being recorded in the redo stream. Once this has completed successfully, the SWITCHOVER_STATUS column shows PREPARING SWITCHOVER.

Step 4 Ensure the current primary database is ready for the future primary database's redo stream.

Before you can complete the role transition of the primary database to the logical standby role, verify the LogMiner dictionary was received by the primary database by querying the SWITCHOVER_STATUS column of the V$DATABASE fixed view on the primary database. Without the receipt of the LogMiner dictionary, the switchover cannot proceed, because the current primary database will not be able to interpret the redo records sent from the future primary database. The SWITCHOVER_STATUS column shows the progress of the switchover.

When the query returns the TO LOGICAL STANDBY value, you can proceed with Step 5. For example:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

TO LOGICAL STANDBY
1 row selected

	
Note:

You can cancel the switchover operation by issuing the following statements in the order shown:
	
Cancel switchover on the primary database:

SQL> ALTER DATABASE PREPARE TO SWITCHOVER CANCEL;

	
Cancel the switchover on the logical standby database:

SQL> ALTER DATABASE PREPARE TO SWITCHOVER CANCEL;

Step 5 Switch the primary database to the logical standby database role.

To complete the role transition of the primary database to a logical standby database, issue the following SQL statement:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO LOGICAL STANDBY;

This statement waits for all current transactions on the primary database to end and prevents any new users from starting new transactions, and establishes a point in time where the switchover will be committed.

Executing this statement will also prevent users from making any changes to the data being maintained in the logical standby database. To ensure faster execution, ensure the primary database is in a quiet state with no update activity before issuing the switchover statement (for example, have all users temporarily log off the primary database). You can query the V$TRANSACTION view for information about the status of any current in-progress transactions that could delay execution of this statement.

The primary database has now undergone a role transition to run in the standby database role.

When a primary database undergoes a role transition to a logical standby database role, you do not have to shut down and restart the database.

Step 6 Ensure all available redo has been applied to the target logical standby database that is about to become the new primary database.

After you complete the role transition of the primary database to the logical standby role and the switchover notification is received by the standby databases in the configuration, you should verify the switchover notification was processed by the target standby database by querying the SWITCHOVER_STATUS column of the V$DATABASE fixed view on the target standby database. Once all available redo records are applied to the logical standby database, SQL Apply automatically shuts down in anticipation of the expected role transition.

The SWITCHOVER_STATUS value is updated to show progress during the switchover. When the status is TO PRIMARY, you can proceed with Step 7.

For example:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

TO PRIMARY
1 row selected

See Oracle Database Reference for information about other valid values for the SWITCHOVER_STATUS column of the V$DATABASE view.

Step 7 Switch the target logical standby database to the primary database role.

On the logical standby database that you want to switch to the primary role, use the following SQL statement to switch the logical standby database to the primary role:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;

There is no need to shut down and restart any logical standby databases that are in the Data Guard configuration. As described in Section 8.1.2, all other logical standbys in the configuration will become standbys of the new primary, but any physical standby databases will remain standbys of the original primary database.

Step 8 Start SQL Apply on the new logical standby database.

On the new logical standby database, start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

8.3.2 Performing a Failover to a Logical Standby Database

This section describes how to perform failovers involving a logical standby database. A failover role transition involving a logical standby database necessitates taking corrective actions on the failed primary database and on all bystander logical standby databases. If Flashback Database was not enabled on the failed primary database, you must re-create the database from backups taken from the current primary database. Otherwise, you can follow the procedure described in Section 13.2 to convert a failed primary database to be a logical standby database for the new primary database.

Depending on the protection mode for the configuration and the attributes you chose for redo transport services, it might be possible to automatically recover all or some of the primary database modifications.

Step 1 Copy and register any missing archived redo log files to the target logical standby database slated to become the new primary database.

Depending on the condition of the components in the configuration, you might have access to the archived redo log files on the primary database. If so, do the following:

	
Determine if any archived redo log files are missing on the logical standby database.

	
Copy missing log files from the primary database to the logical standby database.

	
Register the copied log files.

You can register an archived redo log files with the logical standby database by issuing the following statement. For example:

SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE
 2> '/disk1/oracle/dbs/log-%r_%s_%t.arc';
Database altered.

Step 2 Enable remote destinations.

If you have not previously configured role-based destinations, identify the initialization parameters that correspond to the remote logical standby destinations for the new primary database, and manually enable archiving of redo data for each of these destinations.

For example, to enable archiving for the remote destination defined by the LOG_ARCHIVE_DEST_2 parameter, issue the following statement:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE SCOPE=BOTH;

To ensure this change will persist if the new primary database is later restarted, update the appropriate text initialization parameter file or server parameter file. In general, when the database operates in the primary role, you must enable archiving to remote destinations, and when the database operates in the standby role, you must disable archiving to remote destinations.

Step 3 Activate the new primary database.

Issue the following statement on the target logical standby database (that you are transitioning to the new primary role):

SQL> ALTER DATABASE ACTIVATE LOGICAL STANDBY DATABASE FINISH APPLY;

This statement stops the RFS process, applies remaining redo data in the standby redo log file before the logical standby database becomes a primary database, stops SQL Apply, and activates the database in the primary database role.

If the FINISH APPLY clause is not specified, then unapplied redo from the current standby redo log file will not be applied before the standby database becomes the primary database.

Step 4 Recovering other standby databases after a failover

Follow the method described in Section 13.1 to ensure existing logical standby databases can continue to provide protection for the new primary database.

Step 5 Back up the new primary database.

Back up the new primary database immediately after the Data Guard database failover. Immediately performing a backup is a necessary safety measure, because you cannot recover changes made after the failover without a complete backup copy of the database.

Step 6 Restore the failed primary database.

After a failover, the original primary database can be converted into a logical standby database of the new primary database using the method described in Section 13.2, or it can be recreated as a logical standby database from a backup of the new primary database as described in Chapter 4.

Once the original primary database has been converted into a standby database, a switchover can be performed to restore it to the primary role.

8.4 Using Flashback Database After a Role Transition

After a role transition, you can optionally use the FLASHBACK DATABASE command to revert the databases to a point in time or system change number (SCN) prior to when the role transition occurred.

In a physical standby database environment, you may need to flash back the primary database and all standby databases to maintain the Data Guard configuration. If you flash back the primary database to a certain SCN or time, you must flash back all the standby databases to either the same (or earlier) SCN or time. This way, after starting Redo Apply, the physical standby databases will automatically begin applying redo data received from the primary database.When flashing back primary or standby databases in this way, you do not have to be aware of past switchovers. Oracle can automatically flashback across past switchovers if the SCN/time is before any past switchover.

	
Note:

Flashback Database must be enabled on the databases before the role transition occurs. See Oracle Database Backup and Recovery User's Guide for more information

8.4.1 Using Flashback Database After a Switchover

After a switchover, you can return databases to a time or system change number (SCN) prior to when the switchover occurred using the FLASHBACK DATABASE command.

If the switchover involved a physical standby database, the primary and standby database roles are preserved during the flashback operation. That is, the role in which the database is running does not change when the database is flashed back to the target SCN or time to which you flashed back the database. A database running in the physical standby role after the switchover but prior to the flashback will still be running in the physical standby database role after the Flashback Database operation.

If the switchover involved a logical standby database, flashing back changes the role of the standby database to what it was at the target SCN or time to which you flashed back the database.

8.4.2 Using Flashback Database After a Failover

You can use Flashback Database to convert the failed primary database to a point in time before the failover occurred and then convert it into a standby database. See Section 13.2, "Converting a Failed Primary Into a Standby Database Using Flashback Database" for the complete step-by-step procedure.

Managing Physical and Snapshot Standby Databases

9 Managing Physical and Snapshot Standby Databases

This chapter describes how to manage physical and snapshot standby databases. The following topics are discussed:

	
Starting Up and Shutting Down a Physical Standby Database

	
Opening a Physical Standby Database

	
Primary Database Changes That Require Manual Intervention at a Physical Standby

	
Recovering Through the OPEN RESETLOGS Statement

	
Monitoring Primary, Physical Standby, and Snapshot Standby Databases

	
Tuning Redo Apply

	
Managing a Snapshot Standby Database

See Oracle Data Guard Broker to learn how the Data Guard broker simplifies the management of physical and snapshot standby databases.

9.1 Starting Up and Shutting Down a Physical Standby Database

This section describes how to start up and shut down a physical standby database.

9.1.1 Starting Up a Physical Standby Database

Use the SQL*Plus STARTUP command to start a physical standby database. The SQL*Plus STARTUP command starts, mounts, and opens a physical standby database in read-only mode when it is invoked without any arguments.

Once mounted or opened, a physical standby database can receive redo data from the primary database.

See Section 7.3 for information about Redo Apply and Section 9.2 for information about opening a physical standby database in read-only mode.

	
Note:

When Redo Apply is started on a physical standby database that has not yet received redo data from the primary database, an ORA-01112 message may be returned. This indicates that Redo Apply is unable to determine the starting sequence number for media recovery. If this occurs, manually retrieve an archived redo log file from the primary database and register it on the standby database, or wait for redo transport to begin before starting Redo Apply.

9.1.2 Shutting Down a Physical Standby Database

Use the SQL*Plus SHUTDOWN command to stop Redo Apply and shut down a physical standby database. Control is not returned to the session that initiates a database shutdown until shutdown is complete.

If the primary database is up and running, defer the standby destination on the primary database and perform a log switch before shutting down the physical standby database.

9.2 Opening a Physical Standby Database

A physical standby database can be opened for read-only access and used to offload queries from a primary database.

If a license for the Oracle Active Data Guard option has been purchased, a physical standby database can be open while redo apply is active. This capability is known as real-time query. See Section 9.2.1 for more details.

If a license for the Oracle Active Data Guard option has not been purchased, a physical standby database cannot be open while redo apply is active, so the following rules must be observed when opening a physical standby database instance or starting redo apply:

	
Redo apply must be stopped before any physical standby database instance is opened.

	
If one or more physical standby instances are open, those instances must be closed before starting redo apply.

	
Note:

The SET TRANSACTION READ ONLY SQL statement must be executed before performing a distributed query on a physical standby database.

9.2.1 Real-time query

A physical standby database can be open for read-only access while Redo Apply is active if a license for the Oracle Active Data Guard option has been purchased. This capability is known as real-time query.

A physical standby database instance cannot be opened if Redo Apply is active on that instance or on any other mounted instance. Use the following SQL statements to stop Redo Apply, open a standby instance read-only, and restart Redo Apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;
SQL> ALTER DATABASE OPEN;
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT LOGFILE
 2> DISCONNECT;

	
Note:

If Redo Apply is active on an open instance, any other physical standby database instance can be opened without having to stop apply.

Redo Apply cannot be started on a mounted physical standby instance if any other instance is open. The instance where Redo Apply is to be started must be opened before starting Redo Apply.

After a physical standby apply instance is terminated abnormally (for example, by a shutdown abort or a node crash), an attempt to open the physical standby database will result in an ORA-16004: backup database requires recovery error. If this happens, Redo Apply must be started and then stopped before you try again to open the physical standby database.

Example 9-1 illustrates the failure and recovery of a physical standby database instance named Boston, and then after recovery, opening Boston while Redo Apply is active (real-time query).

Example 9-1 Real-time query

At the start of this example, the physical standby instance Boston is mounted with Redo Apply active. Then Boston crashes due to a power outage and is re-started:

SQL> STARTUP
ORACLE instance started.

Total System Global Area 234364928 bytes
Fixed Size 1298908 bytes
Variable Size 209718820 bytes
Database Buffers 16777216 bytes
Redo Buffers 6569984 bytes
Database mounted.
ORA-16004: backup database requires recovery
ORA-01196: file 1 is inconsistent due to a failed media recovery session
ORA-01110: data file 1: '/scratch/datafiles/oracle/dbs/system1.f'

The physical standby database is inconsistent because the Boston instance crashed while Redo Apply was active on it. Start Redo Apply so that the database can be recovered to a consistent SCN:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT;
Database altered.

Wait for about a minute and then stop Redo Apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;
Database altered.

Note that the alert log will list the following warning which is normal and expected: ORA-16037: user requested cancel of managed recovery operation.

Boston is now recovered to a consistent SCN.

Open Boston and start Redo Apply:

SQL> ALTER DATABASE OPEN;
Database altered.

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING
 2> CURRENT LOGFILE DISCONNECT;
Database altered.

Boston is now open and Redo Apply is active meaning that real-time query is in effect.

9.3 Primary Database Changes That Require Manual Intervention at a Physical Standby

Most structural changes made to a primary database are automatically propagated through redo data to a physical standby database. Table 9-1 lists primary database structural and configuration changes which require manual intervention at a physical standby database.

Table 9-1 Primary Database Changes That Require Manual Intervention at a Physical Standby

	Reference	Primary Database Change	Action Required on Physical Standby Database
	
Section 9.3.1

	
Add a datafile or create a tablespace

	
No action is required if the STANDBY_FILE_MANAGEMENT database initialization parameter is set to AUTO. If this parameter is set to MANUAL, the new datafile must be copied to the physical standby database.

	
Section 9.3.2

	
Drop or delete a tablespace or datafile

	
Delete datafile from primary and physical standby database after the redo data containing the DROP or DELETE command is applied to the physical standby.

	
Section 9.3.3

	
Use transportable tablespaces

	
Move tablespace between the primary and the physical standby database.

	
Section 9.3.4

	
Rename a datafile

	
Rename the datafile on the physical standby database.

	
Section 9.3.5

	
Add or drop a redo log file group

	
Evaluate the configuration of the redo log and standby redo log on the physical standby database and adjust as necessary.

	
Section 9.3.6

	
Perform a DML or DDL operation using the NOLOGGING or UNRECOVERABLE clause

	
Copy the datafile containing the unlogged changes to the physical standby database.

	
Section 9.3.7

	
Grant or revoke administrative privileges or change the password of a user who has administrative privileges

	
If the REMOTE_LOGIN_PASSWORDFILE initialization parameter is set to SHARED or EXCLUSIVE, replace the password file on the physical standby database with a fresh copy of the password file from the primary database.

	
Section 9.3.8

	
Reset the TDE master encryption key

	
Replace the database encryption wallet on the physical standby database with a fresh copy of the database encryption wallet from the primary database.

	
Chapter 14

	
Change initialization parameters

	
Evaluate whether a corresponding change must be made to the initialization parameters on the physical standby database.

9.3.1 Adding a Datafile or Creating a Tablespace

The STANDBY_FILE_MANAGEMENT database initialization parameter controls whether the addition of a datafile to the primary database is automatically propagated to a physical standby databases.

	
If the STANDBY_FILE_MANAGEMENT parameter on the physical standby database is set to AUTO, any new datafiles created on the primary database are automatically created on the physical standby database.

	
If the STANDBY_FILE_MANAGEMENT database parameter on the physical standby database is set to MANUAL, a new datafile must be manually copied from the primary database to the physical standby databases after it is added to the primary database.

Note that if an existing datafile from another database is copied to a primary database, that it must also be copied to the standby database and that the standby control file must be re-created, regardless of the setting of STANDBY_FILE_MANAGEMENT parameter.

9.3.1.1 Using the STANDBY_FILE_MANAGEMENT Parameter with Raw Devices

	
Note:

Do not use the following procedure with databases that use Oracle Managed Files. Also, if the raw device path names are not the same on the primary and standby servers, use the DB_FILE_NAME_CONVERT database initialization parameter to convert the path names.

By setting the STANDBY_FILE_MANAGEMENT parameter to AUTO whenever new datafiles are added or dropped on the primary database, corresponding changes are made in the standby database without manual intervention. This is true as long as the standby database is using a file system. If the standby database is using raw devices for datafiles, then the STANDBY_FILE_MANAGEMENT parameter will continue to work, but manual intervention is needed. This manual intervention involves ensuring the raw devices exist before Redo Apply applies the redo data that will create the new datafile.On the primary database, create a new tablespace where the datafiles reside in a raw device. At the same time, create the same raw device on the standby database. For example:

SQL> CREATE TABLESPACE MTS2 –
> DATAFILE '/dev/raw/raw100' size 1m;
Tablespace created.

SQL> ALTER SYSTEM SWITCH LOGFILE;
System altered.

The standby database automatically adds the datafile because the raw devices exist. The standby alert log shows the following:

Fri Apr 8 09:49:31 2005
Media Recovery Log /u01/MILLER/flash_recovery_area/MTS_STBY/archivelog/2005_04_08/o1_mf_1_7_15ffgt0z_.arc
Recovery created file /dev/raw/raw100
Successfully added datafile 6 to media recovery
Datafile #6: '/dev/raw/raw100'
Media Recovery Waiting for thread 1 sequence 8 (in transit)

However, if the raw device was created on the primary system but not on the standby, then Redo Apply will stop due to file-creation errors. For example, issue the following statements on the primary database:

SQL> CREATE TABLESPACE MTS3 –
> DATAFILE '/dev/raw/raw101' size 1m;
Tablespace created.

SQL> ALTER SYSTEM SWITCH LOGFILE;
System altered.

The standby system does not have the /dev/raw/raw101 raw device created. The standby alert log shows the following messages when recovering the archive:

Fri Apr 8 10:00:22 2005
Media Recovery Log /u01/MILLER/flash_recovery_area/MTS_STBY/archivelog/2005_04_08/o1_mf_1_8_15ffjrov_.arc
File #7 added to control file as 'UNNAMED00007'.
Originally created as:
'/dev/raw/raw101'
Recovery was unable to create the file as:
'/dev/raw/raw101'
MRP0: Background Media Recovery terminated with error 1274
Fri Apr 8 10:00:22 2005
Errors in file /u01/MILLER/MTS/dump/mts_mrp0_21851.trc:
ORA-01274: cannot add datafile '/dev/raw/raw101' - file could not be created
ORA-01119: error in creating database file '/dev/raw/raw101'
ORA-27041: unable to open file
Linux Error: 13: Permission denied
Additional information: 1
Some recovered datafiles maybe left media fuzzy
Media recovery may continue but open resetlogs may fail
Fri Apr 8 10:00:22 2005
Errors in file /u01/MILLER/MTS/dump/mts_mrp0_21851.trc:
ORA-01274: cannot add datafile '/dev/raw/raw101' - file could not be created
ORA-01119: error in creating database file '/dev/raw/raw101'
ORA-27041: unable to open file
Linux Error: 13: Permission denied
Additional information: 1
Fri Apr 8 10:00:22 2005
MTS; MRP0: Background Media Recovery process shutdown
ARCH: Connecting to console port...

9.3.1.2 Recovering from Errors

To correct the problems described in Section 9.3.1.1, perform the following steps:

	
Create the raw device on the standby database and assign permissions to the Oracle user.

	
Query the V$DATAFILE view. For example:

SQL> SELECT NAME FROM V$DATAFILE;

NAME.
 --
/u01/MILLER/MTS/system01.dbf
/u01/MILLER/MTS/undotbs01.dbf
/u01/MILLER/MTS/sysaux01.dbf
/u01/MILLER/MTS/users01.dbf
/u01/MILLER/MTS/mts.dbf
/dev/raw/raw100
/u01/app/oracle/product/10.1.0/dbs/UNNAMED00007

SQL> ALTER SYSTEM SET –
> STANDBY_FILE_MANAGEMENT=MANUAL;

SQL> ALTER DATABASE CREATE DATAFILE
2 '/u01/app/oracle/product/10.1.0/dbs/UNNAMED00007'
3 AS
4 '/dev/raw/raw101';

	
In the standby alert log you should see information similar to the following:

Fri Apr 8 10:09:30 2005
alter database create datafile
'/dev/raw/raw101' as '/dev/raw/raw101'

Fri Apr 8 10:09:30 2005
Completed: alter database create datafile
'/dev/raw/raw101' a

	
On the standby database, set STANDBY_FILE_MANAGEMENT to AUTO and restart Redo Apply:

SQL> ALTER SYSTEM SET STANDBY_FILE_MANAGEMENT=AUTO;
SQL> RECOVER MANAGED STANDBY DATABASE DISCONNECT;

At this point Redo Apply uses the new raw device datafile and recovery continues.

9.3.2 Dropping Tablespaces and Deleting Datafiles

When a tablespace is dropped or a datafile is deleted from a primary database, the corresponding datafile(s) must be deleted from the physical standby database. The following example shows how to drop a tablespace:

SQL> DROP TABLESPACE tbs_4;
SQL> ALTER SYSTEM SWITCH LOGFILE;

To verify that deleted datafiles are no longer part of the database, query the V$DATAFILE view.

Delete the corresponding datafile on the standby system after the redo data that contains the previous changes is applied to the standby database. For example:

% rm /disk1/oracle/oradata/payroll/s2tbs_4.dbf

On the primary database, after ensuring the standby database applied the redo information for the dropped tablespace, you can remove the datafile for the tablespace. For example:

% rm /disk1/oracle/oradata/payroll/tbs_4.dbf

9.3.2.1 Using DROP TABLESPACE INCLUDING CONTENTS AND DATAFILES

You can issue the SQL DROP TABLESPACE INCLUDING CONTENTS AND DATAFILES statement on the primary database to delete the datafiles on both the primary and standby databases. To use this statement, the STANDBY_FILE_MANAGEMENT initialization parameter must be set to AUTO. For example, to drop the tablespace at the primary site:

SQL> DROP TABLESPACE INCLUDING CONTENTS –
> AND DATAFILES tbs_4;
SQL> ALTER SYSTEM SWITCH LOGFILE;

9.3.3 Using Transportable Tablespaces with a Physical Standby Database

You can use the Oracle transportable tablespaces feature to move a subset of an Oracle database and plug it in to another Oracle database, essentially moving tablespaces between the databases.

To move or copy a set of tablespaces into a primary database when a physical standby is being used, perform the following steps:

	
Generate a transportable tablespace set that consists of datafiles for the set of tablespaces being transported and an export file containing structural information for the set of tablespaces.

	
Transport the tablespace set:

	
Copy the datafiles and the export file to the primary database.

	
Copy the datafiles to the standby database.

The datafiles must be copied in a directory defined by the DB_FILE_NAME_CONVERT initialization parameter. If DB_FILE_NAME_CONVERT is not defined, then issue the ALTER DATABASE RENAME FILE statement to modify the standby control file after the redo data containing the transportable tablespace has been applied and has failed. The STANDBY_FILE_MANAGEMENT initialization parameter must be set to AUTO.

	
Plug in the tablespace.

Invoke the Data Pump utility to plug the set of tablespaces into the primary database. Redo data will be generated and applied at the standby site to plug the tablespace into the standby database.

For more information about transportable tablespaces, see Oracle Database Administrator's Guide.

9.3.4 Renaming a Datafile in the Primary Database

When you rename one or more datafiles in the primary database, the change is not propagated to the standby database. Therefore, if you want to rename the same datafiles on the standby database, you must manually make the equivalent modifications on the standby database because the modifications are not performed automatically, even if the STANDBY_FILE_MANAGEMENT initialization parameter is set to AUTO.

The following steps describe how to rename a datafile in the primary database and manually propagate the changes to the standby database.

	
To rename the datafile in the primary database, take the tablespace offline:

SQL> ALTER TABLESPACE tbs_4 OFFLINE;

	
Exit from the SQL prompt and issue an operating system command, such as the following UNIX mv command, to rename the datafile on the primary system:

% mv /disk1/oracle/oradata/payroll/tbs_4.dbf
/disk1/oracle/oradata/payroll/tbs_x.dbf

	
Rename the datafile in the primary database and bring the tablespace back online:

SQL> ALTER TABLESPACE tbs_4 RENAME DATAFILE 2> '/disk1/oracle/oradata/payroll/tbs_4.dbf'
 3> TO '/disk1/oracle/oradata/payroll/tbs_x.dbf';
SQL> ALTER TABLESPACE tbs_4 ONLINE;

	
Connect to the standby database and stop Redo Apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

	
Shut down the standby database:

SQL> SHUTDOWN;

	
Rename the datafile at the standby site using an operating system command, such as the UNIX mv command:

% mv /disk1/oracle/oradata/payroll/tbs_4.dbf /disk1/oracle/oradata/payroll/tbs_x.dbf

	
Start and mount the standby database:

SQL> STARTUP MOUNT;

	
Rename the datafile in the standby control file. Note that the STANDBY_FILE_MANAGEMENT initialization parameter must be set to MANUAL.

SQL> ALTER DATABASE RENAME FILE '/disk1/oracle/oradata/payroll/tbs_4.dbf'
 2> TO '/disk1/oracle/oradata/payroll/tbs_x.dbf';

	
On the standby database, restart Redo Apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT LOGFILE
 2> DISCONNECT FROM SESSION;

If you do not rename the corresponding datafile at the standby system, and then try to refresh the standby database control file, the standby database will attempt to use the renamed datafile, but it will not find it. Consequently, you will see error messages similar to the following in the alert log:

ORA-00283: recovery session canceled due to errors
ORA-01157: cannot identify/lock datafile 4 - see DBWR trace file
ORA-01110: datafile 4: '/Disk1/oracle/oradata/payroll/tbs_x.dbf'

9.3.5 Add or Drop a Redo Log File Group

The configuration of the redo log and standby redo log on a physical standby database should be reevaluated and adjusted as necessary after adding or dropping a redo log file group on the primary database.

Take the following steps to add or drop a redo log file group or standby redo log file group on a physical standby database:

	
Stop Redo Apply.

	
If the STANDBY_FILE_MANAGEMENT initialization parameter is set to AUTO, change the value to MANUAL.

	
Add or drop a log file group.

	
Restore the STANDBY_FILE_MANAGEMENT initialization parameter and the Redo Apply options to their original states.

	
Restart Redo Apply.

9.3.6 NOLOGGING or Unrecoverable Operations

When you perform a DML or DDL operation using the NOLOGGING or UNRECOVERABLE clause, the standby database is invalidated and may require substantial DBA administrative activities to repair. You can specify the SQL ALTER DATABASE or SQL ALTER TABLESPACE statement with the FORCELOGGING clause to override the NOLOGGING setting. However, this statement will not repair an already invalidated database.

See Section 13.4 for information about recovering after the NOLOGGING clause is used.

9.3.7 Refresh the Password File

If the REMOTE_LOGIN_PASSWORDFILE database initialization parameter is set to SHARED or EXCLUSIVE, the password file on a physical standby database must be replaced with a fresh copy from the primary database after granting or revoking administrative privileges or changing the password of a user with administrative privileges.

Failure to refresh the password file on the physical standby database may cause authentication of redo transport sessions or connections as SYSDBA or SYSOPER to the physical standby database to fail.

9.3.8 Reset the TDE Master Encryption Key

The database encryption wallet on a physical standby database must be replaced with a fresh copy of the database encryption wallet from the primary database whenever the TDE master encryption key is reset on the primary database.

Failure to refresh the database encryption wallet on the physical standby database will prevent access to encrypted columns on the physical standby database that are modified after the master encryption key is reset on the primary database.

9.4 Recovering Through the OPEN RESETLOGS Statement

Data Guard allows recovery on a physical standby database to continue after the primary database has been opened with the RESETLOGS option. When an ALTER DATABASE OPEN RESETLOGS statement is issued on the primary database, the incarnation of the database changes, creating a new branch of redo data.

When a physical standby database receives a new branch of redo data, Redo Apply automatically takes the new branch of redo data. For physical standby databases, no manual intervention is required if the standby database did not apply redo data past the new resetlogs SCN (past the start of the new branch of redo data). The following table describes how to resynchronize the standby database with the primary database branch.

	If the standby database. . .	Then. . .	Perform these steps. . .
	Has not applied redo data past the new resetlogs SCN (past the start of the new branch of redo data)	Redo Apply automatically takes the new branch of redo.	No manual intervention is necessary. The MRP automatically resynchronizes the standby database with the new branch of redo data.
	Has applied redo data past the new resetlogs SCN (past the start of the new branch of redo data) and Flashback Database is enabled on the standby database	The standby database is recovered in the future of the new branch of redo data.	
	Follow the procedure in Section 13.3.1 to flash back a physical standby database.
	
Restart Redo Apply to continue application of redo data onto new reset logs branch.

The MRP automatically resynchronizes the standby database with the new branch.

	Has applied redo data past the new resetlogs SCN (past the start of the new branch of redo data) and Flashback Database is not enabled on the standby database	The primary database has diverged from the standby on the indicated primary database branch.	Re-create the physical standby database following the procedures in Chapter 3.
	Is missing intervening archived redo log files from the new branch of redo data	The MRP cannot continue until the missing log files are retrieved.	Locate and register missing archived redo log files from each branch.
	Is missing archived redo log files from the end of the previous branch of redo data.	The MRP cannot continue until the missing log files are retrieved.	Locate and register missing archived redo log files from the previous branch.

See Oracle Database Backup and Recovery User's Guide for more information about database incarnations, recovering through an OPEN RESETLOGS operation, and Flashback Database.

9.5 Monitoring Primary, Physical Standby, and Snapshot Standby Databases

This section describes where to find useful information for monitoring primary and standby databases.

Table 9-2 summarizes common primary database management actions and where to find information related to these actions.

Table 9-2 Sources of Information About Common Primary Database Management Actions

	Primary Database Action	Primary Site Information	Standby Site Information
	
Enable or disable a redo thread

	
	
Alert log

	
V$THREAD

	
Alert log

	
Display database role, protection mode, protection level, switchover status, fast-start failover information, and so forth

	
V$DATABASE

	
V$DATABASE

	
Add or drop a redo log file group

	
	
Alert log

	
V$LOG

	
STATUS column of V$LOGFILE

	
Alert log

	
CREATE CONTROLFILE

	
Alert log

	
Alert log

	
Monitor Redo Apply

	
	
Alert log

	
V$ARCHIVE_DEST_STATUS

	
	
Alert log

	
V$ARCHIVED_LOG

	
V$LOG_HISTORY

	
V$MANAGED_STANDBY

	
Change tablespace status

	
	
V$RECOVER_FILE

	
DBA_TABLESPACES

	
Alert log

	
	
V$RECOVER_FILE

	
DBA_TABLESPACES

	
Add or drop a datafile or tablespace

	
	
DBA_DATA_FILES

	
Alert log

	
	
V$DATAFILE

	
Alert log

	
Rename a datafile

	
	
V$DATAFILE

	
Alert log

	
	
V$DATAFILE

	
Alert log

	
Unlogged or unrecoverable operations

	
	
V$DATAFILE

	
V$DATABASE

	
Alert log

	
Monitor redo transport

	
	
V$ARCHIVE_DEST_STATUS

	
V$ARCHIVED_LOG

	
V$ARCHIVE_DEST

	
Alert log

	
	
V$ARCHIVED_LOG

	
Alert log

	
Issue OPEN RESETLOGS or CLEAR UNARCHIVED LOGFILES statements

	
Alert log

	
Alert log

	
Change initialization parameter

	
Alert log

	
Alert log

9.5.1 Using Views to Monitor Primary, Physical, and Snapshot Standby Databases

This section shows how to use dynamic performance views to monitor primary, physical standby, and snapshot standby databases.

The following dynamic performance views are discussed:

	
V$DATABASE

	
V$MANAGED_STANDBY

	
V$ARCHIVED_LOG

	
V$LOG_HISTORY

	
V$DATAGUARD_STATUS

	
See Also:

Oracle Database Reference for complete reference information about views

9.5.1.1 V$DATABASE

The following query displays the data protection mode, data protection level, database role, and switchover status for a primary, physical standby or snapshot standby database:

SQL> SELECT PROTECTION_MODE, PROTECTION_LEVEL, –
> DATABASE_ROLE ROLE, SWITCHOVER_STATUS –
> FROM V$DATABASE;

The following query displays fast-start failover status:

SQL> SELECT FS_FAILOVER_STATUS "FSFO STATUS", -
> FS_FAILOVER_CURRENT_TARGET TARGET, -
> FS_FAILOVER_THRESHOLD THRESHOLD, -
> FS_FAILOVER_OBSERVER_PRESENT "OBSERVER PRESENT" –
> FROM V$DATABASE;

9.5.1.2 V$MANAGED_STANDBY

The following query displays Redo Apply and redo transport status on a physical standby database:

SQL> SELECT PROCESS, STATUS, THREAD#, SEQUENCE#,-
> BLOCK#, BLOCKS FROM V$MANAGED_STANDBY;

PROCESS STATUS THREAD# SEQUENCE# BLOCK# BLOCKS
------- ------------ ---------- ---------- ---------- ----------
RFS ATTACHED 1 947 72 72
MRP0 APPLYING_LOG 1 946 10 72

The sample output shows that a RFS process completed archiving a redo log file with a sequence number of 947 and that Redo Apply is actively applying an archived redo log file with a sequence number of 946. Redo Apply is currently recovering block number 10 of the 72-block archived redo log file.

9.5.1.3 V$ARCHIVED_LOG

The following query displays information about archived redo log files that have been received by a physical or snapshot standby database from a primary database:

SQL> SELECT THREAD#, SEQUENCE#, FIRST_CHANGE#, -
> NEXT_CHANGE# FROM V$ARCHIVED_LOG;

THREAD# SEQUENCE# FIRST_CHANGE# NEXT_CHANGE#
---------- ---------- ------------- ------------
1 945 74651 74739
1 946 74739 74772
1 947 74772 7474

The sample output shows that three archived redo log files have been received from the primary database.

9.5.1.4 V$LOG_HISTORY

The following query displays archived log history information:

SQL> SELECT THREAD#, SEQUENCE#, FIRST_CHANGE#, -
> NEXT_CHANGE# FROM V$LOG_HISTORY;

9.5.1.5 V$DATAGUARD_STATUS

The following query displays messages generated by Data Guard events that caused a message to be written to the alert log or to a server process trace file:

SQL> SELECT MESSAGE FROM V$DATAGUARD_STATUS;

9.6 Tuning Redo Apply

The Oracle Data Guard Redo Apply and Media Recovery Best Practices white paper describes how to optimize Redo Apply and media recovery performance. This paper is available on the Oracle Maximum Availability Architecture (MAA) home page at:

http://otn.oracle.com/deploy/availability/htdocs/maa.htm

	
See Also:

Oracle MetaLink note 454848.1 at
https://metalink.oracle.com for information about the installation and use of the Standby Statspack, which can be used to collect redo apply performance data from a physical standby database

9.7 Managing a Snapshot Standby Database

A snapshot standby database is a fully updatable standby database that is created by converting a physical standby database into a snapshot standby database. A snapshot standby database receives and archives, but does not apply, redo data from a primary database. Redo data received from the primary database is applied when a snapshot standby database is converted back into a physical standby database, after discarding all local updates to the snapshot standby database.

A snapshot standby database typically diverges from its primary database over time because redo data from the primary database is not applied as it is received. Local updates to the snapshot standby database will cause additional divergence. The data in the primary database is fully protected however, because a snapshot standby can be converted back into a physical standby database at any time, and the redo data received from the primary will then be applied.

A snapshot standby database provides disaster recovery and data protection benefits that are similar to those of a physical standby database. Snapshot standby databases are best used in scenarios where the benefit of having a temporary, updatable snapshot of the primary database justifies additional administrative complexity and increased time to recover from primary database failures.

9.7.1 Converting a Physical Standby Database into a Snapshot Standby Database

Perform the following steps to convert a physical standby database into a snapshot standby database:

	
Stop Redo Apply, if it is active.

	
On an Oracle Real Applications Cluster (RAC) database, shut down all but one instance.

	
Ensure that the database is mounted, but not open.

	
Issue the following SQL statement to perform the conversion:

SQL> ALTER DATABASE CONVERT TO SNAPSHOT STANDBY;

The database is dismounted after conversion and must be restarted.

	
Note:

A physical standby database that is managed by the Data Guard broker can be converted into a snapshot standby database using either DGMGRL or Oracle Enterprise Manager. See Oracle Data Guard Broker for more details.

9.7.2 Using a Snapshot Standby Database

A snapshot standby database can be opened in read-write mode and is fully updatable.

A snapshot standby database has the following characteristics:

	
A snapshot standby database cannot be the target of a switchover or failover. A snapshot standby database must first be converted back into a physical standby database before performing a role transition to it.

	
A snapshot standby database cannot be the only standby database in a Maximum Protection Data Guard configuration.

	
Note:

Flashback Database is used to convert a snapshot standby database back into a physical standby database. Any operation that cannot be reversed using Flashback Database technology will prevent a snapshot standby from being converted back to a physical standby.

9.7.3 Converting a Snapshot Standby Database into a Physical Standby Database

Perform the following steps to convert a snapshot standby database into a physical standby database:

	
On an Oracle Real Applications Cluster (RAC) database, shut down all but one instance.

	
Ensure that the database is mounted, but not open.

	
Issue the following SQL statement to perform the conversion:

SQL> ALTER DATABASE CONVERT TO PHYSICAL STANDBY;

The database is dismounted after conversion and must be restarted.

Redo data received while the database was a snapshot standby database will be automatically applied when Redo Apply is started.

	
Note:

A snapshot standby database must be opened at least once in read-write mode before it can be converted into a physical standby database.

Using RMAN to Back Up and Restore Files

11 Using RMAN to Back Up and Restore Files

This chapter describes backup strategies using Oracle Recovery Manager (RMAN) with Data Guard and standby databases. RMAN can perform backups with minimal effect on the primary database and quickly recover from the loss of individual datafiles, or the entire database. RMAN and Data Guard can be used together to simplify the administration of a Data Guard configuration.

This chapter contains the following topics:

	
About RMAN File Management in a Data Guard Configuration

	
About RMAN Configuration in a Data Guard Environment

	
Recommended RMAN and Oracle Database Configurations

	
Backup Procedures

	
Registering and Unregistering Databases in a Data Guard Environment

	
Reporting in a Data Guard Environment

	
Performing Backup Maintenance in a Data Guard Environment

	
Recovery Scenarios in a Data Guard Environment

	
Additional Backup Situations

	
Using RMAN Incremental Backups to Roll Forward a Physical Standby Database

	
Note:

Because a logical standby database is not a block-for-block copy of the primary database, you cannot use a logical standby database to back up the primary database.

	
See Also:

	
Oracle Database Backup and Recovery User's Guide for more information about RMAN concepts and about using RMAN in a Data Guard environment

	
Oracle Database Backup and Recovery Reference for detailed information about all RMAN commands used in this chapter

11.1 About RMAN File Management in a Data Guard Configuration

RMAN uses a recovery catalog to track filenames for all database files in a Data Guard environment. A recovery catalog is a database schema used by RMAN to store metadata about one or more Oracle databases. The catalog also records where the online redo logs, standby redo logs, tempfiles, archived redo logs, backup sets, and image copies are created.

11.1.1 Interchangeability of Backups in a Data Guard Environment

RMAN commands use the recovery catalog metadata to behave transparently across different physical databases in the Data Guard environment. For example, you can back up a tablespace on a physical standby database and restore and recover it on the primary database. Similarly, you can back up a tablespace on a primary database and restore and recover it on a physical standby database.

	
Note:

Backups of logical standby databases are not usable at the primary database.

Backups of standby control files and nonstandby control files are interchangeable. For example, you can restore a standby control file on a primary database and a primary control file on a physical standby database. This interchangeability means that you can offload control file backups to one database in a Data Guard environment. RMAN automatically updates the filenames for database files during restore and recovery at the databases.

11.1.2 Association of Backups in a Data Guard Environment

The recovery catalog tracks the files in the Data Guard environment by associating every database file or backup file with a DB_UNIQUE_NAME. The database that creates a file is associated with the file. For example, if RMAN backs up the database with the unique name of standby1, then standby1 is associated with this backup. A backup remains associated with the database that created it unless you use the CHANGE ... RESET DB_UNIQUE_NAME to associate the backup with a different database.

11.1.3 Accessibility of Backups in a Data Guard Environment

The accessibility of a backup is different from its association. In a Data Guard environment, the recovery catalog considers disk backups as accessible only to the database with which it is associated, whereas tape backups created on one database are accessible to all databases. If a backup file is not associated with any database, then the row describing it in the recovery catalog view shows null for the SITE_KEY column. By default, RMAN associates files whose SITE_KEY is null with the target database.

RMAN commands such as BACKUP, RESTORE, and CROSSCHECK work on any accessible backup. For example, for a RECOVER COPY operation, RMAN considers only image copies that are associated with the database as eligible to be recovered. RMAN considers the incremental backups on disk and tape as eligible to recover the image copies. In a database recovery, RMAN considers only the disk backups associated with the database and all files on tape as eligible to be restored.

To illustrate the differences in backup accessibility, assume that databases prod and standby1 reside on different hosts. RMAN backs up datafile 1 on prod to /prmhost/disk1/df1.dbf on the production host and also to tape. RMAN backs up datafile 1 on standby1 to /sbyhost/disk2/df1.dbf on the standby host and also to tape. If RMAN is connected to database prod, then you cannot use RMAN commands to perform operations with the /sbyhost/disk2/df1.dbf backup located on the standby host. However, RMAN does consider the tape backup made on standby1 as eligible to be restored.

	
Note:

You can FTP a backup from a standby host to a primary host or vice versa, connect as TARGET to the database on this host, and then CATALOG the backup. After a file is cataloged by the target database, the file is associated with the target database.

11.2 About RMAN Configuration in a Data Guard Environment

In a Data Guard configuration, the process of backing up control files, datafiles, and archived logs can be offloaded to the standby system, thereby minimizing the effect of backups on the production system. These backups can be used to recover the primary or standby database.

RMAN uses the DB_UNIQUE_NAME initialization parameter to distinguish one database site from another database site. Thus, it is critical that the uniqueness of DB_UNIQUE_NAME be maintained in a Data Guard configuration.

Only the primary database must be explicitly registered using the RMAN REGISTER DATABASE command. You do this after connecting RMAN to the recovery catalog and primary database as target.

Use the RMAN CONFIGURE command to set the RMAN configurations. When the CONFIGURE command is used with the FOR DB_UNIQUE_NAME option, it sets the RMAN site-specific configuration for the database with the DB_UNIQUE_NAME you specify.

For example, after connecting to the recovery catalog, you could use the following commands at an RMAN prompt to set the default device type to SBT for the BOSTON database that has a DBID of 1625818158. The RMAN SET DBID command is required only if you are not connected to a database as target.

SET DBID 1625818158;
CONFIGURE DEFAULT DEVICE TYPE TO SBT FOR DB_UNIQUE_NAME BOSTON;

11.3 Recommended RMAN and Oracle Database Configurations

This section describes the following RMAN and Oracle Database configurations, each of which can simplify backup and recovery operations:

	
Oracle Database Configurations on Primary and Standby Databases

	
RMAN Configurations at the Primary Database

	
RMAN Configurations at a Standby Database Where Backups are Performed

	
RMAN Configurations at a Standby Where Backups Are Not Performed

Configuration Assumptions

The configurations described in this section make the following assumptions:

	
The standby database is a physical standby database, and backups are taken only on the standby database. See Section 11.9.1 for procedural changes if backups are taken on both primary and standby databases.

	
An RMAN recovery catalog is required so that backups taken on one database server can be restored to another database server. It is not sufficient to use only the control file as the RMAN repository because the primary database will have no knowledge of backups taken on the standby database.

The RMAN recovery catalog organizes backup histories and other recovery-related metadata in a centralized location. The recovery catalog is configured in a database and maintains backup metadata. A recovery catalog does not have the space limitations of the control file and can store more historical data about backups.

A catalog server, physically separate from the primary and standby sites, is recommended in a Data Guard configuration because a disaster at either site will not affect the ability to recover the latest backups.

	
See Also:

Oracle Database Backup and Recovery User's Guide for more information about managing a recovery catalog

	
All databases in the configuration use Oracle Database 11g Release 1 (11.1).

	
Oracle Secure Backup software or 3rd-party media management software is configured with RMAN to make backups to tape.

11.3.1 Oracle Database Configurations on Primary and Standby Databases

The following Oracle Database configurations are recommended on every primary and standby database in the Data Guard environment:

	
Configure a flash recovery area for each database (the recovery area is local to a database).

The flash recovery area is a single storage location on a file system or Automatic Storage Management (ASM) disk group where all files needed for recovery reside. These files include the control file, archived logs, online redo logs, flashback logs, and RMAN backups. As new backups and archived logs are created in the flash recovery area, older files (which are either outside of the retention period, or have been backed up to tertiary storage) are automatically deleted to make room for them. In addition, notifications can be set up to alert the DBA when space consumption in the flash recovery area is nearing its predefined limit. The DBA can then take action, such as increasing the recovery area space limit, adding disk hardware, or decreasing the retention period.

Set the following initialization parameters to configure the flash recovery area:

DB_RECOVERY_FILE_DEST = <mount point or ASM Disk Group>
DB_RECOVERY_FILE_DEST_SIZE = <disk space quota>

	
See Also:

Oracle Database Backup and Recovery User's Guide for more information about configuring a flash recovery area

	
Use a server parameter file (SPFILE) so that it can be backed up to save instance parameters in backups.

	
Enable Flashback Database on primary and standby databases.

When Flashback Database is enabled, Oracle Database maintains flashback logs in the flash recovery area. These logs can be used to roll the database back to an earlier point in time, without requiring a complete restore.

	
See Also:

Oracle Database Backup and Recovery User's Guide for more information about enabling Flashback Database

11.3.2 RMAN Configurations at the Primary Database

To simplify ongoing use of RMAN, you can set a number of persistent configuration settings for each database in the Data Guard environment. These settings control many aspects of RMAN behavior. For example, you can configure the backup retention policy, default destinations for backups to tape or disk, default backup device type, and so on. You can use the CONFIGURE command to set and change RMAN configurations. The following RMAN configurations are recommended at the primary database:

	
Connect RMAN to the primary database and recovery catalog.

	
Configure the retention policy for the database as n days:

CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF <n> DAYS;

This configuration lets you keep the backups necessary to perform database recovery to any point in time within the specified number of days.

Use the DELETE OBSOLETE command to delete any backups that are not required (per the retention policy in place) to perform recovery within the specified number of days.

	
Specify when archived logs can be deleted with the CONFIGURE ARCHIVELOG DELETION POLICY command. For example, if you want to delete logs after ensuring that they shipped to all destinations, use the following configuration:

CONFIGURE ARCHIVELOG DELETION POLICY TO SHIPPED TO ALL STANDBY;

If you want to delete logs after ensuring that they were applied on all standby destinations, use the following configuration:

CONFIGURE ARCHIVELOG DELETION POLICY TO APPLIED ON ALL STANDBY;

	
Configure the connect string for the primary database and all standby databases, so that RMAN can connect remotely and perform resynchronization when the RESYNC CATALOG FROM DB_UNIQUE_NAME command is used. When you connect to the target instance, you must provide a net service name. This requirement applies even if the other database instance from where the resynchronization is done is on the local host. The target and remote instances must use the same SYSDBA password, which means that both instances must already have password files. You can create the password file with a single password so you can start all the database instances with that password file. For example, if the TNS alias to connect to a standby in Boston is boston_conn_str, you can use the following command to configure the connect identifier for the BOSTON database site:

CONFIGURE DB_UNIQUE_NAME BOSTON CONNECT IDENTIFIER 'boston_conn_str';

Note that the 'boston_conn_str' does not include a username and password. It contains only the Oracle Net service name that can be used from any database site to connect to the BOSTON database site.

After connect identifiers are configured for all standby databases, you can verify the list of standbys by using the LIST DB_UNIQUE_NAME OF DATABASE command.

	
See Also:

	
Oracle Database Backup and Recovery User's Guide for more information about RMAN configurations

	
Oracle Database Backup and Recovery Reference for more information about the RMAN CONFIGURE command

11.3.3 RMAN Configurations at a Standby Database Where Backups are Performed

The following RMAN configurations are recommended at a standby database where backups are done:

	
Connect RMAN to the standby database (where backups are performed) as target, and to the recovery catalog.

	
Enable automatic backup of the control file and the server parameter file:

CONFIGURE CONTROLFILE AUTOBACKUP ON;

	
Skip backing up datafiles for which there already exists a valid backup with the same checkpoint:

CONFIGURE BACKUP OPTIMIZATION ON;

	
Configure the tape channels to create backups as required by media management software:

CONFIGURE CHANNEL DEVICE TYPE SBT PARMS '<channel parameters>';

	
Specify when the archived logs can be deleted with the CONFIGURE ARCHIVELOG DELETION POLICY command.

Because the logs are backed up at the standby site, it is recommended that you configure the BACKED UP option for the log deletion policy.

	
See Also:

Oracle Database Backup and Recovery User's Guide for more information about enabling deletion policies for archived redo logs

11.3.4 RMAN Configurations at a Standby Where Backups Are Not Performed

The following RMAN configurations are recommended at a standby database where backups are not done:

	
Connect RMAN to the standby database as target, and to the recovery catalog.

	
Enable automatic deletion of archived logs once they are applied at the standby database:

CONFIGURE ARCHIVELOG DELETION POLICY TO APPLIED ON ALL STANDBY;

11.4 Backup Procedures

This section describes the RMAN scripts and procedures used to back up Oracle Database in a Data Guard configuration. The following topics are covered:

	
Using Disk as Cache for Tape Backups

	
Performing Backups Directly to Tape

	
Note:

Oracle's Maximum Availability Architecture (MAA) best practices recommend that backups be taken at both the primary and the standby databases to reduce MTTR, in case of double outages and to avoid introducing new site practices upon switchover and failover.

Backups of Server Parameter Files

Prior to Oracle Database 11g, backups of server parameter files (SPFILEs) were assumed to be usable at any other standby database. However, in practice, it is not possible for all standby databases to use the same SPFILE. To address this problem, RMAN does not allow an SPFILE backup taken at one database site to be used at another database site. This restriction is in place only when the COMPATIBLE initialization parameter is set to 11.0.0.

The standby database allows you to offload all backup operations to one specific standby database, except the backups of SPFILE. However, if the COMPATIBLE initialization parameter is set to 11.0.0, the SPFILE can be backed up to disk and cataloged manually at standby sites where backups are written to tape. The additional metadata stored in SPFILE backup sets enables RMAN to identify which database SPFILE is contained in which backup set. Thus, the appropriate SPFILE backup is chosen during restore from tape.

11.4.1 Using Disk as Cache for Tape Backups

The flash recovery area on the standby database can serve as a disk cache for tape backup. Disk is used as the primary storage for backups, with tape providing long term, archival storage. Incremental tape backups are taken daily and full tape backups are taken weekly. The commands used to perform these backups are described in the following sections.

11.4.1.1 Commands for Daily Tape Backups Using Disk as Cache

When deciding on your backup strategy, Oracle recommends that you take advantage of daily incremental backups. Datafile image copies can be rolled forward with the latest incremental backups, thereby providing up-to-date datafile image copies at all times. RMAN uses the resulting image copy for media recovery just as it would use a full image copy taken at that system change number (SCN), without the overhead of performing a full image copy of the database every day. An additional advantage is that the time-to-recover is reduced because the image copy is updated with the latest block changes and fewer redo logs are required to bring the database back to the current state.

To implement daily incremental backups, a full database backup is taken on the first day, followed by an incremental backup on day two. Archived redo logs can be used to recover the database to any point in either day. For day three and onward, the previous day's incremental backup is merged with the datafile copy and a current incremental backup is taken, allowing fast recovery to any point within the last day. Redo logs can be used to recover the database to any point during the current day.

The script to perform daily backups looks as follows (the last line, DELETE ARCHIVELOG ALL is only needed if the flash recovery area is not used to store logs):

RESYNC CATALOG FROM DB_UNIQUE_NAME ALL;
RECOVER COPY OF DATABASE WITH TAG 'OSS';
BACKUP DEVICE TYPE DISK INCREMENTAL LEVEL 1 FOR RECOVER OF COPY WITH TAG 'OSS' DATABASE;
BACKUP DEVICE TYPE SBT ARCHIVELOG ALL;
BACKUP BACKUPSET ALL;
DELETE ARCHIVELOG ALL;

The standby control file will be automatically backed up at the conclusion of the backup operation because the control file auto backup is enabled.

Explanations for what each command in the script does are as follows:

	
RESYNC CATALOG FROM DB_UNIQUE_NAME ALL

Resynchronizes the information from all other database sites (primary and other standby databases) in the Data Guard setup that are known to recovery catalog. For RESYNC CATALOG FROM DB_UNIQUE_NAME to work, RMAN should be connected to the target using the Oracle Net service name and all databases must use the same password file.

	
RECOVER COPY OF DATABASE WITH TAG 'OSS'

Rolls forward level 0 copy of the database by applying the level 1 incremental backup taken the day before. In the example script just shown, the previous day's incremental level 1 was tagged OSS. This incremental is generated by the BACKUP DEVICE TYPE DISK ... DATABASE command. On the first day this command is run there will be no roll forward because there is no incremental level 1 yet. A level 0 incremental will be created by the BACKUP DEVICE TYPE DISK ... DATABASE command. Again on the second day there is no roll forward because there is only a level 0 incremental. A level 1 incremental tagged OSS will be created by the BACKUP DEVICE TYPE DISK ... DATABASE command. On the third and following days, the roll forward will be performed using the level 1 incremental tagged OSS created on the previous day.

	
BACKUP DEVICE TYPE DISK INCREMENTAL LEVEL 1 FOR RECOVER OF COPY WITH TAG 'OSS' DATABASE

Create a new level 1 incremental backup. On the first day this command is run, this will be a level 0 incremental. On the second and following days, this will be a level 1 incremental.

	
BACKUP DEVICE TYPE SBT ARCHIVELOG ALL

Backs up archived logs to tape according to the deletion policy in place.

	
BACKUP BACKUPSET ALL

Backs up any backup sets created as a result of incremental backup creation.

	
DELETE ARCHIVELOG ALL

Deletes archived logs according to the log deletion policy set by the CONFIGURE ARCHIVELOG DELETION POLICY command. If the archived logs are in a flash recovery area, then they are automatically deleted when more open disk space is required. Therefore, you only need to use this command if you explicitly want to delete logs each day.

11.4.1.2 Commands for Weekly Tape Backups Using Disk as Cache

To back up all recovery-related files to tape, use the following command once a week:

BACKUP RECOVERY FILES;

This ensures that all current incremental, image copy, and archived log backups on disk are backed up to tape.

11.4.2 Performing Backups Directly to Tape

Oracle's Media Management Layer (MML) API lets third-party vendors build a media manager, software that works with RMAN and the vendor's hardware to allow backups to sequential media devices such as tape drives. A media manager handles loading, unloading, and labeling of sequential media such as tapes. You must install Oracle Secure Backup or third-party media management software to use RMAN with sequential media devices.

Take the following steps to perform backups directly to tape, by default:

	
Connect RMAN to the standby database (as the target database) and recovery catalog.

	
Execute the CONFIGURE command as follows:

CONFIGURE DEFAULT DEVICE TYPE TO SBT;

In this scenario, full backups are taken weekly, with incremental backups taken daily on the standby database.

	
See Also:

Oracle Database Backup and Recovery User's Guide for more information about how to configure RMAN for use with a media manager

11.4.2.1 Commands for Daily Backups Directly to Tape

Take the following steps to perform daily backups directly to tape:

	
Connect RMAN to the standby database (as target database) and to the recovery manager.

	
Execute the following RMAN commands:

RESYNC CATALOG FROM DB_UNIQUE_NAME ALL;
BACKUP AS BACKUPSET INCREMENTAL LEVEL 1 DATABASE PLUS ARCHIVELOG;
DELETE ARCHIVELOG ALL;

These commands resynchronize the information from all other databases in the Data Guard environment. They also create a level 1 incremental backup of the database, including all archived logs. On the first day this script is run, if no level 0 backups are found, then a level 0 backup is created.

The DELETE ARCHIVELOG ALL command is necessary only if all archived log files are not in a flash recovery area.

11.4.2.2 Commands for Weekly Backups Directly to Tape

One day a week, take the following steps to perform a weekly backup directly to tape:

	
Connect RMAN to the standby database (as target database) and to the recovery catalog.

	
Execute the following RMAN commands:

BACKUP AS BACKUPSET INCREMENTAL LEVEL 0 DATABASE PLUS ARCHIVELOG;
DELETE ARCHIVELOG ALL;

These commands resynchronize the information from all other databases in the Data Guard environment, and create a level 0 database backup that includes all archived logs.

The DELETE ARCHIVELOG ALL command is necessary only if all archived log files are not in a flash recovery area.

11.5 Registering and Unregistering Databases in a Data Guard Environment

Only the primary database must be explicitly registered using the REGISTER DATABASE command. You do this after connecting RMAN to the recovery catalog and primary database as TARGET.

A new standby is automatically registered in the recovery catalog when you connect to a standby database or when the CONFIGURE DB_UNIQUE_NAME command is used to configure the connect identifier.

To unregister information about a specific standby database, you can use the UNREGISTER DB_UNIQUE_NAME command. When a standby database is completely removed from a Data Guard environment, the database information in the recovery catalog can also be removed after you connect to another database in the same Data Guard environment. The backups that were associated with the database that was unregistered are still usable by other databases. You can associate these backups with any other existing database by using the CHANGE BACKUP RESET DB_UNIQUE_NAME command.

When the UNREGISTER DB_UNIQUE_NAME command is used with the INCLUDING BACKUPS option, the metadata for all the backup files associated with the database being removed is also removed from the recovery catalog.

11.6 Reporting in a Data Guard Environment

Use the RMAN LIST, REPORT, and SHOW commands with the FOR DB_UNIQUE_NAME clause to view information about a specific database.

For example, after connecting to the recovery catalog, you could use the following commands to display information for a database with a DBID of 1625818158 and to list the databases in the Data Guard environment. The SET DBID command is required only if you are not connected to a database as TARGET. The last three commands list archive logs, database file names, and RMAN configuration information for a database with a DB_UNIQUE_NAME of BOSTON.

SET DBID 1625818158;
LIST DB_UNIQUE_NAME OF DATABASE;
LIST ARCHIVELOG ALL FOR DB_UNIQUE_NAME BOSTON;
REPORT SCHEMA FOR DB_UNIQUE_NAME BOSTON;
SHOW ALL FOR DB_UNIQUE_NAME BOSTON;

11.7 Performing Backup Maintenance in a Data Guard Environment

The files in a Data Guard environment (datafiles, archived logs, backup pieces, image copies, and proxy copies) are associated with a database through use of the DB_UNIQUE_NAME parameter. Therefore, it is important that the value supplied for DB_UNIQUE_NAME be unique for each database in a Data Guard environment. This information, along with file-sharing attributes, is used to determine which files can be accessed during various RMAN operations.

File sharing attributes state that files on disk are accessible only at the database with which they are associated, whereas all files on tape are assumed to be accessible by all databases. RMAN commands such as BACKUP and RESTORE, as well as other maintenance commands, work according to this assumption. For example, during a roll-forward operation of an image copy at a database, only image copies associated with the database are rolled forward. Likewise, all incremental backups on disk and all incremental backups on tape will be used to roll forward the image copies. Similarly, during recovery operations, only disk backups associated with the database and files on tape will be considered as sources for backups.

	
See Also:

Oracle Database Backup and Recovery Reference for detailed information about RMAN commands

11.7.1 Changing Metadata in the Recovery Catalog

You can use the RMAN CHANGE command with various operands to change metadata in the recovery catalog, as described in the following sections.

Changing File Association from One Standby Database to Another

Use the CHANGE command with the RESET DB_UNIQUE_NAME option to alter the association of files from one database to another within a Data Guard environment. The CHANGE command is useful when disk backups or archived logs are transferred from one database to another and you want to use them on the database to which they were transferred. The CHANGE command can also change the association of a file from one database to another database, without having to directly connect to either database using the FOR DB_UNIQUE_NAME and RESET DB_UNIQUE_NAME TO options.

Changing DB_UNIQUE_NAME for a Database

If the value of the DB_UNIQUE_NAME initialization parameter changes for a database, the same change must be made in the Data Guard environment. The RMAN recovery catalog, after connecting to that database instance, will know both the old and new value for DB_UNIQUE_NAME. To merge the information for the old and new values within the recovery catalog schema, you must use the RMAN CHANGE DB_UNIQUE_NAME command. If RMAN is not connected to the instance with the changed DB_UNIQUE_NAME parameter, then the CHANGE DB_UNIQUE_NAME command can also be used to rename the DB_UNIQUE_NAME in the recovery catalog schema. For example, if the instance parameter value for a database was changed from BOSTON_A to BOSTON_B, the following command should be executed at the RMAN prompt after connecting to a target database and recovery catalog:

CHANGE DB_UNIQUE_NAME FROM BOSTON_A TO BOSTON_B;

Making Backups Unavailable or Removing Their Metadata

Use CHANGE command options such as AVAILABLE, UNAVAILABLE, KEEP, and UNCATALOG to make backups available or unavailable for restore and recovery purposes, and to keep or remove their metadata.

	
See Also:

Oracle Database Backup and Recovery Reference for more information about the RMAN CHANGE command

11.7.2 Deleting Archived Logs or Backups

Use the DELETE command to delete backup sets, image copies, archived logs, or proxy copies. To delete only files that are associated with a specific database, you must use the FOR DB_UNIQUE_NAME option with the DELETE command.

File metadata is deleted for all successfully deleted files associated with the current target database (or for files that are not associated with any known database). If a file could not be successfully deleted, you can use the FORCE option to remove the file's metadata.

When a file associated with another database is deleted successfully, its metadata in the recovery catalog is also deleted. Any files that are associated with other databases, and that could not be successfully deleted, are listed at the completion of the DELETE command, along with instructions for you to perform the same operation at the database with which the files are associated (files are grouped by database). Note that the FORCE option cannot be used to override this behavior. If you are certain that deleting the metadata for the non-deletable files will not cause problems, you can use the CHANGE RESET DB_UNIQUE_NAME command to change the metadata for association of files with the database and use the DELETE command with the FORCE option to delete the metadata for the file.

	
See Also:

Oracle Database Backup and Recovery Reference for more information about the RMAN DELETE command

11.7.3 Validating Recovery Catalog Metadata

Use the CROSSCHECK command to validate and update file status in the recovery catalog schema. To validate files associated with a specific database, use the FOR DB_UNIQUE_NAME option with the CROSSCHECK command.

Metadata for all files associated with the current target database (or for any files that are not associated with any database), will be marked AVAILABLE or EXPIRED according to the results of the CROSSCHECK operation.

If a file associated with another database is successfully inspected, its metadata in the recovery catalog is also changed to AVAILABLE. Any files that are associated with other databases, and that could not be inspected successfully, are listed at the completion of the CROSSCHECK command, along with instructions for you to perform the same operation at the database with which the files are associated (files are grouped by site). If you are certain of the configuration and still want to change status metadata for unavailable files, you can use the CHANGE RESET DB_UNIQUE_NAME command to change metadata for association of files with the database and execute the CROSSCHECK command to update status metadata to EXPIRED.

	
See Also:

Oracle Database Backup and Recovery Reference for more information about the RMAN CROSSCHECK command

11.8 Recovery Scenarios in a Data Guard Environment

The examples in the following sections assume you are restoring files from tape to the same system on which the backup was created. If you need to restore files to a different system, you need to configure the channels for that system before executing restore and recover commands. You can set the configuration for a nonexistent database using the SET DBID command and the CONFIGURE command with FOR DB_UNIQUE_NAME. See the Media Management documentation for more information about how to access RMAN backups from different systems.

The following scenarios are described in this section:

	
Recovery from Loss of Datafiles on the Primary Database

	
Recovery from Loss of Datafiles on the Standby Database

	
Recovery from Loss of a Standby Control File

	
Recovery from Loss of the Primary Control File

	
Recovery from Loss of an Online Redo Log File

	
Incomplete Recovery of the Primary Database

11.8.1 Recovery from Loss of Datafiles on the Primary Database

You can recover from loss of datafiles on the primary database by using backups or by using the files on a standby database, as described in the following sections.

Using Backups

Issue the following RMAN commands to restore and recover datafiles. You must be connected to both the primary and recovery catalog databases.

RESTORE DATAFILE n,m...;
RECOVER DATAFILE n,m...;

Issue the following RMAN commands to restore and recover tablespaces. You must be connected to both the primary and recovery catalog databases.

RESTORE TABLESPACE tbs_name1, tbs_name2, ...
RECOVER TABLESPACE tbs_name1, tbs_name2, ...

Using Files On a Standby Database

As of Oracle 11g, you can use files on a standby database to recover a lost datafile. This works well if the standby is up-to-date and the network connection is sufficient enough to support the file copy between the standby and primary.

Start RMAN and take the following steps to copy the datafiles from the standby to the primary:

	
Connect to the standby database as the target database:

CONNECT TARGET sys@standby

You are prompted for a password:

target database Password: password

	
Connect to the primary database as the auxiliary database:

CONNECT AUXILIARY sys@primary

You are prompted for a password:

target database Password: password

	
Back up the datafile on the standby host across the network to a location on the primary host. For example, suppose that /disk1/df2.dbf is the name of datafile 2 on the standby host. Suppose that /disk8/datafile2.dbf is the name of datafile 2 on the primary host. The following command would copy datafile 2 over the network to /disk9/df2copy.dbf:

BACKUP AS COPY DATAFILE 2 AUXILIARY FORMAT '/disk9/df2copy.dbf';

	
Exit the RMAN client as follows:

EXIT;

	
Start RMAN and connect to the primary database as target, and to the recovery catalog:

CONNECT TARGET sys@primary;
target database Password: password

CONNECT CATALOG rman@catdb;
recovery catalog database Password: password

	
Use the CATALOG DATAFILECOPY command to catalog this datafile copy so that RMAN can use it.:

CATALOG DATAFILECOPY '/disk9/df2copy.dbf';

Then use the SWITCH DATAFILE command to switch the datafile copy so that /disk9/df2copy.dbf becomes the current datafile:

RUN {
 SET NEWNAME FOR DATAFILE 2 TO '/disk9/df2copy.dbf';
 SWITCH DATAFILE 2;
}

11.8.2 Recovery from Loss of Datafiles on the Standby Database

To recover the standby database after the loss of one or more datafiles, you must restore the lost files to the standby database from the backup using the RMAN RESTORE DATAFILE command. If all the archived redo log files required for recovery of damaged files are accessible on disk by the standby database, restart Redo Apply.

If the archived redo log files required for recovery are not accessible on disk, use RMAN to recover the restored datafiles to an SCN/log sequence greater than the last log applied to the standby database, and then restart Redo Apply to continue the application of redo data, as follows:

	
Connect SQL*Plus to the standby database.

	
Stop Redo Apply using the SQL ALTER DATABASE ... statement.

	
In a separate terminal, start RMAN and connect to both the standby and recovery catalog databases (use the TARGET keyword to connect to the standby instance).

	
Issue the following RMAN commands to restore and recover datafiles on the standby database:

RESTORE DATAFILE <n,m,...>;
RECOVER DATABASE;

To restore a tablespace, use the RMAN 'RESTORE TABLESPACE tbs_name1, tbs_name2, ...' command.

	
At the SQL*Plus prompt, restart Redo Apply using the SQL ALTER DATABASE ... statement.

	
See Also:

Section 7.3 and Section 7.4 for more information about starting and stopping Redo Apply

11.8.3 Recovery from Loss of a Standby Control File

Oracle software allows multiplexing of the standby control file. To ensure the standby control file is multiplexed, check the CONTROL_FILES initialization parameter, as follows:

SQL> SHOW PARAMETER CONTROL_FILES;
NAME TYPE VALUE
 ------------------------------------ ----------- ------------------------------
control_files string <cfilepath1>,<cfilepath2>

If one of the multiplexed standby control files is lost or is not accessible, Oracle software stops the instance and writes the following messages to the alert log:

ORA-00210: cannot open the specified controlfile
ORA-00202: controlfile: '/disk1/oracle/dbs/scf3_2.f'
ORA-27041: unable to open file

You can copy an intact copy of the control file over the lost copy, then restart the standby instance using the following SQL statements:

SQL> STARTUP MOUNT;
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT FROM SESSION;

You can restore the control file from backups by executing the RESTORE CONTROLFILE command and then the RECOVER DATABASE command. The RECOVER DATABASE command automatically fixes the file names in the control file to match the files existing at that database, and recovers the database to the most recently received log sequence at the database.

The other alternative is to create a new control file from the primary database, copy it to all multiplexed locations, and manually rename the data file names to match files existing on disk.

11.8.4 Recovery from Loss of the Primary Control File

Oracle software allows multiplexing of the control file on the primary database. If one of the control files cannot be updated on the primary database, the primary database instance is shut down automatically.

You can restore the control file from backups by executing the RESTORE CONTROLFILE command and the RECOVER DATABASE command. The RECOVER DATABASE command automatically fixes the file names in the control file to match the files existing at that database, and recovers the database.

The other alternative is to create a new control file using CREATE CONTROLFILE SQL command. It is possible to re-create the control file provided all data files and online logs are not lost.

	
See Also:

Oracle Database Backup and Recovery User's Guide for detailed information about using RMAN to recover from the loss of control files

11.8.5 Recovery from Loss of an Online Redo Log File

Oracle recommends multiplexing the online redo log files. The loss of all members of an online redo log group causes Oracle software to terminate the instance. If only some members of a log file group cannot be written, they will not be used until they become accessible. The views V$LOGFILE and V$LOG contain more information about the current status of log file members in the primary database instance.

When Oracle software is unable to write to one of the online redo log file members, the following alert messages are returned:

ORA-00313: open failed for members of log group 1 of thread 1
ORA-00312: online log 1 thread 1: '/disk1/oracle/dbs/t1_log1.f'
ORA-27037: unable to obtain file status
SVR4 Error: 2: No such file or directory
Additional information: 3

If the access problem is temporary due to a hardware issue, correct the problem and processing will continue automatically. If the loss is permanent, a new member can be added and the old one dropped from the group.

To add a new member to a redo log group, issue the following statement:

SQL> ALTER DATABASE ADD LOGFILE MEMBER 'log_file_name' REUSE TO GROUP n;

You can issue this statement even when the database is open, without affecting database availability.

If all members of an inactive group that has been archived are lost, the group can be dropped and re-created.

In all other cases (loss of all online log members for the current ACTIVE group, or an inactive group which has not yet been archived), you must fail over to the standby database. Refer to Chapter 8 for the failover procedure.

11.8.6 Incomplete Recovery of the Primary Database

Incomplete recovery of the primary database is normally done in cases such as when the database is logically corrupted (by a user or an application) or when a tablespace or datafile was accidentally dropped from database.

Depending on the current database checkpoint SCN on the standby database instances, you can use one of the following procedures to perform incomplete recovery of the primary database. All the procedures are in order of preference, starting with the one that is the least time consuming.

Using Flashback Database Using Flashback Database is the recommended procedure when the Flashback Database feature is enabled on the primary database, none of the database files are lost, and the point-in-time recovery is greater than the oldest flashback SCN or the oldest flashback time. See Section 13.3 for the procedure to use Flashback Database to do point-in-time recovery.

Using the standby database instance This is the recommended procedure when the standby database is behind the desired incomplete recovery time, and Flashback Database is not enabled on the primary or standby databases:

	
Recover the standby database to the desired point in time.

RECOVER DATABASE UNTIL TIME 'time';

Alternatively, incomplete recovery time can be specified using the SCN or log sequence number:

RECOVER DATABASE UNTIL SCN incomplete recovery SCN';
RECOVER DATABASE UNTIL LOGSEQ incomplete recovery log sequence number THREAD thread number;

	
Open the standby database in read-only mode to verify the state of database.

If the state is not what is desired, use the LogMiner utility to look at the archived redo log files to find the right target time or SCN for incomplete recovery. Alternatively, you can start by recovering the standby database to a point that you know is before the target time, and then open the database in read-only mode to examine the state of the data. Repeat this process until the state of the database is verified to be correct. Note that if you recover the database too far (that is, past the SCN where the error occurred) you cannot return it to an earlier SCN.

	
Activate the standby database using the SQL ALTER DATABASE ACTIVATE STANDBY DATABASE statement. This converts the standby database to a primary database, creates a new resetlogs branch, and opens the database. See Section 9.4 to learn how the standby database reacts to the new reset logs branch.

Using the primary database instance If all of the standby database instances have already been recovered past the desired point in time and Flashback Database is not enabled on the primary or standby database, then this is your only option.

Use the following procedure to perform incomplete recovery on the primary database:

	
Use LogMiner or another means to identify the time or SCN at which all the data in the database is known to be good.

	
Using the time or SCN, issue the following RMAN commands to do incomplete database recovery and open the database with the RESETLOGS option (after connecting to catalog database and primary instance that is in MOUNT state):

RUN
{
SET UNTIL TIME 'time';
RESTORE DATABASE;
RECOVER DATABASE;
}
ALTER DATABASE OPEN RESETLOGS;

After this process, all standby database instances must be reestablished in the Data Guard configuration.

11.9 Additional Backup Situations

The following sections describe how to modify the backup procedures for other configurations, such as when the standby and primary databases cannot share backup files; the standby instance is only used to remotely archive redo log files; or the standby database filenames are different than the primary database.

11.9.1 Standby Databases Too Geographically Distant to Share Backups

If the standby databases are far apart from one another, the backups taken on them may not be easily accessible by the primary system or other standby systems. Perform a complete backup of the database on all systems to perform recovery operations. The flash recovery area can reside locally on the primary and standby systems (that is, the flash recovery area does not have to be the same for the primary and standby databases).

In this scenario, you can still use the general strategies described in Section 11.8, with the following exceptions:

	
Backup files created by RMAN must be tagged with the local system name, and with RESTORE operations that tag must be used to restrict RMAN from selecting backups taken on the same host. In other words, the BACKUP command must use the TAG system name option when creating backups; the RESTORE command must use the FROM TAG system name option; and the RECOVER command must use the FROM TAG system name ARCHIVELOG TAG system name option.

	
Disaster recovery of the standby site:

	
Start the standby instance in the NOMOUNT state using the same parameter files with which the standby was operating earlier.

	
Create a standby control file on the primary instance using the SQL ALTER DATABASE CREATE STANDBY CONTROLFILE AS filename statement, and use the created control file to mount the standby instance.

	
Issue the following RMAN commands to restore and recover the database files:

RESTORE DATABASE FROM TAG 'system name';
RECOVER DATABASE FROM TAG 'system name' ARCHIVELOG TAG 'system name';

	
Restart Redo Apply.

The standby instance will fetch the remaining archived redo log files.

11.9.2 Standby Database Does Not Contain Datafiles, Used as a FAL Server

Use the same procedure described in Section 11.4, with the exception that the RMAN commands that back up database files cannot be run against the FAL server. The FAL server can be used as a backup source for all archived redo log files, thus off-loading backups of archived redo log files to the FAL server.

11.9.3 Standby Database File Names Are Different From Primary Database

	
Note:

As of Oracle Database 11g, the recovery catalog can resynchronize the file names from each standby database site. However, if the file names from a standby database were never resynchronized for some reason, then you can use the procedure described in this section to do so.

If the database filenames are not the same on the primary and standby databases that were never resynchronized, the RESTORE and RECOVER commands you use will be slightly different. To obtain the actual datafile names on the standby database, query the V$DATAFILE view and specify the SET NEWNAME option for all the datafiles in the database:

RUN
{
SET NEWNAME FOR DATAFILE 1 TO 'existing file location for file#1 from V$DATAFILE';
SET NEWNAME FOR DATAFILE 2 TO 'existing file location for file#2 from V$DATAFILE';
…
…
 SET NEWNAME FOR DATAFILE n TO 'existing file location for file#n from V$DATAFILE';
 RESTORE {DATAFILE <n,m,…> | TABLESPACE tbs_name_1, 2, …| DATABASE;
SWITCH DATAFILE ALL;
RECOVER DATABASE {NOREDO};
}

Similarly, the RMAN DUPLICATE command should also use the SET NEWNAME option to specify new filenames during standby database creation. Or you could set the LOG_FILE_NAME_CONVERT and DB_FILE_NAME_CONVERT parameters.

11.10 Using RMAN Incremental Backups to Roll Forward a Physical Standby Database

In some situations, RMAN incremental backups can be used to synchronize a physical standby database with the primary database. You can use the RMAN BACKUP INCREMENTAL FROM SCN command to create a backup on the primary database that starts at the current SCN of the standby, which can then be used to roll the standby database forward in time.

The steps described in this section apply to situations in which RMAN incremental backups may be useful because the physical standby database either:

	
Lags far behind the primary database

	
Has widespread nologging changes

	
Has nologging changes on a subset of datafiles

	
Note:

Oracle recommends the use of a recovery catalog when performing this operation. These steps are possible without a recovery catalog, but great care must be taken to correct the file names in the restored control file.

	
See Also:

Oracle Database Backup and Recovery User's Guide for more information about RMAN incremental backups

11.10.1 Steps for Using RMAN Incremental Backups

Except where stated otherwise, the following steps apply to all three situations just listed.

	
Stop Redo Apply on the standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

	
On the standby database, compute the FROM SCN for the incremental backup. This is done differently depending on the situation:

	
On a standby that lags far behind the primary database, query the V$DATABASE view and record the current SCN of the standby database:

SQL> SELECT CURRENT_SCN FROM V$DATABASE;
CURRENT_SCN

 233995

	
On a standby that has widespread nologging changes, query the V$DATAFILE view to record the lowest FIRST_NONLOGGED_SCN:

SQL> SELECT MIN(FIRST_NONLOGGED_SCN) FROM V$DATAFILE
 2> WHERE FIRST_NONLOGGED_SCN>0;

MIN(FIRST_NONLOGGED_SCN)

 223948

	
On a standby that has nologging changes on a subset of datafiles, query the V$DATAFILE view, as follows:

SQL> SELECT FILE#, FIRST_NONLOGGED_SCN FROM V$DATAFILE
 2> WHERE FIRST_NONLOGGED_SCN > 0;

FILE# FIRST_NONLOGGED_SCN
---------- -------------------
 4 225979
 5 230184

	
Connect to the primary database as the RMAN target and create an incremental backup from the current SCN (for a standby lagging far behind the primary) or the lowest FIRST_NONLOGGED_SCN (for a standby with widespread nologging changes) of the standby database that was recorded in step 2:

RMAN> BACKUP INCREMENTAL FROM SCN 233995 DATABASE FORMAT '/tmp/ForStandby_%U' tag 'FORSTANDBY';

If the standby has nologging changes on a subset of datafiles, then create an incremental backup for each datafile listed in the FIRST_NONLOGGED_SCN column (recorded in step 1), as follows:

RMAN> BACKUP INCREMENTAL FROM SCN 225979 DATAFILE 4 FORMAT '/tmp/ForStandby_%U' TAG 'FORSTANDBY';
RMAN> BACKUP INCREMENTAL FROM SCN 230184 DATAFILE 5 FORMAT '/tmp/ForStandby_%U' TAG 'FORSTANDBY';

	
If backups were written to shared storage, skip this step. Otherwise, transfer all backup sets created on the primary system to the standby system and then catalog them. There may have been more than one backup file created. The following example, entered at the operating system prompt, uses the scp command to copy the files:

scp /tmp/ForStandby_* standby:/tmp

Then, at the RMAN prompt, enter the following command to catalog them:

RMAN> CATALOG START WITH '/tmp/ForStandby';

	
Connect to the standby database as the RMAN target and execute the REPORT SCHEMA statement to ensure that the standby database site is automatically registered and that the files names at the standby site are displayed:

RMAN> REPORT SCHEMA;

	
Connect to the standby database as the RMAN target and apply incremental backups. Do the following:

RMAN> STARTUP FORCE NOMOUNT;
RMAN> RESTORE STANDBY CONTROLFILE FROM TAG 'FORSTANDBY';
RMAN> ALTER DATABASE MOUNT;
RMAN> RECOVER DATABASE NOREDO;

	
Note:

Oracle recommends that you use a recovery catalog, but if you do not, then just prior to issuing the RECOVER command, you must edit the file names in your control file or use the RMAN SET NEWNAME command to assign the datafile names.

	
On standbys that have widespread nologging changes or that have nologging changes on a subset of datafiles, query the V$DATAFILE view to verify there are no datafiles with nologged changes. The following query should return zero rows:

SQL> SELECT FILE#, FIRST_NONLOGGED_SCN FROM V$DATAFILE
 2> WHERE FIRST_NONLOGGED_SCN > 0;

	
Note:

The incremental backup will become obsolete in 7 days, or you can remove it now using the RMAN DELETE command.

	
Re-create the standby control file.

	
Start Redo Apply on the physical standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 2> USING CURRENT LOGFILE DISCONNECT FROM SESSION;

Data Guard Scenarios

13 Data Guard Scenarios

This chapter describes scenarios you might encounter while administering your Data Guard configuration. Each scenario can be adapted to your specific environment. Table 13-1 lists the scenarios presented in this chapter.

Table 13-1 Data Guard Scenarios

	Reference	Scenario
	
Section 13.1

	
Configuring Logical Standby Databases After a Failover

	
Section 13.2

	
Converting a Failed Primary Into a Standby Database Using Flashback Database

	
Section 13.3

	
Using Flashback Database After Issuing an Open Resetlogs Statement

	
Section 13.4

	
Recovering After the NOLOGGING Clause Is Specified

	
Section 13.5

	
Creating a Standby Database That Uses OMFor ASM

	
Section 13.6

	
Recovering From Lost-Write Errors on a Primary Database

	
Section 13.7

	
Converting a Failed Primary into a Standby Database Using RMAN Backups

13.1 Configuring Logical Standby Databases After a Failover

This section presents the steps required on a logical standby database after the primary database has failed over to another standby database. After a failover has occurred, a logical standby database cannot act as a standby database for the new primary database until it has applied the final redo from the original primary database. This is similar to the way the new primary database applied the final redo during the failover. The steps you must perform depend on whether the new primary database was a physical standby or a logical standby database prior to the failover:

	
Section 13.1.1, "When the New Primary Database Was Formerly a Physical Standby Database"

	
Section 13.1.2, "When the New Primary Database Was Formerly a Logical Standby Database"

13.1.1 When the New Primary Database Was Formerly a Physical Standby Database

This scenario demonstrates how to configure a logical standby database to support a new primary database that was a physical standby database before it assumed the primary role. In this scenario, SAT is the logical standby database and NYC is the primary database.

Step 1 Disable archiving from the primary database.

On the NYC database, issue the following statements (assuming LOG_ARCHIVE_DEST_4 is configured to archive to the SAT database):

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_4=DEFER;
SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

Step 2 Verify the logical standby database is capable of serving as a standby database to the new primary database.

On the SAT database, issue the following statement:

SQL> EXECUTE DBMS_LOGSTDBY.PREPARE_FOR_NEW_PRIMARY(-
 former_standby_type => 'PHYSICAL' -
 dblink => 'nyc_link');

	
Note:

If the ORA-16109 message is returned and the 'LOGSTDBY: prepare_for_new_primary failure -- applied too far, flashback required.' warning is written in the alert.log, perform the following steps:
	
Flash back the database to the SCN as stated in the warning and then

	
Repeat this step before continuing.

See Section 13.2.3 for an example of how to flash back a logical standby database to an Apply SCN.

Step 3 Enable archiving on the primary database.

On the NYC database, issue the following statements (assume LOG_ARCHIVE_DEST_4 is configured to archive to the SAT database):

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_4=ENABLE;
SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

Step 4 Query the new primary database to determine the SCN at which real-time apply can be enabled on the logical standby database

On the NYC database, issue the following query to determine the SCN of interest:

SQL> SELECT MAX(NEXT_CHANGE#) -1 AS WAIT_FOR_SCN FROM V$ARCHIVED_LOG;

Step 5 Start SQL Apply.

On the SAT database, issue the following statement:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY;

Note that you must always issue this statement without the real-time apply option. You need to wait for SQL Apply to apply past WAIT_FOR_SCN returned in Step 4, before you can enable real-time apply. To determine when it is safe to resume real-time apply on the logical standby database, monitor the V$LOGSTDBY_PROGRESS view:

SQL> SELECT APPLIED_SCN FROM V$LOGSTDBY_PROGRESS;

When the value returned is greater than or equal to the WAIT_FOR_SCN value returned in Step 4, you can stop SQL Apply and restart it with real-time apply option:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

13.1.2 When the New Primary Database Was Formerly a Logical Standby Database

This scenario demonstrates how to configure a logical standby database to support a new primary database that was a logical standby database before it assumed the primary role. In this scenario, SAT is the logical standby database and NYC is the primary database.

Step 1 Ensure the new primary database is ready to support logical standby databases.

On the NYC database, ensure the following query returns a value of READY. Otherwise, the LSP1 background process has not completed its work and the configuration of this logical must wait. For example:

SQL> SELECT VALUE FROM SYSTEM.LOGSTDBY$PARAMETERS
2> WHERE NAME = 'REINSTATEMENT_STATUS';

	
Note:

If the VALUE column contains NOT POSSIBLE it means that no logical standby database may be configured with the new primary database, and you must reinstate the database.

Step 2 Disable archiving from the primary database.

On the NYC database, issue the following statements (assume LOG_ARCHIVE_DEST_4 is configured to archive to the SAT database):

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_4=DEFER;
SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

Step 3 Verify the logical standby database is capable of being a standby to the new primary.

On the SAT database, issue the following statement:

SQL> EXECUTE DBMS_LOGSTDBY.PREPARE_FOR_NEW_PRIMARY(-
 former_standby_type => 'LOGICAL' -
 dblink => 'nyc_link');

	
Note:

If the ORA-16109 message is returned and the 'LOGSTDBY: prepare_for_new_primary failure -- applied too far, flashback required.' warning is written in the alert.log file, perform the following steps:
	
Flash back the database to the SCN as stated in the warning and then

	
Repeat this step before continuing.

See Section 13.2.3 for an example of how to flash back a logical standby database to an Apply SCN.

Step 4 Determine the log files that must be copied to the local system.

On the SAT database, look for the output from the DBMS_LOGSTDBY.PREPARE_FOR_NEW_PRIMARY procedure that identifies the log files that must be copied to the local system. If Step 3 identified the failover as a no-data-loss failover, then the displayed log files must be copied from the new primary database and should not be obtained from other logical standby databases or the former primary database. For example, on a Linux system, you would enter the grep command:

%grep 'LOGSTDBY: Terminal log' alert_sat.log
LOGSTDBY: Terminal log: [/oracle/dbs/hq_nyc_13.log]

	
Note:

If the prior step was executed multiple times, the output from the most recent attempt is the only relevant output. File paths are relative to the new primary database and may not be resolvable on the local file system.

Step 5 Copy the log files to the local system.

On the SAT database, copy the terminal log files to the local system. The following example shows how to do this using Linux commands:

%cp /net/nyc/oracle/dbs/hq_nyc_13.log
/net/sat/oracle/dbs/hq_sat_13.log

Step 6 Register the terminal log with logical standby database.

On the SAT database, issue the following statement:

SQL> ALTER DATABASE REGISTER OR REPLACE LOGICAL LOGFILE -
 '/net/sat/oracle/dbs/hq_sat_13.log';

Step 7 Start SQL Apply.

On the SAT database, issue the following statements:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY NEW PRIMARY nyc_link;

Note that you must always issue this statement without the real-time apply option. If you want to enable real-time apply on the logical standby database, wait for the above statement to complete successfully, and then issue the following statements:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

Step 8 Enable archiving on the primary database to the logical standby database.

On the NYC database, issue the following statements (assuming LOG_ARCHIVE_DEST_4 is configured to archive to the SAT database):

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_4=ENABLE;
SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

13.2 Converting a Failed Primary Into a Standby Database Using Flashback Database

After a failover occurs, the original primary database can no longer participate in the Data Guard configuration until it is repaired and established as a standby database in the new configuration. To do this, you can use the Flashback Database feature to recover the failed primary database to a point in time before the failover occurred, and then convert it into a physical or logical standby database in the new configuration. The following sections describe:

	
Flashing Back a Failed Primary Database into a Physical Standby Database

	
Flashing Back a Failed Primary Database into a Logical Standby Database

	
Note:

You must have already enabled Flashback Database on the original primary database before the failover. See Oracle Database Backup and Recovery User's Guide for more information.

	
Flashing Back a Logical Standby Database to a Specific Applied SCN

	
See Also:

Oracle Data Guard Broker for automatic reinstatement of the failed primary database as a new standby database (as an alternative to using Flashback Database)

13.2.1 Flashing Back a Failed Primary Database into a Physical Standby Database

The following steps assume that a failover has been performed to a physical standby database and that Flashback Database was enabled on the old primary database at the time of the failover. This procedure brings the old primary database back into the Data Guard configuration as a physical standby database.

Step 1 Determine the SCN at which the old standby database became the primary database.

On the new primary database, issue the following query to determine the SCN at which the old standby database became the new primary database:

SQL> SELECT TO_CHAR(STANDBY_BECAME_PRIMARY_SCN) FROM V$DATABASE;

Step 2 Flash back the failed primary database.

Shut down the old primary database (if necessary), mount it, and flash it back to the value for STANDBY_BECAME_PRIMARY_SCN that was determined in Step 1.

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;
SQL> FLASHBACK DATABASE TO SCN standby_became_primary_scn;

Step 3 Convert the database to a physical standby database.

Perform the following steps on the old primary database:

	
Issue the following statement on the old primary database:

SQL> ALTER DATABASE CONVERT TO PHYSICAL STANDBY;

This statement will dismount the database after successfully converting the control file to a standby control file.

	
Shut down and restart the database:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;

Step 4 Start transporting redo to the new physical standby database.

Perform the following steps on the new primary database:

	
Issue the following query to see the current state of the archive destinations:

SQL> SELECT DEST_ID, DEST_NAME, STATUS, PROTECTION_MODE, DESTINATION, ERROR,SRL
 2> FROM V$ARCHIVE_DEST_STATUS;

	
If necessary, enable the destination:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_n=ENABLE;

	
Perform a log switch to ensure the standby database begins receiving redo data from the new primary database, and verify it was sent successfully. Issue the following SQL statements on the new primary database:

SQL> ALTER SYSTEM SWITCH LOGFILE;
SQL> SELECT DEST_ID, DEST_NAME, STATUS, PROTECTION_MODE, DESTINATION, ERROR,SRL
 2> FROM V$ARCHIVE_DEST_STATUS;

On the new standby database, you may also need to change the LOG_ARCHIVE_DEST_n initialization parameters so that redo transport services do not transmit redo data to other databases.

Step 5 Start Redo Apply on the new physical standby database.

Issue the following SQL statement on the new physical standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 2> USING CURRENT LOGFILE DISCONNECT;

Redo Apply automatically stops each time it encounters a redo record that is generated as the result of a role transition, so Redo Apply will need to be restarted one or more times until it has applied beyond the SCN at which the new primary database became the primary database. Once the failed primary database is restored and is running in the standby role, you can optionally perform a switchover to transition the databases to their original (pre-failure) roles. See Section 8.2.1, "Performing a Switchover to a Physical Standby Database" for more information.

13.2.2 Flashing Back a Failed Primary Database into a Logical Standby Database

These steps assume that the Data Guard configuration has already completed a failover involving a logical standby database and that Flashback Database has been enabled on the old primary database. This procedure brings the old primary database back into the Data Guard configuration as a new logical standby database without having to formally instantiate it from the new primary database.

Step 1 Determine the flashback SCN and the recovery SCN.

The flashback SCN is the SCN to which the failed primary database will be flashed back. The recovery SCN is the SCN to which the failed primary database will be recovered. Issue the following query on the new primary to identify these SCNs:

SQL> SELECT merge_change# AS FLASHBACK_SCN, processed_change# AS RECOVERY_SCN
 2> FROM DBA_LOGSTDBY_HISTORY
 3> WHERE stream_sequence# = (SELECT MAX(stream_sequence#)-1
 4> FROM DBA_LOGSTDBY_HISTORY);

Step 2 Flash back the failed primary database to the flashback SCN identified in Step 1.

SQL> FLASHBACK DATABASE TO SCN flashback_scn;

Step 3 Convert the failed primary into a physical standby, and remount the standby database in preparation for recovery.

SQL> ALTER DATABASE CONVERT TO PHYSICAL STANDBY;
SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;

Step 4 Identify the logfiles on the new primary that contain redo within range [flashback SCN, recovery SCN].

The logfiles identified by the following query are significant because they are the only "versions" of the archived logfiles that can safely recover the failed primary database. If the logfiles returned from the following query cannot be registered in Step 5, the failed primary can never be revived as a logical standby. In such a case, a logical standby will have to be created from the new primary.

SQL> SELECT file_name FROM DBA_LOGSTDBY_LOG
 2> WHERE first_change# <= recovery_scn
 3> AND next_change# > flashback_scn;

Step 5 Register all logfiles returned from Step 4 with the physical standby (failed primary).

SQL> ALTER DATABASE REGISTER LOGFILE 'files_from_step _4';

Step 6 Recover until the recovery SCN identified in Step 1.

SQL> RECOVER MANAGED STANDBY DATABASE UNTIL CHANGE recovery_scn;

Step 7 Enable the database guard.

SQL> ALTER DATABASE GUARD ALL;

Step 8 Activate the physical standby to become a primary database.

SQL> ALTER DATABASE ACTIVATE STANDBY DATABASE;

Step 9 Open the database.

SQL> ALTER DATABASE OPEN;

Step 10 Create a database link to the new primary, and start SQL Apply.

SQL> CREATE PUBLIC DATABASE LINK mylink
 2> CONNECT TO system IDENTIFIED BY password
 3> USING 'service_name_of_new_primary_database';

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY NEW PRIMARY mylink;

The role reversal is now complete.

13.2.3 Flashing Back a Logical Standby Database to a Specific Applied SCN

One of the benefits of a standby database is that Flashback Database can be performed on the standby database without affecting the primary database service. Flashing back a database to a specific point in time is a straightforward task, however on a logical standby database, you may want to flash back to a time just before a known transaction was committed. Such a need can arise when configuring a logical standby database with a new primary database after a failover.

The following steps describe how to use Flashback Database and SQL Apply to recover to a known applied SCN.

Step 1 Once you have determined the known SCN at the primary (APPLIED_SCN), issue the following query to determine the corresponding SCN at the logical standby database, to use for the flashback operation:

SQL> SELECT DBMS_LOGSTDBY.MAP_PRIMARY_SCN (PRIMARY_SCN => APPLIED_SCN)
 2> AS TARGET_SCN FROM DUAL;

Step 2 Flash back the logical standby to the TARGET_SCN returned.

Issue the following SQL statements to flash back the logical standby database to the specified SCN, and open the logical standby database with the RESETLOGS option:

SQL> SHUTDOWN;
SQL> STARTUP MOUNT EXCLUSIVE;
SQL> FLASHBACK DATABASE TO SCN <TARGET_SCN>;
SQL> ALTER DATABASE OPEN RESETLOGS;

Step 3 Confirm SQL Apply has applied less than or up to the APPLIED_SCN.

Issue the following query:

SQL> SELECT APPLIED_SCN FROM V$LOGSTDBY_PROGRESS;

13.3 Using Flashback Database After Issuing an Open Resetlogs Statement

Suppose an error has occurred on the primary database in a Data Guard configuration in which the standby database is using real-time apply. In this situation, the same error will be applied on the standby database.

However, if Flashback Database is enabled, you can revert the primary and standby databases back to their pre-error condition by issuing the FLASHBACK DATABASE and OPEN RESETLOGS statements on the primary database, and then issuing a similar FLASHBACK STANDBY DATABASE statement on the standby database before restarting apply services. (If Flashback Database is not enabled, you need to re-create the standby database, as described in Chapter 3 and Chapter 4, after the point-in-time recovery was performed on the primary database.)

13.3.1 Flashing Back a Physical Standby Database to a Specific Point-in-Time

The following steps describe how to avoid re-creating a physical standby database after you issued the OPEN RESETLOGS statement on the primary database.

Step 1 Determine the SCN before the RESETLOGS operation occurred.

On the primary database, use the following query to obtain the value of the system change number (SCN) that is 2 SCNs before the RESETLOGS operation occurred on the primary database:

SQL> SELECT TO_CHAR(RESETLOGS_CHANGE# - 2) FROM V$DATABASE;

Step 2 Obtain the current SCN on the standby database.

On the standby database, obtain the current SCN with the following query:

SQL> SELECT TO_CHAR(CURRENT_SCN) FROM V$DATABASE;

Step 3 Determine if it is necessary to flash back the database.

If the value of CURRENT_SCN is larger than the value of resetlogs_change# - 2, issue the following statement to flash back the standby database.

SQL> FLASHBACK STANDBY DATABASE TO SCN resetlogs_change# -2;

	
If the value of CURRENT_SCN is less than the value of the resetlogs_change# - 2, skip to Step 4.

	
If the standby database's SCN is far enough behind the primary database's SCN, apply services will be able to continue through the OPEN RESETLOGS statement without stopping. In this case, flashing back the database is unnecessary because apply services do not stop upon reaching the OPEN RESETLOGS statement in the redo data.

Step 4 Restart Redo Apply.

To start Redo Apply on the physical standby database, issue the following statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 2> USING CURRENT LOGFILE DISCONNECT;

The standby database is now ready to receive and apply redo from the primary database.

13.3.2 Flashing Back a Logical Standby Database to a Specific Point-in-Time

The following steps describe how to avoid re-creating a logical standby database after you have flashed back the primary database and opened it by issuing an OPEN RESETLOGS statement.

	
Note:

If SQL Apply detects the occurrence of a resetlogs operation at the primary database, it automatically mines the correct branch of redo, if it is possible to do so without having to flashback the logical standby database. Otherwise, SQL Apply stops with an error ORA-1346: LogMiner processed redo beyond specified reset log scn. In this section, it is assumed that SQL Apply has already stopped with such an error.

Step 1 Determine the SCN at the primary database.

On the primary database, use the following query to obtain the value of the system change number (SCN) that is 2 SCNs before the RESETLOGS operation occurred on the primary database:

SQL> SELECT TO_CHAR(RESETLOGS_CHANGE# - 2) AS FLASHBACK_SCN FROM V$DATABASE;

Step 2 Determine the target SCN for flashback operation at the logical standby.

SQL> SELECT DBMS_LOGSTDBY.MAP_PRIMARY_SCN (PRIMARY_SCN => FLASHBACK_SCN)
 2> AS TARGET_SCN FROM DUAL;

Step 3 Flash back the logical standby to the TARGET_SCN returned.

Issue the following SQL statements to flash back the logical standby database to the specified SCN, and open the logical standby database with the RESETLOGS option:

SQL> SHUTDOWN;
SQL> STARTUP MOUNT EXCLUSIVE;
SQL> FLASHBACK DATABASE TO SCN <TARGET_SCN>;
SQL> ALTER DATABASE OPEN RESETLOGS;

Step 4 Start SQL Apply.

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

13.4 Recovering After the NOLOGGING Clause Is Specified

In some SQL statements, the user has the option of specifying the NOLOGGING clause, which indicates that the database operation is not logged in the online redo log file. Even though the user specifies the clause, a redo record is still written to the online redo log file. However, there is no data associated with this record. This can result in log application or data access errors at the standby site and manual recovery might be required to resume applying log files.

	
Note:

To avoid these problems, Oracle recommends that you always specify the FORCE LOGGING clause in the CREATE DATABASE or ALTER DATABASE statements. See the Oracle Database Administrator's Guide.

13.4.1 Recovery Steps for Logical Standby Databases

For logical standby databases, when SQL Apply encounters a redo record for an operation performed on an interesting table with the NOLOGGING clause, it stops with the following error: ORA-16211 unsupported record found in the archived redo log.

To recover after the NOLOGGING clause is specified, re-create one or more tables from the primary database, as described in Section 10.5.5.

	
Note:

In general, use of the NOLOGGING clause is not recommended. Optionally, if you know in advance that operations using the NOLOGGING clause will be performed on certain tables in the primary database, you might want to prevent the application of SQL statements associated with these tables to the logical standby database by using the DBMS_LOGSTDBY.SKIP procedure.

13.4.2 Recovery Steps for Physical Standby Databases

When the archived redo log file is copied to the standby site and applied to the physical standby database, a portion of the datafile is unusable and is marked as being unrecoverable. When you either fail over to the physical standby database, or open the standby database for read-only access, and attempt to read the range of blocks that are marked as UNRECOVERABLE, you will see error messages similar to the following:

ORA-01578: ORACLE data block corrupted (file # 1, block # 2521)
ORA-01110: data file 1: '/oracle/dbs/stdby/tbs_1.dbf'
ORA-26040: Data block was loaded using the NOLOGGING option

To recover after the NOLOGGING clause is specified, you need to copy the datafile that contains the missing redo data from the primary site to the physical standby site. Perform the following steps:

Step 1 Determine which datafiles should be copied.

Follow these steps:

	
Query the primary database:

SQL> SELECT NAME, UNRECOVERABLE_CHANGE# FROM V$DATAFILE;
NAME UNRECOVERABLE
--- -------------
/oracle/dbs/tbs_1.dbf 5216
/oracle/dbs/tbs_2.dbf 0
/oracle/dbs/tbs_3.dbf 0
/oracle/dbs/tbs_4.dbf 0
4 rows selected.

	
Query the standby database:

SQL> SELECT NAME, UNRECOVERABLE_CHANGE# FROM V$DATAFILE;
NAME UNRECOVERABLE
--- -------------
/oracle/dbs/stdby/tbs_1.dbf 5186
/oracle/dbs/stdby/tbs_2.dbf 0
/oracle/dbs/stdby/tbs_3.dbf 0
/oracle/dbs/stdby/tbs_4.dbf 0
4 rows selected.

	
Compare the query results of the primary and standby databases.

Compare the value of the UNRECOVERABLE_CHANGE# column in both query results. If the value of the UNRECOVERABLE_CHANGE# column in the primary database is greater than the same column in the standby database, then the datafile needs to be copied from the primary site to the standby site.

In this example, the value of the UNRECOVERABLE_CHANGE# in the primary database for the tbs_1.dbf datafile is greater, so you need to copy the tbs_1.dbf datafile to the standby site.

Step 2 On the primary site, back up the datafile you need to copy to the standby site.

Issue the following SQL statements:

SQL> ALTER TABLESPACE system BEGIN BACKUP;
SQL> EXIT;
% cp tbs_1.dbf /backup
SQL> ALTER TABLESPACE system END BACKUP;

Step 3 Copy the datafile to the standby database.

Copy the datafile that contains the missing redo data from the primary site to location on the physical standby site where files related to recovery are stored.

Step 4 On the standby database, restart Redo Apply.

Issue the following SQL statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT FROM SESSION;

You might get the following error messages (possibly in the alert log) when you try to restart Redo Apply:

ORA-00308: cannot open archived log 'standby1'
ORA-27037: unable to obtain file status
SVR4 Error: 2: No such file or directory
Additional information: 3
ORA-01547: warning: RECOVER succeeded but OPEN RESETLOGS would get error below
ORA-01152: file 1 was not restored from a sufficiently old backup
ORA-01110: data file 1: '/oracle/dbs/stdby/tbs_1.dbf'

If you get the ORA-00308 error and Redo Apply does not terminate automatically, you can cancel recovery by issuing the following statement from another terminal window:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

These error messages are returned when one or more log files in the archive gap have not been successfully applied. If you receive these errors, manually resolve the gaps, and repeat Step 4. See Section 6.3.3.1 for information about manually resolving an archive gap.

13.4.3 Determining If a Backup Is Required After Unrecoverable Operations

If you performed unrecoverable operations on your primary database, determine if a new backup operation is required by following these steps:

	
Query the V$DATAFILE view on the primary database to determine the system change number (SCN) or the time at which the Oracle database generated the most recent invalidated redo data.

	
Issue the following SQL statement on the primary database to determine if you need to perform another backup:

SELECT UNRECOVERABLE_CHANGE#,
 TO_CHAR(UNRECOVERABLE_TIME, 'mm-dd-yyyy hh:mi:ss')
FROM V$DATAFILE;

	
If the query in the previous step reports an unrecoverable time for a datafile that is more recent than the time when the datafile was last backed up, then make another backup of the datafile in question.

See Oracle Database Reference for more information about the V$DATAFILE view.

13.5 Creating a Standby Database That Uses OMF or ASM

Chapter 3 and Chapter 4 described how to create physical and logical standby databases. This section augments the discussions in those chapters with additional steps that must be performed if the primary database uses Oracle Managed Files (OMF) or Automatic Storage Management (ASM).

	
Note:

The discussion in this section is presented at a level of detail that assumes the reader already knows how to create a physical standby database and is an experienced user of the RMAN, OMF, and ASM features. For more information, see:
	
Chapter 3, Chapter 4, and Appendix F for information about creating physical and logical standby databases

	
Oracle Database Administrator's Guide for information about OMF and ASM

	
Oracle Database Backup and Recovery User's Guide and Oracle Database Backup and Recovery Reference for information about RMAN

Perform the following tasks to prepare for standby database creation:

	
Enable forced logging on the primary database.

	
Enable archiving on the primary database.

	
Set all necessary initialization parameters on the primary database.

	
Create an initialization parameter file for the standby database.

	
If the primary database is configured to use OMF, then Oracle recommends that the standby database be configured to use OMF, too. To do this, set the DB_CREATE_FILE_DEST and DB_CREATE_ONLINE_LOG_DEST_n initialization parameters to appropriate values. Maintenance and future role transitions are simplified if the same disk group names are used for both the primary and standby databases.

	
Set the STANDBY_FILE_MANAGEMENT initialization parameter to AUTO.

	
Configure Oracle Net, as required, to allow connections to the standby database.

	
Configure redo transport authentication as described in Section 3.1.2, "Configure Redo Transport Authentication".

	
Start the standby database instance without mounting the control file.

Perform the following tasks to create the standby database:

	
If the standby database is going to use ASM, create an ASM instance if one does not already exist on the standby database system.

	
Use the RMAN BACKUP command to create a backup set that contains a copy of the primary database's datafiles, archived log files, and a standby control file.

	
Use the RMAN DUPLICATE FOR STANDBY command to copy the datafiles, archived redo log files and standby control file in the backup set to the standby database's storage area.

The DUPLICATE FOR STANDBY command performs the actual data movement at the standby instance. If the backup set is on tape, the media manager must be configured so that the standby instance can read the backup set. If the backup set is on disk, the backup pieces must be readable by the standby instance, either by making their primary path names available through NFS, or by copying them to the standby system and using RMAN CATALOG BACKUPPIECE command to catalog the backup pieces before restoring them.

After you successfully complete these steps, continue with the steps in Section 3.2.7, to verify the configuration of the physical standby database.

To create a logical standby database, continue with the standby database creation process described in Chapter 4, but with the following modifications:

	
For a logical standby database, setting the DB_CREATE_FILE_DEST parameter does not force the creation of OMF filenames. However, if this parameter was set on the primary database, it must also be set on the standby database.

	
After creating a logical standby control file on the primary system, do not use an operating system command to copy this file to the standby system. Instead, use the RMAN RESTORE CONTROLFILE command to restore a copy of the logical standby control file to the standby system.

	
If the primary database uses OMF files, use RMAN to update the standby database control file to use the new OMF files created on the standby database. To perform this operation, connect only to the standby database, as shown in the following example:

> RMAN TARGET sys@lstdby

target database Password: password

RMAN> CATALOG START WITH '+stby_diskgroup';
RMAN> SWITCH DATABASE TO COPY;

After you successfully complete these steps, continue with the steps in Section 4.2.5 to start, recover, and verify the logical standby database.

13.6 Recovering From Lost-Write Errors on a Primary Database

During media recovery in a Data Guard configuration, a physical standby database can be used to detect lost-write data corruption errors on the primary database. This is done by comparing SCNs of blocks stored in the redo log on the primary database to SCNs of blocks on the physical standby database. If the SCN of the block on the primary database is lower than the SCN on the standby database, then there was a lost-write error on the primary database.

	
Note:

Because lost-write errors are detected only when a block is read into the cache by a primary and the corresponding redo is later compared to the block on the standby, there may be undetected stale blocks on both the primary and the standby that have not yet been read and verified. These stale blocks do not affect operation of the current database because until those blocks are read, all blocks that have been used up to the SCN of the currently applied redo on the standby to do queries or updates were verified by the standby.

When a primary lost-write error is detected on the standby, one or more block error messages similar to the following for each stale block are printed in the alert file of the standby database:

Tue Dec 12 19:09:48 2006
STANDBY REDO APPLICATION HAS DETECTED THAT THE PRIMARY DATABASE
LOST A DISK WRITE OF BLOCK 26, FILE 7
NO REDO AT OR AFTER SCN 389667 CAN BE USED FOR RECOVERY.
.
.
.

The alert file then shows that an ORA-00752 error is raised on the standby database and the managed recovery is cancelled:

Slave exiting with ORA-752 exception
Errors in file /oracle/log/diag/rdbms/dgstwrite2/stwrite2/trace/stwrite2_pr00_23532.trc:
ORA-00752: recovery detected a lost write of a data block
ORA-10567: Redo is inconsistent with data block (file# 7, block# 26)
ORA-10564: tablespace TBS_2
ORA-01110: data file 7: '/oracle/dbs/btbs_21.f'
ORA-10561: block type 'TRANSACTION MANAGED DATA BLOCK', data object# 57503
.
.
.

The standby database is then recovered to a consistent state, without any corruption to its datafiles caused by this error, at the SCN printed in the alert file:

Recovery interrupted!
Recovered data files to a consistent state at change 389569

This last message may appear significantly later in the alert file and it may have a lower SCN than the block error messages. Also, the primary database may operate without visible errors even though its datafiles may already be corrupted.

The recommended procedure to recover from such errors is a failover to the physical standby, as described in the following steps.

Steps to Failover to a Physical Standby After Lost-Writes Are Detected on the Primary

	
Shut down the primary database. All data at or after SCN printed in the block error messages will be lost.

	
Issue the following SQL statement on the standby database to convert it to a primary:

SQL> ALTER DATABASE ACTIVATE STANDBY DATABASE;

Database altered.

Tue Dec 12 19:15:23 2006
alter database activate standby database
ALTER DATABASE ACTIVATE [PHYSICAL] STANDBY DATABASE (stwrite2)
RESETLOGS after incomplete recovery UNTIL CHANGE 389569
Resetting resetlogs activation ID 612657558 (0x24846996)
Online log /oracle/dbs/bt_log1.f: Thread 1 Group 1 was previously cleared
Online log /oracle/dbs/bt_log2.f: Thread 1 Group 2 was previously cleared
Standby became primary SCN: 389567
Tue Dec 12 19:15:23 2006
Setting recovery target incarnation to 3
Converting standby mount to primary mount.
ACTIVATE STANDBY: Complete - Database mounted as primary (stwrite2)
Completed: alter database activate standby database

	
Back up the new primary. Performing a backup immediately is a necessary safety measure, because you cannot recover changes made after the failover without a complete backup copy of the database. As a result of the failover, the original primary database can no longer participate in the Data Guard configuration, and all other standby databases will now receive and apply redo data from the new primary database.

	
Open the new primary database.

	
An optional step is to recreate the failed primary as a physical standby. This can be done using the database backup taken at the new primary in step 3. (You cannot use flashback database or the Data Guard broker to reinstantiate the old primary database in this situation.)

Be aware that a physical standby created using the backup taken from the new primary will have the same datafiles as the old standby. Therefore, any undetected lost writes that the old standby had before it was activated will not be detected by the new standby, since the new standby will be comparing the same blocks. Any new lost writes that happen on either the primary or the standby will be detected.

	
See Also:

Oracle Database Backup and Recovery User's Guide for more information about enabling lost-write detection

13.7 Converting a Failed Primary into a Standby Database Using RMAN Backups

To convert a failed primary database, Oracle recommends that you enable the Flashback Database feature on the primary and follow the procedure described in either Section 13.2.1 or Section 13.2.2. The procedures in those sections describe the fastest ways to convert a failed primary into either a physical or logical standby. However, if Flashback Database was not enabled on the failed primary, you can still convert the failed primary into either a physical or logical standby using a local backup of the failed primary, as described in the following sections:

	
Converting a Failed Primary into a Physical Standby Using RMAN Backups

	
Converting a Failed Primary into a Logical Standby Using RMAN Backups

13.7.1 Converting a Failed Primary into a Physical Standby Using RMAN Backups

The steps in this section describe how to convert a failed primary into a physical standby by using RMAN backups. This procedure requires that the COMPATIBLE initialization parameter of the old primary be set to at least 11.0.0.

Step 1 Determine the SCN at which the old standby database became the primary database.

On the new primary database, issue the following query to determine the SCN at which the old standby database became the new primary database:

SQL> SELECT TO_CHAR(STANDBY_BECAME_PRIMARY_SCN) FROM V$DATABASE;

Step 2 Restore and recover the entire database.

Restore the database with a backup taken before the old primary had reached the SCN at which the standby became the new primary (standby_became_primary_scn). Then, perform a point-in-time recovery to recover the old primary to that same point.

Issue the following RMAN commands:

RMAN> RUN
 {
 SET UNTIL SCN <standby_became_primary_scn + 1>;
 RESTORE DATABASE;
 RECOVER DATABASE;
 }

With user-managed recovery, you can first restore the database manually. Typically, a backup taken a couple of hours before the failover would be old enough. You can then recover the failed primary using the following command:

SQL> RECOVER DATABASE USIING BACKUP CONTROLFILE UNTIL CHANGE
<standby_became_primary_scn + 1>;

Unlike a reinstantiation that uses Flashback Database, this procedure adds one to standby_became_primary_scn. For datafiles, flashing back to an SCN is equivalent to recovering up until that SCN plus one.

Step 3 Convert the database to a physical standby database.

Perform the following steps on the old primary database:

	
Issue the following statement on the old primary database:

SQL> ALTER DATABASE CONVERT TO PHYSICAL STANDBY;

This statement will dismount the database after successfully converting the control file to a standby control file.

	
Shut down and restart the database:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;

Step 4 Open the database as read-only.

Issue the following command:

SQL> ALTER DATABASE OPEN READ ONLY;

The goal of this step is to synchronize the control file with the database by using a dictionary check. After this command, check the alert log for any actions suggested by the dictionary check. Typically, no user action is needed if the old primary was not in the middle of adding or dropping datafiles during the failover.

Step 5 (Optional) Mount the standby again, if desired

A physical standby can apply redo while it is open read-only. But if you plan to recover the physical standby without opening it read-only, you may optionally shut it down and mount it again, as follows:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;

Step 6 Restart transporting redo to the new physical standby database.

Before the new standby database was created, the new primary database probably stopped transmitting redo to the remote destination. To restart redo transport services, perform the following steps on the new primary database:

	
Issue the following query to see the current state of the archive destinations:

SQL> SELECT DEST_ID, DEST_NAME, STATUS, PROTECTION_MODE, DESTINATION, ERROR,SRL
 2> FROM V$ARCHIVE_DEST_STATUS;

	
If necessary, enable the destination:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_n=ENABLE;

	
Perform a log switch to ensure the standby database begins receiving redo data from the new primary database, and verify it was sent successfully.

	
Note:

This is an important step in order for the old primary to become a new standby following the new primary. If this step is not done, the old primary may recover to an incorrect database branch. The only way to correct the problem then is to convert the old primary again.

At the SQL prompt, enter the following statements:

SQL> ALTER SYSTEM SWITCH LOGFILE;
SQL> SELECT DEST_ID, DEST_NAME, STATUS, PROTECTION_MODE, DESTINATION, ERROR,SRL
 2> FROM V$ARCHIVE_DEST_STATUS;

On the new standby database, you may also need to change the LOG_ARCHIVE_DEST_n initialization parameters so that redo transport services do not transmit redo data to other databases. This step can be skipped if both the primary and standby database roles were set up with the VALID_FOR attribute in one server parameter file (SPFILE). By doing this, the Data Guard configuration operates properly after a role transition.

Step 7 Start Redo Apply.

Start Redo Apply on the new physical standby database, as follows:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 2> USING CURRENT LOGFILE DISCONNECT;

Once the failed primary database is restored and is running in the standby role, you can optionally perform a switchover to transition the databases to their original (pre-failure) roles. See Section 8.2.1, "Performing a Switchover to a Physical Standby Database" for more information.

13.7.2 Converting a Failed Primary into a Logical Standby Using RMAN Backups

The steps in this section describe how to convert a failed primary into a logical standby using RMAN backups.

Step 1 Determine the SCN to which to recover the failed primary database.

On the new primary database, issue the following query to determine the SCN to which you want to recover the failed primary database:

SQL> SELECT APPLIED_SCN RECOVERY_SCN FROM V$LOGSTDBY_PROGRESS;

Also on the new primary database, determine the SCN to use in dealing with archive logs, as follows:

	
Ensure all standby redo logs have been archived. Issue the following query, looking for a value of READY to be returned. Depending on the size of the database and the number of logs needing to be archived, it could take some time before a status of READY is returned.

SQL> SELECT VALUE FROM SYSTEM.LOGSTDBY$PARAMETERS WHERE NAME='REINSTATEMENT_STATUS';

	
After a status of READY has been returned, run the following query to retrieve the SCN for dealing with archive logs as part of this recovery:

SQL> SELECT VALUE ARCHIVE_SCN FROM SYSTEM.LOGSTDBY$PARAMETERS
 2> WHERE NAME='STANDBY_BECAME_PRIMARY_SCN';

Step 2 Remove divergent archive logs from the failed primary database.

Remove any archive logs created at the time of, or after the failover operation, from the failed primary database. If the failed primary database was isolated from the standby, it could have divergent archive logs that are not consistent with the current primary database. To ensure these divergent archive logs are never applied, they must be deleted from backups and the flash recovery area. You can use the following RMAN command to delete the relevant archive logs from the flash recovery area:

RMAN> DELETE ARCHIVELOG FROM SCN ARCHIVE_SCN;

Once deleted, these divergent logs and subsequent transactions can never be recovered.

Step 3 Determine the log files to be copied to the failed primary database.

On the new primary database, issue the following query to determine the minimum set of log files that must be copied to the failed primary database before recovering from a backup:

SQL> SELECT file_name FROM DBA_LOGSTDBY_LOG WHERE next_change# > ARCHIVE_SCN;

Retrieve the required standby logs, copy the backup set to the new standby and restore it to the new standby flash recovery area. Because these logs are coming from standby redo logs, they are not part of the standby's standard archives. The RMAN utility is able to use a partial file name to retrieve the files from the correct location.

The following is a sample use of the RMAN BACKUP command:

RMAN> BACKUP AS COPY DEVICE TYPE DISK FORMAT '/tmp/test/%U'
> ARCHIVELOG LIKE '<partial file names from above>%';

The following is a sample use of the RMAN RESTORE command:

RMAN> CATALOG START WITH '/tmp/test';
RMAN> RESTORE ARCHIVELOG FROM SEQUENCE 33 UNTIL SEQUENCE 35;

Step 4 Restore a backup and recover the database.

Restore a backup of all the original primary's data files and recover to RECOVERY_SCN + 1. Oracle recommends that you leverage the current control file.

	
Start up the database in restricted mode to protect it from rogue transactions until the GUARD ALL command can be issued after the database has been opened.

	
Use the backup to restore the data files of the failed primary database.

	
Turn off flashback database, if it is enabled (necessary for the USING BACKUP CONTROLFILE clause).

	
Perform point-in-time recovery to RECOVERY_SCN +1 in SQL*Plus.

Whether you are using a current control file or a backup control file, you must specify the USING BACKUP CONTROLFILE clause to allow you to point to the archive logs being restored. Otherwise, the recovery process could attempt to access online redo logs instead of the logs retrieved in Step 3. When prompted for the sequences retrieved in Step 3, ensure you specify the file names of the restored archive log copies, as follows:

SQL> RECOVER DATABASE UNTIL CHANGE RECOVERY_SCN + 1 USING BACKUP CONTROLFILE;

Step 5 Open the database with the RESETLOGS option.

SQL> ALTER DATABASE OPEN RESETLOGS;

Step 6 Enable Database Guard

SQL> ALTER DATABASE GUARD ALL;

Step 7 Create a database link to the new primary database and start SQL Apply.

SQL> CREATE PUBLIC DATABASE LINK myLink
 2> CONNECT TO SYSTEM IDENTIFIED BY password
 3> USING 'service name of new primary database';

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY NEW PRIMARY myLink;

At this point, you can disable restricted session (ALTER SYSTEM DISABLE RESTRICTED SESSION) or, if you need to restart the database to re-enable Flashback from Step 4.3, let this restart turn off RESTRICTED SESSION.

SQL Statements Relevant to Data Guard

16 SQL Statements Relevant to Data Guard

This chapter summarizes the SQL and SQL*Plus statements that are useful for performing operations on standby databases in a Data Guard environment. This chapter includes the following topics:

	
ALTER DATABASE Statements

	
ALTER SESSION Statements

This chapter contains only the syntax and a brief summary of particular SQL statements. You must refer to the Oracle Database SQL Language Reference for complete syntax and descriptions about these and other SQL statements.

See Chapter 14 for a list of initialization parameters that you can set and dynamically update using the ALTER SYSTEM SET statement.

16.1 ALTER DATABASE Statements

Table 16-1 describes ALTER DATABASE statements that are relevant to Data Guard.

Table 16-1 ALTER DATABASE Statements Used in Data Guard Environments

	ALTER DATABASE Statement	Description
	
ADD [STANDBY] LOGFILE [THREAD integer] [GROUP integer] filespec

	
Adds one or more online redo log file groups or standby redo log file groups to the specified thread, making the log files available to the instance to which the thread is assigned.

See Section 9.3.5 for an example of this statement.

	
ADD [STANDBY] LOGFILE MEMBER 'filename' [REUSE] TO logfile-descriptor

	
Adds new members to existing online redo log file groups or standby redo log file groups.

	
[ADD|DROP] SUPPLEMENTAL LOG DATA {PRIMARY KEY|UNIQUE INDEX} COLUMNS

	
This statement is for logical standby databases only.

Use it to enable full supplemental logging before you create a logical standby database. This is necessary because supplemental logging is the source of change to a logical standby database. To implement full supplemental logging, you must specify either the PRIMARY KEY COLUMNS or the UNIQUE INDEX COLUMNS keyword on this statement.

See Oracle Database SQL Language Reference for more information.

	
COMMIT TO SWITCHOVER TO [[PRIMARY] | [[PHYSICAL|LOGICAL] [STANDBY]][WITH | WITHOUT] SESSION SHUTDOWN] [WAIT | NOWAIT]

	
Performs a switchover to:

	
Change the current primary database to the standby database role

	
Change one standby database to the primary database role.

Note: On logical standby databases, you issue the ALTER DATABASE PREPARE TO SWITCHOVER statement to prepare the database for the switchover before you issue the ALTER DATABASE COMMIT TO SWITCHOVER statement.

See Section 8.2.1 and Section 8.3.1 for examples of this statement.

	
CONVERT TO [[PHYSICAL|SNAPSHOT] STANDBY] DATABASE

	
Converts a physical standby database into a snapshot standby database and vice versa.

	
CREATE [PHYSICAL|LOGICAL] STANDBY CONTROLFILE AS 'filename' [REUSE]

	
Creates a control file to be used to maintain a physical or a logical standby database. Issue this statement on the primary database.

See Section 3.2.2 for an example of this statement.

	
DROP [STANDBY] LOGFILE logfile_descriptor

	
Drops all members of an online redo log file group or standby redo log file group.

See Section 9.3.5 for an example of this statement.

	
DROP [STANDBY] LOGFILE MEMBER 'filename'

	
Drops one or more online redo log file members or standby redo log file members.

	
[NO]FORCE LOGGING

	
Controls whether or not the Oracle database logs all changes in the database except for changes to temporary tablespaces and temporary segments. The [NO]FORCE LOGGING clause is required to prevent inconsistent standby databases.:

The primary database must be mounted but not open when you issue this statement. See Section 3.1.1 for an example of this statement.

	
GUARD

	
Controls user access to tables in a logical standby database. Possible values are ALL, STANDBY, and NONE. See Section 10.2 for more information.

	
MOUNT [STANDBY DATABASE]

	
Mounts a standby database, allowing the standby instance to receive redo data from the primary instance.

	
OPEN

	
Opens a previously started and mounted database:

	
Physical standby databases are opened in read-only mode, restricting users to read-only transactions and preventing the generating of redo data.

	
Logical standby database are opened in read/write mode.

	
PREPARE TO SWITCHOVER TO[PRIMARY] | [[PHYSICAL|LOGICAL] [STANDBY]][WITH | WITHOUT] SESSION SHUTDOWN] [WAIT | NOWAIT]

	
This statement is for logical standby databases only.

It prepares the primary database and the logical standby database for a switchover by building the LogMiner dictionary before the switchover takes place. After the dictionary build has completed, issue the ALTER DATABASE COMMIT TO SWITCHOVER statement to switch the roles of the primary and logical standby databases.

See Section 8.3.1 for examples of this statements.

	
RECOVER MANAGED STANDBY DATABASE [{ DISCONNECT [FROM SESSION] | USING CURRENT LOGFILE | NODELAY | UNTIL CHANGE integer }...]

	
This statement starts and controls Redo Apply on physical standby databases. You can use the RECOVER MANAGED STANDBY DATABASE clause on a physical standby database that is mounted, open, or closed. See Step 4 in Section 3.2.6 and Section 7.3 for examples.

Note: Several clauses and keywords were deprecated and are supported for backward compatibility only. See Oracle Database SQL Language Reference for more information about these clauses.

	
RECOVER MANAGED STANDBY DATABASE CANCEL

	
The CANCEL clause cancels Redo Apply on a physical standby database after applying the current archived redo log file.

Note: Several clauses and keywords were deprecated and are supported for backward compatibility only. See Oracle Database SQL Language Reference for more information about these clauses.

	
RECOVER MANAGED STANDBY DATABASE FINISH

	
The FINISH clause initiates failover on the target physical standby database and recovers the current standby redo log files. Use the FINISH clause only in the event of the failure of the primary database. This clause overrides any delay intervals specified.

See Step 4 in Section 8.2.2 for examples.

Note: Several clauses and keywords were deprecated and are supported for backward compatibility only. See Oracle Database SQL Language Reference for more information about these clauses.

	
REGISTER [OR REPLACE] [PHYSICAL|LOGICAL] LOGFILE filespec

	
Allows the registration of manually archived redo log files.

	
RECOVER TO LOGICAL STANDBY new_database_name

	
Instructs apply services to continue applying changes to the physical standby database until you issue the command to convert the database to a logical standby database. See Section 4.2.4.1 for more information.

	
RESET DATABASE TO INCARNATION integer

	
Resets the target recovery incarnation for the database from the current incarnation to a different incarnation.

	
SET STANDBY DATABASE TO MAXIMIZE {PROTECTION|AVAILABILITY|PERFORMANCE}

	
Use this clause to specify the level of protection for the data in your Data Guard configuration. You specify this clause from the primary database, which must be mounted but not open.

	
START LOGICAL STANDBY APPLY INITIAL [scn-value]] [NEW PRIMARY dblink]

	
This statement is for logical standby databases only.It starts SQL Apply on a logical standby database. See Section 7.4.1 for examples of this statement.

	
{STOP|ABORT} LOGICAL STANDBY APPLY

	
This statement is for logical standby databases only.Use the STOP clause to stop SQL Apply on a logical standby database in an orderly fashion. Use the ABORT clause to stop SQL Apply abruptly. See Section 8.3.2 for an example of this statement.

	
ACTIVATE [PHYSICAL|LOGICAL] STANDBY DATABASE FINISH APPLY]

	
Performs a failover. The standby database must be mounted before it can be activated with this statement.

Note: Do not use the ALTER DATABASE ACTIVATE STANDBY DATABASE statement to failover because it causes data loss. Instead, use the following best practices:

	
For physical standby databases, use the ALTER DATABASE RECOVER MANAGED STANDBY DATABASE statement with the FINISH keyword to perform the role transition as quickly as possible with little or no data loss and without rendering other standby databases unusable.

Note: The failover operation adds an end-of-redo marker to the header of the last log file being archived and sends the redo to all enabled destinations that are valid for the primary role (specified with the VALID_FOR=(PRIMARY_ROLE, *_LOGFILES) or the VALID_FOR=(ALL_ROLES, *_LOGFILES) attributes).

	
For logical standby databases, use the ALTER DATABASE PREPARE TO SWITCHOVER and ALTER DATABASE COMMIT TO SWITCHOVER statements.

16.2 ALTER SESSION Statements

Table 16-2 describes an ALTER SESSION statement that is relevant to Data Guard.

Table 16-2 ALTER SESSION Statement Used in Data Guard Environments

	ALTER SESSION Statement	Description
	
ALTER SESSION [ENABLE|DISABLE] GUARD

	
This statement is for logical standby databases only.

This statement allows privileged users to turn the database guard on and off for the current session.

See Section 10.5.4 for more information.

Views Relevant to Oracle Data Guard

17 Views Relevant to Oracle Data Guard

This chapter describes the views that are significant in a Data Guard environment. The view described in this chapter are a subset of the views that are available for Oracle databases.

Table 17-1 describes the views and indicates if a view applies to physical standby databases, logical standby databases, snapshot standby databases, or primary databases. See Oracle Database Reference for complete information about views.

Table 17-1 Views That Are Pertinent to Data Guard Configurations

	View	Database	Description
	
DBA_LOGSTDBY_EVENTS

	
Logical only

	
Contains information about the activity of a logical standby database. It can be used to determine the cause of failures that occur when SQL Apply is applying redo to a logical standby database.

	
DBA_LOGSTDBY_HISTORY

	
Logical only

	
Displays the history of switchovers and failovers for logical standby databases in a Data Guard configuration. It does this by showing the complete sequence of redo log streams processed or created on the local system, across all role transitions. (After a role transition, a new log stream is started and the log stream sequence number is incremented by the new primary database.)

	
DBA_LOGSTDBY_LOG

	
Logical only

	
Shows the log files registered for logical standby databases.

	
DBA_LOGSTDBY_NOT_UNIQUE

	
Logical only

	
Identifies tables that have no primary and no non-null unique indexes.

	
DBA_LOGSTDBY_PARAMETERS

	
Logical only

	
Contains the list of parameters used by SQL Apply.

	
DBA_LOGSTDBY_SKIP

	
Logical only

	
Lists the tables that will be skipped by SQL Apply.

	
DBA_LOGSTDBY_SKIP_TRANSACTION

	
Logical only

	
Lists the skip settings chosen.

	
DBA_LOGSTDBY_UNSUPPORTED

	
Logical only

	
Identifies the schemas and tables (and columns in those tables) that contain unsupported data types. Use this view when you are preparing to create a logical standby database.

	
V$ARCHIVE_DEST

	
Primary, physical, snapshot, and logical

	
Describes all of the destinations in the Data Guard configuration, including each destination's current value, mode, and status.

Note: The information in this view does not persist across an instance shutdown.

	
V$ARCHIVE_DEST_STATUS

	
Primary, physical, snapshot, and logical

	
Displays runtime and configuration information for the archived redo log destinations.

Note: The information in this view does not persist across an instance shutdown.

	
V$ARCHIVE_GAP

	
Physical, snapshot, and logical

	
Displays information to help you identify a gap in the archived redo log files.

	
V$ARCHIVED_LOG

	
Primary, physical, snapshot, and logical

	
Displays archive redo log information from the control file, including names of the archived redo log files.

	
V$DATABASE

	
Primary, physical, snapshot, and logical

	
Provides database information from the control file. Includes information about fast-start failover (available only with the Data Guard broker).

	
V$DATABASE_INCARNATION

	
Primary, physical, snapshot, and logical

	
Displays information about all database incarnations. Oracle Database creates a new incarnation whenever a database is opened with the RESETLOGS option. Records about the current and the previous incarnation are also contained in the V$DATABASE view.

	
V$DATAFILE

	
Primary, physical, snapshot, and logical

	
Provides datafile information from the control file.

	
V$DATAGUARD_CONFIG

	
Primary, physical, snapshot, and logical

	
Lists the unique database names defined with the DB_UNIQUE_NAME and LOG_ARCHIVE_CONFIG initialization parameters.

	
V$DATAGUARD_STATS

	
Primary, physical, snapshot, and logical

	
Displays how much redo data generated by the primary database is not yet available on the standby database, showing how much redo data could be lost if the primary database were to crash at the time you queried this view. You can query this view on any instance of a standby database in a Data Guard configuration. If you query this view on a primary database, then the column values are cleared. See also Section 8.1.2 for an example and more information.

	
V$DATAGUARD_STATUS

	
Primary, physical, snapshot, and logical

	
Displays and records events that would typically be triggered by any message to the alert log or server process trace files.

	
V$FS_FAILOVER_STATS

	
Primary

	
Displays statistics about fast-start failover occurring on the system.

	
V$LOG

	
Primary, physical, snapshot, and logical

	
Contains log file information from the online redo log files.

	
V$LOGFILE

	
Primary, physical, snapshot, and logical

	
Contains information about the online redo log files and standby redo log files.

	
V$LOG_HISTORY

	
Primary, physical, snapshot, and logical

	
Contains log history information from the control file.

	
V$LOGSTDBY_PROCESS

	
Logical only

	
Provides dynamic information about what is happening with SQL Apply. This view is very helpful when you are diagnosing performance problems during SQL Apply on the logical standby database, and it can be helpful for other problems.

	
V$LOGSTDBY_PROGRESS

	
Logical only

	
Displays the progress of SQL Apply on the logical standby database.

	
V$LOGSTDBY_STATE

	
Logical only

	
Consolidates information from the V$LOGSTDBY_PROCESS and V$LOGSTDBY_STATS views about the running state of SQL Apply and the logical standby database.

	
V$LOGSTDBY_STATS

	
Logical only

	
Displays LogMiner statistics, current state, and status information for a logical standby database during SQL Apply. If SQL Apply is not running, the values for the statistics are cleared.

	
V$LOGSTDBY_TRANSACTION

	
Logical only

	
Displays information about all active transactions being processed by SQL Apply on the logical standby database.

	
V$MANAGED_STANDBY

	
Physical and snapshot

	
Displays current status information for Oracle database processes related to physical standby databases.

Note: The information in this view does not persist across an instance shutdown.

	
V$REDO_DEST_RESP_HISTOGRAM

	
Primary

	
Contains the response time information for destinations that are configured for SYNC transport.

	
V$STANDBY_LOG

	
Physical, snapshot, and logical

	
Contains log file information from the standby redo log files.

Upgrading Databases in a Data Guard Configuration

B Upgrading Databases in a Data Guard Configuration

The procedures in this appendix describe how to upgrade to Oracle Database 11g Release 1 (11.1) when a physical or logical standby database is present in the configuration.

This appendix contains the following topics:

	
Before You Upgrade the Oracle Database Software

	
Upgrading Oracle Database with a Physical Standby Database In Place

	
Upgrading Oracle Database with a Logical Standby Database In Place

B.1 Before You Upgrade the Oracle Database Software

Consider the following points before beginning to upgrade your Oracle Database software:

	
If you are using the Data Guard broker to manage your configuration, follow the instructions in the Oracle Data Guard Broker manual for information about removing or disabling the broker configuration.

	
The procedures in this appendix are to be used in conjunction with the ones contained in the Oracle Database Upgrade Guide for 11g Release 1 (11.1).

	
The procedures in this appendix use the Database Upgrade Assistant (DBUA) to perform the upgrade. For instructions on performing the upgrade manually, refer to the Oracle Database Upgrade Guide. The manual upgrade steps described should be performed whenever use of DBUA is mentioned.

	
Check for nologging operations. If nologging operations have been performed then you must update the standby database. See Section 13.4, "Recovering After the NOLOGGING Clause Is Specified" for details.

	
Make note of any tablespaces or datafiles that need recovery due to OFFLINE IMMEDIATE. Tablespaces or datafiles should be recovered and either online or offline prior to upgrading.

B.2 Upgrading Oracle Database with a Physical Standby Database In Place

Perform the following steps to upgrade to Oracle Database 11g Release 1 (11.1) when a physical standby database is present in the configuration:

	
Review and perform the steps listed in the "Preparing to Upgrade" chapter of the Oracle Database Upgrade Guide.

	
Shut down the primary database.

	
Shut down the physical standby database.

	
Install the new release of the Oracle software into a new Oracle home on the physical standby database system, as described in the Oracle Database Upgrade Guide.

	
Mount the physical standby database.

	
Note:

The standby database should not be opened until the primary database upgrade is completed.

	
Start Redo Apply on the physical standby database.

	
Install the new release of the Oracle software into a new Oracle home on the primary database system as described in the Oracle Database Upgrade Guide.

	
Upgrade the primary database as described in the Oracle Database Upgrade Guide. Note that the physical standby database will be upgraded when it applies the redo generated by the primary database as it is upgraded.

	
Open the upgraded primary database.

	
If Active Data Guard was being used prior to the upgrade, then refer to Section 9.2.1 for information about how to reenable it after upgrading.

B.3 Upgrading Oracle Database with a Logical Standby Database In Place

	
Note:

This appendix describes the traditional method for upgrading your Oracle Database software with a logical standby database in place. A second method in Chapter 12, "Using SQL Apply to Upgrade the Oracle Database" describes how to upgrade with a logical standby database in place in a rolling fashion to minimize downtime. Use the steps from only one method to perform the complete upgrade. Do not attempt to use both methods or to combine the steps from the two methods as you perform the upgrade process.
The procedure described in this section assumes that the primary database is running in MAXIMUM PERFORMANCE data protection mode.

Perform the following steps to upgrade to Oracle Database 11g Release 1 (11.1) when a logical standby database is present in the configuration:

	
Review and perform the steps listed in the "Preparing to Upgrade" chapter of the Oracle Database Upgrade Guide.

	
Set the data protection mode to MAXIMUM PERFORMANCE at the primary database, if needed:

SQL> ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE PERFORMANCE;

	
On the primary database, stop all user activity and defer the remote archival destination associated with the logical standby database (for this procedure, it is assumed that LOG_ARCHIVE_DEST_2 is associated with the logical standby database):

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=DEFER SCOPE=BOTH;
SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

	
Stop SQL Apply on the standby database:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;

	
On the primary database install the newer release of the Oracle software as described in the Oracle Database Upgrade Guide.

	
On the logical standby database, install the newer release of the Oracle software as described in Oracle Database Upgrade Guide.

	
Note:

Steps 5 and 6 can be performed concurrently (in other words, the primary and the standby databases can be upgraded concurrently) to reduce downtime during the upgrade procedure.

	
On the upgraded logical standby database, restart SQL Apply. If you are using Oracle RAC, start up the other standby database instances:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

	
Open the upgraded primary database and allow users to connect. If you are using Oracle RAC, start up the other primary database instances.

Also, enable archiving to the upgraded logical standby database, as follows:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

	
Optionally, reset to the original data protection mode if you changed it in Step 2.

Data Guard and Oracle Real Application Clusters

D Data Guard and Oracle Real Application Clusters

An Oracle Data Guard configuration can consist of any combination of single-instance and Oracle Real Application Clusters (RAC) multiple-instance databases. This chapter summarizes the configuration requirements and considerations that apply when using Oracle Data Guard with Oracle RAC databases. It contains the following sections:

	
Configuring Standby Databases in an Oracle RAC Environment

	
Configuration Considerations in an Oracle RAC Environment

	
Troubleshooting

D.1 Configuring Standby Databases in an Oracle RAC Environment

You can configure a standby database to protect a primary database using Oracle RAC. The following table describes the possible combinations of instances in the primary and standby databases:

	Instance Combinations	Single-Instance Standby Database	Multi-Instance Standby Database
	Single-instance primary database	Yes	Yes
	Multi-instance primary database	Yes	Yes

In each scenario, each instance of the primary database transmits its redo data to an instance of the standby database.

D.1.1 Setting Up a Multi-Instance Primary with a Single-Instance Standby

Figure D-1 illustrates an Oracle RAC database with two primary database instances (a multi-instance primary database) transmitting redo data to a single-instance standby database.

Figure D-1 Transmitting Redo Data from a Multi-Instance Primary Database

[image: Description of Figure D-1 follows]

In this case, Instance 1 of the primary database archives redo data to local archived redo log files 1, 2, 3, 4, 5 and transmits the redo data to the standby database destination, while Instance 2 archives redo data to local archived redo log files 32, 33, 34, 35, 36 and transmits the redo data to the same standby database destination. The standby database automatically determines the correct order in which to apply the archived redo log files.

To set up a primary database in an Oracle RAC environment

Follow the instructions in Chapter 3 (for physical standby database creation) or Chapter 4 (for logical standby database creation) to configure each primary instance.

To set up a single instance standby database

Follow the instructions in Chapter 3 (for physical standby database creation) or Chapter 4 (for logical standby database creation) to define the LOG_ARCHIVE_DEST_n and LOG_ARCHIVE_FORMAT parameters to specify the location of the archived redo log files and standby redo log files.

D.1.2 Setting Up Oracle RAC Primary and Standby Databases

This section describes how to configure an Oracle RAC primary database to send redo data to an Oracle RAC standby database.

D.1.2.1 Configuring an Oracle RAC Standby Database to Receive Redo Data

Perform the following steps to configure an Oracle RAC standby database to receive redo data from a primary database:

	
Create a standby redo log on the standby database. The redo log files in the standby redo log must reside in a location that can be accessed by all of the standby database instances, such as on a cluster file system or ASM instance. See Section 6.2.3.1 for more information about creating a standby redo log.

	
Configure standby redo log archival on each standby database instance. The standby redo log must be archived to a location that can be accessed by all of the standby database instances, and every standby database instance must be configured to archive the standby redo log to the same location. See Section 6.2.3.2 for more information about configuring standby redo log archival.

D.1.2.2 Configuring an Oracle RAC Primary Database to Send Redo Data

Configure each instance of the RAC primary database to send its redo data to the RAC standby database. Section 6.2.2 describes how to configure an Oracle database instance to send redo data to another database.

Oracle recommends the following best practices when configuring an Oracle RAC primary database to send redo data to an Oracle RAC standby database:

	
Use the same LOG_ARCHIVE_DEST_n parameter on each primary database instance to send redo data to a given standby database.

	
Set the SERVICE attribute of each LOG_ARCHIVE_DEST_n parameter that corresponds to a given standby database to the same net service name.

	
The net service name should resolve to an Oracle Net connect descriptor that contains an address list, and that address list should contain connection data for each standby database instance.

D.2 Configuration Considerations in an Oracle RAC Environment

This section contains the Data Guard configuration information that is specific to Oracle RAC environments. It contains the following topics:

	
Format for Archived Redo Log Filenames

	
Data Protection Modes

	
Role Transitions

D.2.1 Format for Archived Redo Log Filenames

The format for archived redo log filenames is in the form of log_%parameter, where %parameter can include one or more of the parameters in Table D-1.

Table D-1 Directives for the LOG_ARCHIVE_FORMAT Initialization Parameter

	Directives	Description
	
%a

	
Database activation ID.

	
%A

	
Database activation ID, zero filled.

	
%d

	
Database ID.

	
%D

	
Database ID, zero filled.

	
%t

	
Instance thread number.

	
%T

	
Instance thread number, zero filled.

	
%s

	
Log file sequence number.

	
%S

	
Log file sequence number, zero filled.

	
%r

	
Resetlogs ID.

	
%R

	
Resetlogs ID, zero filled.

For example:

LOG_ARCHIVE_FORMAT = log%d_%t_%s_%r.arc

The thread parameters %t or %T are mandatory for Oracle RAC to uniquely identify the archived redo log files with the LOG_ARCHIVE_FORMAT parameter.

D.2.2 Data Protection Modes

In an Oracle RAC configuration when running in either maximum protection or maximum availability mode, any instance that loses connectivity with a standby destination will cause all other instances to stop sending data to that destination (this maintains the integrity of the data that has been transmitted to that destination).

When the failed standby destination comes back up, Data Guard runs the site in resynchronization mode until no gaps remain. Then, the standby destination can participate in the Data Guard configuration again.

The following list describes the behavior of the protection modes in Oracle RAC environments:

	
Maximum protection configuration

If a lost destination is the last participating SYNC destination, the instance loses connectivity and will be shut down. Other instances in an Oracle RAC configuration that still have connectivity to the standby destinations will recover the lost instance and continue sending to their standby destinations. Only when every instance in an Oracle RAC configuration loses connectivity to the last standby destination will the primary database be shut down.

D.2.3 Role Transitions

This section contains the following topics:

	
Switchovers

	
Failovers

D.2.3.1 Switchovers

For an Oracle RAC database, only one primary instance and one standby instance can be active during a switchover where the target database is a physical standby. Therefore, before a switchover to a physical standby database, shut down all but one primary instance and one standby instance. After the switchover completes, restart the primary and standby instances that were shut down during the switchover. This limitation does not exist for a logical standby database.

	
Note:

The SQL ALTER DATABASE statement used to perform the switchover automatically creates redo log files if they do not already exist. Because this can significantly increase the time required to complete the COMMIT operation, Oracle recommends that you manually add redo log files when creating physical standby databases.

D.2.3.2 Failovers

Before performing a failover to an Oracle RAC standby database, first shut down all but one standby instance. After the failover completes, restart the instances that were shut down.

D.3 Troubleshooting

This section provides help troubleshooting problems with Oracle RAC.

D.3.1 Switchover Fails in an Oracle RAC Configuration

When your database is using Oracle RAC, active instances prevent a switchover from being performed. When other instances are active, an attempt to switch over fails with the following error message:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO STANDBY;
ALTER DATABASE COMMIT TO SWITCHOVER TO STANDBY *
ORA-01105: mount is incompatible with mounts by other instances

Action: Query the GV$INSTANCE view as follows to determine which instances are causing the problem:

SQL> SELECT INSTANCE_NAME, HOST_NAME FROM GV$INSTANCE
 2> WHERE INST_ID <> (SELECT INSTANCE_NUMBER FROM V$INSTANCE);
INSTANCE_NAME HOST_NAME
------------- ---------
INST2 standby2

In the previous example, the identified instance must be manually shut down before the switchover can proceed. You can connect to the identified instance from your instance and issue the SHUTDOWN statement remotely, for example:

SQL> CONNECT SYS@standby2 AS SYSDBA
Enter Password:
SQL> SHUTDOWN;
SQL> EXIT

Cascaded Destinations

E Cascaded Destinations

To reduce the load on your primary system, or to reduce the bandwidth requirements imposed when your standbys are separated from the primary database through a Wide Area Network (WAN), you can implement cascaded destinations, whereby a standby database receives its redo data from another standby database, instead of directly from the primary database.

In a Data Guard configuration using a cascaded destination, a physical standby database can forward the redo data it receives from the primary database to another standby database. Only a physical standby database can be configured to forward redo data to another standby database. A logical standby database cannot forward redo to another standby database.

	
Note:

You cannot set up a physical standby to forward redo if the primary database is part of an Oracle Real Application Clusters (RAC) environment or a Data Guard Broker environment.

The following Data Guard configurations using cascaded destinations are supported:

	
Primary Database > Physical Standby Database with cascaded destination > Physical Standby Database

	
Primary Database > Physical Standby Database with cascaded destination > Logical Standby Database

A physical standby database can support a maximum of nine remote destinations. When a cascaded destination is defined on a physical standby database, the physical standby will forward redo it receives from the primary to a second standby database after its standby redo log becomes full and is archived. Thus, the second standby database receiving the forwarded redo as a result of a cascaded destination will necessarily lag behind the primary database. Oracle recommends that cascaded destinations be used only for offloading reporting or for applications that do not require access to data that is completely up-to-date with the primary system. This is because the very nature of a cascaded destination means that the standby database that is the end-point will be one or more log files behind the primary database. Oracle also recommends that standby databases whose primary role is to be involved in role transitions receive their redo data directly from the primary database.

The rest of this appendix contains information about the following:

	
Configuring Cascaded Destinations

	
Role Transitions with Cascaded Destinations

	
Examples of Using Cascaded Destinations

E.1 Configuring Cascaded Destinations

To enable a physical standby database to forward incoming redo data to a cascaded destination, perform the following steps:

	
Create standby redo log files on the physical standby database (if not already created).

	
If standby redo log files are not already defined, you can define them dynamically on the standby database. The standby database will begin using them after the next log switch on the primary database.

	
Define a LOG_ARCHIVE_DEST_n initialization parameter on the primary database to set up a physical standby database that will forward redo to a cascaded destination. Define the destination to use:

	
ASYNC or SYNC

	
Optionally, set the VALID_FOR attribute so that redo forwarding is enabled even after a role transition happens between the original primary database and the intermediate standby database that is forwarding redo. This may be meaningful in cases where the databases are separated over Wide Area Networks.

	
Ensure that archiving is enabled on the physical standby database where the cascaded destinations are defined (the standby database that will forward redo).

	
Configure a LOG_ARCHIVE_DEST_n parameter (on the physical standby that will forward redo data) for each cascaded destination.

Example E-1 shows the initialization parameters for a primary database named Boston, which sends redo to a physical standby database named Chicago, that forwards the redo it receives to a cascaded standby database named Denver. In this example, the database named Denver is a logical standby database, but note that a physical standby database can forward redo to either a physical or a logical standby database.

	
Note:

When the cascaded destination is a logical standby database, remember that you will create it just as if the logical standby will be directly connected to the primary database. See Chapter 4, "Creating a Logical Standby Database" for more information.

Example E-1 Sample Use of Initialization Parameters in Cascaded Destinations

Boston Database (Primary Role)

DB_UNIQUE_NAME=boston
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE

LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,boston,denver)'

LOG_ARCHIVE_DEST_1='LOCATION=/arch1/boston/ VALID_FOR=(ALL_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=boston'

LOG_ARCHIVE_DEST_2= 'SERVICE=denver VALID_FOR=(STANDBY_LOGFILES,STANDBY_ROLE) DB_UNIQUE_NAME=denver'

LOG_ARCHIVE_DEST_3= 'SERVICE=chicago VALID_FOR= (ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=chicago'

Chicago Database (Standby Role)

DB_UNIQUE_NAME=chicago
LOG_ARCHIVE_CONFIG= 'DG_CONFIG=(chicago,boston,denver)'
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE

LOG_ARCHIVE_DEST_1= 'LOCATION=/arch1/chicago/ VALID_FOR=(ALL_LOGFILES,ALL_ROLES) DB_UNIQUE_NAME=chicago'

LOG_ARCHIVE_DEST_2= 'SERVICE=denver VALID_FOR=(STANDBY_LOGFILES,STANDBY_ROLE) DB_UNIQUE_NAME=denver'

LOG_ARCHIVE_DEST_3= 'SERVICE=boston VALID_FOR= (ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=boston'

Denver Database (Standby Role)

DB_UNIQUE_NAME=denver
LOG_ARCHIVE_CONFIG= 'DG_CONFIG=(chicago,boston,denver)'
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE

LOG_ARCHIVE_DEST_1= 'LOCATION=/arch1/denver/ VALID_FOR=(ONLINE_LOGFILES,ALL_ROLES) DB_UNIQUE_NAME=denver'

LOG_ARCHIVE_DEST_2= 'LOCATION=/arch2/denver/ VALID_FOR=(STANDBY_LOGFILES,STANDBY_ROLE) DB_UNIQUE_NAME=denver'

Both the Boston primary database and the Chicago physical standby database define the LOG_ARCHIVE_DEST_2 initialization parameter as SERVICE=denver VALID_FOR=(STANDBY_LOGFILES, STANDBY_ROLE). Hence, even if the Boston and Chicago databases switch roles, the redo data will continue to be forwarded to the Denver database. Remember, as part of the original setup of the physical standby database, you should define a local destination, VALID_FOR=(ALL_LOGFILES, PRIMARY_ROLE), that will be used for local archiving when the physical standby database transitions to the primary role.

E.2 Role Transitions with Cascaded Destinations

Oracle recommends that standby databases primarily intended for disaster recovery purposes receive redo data directly from the primary database. This will result in the optimum level of data protection. A cascaded destination may be used as a second line of defense, but by definition it will always be further behind than a standby database that is receiving redo directly from the primary.

E.3 Examples of Using Cascaded Destinations

This section describes the following scenarios which demonstrate configuration options and uses for cascaded destinations:

	
Physical Standby Forwarding Redo to a Remote Physical Standby

	
Physical Standby Forwarding Redo to a Logical Standby

E.3.1 Physical Standby Forwarding Redo to a Remote Physical Standby

You have a primary database in your corporate offices, and you want to create a standby database at another facility within your metropolitan area to provide zero data loss protection if there is a failure at your primary site. In addition to the local standby, you wish to maintain a geographically remote standby database 2000 miles away at a disaster recovery site. A small amount of data loss is acceptable if failover to the remote standby is required (an acceptable trade-off in return for the extra protection against events that can affect a large geographic area and cause both the primary site and the local standby database to fail). The remote standby database also provides continuous data protection after a failover to the local standby database and improves security by enabling backups to be created and stored at the remote location, eliminating the need to ship tapes off-site.

You could configure your primary database to ship redo directly to both standby databases; however, you may want to eliminate the potential overhead of the primary database shipping redo over a WAN to the second standby database. You solve this problem by creating the first physical standby in a local facility within your metropolitan area using the SYNC network transport to achieve zero data loss protection. A cascaded destination is defined on the local physical standby database that will forward redo received from the primary to the remote standby database using ASYNC network transport. Because the local standby manages all communication with the remote standby via a cascaded destination, there is no impact on the primary database to maintain a second standby.

E.3.2 Physical Standby Forwarding Redo to a Logical Standby

In this scenario, you have a primary database in a city in the United States and you wish to deploy three complete replicas of this database to be used for end-user queries and reporting in three different manufacturing plants in Europe. Your objective is to eliminate the need for users and applications at your European locations to access data that resides in the US to prevent network disruptions from making data unavailable for local access. While you can accept some latency between the time an update is made in the primary and the time it is replicated to all three european sites, you desire the data to be as up-to-date as possible and available to query and to run reports. You require a solution that is completely application transparent, and one where additional replicas can be deployed to sites in Europe if the need arises. A final requirement is the need to make this work with the limited bandwidth and very high network latency of the network connection between your US and European facilities.

You address your requirements by first creating a physical standby database in Europe for the primary database located in the US. You then create three logical standby databases, one in each of your European plants, and define each logical standby as a cascaded destination on your physical standby database. One copy of the redo is shipped over the transatlantic link from the US to the physical standby in Europe. The physical standby in Europe forwards the redo to the three logical standby databases in the European manufacturing plants providing local access to corporate data for end-user query and reports. Room for future growth is built in. Additional standby databases can be deployed in Europe without any modification to applications, without any additional overhead on your primary system, and without consuming any additional transatlantic bandwidth.

Configure the physical standby database to forward redo data to the logical standby databases in each of your manufacturing sites as in the example above. The only difference from the parameters in Example E-1 is that you will define two additional LOG_ARCHIVE_DEST_n parameters on the physical standby so that redo will be forwarded to all three logical standby databases.

Setting Archive Tracing

G Setting Archive Tracing

The Oracle database uses the LOG_ARCHIVE_TRACE parameter to enable and control the generation of comprehensive trace information for log archiving and redo transport activity. This tracing information is written to the Automatic Diagnostic Repository.

This appendix contains the following sections:

	
Setting the LOG_ARCHIVE_TRACE Initialization Parameter

	
Choosing an Integer Value

	
See Also:

Oracle Database Administrator's Guide for more information about the Automatic Diagnostic Repository

G.1 Setting the LOG_ARCHIVE_TRACE Initialization Parameter

The format for the archiving trace parameter is as follows, where trace_level is an integer:

LOG_ARCHIVE_TRACE=trace_level

To enable, disable, or modify the LOG_ARCHIVE_TRACE parameter for a physical standby database, issue a SQL statement similar to the following:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_TRACE=15;

In the previous example, setting the LOG_ARCHIVE_TRACE parameter to a value of 15 sets trace levels 1, 2, 4, and 8 as described in Section G.2.

Issue the ALTER SYSTEM statement from a different standby session so that it affects trace output generated by the remote file service (RFS) and ARCn processes when the next archived redo log file is received from the primary database. For example, enter:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_TRACE=32;

G.2 Choosing an Integer Value

The integer values for the LOG_ARCHIVE_TRACE parameter represent levels of tracing data. In general, the higher the level, the more detailed the information. The following integer levels are available:

	Level	Meaning
	0	Disables archived redo log tracing (default setting)
	1	Tracks archiving of log files
	2	Tracks archive status by archive log file destination
	4	Tracks archive operational phase
	8	Tracks archive log destination activity
	16	Tracks detailed archive log destination activity
	32	Tracks archive log destination parameter modifications
	64	Tracks ARCn process state activity
	128	Tracks FAL server process activity
	256	Tracks RFS Logical Client
	512	Tracks LGWR redo shipping network activity
	1024	Tracks RFS physical client
	2048	Tracks RFS/ARCn ping heartbeat
	4096	Tracks real-time apply activity
	8192	Tracks Redo Apply activity (media recovery or physical standby)

You can combine tracing levels by setting the value of the LOG_ARCHIVE_TRACE parameter to the sum of the individual levels. For example, setting the parameter to 6 generates level 2 and level 4 trace output.

The following are examples of the ARC0 trace data generated on the primary site by the archiving of log file 387 to two different destinations: the service standby1 and the local directory /oracle/dbs.

	
Note:

The level numbers do not appear in the actual trace output; they are shown here for clarification only.

Level Corresponding entry content (sample)
----- --------------------------------
(1) ARC0: Begin archiving log# 1 seq# 387 thrd# 1
(4) ARC0: VALIDATE
(4) ARC0: PREPARE
(4) ARC0: INITIALIZE
(4) ARC0: SPOOL
(8) ARC0: Creating archive destination 2 : 'standby1'
(16) ARC0: Issuing standby Create archive destination at 'standby1'
(8) ARC0: Creating archive destination 1 : '/oracle/dbs/d1arc1_387.log'
(16) ARC0: Archiving block 1 count 1 to : 'standby1'
(16) ARC0: Issuing standby Archive of block 1 count 1 to 'standby1'
(16) ARC0: Archiving block 1 count 1 to : '/oracle/dbs/d1arc1_387.log'
(8) ARC0: Closing archive destination 2 : standby1
(16) ARC0: Issuing standby Close archive destination at 'standby1'
(8) ARC0: Closing archive destination 1 : /oracle/dbs/d1arc1_387.log
(4) ARC0: FINISH
(2) ARC0: Archival success destination 2 : 'standby1'
(2) ARC0: Archival success destination 1 : '/oracle/dbs/d1arc1_387.log'
(4) ARC0: COMPLETE, all destinations archived
(16) ARC0: ArchivedLog entry added: /oracle/dbs/d1arc1_387.log
(16) ARC0: ArchivedLog entry added: standby1
(4) ARC0: ARCHIVED
(1) ARC0: Completed archiving log# 1 seq# 387 thrd# 1

(32) Propagating archive 0 destination version 0 to version 2
 Propagating archive 0 state version 0 to version 2
 Propagating archive 1 destination version 0 to version 2
 Propagating archive 1 state version 0 to version 2
 Propagating archive 2 destination version 0 to version 1
 Propagating archive 2 state version 0 to version 1
 Propagating archive 3 destination version 0 to version 1
 Propagating archive 3 state version 0 to version 1
 Propagating archive 4 destination version 0 to version 1
 Propagating archive 4 state version 0 to version 1

(64) ARCH: changing ARC0 KCRRNOARCH->KCRRSCHED
 ARCH: STARTING ARCH PROCESSES
 ARCH: changing ARC0 KCRRSCHED->KCRRSTART
 ARCH: invoking ARC0
 ARC0: changing ARC0 KCRRSTART->KCRRACTIVE
 ARCH: Initializing ARC0
 ARCH: ARC0 invoked
 ARCH: STARTING ARCH PROCESSES COMPLETE
 ARC0 started with pid=8
 ARC0: Archival started

The following is the trace data generated by the RFS process on the standby site as it receives archived redo log file 387 in directory /stby and applies it to the standby database:

level trace output (sample)
---- ------------------
(4) RFS: Startup received from ARCH pid 9272
(4) RFS: Notifier
(4) RFS: Attaching to standby instance
(1) RFS: Begin archive log# 2 seq# 387 thrd# 1
(32) Propagating archive 5 destination version 0 to version 2
(32) Propagating archive 5 state version 0 to version 1
(8) RFS: Creating archive destination file: /stby/parc1_387.log
(16) RFS: Archiving block 1 count 11
(1) RFS: Completed archive log# 2 seq# 387 thrd# 1
(8) RFS: Closing archive destination file: /stby/parc1_387.log
(16) RFS: ArchivedLog entry added: /stby/parc1_387.log
(1) RFS: Archivelog seq# 387 thrd# 1 available 04/02/99 09:40:53
(4) RFS: Detaching from standby instance
(4) RFS: Shutdown received from ARCH pid 9272

Index

Index

A B C D E F G H I J K L M N O P Q R S T U V W X Z

A

	activating
	
	a logical standby database, 8.3.2, 16.1
	a physical standby database, 11.8.6, 16.1

	adding
	
	datafiles, 9.3.1, A.10.1.1, A.10.1.1
	indexes on logical standby databases, 2.1.2, 10.5.4.1
	new or existing standby databases, 1.3
	online redo log files, 9.3.5
	tablespaces, 9.3.1

	adjusting
	
	initialization parameter file
	
	for logical standby database, 4.2.4.2

	AFFIRM attribute, 15
	ALTER DATABASE statement
	
	ABORT LOGICAL STANDBY clause, 16.1
	ACTIVATE STANDBY DATABASE clause, 8.3.2, 11.8.6, 16.1, 16.1
	ADD STANDBY LOGFILE clause, 16.1, A.1.1
	ADD STANDBY LOGFILE MEMBER clause, 16.1, A.1.1, A.1.1
	ADD SUPPLEMENTAL LOG DATA clause, 16.1
	CLEAR UNARCHIVED LOGFILES clause, 9.5
	COMMIT TO SWITCHOVER clause, 8.3.1, 8.3.1, 8.3.1, 16.1
	
	in Real Application Clusters, D.3.1
	troubleshooting, A.4.2, A.4.2, A.4.3, A.4.4

	CREATE CONTROLFILE clause, 9.5
	CREATE DATAFILE AS clause, A.1.1
	CREATE STANDBY CONTROLFILE clause, 3.2.2, A.1.3
	
	REUSE clause, 16.1

	DROP LOGFILE clause, A.1.1
	DROP STANDBY LOGFILE MEMBER clause, 16.1, 16.1, 16.1, A.1.1
	FORCE LOGGING clause, 2.3.2, 3.1.1, 13.4, 13.4, 16.1
	GUARD clause, 10.2
	MOUNT STANDBY DATABASE clause, 16.1
	OPEN READ ONLY clause, 16.1
	OPEN RESETLOGS clause, 3.2.2, 9.5
	PREPARE TO SWITCHOVER clause, 8.3.1, 8.3.1, 16.1
	RECOVER MANAGED STANDBY DATABASE clause, 3.2.6, 4.2.5, 16.1, 16.1, 16.1
	
	background process, 7.3.1
	canceling, 7.3.2
	controlling Redo Apply, 7.3.1, 11.8.2
	failover, 16.1
	foreground session, 7.3.1
	overriding the delay interval, 7.2.2
	starting real time apply, 7.3.1

	REGISTER LOGFILE clause, 16.1, A.4.1
	RENAME FILE clause, 9.3.3, A.1.1, A.1.1
	SET STANDBY DATABASE clause
	
	TO MAXIMIZE AVAILABILITY clause, 16.1
	TO MAXIMIZE PERFORMANCE clause, 8.1.4
	TO MAXIMIZE PROTECTION clause, 16.1

	START LOGICAL STANDBY APPLY clause, 7.4.1, 12.5, A.6
	
	IMMEDIATE keyword, 7.4.1
	starting SQL Apply, 4.2.5

	STOP LOGICAL STANDBY APPLY clause, 7.4.2, 8.3.2, 16.1

	ALTER SESSION DISABLE GUARD statement
	
	overriding the database guard, 10.5.4

	ALTER SESSION statement
	
	ENABLE GUARD clause, 16.2

	ALTER SYSTEM statement
	
	ARCHIVE LOG CURRENT clause, 13.1.1, 13.1.1, 13.1.2, 13.1.2
	SWITCH LOGFILE clause, 3.2.7

	ALTER TABLESPACE statement, 9.3.4, 13.4.2, A.10.1.1
	
	FORCE LOGGING clause, 9.3.6

	alternate archive destinations
	
	setting up initialization parameters for, A.2

	ALTERNATE attribute, 15, 15
	
	LOG_ARCHIVE_DEST_n initialization parameter, A.2
	LOG_ARCHIVE_DEST_STATE_n initialization parameter, 6.2.2

	ANALYZER process, 10.1
	APPLIER process, 10.1
	APPLY LAG metric, 8.1.2
	apply services
	
	defined, 1.2.2, 7.1
	delaying application of redo data, 7.2.2, 15
	real-time apply
	
	defined, 7.1, 7.2.1, 7.2.1
	monitoring with LOG_ARCHIVE_TRACE, G.2

	Redo Apply
	
	defined, 7.1, 7.3
	monitoring, 7.3.3
	starting, 7.3.1
	stopping, 7.3.2

	SQL Apply
	
	defined, 1.2.2, 7.1, 7.1
	monitoring, 7.4.3
	starting, 7.4.1
	stopping, 7.4.2

	applying
	
	redo data immediately, 7.2.1
	redo data on standby database, 1.2, 1.2.2, 7
	SQL statements to logical standby databases, 7.4

	applying state, 10.4.1
	AQ_TM_PROCESSES dynamic parameter, A.4.2
	archive destinations
	
	alternate, A.2

	ARCHIVE LOG CURRENT clause
	
	of ALTER SYSTEM, 13.1.1, 13.1.1, 13.1.2, 13.1.2

	archived redo log files
	
	accessing information about, 9.5.1.3
	applying
	
	Redo Apply technology, 1.2.2
	SQL Apply technology, 1.2.2

	delaying application, 15
	
	on the standby database, 7.2.2

	deleting unneeded, 10.4.2
	destinations
	
	disabling, 6.2.2
	displaying with V$ARCHIVE_DEST_STATUS view, 17
	enabling, 6.2.2

	managing gaps, 1.7
	
	See also gap management

	manually transferring, 2.3.2
	redo data transmitted, 1.2.2, 7.1
	registering
	
	during failover, 8.3.2

	standby databases and, 7.3.3, 7.4.3, 9.5.1
	troubleshooting switchover problems, A.4.1

	ARCHIVELOG mode
	
	software requirements, 2.3.2

	archiver processes (ARCn)
	
	influenced by MAX_CONNECTIONS attribute, 15

	archiving
	
	real-time apply, 7.2.1
	specifying
	
	failure resolution policies for, 15

	standby redo logs, 6.2.3.2
	
	to a flash recovery area, 6.2.3.2.1
	to a local file system, 6.2.3.2.2

	to failed destinations, 15

	ASM
	
	See Automatic Storage Management (ASM)

	ASYNC attribute, 15
	attributes
	
	deprecated for the LOG_ARCHIVE_DEST_n initialization parameter, 15

	AUD$ table
	
	replication on logical standbys, C.11.2

	automatic detection of missing log files, 1.2.1, 1.7
	automatic failover, 1.2.3, 8
	Automatic Storage Management (ASM)
	
	creating a standby database that uses, 13.5

	automatic switchover, 1.2.3, 8
	
	See also switchovers

B

	BACKUP INCREMENTAL FROM SCN command
	
	scenarios using, 11.10

	backup operations
	
	after failovers, 8.3.2
	after unrecoverable operations, 13.4.3, 13.4.3
	configuring on a physical standby database, 1.1.3
	datafiles, 13.4.2
	offloading on the standby database, 1.7
	primary databases, 1.1.2
	used by the broker, 1.3
	using RMAN, 11

	basic readable standby database See simulating a standby database environment
	batch processing
	
	on a logical standby database, 10.1.1.4

	benefits
	
	Data Guard, 1.7
	logical standby database, 2.1.2
	of a rolling upgrade, 12.1
	physical standby database, 2.1.1

	BFILE data types
	
	in logical standby databases, C.1.2

	BINARY_DEGREE data types
	
	in logical standby databases, C.1.1

	BINARY_FLOAT data types
	
	in logical standby databases, C.1.1

	BLOB data types
	
	in logical standby databases, C.1.1

	broker
	
	command-line interface, 1.7
	defined, 1.3
	graphical user interface, 1.7

	BUILDER process, 10.1

C

	cascaded destinations
	
	role transitions, E.2

	CHAR data types
	
	in logical standby databases, C.1.1

	checklist
	
	tasks for creating physical standby databases, 3.2, 3.2
	tasks for creating standby databases, 4.2, 4.2

	checkpoints
	
	V$LOGSTDBY_PROGRESS view, 10.1.1.3

	chunking
	
	transactions, 10.1.1.1

	CJQ0 process, A.4.2
	CLEAR UNARCHIVED LOGFILES clause
	
	of ALTER DATABASE, 9.5

	CLOB data types
	
	in logical standby databases, C.1.1

	collections data types
	
	in logical standby databases, C.1.2

	command-line interface
	
	broker, 1.7

	commands, Recovery Manager
	
	DUPLICATE, F.2.1

	COMMIT TO SWITCHOVER clause
	
	of ALTER DATABASE, 8.3.1, 8.3.1, 16.1
	
	in Real Application Clusters, D.3.1
	troubleshooting, A.4.2, A.4.2, A.4.3, A.4.4

	COMMIT TO SWITCHOVER TO PRIMARY clause
	
	of ALTER DATABASE, 8.3.1

	communication
	
	between databases in a Data Guard configuration, 1.1

	COMPATIBLE initialization parameter
	
	setting for a rolling upgrade, 12.2, 12.5, 12.5

	complementary technologies, 1.6
	COMPRESSION attribute, 15
	configuration options
	
	creating with Data Guard broker, 1.3
	overview, 1.1
	physical standby databases
	
	location and directory structure, 2.4

	standby databases
	
	delayed standby, 7.2.2

	configuring
	
	backups on standby databases, 1.1.3
	disaster recovery, 1.1.3
	initialization parameters
	
	for alternate archive destinations, A.2
	for physical standby database, 3.2.3

	listener for physical standby databases, 3.2.5
	no data loss, 1.2.3
	physical standby databases, 2.4
	reporting operations on a logical standby database, 1.1.3
	standby databases at remote locations, 1.1.3

	constraints
	
	handled on a logical standby database, 10.6.3

	Context
	
	unsupported data types, C.1.2

	Context data types
	
	in logical standby databases, C.1.2

	control files
	
	copying, 3.2.4
	creating for standby databases, 3.2.2
	modifying with ALTER DATABASE RENAME FILE statement, 9.3.3

	CONVERT TO SNAPSHOT STANDBY clause on the ALTER DATABASE statement, 16.1
	converting
	
	a logical standby database to a physical standby database
	
	aborting, 4.2.4.1

	a physical standby database to a logical standby database, 4.2.4.1

	COORDINATOR process, 10.1
	
	LSP background process, 10.1

	copying
	
	control files, 3.2.4

	CREATE CONTROLFILE clause
	
	of ALTER DATABASE, 9.5

	CREATE DATABASE statement
	
	FORCE LOGGING clause, 13.4

	CREATE DATAFILE AS clause
	
	of ALTER DATABASE, A.1.1

	CREATE STANDBY CONTROLFILE clause
	
	of ALTER DATABASE, 3.2.2, 16.1, A.1.3

	CREATE TABLE AS SELECT (CTAS) statements
	
	applied on a logical standby database, 10.1.1.5

	creating
	
	indexes on logical standby databases, 10.5.4.1
	traditional initialization parameter file
	
	for physical standby database, 3.2.3

D

	data availability
	
	balancing against system performance requirements, 1.7

	Data Guard broker
	
	defined, 1.3
	distributed management framework, 8
	failovers, 1.3
	
	fast-start, 8
	manual, 1.3, 8

	fast-start failover, 1.3
	switchovers, 8

	Data Guard configurations
	
	archiving to standby destinations using the log writer process, 7.2.1
	defined, 1.1
	protection modes, 1.4
	upgrading Oracle Database software, B

	data loss
	
	due to failover, 1.2.3
	switchover and, 8.1

	data protection
	
	balancing against performance, 1.7
	benefits, 1.7
	flexibility, 1.7
	provided by Data Guard, 1

	data protection modes
	
	enforced by redo transport services, 1.2.1
	overview, 1.4, 1.4

	Data Pump utility
	
	using transportable tablespaces with physical standby databases, 9.3.3

	data types
	
	BFILE, C.1.2
	BINARY_DEGREE, C.1.1
	BINARY_FLOAT, C.1.1
	BLOB, C.1.1
	CHAR, C.1.1
	CLOB, C.1.1
	collections in logical standby databases, C.1.2
	DATE, C.1.1
	INTERVAL, C.1.1
	LONG, C.1.1
	LONG RAW, C.1.1
	NCHAR, C.1.1
	NCLOB, C.1.1
	NUMBER, C.1.1
	NVARCHAR2, C.1.1
	RAW, C.1.1
	ROWID, C.1.2
	Spatial, Image, and Context, C.1.2
	TIMESTAMP, C.1.1
	UROWID, C.1.2
	user-defined, C.1.2
	VARCHAR, C.1.1
	VARCHAR2, C.1.1
	XMLType, C.1.1

	database guard, 7.1, 10.5.4
	
	overriding, 10.5.4

	database incarnation
	
	changes with OPEN RESETLOGS, 9.4, 9.4

	database roles
	
	primary, 1.1.1, 8.1
	standby, 1.1.2, 8.1
	transitions, 1.2.3

	database schema
	
	physical standby databases, 1.1.2

	Database Upgrade Assistant (DBUA), B.1
	databases
	
	failover and, 8.1.4
	role transition and, 8.1
	surviving disasters and data corruptions, 1
	upgrading software versions, 12.1

	datafiles
	
	adding to primary database, 9.3.1
	monitoring, 9.5, 13.4.2
	renaming on the primary database, 9.3.4

	DATE data types
	
	in logical standby databases, C.1.1

	DB_FILE_NAME_CONVERT initialization parameter
	
	location for transportable tablespaces, 9.3.3

	DB_NAME initialization parameter, 3.1.4
	DB_UNIQUE_NAME attribute, 15
	DB_UNIQUE_NAME initialization parameter, A.4.4
	
	required with LOG_ARCHIVE_CONFIG parameter, 14
	setting database initialization parameters, 3.1.4

	DBA_DATA_FILES view, 9.5
	DBA_LOGMNR_PURGED_LOG view
	
	list archived redo log files that can be deleted, 10.4.2

	DBA_LOGSTDBY_EVENTS view, 10.3.1, 17, A.6
	
	capturing logical standby, 12.5
	recording unsupported operations in, 10.5.1

	DBA_LOGSTDBY_HISTORY view, 17
	DBA_LOGSTDBY_LOG view, 10.3.2, 17
	DBA_LOGSTDBY_NOT_UNIQUE view, 17
	DBA_LOGSTDBY_PARAMETERS view, 17
	DBA_LOGSTDBY_SKIP view, 17, 17
	DBA_LOGSTDBY_SKIP_TRANSACTION view, 17
	DBA_LOGSTDBY_UNSUPPORTED view, 17
	DBA_TABLESPACES view, 9.5
	DBMS_ALERT, C.8.2
	DBMS_AQ, C.8.2
	DBMS_DESCRIBE, C.8.1
	DBMS_JAVA, C.8.2
	DBMS_JOB, C.8.2
	DBMS_LOB, C.8.1
	DBMS_LOGSTDBY package
	
	INSTANTIATE_TABLE procedure, 10.5.5
	SKIP procedure, A.6
	SKIP_ERROR procedure, A.3
	SKIP_TRANSACTION procedure, A.6

	DBMS_LOGSTDBY procedure
	
	capturing events in DBA_LOGSTDBY_EVENTS table, 12.5

	DBMS_LOGSTDBY.BUILD procedure
	
	building a dictionary in the redo data, 4.2.3.2

	DBMS_METADATA, C.8.1
	DBMS_OBFUSCATION_TOOLKIT, C.8.1
	DBMS_OUTPUT, C.8.1
	DBMS_PIPE, C.8.1
	DBMS_RANDOM, C.8.1
	DBMS_REDEFINITION, C.8.2
	DBMS_REFRESH, C.8.2
	DBMS_REGISTRY, C.8.2
	DBMS_SCHEDULER, C.8.1
	DBMS_SPACE_ADMIN, C.8.2
	DBMS_SQL, C.8.1
	DBMS_TRACE, C.8.1
	DBMS_TRANSACTION, C.8.1
	DBSNMP process, A.4.2
	DDL Statements
	
	that use DBLINKS, C.11.1

	DDL statements
	
	supported by SQL Apply, C

	DDL transactions
	
	applied on a logical standby database, 10.1.1.5
	applying to a logical standby database, 10.1.1.5

	DEFER attribute
	
	LOG_ARCHIVE_DEST_STATE_n initialization parameter, 6.2.2

	DELAY attribute, 15
	
	LOG_ARCHIVE_DEST_n initialization parameter, 7.2.2

	DELAY option
	
	of ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
	
	cancelling, 7.2.2

	delaying
	
	application of archived redo log files, 15
	application of redo log files, 7.2.2

	deleting
	
	archived redo log files
	
	indicated by the DBA_LOGMNR_PURGED_LOG view, 10.4.2
	not needed by SQL Apply, 10.4.2

	deprecated attributes
	
	on the LOG_ARCHIVE_DEST_n initialization parameter, 15

	destinations
	
	displaying with V$ARCHIVE_DEST view, 17
	role-based definitions, 15

	detecting
	
	missing archived redo log files, 1.2.1, 1.7

	DG_CONFIG attribute, 15
	DGMGRL command-line interface
	
	invoking failovers, 1.3, 8
	simplifying switchovers, 1.3, 8

	dictionary
	
	building a LogMiner, 4.2.3.2

	direct path inserts
	
	SQL Apply DML considerations, 10.1.1.4

	directory locations
	
	Optimal Flexible Architecture (OFA), 2.4, 2.4
	set up with ASM, 2.3.2, 2.4
	set up with OMF, 2.3.2, 2.4
	structure on standby databases, 2.4

	disabling
	
	a destination for archived redo log files, 6.2.2

	disaster recovery
	
	benefits, 1.7
	configuring, 1.1.3
	provided by Data Guard, 1
	provided by standby databases, 1.1.3

	disk I/O
	
	controlling with the AFFIRM and NOAFFIRM attributes, 15

	DML
	
	batch updates on a logical standby database, 10.1.1.4

	DML transactions
	
	applying to a logical standby database, 10.1.1.4

	DROP STANDBY LOGFILE clause
	
	of ALTER DATABASE, A.1.1

	DROP STANDBY LOGFILE MEMBER clause
	
	of ALTER DATABASE, 16.1, 16.1, 16.1, A.1.1

	dropping
	
	online redo log files, 9.3.5

	dynamic parameters
	
	AQ_TM_PROCESSES, A.4.2
	JOB_QUEUE_PROCESSES, A.4.2

E

	ENABLE attribute
	
	LOG_ARCHIVE_DEST_STATE_n initialization parameter, 6.2.2

	ENABLE GUARD clause
	
	of ALTER SESSION, 16.2

	enabling
	
	database guard on logical standby databases, 16.2
	destinations for archived redo log files, 6.2.2
	real-time apply
	
	on logical standby databases, 7.4.1
	on physical standby databases, 7.3.1

	extensible indexes
	
	supported by logical standby databases, C.1.2

F

	failovers, 1.2.3
	
	and cascaded destinations, E.2
	Data Guard broker, 1.3, 8
	defined, 1.2.3, 8.1
	displaying history with DBA_LOGSTDBY_HISTORY, 17
	fast-start failover, 8
	flashing back databases after, 8.4
	logical standby databases and, 8.3.2
	manual versus automatic, 1.2.3, 8
	performing backups after, 8.3.2
	physical standby databases and, 16.1
	preparing for, 8.1.4
	simplifying with Data Guard broker, 8
	transferring redo data before, 8.1.4
	viewing characteristics for logical standby databases, 10.3.3
	with maximum performance mode, 8.1.4
	with maximum protection mode, 8.1.4

	failure resolution policies
	
	specifying for redo transport services, 15

	fast-start failover
	
	automatic failover, 1.3, 8
	monitoring, 9.5

	FGA_LOG$ table
	
	replication on logical standbys, C.11.2

	file specifications
	
	renaming on the logical standby database, 10.5.3

	Flashback Database
	
	after a role transition, 8.4
	after OPEN RESETLOGS, 13.3
	after role transitions, 8.4
	characteristics complementary to Data Guard, 1.6
	physical standby database, 13.2.1

	FORCE LOGGING clause
	
	of ALTER DATABASE, 2.3.2, 3.1.1, 13.4, 13.4, 16.1
	of ALTER TABLESPACE, 9.3.6
	of CREATE DATABASE, 13.4

G

	gap management
	
	automatic detection and resolution, 1.2.1, 1.7
	detecting missing log files, 1.7
	registering archived redo log files
	
	during failover, 8.3.2

	GV$INSTANCE view, D.3.1

H

	high availability
	
	benefits, 1.7
	provided by Data Guard, 1
	provided by RAC and Data Guard, 1.6

I

	idle state, 10.4.1
	Image data types
	
	in logical standby databases, C.1.2

	incarnation of a database
	
	changed, 9.4, 9.4

	initialization parameter file
	
	creating from server parameter file
	
	for physical standby database, 3.2.3

	modifying
	
	for physical standby database, 3.2.3

	initialization parameters
	
	DB_UNIQUE_NAME, 3.1.4, A.4.4
	LOG_ARCHIVE_MIN_SUCCEED_DEST, 15
	LOG_ARCHIVE_TRACE, G.2
	LOG_FILE_NAME_CONVERT, F.2.2.4
	modifying for physical standby databases, 3.2.3
	setting for both the primary and standby roles, 15

	INITIALIZING state, 10.4.1
	INSTANTIATE_TABLE procedure
	
	of DBMS_LOGSTDBY, 10.5.5

	INTERVAL data types
	
	in logical standby databases, C.1.1

J

	JOB_QUEUE_PROCESSES dynamic parameter, A.4.2

K

	KEEP IDENTITY clause, 4.2.4.1

L

	latency
	
	on logical standby databases, 10.1.1.4, 10.1.1.5

	listener.ora file
	
	configuring, 3.2.5
	redo transport services tuning and, A.7
	troubleshooting, A.1.2, A.7

	loading dictionary state, 10.4.1
	LOCATION attribute, 15
	
	setting
	
	LOG_ARCHIVE_DEST_n initialization parameter, A.2

	log apply services
	
	Redo Apply
	
	monitoring, 9.5.1
	starting, 9.1.1
	stopping, 9.1.2

	tuning for Redo Apply, 9.6

	log writer process (LGWR)
	
	ASYNC network transmission, 15
	NET_TIMEOUT attribute, 15
	SYNC network transmission, 15

	LOG_ARCHIVE_CONFIG initialization parameter, 3.1.4, 3.1.4, 3.2.3, 14
	
	example, 15
	listing unique database names defined with, 17
	relationship to DB_UNIQUE_NAME parameter, 14
	relationship to DG_CONFIG attribute, 15

	LOG_ARCHIVE_DEST_n initialization parameter
	
	AFFIRM attribute, 15
	ALTERNATE attribute, 15, 15, A.2
	ASYNC attribute, 15
	COMPRESSION attribute, 15
	DB_UNIQUE_NAME attribute, 15
	DELAY attribute, 7.2.2, 15
	deprecated attributes, 15
	LOCATION attribute, 15, A.2
	MANDATORY attribute, 15
	MAX_CONNECTIONS attribute, 15
	MAX_FAILURE attribute, 15
	NET_TIMEOUT attribute, 15
	NOAFFIRM attribute, 15
	NOALTERNATE attribute, A.2
	NODELAY attribute, 7.2.2
	NOREGISTER attribute, 15
	REOPEN attribute, 15, 15
	SERVICE attribute, 15
	SYNC attribute, 15
	VALID_FOR attribute, 15

	LOG_ARCHIVE_DEST_STATE_n initialization parameter
	
	ALTERNATE attribute, 6.2.2
	DEFER attribute, 6.2.2
	ENABLE attribute, 6.2.2

	LOG_ARCHIVE_MAX_PROCESSES initialization parameter
	
	relationship to MAX_CONNECTIONS, 15

	LOG_ARCHIVE_MIN_SUCCEED_DEST initialization parameter, 15
	LOG_ARCHIVE_TRACE initialization parameter, G.2
	logical change records (LCR)
	
	converted by PREPARER process, 10.1
	exhausted cache memory, 10.1.1.2
	staged, 10.1

	logical standby databases, 1.1.2
	
	adding
	
	datafiles, A.10.1.1
	indexes, 2.1.2, 10.5.4.1
	tables, 10.5.5

	background processes, 10.1
	benefits, 2.1.2
	controlling user access to tables, 10.2
	creating, 4
	
	converting from a physical standby database, 4.2.4.1
	with Data Guard broker, 1.3

	data types
	
	supported, C, C.1.1
	unsupported, C.1.2

	database guard
	
	overriding, 10.5.4

	executing SQL statements on, 1.1.2
	failovers, 8.3.2
	
	displaying history of, 17, 17
	handling failures, A.3
	viewing characteristics with V$LOGSTDBY_STATS, 10.3.3

	logical standby process (LSP) and, 10.1
	materialized views
	
	creating on, 2.1.2
	support for, C.10

	monitoring, 7.4.3, 17
	renaming the file specification, 10.5.3
	setting up a skip handler, 10.5.3
	SQL Apply, 1.2.2
	
	resynchronizing with primary database branch of redo, 10.6.5
	skipping DDL statements, C.10
	skipping SQL statements, C.10
	starting real-time apply, 7.4.1
	stopping, 7.4.2
	technology, 7.1
	transaction size considerations, 10.1.1.1

	starting
	
	real-time apply, 7.4.1, 7.4.1

	states
	
	applying, 10.4.1
	idle, 10.4.1
	initializing, 10.4.1
	loading dictionary, 10.4.1
	waiting on gaps, 10.4.1

	support for primary databases with Transparent Data Encryption, C.2
	switchovers, 8.3.1, 8.3.1
	throughput and latency, 10.1.1.4, 10.1.1.5
	upgrading, B.3
	
	rolling upgrades, 2.3.2

	logical standby process (LSP)
	
	COORDINATOR process, 10.1

	LogMiner dictionary
	
	using DBMS_LOGSTDBY.BUILD procedure to build, 4.2.3.2
	when creating a logical standby database, 4.2.4.1

	LONG data types
	
	in logical standby databases, C.1.1

	LONG RAW data types
	
	in logical standby databases, C.1.1

M

	managed recovery operations
	
	See Redo Apply

	managed recovery process (MRP)
	
	See also Redo Apply

	MANDATORY attribute, 15
	materialized views
	
	creating on logical standby databases, 2.1.2

	MAX_CONNECTIONS attribute
	
	configuring RAC for parallel archival, 15
	reference, 15

	MAX_FAILURE attribute, 15
	maximum availability mode
	
	introduction, 1.4

	maximum availability protection mode, 5.1
	maximum performance mode, 8.1.4
	
	introduction, 1.4

	maximum performance protection mode, 5.1
	maximum protection mode, 5.1
	
	for Real Application Clusters, D.2.2
	introduction, 1.4
	standby databases and, 8.1.4

	memory
	
	exhausted LCR cache, 10.1.1.2

	missing log sequence
	
	See also gap management
	detecting, 1.7, 1.7

	modifying
	
	a logical standby database, 10.5.4
	initialization parameters for physical standby databases, 3.2.3
	standby control file, 9.3.3

	monitoring
	
	primary database events, 9.5
	tablespace status, 9.5

	MOUNT STANDBY DATABASE clause
	
	of ALTER DATABASE, 16.1

	MRP
	
	See managed recovery process

	multimedia data types
	
	in logical standby databases, C.1.2
	unsupported by logical standby databases, C.1.2

N

	NCHAR data types
	
	in logical standby databases, C.1.1

	NCLOB data types
	
	in logical standby databases, C.1.1

	NET_TIMEOUT attribute, 15
	network connections
	
	configuring multiple, 15
	in a RAC environment, 15

	network I/O operations
	
	network timers
	
	NET_TIMEOUT attribute, 15

	tuning
	
	redo transport services, A.7

	network timeouts
	
	acknowledging, 15

	no data loss
	
	data protection modes overview, 1.4
	ensuring, 1.2.3
	guaranteeing, 1.2.3
	provided by maximum availability mode, 1.4
	provided by maximum protection mode, 1.4

	NOAFFIRM attribute, 15
	NOALTERNATE attribute
	
	LOG_ARCHIVE_DEST_n initialization parameter, A.2

	NODELAY attribute
	
	LOG_ARCHIVE_DEST_n initialization parameter, 7.2.2

	NOREGISTER attribute, 15
	NUMBER data types
	
	in logical standby databases, C.1.1

	NVARCHAR2 data types
	
	in logical standby databases, C.1.1

O

	OMF
	
	See Oracle Managed Files (OMF)

	on-disk database structures
	
	physical standby databases, 1.1.2

	online redo log files
	
	adding, 9.3.5
	dropping, 9.3.5

	OPEN READ ONLY clause
	
	of ALTER DATABASE, 16.1

	OPEN RESETLOGS
	
	flashing back after, 13.3

	OPEN RESETLOGS clause
	
	database incarnation change, 9.4, 9.4
	of ALTER DATABASE, 3.2.2, 9.5
	recovery, 9.4, 9.4

	operational requirements, 2.3, 2.3.2
	Optimal Flexible Architecture (OFA)
	
	directory structure, 2.4, 2.4

	ORA-01102 message
	
	causing switchover failures, A.4.4

	Oracle Automatic Storage Management (ASM), 2.3.2, 2.4
	Oracle Database
	
	requirements for upgrading with SQL Apply, 12.2
	upgrading, B.1
	upgrading with SQL Apply, 12.1

	Oracle databases
	
	upgrading, 2.3.2

	Oracle Enterprise Manager
	
	invoking failovers, 1.3, 8
	invoking switchovers, 1.3, 8

	Oracle Managed Files (OMF), 2.3.2, 2.4
	
	creating a standby database that uses, 13.5

	Oracle Net
	
	communication between databases in a Data Guard configuration, 1.1

	Oracle Recovery Manager utility (RMAN)
	
	backing up files on a physical standby database, 11

	Oracle Standard Edition
	
	simulating a standby database environment, 2.3.2

P

	pageout considerations, 10.1.1.2
	pageouts
	
	SQL Apply, 10.1.1.2

	parallel DML (PDML) transactions
	
	SQL Apply, 10.1.1.3, 10.1.1.4

	patch set releases
	
	upgrading, 2.3.2

	performance
	
	balancing against data availability, 1.7
	balancing against data protection, 1.7

	physical standby databases
	
	applying redo data, 7.1, 7.3
	
	Redo Apply technology, 7.3

	applying redo log files
	
	starting, 7.3.1

	benefits, 2.1.1
	configuration options, 2.4
	converting to a logical standby database, 4.2.4.1
	creating
	
	checklist of tasks, 3.2
	configuring a listener, 3.2.5
	directory structure, 2.4
	initialization parameters for, 3.2.3
	traditional initialization parameter file, 3.2.3
	with Data Guard broker, 1.3

	defined, 1.1.2
	failover
	
	checking for updates, 8.1.4

	flashing back after failover, 13.2.1
	monitoring, 7.3.3, 9.5.1, 17
	opening for read-only or read/write access, 9.2
	read-only, 9.2
	recovering through OPEN RESETLOGS, 9.4
	Redo Apply, 1.2.2
	resynchronizing with primary database branch of redo, 9.4, 9.4
	role transition and, 8.2
	rolling forward with BACKUP INCREMENTAL FROM SCN command, 11.10
	shutting down, 9.1.2
	starting
	
	apply services, 7.3.1
	real-time apply, 7.3.1

	synchronizing with the primary database, 11.10
	tuning the log apply rate, 9.6
	upgrading, B.2
	using transportable tablespaces, 9.3.3

	PL/SQL supplied packages
	
	supported, C.8.1
	unsupported, C.8.2

	PREPARE TO SWITCHOVER clause
	
	of ALTER DATABASE, 8.3.1, 8.3.1, 16.1

	PREPARER process, 10.1
	
	staging LCRs in SGA, 10.1

	primary database
	
	backups and, 8.3.2
	configuring
	
	on Real Application Clusters, 1.1.1
	single-instance, 1.1.1

	datafiles
	
	adding, 9.3.1

	defined, 1.1.1
	failover and, 8.1
	gap resolution, 1.7
	initialization parameters
	
	and physical standby database, 3.2.3

	monitoring events on, 9.5
	network connections
	
	avoiding network hangs, 15
	handling network timeouts, 15

	preparing for
	
	physical standby database creation, 3.1

	prerequisite conditions for
	
	logical standby database creation, 4.1

	Real Application Clusters and
	
	setting up, D.1.1

	redo transport services on, 1.2.1
	reducing workload on, 1.7
	switchover, 8.1.3
	tablespaces
	
	adding, 9.3.1

	primary databases
	
	ARCHIVELOG mode, 2.3.2
	software requirements, 2.3.2

	primary key columns
	
	logged with supplemental logging, 4.2.3.2, 10.1.1.4

	primary role, 1.1.1
	processes
	
	CJQ0, A.4.2
	DBSNMP, A.4.2
	preventing switchover, A.4.2
	QMN0, A.4.2
	See also managed recovery process (MRP)
	SQL Apply architecture, 10.1, 10.4.1

	production database
	
	See primary database

	protection modes
	
	maximum availability mode, 1.4, 5.1
	maximum performance, 5.1
	maximum performance mode, 1.4
	maximum protection, 5.1
	maximum protection mode, 1.4
	monitoring, 9.5
	setting on a primary database, 5.2

Q

	QMN0 process, A.4.2
	queries
	
	offloading on the standby database, 1.7

R

	RAW data types
	
	in logical standby databases, C.1.1

	READER process, 10.1
	read-only operations, 1.2.2
	
	physical standby databases and, 9.2

	Real Application Clusters
	
	characteristics complementary to Data Guard, 1.6
	performing switchover and, D.2.3.2
	primary databases and, 1.1.1, D.1.1
	setting
	
	maximum data protection, D.2.2

	standby databases and, 1.1.2, D.1

	Real Application Clusters (RAC)
	
	configuring for multiple network connections, 15

	real-time apply
	
	affected by MAX_CONNECTIONS attribute, 15
	defined, 7.1, 7.2.1
	overview of log apply services, 1.2
	starting, 7.3.1
	
	on logical standby, 7.4.1

	starting on logical standby databases, 7.4.1
	starting on physical standby databases, 7.3.1
	stopping
	
	on logical standby, 7.4.2
	on physical standby databases, 9.1.2

	tracing data with LOG_ARCHIVE_TRACE initialization parameter, G.2

	real-time query
	
	and physical standby databases, 9.2.1

	RECORD_UNSUPPORTED_OPERATIONS
	
	example, 10.5.1

	RECOVER MANAGED STANDBY DATABASE CANCEL clause
	
	aborting, 4.2.4.1

	RECOVER MANAGED STANDBY DATABASE clause
	
	canceling the DELAY control option, 7.2.2
	of ALTER DATABASE, 3.2.6, 4.2.5, 7.3.1, 16.1, 16.1, 16.1, 16.1
	
	background process, 7.3.1
	controlling Redo Apply, 7.3.1, 11.8.2
	foreground session, 7.3.1
	overriding the delay interval, 7.2.2
	starting real time apply, 7.3.1

	RECOVER TO LOGICAL STANDBY clause
	
	converting a physical standby database to a logical standby database, 4.2.4.1

	recovering
	
	from errors, A.10.1
	logical standby databases, 10.6.5
	physical standby databases
	
	after an OPEN RESETLOGS, 9.4, 9.4

	through resetlogs, 9.4, 10.6.5

	Recovery Manager
	
	characteristics complementary to Data Guard, 1.6
	commands
	
	DUPLICATE, F.2.1

	standby database
	
	creating, F.2.1
	LOG_FILE_NAME_CONVERT initialization parameter, F.2.2.4
	preparing using RMAN, F.2.2

	re-creating
	
	a table on a logical standby database, 10.5.5

	Redo Apply
	
	defined, 1.2.2, 7.1
	flashing back after failover, 13.2.1
	starting, 3.2.6, 7.3.1
	stopping, 9.1.2
	technology, 1.2.2
	tuning the log apply rate, 9.6

	redo data
	
	applying
	
	through Redo Apply technology, 1.2.2
	through SQL Apply technology, 1.2.2
	to standby database, 7.1
	to standby databases, 1.1.2

	applying during conversion of a physical standby database to a logical standby database, 4.2.4.1
	archiving on the standby system, 1.2.2, 7.1
	building a dictionary in, 4.2.3.2
	manually transferring, 2.3.2
	transmitting, 1.1.2, 1.2.1

	redo forwarding
	
	restrictions, 15

	redo gaps, 6.3.3
	
	manual resolution, 6.3.3.1
	reducing resolution time, 6.3.3

	redo log files
	
	delaying application, 7.2.2

	redo logs
	
	automatic application on physical standby databases, 7.3.1
	update standby database tables, 1.7

	redo transport services, 6
	
	archive destinations
	
	alternate, A.2
	re-archiving to failed destinations, 15

	authenticating sessions
	
	using a password file, 6.2.1.2
	using SSL, 6.2.1.1

	configuring, 6.2
	configuring security, 6.2.1
	defined, 1.2.1
	gap detection, 6.3.3
	handling archive failures, 15
	monitoring status, 6.3.1
	network
	
	tuning, A.7

	protection modes
	
	maximum availability mode, 1.4
	maximum performance mode, 1.4
	maximum protection mode, 1.4

	receiving redo data, 6.2.3
	sending redo data, 6.2.2
	synchronous and asynchronous disk I/O, 15
	wait events, 6.3.4

	REGISTER LOGFILE clause
	
	of ALTER DATABASE, 16.1, A.4.1

	REGISTER LOGICAL LOGFILE clause
	
	of ALTER DATABASE, 8.3.2

	registering
	
	archived redo log files
	
	during failover, 8.3.2

	RELY constraint
	
	creating, 4.1.2

	remote file server process (RFS)
	
	log writer process and, 7.2.1

	RENAME FILE clause
	
	of ALTER DATABASE, A.1.1, A.1.1

	renaming
	
	datafiles
	
	on the primary database, 9.3.4
	setting the STANDBY_FILE_MANAGEMENT parameter, 9.3.4

	REOPEN attribute, 15, 15
	reporting operations
	
	configuring, 1.1.3
	offloading on the standby database, 1.7
	performing on a logical standby database, 1.1.2

	requirements
	
	of a rolling upgrade, 12.2

	restart considerations
	
	SQL Apply, 10.1.1.3

	resynchronizing
	
	logical standby databases with a new branch of redo, 10.6.5
	physical standby databases with a new branch of redo, 9.4, 9.4

	retrieving
	
	missing archived redo log files, 1.2.1, 1.7

	RMAN
	
	incremental backups, 11.10
	rolling forward physical standby databases, 11.10

	RMAN BACKUP INCREMENTAL FROM SCN command, 11.10
	RMAN backups
	
	accessibility in Data Guard environment, 11.1.3
	association in Data Guard environment, 11.1.2
	interchangeability in Data Guard environment, 11.1.1

	role management services
	
	defined, 8

	role transition triggers, 8.1.5
	role transitions, 1.2.3, 8.1
	
	and cascaded destinations, E.2
	choosing a type of, 8.1.1
	defined, 1.2.3
	flashing back the databases after, 8.4
	logical standby database and, 8.3
	monitoring, 9.5
	physical standby databases and, 8.2
	reversals, 1.2.3, 8.1

	role-based destinations
	
	setting, 15

	rollback
	
	after switchover failures, A.4.6

	rolling upgrade
	
	software requirements, 2.3.2

	rolling upgrades
	
	benefits, 12.1
	patch set releases, 2.3.2
	requirements, 12.2
	setting the COMPATIBLE initialization parameter, 12.2, 12.5, 12.5
	unsupported data types and storage attributes, 12.4
	use of KEEP IDENTITY clause, 4.2.4.1

	ROWID data types
	
	in logical standby databases, C.1.2

S

	scenarios
	
	recovering
	
	after NOLOGGING is specified, 13.4

	schemas
	
	identical to primary database, 1.1.2

	SCN
	
	using for incremental backups, 11.10

	sequences
	
	unsupported on logical standby databases, C.9

	SERVICE attribute, 15
	SET STANDBY DATABASE clause
	
	of ALTER DATA, 16.1
	of ALTER DATABASE, 8.1.4, 16.1

	shutting down
	
	physical standby database, 9.1.2

	simulating
	
	standby database environment, 2.3.2

	skip handler
	
	setting up on a logical standby database, 10.5.3

	SKIP procedure
	
	of DBMS_LOGSTDBY, A.6

	SKIP_ERROR procedure
	
	of the DBMS_LOGSTDBY package, A.3

	SKIP_TRANSACTION procedure
	
	of DBMS_LOGSTDBY, A.6

	snapshot standby databases, 1.1.2
	software requirements, 2.3.2
	
	rolling upgrades, 2.3.2, 2.3.2

	Spatial data types
	
	in logical standby databases, C.1.2

	SQL Apply, 7.4.2, 10.1.1.2
	
	after an OPEN RESETLOGS, 10.6.5
	ANALYZER process, 10.1
	APPLIER process, 10.1
	applying CREATE TABLE AS SELECT (CTAS) statements, 10.1.1.5
	applying DDL transactions, 10.1.1.5, 10.1.1.5
	applying DML transactions, 10.1.1.4
	architecture, 10.1, 10.4.1
	BUILDER process, 10.1
	COORDINATOR process, 10.1
	defined, 1.2.2, 7.1
	deleting archived redo log files, 10.4.2
	parallel DML (PDML) transactions, 10.1.1.3, 10.1.1.4
	performing a rolling upgrade, 12.1
	PREPARER process, 10.1
	READER process, 10.1
	requirements for rolling upgrades, 12.2
	restart considerations, 10.1.1.3
	rolling upgrades, 2.3.2
	starting
	
	real-time apply, 7.4.1

	stopping
	
	real-time apply, 7.4.2

	support for DDL statements, C
	support for PL/SQL supplied packages, C.8.1
	supported data types, C.1.1
	transaction size considerations, 10.1.1.1
	unsupported data types, C.1.2
	unsupported PL/SQL supplied packages, C.8.2
	viewing current activity, 10.1
	
	of processes, 10.1

	what to do if it stops, A.6

	SQL sessions
	
	causing switchover failures, A.4.2

	SQL statements
	
	executing on logical standby databases, 1.1.2, 1.2.2
	skipping on logical standby databases, C.10

	standby database
	
	creating logical, 4

	standby databases
	
	about creating using RMAN, F.2.1
	apply services on, 7.1
	applying redo data on, 7
	applying redo log files on, 1.2.2, 1.7
	ARCn processes using multiple network connections, 15
	configuring, 1.1
	
	maximum number of, 2
	on Real Application Clusters, 1.1.2, D.1
	on remote locations, 1.1.3
	single-instance, 1.1.2

	creating, 1.1.2, 3
	
	checklist of tasks, 4.2
	directory structure considerations, 2.4
	if primary uses ASM or OMF, 13.5
	on remote host with same directory structure, F.3
	with a time lag, 7.2.2

	defined, 2.1
	failover
	
	preparing for, 8.1.4

	failover to, 8.1.4
	LOG_FILE_NAME_CONVERT initialization parameter, F.2.2.4
	modifying the control file, 9.3.3
	operational requirements, 2.3, 2.3.2
	preparing to use RMAN, F.2.2
	recovering through OPEN RESETLOGS, 9.4
	resynchronizing with the primary database, 1.7
	reverting back to primary database, A.4.6
	rolling forward with RMAN incremental backups, 11.10
	SET AUXNAME command, F.2.2.4
	SET NEWNAME command, F.2.2.4
	software requirements, 2.3.2
	starting apply services on physical, 7.3.1
	See also physical standby databases

	standby redo log files
	
	and real-time apply, 7.2.1

	standby redo logs
	
	archiving to a flash recovery area, 6.2.3.2.1
	archiving to a local file system, 6.2.3.2.2
	configuring archival of, 6.2.3.2
	creating and managing, 6.2.3.1

	standby role, 1.1.2
	STANDBY_FILE_MANAGEMENT initialization parameter
	
	setting for transportable tablespaces, 9.3.3
	when renaming datafiles, 9.3.4

	START LOGICAL STANDBY APPLY clause
	
	IMMEDIATE keyword, 7.4.1
	of ALTER DATABASE, 4.2.5, 7.4.1, 12.5, A.6

	starting
	
	logical standby databases, 4.2.5
	physical standby databases, 3.2.6
	real-time apply, 7.4.1, 7.4.1
	
	on logical standby databases, 7.4.1, 7.4.1
	on physical standby databases, 7.3.1, 7.3.1

	Redo Apply, 3.2.6, 7.3.1, 9.1.1
	SQL Apply, 4.2.5, 7.4.1

	STOP LOGICAL STANDBY APPLY clause
	
	of ALTER DATABASE, 7.4.2, 8.3.2, 16.1

	stopping
	
	real-time apply
	
	on logical standby databases, 7.4.2

	real-time apply on physical standby databases, 7.3.2
	Redo Apply, 7.3.2
	SQL Apply, 7.4.2

	storage attributes
	
	unsupported during a rolling upgrade, 12.4

	supplemental logging
	
	setting up to log primary key and unique-index columns, 4.2.3.2, 10.1.1.4

	supported data types
	
	for logical standby databases, C, C.11

	supported PL/SQL supplied packages, C.8.1
	SWITCH LOGFILE clause
	
	of ALTER SYSTEM, 3.2.7

	SWITCHOVER_STATUS column
	
	of V$DATABASE view, A.4.1

	switchovers, 1.2.3
	
	and cascaded destinations, E.2
	choosing a target standby database, 8.1.2
	defined, 1.2.3, 8.1
	displaying history with DBA_LOGSTDBY_HISTORY, 17
	fails with ORA-01102, A.4.4
	flashing back databases after, 8.4
	logical standby databases and, 8.3.1
	manual versus automatic, 1.2.3, 8
	monitoring, 9.5
	no data loss and, 8.1
	preparing for, 8.1.3
	prevented by
	
	active SQL sessions, A.4.2
	active user sessions, A.4.3
	CJQ0 process, A.4.2
	DBSNMP process, A.4.2
	processes, A.4.2
	QMN0 process, A.4.2

	seeing if the last archived redo log file was transmitted, A.4.1
	simplifying with Data Guard broker, 1.3, 8
	starting over, A.4.6
	typical use for, 8.1.3
	using Real Application Clusters and, D.2.3.2

	SYNC attribute, 15
	system events
	
	role transitions, 8.1.5

	system global area (SGA)
	
	logical change records staged in, 10.1

	system resources
	
	efficient utilization of, 1.7

T

	tables
	
	logical standby databases
	
	adding on, 10.5.5
	re-creating tables on, 10.5.5
	unsupported on, C.9

	unsupported in a logical standby database, 12.5

	tablespaces
	
	adding
	
	a new datafile, A.10.1.1
	to primary database, 9.3.1

	monitoring status changes, 9.5
	moving between databases, 9.3.3

	target standby database
	
	for switchover, 8.1.2

	terminating
	
	network connection, 15

	text indexes
	
	supported by logical standby databases, C.1.2

	throughput
	
	on logical standby databases, 10.1.1.4, 10.1.1.5

	time lag
	
	delaying application of archived redo log files, 7.2.2, 15
	in standby database, 7.2.2, 15

	TIME_COMPUTED column, 8.1.2
	TIME_COMPUTED column of the V$DATAGUARD_STATS view, 8.1.2
	TIMESTAMP data types
	
	in logical standby databases, C.1.1

	tnsnames.ora file
	
	redo transport services tuning and, A.7
	troubleshooting, A.1.2, A.4.5, A.7

	trace files
	
	levels of tracing data, G.2
	setting, G.1
	tracking real-time apply, G.2

	transaction size considerations
	
	SQL Apply, 10.1.1.1

	Transparent Data Encryption
	
	support by SQL Apply, C.2

	TRANSPORT LAG metric, 8.1.2
	transportable tablespaces
	
	defining location with DB_FILE_NAME_CONVERT parameter, 9.3.3
	setting the STANDBY_FILE_MANAGEMENT parameter, 9.3.3
	using with a physical standby database, 9.3.3

	triggers
	
	handled on a logical standby database, 10.6.3
	role transitions, 8.1.5

	troubleshooting
	
	if SQL Apply stops, A.6
	last redo data was not transmitted, A.4.1
	listener.ora file, A.1.2, A.7
	logical standby database failures, A.3
	processes that prevent switchover, A.4.2
	SQL Apply, A.6
	switchovers, A.4
	
	active SQL sessions, A.4.2
	active use sessions, A.4.3
	ORA-01102 message, A.4.4
	roll back and start over, A.4.6

	tnsnames.ora file, A.1.2, A.4.5, A.7

	tuning
	
	log apply rate for Redo Apply, 9.6

U

	unique-index columns
	
	logged with supplemental logging, 4.2.3.2, 10.1.1.4

	unrecoverable operations, 13.4.2
	
	backing up after, 13.4.3

	unsupported data types
	
	during a rolling upgrade, 12.4

	unsupported operations
	
	capturing in DBA_LOGSTDBY_EVENTS view, 10.5.1

	unsupported PL/SQL supplied packages, C.8.2
	unsupported tables
	
	for logical standby database during a rolling upgrade, 12.5

	upgrading
	
	Oracle Database, B, B.1
	Oracle Database software, 12.1
	Oracle database software, 2.3.2
	Oracle database software version, 12.1
	requirements, 12.2

	UROWID data types
	
	in logical standby databases, C.1.2

	user sessions
	
	causing switchover failures, A.4.3

	user-defined data types
	
	in logical standby databases, C.1.2

	USING CURRENT LOGFILE clause
	
	starting real time apply, 7.3.1

V

	V$ARCHIVE_DEST view, 17, A.1.2
	
	displaying information for all destinations, 17

	V$ARCHIVE_DEST_STATUS view, 17
	V$ARCHIVE_GAP view, 17
	V$ARCHIVED_LOG view, 9.5.1.3, 17, A.4.1
	V$DATABASE view, 17
	
	monitoring fast-start failover, 9.5
	SWITCHOVER_STATUS column and, A.4.1

	V$DATABASE_INCARNATION view, 17
	V$DATAFILE view, 13.4.2, 13.4.3, 17
	V$DATAGUARD_CONFIG view, 17
	
	listing database names defined with LOG_ARCHIVE_CONFIG, 17

	V$DATAGUARD_STATS view, 8.1.2, 17
	
	lag computed for log transport and log apply, 8.1.2

	V$DATAGUARD_STATUS view, 9.5.1.5, 17
	V$FS_FAILOVER_STATS view, 17
	V$LOG view, 17
	V$LOG_HISTORY view, 9.5.1.4, 17
	V$LOGFILE view, 17
	V$LOGSTDBY_PROCESS view, 10.1, 10.3.4, 10.3.4, 10.4.1, 10.7.3.1, 10.7.3.2, 17, 17
	V$LOGSTDBY_PROGRESS view, 10.3.5, 17
	
	RESTART_SCN column, 10.1.1.3

	V$LOGSTDBY_STATE view, 8.1.2, 10.3.6, 10.4.1, 17
	V$LOGSTDBY_STATS view, 10.1, 10.3.7, 17
	
	failover characteristics, 10.3.3

	V$LOGSTDBY_TRANSACTION view, 17
	V$MANAGED_STANDBY view, 9.5.1.2, 9.5.1.2, 17
	V$REDO_DEST_RESP_HISTOGRAM
	
	using to monitor synchronous redo transport response time, 6.3.2

	V$REDO_DEST_RESP_HISTOGRAM view, 17
	V$SESSION view, A.4.2, A.4.3
	V$STANDBY_LOG view, 17
	V$THREAD view, 9.5
	VALID_FOR attribute, 15
	VARCHAR data types
	
	in logical standby databases, C.1.1

	VARCHAR2 data types
	
	in logical standby databases, C.1.1

	verifying
	
	logical standby databases, 4.2.6
	physical standby databases, 3.2.7

	versions
	
	upgrading Oracle database software, 12.1

	views
	
	DBA_LOGSTDBY_EVENTS, 10.3.1, 17, A.6
	DBA_LOGSTDBY_HISTORY, 17
	DBA_LOGSTDBY_LOG, 10.3.2, 17
	DBA_LOGSTDBY_NOT_UNIQUE, 17
	DBA_LOGSTDBY_PARAMETERS, 17
	DBA_LOGSTDBY_SKIP, 17, 17
	DBA_LOGSTDBY_SKIP_TRANSACTION, 17
	DBA_LOGSTDBY_UNSUPPORTED, 17
	displaying history of switchovers and failovers, 17
	GV$INSTANCE, D.3.1
	V$ARCHIVE_DEST, 17, A.1.2
	V$ARCHIVE_DEST_STATUS, 17
	V$ARCHIVE_GAP, 17
	V$ARCHIVED_LOG, 9.5.1.3, 17
	V$DATABASE, 17
	V$DATABASE_INCARNATION, 17
	V$DATAFILE, 13.4.2, 13.4.3, 17
	V$DATAGUARD_CONFIG, 17
	V$DATAGUARD_STATS, 17
	V$DATAGUARD_STATUS, 9.5.1.5, 17
	V$FS_FAILOVER_STATS, 17
	V$LOG, 17
	V$LOG_HISTORY, 9.5.1.4, 17
	V$LOGFILE, 17
	V$LOGSTDBY_PROCESS, 10.1, 10.3.4, 17
	V$LOGSTDBY_PROGRESS, 10.3.5, 17
	V$LOGSTDBY_STATE, 10.3.6, 17
	V$LOGSTDBY_STATS, 10.1, 10.3.7, 17
	V$LOGSTDBY_TRANSACTION, 17
	V$MANAGED_STANDBY, 9.5.1.2, 9.5.1.2, 17
	V$REDO_DEST_RESP_HISTOGRAM, 17
	V$SESSION, A.4.2, A.4.3
	V$STANDBY_LOG, 17
	V$THREAD, 9.5

W

	wait events
	
	for redo transport services, 6.3.4

	WAITING FOR DICTIONARY LOGS state, 10.4.1
	waiting on gap state, 10.4.1

X

	XMLType data types
	
	in logical standby databases, C.1.1

Z

	zero data loss
	
	See no data loss

	zero downtime instantiation
	
	logical standby databases, 4.2

Oracle Legal NoticesOracle Legal Notices
Copyright Notice
Copyright © 1994-2016, Oracle and/or its affiliates. All rights reserved.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages c