
Oracle® Database Lite
Troubleshooting and Tuning Guide

10g (10.3.0)

B28927-01

April 2007

Oracle Database Lite Troubleshooting and Tuning Guide 10g (10.3.0)

B28927-01

Copyright © 1997, 2007, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface .. vii

1 Improving Performance

1.1 Improving Connection Performance.. 1-1
1.1.1 Using Connection Pooling for Applications .. 1-1
1.1.2 Limit Application Connection Requests to the Database .. 1-1
1.2 Increasing Synchronization Performance.. 1-1
1.2.1 Analyzing Performance of Publications With the Consperf Utility............................. 1-2
1.2.1.1 Deciphering the Performance Evaluation Files.. 1-3
1.2.2 Monitoring Synchronization Using SQL Scripts... 1-7
1.2.2.1 Synchronization Times for All Clients .. 1-7
1.2.2.2 Failed Transactions for all Clients.. 1-7
1.2.2.3 Completely Refreshed Publication Items for all Clients... 1-7
1.2.2.4 Publications Flagged for Complete Refresh for All Clients 1-7
1.2.2.5 Clients and Publication where Subscription Parameters are Not Set................... 1-8
1.2.2.6 Record Counts for Map-based Publication Item by Client 1-8
1.2.2.7 Record Count for Map-based Publication Items by Store 1-8
1.2.2.8 All Client Sequence Partitions and Sequence Values.. 1-8
1.2.2.9 All Publication Item Indexes... 1-8
1.2.3 Create SQL Scripts With All Dependencies... 1-8
1.2.4 Configuration Parameters in the WEBTOGO.ORA that Affect Synchronization

Performance .. 1-9
1.2.5 Tuning Queries to Manage Synchronization Performance ... 1-9
1.2.5.1 Avoid Using Non-Mergable Views .. 1-10
1.2.5.2 Tune Queries With Consperf Utility... 1-10
1.2.5.3 Manage the Query Optimizer.. 1-10
1.2.6 Synchronization Tablespace Layout .. 1-10
1.2.7 Shared Maps .. 1-11
1.2.7.1 Performance Attributes .. 1-11
1.2.7.2 Shared Map Usage... 1-12
1.2.7.3 Compatibility and Migration for Shared Maps... 1-13
1.2.8 Use Map Table Partitions to Streamline Users Who Subscribe to a Large Amount of

Data .. 1-13
1.2.8.1 Create a Map Table Partition ... 1-13
1.2.8.2 Add Map Table Partitions .. 1-14
1.2.8.3 Drop a Map Table Partition ... 1-15

iv

1.2.8.4 Drop All Map Table Partitions .. 1-15
1.2.8.5 Merge Map Table Partitions... 1-15
1.2.9 Configuring Back-End Oracle Database to Enhance Synchronization Performance.........

.. 1-16
1.2.9.1 Physically Separate Map Tables and Map Indexes .. 1-16
1.2.9.2 Database Parameter Tuning... 1-16
1.2.10 Priority-Based Replication... 1-17
1.2.11 Caching Publication Item Queries.. 1-17
1.2.11.1 Enabling Publication Item Query Caching ... 1-18
1.2.11.2 Disabling Publication Item Query Caching .. 1-18
1.2.12 Architecture Design of Mobile Server and Oracle Database for Synchronization

Performance ... 1-18
1.2.13 Synchronization Disk Needs May Impose on WinCE Platform Available Space... 1-19
1.2.14 Designing Application Tables and Indexes for Synchronization Performance....... 1-19
1.3 Determining Performance of Client SQL Queries With the EXPLAIN PLAN 1-19
1.4 Optimizing Application SQL Queries Against Oracle Lite Database 1-20
1.4.1 Optimizing Single-Table Queries ... 1-20
1.4.2 Optimizing Join Queries .. 1-20
1.4.2.1 Create an Index on the Join Column(s) of the Inner Table.................................. 1-21
1.4.2.2 Bypassing the Query Optimizer.. 1-21
1.4.3 Optimizing with Order By and Group By Clauses.. 1-22
1.4.3.1 IN Subquery Conversion.. 1-22
1.4.3.2 ORDER BY Optimization with No GROUP BY .. 1-22
1.4.3.3 GROUP BY Optimization with No ORDER BY .. 1-22
1.4.3.4 ORDER BY Optimization with GROUP BY... 1-22
1.4.3.5 Cache Subquery Results ... 1-22
1.4.4 Advanced Optimization Techniques for SQL Queries in Oracle Database Lite 1-23
1.4.4.1 Oracle Lite Database Application Architecture .. 1-23
1.4.4.2 Overview of SQL Runtime... 1-25
1.4.4.3 Execution Plan Generation... 1-28
1.4.4.4 Query Execution Engine... 1-32
1.4.4.5 Optimization Tips.. 1-33
1.4.4.6 Glossary .. 1-36
1.4.4.7 References ... 1-36
1.5 Maximizing JVM Performance By Managing Java Memory ... 1-36

2 Troubleshooting

2.1 Troubleshooting Synchronization .. 2-1
2.1.1 Synchronization Errors and Conflicts... 2-1
2.1.1.1 General Synchronization Errors and Conflicts .. 2-2
2.1.1.2 Synchronization Error if Client Device Clock is Inaccurate................................... 2-2
2.1.2 Problems When Synchronizing Large Number of Rows... 2-2
2.1.3 First Synchronization Causes Browser to Timeout... 2-2
2.1.4 Situations Where the Client is Out of Sync that Triggers a Complete Refresh 2-3
2.1.5 The "Inconsistent Datatypes" SQLException Received If Order is Not Correct in Query

.. 2-3
2.1.6 MGP Compose Postponed Due to Transaction in the In-Queue.................................. 2-4

v

2.1.7 Avoiding the Server Busy Warning .. 2-4
2.1.8 Enabling Online Web-to-Go Applications on the Mobile Server Host........................ 2-5
2.2 Troubleshooting the Mobile Server.. 2-5
2.2.1 Running the Mobile Server With Tracing Enabled... 2-5
2.2.2 Troubleshooting an Address Already In Use Error.. 2-5
2.2.3 Overwriting OracleAS WEB.XML Causes Connection Failure 2-6
2.3 Troubleshooting the Mobile Server Repository ... 2-6
2.3.1 Troubleshooting the Mobile Server Repository with the Mobile Server Repository and

Diagnostic Tool (MSRDT) ... 2-6
2.3.1.1 Inspecting Files in the Mobile Server Repository .. 2-7
2.3.1.2 Use the Mobile Server Repository and Diagnostic Tool to Validate Your

Environment and the Repository ... 2-7
2.3.1.3 Execute the Repository Diagnostics Tool.. 2-9
2.3.2 Modifying IP Address of Machine Where Mobile Server Repository Exists.............. 2-9
2.4 Troubleshooting the Oracle Lite Databases .. 2-9
2.4.1 Accessing the Client Database Offline... 2-10
2.4.2 Determining Source of Checksum Error Against Database 2-10
2.5 Troubleshooting JVM Errors .. 2-10
2.5.1 Troubleshooting An Out of Memory Error... 2-10
2.5.1.1 JVM Memory Settings... 2-11
2.5.1.2 Modifying Java Options for Java Memory When Using Oracle AS................... 2-13
2.5.1.3 Why is Memory Not Released? ... 2-14
2.5.1.4 Thread Memory Consumption and Concurrency .. 2-14
2.5.2 Troubleshooting an IllegalArgumentException... 2-15
2.6 Troubleshooting Security.. 2-15
2.6.1 SSL Certificate Rejection for Client Authentication... 2-15

3 Tracing and Logging

3.1 Enable Tracing on the Mobile Server ... 3-1
3.1.1 General Tracing for the Mobile Server ... 3-1
3.1.2 Data Synchronization Tracing ... 3-3
3.1.2.1 Description of the Five Data Synchronization Components.................................. 3-6
3.2 Enable Tracing on Mobile Clients... 3-7
3.2.1 Turn on Tracing using the Mobile Client WEBTOGO.ORA File.................................. 3-7
3.2.2 Turn on Tracing using the -d0 Option for Web-to-Go Clients With the WEBTOGO

Executable ... 3-7
3.2.3 View Device Logs .. 3-7
3.3 Enabling Tracing in the Client-Side Oracle Lite Database ... 3-8
3.3.1 Enabling Trace Output.. 3-8
3.3.2 Description of Trace Information .. 3-8
3.3.2.1 Table Name Output.. 3-9
3.4 Viewing the Log Files From the Application Server .. 3-10

4 Backup and Recovery

4.1 How Does Oracle Database Lite Store its Information?.. 4-1
4.2 Backing Up Oracle Database Lite ... 4-1
4.3 Oracle Database Lite Backup Coordination Between Client and Server............................ 4-2

vi

4.4 Oracle Database Lite Recovery Issues.. 4-4

Index

vii

Preface

This preface introduces you to the Oracle Database Lite Developer’s Guide, discussing the
intended audience, documentation accessibility, and structure of this document.

Audience
This manual is intended for application developers as the primary audience and for
database administrators who are interested in application development as the
secondary audience.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

viii

Send Us Your Comments
Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: olitedoc_us@oracle.com

■ FAX: (650) 506-7355. Attn: Oracle Database Lite

■ Postal service:

Oracle Corporation
Oracle Database Lite Documentation
500 Oracle Parkway, Mailstop 1op2
Redwood Shores, CA 94065
U.S.A.

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

Improving Performance 1-1

1
Improving Performance

The following sections describe the methods you can manage the performance of your
use of Oracle Lite Database:

■ Section 1.1, "Improving Connection Performance"

■ Section 1.2, "Increasing Synchronization Performance"

■ Section 1.3, "Determining Performance of Client SQL Queries With the EXPLAIN
PLAN"

■ Section 1.4, "Optimizing Application SQL Queries Against Oracle Lite Database"

■ Section 1.5, "Maximizing JVM Performance By Managing Java Memory"

1.1 Improving Connection Performance
The following methods enable you to streamline the connections between the
client/server and the Mobile Server and back-end database:

■ Section 1.1.1, "Using Connection Pooling for Applications"

■ Section 1.1.2, "Limit Application Connection Requests to the Database"

1.1.1 Using Connection Pooling for Applications
Connection pooling enables you to eliminate the time delay in creating and destroying
connections for incoming application requests. Instead, enable connection pooling, as
shown in Section 3.4, "Manage Application Properties or Users" in the Oracle Database
Lite Administration and Deployment Guide, so that each incoming connection request
uses an existing connection from the pool.

1.1.2 Limit Application Connection Requests to the Database
You can limit the number of connections that access the database from each
application, as shown in Section 3.4, "Manage Application Properties or Users" in the
Oracle Database Lite Administration and Deployment Guide. Set the maximum database
connection limit. Any request for a database connection beyond the limit is refused.

1.2 Increasing Synchronization Performance
The following sections describe how you can manipulate the synchronization
performance:

■ Section 1.2.1, "Analyzing Performance of Publications With the Consperf Utility"

■ Section 1.2.2, "Monitoring Synchronization Using SQL Scripts"

Increasing Synchronization Performance

1-2 Oracle Database Lite Troubleshooting and Tuning Guide

■ Section 1.2.3, "Create SQL Scripts With All Dependencies"

■ Section 1.2.4, "Configuration Parameters in the WEBTOGO.ORA that Affect
Synchronization Performance"

■ Section 1.2.5, "Tuning Queries to Manage Synchronization Performance"

■ Section 1.2.6, "Synchronization Tablespace Layout"

■ Section 1.2.7, "Shared Maps"

■ Section 1.2.8, "Use Map Table Partitions to Streamline Users Who Subscribe to a
Large Amount of Data"

■ Section 1.2.9, "Configuring Back-End Oracle Database to Enhance Synchronization
Performance"

■ Section 1.2.10, "Priority-Based Replication"

■ Section 1.2.11, "Caching Publication Item Queries"

■ Section 1.2.12, "Architecture Design of Mobile Server and Oracle Database for
Synchronization Performance"

■ Section 1.2.13, "Synchronization Disk Needs May Impose on WinCE Platform
Available Space"

■ Section 1.2.14, "Designing Application Tables and Indexes for Synchronization
Performance"

1.2.1 Analyzing Performance of Publications With the Consperf Utility
The Consperf utility profiles your subscriptions and may modify how the publication
item is executed if the utility determines that there is a more performant option. The
Consperf tool evaluates how the SQL within the publication item interacts with our
Data Synchronization query templates. The first synchronization is always a complete
refresh, which is a direct invocation of the query. On subsequent synchronizations, the
query templates determine incremental refreshes. This improves your performance
from not having to perform a complete refresh each time you synchronize. However,
the interaction of our query templates and your SQL may not be optimal, which is
discovered by the Consperf tool. We either modify the query template or type of
logical delete or insert for you or you can adjust your SQL to be more performant in
regards to our templates.

In addition, application developers and administrators use this utility to analyze the
performance of subscriptions and identify potential bottlenecks during
synchronization.

This tool generates the following two primary analysis reports:

1. Timing statistics for publication items

2. Explain plans for publications

The Consperf tool automatically tunes subscription properties, if the default templates
do not supply the highest performing option. You can select a client and choose the
desired subscription for performance analysis. Users can change parameter values
before analyzing performance. The analysis results, which are timing and execution
plan reports, are stored on the server and can be accessed by viewing the same user
and subscription.

You can execute the Consperf utility through one of the following locations:

■ Click the Users link under the Consperf section on the Performance tab.

Increasing Synchronization Performance

Improving Performance 1-3

■ Click the Users link from the Repository screen.

Then, perform the following:

1. Select the User that you want to execute the Consperf tool against and click
Subscriptions.

2. From the subscriptions screen, choose the publication and click Consperf
performance analysis. This starts the Consperf analysis.

3. Click Set consperf parameters and launch the consperf thread, which brings you
to a screen where you can configure parameters that effect how the performance
analysis is executed. See Section 1.2.1.1, "Deciphering the Performance Evaluation
Files" for more information on these parameters and how they effect the
performance evaluation output.

4. Once you have set the configuration for how you want your performance analysis
to occur, click OK. The Consperf tool executes and prepares the reports for you,
based on your configuration. You are returned to the first Consperf page with the
reports listed as hyperlinks under the Last Consperf Run Results section as View
Timing File or View Execution Plan File.

1.2.1.1 Deciphering the Performance Evaluation Files
There are two performance evaluatons that come out of the Consperf utility:

■ Timing File

■ Execution Plan File

Timing File
The timing file contains the analysis of how the publication item performs with the
data synchronization defaults against how it could perform if other options were
chosen. The output of this file shows you the conclusions of the analysis and how the
data synchronization defaults could be modified to perform better with your
particular publication items.

The first section of the timing file provides you information on the configuration with
which this analysis was executed. Thus, if you modify the configuration for other
analysis, you can go back and compare each file to each other to easily see the
differences in the output.

The following example shows the publication that is examined is the T_SAMPLE11
publication. The version of the Oracle Database Lite is 10.0.0.0.0. The user is S11U1.
And the configuration is set to time out if the query takes longer that 1000 milliseconds
and change the defaults if the difference between the default and the other templates
are greater than 20 seconds (20000 milliseconds). The command that authorizes the
changes is when AUTOTUNE is set to true. If set to false, the analysis is provided, but
nothing is modified.

VERSION = 10.0.0.0.0
OPTMIZER_MODE = null

Note: The results of this analysis may cause the data synchronization
engine to modify the type of query template or logical
delete/insert/update used with your publication item. To change it
back to the defaults, you will have to rerun Consperf with
CLEARTUNE set to YES. See Table 1–2 for a full description of
parameter settings.

Increasing Synchronization Performance

1-4 Oracle Database Lite Troubleshooting and Tuning Guide

APPLICATION = null
PUBLICATION = T_SAMPLE11
CLIENTID = S11U1
TIMEOUT = 1000 ms
TOLERANCE = 20000 ms
ITERATIONS = 2
AUTOTUNE_SUPPORT = true

The next part of the Timing File lists the time in milliseconds each template type takes
to complete with each publication item in the publication. There are three templates
that data synchronization can use to "wrap" your SQL query. The default query
template is SYNC_1. Since the tolerance is set to 20 seconds, then if either template
SYNC_2 or SYNC_3 perform at least 20 seconds bettern than SYNC_1, then the
template type will be modified for your publication item. You can set the TOLERANCE
level to fewer seconds in the Consperf configuration. See Table 1–2 for a description of
TOLERANCE.

Publication Item Name | NS | BS | SYNC_1 | SYNC_2 | SYNC_3 | AS | Total

P_SAMPLE11-D | <3> | <0> | <6> | 10 | -1000 | <0> | 9
P_SAMPLE11-M | <3> | <0> | <5> | 8 | -1000 | <0> | 8

■ There are two publication items in the subscription.

■ NS stands for Null Sync. Your application may be issuing a null synchronization.
If so, this shows the time in milliseconds that it took to complete. The null
synchronization is a tool to see if it is the data that is causing the performance hit
or the application itself.

■ BS stands for Before Synchronization; AS stands for After Synchronization. You
can provide callouts that are executed either before or after each synchronization
for this application. This shows the time in milliseconds it takes to perform each
task. In this example, there is no before or after synchronization callouts.

■ SYNC_1 is the default template. In combination with the publication items, it still
is executing the fastest as compared to the other two options: SYNC_2 and SYNC_3
with 6 and 5 milliseconds for each publication item respectively. Thus, these
publication items will continue to use SYNC_1 template. Note that SYNC_3 has
-1000 as its time. That either means that the template was not appropriate to
execute or that it timed out.

– SYNC_1 uses an outer-join for inserts, updates, and deletes

– SYNC_2 is a simple insert and update

– SYNC_3 uses the base view for insert and update. The base view is the first
table in the select statement, as it is the primary key used to search for all
records in the query.

■ The total is the total number of milliseconds to execute the entire publication item.

The second section is how the MGP performs with the templates it uses for deletes and
inserts. It evaluates the default against other options, as follows:

■ Logical delete options:

■ MGP template for logical deletes using EXISTS: default for logical delete

■ MGP template for logical deletes using correlated IN

■ MGP template for logical deletes using HASH_AJ

■ MGP template for logical deletes using IN

Increasing Synchronization Performance

Improving Performance 1-5

■ Logical insert options:

■ MGP template for logical inserts using EXISTS: default for logical insert

■ MGP template for logical inserts using correlated IN

■ MGP template for logical inserts using IN

■ Logical update options

■ MGP template for logical updates using correlated IN: default for logical
updates

■ MGP template for logical updates using EXISTS

■ MGP template for logical updates using IN

■ MGP template for logical updates with multiple table dependencies

For example, the following evaluates how each publication item performs with its
logical deletes:

MGP Output...
Pub Item Name | LDEL_1 | LDEL_2 | LDEL_3 | LDEL_4
P_SAMPLE11-D | <5> | 3 | 3 | 3
P_SAMPLE11-M | <5> | 3 | 5 | 4

The LDEL_1 is the default and even though LDEL_2 , 3 and 4 are faster, they are not
20 seconds faster, which is the tolerance level. So, the default for deletes is kept the
same. If the difference in speed had been greater than the tolerance level, the Consperf
utility would have modified the logical delete method in the repository for the
publication item in future—if the autotune parameter was set to yes.

The last section, Subscription Properties, describes the following:

■ Profiled: Has autotune been turned on and Consperf executed previously on this
subscription?

■ Base View: True if this publication item uses more than one table.

■ How many records are in the subscription.

■ How many records are dirty?

■ How many records have been flagged as dirty to simulate an actual run? Up to the
number of records in the subscription or MAXLOG will be flagged as dirty,
whichever is least.

Configuration for Data Synchronization

Table 1–1 Consperf Parameters for Both Synchronization and MGP Processing

Parameter Default
Value Allowed Values

Description

PUBITEMLIST <ALL> Pub1, Pub2, and so on. Specifies comma-separated list
of publication items to process.
The default is all publication
items in the publication.

SKIPPUBITEMLIST <NONE> Pub1, Pub2, and so on. Specifies comma-separated list
of publication items to skip.

OPTIMIZER <DB> Can set to RULE or
CHOOSE; otherwise sets
to what database is set to.

Specifies the optimizer mode to
use within Oracle. The default
is the current DB setting.

Increasing Synchronization Performance

1-6 Oracle Database Lite Troubleshooting and Tuning Guide

Execution Plan File
The exeuction plan file shows how your publication items interact with the different
logical delete, insert, and update templates. From this report, you can evaluate your
SQL to see if you want to modify it in any way to speed up your query. Set the
optimizer parameter to designate how the database is organized. If you set this
parameter to a setting that the database is not set to, it still acts as if the database is set
to this way to show you how it would execute. See Table 1–3 for all configuration
parameters that relate to this search.

ORDERBYPUBITEM NO Yes or No Orders all output by
publication item name.

Table 1–2 Consperf Parameters for Synchronization Timing Performance

Parameter
Default
Value Allowed Values Description

TIMEOUT 10 seconds Integer for seconds Specifies the query timeout value in
seconds. This is the amount of time
Consperf will wait before it cancels a
query.

UPDATECOUNT 5 Integer for number
of records

Specifies the number of records to
mark as dirty during synchronization.

 MAXLOG 5000 Integer for number
of records

Specifies the number of records to put
in the log table. Simulates the
transaction log

AUTOTUNE NO Yes or No Enables auto-tune.

CLEARTUNE NO Yes or No Clears existing auto-tune results.

TOLERANCE 20 seconds Integer for seconds A template must be faster by this
number of seconds before it replaces
the default template.

Table 1–3 Consperf Parameters for Execution Performance Plan

Parameter Default
Value

Allowed
Values

Description

GATHERSTATS NO Yes or No Gathers optimizer statistics on all mobile server
objects. MGP compose MUST be disabled while
Consperf analyzes objects. Consperf blocks this
automatically, but the safest approach is to
manually stop the MGP process before running
Consperf with the GATHERSTATS option. If
Consperf fails while gathering statistics, users
must re-run CLEARSTATS before starting the
MGP process again.

CLEARSTATS NO Yes or No Removes optimizer statistics on mobile server
objects.

SQLTRACE NO Yes or No Enables Oracle sql trace. TKPROF can be used to
analyze the resulting trace file.

Table 1–1 (Cont.) Consperf Parameters for Both Synchronization and MGP Processing

Parameter Default
Value Allowed Values

Description

Increasing Synchronization Performance

Improving Performance 1-7

1.2.2 Monitoring Synchronization Using SQL Scripts
If, instead of viewing MGP statistics within the Mobile Manager, you would rather
execute SQL scripts to monitor Mobile application status during synchronization, you
may use any of the following SQL scripts to retrieve the desired information.

■ Section 1.2.2.1, "Synchronization Times for All Clients"

■ Section 1.2.2.2, "Failed Transactions for all Clients"

■ Section 1.2.2.3, "Completely Refreshed Publication Items for all Clients"

■ Section 1.2.2.4, "Publications Flagged for Complete Refresh for All Clients"

■ Section 1.2.2.5, "Clients and Publication where Subscription Parameters are Not
Set"

■ Section 1.2.2.6, "Record Counts for Map-based Publication Item by Client"

■ Section 1.2.2.7, "Record Count for Map-based Publication Items by Store"

■ Section 1.2.2.8, "All Client Sequence Partitions and Sequence Values"

■ Section 1.2.2.9, "All Publication Item Indexes"

1.2.2.1 Synchronization Times for All Clients
Using the following script, you can check the latest successful synchronization times
for all clients by retrieving such information from the all_clients table.

select client, lastrefresh_starttime, lastrefresh_endtime
from cv$all_clients
order by client
/

1.2.2.2 Failed Transactions for all Clients
Using the following script, you can retrieve a list of failed transactions for all clients
from the all_errors table.

select client, transaction_id, item_name, message_text
from cv$all_errors
where message_text is not null
order by client,transaction_id
/

1.2.2.3 Completely Refreshed Publication Items for all Clients
Using the following SQL script, you can retrieve a list of all publication items for all
clients which were completely refreshed during the last synchronization process.

select clientid, publication_item
from c$complete_refresh_log
order by clientid, publication_item
/

1.2.2.4 Publications Flagged for Complete Refresh for All Clients
Using the following SQL script, you can retrieve a list of publications for all clients that
are flagged for a complete refresh during the next synchronization process.

select clientid, template as publication
from c$all_subscriptions
where crr = 'Y'
/

Increasing Synchronization Performance

1-8 Oracle Database Lite Troubleshooting and Tuning Guide

1.2.2.5 Clients and Publication where Subscription Parameters are Not Set
Using the following SQL script, you can retrieve a list of clients and their publications
where the subscription parameters have not been set.

select client, name as publication, param_name, param_value
from cv$all_subscription_params
where param_value is null
order by client, name
/

1.2.2.6 Record Counts for Map-based Publication Item by Client
Using the following script, you can retrieve record counts for all clients in queues for
map-based publication items, that are grouped by clients.

select clid$$cs as client, count(*) as "RECORD COUNT"
from c$in_messages
group by clid$$cs
/

1.2.2.7 Record Count for Map-based Publication Items by Store
Using the following SQL script, you can retrieve record counts for all client in-queues
for map-based publication items, that are grouped by store.

select clid$$cs as client, tranid$$ as transaction_id, store as item_name,
count(*) as "RECORD COUNT"
from c$in_messages
group by clid$$cs, tranid$$, store
/

1.2.2.8 All Client Sequence Partitions and Sequence Values
Using the following SQL script, you can retrieve a list of all client sequence partitions
and current sequence values.

select clientid, name, curr_val, incr
from c$all_sequence_partitions
order by clientid, name
/

1.2.2.9 All Publication Item Indexes
Using the following SQL script, you can retrieve a list of all publication item indexes.

select publication as NAME, publication_item, conflict_rule as "INDEX_TYPE",
columns
from c$all_indexes
order by publication, publication_item
/

1.2.3 Create SQL Scripts With All Dependencies
When you create a SQL script in MDW or with the Consolidator APIs, you should
include all dependent DDL statements in the same script in the order necessary. If you
separate dependent DDL statements into separate scripts, Oracle Database Lite may be
executing them randomly, causing dependency errors and re-execution of each script.
See Section 5.7 "Create and Load a SQL Script" in the Oracle Database Lite Developer’s
Guide for more information.

Increasing Synchronization Performance

Improving Performance 1-9

1.2.4 Configuration Parameters in the WEBTOGO.ORA that Affect Synchronization
Performance

The following parameters in the [CONSOLIDATOR] section of the webtogo.ora file
are used for tuning synchronization:

■ MAX_THREADS

The MAX_THREADS parameter is used by the MGP and controls the number of
concurrent threads. As a rule, do not set this higher than 1.5 times the number of
CPUs on the database machine. For example, if your system has four CPUs, theb
you should not set it higher than six.

■ MAX_CONCURRENT

The MAX_CONCURRENT parameter controls how many users can synchronize in
parallel. Once the maximum number of concurrent synchronization requests is
reached, additional requests block until one or more synchronization requests
completes. If you do not set this parameter, then there is no maximum.

■ CONNECTION_TIMEOUT

The CONNECTION_TIMEOUT parameter specifies in minutes the JDBC connection
timeout for the synchronization session.

■ COMPOSE_TIMEOUT

The COMPOSE_TIMEOUT parameter specifies in seconds the MGP timeout for the
compose phase for each user.

■ CONNECTION_POOL

The CONNECTION_POOL parameter enables pooling of database connections.

■ MAX_THREADS

The MAX_THREADS parameter sets the maximum number of threads spawned
within the MGP process.

For full details on these and more parameters, see Section A.6, "CONSOLIDATOR" in
the Oracle Database Lite Administration and Deployment Guide.

Each synchronization request requires a number of system resources, such as creating
a database connection, using memory, and so on. If you have too many requests
competing for the same resources, then the overall performance can be poor. Limiting
the number of parallel requests with the MAX_THREADS and MAX_CONCURRENCY
parameters improve the average response time.

Set the MAX_THREADS and MAX_CONCURRENCY parameters if you notice that the
synchronization performance is not linear. For example, if twice the number of parallel
requests results in a synchronization time that is five times longer for each client, then
you probably have resource contention. The value depends on your environment and
should be determined on a trial and error basis.

1.2.5 Tuning Queries to Manage Synchronization Performance
You can increase synchronization performance by monitoring the performance of the
SQL queries in your applications. The following sections provide details on how to
tune your queries:

■ Section 1.2.5.1, "Avoid Using Non-Mergable Views"

■ Section 1.2.5.2, "Tune Queries With Consperf Utility"

Increasing Synchronization Performance

1-10 Oracle Database Lite Troubleshooting and Tuning Guide

■ Section 1.2.5.3, "Manage the Query Optimizer"

1.2.5.1 Avoid Using Non-Mergable Views
You should avoid using database query constructs that prevent a view from being
mergable, as publication item queries that use non-mergable views do not perform
well. Examples of such constructs are union, minus, and connect by. For more
information on mergable views, see the Oracle database documentation.

1.2.5.2 Tune Queries With Consperf Utility
Once you have defined your application, use the consperf utility to profile the
performance of the publication item queries. Mobile Server does not execute your
publication item queries directly; instead the query is wrapped into a template query,
which is executed by Mobile Server. The template query may have an unexpected
query execution plan, resulting in poor performance. The consperf utility generates
an EXPLAIN PLAN execution plan for those template queries, allowing you to tune
your publication item query for best performance. In addition, consperf generates
timing information for the execution of all template queries, so that you can identify
bottleneck queries. For more information on the consperf utility, see Section 1.2.1,
"Analyzing Performance of Publications With the Consperf Utility".

1.2.5.3 Manage the Query Optimizer
You must make sure that the optimizer picks the correct execution path when you
either are using the cost-based optimizer or you have set the optimizer settings to
choose. The optimizer can pick the correct execution path only when all of the tables
are properly analyzed and statistics have been gathered for these tables.

The Mobile Server uses temporary tables during synchronization. Once a number of
users have been created, and they have synchronized with Mobile Server, run consperf
with the gatherstats option to generate the statistics information for the temporary
tables. For more information on the consperf utility, see Section 1.2.1, "Analyzing
Performance of Publications With the Consperf Utility".

1.2.6 Synchronization Tablespace Layout
Tablespace layout across multiple disks can improve the performance of Mobile Server
data synchronization, as it reduces movement of the disk heads and improves I/O
response time.

By default, the synchronization tablespace is SYNCSERVER, and is stored in the
mobilexx.dbf file in the default location for the database instance under ORACLE_
HOME, where xx is a number between 1 and 25. The tablespace name, filename, and file
location for the tablespace is defined in the $ORACLE_
HOME/Mobile/Server/admin/consolidator_o8a.sql script file, which is
executed during the Mobile Server installation process. So, if you want to modify the
tablespace, perform the following BEFORE you install the Mobile Server; otherwise,
the default tablespace is created.

If you want to customize the SYNCSERVER tablespace, for example, by using multiple
data files spread across several disks, or by using specific storage parameters, then you
can precreate the SYNCSERVER tablespace with the required settings. The installation
process automatically detects that the tablespace exists and uses it. Refer to the Oracle
Database documentation for full details on how to create a tablespace.

Increasing Synchronization Performance

Improving Performance 1-11

1.2.7 Shared Maps
It is very common for publications to contain publication items that are used
specifically for lookup purposes. That is, a publication item that creates a read-only
snapshot. The server may change these snapshots, but the client would never update
them directly. Furthermore, many users often share the data in this type of snapshot.
For example, there could be a publication item called zip_codes, which is subscribed
to by all Mobile users.

The main function of Shared Maps is to improve scalability for this type of publication
item by allowing users to share record state information and reduce the size of the
resulting replication map tables. By default, if you have a non-updatable publication
item, it defaults to using shared maps.

Shared maps shrink the size of map tables for large lookup publication items and
reduce the MGP compose time. Lookup publication items contain read-only data that
is not updatable on the clients and that is shared by multiple subscribed clients. When
multiple users share the same data, their query subsetting parameters are usually
identical.

For example, a query could be the following:

SELECT * FROM WHERE EMP WHERE DEPTNO = :dept_id

In the preceding example, all users that share data from the same department have the
same value for dept_id. The default sharing method is based on subscription
parameter values.

In the following example, the query is:

SELECT * FROM WHERE EMP WHERE DEPTNO = (SELECT DEPTNO FROM
 EMP WHERE EMPNO = :emp_id)

In this example, users from the same departments still share data. Their subsetting
parameters are not equal, because each user has a unique emp_id. To support the
sharing of data for these types of queries (as illustrated by the example), a grouping
function can be specified. The grouping function returns a unique group id based on
the client id.

There is also another possible use for shared maps. It is possible to use shared maps
for shared updatable publication items. However, this type of usage requires
implementation of a custom dml procedure that handles conflict resolution.

1.2.7.1 Performance Attributes
The performance of the MGP compose cycle is directly proportional to the following:

NC * NPI

where:

■ NC = number of clients

■ NPI = number of publication items that must be composed

Note: Shared Maps can also be used with updatable snapshots if the
developer is willing to implement their own conflict detection and
resolution logic; however, normally shared maps are only for
non-updatable snapshots.

Increasing Synchronization Performance

1-12 Oracle Database Lite Troubleshooting and Tuning Guide

With shared maps, the length of the MGP cycle is proportional to the following:

NC*(NPI - NSPI) + NG*NSPI

where:

■ NSPI = number of shared publication items

■ NG = number of groups

1.2.7.2 Shared Map Usage
To set up a publication item to be shared, use the AddPublicationItem API and
enable the shared flag. It is also possible to toggle the shared property of a publication
item once it is added to the publication with the SetPublicationItemMetadata
API. Both the AddPublicationItem API and the SetPublicationItemMetadata
API allow users to specify a PL/SQL grouping function. The function signature must
be as follows:

(
CLIENT in VARCHAR2,
PUBLICATION in VARCHAR2,
ITEM in VARCHAR2
)return VARCHAR2.

The returned value must uniquely identify the client's group. For example, if client A
belongs to the group GroupA and client B belongs to the group GroupB, the group
function F could return:

F ('A','SUBSCRIPTION','PI_NAME') = 'GroupA'
F ('B','SUBSCRIPTION','PI_NAME') = 'GroupB'

The implicit assumption of the grouping function is that all the members of the
GroupA group share the same data, and that all the members of the GroupB group
share the same data.. The group function uniquely identifies a group of users with the
same data for a particular PUBLICATION ITEM.

For the query example in Section 1.2.7, "Shared Maps", the grouping function could be:

Function get_emp_group_id (
 clientid in varchar2,
 publication in varchar2,
 item in varchar2
) return varchar2 is
 group_val_id varchar2(30);
begin
 select DEPTNO into group_val_id
 from EMP where EMPNO = clientid ;
 return group_val_id;
end;

Note: If NG = NC, then the MGP performance is similar in both
cases. However, with fewer groups and more shared publication
items, the MGP compose cycle becomes faster. In addition, map
storage requirements are governed by these same factors.

Note: This function assumes that EMPNO is the Consolidator
Manager client id. If the group_fnc is not specified, the default
grouping is based on subscription parameters.

Increasing Synchronization Performance

Improving Performance 1-13

1.2.7.3 Compatibility and Migration for Shared Maps
If you have been using a version prior to Oracle Database Lite 10g, then you must
migrate your existing Mobile Server schema with shared maps, as follows:

1. Run one cycle of MGP.

2. The clients must sync with the server to get the latest changes prepared by the
MGP.

3. Stop the Web server and MGP to migrate the server to 10g. This automatically sets
all the nonupdatable publication items to shared items. If any shared publication
items need to use grouping functions or any publication items need to change
their sharing attribute, execute custom code that calls the appropriate
Consolidator Manager API. See the SetPublicationItemMetadata API in
Section 1.2.7.2, "Shared Map Usage".

4. The ShrinkSharedMaps Consolidator Manager API must be called to set the
clients to use shared map data and remove old redundant data from the maps.

5. Start the Web server and MGP.

1.2.8 Use Map Table Partitions to Streamline Users Who Subscribe to a Large Amount
of Data

Sync Server database objects called map tables are used to maintain the state for each
Mobile client. If there are a large number of clients, and each client subscribes to a
large amount of data, the map tables can become very large creating scalability issues.
Using the following APIs, map tables can be partitioned by client id, making them
more manageable.

The API allows you to create a map table partition, add additional partitions, drop one
or all partitions, and merge map table partitions. Map table partitions can be
monitored using the ALL_PARTITIONS database catalog view.

1.2.8.1 Create a Map Table Partition
Creates a partition for the referenced publication item map table. If there is data in the
map table, it is transferred to the partition being created. After the partition has been
successfully created, the map table can be truncated to remove redundant data using
the SQL command TRUNCATE TABLE.

Syntax
public static void partitionMap
 (String pub_item,
 int num_parts,
 String storage,

Note: This form of partitioning is not related to the partition
functionality provided by Oracle Server, and is used exclusively by
Oracle Database Lite 10g.

Note: Records removed from the server through a truncate
command will not be removed from the client unless a complete
refresh is triggered. The truncate command is considered a DDL
operation. Consequently, the necessary DML triggers do not fire and
therefore the operations are not logged for fast refresh.

Increasing Synchronization Performance

1-14 Oracle Database Lite Troubleshooting and Tuning Guide

 String ind_storage) throws Throwable

The parameters of partitionMap are listed in Table 1–4.

Example
consolidatorManager.partitionMap("P_SAMPLE1", 5, "tablespace mobileadmin",
"initrans 10 pctfree 70");

1.2.8.2 Add Map Table Partitions
Adds a partition for the referenced publication item's map table. If there is data in the
map table, it is transferred to the partition being created. After the partition has been
successfully created, the map table can be truncated to remove redundant data using
the SQL command TRUNCATE TABLE.

Syntax
public static void addMapPartitions
 (String pub_item,
 int num_parts,
 String storage,
 String ind_storage) throws Throwable

The parameters of addMapPartitions are listed in Table 1–5:

Table 1–4 The partitionMap Parameters

Parameter Definition

pub_item The publication item whose map table is being partitioned.

num_parts The number of partitions.

storage A string specifying the storage parameters. This parameter
requires the same syntax as the SQL command CREATE
TABLE. See the Oracle SQL Reference for more information.

ind_storage A string specifying the storage parameters for indexes on the
partition. This parameter requires the same syntax as the SQL
command CREATE INDEX. See the Oracle SQL Reference for
more information.

Note: Records removed from the server through a truncate
command will not be removed from the client unless a complete
refresh is triggered. The truncate command is considered a DDL
operation. Consequently, the necessary DML triggers do not fire and
therefore the operations are not logged for fast refresh.

Table 1–5 The addMapPartitions Parameters

Parameter Definition

pub_item The publication item whose map table is being partitioned.

num_parts The number of partitions.

storage A string specifying the storage parameters. This parameter
requires the same syntax as the SQL command CREATE
TABLE. See the Oracle Database Lite SQL Reference for more
information.

Increasing Synchronization Performance

Improving Performance 1-15

Example
consolidatorManager.addMapPartitions("P_SAMEPLE1",5,"tablespace
mobileadmin","initrans 10 pctfree 40");

1.2.8.3 Drop a Map Table Partition
Drops the named partition. In the following example, the partition parameter is the
name of the partition. Partition names must be retrieved by querying the ALL_
PARTITIONS table view CV$ALL_PARTITIONS since partitions are named by Data
Synchronization.

Syntax
public static void dropMapPartition(String partition) throws Throwable

Example
consolidatorManager.dropMapPartition("MAP101_1");

1.2.8.4 Drop All Map Table Partitions
Drops all partitions of the map table for the named publication item.

Syntax
public static void dropAllMapPartitions(String pub_item) throws Throwable

Example
consolidatorManager.dropAllMapPartitions("P_SAMPLE1");

1.2.8.5 Merge Map Table Partitions
Merges the data from one partition into another. Partition names must be retrieved by
querying the ALL_PARTITIONS table view CV$ALL_PARTITIONS, since partitions
are named by Data Synchronization.

Syntax
public static void mergeMapPartitions
 (String from_partition,
 String to_partiton) throws Throwable

Example
consolidatorManager.mergeMapPartition(""MAP101_1", "MAP101_2");

ind_storage A string specifying the storage parameters for indexes on the
partition. This parameter requires the same syntax as the SQL
command CREATE INDEX. See the Oracle Database Lite SQL
Reference for more information.

Note: Map Partitions are created only for existing users. New users
are placed in the original map table.

Table 1–5 (Cont.) The addMapPartitions Parameters

Parameter Definition

Increasing Synchronization Performance

1-16 Oracle Database Lite Troubleshooting and Tuning Guide

1.2.9 Configuring Back-End Oracle Database to Enhance Synchronization Performance
You can configure the Oracle Database in such a way as to enchance your Mobile
Server synchronization performance, as follows:

■ Section 1.2.9.1, "Physically Separate Map Tables and Map Indexes"

■ Section 1.2.9.2, "Database Parameter Tuning"

1.2.9.1 Physically Separate Map Tables and Map Indexes
During synchronization, map tables are used extensively. Map tables are internal
tables, and have table names using the following pattern: CMP$pub_item_name. Each
map table has four separate indexes. By default, both map table and indexes are
created in the default tablespace SYNCSERVER.

You can improve performance if you move the map table indexes to a different disk
than the map table itself. Create a separate tablespace (for example: MAPINDEXES) on a
different disk and manually move all indexes. Because the process of moving the
indexes requires you to drop and re-create the indexes, you should move the index
before many users have synchronized. Otherwise recreating the indexes on the map
tables may be very time consuming, as map tables grow with the number of users who
have synchronized.

To move the indexes on a map table, do the following:

1. Identify all indexes on the map table (CMP$pub_item_name). There are three or
four indexes. Move all of them.

2. For each index, record the type of index and column lists.

3. If the index is a primary key index, then remove the primary key constraint on the
map table.

4. Drop the index.

5. Recreate the index using the same name, type and column list. Use the storage
clause in the create index statement to specify the new tablespace. You may also
specify different storage parameters. Refer to the Oracle database documentation
for more information on how to create indexes and storage clause parameters.

1.2.9.2 Database Parameter Tuning
Tuning the database for Mobile Server is similar to any Oracle database tuning
required for any query intensive applications. Configure the SGA to be as large as
possible on your system to maximize the caching capabilities and avoid I/O wherever
possible.

Tune your Oracle database with the following database parameters:

■ db_block-buffers

■ sort_area_size

■ log_buffers

Refer to the Oracle database tuning guide for more information on database tuning.

Note: Repeat step 3 through 5 for all other indexes on the map table.

Increasing Synchronization Performance

Improving Performance 1-17

1.2.10 Priority-Based Replication
With priority-based replication, you can limit the number of rows per snapshot by
setting the flag Priority to 1 (the default is 0).

For example, if you have a snapshot with the following statement:

select * from projects where prio_level in (1,2,3,4)

With the Priority flag set to 0 (the default), all projects with prio_level 1,2,3,4 will be
replicated.

In a high priority situation, the application can set the flag to 1, which will cause MGP
to check for Restricting Predicate. A Restricting Predicate is a conditional expression
in SQL. The developer can set Restricting Predicate in the AddPublicationItem()
method, as in the following example:

prio_level = 1

MGP appends (AND) the expression to the snapshot definitions when composing data
for the client. In this case, the high priority statement would be:

SELECT * FROM projects where prio_level in (1,2,3,4) AND prio_level = 1;
// a restricting predicate snapshot

In this case, only projects with level =1 will be replicated to the client.

This advanced feature is available only through the Consolidator Manager API. It is
not available through the Packaging Wizard.

To summarize, there are two steps to enable this feature:

1. Provide a restricting predicate expression in the AddPublicationItem() function.

2. Set the PRIORITY flag to 1 in the Mobile Sync API.

1.2.11 Caching Publication Item Queries
This feature allows complex publication item queries to be cached. This applies to
queries that cannot be optimized by the Oracle query engine. By caching the query in a
temporary table, the Sync Server template can join to the snapshot more efficiently.

Storing the data in a temporary table does result in additional overhead to MGP
operation, and the decision to use it should only be made after first attempting to
optimize the publication item query to perform well inside the Sync Server template. If
the query cannot be optimized in this way, the caching method should be used.

The following example is a template used by the MGP during the compose phase to
identify client records that are no longer valid, and should be deleted from the client:

UPDATE pub_item_map map
SET delete = true
WHERE client = <clientid>
AND NOT EXISTS (SELECT 'EXISTS' FROM
 (<publication item query>) snapshot
 WHERE map.pk = snapshot.pk);

In this example, when <publication item query> becomes too complex, because
it contains multiple nested subqueries, unions, virtual columns, connect by clauses,
and other complex functions, the query optimizer is unable to determine an acceptable

Note: You cannot use fast refresh synchronization with high priority.

Increasing Synchronization Performance

1-18 Oracle Database Lite Troubleshooting and Tuning Guide

plan. This can have a significant impact on performance during the MGP compose
phase. Storing the publication item query in a temporary table, using the publication
item query caching feature, flattens the query structure and enables the template to
effectively join to it.

1.2.11.1 Enabling Publication Item Query Caching
The following API enables publication item query caching.

Syntax
public static void enablePublItemQueryCache(String name)
 throws Throwable

The parameters for enablePublItemQueryCache are listed in Table 1–6:

Example
consolidatorManager.enablePubItemQueryCache("P_SAMPLE1");

If you are using an input string from the input parameter argv array, cast it to a
String, as follows:

consolidatorManager.enablePubItemQueryCache((String) argv[0]);

1.2.11.2 Disabling Publication Item Query Caching
The following API disables publication item query caching.

Syntax
public static void disablePubItemQueryCache(String name)
 throws Throwable

The name parameter for disablePubItemQueryCache is listed in Table 1–7:

Example
consolidatorManager.disablePubItemQueryCache("P_SAMPLE1");

1.2.12 Architecture Design of Mobile Server and Oracle Database for Synchronization
Performance

It is recommended that you run Mobile Server and the Oracle database on different
machines. If possible, use multi-CPU machines for both Mobile Server and the Oracle
database. Run the Oracle database should in dedicated server mode; use of the
multi-threaded server is not recommended.

Table 1–6 The enablePubItemQueryCache Parameters

Parameters Description

name A string specifying the name of the publication item.

Table 1–7 The disablePubItemQueryCache Parameters

Parameters Description

name A string specifying the name of the publication item.

Determining Performance of Client SQL Queries With the EXPLAIN PLAN

Improving Performance 1-19

1.2.13 Synchronization Disk Needs May Impose on WinCE Platform Available Space
During synchronization, files are created within the Mobile Server directories for
synchronization management. This may cause space problems on the WinCE device.
To counter space constraints for the storage card on the WinCE platform, you can
designate the Temp directory for all synchronization temporary files by adding the
following entry in the ALL DATABASES section in the POLITE.INI or POLITE.TXT
file.

TEMP_DIR=\Storage Card\Temp

1.2.14 Designing Application Tables and Indexes for Synchronization Performance
Your clients may perform a large number of insert and delete operations on snapshots,
and then synchronize their data changes with the Mobile Server. If this is the case, then
consider placing the application tables and the indexes on those tables on separate
disks.

1.3 Determining Performance of Client SQL Queries With the EXPLAIN
PLAN

If you want to access data on the local client Oracle Lite database, then you can use the
EXPLAIN PLAN to determine the performance of your SQL query execution on the
Oracle Lite database. To execute a SQL statement, Oracle might need to perform
several steps. Each of these steps either physically retrieves rows of data from the
database or prepares them in some way for the user issuing the statement. The
combination of the steps Oracle uses to execute a statement is called an execution plan,
which includes an access path for each table that the statement accesses and an
ordering of the tables (the join order) with the appropriate join method. The execution
plan shows you exactly how Oracle Database Lite executes your SQL statement.

The components of an execution plan include the following:

■ An ordering of the tables referenced by the statement.

■ An access method for each table mentioned in the statement.

■ A join method for tables affected by join operations in the statement.

The EXPLAIN PLAN command stores the execution plan chosen by the Oracle
Database Lite optimizer for SELECT, UPDATE, INSERT, and DELETE statement.

You can generate an Explain Plan using either of the following methods:

■ The Consperf tool: The Consperf tool generates the following two primary
analysis reports:

1. Timing statistics for publication items

2. Explain plans for publications

For a full description of how to use the Consperf utility, see Section 1.2.1
"Analyzing Performance of Publications With the Consperf Utility" in the Oracle
Database Lite Troubleshooting and Tuning Guide.

■ Manually generrated. See the Section 1.11 "Tuning SQL Statement Execution with
the EXPLAIN PLAN" in the Oracle Database Lite SQL Reference for full details on
how to manually create an EXPLAIN PLAN.

Optimizing Application SQL Queries Against Oracle Lite Database

1-20 Oracle Database Lite Troubleshooting and Tuning Guide

1.4 Optimizing Application SQL Queries Against Oracle Lite Database
The following sections provide tips on improving the performance of the application
SQL queries against the back-end Oracle database:

■ Section 1.4.1, "Optimizing Single-Table Queries"

■ Section 1.4.2, "Optimizing Join Queries"

■ Section 1.4.3, "Optimizing with Order By and Group By Clauses"

■ Section 1.4.4, "Advanced Optimization Techniques for SQL Queries in Oracle
Database Lite"

The tip examples use the database schema listed in Table 1–8:

1.4.1 Optimizing Single-Table Queries
To improve the performance of a query that selects rows of a table based on a specific
column value, create an index on that column. For example, the following query
performs better if the NAME column of the EMP table has an index.

SELECT *
FROM EMP
WHERE NAME = 'Smith';

An index may ruin performance if selecting more than 10% of the rows of the indexing
columns is poor. For example, an index on JOB_TITLE may not be a good choice even
if the query is as follows.

SELECT *
FROM EMP
WHERE JOB_TITLE='CLERK'

1.4.2 Optimizing Join Queries
The following can improve the performance of a join query (a query with more than
one table reference in the FROM clause).

Table 1–8 Database Schema Examples

Tables Columns Primary Keys Foreign Keys

LOCATION LOC#

LOC_NAME

 LOC#

EMP SS#

NAME

JOB_TITLE

WORKS_IN

 SS#

WORKS_IN references DEPT (DEPT#)

DEPT DEPT#

NAME

BUDGET

LOC

MGR

DEPT#

LOC references LOCATION (LOC#)

MGR references EMP (SS#)

Optimizing Application SQL Queries Against Oracle Lite Database

Improving Performance 1-21

1.4.2.1 Create an Index on the Join Column(s) of the Inner Table
In the following example, the inner table of the join query is DEPT and the join column
of DEPT is DEPT#. An index on DEPT.DEPT# improves the performance of the query.
In this example, since DEPT# is the primary key of DEPT, an index is implicitly created
for it. The optimizer will detect the presence of the index and decide to use DEPT as
the inner table. In case there is also an index on EMP.WORKS_IN column the optimizer
evaluates the cost of both orders of execution; DEPT followed by EMP (where EMP is the
inner table) and EMP followed by DEPT (where DEPT is the inner table) and picks the
least expensive execution plan.

SELECT e.SS#, e.NAME, d.BUDGET
FROM EMP e, DEPT d
WHERE e.WORKS_IN = DEPT.DEPT#
AND e.JOB_TITLE = 'Manager';

1.4.2.2 Bypassing the Query Optimizer
Normally, the optimizer selects the best execution plan, an optimal order of tables to
be joined. In case the optimizer is not producing the best execution plan, you can
control the order of execution using the HINTS feature. For more information, see the
Oracle Database Lite SQL Reference.

For example, if you want to select the name of each department along with the name
of its manager, you can write the query in one of two ways. In the first example which
follows, the hint /*+ordered*/ says to do the join in the order the tables appear in
the FROM clause.

SELECT /*+ordered*/ d.NAME, e.NAME
FROM DEPT d, EMP e
WHERE d.MGR = e.SS#

or:

SELECT /*+ordered*/ d.NAME, e.NAME
FROM EMP e, DEPT d
WHERE d.MGR = e.SS#

Suppose that there are 10 departments and 1000 employees, and that the inner table in
each query has an index on the join column. In the first query, the first table produces
10 qualifying rows (in this case, the whole table). In the second query, the first table
produces 1000 qualifying rows. The first query will access the EMP table 10 times and
scan the DEPT table once. The second query will scan the EMP table once but will
access the DEPT table 1000 times. Therefore the first query performs better. As a rule of
thumb, tables should be arranged from smallest effective number of rows to largest
effective number of rows. The effective row size of a table in a query is obtained by
applying the logical conditions that are resolved entirely on that table.

In another example, consider a query to retrieve the social security numbers and
names of employees in a given location, such as New York. According to the sample
schema, the query would have three table references in the FROM clause. The three
tables could be ordered in six different ways. Although the result is the same
regardless of which order you choose, the performance could be quite different.

Suppose the effective row size of the LOCATION table is small, for example select
count(*) from LOCATION where LOC_NAME = 'New York' is a small set.
Based on the above rules, the LOCATION table should be the first table in the FROM
clause. There should be an index on LOCATION.LOC_NAME. Since LOCATION must be
joined with DEPT, DEPT should be the second table and there should be an index on

Optimizing Application SQL Queries Against Oracle Lite Database

1-22 Oracle Database Lite Troubleshooting and Tuning Guide

the LOC column of DEPT. Similarly, the third table should be EMP and there should be
an index on EMP#. You could write this query as:

SELECT /*+ordered*/ e.SS#, e.NAME
FROM LOCATION l, DEPT d, EMP e
WHERE l.LOC_NAME = 'New York' AND
l.LOC# = d.LOC AND
d.DEPT# = e.WORKS_IN;

1.4.3 Optimizing with Order By and Group By Clauses
Various performance improvements have been made so that SELECT statements run
faster and consume less memory cache. Group by and Order by clauses attempt to
avoid sorting if a suitable index is available.

1.4.3.1 IN Subquery Conversion
Converts IN subquery to a join when the select list in the subquery is uniquely
indexed.

For example, the following IN subquery statement is converted to its corresponding
join statement. This assumes that c1 is the primary key of table t2:

SELECT c2 FROM t1 WHERE
c2 IN (SELECT c1 FROM t2);

becomes:

SELECT c2 FROM t1, t2 WHERE t1.c2 = t2.c1;

1.4.3.2 ORDER BY Optimization with No GROUP BY
This eliminates the sorting step for an ORDER BY clause in a select statement if ALL of
the following conditions are met:

1. All ORDER BY columns are in ascending order or in descending order.

2. Only columns appear in the ORDER BY clause. That is, no expressions are used in
the ORDER BY clause.

3. ORDER BY columns are a prefix of some base table index.

4. The estimated cost of accessing by the index is less than the estimated cost of
sorting the result set.

1.4.3.3 GROUP BY Optimization with No ORDER BY
This eliminates the sorting step for the grouping operation if GROUP BY columns are
the prefix of some base table index.

1.4.3.4 ORDER BY Optimization with GROUP BY
When ORDER BY columns are the prefix of GROUP BY columns, and all columns are
sorted in either ascending or in descending order, the sorting step for the query result
is eliminated. If GROUP BY columns are the prefix of a base table index, the sorting
step in the grouping operation is also eliminated.

1.4.3.5 Cache Subquery Results
If the optimizer determines that the number of rows returned by a subquery is small
and the query is non-correlated, then the query result is cached in memory for better
performance. For example:

Optimizing Application SQL Queries Against Oracle Lite Database

Improving Performance 1-23

select * from t1 where
t1.c1 = (select sum(salary)
from t2 where t2.deptno = 100);

1.4.4 Advanced Optimization Techniques for SQL Queries in Oracle Database Lite

Unlike procedural languages—such as Java or C—SQL is a declarative language. It
states what to do, but does not tell how to do it. This frees developers from writing
navigation code to retrieve data. The responsibility of navigation falls on the database
management system (DBMS).

The query optimizer—a component of the DBMS—is responsible to come up with an
efficient plan to execute the query. Since there are several ways to perform a query, the
query optimizer and query execution engine decide how to deliver the result in the
quickest time. In a perfect world, the query optimizer will always be right and the
database will always be infallible. However, this is not the case. The developer needs
to think about the characteristics and peculiarities of the query optimizer. When you
do run into performance issues, you can improve the performance as simply as
creating some indexes, dropping additional indexes, or re-writing the query. Oracle
Database Lite constantly improves the optimizer, so that you do not have to re-write
the query.

This section introduces you to the Oracle Database Lite Query Optimizer, briefly
covers the architecture of Oracle Lite database, and then provides details of the query
compilation and optimization. Lastly, we provide tips on improving query
performance. For further information, there are several excellent articles in technical
journals that cover SQL query optimization in great technical detail. Some of these
journals are listed in the reference section of this document.

■ Section 1.4.4.1, "Oracle Lite Database Application Architecture"

■ Section 1.4.4.2, "Overview of SQL Runtime"

■ Section 1.4.4.3, "Execution Plan Generation"

■ Section 1.4.4.4, "Query Execution Engine"

■ Section 1.4.4.5, "Optimization Tips"

■ Section 1.4.4.6, "Glossary"

■ Section 1.4.4.7, "References"

1.4.4.1 Oracle Lite Database Application Architecture
The basic database architecture components from the point of view of the application
developer are outlined below:

Note: This section is provided for those administrators and
developers who are already very familiar with optimization
techniques for SQL queries. Thus, this material is advanced and not
for a beginner.

Optimizing Application SQL Queries Against Oracle Lite Database

1-24 Oracle Database Lite Troubleshooting and Tuning Guide

Figure 1–1 Components in applications using ODBC or JDBC

1.4.4.1.1 ODBC Application The ODBC application is usually written in C, or C++, or
Visual Basic. Third party tools, such as Power Builder, can also generate code that
invokes ODBC. The ODBC driver implements ODBC API semantics and uses internal
SQLRT APIs to call into SQLRT.

1.4.4.1.2 SQLRT SQLRT, the Oracle Lite SQL engine, is implemented in the
olsql40.dll. SQLRT implements SQL functionality using the capabilities of
underlying database engine. This is covered in some detail in the following sections.

1.4.4.1.3 DB Engine The Oracle Lite database engine implements the object kernel API
(also known as OKAPI). The database engine implements an object view of the world;
that is, it implements classes, attributes, and iterators.

■ Instead of creating a table—which contains a set of columns—you create a class
containing a set of attributes.

■ Instead of creating a cursor on a table, you create an iterator on a class or a group.

All classes belong to a group, which is a collection of classes.

The DB Engine maintains its own set of Meta catalogs (Meta classes) to store
declarative information about classes, attributes, and indexes. For example, see the
table below:

Table 1–9 Architecture Components

Component Description

<< Indicates a request and response information flow.

ODBC application Typically a C or C++ application that issues ODBC API calls.

Java Application A piece of code written in Java that uses JDBC API to
manipulate the database.

ODBC driver The driver that implements the ODBC API. It calls into the SQL
runtime engine (SQLRT).

SQLRT The SQL Runtime Engine that implements SQL functionality
using the capabilities of the underlying database engine.

DB engine and DB Database engine and Database

Table 1–10 Database Engine Meta Classes

Class Description

okClass Information about every class

okAttribute Information for every attribute in all classes

JDBC
Driver

ODBC
Driver

ODBC
Application

SQLRT

ODBC Application:

ODBC
Driver

DB
Engine

DB

Java
Application

SQLRT DB
Engine

DB

Java Application

Optimizing Application SQL Queries Against Oracle Lite Database

Improving Performance 1-25

1.4.4.2 Overview of SQL Runtime
The SQL Runtime is responsible for providing a SQL interface to the database. It maps
SQL entities to the appropriate object kernel entities and translates all SQL operations
into a sequence of basic object kernel primitives. For example, a table is mapped to a
class; its table columns are mapped to attributes within the class. The mapping
between SQL operations and object kernel APIs is not defined here, as this is not the
focus of the document.

Execution of a SQL statement involves the following steps:

1. Compile

You can compile a SQL statement into an internal representation that is easy and
efficient to execute. A SQL statement can be one of the following:

■ DDL (data definition language): An example of a DDL statement is "CREATE
INDEX emp_last_name ON employee (last_name, first_name)".

■ DML (data manipulation) statement: Examples of DML statements are
SELECT, INSERT, UPDATE, DELETE and COMMIT statements.

2. Bind

A SQL statement may contain markers (such as "?"), which are used as
placeholders for parameters that can be supplied before execution of the
statement. Binding sets the value for each marker in the SQL statement.

3. Execute

This is when a previously compiled statement is executed. Execution involves
interpretation of the internal representation of the SQL statement and making all
calls into the database engine to achieve the desired result. The following are
examples of what the execution means for particular statements:

■ For an index creation statement, the index is created.

■ For an INSERT statement, the row is inserted into the table. In the object
terminology, a new object is created.

■ For a SELECT statement, the statement is executed, where a row is available
for retrieval. The execution of a SELECT statement produces a result set, which
is a set of rows. It is not necessary that all rows be materialized. However, for a
READ COMMITED isolation level transaction, all rows are materialized at this
step.

4. Fetch

This step is required for a SELECT statement. Every fetch call returns one row to
the caller.

okIndex Information for every index created in the database

okGroup Information about every group in the database

Note: All object kernel Meta classes belong to the MetaGroup group,
which is case sensitive. The DB Engine is responsible to implement the
ACID properties of a transaction.

Table 1–10 (Cont.) Database Engine Meta Classes

Class Description

Optimizing Application SQL Queries Against Oracle Lite Database

1-26 Oracle Database Lite Troubleshooting and Tuning Guide

5. Close

Close the result set created in the execute step. Any remaining rows, if any, are
discarded and any resources tied to the processing of the statement are freed up.

1.4.4.2.1 Compilation Compilation is somewhat like translating a JAVA program into
byte code. In SQLRT, we translate a SQL statement into an internal data structure
called a tree. The following are the steps SQLRT goes through to generate the
execution tree, which determines the best method to execute that statement:

1. Parsing: The input statement is scanned and is converted into an abstract syntax
tree. Grammatically incorrect statements are flagged and any syntax error is
returned.

2. Normalization: The tree is walked, normalized and decorated. Transformation is
carried out and semantic information is added to the tree nodes. Any tautologies
are evaluated.

For Example ((1 = 0) AND C1 > 5 OR C2 = 7) is evaluated to (C2 = 7). Any
semantic error is caught during the tree traversal, such as Data type mismatches in
expressions or SQL operations, references to non existing tables, or columns,
unsupported SQL operations, and so on.

3. View expansion: Any references to views are expanded in line and the view tree is
walked.

4. View Optimization: If possible, the view expansions are collapsed into the main
queries. For example, the statement "SELECT * FROM v1,v2 where v1.c1=v2.c2" is
resolved to a query on the base tables in v1 and v2. The transformation takes place
on the query tree. This merging may not be possible. For example, if a view selects
aggregate functions (COUNT, AVG, and so on.) or contains UNION or MINUS
operators, it cannot be collapsed.

5. Subquery optimization: You can re-write the query to eliminate the subquery. This
technique is called subquery un-nesting. The tables and filter conditions in the
where clause are moved to the parent query block. This is possible only when the
subquery does not contains any aggregates, UNION, or MINUS operations and
SQLRT can make sure that the subquery does not return any duplicate rows.

6. Transitive Closure of Predicates: Predicates are analyzed and extra inferences are
added to the WHERE clause, which helps the optimizer in selecting the best
execution plan.

7. Predicate Push: The predicates are pushed down from top to bottom, which helps
the queries on top of views. When a view contains any UNION, MINUS and GROUP
BY clauses, it helps to push the filtering condition to the source of data or base
tables.

8. Execution Plan Generation: The query is now analyzed to generate the best
execution plan, which is based on a cost-based approach.

9. Query Execution: The execution plan generated is used to execute the query.

1.4.4.2.2 Query Tree Transformations or Query Re-write Examples These are examples of
query tree transformations or query re-writes.

■ View Optimization Example for View Replacement or Merging

■ View Expansion and Predicate Push

■ Subquery Transformation

Optimizing Application SQL Queries Against Oracle Lite Database

Improving Performance 1-27

View Optimization Example for View Replacement or Merging
Consider the following statements:

1. SQL> CREATE VIEW v_dept_emp AS SELECT emp.*, dept.dname, loc
FROM emp, dept WHERE emp.deptno=dept.deptno;

2. SELECT * FROM v_dept_emp WHERE loc = ‘DALLAS’;

The query tree transformation process substitutes the definition of view v_dept_emp
into the select query and collapses the query into single level query. The query then
becomes as follows:

SELECT emp.*, dept.dname, dept.loc FROM emp, dept WHERE emp.deptno=dept.deptno
and loc = ‘DALLAS’

View Expansion and Predicate Push
Consider the following example:

SQL> CREATE VIEW v_sal_expense (dno, name, total_sal) AS SELECT dept.deptno,
dept.dname, sum(sal) FROM emp, dept WHERE emp.deptno=dept.deptno group by
dept.deptno, dname;

SELECT * FROM v_sal_expense WHERE total_sal > 10000;

Since the query involves aggregation, it cannot be collapsed into the main query and
the query after re-write is as follows:

SELECT * FROM (
 SELECT dept.deptno, dept.dname, sum(sal) total_sal
 FROM emp, dept
 WHERE emp.deptno=dept.deptno
 group by dept.deptno, dname) temp_view
WHERE temp_view.total_sal > 10000;

Consider the following query on the same view:

SELECT * FROM v_sal_expense WHERE dno = 10;

The query after the re-write is as follows:

SELECT * FROM (
 SELECT dept.deptno, dept.dname, sum(sal) total_sal
 FROM emp, dept
 WHERE emp.deptno=dept.deptno and
 dept.deptno = 10
 group by dept.deptno, dname) temp_view
WHERE dno=10;

The predicate dept.deptno = 10 is pushed down into the nested view expansion,
which demonstrates the Predicate Push optimization. The aggregation is performed
for the department number 10 only; therefore, this query performs better.

Note: The final query does not refer to the view.

Note: The predicate total_sal > 10000 was not pushed into the
inner query block as total_sal refers to an aggregate sum(sal)
column in the view definition.

Optimizing Application SQL Queries Against Oracle Lite Database

1-28 Oracle Database Lite Troubleshooting and Tuning Guide

Subquery Transformation
Consider the following query:

SELECT * FROM emp WHERE emp.deptno IN (SELECT deptno
 FROM dept WHERE loc = 'DALLAS’);

Since the subquery selects a unique key column (deptno), it can be converted into a
join query. In general, a join query provides more flexibility in optimization and
performs better. This query could be transformed as follows:

SELECT emp.* FROM emp, dept
 WHERE emp.deptno = dept.deptno AND dept.loc = 'DALLAS’;

1.4.4.3 Execution Plan Generation
Execution plan generation is the last step of query compilation. It is the responsibility
of the query optimizer to find the least expensive plan. It generates all plausible
execution plans and picks the least expensive plan. As the number of tables in a query
increases, the cost of evaluating all possible orders of execution increases
exponentially. The optimizer uses its own heuristics to reduce the search space. The
query optimizer considers only I/O costs for comparing the different execution plans.
It does not consider the CPU time used to perform different operations. The I/O cost is
computed based on the statistical information available to it; therefore, the quality of
cost estimation depends upon the quality of statistics available.

■ Section 1.4.4.3.1, "Statistics"

■ Section 1.4.4.3.2, "Access Methods"

■ Section 1.4.4.3.3, "Single Table I/O Cost"

■ Section 1.4.4.3.4, "Join Query Optimization"

1.4.4.3.1 Statistics The Oracle Database Lite engine maintains the following statistics
at all times. You do not have to run a separate command to update the statistics.

Note: The above subquery is a non-correlated subquery; that is, the
subquery does not make a reference to columns from the tables in the
outer query. For a non-correlated query, Oracle Database Lite does not
always transform it to a join query. Instead, sometimes it decides to
cache the query result into memory and perform the IN operation at
run-time. A correlated subquery, if it meets the correctness
requirements, is always transformed into a join query, as follows:

SELECT * FROM emp WHERE emp.deptno IN (SELECT deptno FROM dept
WHERE loc = 'DALLAS’ AND emp.deptno = dept.depno);

Which is transformed into the following:

SELECT emp.* FROM emp, dept WHERE emp.deptno = dept.deptno AND
dept.loc = 'DALLAS’ AND emp.deptno = dept.depno;

Table 1–11 Oracle Database Lite Engine Statistic Parameters

Parameter Description

npg Number of data pages allocated to each table.

nrows Number of rows in the table.

ndk For each index, number of distinct keys.

Optimizing Application SQL Queries Against Oracle Lite Database

Improving Performance 1-29

Selectivity Factor
To estimate I/O cost, the optimizer estimates the number of pages that will be read or
written to satisfy the query. It evaluates the disk I/O costs for different execution plans
before selecting the best one. It assigns a selectivity factor to each predicate (also called
a factor in boolean algebra), which is defined as an expected fraction of rows and
satisfies the predicate. That is, the selectivity factor is defined as follows:

Selectivity factor = (expected-number-rows)/(total-number-of-rows)

The current values of the selectivity factor are as follows:

Like: A like predicate is transformed into a range and like. The range predicate is then
appropriately optimized. For example, Name like ‘S%’ is converted into Name like
‘S%’ AND Name >= ‘S’ AND Name < ‘T’. Now the range (‘S’, ‘T’) for Name can be
used to calculate the selectivity.

Not Equal: Selectivity factor for not equal is as follows: (1-Selectivity factor for the
equal operator).

Caveat With Bind Variables
When bind variables are present, then the selectivity factor for "range", "between" and
"like" cannot be correctly estimated and the default selectivity factor is used.

1.4.4.3.2 Access Methods An important component of an execution plan is the "access
method" used for each table involved in the execution plan. The Oracle Lite database
engine supports the following access methods:

1. A Full table scan: All pages of the table are searched. Therefore, the cost of
retrieval is equal to npg (the number pages) in the table.

2. Index access method: A key value or key range—such as, price between (10,15)—is
used to retrieve the qualifying rows. The key or key range is used to find the
row-ids of the matching rows. Each row-id uniquely identifies the location of the

nrangeSize For each index, OKAPI supports an API to estimate the number of rows
selected for a given range of key values.

nMaxKey Maximum value of a key (an OKAPI call is used to estimate it).

nMinKey Minimum value of a key (an OKAPI call is used to estimate it).

Note: The values are subject to change without any notice.

Table 1–12 Selectivity Factor Values

Condition Example Default With Index

Equality Name = ‘Smith’ 1/5 1/ndk

Range C1 > 5 1/2 Pretty good estimate

Between C1 between (4,10) orC1 > 4 and
C1 < 10

1/3 Pretty good estimate

Is Null C1 is NULL 1/10 1/10

Like Name Like ‘Sm%’ 1/3 Estimate*

Table 1–11 (Cont.) Oracle Database Lite Engine Statistic Parameters

Parameter Description

Optimizing Application SQL Queries Against Oracle Lite Database

1-30 Oracle Database Lite Troubleshooting and Tuning Guide

row in the database. The rows are fetched in increasing or decreasing order of the
key, which is useful when optimizing queries containing order by or group by
clauses.

Cost of Access Methods
The I/O Cost can be computed in terms of the following parameters:

Since the values for "h" and "nlf" are not available, its values are improvised based on
nrows and estimated key size.

Cost of a Full Table Scan
The cost of a full table scan is the number of data pages, as follows: Cost = npg.

Cost of an Index Scan
The cost of an index scan is approximated to be as follows:

Cost = the number of index pages read + the number of data pages read

Where: number of index pages read = (h-2) + ceil(nlf * sf). The
value for h is calculated based on the estimated key size and number of rows.

It is assumed that the root of index tree is always in memory. Thus, the cost of reading
the root page is ignored. Assuming that only a small number of rows are selected by
the index access method, we approximate the number of leaf pages read to be one.
This is performed sine we do not have information about nlf. Even for a range scan,
we approximate it to be one.

For a primary key index or for an index with ndk/nrows close to one, we assume the
data to be clustered on the key column values and we estimate the number of data
pages read as follows:

Number of data pages read = ceil(sf * npg)

If the index is not a primary key index, then there is a good chance that the consecutive
key values will not be on the same data page. Each new row access can potentially
read a new page. The number of data pages read will be in between sf *npg and sf
* nrows. We use the following formula as an approximation to actual number of data
pages read:

Number of data pages read = ceil (sf * sqrt (npg, nrows))

Therefore, the cost of index access is as follows:

■ For a clustered index, the cost is = (h-1) + ceil(sf * npg).

■ For a non-clustered index, the cost is =
 (h-1) + ceil(sf*sqrt(npg,nrows)).

Table 1–13 I/O Access Method Cost

Parameter Description

npg Number of data pages.

nrows Number of rows in the table.

h Height of the index. It is also called depth of an index tree.

nlf Number of leaf pages in an index tree.

sf Expected Fraction of the number of rows selected. It is between 0 and 1.

Optimizing Application SQL Queries Against Oracle Lite Database

Improving Performance 1-31

1.4.4.3.3 Single Table I/O Cost To find the optimal execution plan for a single table
query, the costs for each possible access methods are evaluated and the least expensive
access method is picked. For example:

SELECT * FROM T1 where C1 between 1 and 5 AND C2 > 5 and C2 < 100;

Assuming that the indexes exist on C1 and C2, then the optimizer estimates the
selectivity for predicates "C1 between 1 and 5" and "C2 > 5 and C2 < 100". It then
computes the I/O cost for retrieving the rows using a full table scan, an index scan on
C1, and an index scan on C2. The access method that produces the least amount of I/O
is chosen.

Interesting Order Optimization
For a single table query that contains "order by" or "group by" clause, the interesting
order optimization technique is used to influence which access method is chosen. The
result set size and sorting cost are estimated. Sorting can be avoided, if an index is
available that can return the rows in the right order. If it is less costly to use an
execution plan that does not involve any sort, then it will be chosen. The size of the
result set is given by the following:

Number of rows in the result set =
 nrows * min(selectivity values for each predicate in the where clause)

1.4.4.3.4 Join Query Optimization The join query optimization involves evaluation of a
large number of query execution plans. The number of possible plans increases
exponentially with the number of tables. The following query illustrates this:

SELECT e.empno, e.ENAME, d.dname
FROM EMP e, DEPT d
WHERE e.deptno = DEPT.DEPTNO
AND e.JOB = 'MANAGER'
AND e.sal > 2000;

Here both possible orders of (EMP, DEPT) or (DEPT, EMP) exist for the execution. If
EMP is chosen as the driving table, then the rows qualifying (EMP.JOB_TITLE =
‘Manager’ AND EMP.sal > 5000) are retrieved one by one from the EMP table.
The optimizer considers the three possible access methods for EMP table, as follows:

1. Sequential scan of EMP table.

2. Index access using index on EMP.JOB_TITLE if one exists.

3. Index access using index on EMP.SAL if one exists.

The optimizer picks the method that produces least amount of I/O. Based on the
selectivity factor assigned to each predicate, it estimates the number of rows selected
for the EMP table. Then, it estimates the cost of retrieving a set of matching rows for
each outer row in the EMP table. The total cost of execution using this order is as
follows:

Cost = npgemp + est_rowemp * (cost_per_row_dept)

Where:

Table 1–14

Parameter Description

est_rowemp Estimated number of rows fetched from EMP table

cost_per_row_dept Cost of index access into DEPT to retrieve matching department rows
for each row fetched from EMP

Optimizing Application SQL Queries Against Oracle Lite Database

1-32 Oracle Database Lite Troubleshooting and Tuning Guide

The same calculation is repeated for the order DEPT, EMP. Whichever order produces
the lowest cost is chosen. As the number of predicates and tables increase the cost of
computing, the different possibilities grow exponentially. To reduce the compilation
time, Oracle Lite uses aggressive heuristics to prune the search space, thereby
sometimes landing into a sub-optimal execution plan. Also, unreliable statistics values,
skewed data, and unavailability of selectivity factors for non-index columns can
contribute to sub-optimal execution plan generation.

The following are the main tasks performed during a join query optimization:

1. The optimizer isolates local predicates (the predicates on a single table) from join
predicates. In addition, the optimizer estimates the effective table sizes by the
applying the selectivity factor of local predicates to the table. Local predicates are
predicates that refer to columns from one table only. Whenever an index is
available, the calculation of selectivity factor is fairly accurate. Oracle Lite assumes
that the data is uniformly distributed; however, when the data is skewed, the
estimate can go wrong and the execution plan chosen may not be optimal. When
an index is not available, it uses default selectivity for computation.

2. A driving table—the table with the smallest effective cardinality—is picked first.
Its optimal access method is picked. The table is put in the set of "outer" tables.

3. The query is examined to discover which possible tables can be joined to the tables
in the current outer tables. The cross product is not considered. The I/O cost is
estimated for all possible joins. The least costly join is chosen and is added, along
with the chosen table, to the outer table set. The step is repeated until it has
selected all tables in the query. By the end, it has computed the execution order
and access methods for each table in the query.

4. The optimizer saves the current execution plan and picks a new driving table,
whose effective cardinality is the second lowest. It repeats step 3 and selects the
least expensive execution plan of the two plans. Again, it repeats step 3 with the
third, fourth and fifth smallest table—always keeping a copy of the current least
expensive execution plan.

5. The optimizer creates hints for when to create an index for intermediate results of
a view. This is useful when joining a view that is not collapsed to another table or
view.

6. When two tables are outer joined, the master table has to be scanned before the
slave table (the table whose column has "+" in the joining column).

Interesting Order Optimization
An interesting order optimization eliminates the final sorting step for queries
containing order by or group by clauses. If a suitable index exists that can eliminate
the sorting step, then the cost is estimated the following ways:

1. Sorting + the best execution plan.

2. Pick a drive table that has columns from order by or group by clause, such that an
index can be used to retrieve the data in the right order. Estimate the execution
plan cost.

The least expensive plan is then chosen.

1.4.4.4 Query Execution Engine
The SQL Runtime engine relies on the database engine to implement simple data
filtering, access methods, and sorting. A single table query execution of a query
involves the following steps:

Optimizing Application SQL Queries Against Oracle Lite Database

Improving Performance 1-33

1. Decide if a temporary table is necessary to store the result. For a READ COMMITED
isolation level transaction, a temporary table is required to store the result. While
the result is being materialized, all other transactions are blocked from committing
to preserve the read committed semantics. A temporary table is necessary when
sorting is required. The DBE can only sort full tables.

2. Create the iterator on the table. Push the maximum number filter conditions to the
database engine. This way, the smaller result set is returned to SQLRT.

3. If there are any complex filters that cannot be evaluated by DBE, evaluate them
now and reject any rows that do not qualify. Examples of complex filters are SQL
functions and subquery operators, such as UPPER(NAME) = ‘SMITH’, or
zipcode IN (SELECT zipcode from TX where ….).

4. If the temporary table is created, then store all qualifying rows into this table. Once
all rows are inserted into the temporary table, then the result is returned from this
table.

1.4.4.4.1 Join Query Execution The SQLRT implements the join operation by executing
the query in a nested loop fashion. The optimizer has already picked the optimal order
of tables. The execution begins with the first (outer most) table in the list. An iterator is
created on this table. A qualifying row is retrieved. The next table is picked from the
list and a new iterator is created using the qualifying values from the row already
fetched. A new qualifying row is retrieved from the second table. If there are more
tables in the list, then the process continues until you reach end of the list. This
provides the first matching row for the SELECT statement. Find the next matching row
from the last table. If you do not find any qualifying rows, then return to the previous
table in the list and repeat the process. Every time you advance to the next table in the
list, you create a new iterator. Every time you do not find any more matching rows on
a table, then close the iterator and return to the previous table in the list. If you exhaust
all rows in the outer most table, then you have found all rows. The execution is
analogous to nested loops execution in a programming language, which is why it is
called a nested loop join.

1.4.4.4.2 Nested View Execution Oracle Database Lite does not distinguish between
dynamic views (the query block in the FROM clause) or a view table being used in the
FROM clause. Both are processed in the same way. If a nested view cannot be merged
with the containing query and it is not the first to be picked in the execution order,
then SQLRT materializes the view into a temporary table and creates a temporary
index on the joining column(s). The index is used for joining outer tables with the
view. Since the index is created at runtime, the optimizer does not have access to
selectivity factors for view columns. The order chosen by the optimizer is based on
default selectivity factors and estimated number of rows in the view.

1.4.4.5 Optimization Tips
This section provides guidelines to debug performance problems and helps you
design better queries for the Oracle Lite database. Query optimization refers to the
techniques used to find best execution plan.

■ Section 1.4.4.5.1, "Index Access Method"

■ Section 1.4.4.5.2, "Identifying The Bottleneck"

■ Section 1.4.4.5.3, "Single Table Query Blocks"

■ Section 1.4.4.5.4, "Query Blocks Containing Multiple Tables"

■ Section 1.4.4.5.5, "Known Limitations"

Optimizing Application SQL Queries Against Oracle Lite Database

1-34 Oracle Database Lite Troubleshooting and Tuning Guide

1.4.4.5.1 Index Access Method An index access method can be used for equality, as well
as range predicates. A predicate has to be one of the following forms in order for it to
be considered for index access:

■ column_1 = value1

■ column_1 rel-op value

■ column_1 = value1 AND column_2 = value2 AND …

■ column_1 = value1 AND column_2 = value2 AND … column_n rel-op value-n

Where:

■ rel-op—One of "=". ">", "<", ">=", <="

■ column_n—Prefix columns of an index key. The value is an expression that can be
evaluated to a constant value. For example, UPPER(name) = ‘TOM’ cannot be
used with an index access method, UPPER(name) is not a column name, but an
expression on the column name. Whereas name = UPPER(’TOM’) can be used as
an index predicate; the right hand side is a constant expression.

1.4.4.5.2 Identifying The Bottleneck The largest problem of solving a query optimization
problem is identifying the performance bottlenecks. Where is the CPU spending time?
A typical customer query contains multiple tables, predicates, and subqueries. It may
also contain outer joins and UNION operations. We recommend the following steps to
debug the problem:

1. Replace all synonyms with base objects. Expand all views by corresponding view
definitions. Imagine how SQLRT processes the query and carries out all possible
transformations. Identify all query blocks, where each query block contains one
SELECT statement.

2. Experiment with different query blocks one by one and find the slowest
performing query block.

3. Optimize the problematic query block by examining the indexes already existing
on columns involved in the query block. Determine if creating new indexes or
dropping some indexes improves the performance. Check the order of tables
selected by the optimizer (See the "Tools" section). Can it be improved if the query
is executed using a different execution order? You can use a HINT to force the
execution order of tables.

4. Once the bottleneck is resolved, repeat the process for the next bottleneck.

Tools
In Oracle Database Lite, you can dump query execution plan information by enabling
SQL TRACING, which is enabled by including the following line in the polite.ini
configuration file.

OLITE_SQL_TRACE= yes

This creates an oldb_trc.txt file in the current working directory of the process
accessing the database. If the file already exists, then it opens the file for appending the
dump information. The dump contains the following basic information:

1. Text of the SQL statement and every views in the SQL statement.

Note: You should not create indexes on a column that has multiple
duplicate values; that is, the ratio of nrows/ndk to ndk is large.

Optimizing Application SQL Queries Against Oracle Lite Database

Improving Performance 1-35

2. The time taken to compile the query.

3. The value of each bind variables.

4. Order of joining the tables.

5. Temporary tables created.

6. Access method used for each table. For an index access method, it prints the index
name and index number. If the index name is blank, then you can use
idxinfo.exe to discover the index information.

1.4.4.5.3 Single Table Query Blocks For a single table query, the query optimizer does
not select the best available access method. However, it does collect statistics for all
available indexes. The job for selecting the best index is left to the DBEngine, which
uses a rule-based approach to select the appropriate index. Ensure that the index is
available for the highest selective columns, as shown in the following example:

SELECT * FROM EMP WHERE NAME = ’Smith’ and EmpNo between 1 and 1000;

Assuming that the total number of employees is a few thousand, then we would
expect the predicate NAME = ‘Smith’ to return fewer rows than the predicate EmpNO
between 1 and 1000. Therefore, we should create an index on the NAME column.

1.4.4.5.4 Query Blocks Containing Multiple Tables Due to limitations of availability of
statistics, and inherent assumptions made about the distribution of data, the execution
plan chosen is not always optimal. Also, when suitable indexes are not present, the
Oracle Lite Database Engine uses a sequential scan, as opposed to an index access
method. To illustrate the importance of the index, see the following query:

SELECT e.empno, e.ENAME, d.dname FROM EMP e, DEPT d
WHERE e.deptno = DEPT.DEPTNO AND e.JOB = 'MANAGER' AND e.sal > 2000;

cost = npgemp + est_rowemp * (cost_per_row_dept)

Let us assume that EMP has 1000 rows with 50 rows per page; that is, the npgemp =
20. Let us assume that the est_rowemp is 50, npgdept = 10 and the cost of the index
access into the department is 2. The cost calculation is tabulated, as follows:

The cost of execution changes dramatically when an index is present. Therefore, the
biggest challenge to improve the performance of a query in an Oracle Lite database is
as follows:

1. Find the right set of indexes.

2. Optimal order for execution of tables.

Note: Since the DBEngine is following a rule-based approach and
EMPNO is a primary key column, it may not select the index on the
NAME column.

Table 1–15 Cost Calculation Tabulation

npgemp est_rowemp npgdept

Access Method
dept cost_per_row_dept cost

20 50 10 Sequential 10 520 pages

20 50 10 Indexed 2 120 pages

Maximizing JVM Performance By Managing Java Memory

1-36 Oracle Database Lite Troubleshooting and Tuning Guide

There is no easy answer to the above tasks. It requires a deep understanding of the
query that you are writing. The first action is to figure out the driving table, which is
usually a table with many conditions involving constant values. For example, in the
above table, it is most likely the EMP table. On the other hand, if there are only couple
of rows in the DEPT table, then the DEPT table is a good candidate for the driving
table. Once you select a driving table, the next task is to figure out the possible tables
that can be joined to this table. What indexes will help in joining the current result set
to the new table? Try joining these two tables and test if the time you receive makes
sense. Now, add the third table and repeat the process. To force a specific join order,
you can use the HINT clause supported by the Oracle Lite Database. Refer to the
Oracle Database Lite SQL Reference for more information.

1.4.4.5.5 Known Limitations 1.In the process of finding the maximum and minimum
values for an index key, the optimizer can spend too much time if there are large
number of duplicates values near maximum and minimum values.

2. Sorting cost calculation is arbitrary.

3. In the presence of host variables, the selectivity for a range or like predicate cannot
be correctly estimated.

1.4.4.6 Glossary
■ API - Application Programming Interface

■ ACID - ACID properties refer to atomicity, consistency, isolation, and durability

■ A Correlated Subquery - A subquery that references columns from tables that are
not present in its own "from" clause.

■ Cross Product - When you join two tables without any joining condition, you
produce a cross product. The cross product of a table containing m rows with
another table containing n rows produces (m x n) rows.

■ OKAPI -- Object Kernel Application Program Interface is implemented by the
Oracle Lite Database Engine, which you can use to program your database
application.

■ Predicate – A boolean condition that evaluates to "true", "false" or unknown.
Examples are: (Emp.Salary > 50000), (Dept.DepNo = 10 AND Emp.HireDate >
’17-Nov-2001’)

■ SQLRT – Oracle Lite SQL Runtime Engine that is responsible for implementing
SQL functionality on top of Oracle Lite database engine.

1.4.4.7 References
1. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A.,Price T.G. Access

Path Selection in a Relational Database System. In Readings in Database Systems.
Morgan Kaufman. This is a classical paper and must read for any one who wants
to learn about query optimization.

2. Surajit Chaudhuri, An Overview of Query Optimization in Relational Systems,
Microsoft Research

1.5 Maximizing JVM Performance By Managing Java Memory
You can maximize your JVM performance by modifying the amount of memory used
by the three areas of Java memory. This is fully described in Section 2.5.1,
"Troubleshooting An Out of Memory Error".

Troubleshooting 2-1

2
Troubleshooting

This document contains frequently asked questions for troubleshooting the Mobile
Server. Topics include:

■ Section 2.1, "Troubleshooting Synchronization"

■ Section 2.2, "Troubleshooting the Mobile Server"

■ Section 2.3, "Troubleshooting the Mobile Server Repository"

■ Section 2.4, "Troubleshooting the Oracle Lite Databases"

■ Section 2.5, "Troubleshooting JVM Errors"

■ Section 2.6, "Troubleshooting Security"

2.1 Troubleshooting Synchronization
The following sections describe how to troubleshoot the synchronization process or
what to do in the event of certain synchronization scenarios:

■ Section 2.1.1, "Synchronization Errors and Conflicts"

■ Section 2.1.2, "Problems When Synchronizing Large Number of Rows"

■ Section 2.1.3, "First Synchronization Causes Browser to Timeout"

■ Section 2.1.4, "Situations Where the Client is Out of Sync that Triggers a Complete
Refresh"

■ Section 2.1.5, "The "Inconsistent Datatypes" SQLException Received If Order is
Not Correct in Query"

■ Section 2.1.6, "MGP Compose Postponed Due to Transaction in the In-Queue"

■ Section 2.1.7, "Avoiding the Server Busy Warning"

■ Section 2.1.8, "Enabling Online Web-to-Go Applications on the Mobile Server
Host"

2.1.1 Synchronization Errors and Conflicts
Consult the following sections for details on how to resolve any synchronization errors
or conflicts:

■ Section 2.1.1.1, "General Synchronization Errors and Conflicts"

■ Section 2.1.1.2, "Synchronization Error if Client Device Clock is Inaccurate"

Troubleshooting Synchronization

2-2 Oracle Database Lite Troubleshooting and Tuning Guide

2.1.1.1 General Synchronization Errors and Conflicts
With the Mobile Server, you can have the following errors when synchronizing: nullity
violations, foreign key constraint violations, or the client updates a row at the same
time that the server deletes it.

The Mobile Server does not automatically resolve synchronization errors. Instead, the
Mobile Server rolls back the corresponding transactions, and moves the transaction
operations into the Mobile Server error queue. It is up to the administrator to view the
error queue and determine if the correct action occurred. If not, the administrator must
correct and re-execute the transaction. If it did execute correctly, then purge the
transaction from the error queue.

A Mobile Server synchronization conflict occurs if:

■ Nullity violations.

■ Foreign key constraint violations.

■ The client and the server update the same row.

■ The client and server create rows with the same primary key values.

■ The client deletes the same row that the server updates.

■ The client updates a row at the same time that the server deletes it.

See Section 3.11, "Resolving Conflict Resolution with Winning Rules" in the Oracle
Database Lite Developer’s Guide for more information on conflict resolution techniques.

2.1.1.2 Synchronization Error if Client Device Clock is Inaccurate
The client device clock must be accurate within the timezone set on the device before
attempting to synchronize. An inaccurate time may result in the following exception
during synchronization: CNS: 9026 "Wrong username or password. Please
enter correct value and reSync."

2.1.2 Problems When Synchronizing Large Number of Rows
When you synchronize a large number of rows, you may want to set the AUTO_
COMMIT_COUNT parameter in the POLITE.INI file to a smaller number. The smaller
the number is, the more often a commit occurs. If you do not set the AUTO_COMMIT_
COUNT parameter to a smaller number, you may receive an OutOfMemory error.

See Section G.3.2.5, "AUTO_COMMIT_COUNT" in the Oracle Database Lite
Administration and Deployment Guide for information on this parameter.

2.1.3 First Synchronization Causes Browser to Timeout
The duration of the first synchronization process, between the client and the server
may take a very long time (For example, upwards of 45 minutes), causing the
Microsoft Internet Explorer browser to time out.

The solution is available only for the Microsoft Internet Explorer. For the Mobile Client
for Web-to-Go, change the ReceiveTimeout value for a particular registry key on
Windows 32. The following paragraphs provide the location of this parameter and
specifies how to change its value.

1. If you want to change the ReceiveTimeout value (that is, the number of
milliseconds that the browser will wait to receive the data from the server),
uncomment the following two lines in the REGISTRY section of the file setup.ini.

Troubleshooting Synchronization

Troubleshooting 2-3

This file is downloaded to the client from the server when the Mobile Client for
Web-to-Go is first installed on the client machine.

#KEY: HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\
 Internet Settings
#VALUEDWORD: ReceiveTimeout = 40000000

2. To uncomment the two lines, remove the hash marks in front of the KEY and
VALUEDWORD statements and then change the ReceiveTimeout value to the
desired value in milliseconds. In the example given below, the timeout value is
40000 seconds.

wsh -o mobileadmin/manager@webtogo.world
cd setup
edit setup.ini

3. When you modify the file setup.ini in the Mobile Server Repository, the next time
that the file is downloaded to the Mobile Client, these two lines will be
uncommented.

2.1.4 Situations Where the Client is Out of Sync that Triggers a Complete Refresh
When a client is out of sync with the server, any outstanding uploaded transaction
from the client is placed in the error queue and a complete refresh is triggered to
re-initialize the client data with what is currently on the server.

The following are a list of the situations—ordered from most to least likely—that can
trigger a complete refresh for the client:

■ Dropping and then republishing the application.

■ Synchronizing by the same Mobile user from multiple devices on the same
platform or from different platforms when the publications are not
platform-specific.

■ Receiving unexpected server apply phase conditions—such as constraint
violations, unresolved conflicts, other database exceptions.

■ Modifying the application—such as changing subsetting parameters, or adding or
altering publication items.

■ Requesting a force refresh from either the server admin or client.

■ Two separate applications using the same backend store.

■ Unexpected client apply conditions—such as deleting, moving or restoring the
Oracle Lite database, database corruption, memory corruption, and other general
system failures.

■ Loss of transaction integrity between server and client. The server fails post
processing after completing a download and disconnecting from the client.

■ Data transport corruptions.

2.1.5 The "Inconsistent Datatypes" SQLException Received If Order is Not Correct in
Query

If you are creating a fast refresh publication item on a table with a composite primary
key, the snapshot query should list the primary key columns in the order that they are
present in the table definition. This automatically happens during the column selection
when MDW is used or when a SELECT * query is used. Note that the order of the

Troubleshooting Synchronization

2-4 Oracle Database Lite Troubleshooting and Tuning Guide

primary key columns in the table definition may be different from those in the primary
key constraint definition.

The following example demonstrates what is valid or invalid given the table definition
for TAB1:

CREATE TABLE TAB1(
 ID1 NUMBER(10) NOT NULL,
 ID2 NUMBER NOT NULL,
 COL1 VARCHAR2(200),
 COL2 VARCHAR2(200),
 ID3 NUMBER(4) NOT NULL);
ALTER TABLE TAB1 ADD CONSTRAINT TAB1_PK PRIMARY KEY (ID3, ID2, ID1);

The following are valid snapshot queries:

SELECT * FROM TAB1
SELECT ID1,ID2,ID3,COL1,COL2 FROM TAB1
SELECT ID1,ID2,COL1,COL2,ID3 FROM TAB1

The following are invalid snapshot queries:

SELECT ID3,ID2,ID1,COL1,COL2 FROM TAB1
SELECT ID3,ID2,COL1,COL2 ID1 FROM TAB1

Define the table columns where the primary key columns appear before other
columns. The order of the primary key columns in the table definition order must
match the constraint definition in the snapshot query.

2.1.6 MGP Compose Postponed Due to Transaction in the In-Queue
If the user synchronized and uploaded some more changes after the last apply cycle
for a particular user; by default, the MGP must first apply thse changes before it can
compose. If this keeps happening, the compose could be postponed beyond what you
would like. By default, the MGP tries to avoid a compose phase postponed due to a
transaction in the in-queue by performing an apply for any unprocessed in-queue data
before doing a new compose. However, if the MGP compose is postponed due to a
transaction in the in-queue, you can modify the following parameters to avoid the
error:

■ SKIP_INQ_CHK_BFR_COMPOSE: By default, this parameter is set to NO. Setting
this parameter to YES, then a compose is performed for a client even if there is
unprocessed data in the in-queue.

■ DO_APPLY_BFR_COMPOSE: By default, this parameter is set to YES. If set to YES,
the unprocessed data in the in-queue is applied before a client compose. This
parameter takes effect only if SKIP_INQ_CHK_BFR_COMPOSE is set to NO.

For most situations, preserving the default values for these two parameters avoids the
occurrence of the MGP Compose postponed error.

2.1.7 Avoiding the Server Busy Warning
The Server Busy warning can be thrown for one of the following reasons:

■ When the MGP is processing apply/compose for that user.—To avoid MGP
contention with sychronization, MGP should be scheduled to run when few clients
are synchronizing. Alternatively, you could use queue-based synchronization,
which does not use the MGP at all; thus, avoiding MGP contention with
synchronizaiton.

Troubleshooting the Mobile Server

Troubleshooting 2-5

■ If a previous synchronization was interrupted for that user and Oracle Database
Lite rolls back the transaction—If the Server Busy warning is a result of a long
rollback, then Oracle Database recommended tuning steps for rollback operation
may reduce the Server Busy state for the client.

2.1.8 Enabling Online Web-to-Go Applications on the Mobile Server Host
When you publish you application, you can immediately initialize a synchronization
from the client. However, if you want to use the application on the same host as the
Mobile Server, you will receive an error.

The OC4J layer under the Mobile Server does not support auto deployment of the Web
application in the Online Mode. If the user wants to access the Web application in the
online mode immediately after publishing, then the administrator must restart the
Mobile Server.

If you only have the random Web application that you wish to access in this manner,
just restart the Mobile Server. However, if you want to have multiple applications to be
automatically deployed, you can enable the auto deployment option. This is not
recommended as it has an adverse effect on the performance of the Mobile Server.

To enable the auto deployment in the Mobile Server, perform the following:

1. Open the <J2EE_HOME>\mobileserver\config\server.xml file.

2. Modify the check-for-updates parameter from adminClientOnly to all.

3. Save the server.xml file.

4. Restart the Mobile Server.

2.2 Troubleshooting the Mobile Server
The following sections detail how to troubleshoot the Mobile Server and its repository:

■ Section 2.2.1, "Running the Mobile Server With Tracing Enabled"

■ Section 2.2.2, "Troubleshooting an Address Already In Use Error"

■ Section 2.2.3, "Overwriting OracleAS WEB.XML Causes Connection Failure"

2.2.1 Running the Mobile Server With Tracing Enabled
If you experience any difficulty with the Mobile Server running with the application
server or the standalone Mobile Server, you can enable tracing in the Mobile Server.

To enable tracing in the Mobile Server, set up your environment as described in
Section 3.1, "Enable Tracing on the Mobile Server". To enable tracing on your Mobile
Client, follow the instructions in Section 3.2, "Enable Tracing on Mobile Clients".

2.2.2 Troubleshooting an Address Already In Use Error
When you start the Mobile Server, it fails with the following error:

ERROR J2EE RMI0002 Error starting ORMI server

Note: Modifying this parameter enables the Mobile Server to
recognize any newly published applications on the host of the Mobile
Server. However, it also degrades performance.

Troubleshooting the Mobile Server Repository

2-6 Oracle Database Lite Troubleshooting and Tuning Guide

@ 1 port 23,791: Address already in use: JVM_Bind
ERROR java.net.BindException: Address already in
use: JVM_Bind

You need to modify the RMI and JMS ports in the rmi.xml and jms.xml file, which
are located in the <ORACLE_HOME>\mobile_oc4j\j2ee\mobileserver\config
directory. The port numbers may not already be in use by another process.

Normally, this error is caused by installing either of the following:

■ Two standalone Mobile Servers on a single machine

■ A standalone Mobile Server and a Web-to-Go client for OC4J on the same machine

2.2.3 Overwriting OracleAS WEB.XML Causes Connection Failure
When you install OracleAS and Oracle Database Lite; normally, you install the
OracleAS first and then Oracle Database Lite. The Oracle Database Lite adds an entry
to the web.xml file to define Oracle Database Lite as a Web service. This includes a
definition and location of the webtogo.ora file. So, if you have reinstalled OracleAS or
corrupted the web.xml file in any way, Oracle Database Lite and OracleAS do not
interact as they should.

The best method is to reinstall Oracle Database Lite on top of a fresh OracleAS
installation. Otherwise, if you have a backup copy of the web.xml file, you may only
need to overwrite the new one with the backed up copy. Verify that everything is the
same except for the addition of a web-app definition for webtogo-web.

2.3 Troubleshooting the Mobile Server Repository
The following sections describe how to recover the Mobile Server Repository:

■ Section 2.3.1, "Troubleshooting the Mobile Server Repository with the Mobile
Server Repository and Diagnostic Tool (MSRDT)"

■ Section 2.3.2, "Modifying IP Address of Machine Where Mobile Server Repository
Exists"

2.3.1 Troubleshooting the Mobile Server Repository with the Mobile Server Repository
and Diagnostic Tool (MSRDT)

Customers may modify the Mobile Server repository in the back-end database and,
without realizing it, violate some of the rules. We have provided a tool that helps you
analyze, validate, and debug the repository.

The Mobile Server Repository Diagnosis tool evaluates the repository and prints out
only what is found to be modified or missing. The output generated is best viewed if
you set your column width to 80 or if you pipe it into a file, to view it with Word or
WordPad.

■ Section 2.3.1.1, "Inspecting Files in the Mobile Server Repository"

■ Section 2.3.1.2, "Use the Mobile Server Repository and Diagnostic Tool to Validate
Your Environment and the Repository"

■ Section 2.3.1.3, "Execute the Repository Diagnostics Tool"

Troubleshooting the Mobile Server Repository

Troubleshooting 2-7

2.3.1.1 Inspecting Files in the Mobile Server Repository
You can use the Mobile Server shell utility (wsh) to inspect and modify the Mobile
Server Repository interactively. Start the Command Prompt and enter the following.

wsh -L system/x@olite-db

OR

wsh -o <adminuser>/<adminuser’s password>@o8db

For example, you could enter the following sample codes at the command prompt.

wsh -o administrator/admin@webtogo.world
wsh -L system/x@webtogo

This displays the Mobile Server Repository prompt.

The following table lists commands that are available for inspecting and altering the
Mobile Server Repository.

Table 2–1 describes available commands for inspecting and altering the Mobile Server
Repository.

2.3.1.2 Use the Mobile Server Repository and Diagnostic Tool to Validate Your
Environment and the Repository
You can use the Mobile Server Repository and Diagnostic Tool (MSRDT) to validate
your environment and what is in the back-end Mobile Server repository. The following
sections describe the validation that occurs:

■ Section 2.3.1.2.1, "Validate the Environment for the Mobile Server"

■ Section 2.3.1.2.2, "Validate Integrity of Mobile Server Tables and Data"

■ Section 2.3.1.2.3, "Validate the Structure and Contents of the Repository"

Table 2–1 Commands to Inspect and Alter the Mobile Server Repository

Command Definition

dir Displays a list of files in a directory.

copy Copies one or more files to another location.

cp Copies one or more files to another location.

edit Launches Notepad for editing a file.

del Deletes one or more files.

rm Deletes one or more files.

cd Displays the name or changes the current directory.

md Creates a directory.

rd Removes (deletes) a directory. Use the option -s to remove a directory
including all subdirectories.

type Displays the contents of a text file or files.

exit Quits the command shell.

quit Quits the command shell.

help Provides help information for shell commands.

sync Synchronizes the file system with the database.

Troubleshooting the Mobile Server Repository

2-8 Oracle Database Lite Troubleshooting and Tuning Guide

2.3.1.2.1 Validate the Environment for the Mobile Server Displays the system configuration
environment for the host where the Mobile Server resides, as follows:

■ Web-to-Go version

■ Consolidator version

■ Back-end Oracle database version

■ Definition of the Java library path

■ Definition of the Java CLASSPATH

■ Operating system architecture, type and version

■ Java VM vendor, version, name, home, and info (mode)

■ File encoding used

■ Path separator and file separator used

■ Country, time zone, and user language

■ Lists the Mobile Server administrators

■ Lists the contents/current configuration for the webtogo.ora file

2.3.1.2.2 Validate Integrity of Mobile Server Tables and Data When Mobile Server and the
repository are installed, certain tables, constraints, objects, and so on cannot be
modified. This part of the diagnostic tool checks that these requirements are still the
same as when installed, which includes the following:

■ Required tables exist

■ All columns within required tables exist

■ Required table attributes exist

■ Required constraints exist or have not been modified

■ Required sequences exist

■ Extra tables have not been added to Mobile Server schemas

■ Web-to-Go system and its application publications exist

■ Application files integrity check: If you have published an application to the
server, then check if the folder exists and is not empty. Also, if sharing a repository
among multiple Mobile Servers, ensures that the application is published on this
Mobile Server, where this tool is executed.

2.3.1.2.3 Validate the Structure and Contents of the Repository If you are experiencing
trouble with your repository, execute this tool to determine if any of the following
have occurred:

■ The mapping between primary keys for the map table and corresponding base
table must be consistent.

■ Invalid indexes

■ Consistency of the In-Queue schema with the view schema.

■ The records in the in-queue master table have corresponding records in the
in-queue detail table.

■ Any DML locked tables or entries in the C$ALL_LOGGED_TABLES.

■ Invalid triggers.

Troubleshooting the Oracle Lite Databases

Troubleshooting 2-9

■ Validate that all of the users subscribed to a publication also have all of the
corresponding sequences assigned to the same publication.

■ Invalid sequence values.

■ Validate that every column in C$ALL_SEQUENCES has its own table, which is
named C$WD_<column>.

■ Validate that every window sequence has the same id as a record in the C$ALL_
SEQUENCES.

■ Look for any orphaned objects in the repository.

■ Verify that the Mobile Server repository owner is granted with sufficient
privileges.

■ Validate the MGP properties: If MGP_SUSPEND(apply suspend) is false, then
MGP_RUN must be true.

■ Reports on the most recent jobs and their status.

2.3.1.3 Execute the Repository Diagnostics Tool
The following is the usage and syntax for the Mobile Server repository diagnostics
tool—msrdt:

msrdt <options>

Where <options> are the following:

2.3.2 Modifying IP Address of Machine Where Mobile Server Repository Exists
During the installation, the machine name or IP address is provided by the user where
the repository is created. If the IP address of the machine changes, then perform one of
the two options:

■ If the user provided the machine name; then even after the IP change, the machine
name will still work.

■ If user provided the IP address—instead of machine name—then after changing
the IP address of the repository machine, the user must change the ADMIN_JDBC_
URL and THIN_JDBC_URL parameters in the webtogo.ora file on the Mobile
Server.

2.4 Troubleshooting the Oracle Lite Databases
The following sections detail how to either work with the client database or modify an
existing schema on the back-end Oracle database:

■ Section 2.4.1, "Accessing the Client Database Offline"

■ Section 2.4.2, "Determining Source of Checksum Error Against Database"

Table 2–2 List of Options for Repository Diagnostic Tool

Tasks Options Description

Validate Repository -v <username>/<pwd>@
<hostname>:<port>:<SID>

Validates the repository and provides error
reporting. Performs some error recovery.

Troubleshooting JVM Errors

2-10 Oracle Database Lite Troubleshooting and Tuning Guide

2.4.1 Accessing the Client Database Offline
When you go offline, after being online, and you need to access your client database,
use your Mobile user password, not the password manager. It is the password that
you enter when you logged in, before going offline.

If you do not use your Mobile user password when you try to access your client
database offline, you will receive the following error message.

[POL-5150] access violation

For example, if you log in as JOHN/JOHN on a Windows 32 machine with contains a
Mobile Client for Web-to-Go, and JOHN goes offline, the user database created for
JOHN on the client machine requires JOHN’s password for access.

If you use mSQL to access the user database, start the Command Prompt and enter the
following statement.

msql system/john@jdbc:polite:john_todo

In this example, JOHN’s password is john, and the DSN name that was created
automatically on the client for the user name JOHN is john_todo.

Syntax
The following syntax enables you to access the user database.

msql system/<mobile user’s password>@jdbc:polite:<dsn created for the user>

To find the DSN name, use the ODBC Admin tool on your client machine.

2.4.2 Determining Source of Checksum Error Against Database
You can perform diagnostics if you experience database corruption due to file system
write errors, I/O errors, or a media device problem. If you receive a POL-3207 error,
you may wish to execute the validatedb tool to see if it is a checksum error. Then,
setting OLITE_WRITE_VERIFY to TRUE generates error reporting if a checksum error
occurs on the device for the Mobile client.

For more information, see Section G.2.15 "OLITE_WRITE_VERIFY" in the Oracle
Database Lite Administration and Deployment Guide.

2.5 Troubleshooting JVM Errors
This section focuses on how to debug the following Java errors:

■ Section 2.5.1, "Troubleshooting An Out of Memory Error"

■ Section 2.5.2, "Troubleshooting an IllegalArgumentException"

2.5.1 Troubleshooting An Out of Memory Error
The Mobile Server executes within the OC4J container, which in turn runs on a Java
virtual machine (JVM). When you are experiencing the OutOfMemory error, then you
should have an understanding of JVM memory architecture and OC4J when tuning
Mobile Server performance.

The following may cause an OutOfMemory error:

■ A memory leak in the Mobile Server

■ Not enough physical memory to handle your application

Troubleshooting JVM Errors

Troubleshooting 2-11

■ In-appropriate allocation of the three memory areas that used by the JVM. See
Section 2.5.1.1, "JVM Memory Settings" for a full description.

■ Memory being held by the Mobile Server. See Section 2.5.1.3, "Why is Memory Not
Released?" for more information.

■ Understanding how threads are consuming your memory. See Section 2.5.1.4,
"Thread Memory Consumption and Concurrency" for full details.

2.5.1.1 JVM Memory Settings
JVMs may have different implementations of memory management and garbage
collection schemes. But at a higher level, they all arrange the memory in the following
three areas:

■ Section 2.5.1.1.1, "Java Heap"—The Java heap is where the Java objects live. It is
normally the largest of the three.

■ Section 2.5.1.1.2, "Permanent Generation"—This is where the classes are loaded.

■ Section 2.5.1.1.3, "Native Space"—The memory used by native code, which
includes JVM native code and application JNI calls.

■ Section 2.5.1.1.4, "Setting Java Options for Java Memory"—Where you set these
options depends on your environment.

This section describes how to modify the allocation of memory to the JVM memory
areas.

2.5.1.1.1 Java Heap The Java heap is where Java objects live. It consists of both the
young and tenured generations. The amount of Java heap memory that the JVM starts
with is designated by the initial heap size option (-Xms) and the maximum heap size
option (-Xmx).

If you see from the stack trace that a Java method throws an OutOfMemory error, then
you have exhausted your Java heap space.

For example:

java.lang.OutOfMemoryError: Java heap space

The default settings for the Java heap for a SunUNIX JVM is as follows: Xmx:64M
Xms:4M. However, the default for the Mobile Server—if you start up the Mobile Server
with the runmobileserver.bat executable—is set to Xmx:256M Xms:512M.

The size of the space reserved can be specified with the -Xmx option. The -Xms
specifies the space that is immediately committed to the virtual machine. We
recommend to allocate ¼ to ½ of the available physical memory to Java Heap. If you
set the maximum Java Heap size to be large—such as, 512M—and you still receive this
error, then there may be a leak in the Java code.

The following shows the syntax for how to increase the amount of Java heap memory
available to the JVM through the -Xms and -Xmx Java switches:

java -Xms<memory_size>m -Xmx<memory_size>m -jar oc4j.jar

The amounts specified should be based on the available resources. At the minimum,
you should set both values to at least 256 MB. The following allocates 768M for both

Note: Memory should be allocated properly for the three areas.
Otherwise, different kinds of OutOfMemory error may surface.

Troubleshooting JVM Errors

2-12 Oracle Database Lite Troubleshooting and Tuning Guide

the initial and maximum heap sizes. Of course, the amount of memory you allocate
depends on what you have available.

java -Xms768m -Xmx768m -jar oc4j.jar

2.5.1.1.2 Permanent Generation The permanent generation holds data needed by the
JVM that describes objects which do not have an equivalence at the Java language
level. For example, permanent generation is where the classes are loaded. It holds
objects that describe classes and methods.

If a classloader method or a String intern method throws an OutOfMemory error in
the stack trace, then you have run out of permanent generation space.

For example:

java.lang.OutOfMemoryError: PermGen space at
java.lang.ClassLoader.defineClass1(Native Method) at
java.lang.ClassLoader.defineClass(ClassLoader.java:620)

The default for the permanent generation for a Sun UNIX JVM is 64MB. To set a new
initial size for the Sun JVM, use the -XX:PermSize option when starting the virtual
machine. To set the maximum permanent generation size use the -XX:MaxPermSize
option.

2.5.1.1.3 Native Space The native space is the memory used by native code, which
includes JVM native code and application JNI calls. If a native method throws an
OutOfMemory error or the JVM crashes with such an error, then you run out of native
space.

For example:

java.lang.OutOfMemoryError: requested 14892 bytes. Out of swap space?
java.lang.OutOfMemoryError: unable to create new native thread

The native space is the (Available physical memory) – (Java heap + Permanent
generation). There is no way to set the native space, except to decrease the Java heap or
permanent space. If you allocate too much memory for the Java heap, then the native
code is left with not enough memory and may run out. If you have to increase the
native memory, then decrease the -Xmx parameter to a reasonable value to leave
enough memory for the native space. If you still get this error, the native code may
have a memory leak.

2.5.1.1.4 Setting Java Options for Java Memory Set the Java options when you start the
OC4J container. The following example sets the initial Java heap to 256M, the
maximum Java heap to 512M, and the permanent generation memory to 64M:

java –Xms=256m –Xmx=512m -XX:MaxPermSize=64m oc4j.jar

You set the Java options depending on the environment, as follows:

■ The JAVA_OPTIONS parameter in the WEBTOGO.ORA file is used only for
client-side settings. This parameter is ignored on the server-side.

■ For the Mobile Server, all modifications for the Java options must be specified on
the command-line or in the runmobileserver.bat file.

Note: Set the Java heap memory size before starting the Mobile
Server with the runmobileserver executable.

Troubleshooting JVM Errors

Troubleshooting 2-13

■ When modifying the Java memory options for OracleAS, modify the JVM settings
in the opmn.xml file, which is located in the <IAS_HOME>/opmn/conf directory.

In the opmn.xml file, search for process-type id="mobileserver" and then
modify the java-options parameter under category
id="start-parameters", as shown below:

<process-type id="mobileserver" module-id="OC4J">
 <module-data>
 <category id="start-parameters">
 <data id="java-options" value="-server -Xrs
 -Djava.security.policy=/j2ee/mobileserver/config/java2.policy
 -Djava.awt.headless=true"/>
 <data id="oc4j-options" value="-properties"/>

By default, the MGP executes as a job in the Job Scheduler in the Mobile Server. Thus,
the MGP and other Mobile Server components, such as the Sync Server, share the same
memory space. This provides efficiency and manageability; however, if the MGP has a
memory leak, then the Mobile Server is affected. In this case, perform the following:

1. Disable the MGP job.

2. Restart the Mobile Server.

3. Restart the MGP in a separate JVM with either the mgp.bat or, if using UNIX, the
mgp shell script. This JVM is restarted periodically and may hide the memory leak
issue.

With a larger Java heap size, the garbage collector collects less often and consumes less
CPU time. Therefore, a larger heap size is desired for better performance. For the
Mobile Server, most of the code is Java code; for the Oracle Lite JDBC connection and
Java mSync client, most of the code is in native code. So, setting the Java heap size
larger, helps the efficiency and performance of the Mobile Server; however, if it is set
too high, the JDBC connection and mSync client may have memory issues.

2.5.1.2 Modifying Java Options for Java Memory When Using Oracle AS
If you are using Oracle AS, then set the JVM settings for your Java memory in the
opmn.xml file, which is located in the <IAS_HOME>/opmn/conf/ directory. Inside
the opmn.xml file, perform the following:

1. Modify process-type id="mobileserver".

2. Change java-options under category id="start-parameters".

The following is an example of this modification:

<process-type id="mobileserver" module-id="OC4J">
 <module-data>
 <category id="start-parameters">
 <data id="java-options" value="-server -Xrs
 -Djava.security.policy=/j2ee/mobileserver/config/java2.policy
 -Djava.awt.headless=true"/>
 <data id="oc4j-options" value="-properties"/>

2.5.1.3 Why is Memory Not Released?
You may expect Mobile Server to release the free memory back to operating system
after it has finished its work. However, the Mobile Server holds a large amount of

Note: Set the Java memory options for the MGP in the mgp.bat file.

Troubleshooting JVM Errors

2-14 Oracle Database Lite Troubleshooting and Tuning Guide

memory even when it is idle. This may not be an indication of memory leak; instead, it
may be for one or more of the following reasons:

■ If you set the -Xms option to a large number—such as, 1024M—then you should
expect the Mobile Server process to use at least 1024M until the process is killed.

■ For performance reasons, the Mobile Server caches metadata in Java heap memory.

■ The garbage collector may not collect the objects right way when they are no
longer referenced. In addition, the garbage collector keeps a large amount of free
memory in the Java heap for future allocations, instead of returning them to the
operating system. You can use Java options to adjust the free memory size; instead,
view the Mobile Server total runtime Java heap size and free heap size in the
Mobile Manager at Mobile Manager->Data Synchronization->Host.

2.5.1.4 Thread Memory Consumption and Concurrency
The Java heap and permanent generation together are called managed heap, since the
garbage collector manages them. The native space can be divided into native heap and
thread stack space. Each thread consumes memory, as follows:

■ Each thread created consumes about 1MB stack space, although it is JVM
dependent. Take this memory into consideration if you execute multiple threads.
For example, on a 32-bit x86 system, the (managed heap + native heap + thread
stack size * number of threads) could not exceed 2 GB. On any system, ensure that
the total JVM memory is less than the available physical memory size.

■ Each thread allocates additional Java and native heap memory as it executes.

■ There is an overhead associated with multi-threading. Therefore, be careful when
executing too many concurrent threads. If concurrency is set to larger than 20, then
you are more likely decreasing the Mobile Server throughput—instead of
increasing it.

You can control the concurrency of Mobile Server; that is, the OC4J layer and the
synchronization layer, as follows:

■ Section 2.5.1.4.1, "Configure the Number of HTTP Sessions"

■ Section 2.5.1.4.2, "Configure the Synchronization Session Thread Concurrency and
MGP Thread Maximum"

2.5.1.4.1 Configure the Number of HTTP Sessions Set the OC4J max-http-connections
parameter in the server.xml file, which is located at <ORACLE_
HOME>/j2ee/mobileaserver/config/. This OC4J parameter affects all HTTP
sessions, which includes Mobile Manager Web requests.

For example, the following sets the max-http-connections parameter to 10:

<application-server … … >
 <max-http-connections max-connections-queue-timeout="180"
 socket-backlog="50" value="10">
 </max-http-connections>
…
</application-server>

The following table describes the attributes of the max-http-connections
parameter:

Troubleshooting Security

Troubleshooting 2-15

2.5.1.4.2 Configure the Synchronization Session Thread Concurrency and MGP Thread
Maximum To control the synchronization session thread concurrency, set the
Consolidator parameters MAX_CONCURRENT and MAX_CONCURRENT_TIMEOUT. To
control the number of threads spawned within the MGP process, set the Consolidator
parameter MAX_THREADS. See Section A.6, "CONSOLIDATOR" in the Oracle Database
Lite Administration and Deployment Guide for more information on these parameters.

2.5.2 Troubleshooting an IllegalArgumentException
If you receive the java.lang.IllegalArgumentException: Signal already
used by VM:SIGINT exception and you are using Branch Office, then you are using
a JRE version previous to version 1.4.2. Update to JRE version 1.4.2 or later.

2.6 Troubleshooting Security
The following section describes how to troubleshoot security issues:

■ Section 2.6.1, "SSL Certificate Rejection for Client Authentication"

2.6.1 SSL Certificate Rejection for Client Authentication
If you are using a reverse proxy and have configured SSL between the client and the
reverse proxy, you may receive the following error:

A certificate is required to complete client authentication.

For all clients, except Web-to-Go clients, you can only use SSL authentication with a
signed certificate. If you use a self-signed certificate, you must turn off SSL
authentication by adding the following to the NETWORK section in the client
polite.ini file:

DISABLE_SSL_CHECK=YES

This parameter tells the reverse proxy firewall to use SSL encryption for the
communication from the client, but not to perform SSL authentication.

Table 2–3

Attribute Description

max-connections-queue-timeout Specifies the number of seconds to wait for an
available connection. The connection may be waiting
if the maximum connections has been reached before
returning either "server busy" or "redirect" messages.

Default value: 10 seconds

socket-backlog Specifies the number of connections that can be
queued up before denying connections at the socket
level. Default: 30.

value Specifies the maximum number of connections.
Default: 100000.

Troubleshooting Security

2-16 Oracle Database Lite Troubleshooting and Tuning Guide

Tracing and Logging 3-1

3
Tracing and Logging

You can enable tracing for the Mobile Server, the Mobile Client, or the Oracle Lite
database on the client. In addition, you can view the log files from the underlying
application server. The methods for enabling tracing for each component is described
in the following sections:

■ Section 3.1, "Enable Tracing on the Mobile Server"

■ Section 3.2, "Enable Tracing on Mobile Clients"

■ Section 3.3, "Enabling Tracing in the Client-Side Oracle Lite Database"

■ Section 3.4, "Viewing the Log Files From the Application Server"

3.1 Enable Tracing on the Mobile Server
For the Mobile Server, there are two main sections for tracing: the general tracing for
Mobile Server components and specific tracing for data synchronization components.
How to enable tracing for each part of the Mobile Server is described in the following
sections:

■ Section 3.1.1, "General Tracing for the Mobile Server"

■ Section 3.1.2, "Data Synchronization Tracing"

3.1.1 General Tracing for the Mobile Server
To set general tracing for the Mobile Server, perform the following steps.

1. From the Mobile Server page, select Administration.

2. Select Trace Setting. This brings up the Trace Settings page, as shown in
Figure 3–1, where you can choose to generate trace output, specify the trace output
destination to the local console, file, or remote console (viewed by wsh). The Trace
Settings page provides system filters to generate trace output to the required
system level.

3. Configure the type of tracing you want and click Apply.

Enable Tracing on the Mobile Server

3-2 Oracle Database Lite Troubleshooting and Tuning Guide

Figure 3–1 General Trace Settings for Mobile Server

Table 3–1 Trace Settings Page Description

Field Description

Trace Output To generate trace output, select Yes.

Console You can print the messages to a console. You can ONLY choose the console if
you are executing Mobile Server in standalone mode. If you are in an OracleAS
environment, select File or Remote.

Enable Tracing on the Mobile Server

Tracing and Logging 3-3

3.1.2 Data Synchronization Tracing
The administrator can turn on tracing for components involved in the synchronization
phase, including MGP functions.

1. From either the home page or the Administration page for the Mobile Server,
select Data Synchronization in the Components section, as shown in Figure 3–2.

Figure 3–2 Mobile Server Job Scheduler and Data Synchronization Components

2. Select Administration off of the Data Synchronization home page.

3. Select Trace Settings, which displays all five components for which you can enable
tracing, as shown in Figure 3–3. For a description of each component, see
Section 3.1.2.1, "Description of the Five Data Synchronization Components".

File You can direct all messages to a local file. If you selected a file for trace output,
then enter the name (including path), the maximum size of the file in MB, and
the number of files allowed (pool size). For example, if you set the pool size to
10, then when a trace file hits the maximum size in MB, then a new file is
opened and the trace output is written to the new file. This continues until all
10 files of the maximum size exist. At this point, the first file is deleted and a
new file is started to contain the trace output. This enables you to manage the
amount of disk space that the trace files can use.

To create a trace file for every user, select Yes for the Create Trace File for Every
User box.

System Filter ■ HTTP Request—To generate HTTP output and Web-to-Go trace
information as trace output, select this option. This includes general
system information.

■ SQL Statements—To generate SQL queries as trace output, select this
option.

■ Java Methods—To generate all system.out output from the Mobile
Server and Data Synchronization Java methods, select this option.

Note: The Mobile Server automatically filters exceptions and errors as
trace output at the Mandatory level.

Table 3–1 (Cont.) Trace Settings Page Description

Field Description

Enable Tracing on the Mobile Server

3-4 Oracle Database Lite Troubleshooting and Tuning Guide

Figure 3–3 The Trace Components for the Data Synchronization

4. Select the component for which you want to enable tracing, which brings up the
trace configuration screen, as shown in Figure 3–4.

Figure 3–4 Data Synchronization Component Trace Configuration

■ In the Filter section, select the required Level and Type. To specify a trace filter
for users, enter comma separated user names in the Users field.

Enable Tracing on the Mobile Server

Tracing and Logging 3-5

■ In the Destination section, select Local Console to receive the trace file to the
same console as the General tracing is using. If the console is not open, then
these messages are sent to the same place that the General tracing is directed.
See what the Destination is configured to in Figure 3–1 to determine where
these messages are directed.

To send trace information to a file, select the File option. The file name is
generated based upon the session id. You can configure the file size in MB and
the files allowed (pool number). For example, if you set the pool size to 10,
then when a trace file hits the maximum size in MB, then a new file is opened
and the trace output is written to the new file. This continues until all 10 files
of the maximum size exist. At this point, the first file is deleted and a new file
is started to contain the trace output. This enables you to manage the amount
of disk space that the trace files can use.

5. To implement the modified values, click OK. To retain existing values, click
Cancel.

To view trace files, navigate to the Data Synchronization page. Select Administration.
Select Trace Files and the Trace Files screen appears, as shown in Figure 3–5.

Table 3–2 Data Synchronization Component Trace Level and Type

Filter Description

trace level, where
each level includes
the previous levels
as well.

OFF: no tracing enabled.

MANDATORY: Mandatory messages only, such as program exceptions.

WARNING: Warning messages.

NORMAL: Normal messages of which the user must be informed.

INFO: Informational messages, such as synchronization timing, MGP
apply, MGP compose, and MGP status.

CONFIG: Configuration messages, such as JDBC driver version.

FINEST: Developer level of tracing.

ALL: Logs messages for all trace levels.

trace type SQL: SQL-related messages only, such as SQL statements.

TIMING: Timing data only. Note: This option is trace level sensitive. For
MGP Cycle time and Synchronization time, use the Trace Level INFO
option with the TIMING option on the MGP and SYNC components
respectively.

DATA: Data only.

RESUME: Logs messages with Reliable Transport.

FUNCTION: Displays the program flow by logging methods such as
Entry, Exit or Invoke. For Long methods, this option logs the method
entry or exit; which is a simple invoke log.

GENERAL: Logs messages that do not belong to any of the above listed
trace types. Note: This type is trace level sensitive.

ALL: This option generates logs of all trace types.

Note: You can set these parameters within the webtogo.ora file in the
CONSOLIDATOR section. See Section A.6, "[CONSOLIDATOR]" in
the Oracle Database Lite Administration and Deployment Guide for more
details on these parameters.

Enable Tracing on the Mobile Server

3-6 Oracle Database Lite Troubleshooting and Tuning Guide

Figure 3–5 Viewing Data Synchronization Trace Files

■ To view a trace file, select the trace file name or click the Select button next to the
trace file name and click View.

■ To download or delete a trace file, click the Select button next to the trace file name
and click either Download or Delete.

■ If there are too many files to view on a page, you can search by entering the name
of the trace file in the Search field and clicking Go.

3.1.2.1 Description of the Five Data Synchronization Components
There are five components that you can turn on to describe what is happening in the
synchronization process, as described in the following sections:

■ Section 3.1.2.1.1, "MGP"

■ Section 3.1.2.1.2, "MGPAPPLY"

■ Section 3.1.2.1.3, "MGPCOMPOSE"

■ Section 3.1.2.1.4, "SYNC"

■ Section 3.1.2.1.5, "GLOBAL"

3.1.2.1.1 MGP You can trace the MGP process. However, if an MGP Cycle ID is not
yet available, then tracing is enabled by the configuration of the GLOBAL component. If
the trace destination is to be written to a file, then all of the generated logs are
recorded in a log file named MGP_<cycle_id>.log.

3.1.2.1.2 MGPAPPLY This refers to the APPLY phase in the MGP process. However,
between the beginning of the APPLY phase till the availability of the MGP Client ID,
tracing is enabled by the configuration of the component MGP. If tracing is sent to a
file, then all messages are written to a file named MGPAPPLY_<client_id>_
<cycle_id>.log.

3.1.2.1.3 MGPCOMPOSE This refers to the COMPOSE phase in the MGP process. Similar
to the MGPAPPLY phase where the Client ID is not yet available, tracing is enabled by
the configuration of the component MGP. If tracing is sent to a file, then all messages
are written to a file named MGPCOMPOSE_<client_id>_<cycle_id>.log.

3.1.2.1.4 SYNC This refers to the server-side synchronization process. When a Sync
session ID is not yet available, tracing is enabled by the configuration of the

Note: When you view the trace file online, it truncates the file to
10,000 lines. To view the whole trace file, download the file and view
it using any text editor.

Enable Tracing on Mobile Clients

Tracing and Logging 3-7

GLOBAL component. If the trace destination is set to file, then the messages are written
to a file named SYNC_<cycle_id>.log. When the Client ID becomes available, the
file is renamed to SYNC_<client_id>_<cycle_id>.log.

3.1.2.1.5 GLOBAL This component logs tracing messages that are not specific to any of
the above listed components. This component also includes logs that are generated
during the execution of the ConsolidatorManager APIs. If the trace destination is
set to file, then the messages are written to a file named GLOBAL_<file_
number>.log.

3.2 Enable Tracing on Mobile Clients
You can also enable tracing on your Mobile client through one of the following
methods:

■ Section 3.2.1, "Turn on Tracing using the Mobile Client WEBTOGO.ORA File"

■ Section 3.2.2, "Turn on Tracing using the -d0 Option for Web-to-Go Clients With
the WEBTOGO Executable"

■ Section 3.2.3, "View Device Logs"

3.2.1 Turn on Tracing using the Mobile Client WEBTOGO.ORA File
You can enable tracing through the DEBUG section in the webtogo.ora file on your
Mobile Client. This is only valid for Mobile Client for the Web (Web-to-Go), Branch
Office, andBC4J clients. Restart your Mobile client after modifying the webtogo.ora
file to enable tracing.

See Section A.3, "[DEBUG]" in the Oracle Database Lite Administration and Deployment
Guide for a full description of the trace parameters. Each trace parameter matches the
fields displayed on the General trace settings screen for the Mobile Server, as shown in
Figure 3–1.

3.2.2 Turn on Tracing using the -d0 Option for Web-to-Go Clients With the WEBTOGO
Executable

If you want to enable tracing quickly to a console window on the Web-to-Go Mobile
client, execute the Mobile client webtogo command with the -d0 option. With the
-d0 option, tracing is enabled and printed to a console window. The level of tracing
shown is indicated by the TRACE_LEVEL parameter in the DEBUG section of the
webtogo.ora file. All other DEBUG parameters are ignored in this situation. In order
to start the Mobile client with the -d0 option, you must first stop your existing client.

You can only use this type of tracing for Mobile Client for the Web, Branch Office, and
BC4J.

For more information on configuring the TRACE_LEVEL parameter in the
webtogo.ora file, see Section A.3, "[DEBUG]" in the Oracle Database Lite
Administration and Deployment Guide.

3.2.3 View Device Logs
Each Mobile device maintains a log of the activity that it generates. See Section 8.4.7,
"Viewing Device Logs" in the Oracle Database Lite Administration and Deployment Guide
for more information.

Enabling Tracing in the Client-Side Oracle Lite Database

3-8 Oracle Database Lite Troubleshooting and Tuning Guide

3.3 Enabling Tracing in the Client-Side Oracle Lite Database
The Oracle Lite database is used in conjunction with other products such as Oracle
forms, SQLJ, Web Servers, and OC4J. When an unexpected error is reported by the
software system, users need to identify the location and cause of the error. Errors can
be caused due to problems in the application code, Oracle tools—such as forms, SQLJ,
OC4J—or in the Oracle Lite database. Errors also occur in simple environments where
a user application talks directly to the Oracle Lite database through JDBC or ODBC
drivers. It may not be obvious which component is at fault—whether it is the user
application, JDBC or ODBC drivers, or the core database runtime system.

If the optimizer spends too much time evaluating alternative plans or collecting index
statistics, a query may take a long time for compilation. If the execution plan selected
by the optimizer is not optimal, the query may also take a long time during execution.
Based on these criteria, the tracing facility provides the compilation time and the
execution plan.

The following sections describe how to set and use tracing.

■ Section 3.3.1, "Enabling Trace Output"

■ Section 3.3.2, "Description of Trace Information"

3.3.1 Enabling Trace Output
To enable Trace output, include the following line in the POLITE.INI configuration
file:

OLITE_SQL_TRACE= yes

When you enable tracing, the trace information is dumped to a file named oldb_
trc.txt in the current working directory of the database process. If the file already
exists, then the trace output is appended to the end. If it does not exist, then a new file
is automatically created. For a database service on Windows or the Oracle Lite
database daemon for a Linux platform, the current working directory is specified by
the wdir parameter during startup of the database service or daemon.

3.3.2 Description of Trace Information
The following trace information is provided:

Note: Any value other than "yes" disables the tracing feature. The
parameter value is checked once during database startup. Hence,
users must set this value before connecting to the database.

Note: To implement the tracing feature, the database process must
contain permissions to create the trace file in the current working
directory.

Table 3–3 Trace Output

Trace Output Description

Statement Text Each time a SQL statement is prepared, its text is dumped into
the trace file. The SQL statement itself is output without any
formatting. If a SQL statement contains a new line character, it is
also included in the SQL statement output.

Enabling Tracing in the Client-Side Oracle Lite Database

Tracing and Logging 3-9

3.3.2.1 Table Name Output
The name of the table that is currently being accessed and the method used to access
the table are printed in the following formats.

■ If the table is accessed sequentially, the format is:

Table Name: <table name>

Access Method: Sequential

Where <table name> is the name of the table being accessed.

■ If indices are used, the format is:

Table Name: <table name>

Access Method: Term[<number>], Index No: <index number>,
 IndexName: <index name>

<table name> is the name of the table being accessed.

Compilation Time After the SQL statement is compiled, the compilation time is
printed.

Execution Plan If there are no errors, the execution plan is printed when
available. Only statements that contain a WHERE clause generate
an execution plan. The printed plan contains the execution order
of tables for each sub-select.

Bind Value If a SQL statement contains markers, then the bind value is
printed for every line. Each value for the marker or bind variable
is printed on a separate line in the following format.

Marker [<number>]: <Value>

Where, <number> is the number of the marker and <value>
denotes the value of the marker before execution.

Temporary Table Created Each time a temporary table is created, its name is dumped into
the trace file.

Table Access Each time a table is accessed, the following information is
dumped into the trace file:

■ Table Name: The name of the table been accessed is
dumped into the trace file.

■ Access Method: The access method used by the database is
dumped into the trace file.

For a description of how this information is presented, see
Section 3.3.2.1, "Table Name Output".

Temporary Table Sorted Each time a temporary table is sorted, its name and sorting time
(in milliseconds) are dumped into the trace file.

First Fetch Time If the SQL statement is a SELECT statement, the time spent on
fetching the first row is dumped into the trace file.

Tid The thread ID is dumped into the trace file in front of some of
the dumped information. The thread is displayed in the
following format:

Tid: <thread id>

Table 3–3 (Cont.) Trace Output

Trace Output Description

Viewing the Log Files From the Application Server

3-10 Oracle Database Lite Troubleshooting and Tuning Guide

Term[<number>] is the internal representation of the conjunct search conditions
in the WHERE clause.

<index number> is the index number. Each index has an unique number in the
database.

<index name> is the name of the index if any.

3.4 Viewing the Log Files From the Application Server
Since Mobile Server uses OC4J as its application server, you can view the following log
files to debug problems.

■ Viewing OC4J server level output messages.

<OC4J_HOME>\log\server.log

■ Viewing HTTP requests handled by the server.

<OC4J_HOME>\log\http-web-access.log

■ Viewing exceptions or errors that are handled by OC4J.

<OC4J_HOME>\application-deployments\webtogo\application.log

■ Viewing the file trace_sys1.log and other log files that are generated by the
Mobile Server in the same directory.

<OC4J_HOME>\application-deployments\webtogo\trace_sys1.log

Backup and Recovery 4-1

4
Backup and Recovery

Performing backup and recovery for Oracle Database Lite is the same as what you
would normally do for Oracle database applications. The following sections help you
understand how to use the Oracle database backup and recovery methods for
preserving your Mobile Server and Mobile applications:

■ Section 4.1, "How Does Oracle Database Lite Store its Information?"

■ Section 4.2, "Backing Up Oracle Database Lite"

■ Section 4.3, "Oracle Database Lite Backup Coordination Between Client and
Server"

■ Section 4.4, "Oracle Database Lite Recovery Issues"

4.1 How Does Oracle Database Lite Store its Information?
Oracle Database Lite uses the Oracle database to store information, as follows:

■ The Mobile Server itself is installed and configured as a database application.
Thus, the Mobile Server stores its metadata and client state information within a
database schema.

■ For each Mobile application, the Mobile Server installs triggers and stores
transaction data in a schema for that application.

4.2 Backing Up Oracle Database Lite
Since all of the data needed for a backup and recovery strategy exists in the database,
you should use the Oracle database backup and recovery strategies discussed in the
following books:

■ Oracle Backup Installation Guide

■ Oracle Database Recovery Manager Quick Start Guide

■ Oracle Database Backup and Recovery Basics

■ Oracle Backup Administrator's Guide

■ Oracle Database Backup and Recovery Advanced User's Guide

Note: In the past, we recommended that you use export/import to
perform a backup. This is not a recommended option anymore. Use
the normal online Oracle database backup procedure.

Oracle Database Lite Backup Coordination Between Client and Server

4-2 Oracle Database Lite Troubleshooting and Tuning Guide

However, the following sections describe what to keep in mind when coming up with
a backup and recovery strategy for your Oracle Database Lite environment:
Section 4.3, "Oracle Database Lite Backup Coordination Between Client and Server"
and Section 4.4, "Oracle Database Lite Recovery Issues".

4.3 Oracle Database Lite Backup Coordination Between Client and Server
When a client and a server synchronize with each other, the Mobile Server assigns the
same "magic" number to both sides to indicate that the data is in-sync. If this number
is different on both sides, the Mobile Server knows that the data is out of sync and is in
an error condition. The following example details how this could effect your attempts
for a clean recovery.

When you perform a backup, you may lose client data unless you plan accordingly.
Figure 4–1 demonstrates the following scenario:

1. The client inserts record 1 and synchronizes the data to the server. The Mobile
Server assigns the same magic number to both the client and the server to denote
that they are in sync. In this example, the magic number on both the client and the
server is 10.

2. The client inserts record 2. No synchronization is performed.

3. The backup is performed. Client record 1 is saved to the backup. The latest magic
number on both the client and the server is 10.

4. The client inserts record 3 and synchronizes the data to the server. The Mobile
Server assigns the same magic number to both the client and the server to denote
that they are in sync. In this example, the magic number on both the client and the
server is 20.

5. The client inserts record 4. No synchronization is performed.

6. A failure occurs and the last backup is used to recover the Mobile Server, the
Mobile applications and the application data. In this scenario, only record 1 is in
the backup, so it will exist in the restored database.

7. The client synchronizes. Records 2 and 3 can be lost, because they are not in the
backup. The msync client does not send them to the server, since they were
already sent in step 4. However, the msync client does send record 4 to the server,
since it is a new record that has never been synchronized with the database. After
the synchronization, record 4 is stored in the error queue, not in the application
tables.

Oracle Database Lite Backup Coordination Between Client and Server

Backup and Recovery 4-3

Figure 4–1 Lost Data With Backup and Recovery Strategy

The Mobile Server checks the magic numbers on both the client and the server. It
verifies the state of the data on the client to determine what action to take. When the
client performs the next synchronization, if the magic numbers are not the same, then
the following occurs:

1. The client checks if there are any new records—whether newly inserted, modified,
or deleted—on the client. If so, then these records are sent to the server, which
saves these records in the error queue.

2. A full refresh of all of the subscribed data is sent to the client.

In our example, if you did nothing, the client would send record 4 to the server, which
would end up in the error queue, and records 2 and 3 would be lost. To save records 2
and 3, do the following:.

1. On the server, retrieve and restore the last backup.

2. On the Mobile client that is out of sync, update any record that has been modified
since the last synchronization. In our example, you would do any sort of update
that makes the record seem to contain new information in records 2 and 3. For
example, you could update the VARCHAR field with the same content.

3. Initiate a synchronization on the client. The Oracle Database Lite software detects
that the client database is out of sync and that some of the records have been
modified. Thus, the following occurs:

a. The modified records are updated in the restored database on the server and
saved in the error queue.

b. The server pushes a full refresh down to the client.

4. In order for you to reapply the modified records to the applications table, you
must first modify the DML operation from Error to Update. The DBA must
modify the record in the error queue for the base table, named CEQ$<base_
table_name>, changing the DML operation from Error (E) to Update (U) or Insert
(I).

5. Once updated to Update, re-execute the command. Navigate to the Error Queue
screen in the Mobile Manager. Click on the modified record. Click Execute.

client inserts record 1, syncs, magic number = 10

client inserts record 2

perform backup

client inserts record 3, syncs, magic number = 20

perform recovery

TOTAL ELAPSED TIME

client inserts record 4

client syncs

Oracle Database Lite Recovery Issues

4-4 Oracle Database Lite Troubleshooting and Tuning Guide

6. The next time that the MGP runs, the update is applied to the application table.

Thus, all information contained within records 2 and 3 will be restored from the
device.

4.4 Oracle Database Lite Recovery Issues
When you perform a recovery, the state of both the Mobile Server and the Mobile
application schemas must be in-sync. If they are out-of-sync, severe problems may
occur. Therefore, when you perform a backup and restoration for the Mobile Server
and the Mobile application schemas, each must be recovered to the same point in time.
Use the Oracle database Point-in-Time Recovery strategy to ensure that both the
Mobile Server schema and Mobile application schemas are recovered to the same point
in time.

The Mobile application schemas usually reside on the same Oracle database instance
as the Mobile Server. However, if you have used a database link to store the Mobile
application schemas on a separate Oracle database instance, then you must use a
backup and restore strategy for distributed database systems.

Note: For more information on the error queue and how to reapply
the records, see Section 3.11.1 "Resolving Conflicts Using the Error
Queue" in the Oracle Database Lite Developer’s Guide.

Index-1

Index

A
AddPublicationItem method

restricting predicate, 1-17
Address already in use error, 2-5
ADMIN_JDBC_URL parameter, 2-9
application

automatic deployment, 2-5
component architecture, 1-23

application server
viewing log files, 3-10

architecture
Oracle Database Lite architecture

applications, 1-23
authentication

certificate rejection, 2-15

B
backup, 4-1
BindException, 2-5
Branch Office

IllegalArgumentException, 2-15

C
check-for-updates parameter, 2-5
checksum error

diagnosing, 2-10
client

complete refresh, 2-3
out of sync, 2-3

complete refresh
reasons for, 2-3
triggered by out of sync, 2-3

compose
postponed error, 2-4

COMPOSE_TIMEOUT parameter, 1-9
concurrency

configuring, 1-9
connection

limit requests, 1-1
pool, 1-9
pooling, 1-1

connection pooling, 1-1
CONNECTION_POOL parameter, 1-9

CONNECTION_TIMEOUT parameter, 1-9
consperf

query optimizer, 1-10
tuning queries, 1-9

Consperf utility, 1-2
configuring, 1-5, 1-6
execution plan file, 1-6
timing file, 1-3

consperf utility
EXPLAIN PLAN, 1-19

D
Data Synchronization

tracing, 3-3
database engine

overview, 1-24
DDL

dependent statements, 1-8
DEBUG section

tracing, 3-7
deployment

automatic, 2-5
DISABLE_SSL_CHECK parameter, 2-15

E
environment

troubleshoot, 2-7
validate, 2-7

Error
Address already in use, 2-5

exception
Server Busy, 2-4

execution plan
access methods, 1-29
generation

overview, 1-28
execution plan file

deciphering, 1-6
EXPLAIN PLAN, 1-19

H
heap size

definition, 2-11

Index-2

HINTS feature
performance, 1-21

I
IllegalArgumentException, 2-15
inconsistent datatype

SQL exception, 2-3
index access method

query optimization, 1-34
in-queue

compose postponed, 2-4
IP address

modifying database server, 2-9

J
join query

optimizing, 1-20
JVM

defining heap size, 2-11

M
map

partititions, 1-13
maps

shared, 1-11
MAX_CONCURRENT parameter, 1-9
MAX_THREADS parameter, 1-9
memory

defining heap size, 2-11
MGP

compose postponed, 2-4
timeout, 1-9

Mobile client
tracing, 3-7
tracing with console window, 3-7

Mobile Server
defining memory size, 2-11
general tracing, 3-1
online application, 2-5
tracing, 3-1

msrdt, 2-6
msrdt tool, 2-7

N
non-mergable views, 1-10

O
OC4J

viewing log files, 3-10
OKAPI

overview, 1-24
OLITE_WRITE_VERIFY parameter, 2-10
online

Mobile Server, 2-5
optimizer

performance, 1-10

Oracle Support
retrieving Lite database information, 2-6

OracleAS
troubleshooting, 2-6

OutOfMemory exception, 2-11

P
partition, 1-13
perfomance

analyzing synchronization, 1-2
performance

advanced SQL query techniques, 1-23
configuring Consperf utility, 1-5
connection pooling, 1-1
Consperf utility, 1-2
execution plan file, 1-6
EXPLAIN PLAN, 1-19
limit connection requests, 1-1
optimizing SQL queries, 1-20
query optimizer, 1-10
shared maps, 1-11
SQL queries, 1-9
streamlining large amount of data, 1-13
synchronization, 1-9
tablespace layout, 1-10
timing file, 1-3
using map table partitions, 1-13

pool
connection, 1-9

primary key
composite

query rule, 2-3
publication item

caching queries, 1-17
read-only

performance, 1-11
publication items

analyzing performance, 1-3
evaluating performance, 1-6

publications
performance, 1-2

Q
query

optimizer, 1-10
optimizing, 1-20
optimizing join queries, 1-20
optimizing order by and group by, 1-22
rule

composite primary key, 2-3
single-table

optimizing, 1-20
tree transformations, 1-26

query optimizer
bypassing, 1-21

R
recovery, 4-1

Index-3

Repository
troubleshoot, 2-7
validate, 2-7

repository
checking for errors, 2-6
IP address change, 2-9
validation, 2-6

restricting predicate, 1-17

S
script

dependent DDL statements, 1-8
Server Busy

exception, 2-4
shared maps, 1-11
SQL

EXPLAIN PLAN, 1-19
query

advanced optimization techniques, 1-23
execution steps, 1-32
index access method optimization, 1-34
join query optimization, 1-31
optimization for predicate push, 1-27
optimization for view expansion, 1-27
optimization for view merging, 1-27
optimization for view replacement, 1-27
optimizing join queries, 1-20
optimizing order by and group by, 1-22
optimizing single-table queries, 1-20
single table query optimization, 1-35
tracing, 1-34
tree transformations, 1-26

query optimization, 1-20
tuning queries, 1-9

SQL exception
inconsistent datatypes, 2-3

SQLRT
definition, 1-24
generating execution tree, 1-26

subscriptions
profiling, 1-2

synchronization
analyzing performance, 1-2
map table partition

add, 1-14
create, 1-13
drop, 1-15
drop all, 1-15
merge, 1-15

monitor with SQL scripts, 1-7
performance, 1-13
performance tuning, 1-9
Server Busy exception, 2-4
tablespace layout, 1-10
timeout, 1-9
tracing, 3-3

T
tablespace

layout, 1-10
THIN_JDBC_URL parameter, 2-9
threads

configuring, 1-9
timeout

MGP, 1-9
synchronization, 1-9

timing file
deciphering, 1-3

tracing, 3-1, 3-8
Data Synchronization

tracing
Mobile Server

synchronization, 3-3
enabling in webtogo.ora, 3-7
Mobile client, 3-7
Mobile Server, 3-1
viewing OC4J log files, 3-10

transaction
compose postponed, 2-4

troubleshooting
access client database offline, 2-10
browser time-out, 2-2
debugging Mobile Server, 2-5
Lite database, 2-6
repository, 2-6, 2-7

truncate command, 1-13, 1-14

U
user

large amounts of data, 1-13

V
validation

repository, 2-6
views

non-mergable, 1-10

W
Web-to-Go

interaction with OracleAS, 2-6
webtogo.ora

tracing, 3-7
web.xml, 2-6

Index-4

	Oracle® Database Lite
	Contents
	Preface
	Audience
	Documentation Accessibility
	Send Us Your Comments

	1 Improving Performance
	1.1 Improving Connection Performance
	1.1.1 Using Connection Pooling for Applications
	1.1.2 Limit Application Connection Requests to the Database

	1.2 Increasing Synchronization Performance
	1.2.1 Analyzing Performance of Publications With the Consperf Utility
	1.2.1.1 Deciphering the Performance Evaluation Files

	1.2.2 Monitoring Synchronization Using SQL Scripts
	1.2.2.1 Synchronization Times for All Clients
	1.2.2.2 Failed Transactions for all Clients
	1.2.2.3 Completely Refreshed Publication Items for all Clients
	1.2.2.4 Publications Flagged for Complete Refresh for All Clients
	1.2.2.5 Clients and Publication where Subscription Parameters are Not Set
	1.2.2.6 Record Counts for Map-based Publication Item by Client
	1.2.2.7 Record Count for Map-based Publication Items by Store
	1.2.2.8 All Client Sequence Partitions and Sequence Values
	1.2.2.9 All Publication Item Indexes

	1.2.3 Create SQL Scripts With All Dependencies
	1.2.4 Configuration Parameters in the WEBTOGO.ORA that Affect Synchronization Performance
	1.2.5 Tuning Queries to Manage Synchronization Performance
	1.2.5.1 Avoid Using Non-Mergable Views
	1.2.5.2 Tune Queries With Consperf Utility
	1.2.5.3 Manage the Query Optimizer

	1.2.6 Synchronization Tablespace Layout
	1.2.7 Shared Maps
	1.2.7.1 Performance Attributes
	1.2.7.2 Shared Map Usage
	1.2.7.3 Compatibility and Migration for Shared Maps

	1.2.8 Use Map Table Partitions to Streamline Users Who Subscribe to a Large Amount of Data
	1.2.8.1 Create a Map Table Partition
	1.2.8.2 Add Map Table Partitions
	1.2.8.3 Drop a Map Table Partition
	1.2.8.4 Drop All Map Table Partitions
	1.2.8.5 Merge Map Table Partitions

	1.2.9 Configuring Back-End Oracle Database to Enhance Synchronization Performance
	1.2.9.1 Physically Separate Map Tables and Map Indexes
	1.2.9.2 Database Parameter Tuning

	1.2.10 Priority-Based Replication
	1.2.11 Caching Publication Item Queries
	1.2.11.1 Enabling Publication Item Query Caching
	1.2.11.2 Disabling Publication Item Query Caching

	1.2.12 Architecture Design of Mobile Server and Oracle Database for Synchronization Performance
	1.2.13 Synchronization Disk Needs May Impose on WinCE Platform Available Space
	1.2.14 Designing Application Tables and Indexes for Synchronization Performance

	1.3 Determining Performance of Client SQL Queries With the EXPLAIN PLAN
	1.4 Optimizing Application SQL Queries Against Oracle Lite Database
	1.4.1 Optimizing Single-Table Queries
	1.4.2 Optimizing Join Queries
	1.4.2.1 Create an Index on the Join Column(s) of the Inner Table
	1.4.2.2 Bypassing the Query Optimizer

	1.4.3 Optimizing with Order By and Group By Clauses
	1.4.3.1 IN Subquery Conversion
	1.4.3.2 ORDER BY Optimization with No GROUP BY
	1.4.3.3 GROUP BY Optimization with No ORDER BY
	1.4.3.4 ORDER BY Optimization with GROUP BY
	1.4.3.5 Cache Subquery Results

	1.4.4 Advanced Optimization Techniques for SQL Queries in Oracle Database Lite
	1.4.4.1 Oracle Lite Database Application Architecture
	1.4.4.1.1 ODBC Application
	1.4.4.1.2 SQLRT
	1.4.4.1.3 DB Engine

	1.4.4.2 Overview of SQL Runtime
	1.4.4.2.1 Compilation
	1.4.4.2.2 Query Tree Transformations or Query Re-write Examples

	1.4.4.3 Execution Plan Generation
	1.4.4.3.1 Statistics
	1.4.4.3.2 Access Methods
	1.4.4.3.3 Single Table I/O Cost
	1.4.4.3.4 Join Query Optimization

	1.4.4.4 Query Execution Engine
	1.4.4.4.1 Join Query Execution
	1.4.4.4.2 Nested View Execution

	1.4.4.5 Optimization Tips
	1.4.4.5.1 Index Access Method
	1.4.4.5.2 Identifying The Bottleneck
	1.4.4.5.3 Single Table Query Blocks
	1.4.4.5.4 Query Blocks Containing Multiple Tables
	1.4.4.5.5 Known Limitations

	1.4.4.6 Glossary
	1.4.4.7 References

	1.5 Maximizing JVM Performance By Managing Java Memory

	2 Troubleshooting
	2.1 Troubleshooting Synchronization
	2.1.1 Synchronization Errors and Conflicts
	2.1.1.1 General Synchronization Errors and Conflicts
	2.1.1.2 Synchronization Error if Client Device Clock is Inaccurate

	2.1.2 Problems When Synchronizing Large Number of Rows
	2.1.3 First Synchronization Causes Browser to Timeout
	2.1.4 Situations Where the Client is Out of Sync that Triggers a Complete Refresh
	2.1.5 The "Inconsistent Datatypes" SQLException Received If Order is Not Correct in Query
	2.1.6 MGP Compose Postponed Due to Transaction in the In-Queue
	2.1.7 Avoiding the Server Busy Warning
	2.1.8 Enabling Online Web-to-Go Applications on the Mobile Server Host

	2.2 Troubleshooting the Mobile Server
	2.2.1 Running the Mobile Server With Tracing Enabled
	2.2.2 Troubleshooting an Address Already In Use Error
	2.2.3 Overwriting OracleAS WEB.XML Causes Connection Failure

	2.3 Troubleshooting the Mobile Server Repository
	2.3.1 Troubleshooting the Mobile Server Repository with the Mobile Server Repository and Diagnostic Tool (MSRDT)
	2.3.1.1 Inspecting Files in the Mobile Server Repository
	2.3.1.2 Use the Mobile Server Repository and Diagnostic Tool to Validate Your Environment and the Repository
	2.3.1.2.1 Validate the Environment for the Mobile Server
	2.3.1.2.2 Validate Integrity of Mobile Server Tables and Data
	2.3.1.2.3 Validate the Structure and Contents of the Repository

	2.3.1.3 Execute the Repository Diagnostics Tool

	2.3.2 Modifying IP Address of Machine Where Mobile Server Repository Exists

	2.4 Troubleshooting the Oracle Lite Databases
	2.4.1 Accessing the Client Database Offline
	2.4.2 Determining Source of Checksum Error Against Database

	2.5 Troubleshooting JVM Errors
	2.5.1 Troubleshooting An Out of Memory Error
	2.5.1.1 JVM Memory Settings
	2.5.1.1.1 Java Heap
	2.5.1.1.2 Permanent Generation
	2.5.1.1.3 Native Space
	2.5.1.1.4 Setting Java Options for Java Memory

	2.5.1.2 Modifying Java Options for Java Memory When Using Oracle AS
	2.5.1.3 Why is Memory Not Released?
	2.5.1.4 Thread Memory Consumption and Concurrency
	2.5.1.4.1 Configure the Number of HTTP Sessions
	2.5.1.4.2 Configure the Synchronization Session Thread Concurrency and MGP Thread Maximum

	2.5.2 Troubleshooting an IllegalArgumentException

	2.6 Troubleshooting Security
	2.6.1 SSL Certificate Rejection for Client Authentication

	3 Tracing and Logging
	3.1 Enable Tracing on the Mobile Server
	3.1.1 General Tracing for the Mobile Server
	3.1.2 Data Synchronization Tracing
	3.1.2.1 Description of the Five Data Synchronization Components
	3.1.2.1.1 MGP
	3.1.2.1.2 MGPAPPLY
	3.1.2.1.3 MGPCOMPOSE
	3.1.2.1.4 SYNC
	3.1.2.1.5 GLOBAL

	3.2 Enable Tracing on Mobile Clients
	3.2.1 Turn on Tracing using the Mobile Client WEBTOGO.ORA File
	3.2.2 Turn on Tracing using the -d0 Option for Web-to-Go Clients With the WEBTOGO Executable
	3.2.3 View Device Logs

	3.3 Enabling Tracing in the Client-Side Oracle Lite Database
	3.3.1 Enabling Trace Output
	3.3.2 Description of Trace Information
	3.3.2.1 Table Name Output

	3.4 Viewing the Log Files From the Application Server

	4 Backup and Recovery
	4.1 How Does Oracle Database Lite Store its Information?
	4.2 Backing Up Oracle Database Lite
	4.3 Oracle Database Lite Backup Coordination Between Client and Server
	4.4 Oracle Database Lite Recovery Issues

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

