
Oracle® Application Server
Performance Guide

10g Release 3 (10.1.3.1.0)

B28942-02

March 2008

Oracle Application Server Performance Guide 10g Release 3 (10.1.3.1.0)

B28942-02

Copyright © 2001, 2008, Oracle. All rights reserved.

Primary Author: Thomas Van Raalte

Contributors: Eric Belden, Alice Chan, Greg Cook, Bill Danell, Marcelo Goncalves, Helen Grembowicz,
Bruce Irvin, Pushkar Kapasi, Paul Lane, Sharon Malek, Valarie Moore, Carol Orange, Julia Pond, Leela Rao,
Ed Rybak, Joan Silverman, Cheryl Smith, Zhunquin Wang, Brian Wright

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xi

Intended Audience.. xi
Documentation Accessibility ... xi
Related Documentation... xii
Conventions .. xii

1 Performance Overview

Introduction to Oracle Application Server Performance.. 1-2
Performance Terms.. 1-2

What Is Performance Tuning? .. 1-2
Response Time.. 1-3
System Throughput ... 1-4
Wait Time .. 1-4
Critical Resources... 1-4
Effects of Excessive Demand .. 1-5
Adjustments to Relieve Problems.. 1-5

Performance Targets... 1-6
User Expectations... 1-6
Performance Evaluation.. 1-6

Performance Methodology ... 1-6
Factors in Improving Performance.. 1-7

2 Monitoring Oracle Application Server

Oracle Enterprise Manager 10g Application Server Control Console ... 2-2
Oracle Application Server Built-in Performance Metrics .. 2-2
Centralized Management of Oracle Application Server Instances .. 2-3
Native Operating System Performance Commands.. 2-3
Network Performance Monitoring Tools... 2-3

3 Top Performance Areas

Top Performance Areas ... 3-2
Ensure Sufficient Hardware Resources .. 3-3
Ensure Sufficient Java Heap for OC4J... 3-3
Tune the JVM Garbage Collection Options.. 3-4
Reuse Database Connections.. 3-6

iv

Specify Sufficient Oracle HTTP Server Connections .. 3-7
Enable Statement Caching for Data Sources .. 3-8
Verify Database Tuning .. 3-8
Verify Logging Levels .. 3-10
Reuse EJB Instances .. 3-11

Advanced Performance Areas ... 3-11
Managing Concurrency and Limiting Connections... 3-11
Load Balancing .. 3-17
Using the -XX:AppendRatio Option (on Standalone OC4J) ... 3-19

4 Additional Performance Areas

Improving TopLink Performance.. 4-2
Improving JTA Performance .. 4-2

Configuring Two-Phase Commit Logging for Performance ... 4-2
Configuring JTA Data Sources for Performance ... 4-4
Monitoring JTA Resources.. 4-5

Improving EJB Performance... 4-5
Improving MDB Performance.. 4-5
Improving EJB CMP 2.1 Performance... 4-9

5 Optimizing PL/SQL Performance

6 Optimizing Oracle HTTP Server

Configuring Oracle HTTP Server Directives.. 6-2
How Persistent Connections Can Reduce httpd Process Availability 6-3

Oracle HTTP Server Logging Options ... 6-3
Access Logging... 6-3
Configuring the HostNameLookups Directive ... 6-3
Error logging... 6-4

Oracle HTTP Server Security Performance Considerations .. 6-4
Oracle HTTP Server Secure Sockets Layer (SSL) Performance Issues 6-4
Oracle HTTP Server Port Tunneling Performance Issues .. 6-6

Oracle HTTP Server Performance Tips .. 6-6
Analyze Static Versus Dynamic Requests .. 6-7
Analyze Time Differences Between Oracle HTTP Server and OC4J Servers 6-7
Beware of a Single Data Point Yielding Misleading Results ... 6-7

7 Oracle BPEL Process Manager Performance Tuning

Performance Tuning Overview.. 7-2
Domain and Process Configuration Property Settings... 7-2
Durable and Transient Processes... 7-2
One-Way and Two-Way Invocations.. 7-3
Idempotent Activities .. 7-3
In-Flight Database Storage.. 7-3
JTA Transactions for Two-way Invocations... 7-4
BPEL Threading Model ... 7-4

v

Process Level Performance Settings ... 7-5
completionPersistLevel BPEL Property.. 7-5
completionPersistPolicy BPEL Property... 7-6
idempotent BPEL Property... 7-7
inMemoryOptimization BPEL Property... 7-8
nonBlockingInvoke BPEL Property... 7-9

Tables Impacted By Instance Data Growth .. 7-10
Domain Level Performance Tuning ... 7-11

Oracle BPEL Control Properties That Cannot Be Edited .. 7-11
auditDetailThreshold BPEL Property .. 7-11
auditLevel BPEL Property ... 7-12
bpelcClasspath BPEL Property ... 7-12
datasourceJndi BPEL Property.. 7-13
deliveryPersistPolicy BPEL Property ... 7-13
dspAgentDelay BPEL Property .. 7-14
dspInvokeAllocFactor BPEL Property ... 7-14
dspMaxRequestDepth BPEL Property... 7-14
dspMaxThreads BPEL Property.. 7-14
dspMinThreads BPEL Property .. 7-15
expirationMaxRetry BPEL Property... 7-15
idempotentThreshold BPEL Property.. 7-16
instanceKeyBlockSize BPEL Property.. 7-16
instCacheHighWatermark BPEL Property.. 7-16
instCacheLowWatermark BPEL Property... 7-17
instCachePolicy BPEL Property .. 7-18
invokerQueueConnectionPoolMinSize BPEL Property .. 7-18
largeDocumentThreshold BPEL Property... 7-18
minBPELWait BPEL Property ... 7-19
optCacheOn BPEL Property .. 7-19
optIdempotentRouting BPEL Property ... 7-20
optSoapShortcut BPEL Property... 7-20
processCheckSecs BPEL Property .. 7-20
relaxBpelAssignRules BPEL Property.. 7-21
slowPerfThreshold BPEL Property... 7-21
statsLastN BPEL Property.. 7-21
syncMaxWaitTime BPEL Property... 7-22
txDatasourceJndi BPEL Property.. 7-22
uddiLocation BPEL Property .. 7-22
validateXML BPEL Property ... 7-22
workerQueueConnectionPoolMinSize BPEL Property ... 7-22

 Tuning OC4J for Oracle BPEL.. 7-23
Tuning JTA Transaction Timeout for Oracle BPEL Process Manager..................................... 7-23
Oracle BPEL Server EJB Configuration.. 7-23
Configuring Data Sources for Oracle BPEL .. 7-24

Java Virtual Machine Performance Tuning for Oracle BPEL Server ... 7-25
Dehydration Store Database Performance Tuning ... 7-26
Summary ... 7-26

vi

8 Oracle Business Activity Monitoring Performance

Managing the Redo Log Files .. 8-2
Avoiding Frequent Log Switches and Checkpoints .. 8-3
Tuning the System Global Area .. 8-3
Database Re-Organization in the Presence of Deletion Activity.. 8-5
Configuring Multiple Plan Monitor Services and Enterprise Links .. 8-6

9 Oracle Application Server Wireless Messaging Server Performance Tuning

Configuring Oracle Application Server Wireless Messaging Server for High Performance.... 9-1
Overview ... 9-1
Database Tuning and OS Tuning... 9-2
Optimizing Performance in a Multi-RAC Environment .. 9-3
Messaging Server Configuration ... 9-3

Factors Affecting Messaging Server Performance ... 9-5
Sequencing Cache for trans_mid and trand_did Index.. 9-5
Forcing Use of Index on Table trans_ids .. 9-6
Changing the Navigation Mode .. 9-6
Database Tuning... 9-6
Multiple Queues with Node Affinity .. 9-6
ASSM Tablespace ... 9-7
Load Balancing ... 9-7
Number of Enqueue and Dequeue Threads .. 9-7
DB Parameter aq_tm_processes ... 9-7
RAC Interconnect on RHEL4.. 9-9

Handling RAC Instance Failure ... 9-10
RAC Reconfiguration ... 9-11

Adding or Removing RAC Nodes.. 9-11
Adding or Removing Mid-Tiers ... 9-11

Test Scenario and Result .. 9-11
Setup Details .. 9-11
One-way Test Scenario ... 9-12
Two-way Test Scenario .. 9-13

A Monitoring Using Built-in Performance Tools

Summary of Oracle Application Server Built-in Performance Metrics.. A-2
Viewing Performance Metrics Using AggreSpy with Basic Installation A-2

Using the AggreSpy Display ... A-2
Viewing Performance Metrics Using AggreSpy with Web Server .. A-4

Using the AggreSpy Display with Web Server .. A-5
AggreSpy URL With a Proxy Server with Web Server ... A-6
AggreSpy URL and Access Control with Web Server... A-7
AggreSpy Limitation When Using Load Balancing With Multiple Instances A-8

Viewing Performance Metrics Using dmstool... A-8
Access Control for dmstool.. A-9
Using dmstool to List the Names of All Metrics .. A-11
Using dmstool to Report Values for Specific Performance Metrics... A-11

vii

Using dmstool With the Interval and Count Options ... A-12
Using dmstool to Report All Metrics with Metric Values... A-12
Using dmstool to Report All Metrics with Metric Values in XML Format A-12
Using dmstool to Reset Metric Values ... A-13
Using dmstool to View Metrics on a Remote Oracle Application Server System................. A-13

Viewing Performance Metrics Using AggreSpy (for Standalone OC4J) A-13
Using Built-in Performance Metrics on Windows Systems.. A-14

B Instrumenting Applications With DMS

Introducing DMS Performance Metrics ... B-2
Instrumenting Applications With DMS Metrics... B-2
Monitoring DMS Metrics ... B-2
Understanding DMS Terminology (Nouns and Sensors) ... B-3
DMS Naming Conventions.. B-6

Adding DMS Instrumentation To Java Applications... B-8
Including DMS Imports ... B-9
Organizing Performance Data... B-9
Defining and Using Metrics for Timing... B-10
Defining and Using Metrics for Counting... B-11
Defining and Using Metrics for Recording Status Information (State Sensors) B-12

Validating and Testing Applications Using DMS Metrics.. B-13
Validating DMS Metrics... B-13
Testing DMS Metrics For Efficiency... B-14

Understanding DMS Security Considerations.. B-15
Conditional Instrumentation Using DMS Sensor Weight .. B-15
Dumping DMS Metrics To Files .. B-15
Resetting and Destroying Sensors ... B-16
DMS Coding Recommendations.. B-16

Isolating Expensive Intervals Using PhaseEvent Metrics ... B-17
Using A High Resolution Clock To Increase DMS Precision... B-17

Configuring DMS Clocks for Reporting Time for OC4J (Java) .. B-18
Configuring DMS Clocks for Reporting Time for Oracle HTTP Server B-20

Rolling Up DMS Data for Descendent Nouns .. B-21

C Performance Metrics

Oracle HTTP Server Metrics ... C-2
Oracle HTTP Server Child Server Metrics... C-2
Oracle HTTP Server Responses Metrics .. C-3
Oracle HTTP Server Virtual Host Metrics... C-3
Aggregate Module Metrics .. C-3
HTTP Server Module Metrics.. C-4
Oracle HTTP Server mod_oc4j Metrics.. C-4
Oracle HTTP Server SSL Metrics .. C-6

JVM Metrics ... C-6
JVM Properties Metrics .. C-6

JDBC Metrics.. C-7

viii

JDBC Driver Metrics ... C-7
JDBC Data Source Metrics ... C-7
JDBC Driver Specific Connection Metrics ... C-8
JDBC Data Source Specific Connection Metrics ... C-8
JDBC Connection Source Metrics ... C-9
JDBC Driver Statement Metrics .. C-9
JDBC Data Source Statement Metrics... C-10
JDBC Connection Pool Stats Metrics .. C-11

mod_plsql Metrics... C-11
Oracle Process Manager and Notification Server - OPMN Metrics .. C-15

OPMN_PM Metric Table.. C-15
OPMN_OC4J_PROC Table.. C-16
OPMN_HOST_STATISTICS Metric Table .. C-16
OPMN_IAS_INSTANCE Metric Table .. C-16
OPMN_IAS_COMPONENT Table... C-17
OPMN ONS Metrics ... C-18
OPMN_APPCTX Table .. C-20

DMS Internal Metrics... C-20

D OC4J Performance Metrics

JTA Resource Metrics ... D-2
JCA Metrics... D-4
OC4J J2EE Application Metrics .. D-6

Web Module Metrics .. D-6
Web Context Metrics .. D-7
OC4J Servlet Metrics ... D-7
OC4J JSP Metrics ... D-7
OC4J EJB Metrics ... D-8
OC4J OPMN Info Metrics .. D-12
OC4J Work Management Pool Metrics.. D-12

OC4J JMS Metrics ... D-13
JMS Metric Tables ... D-13
JMS Stats Metric Table.. D-14
JMS Request Handler Stats .. D-16
JMS Connection Stats.. D-16
JMS Session Stats ... D-16
JMS Message Producer Stats.. D-17
JMS Message Browser Stats ... D-17
JMS Message Consumer Stats ... D-18
JMS Durable Subscription Stats .. D-18
JMS Destination Stats.. D-18
JMS Temporary Destination Stats... D-19
JMS Store Stats ... D-19
JMS Persistence Stats .. D-20

OC4J Task Manager Metrics.. D-20

ix

Java Object Cache JOC Metrics .. D-20

Index

x

xi

Preface

This guide describes how to monitor and optimize performance, use multiple
components for optimal performance, and write highly performant applications in the
Oracle Application Server environment.

This preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Related Documentation

■ Conventions

Intended Audience
Oracle Application Server Performance Guide is intended for Internet application
developers, Oracle Application Server administrators, database administrators, and
Web masters.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

xii

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documentation
For more information, see these Oracle resources:

■ Oracle HTTP Server Administrator’s Guide

■ Oracle Application Server Containers for J2EE User’s Guide

■ Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ Oracle Containers for J2EE Servlet Developer’s Guide

■ Oracle Containers for J2EE JSP Tag Libraries and Utilities Reference

■ Oracle Database Performance Tuning Guide, 10g

■ Oracle Application Server PL/SQL Web Toolkit Reference

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Performance Overview 1-1

1
Performance Overview

This chapter discusses Oracle Application Server performance and tuning concepts.

This chapter contains the following sections:

■ Introduction to Oracle Application Server Performance

■ What Is Performance Tuning?

■ Performance Targets

■ Performance Methodology

Introduction to Oracle Application Server Performance

1-2 Oracle Application Server Performance Guide

1.1 Introduction to Oracle Application Server Performance
To maximize Oracle Application Server performance, all components need to be
monitored, analyzed, and tuned. The chapters of this guide describe the tools used to
monitor performance and the techniques for optimizing the performance of Oracle
Application Server components, such as Oracle HTTP Server and Oracle Containers
for J2EE (OC4J).

1.1.1 Performance Terms
Following are performance terms used in this book:

concurrency The ability to handle multiple requests simultaneously. Threads and
processes are examples of concurrency mechanisms.

contention Competition for resources.

hash A number generated from a string of text with an algorithm. The hash value is
substantially smaller than the text itself. Hash numbers are used for security and for
faster access to data.

latency The time that one system component spends waiting for another component
in order to complete the entire task. Latency can be defined as wasted time. In
networking contexts, latency is defined as the travel time of a packet from source to
destination.

response time The time between the submission of a request and the receipt of the
response.

scalability The ability of a system to provide throughput in proportion to, and
limited only by, available hardware resources. A scalable system is one that can handle
increasing numbers of requests without adversely affecting response time and
throughput.

service time The time between the receipt of a request and the completion of the
response to the request.

think time The time the user is not engaged in actual use of the processor.

throughput The number of requests processed per unit of time.

wait time The time between the submission of the request and initiation of the
request.

1.2 What Is Performance Tuning?
Performance must be built in. You must anticipate performance requirements during
application analysis and design, and balance the costs and benefits of optimal
performance. This section introduces some fundamental concepts:

■ Response Time

■ System Throughput

■ Wait Time

■ Critical Resources

What Is Performance Tuning?

Performance Overview 1-3

■ Effects of Excessive Demand

■ Adjustments to Relieve Problems

1.2.1 Response Time
Because response time equals service time plus wait time, you can increase
performance in this area by:

■ Reducing wait time

■ Reducing service time

Figure 1–1 illustrates ten independent sequential tasks competing for a single resource
as time elapses.

Figure 1–1 Sequential Processing of Independent Tasks

In the example shown in Figure 1–1, only task 1 runs without waiting. Task 2 must
wait until task 1 has completed; task 3 must wait until tasks 1 and 2 have completed,
and so on. Although the figure shows the independent tasks as the same size, the size
of the tasks will vary.

In parallel processing with multiple resources, more resources are available to the
tasks. Each independent task executes immediately using its own resource and no wait
time is involved.

The Oracle HTTP Server processes requests in this fashion, allocating client requests to
available httpd processes (or threads). The MaxClients directive specifies the
maximum number of httpd processes simultaneously available to handle client
requests. When the number of processes in use reaches the MaxClients value, the
server refuses connections until requests are completed and processes are freed.

See Also: "Performance Targets" on page 1-6 for a discussion on
performance requirements and determining what parts of the
system to tune.

See Also: Chapter 6, "Optimizing Oracle HTTP Server"

service time

wait time

TOTAL ELAPSED TIME

SEQUENTIAL
TASKS

1

2

3

4

5

6

7

8

9

10

What Is Performance Tuning?

1-4 Oracle Application Server Performance Guide

1.2.2 System Throughput
System throughput is the amount of work accomplished in a given amount of time.
You can increase throughput by:

■ Reducing service time

■ Reducing overall response time by increasing the amount of scarce resources
available. For example, if the system is CPU bound, then adding CPU resources
should improve performance.

1.2.3 Wait Time
While the service time for a task may stay the same, wait time will lengthen with
increased contention. If many users are waiting for a service that takes one second, the
tenth user must wait 9 seconds. Figure 1–2 shows the relationship between wait time
and resource contention. In the figure, the graph illustrates that wait time increases
exponentially as contention for a resource increases.

Figure 1–2 Wait Time Rising With Increased Contention for a Resource

1.2.4 Critical Resources
Resources such as CPU, memory, I/O capacity, and network bandwidth are key to
reducing service time. Adding resources increases throughput and reduces response
time. Performance depends on these factors:

■ How many resources are available?

■ How many clients need the resource?

■ How long must they wait for the resource?

■ How long do they hold the resource?

Figure 1–3 shows the relationship between time to service completion and demand
rate. The graph in the figure illustrates that as the number of units requested rises, the
time to service completion increases.

Contention for a Resource

W
ai

t
T

im
e

What Is Performance Tuning?

Performance Overview 1-5

Figure 1–3 Time to Service Completion Versus Demand Rate

To manage this situation, you have two options:

■ Limit demand rate to maintain acceptable response times

■ Add resources

1.2.5 Effects of Excessive Demand
Excessive demand increases response time and reduces throughput, as illustrated by
the graph in Figure 1–4.

Figure 1–4 Increased Demand/Reduced Throughput

If the demand rate exceeds the achievable throughput, then determine through
monitoring which resource is exhausted and increase the resource, if possible.

1.2.6 Adjustments to Relieve Problems
Performance problems can be relieved by making adjustments in the following:

Demand Rate

T
im

e
to

 s
er

vi
ce

 c
o

m
p

le
ti

o
n

Demand Rate

T
h

ro
u

g
h

p
u

t

Performance Targets

1-6 Oracle Application Server Performance Guide

■ unit consumption

Reducing the resource (CPU, memory) consumption of each request can improve
performance. This might be achieved by pooling and caching.

■ functional demand

Rescheduling or redistributing the work will relieve some problems.

■ capacity

Increasing or reallocating resources (such as CPUs) relieves some problems.

1.3 Performance Targets
Whether you are designing or maintaining a system, you should set specific
performance goals so that you know how and what to optimize. If you alter
parameters without a specific goal in mind, you can waste time tuning your system
without significant gain.

An example of a specific performance goal is an order entry response time under three
seconds. If the application does not meet that goal, identify the cause (for example,
I/O contention), and take corrective action. During development, test the application
to determine if it meets the designed performance goals.

Tuning usually involves a series of trade-offs. After you have determined the
bottlenecks, you may have to modify performance in some other areas to achieve the
desired results. For example, if I/O is a problem, you may need to purchase more
memory or more disks. If a purchase is not possible, you may have to limit the
concurrency of the system to achieve the desired performance. However, if you have
clearly defined goals for performance, the decision on what to trade for higher
performance is easier because you have identified the most important areas.

1.3.1 User Expectations
Application developers, database administrators, and system administrators must be
careful to set appropriate performance expectations for users. When the system carries
out a particularly complicated operation, response time may be slower than when it is
performing a simple operation. Users should be made aware of which operations
might take longer.

1.3.2 Performance Evaluation
With clearly defined performance goals, you can readily determine when performance
tuning has been successful. Success depends on the functional objectives you have
established with the user community, your ability to measure whether or not the
criteria are being met, and your ability to take corrective action to overcome any
exceptions.

Ongoing performance monitoring enables you to maintain a well tuned system.
Keeping a history of the application’s performance over time enables you to make
useful comparisons. With data about actual resource consumption for a range of loads,
you can conduct objective scalability studies and from these predict the resource
requirements for anticipated load volumes.

1.4 Performance Methodology
Achieving optimal effectiveness in your system requires planning, monitoring, and
periodic adjustment. The first step in performance tuning is to determine the goals you

Performance Methodology

Performance Overview 1-7

need to achieve and to design effective usage of available technology into your
applications. After implementing your system, it is necessary to periodically monitor
and adjust your system. For example, you might want to ensure that 90% of the users
experience response times no greater than 5 seconds and the maximum response time
for all users is 20 seconds. Usually, it’s not that simple. Your application may include a
variety of operations with differing characteristics and acceptable response times. You
need to set measurable goals for each of these.

You also need to determine variances in the load. For example, users might access the
system heavily between 9:00am and 10:00am and then again between 1:00pm and
2:00pm, as illustrated by the graph in Figure 1–5. If your peak load occurs on a regular
basis, for example, daily or weekly, the conventional wisdom is to configure and tune
systems to meet your peak load requirements. The lucky users who access the
application in off-time will experience better response times than your peak-time
users. If your peak load is infrequent, you may be willing to tolerate higher response
times at peak loads for the cost savings of smaller hardware configurations.

Figure 1–5 Adjusting Capacity and Functional Demand

1.4.1 Factors in Improving Performance
Performance spans several areas:

■ Sizing and configuration: Determining the type of hardware needed to support
your performance goals.

■ Parameter tuning: Setting configurable parameters to achieve the best
performance for your application.

■ Performance monitoring: Determining what hardware resources are being used by
your application and what response time your users are experiencing.

■ Troubleshooting: Diagnosing why an application is using excessive hardware
resources, or why the response time exceeds the desired limit.

Time

F
u

n
ct

io
n

al
 D

em
an

d

9:00 10:30 1:00 2:30

Performance Methodology

1-8 Oracle Application Server Performance Guide

Monitoring Oracle Application Server 2-1

2
Monitoring Oracle Application Server

This chapter provides an overview and presents information on monitoring Oracle
Application Server and its components. Monitoring Oracle Application Server and
obtaining performance data can assist you in tuning the system and debugging
applications with performance problems.

This chapter contains the following sections:

■ Oracle Enterprise Manager 10g Application Server Control Console

■ Oracle Application Server Built-in Performance Metrics

■ Centralized Management of Oracle Application Server Instances

■ Native Operating System Performance Commands

■ Network Performance Monitoring Tools

Oracle Enterprise Manager 10g Application Server Control Console

2-2 Oracle Application Server Performance Guide

2.1 Oracle Enterprise Manager 10g Application Server Control Console
Oracle Enterprise Manager 10g Application Server Control Console (Application
Server Control Console) allows you to monitor Oracle Application Server and its
components. Application Server Control Console shows performance metrics for
Oracle Application Server components, including:

■ Oracle Containers for J2EE (OC4J) and Applications running under OC4J

Using Application Server Control Console, you can also view performance metrics and
other status information using Application Server Control Console.

2.2 Oracle Application Server Built-in Performance Metrics
Oracle Application Server automatically measures runtime performance and collects
metrics for Oracle HTTP Server and Oracle Containers for J2EE (OC4J) servers and
components. The server performance metrics are measured automatically and
continuously using performance instrumentation inserted into the implementations of
Oracle Application Server components. The performance metrics are automatically
enabled; you do not need to set options or perform any extra configuration to collect
them (for performance reasons the JDBC metrics are enabled by setting options).

The Oracle HTTP Server performance metrics enable you to do the following:

■ Monitor the duration of important phases of Oracle HTTP Server request
processing.

■ Collect status information on Oracle HTTP Server requests. For example, you can
monitor the number of requests being handled at any given moment.

The OC4J performance metrics allow you to monitor the performance of J2EE
containers and components and enable you to do the following:

■ Monitor the number of active servlets, JSPs, EJBs, and EJB methods.

■ Monitor the time spent processing an individual servlet, JSP, EJB, or EJB method.

■ Monitor the sessions and JDBC connections associated with servlets, JSPs, EJBs, or
EJB methods.

■ Monitor OC4J JMS events and status.

You can use the performance metrics while troubleshooting Oracle Application Server
components to help locate bottlenecks, identify resource availability issues, or help
tune your components to improve throughput and response times.

See Also: Oracle Application Server Administrator’s Guide

Note: You can use the commands that access the built-in metrics
in scripts or in combination with other monitoring tools to gather
performance data or to check application performance.

See Also:

■ Appendix A, "Monitoring Using Built-in Performance Tools"

■ Appendix C, "Performance Metrics"

Network Performance Monitoring Tools

Monitoring Oracle Application Server 2-3

2.3 Centralized Management of Oracle Application Server Instances
While Application Server Control Console provides standalone management for an
Application Server and its components, you can centrally manage all your Application
Servers through one tool rather than through several Application Server Control
Consoles by using the Oracle Enterprise Manager 10g Grid Control Console. For
example, say you have 10 Application Servers deployed on five hosts. By deploying a
Management Agent on each host, Enterprise Manager automatically discovers the
Application Server on those hosts and automatically begins monitoring them using
default monitoring levels, notification rules, and so on.

The Oracle Enterprise Manager 10g Grid Control Console contains an Application
Server Home page which provides easy access to key information required by
application server administrators, including the following:

■ Links to Oracle Application Server component home pages

■ Application server status, responsiveness, and performance data

■ Alerts and diagnostic drill-downs so you can identify and resolve problems
quickly

■ Resource usage for the application server and its components

■ A single view of all Java 2 Platform Enterprise Edition (J2EE) applications and web
services

■ Links to the Application Server Control Console for administration operations
such as starting and stopping components, modifying configurations, and
deploying applications.

2.4 Native Operating System Performance Commands
In order to solve performance problems or to monitor your system’s activity, you can
use the available native operating system commands. Native operating system
commands allow you to gather and monitor CPU utilization, paging activity,
swapping, and other system activity information.

2.5 Network Performance Monitoring Tools
You can use network monitoring tools to verify the status of requests that access your
Oracle Application Server components. Tools are available that allow you to examine
and save network traffic information. These tools can be helpful in analyzing and
solving performance problems.

See Also:

Oracle Enterprise Manager Concepts for more information on Oracle
Enterprise Manager 10g Grid Control Console

Oracle Application Server Administrator’s Guide

Oracle Enterprise Manager Grid Control Installation and Basic
Configuration

See Also: Refer to the system level documentation for
information on native operating system monitoring commands

Network Performance Monitoring Tools

2-4 Oracle Application Server Performance Guide

Top Performance Areas 3-1

3
Top Performance Areas

This chapter provides a description of top tuning areas for Oracle Application Server
and includes the following sections:

■ Top Performance Areas

■ Advanced Performance Areas

Top Performance Areas

3-2 Oracle Application Server Performance Guide

3.1 Top Performance Areas
This section covers critical Oracle Application Server performance issues and provides
a quickstart for tuning J2EE applications that run on OC4J. Table 3–1 lists a quick
guide for performance considerations for Oracle Application Server.

Table 3–1 Top Performance Areas for Oracle Application Server Applications

Performance Area Description and Reference

Ensure Sufficient Hardware Resources Oracle Application Server has minimum hardware requirements that
enable you to use the product. You also need to run on hardware that
supports the needs for your applications, including the database tier. For
details on Oracle Application Server installation requirements, see the
Requirements chapter in the Installation Guide for your platform.

See "Ensure Sufficient Hardware Resources" on page 3-3 for more
information on platform specific tools that can help you determine if your
hardware resources are sufficient.

Ensure Sufficient Java Heap Size To improve the performance of a J2EE application, you need to provide an
adequate heap size for the JVM where the application runs. If the OC4J
running your J2EE application does not have enough memory,
performance can suffer due to the overhead required to manage limited
memory.

See "Ensure Sufficient Java Heap for OC4J" on page 3-3 for details on
setting JVM heap size options.

Tune the JVM for Garbage Collection To improve the performance of a J2EE application and ensure that your
application performance is not being negatively impacted by JVM garbage
collection, you need to manage the heap size and sometimes you also need
to set JVM options that impact garbage collection frequency.

See "Tune the JVM Garbage Collection Options" on page 3-4 for more
information on garbage collection.

Reuse Database Connections By default, OC4J data sources enable database connection pooling. Thus,
OC4J manages database connections to avoid frequently reestablishing
new connections. The Oracle Application Server data source facility
provides options you can use to control the number of database
connections maintained, and how long they are maintained.

See "Reuse Database Connections" on page 3-6.

Specify Sufficient HTTP Connections Tune the Oracle HTTP Server directives to set the level of concurrency by
specifying the number of HTTP connections.

See "Specify Sufficient Oracle HTTP Server Connections" on page 3-7.

Enable JDBC Statement Caching
Option

By enabling statement caching to lower the overhead of repeated cursor
creation and repeated statement parsing and creation, you can improve
performance for applications using the database tier.

See "Enable Statement Caching for Data Sources" on page 3-8.

Ensure the Database is Properly
Tuned

For applications that access a database, ensure that your database is
properly configured to support your application's requirements.

See "Verify Database Tuning" on page 3-8.

Verify Logging Levels You need to make sure that the logging level is not set higher than the
default INFO level logging. If the logging setting does not match the
default level, reset the logging level to the default for best performance.

See "Verify Logging Levels" on page 3-10.

Reuse EJB Instances Set the EJB options for creating and reusing instances to improve EJB
performance.

See "Reuse EJB Instances" on page 3-11.

Top Performance Areas

Top Performance Areas 3-3

3.1.1 Ensure Sufficient Hardware Resources
A most crucial performance area is ensuring that there are sufficient CPU, memory
and network resources to support the user population and application requirements
for your Oracle Application Server installation. You need to monitor resource
utilization over an extended period to determine if you have occasional peaks of usage
or whether a resource is consistently saturated. You also need to define the acceptable
response times and throughputs for applications running at your site, for both peak
and extended periods. Also, check the system while running your application under
normal load and monitor operating system statistics, including, CPU, memory, disk,
and network performance to determine if any hardware resource is saturated.

To check the CPU, memory, and disk performance you can use the following
commands:

On Linux systems use the sar or mpstat command.

On Windows systems use the perfmon command.

To check network performance, you can use the following commands:

On Linux and Windows systems:

% netstat

On Windows systems, you can also use the Windows Task Manager to check network
performance.

If any of the hardware resources are saturated, this could be due to one or more of the
following:

■ The hardware resources are insufficient to run the application.

■ The system is not properly configured.

■ The application or database needs to be tuned.

For a consistently saturated resource, the solutions are to reduce load or increase
resources. For peak traffic periods, if the increased response time is not acceptable the
alternatives are to again increase resources or to determine if there is traffic that can be
rescheduled to reduce the peak load, such as scheduling batch or background
operations during slower periods. Oracle Application Server provides a variety of
mechanisms to help you control resource concurrency; this can limit the impact of
bursts of traffic. However, for a consistently saturated system, these mechanisms
should be viewed as temporary solutions.

3.1.2 Ensure Sufficient Java Heap for OC4J
If you have sufficient memory available on your system and your application is
memory intensive, increase the JVM heap size from the default value. While the
amount of heap required varies based on the application and on the available memory,
for most OC4J server applications, if you have sufficient memory, then Oracle
recommends using an initial heap size of 512 Megabytes or larger.

You can improve performance by setting the initial heap size equal to the maximum
heap size.

See Also:

■ "Specify Sufficient Oracle HTTP Server Connections" on page 3-7

■ "Managing Concurrency and Limiting Connections" on page 3-11

Top Performance Areas

3-4 Oracle Application Server Performance Guide

Take the following steps to change the heap size values for an OC4J instance:

1. Navigate to the Home page for the OC4J instance.

2. Click Administration.

3. If necessary, expand the Properties section of the table by clicking the Expand icon.
Then, click the Go to Task icon in the Server Properties row.

4. In the Command Line Options area, change the value in the Maximum heap size
and Initial heap size fields.

5. Click Apply.

6. Navigate to the Cluster Topology page, select the OC4J instance that you modified,
and click Restart. On the Confirmation page, click Yes.

This specifies the following JVM options and changes the size of the heap allocated to
the OC4J process in an OC4J instance.

If your Oracle Application Server topology includes more than one JVM on the same
system, then to maximize performance, set the maximum heap size to accommodate
application requirements and make sure that the total memory consumed by all of the
JVMs running on the system does not exceed the memory capacity of your system.

3.1.3 Tune the JVM Garbage Collection Options
JVM garbage collection is an expensive and can have an impact on application
performance; inefficient garbage collection can severely degrade application
performance. Therefore, it is important to understand how applications create and
destroy objects.

To tune the JVM garbage collection options you need to analyze garbage collections
data and check for the frequency and type of garbage collections, the size of the
memory pools, and the time spent on garbage collection.

In order to determine application memory requirements you can monitor JVM garbage
collection and memory pool sizes using the following:

■ The JVM command line options:

-verbose:gc
-XX:+PrintGCDetails

Look for "Full GC" to identify major collections.

■ jstat tool

■ visualgc tool

■ The Application Server Control Console JVM Metrics page shows JVM memory
pool and garbage collector information. This page is available from the OC4J home

See Also:

■ The JVM Metrics page in Application Server Control Console.
This page is available from the OC4J home page, by clicking the
Performance Secondary tab, and then, in the Related Links
area, clicking JVM Metrics.

■ You can find detailed information about JVM options and their
impact on performance on the JVM vendor’s Web sites, such as

http://java.sun.com/performance/reference/whitepaper
s/5.0_performance.html

Top Performance Areas

Top Performance Areas 3-5

page by clicking the Performance Secondary tab, and then, in the Related Links
area, clicking JVM Metrics.

Set the -XX:+AggressiveHeap JVM option to tune internal VM parameters, and
increase the total heap size, as described in "Ensure Sufficient Java Heap for OC4J" on
page 3-3 to reduce the overhead associated with Full CG garbage collections. The
-XX:+AggressiveHeap option tunes internal VM parameters to be optimal for
long-running, memory-intensive workloads. This option should follow, on the
command line, the heap sizing options -Xms and -Xmx. See "Ensure Sufficient Java
Heap for OC4J" on page 3-3 for details on setting Java command line options in an
Oracle Application Server managed environment (please disregard older versions of
Sun documentation which advise against using -XX:+AggressiveHeap).

To determine if an application uses explicit garbage collection, which can have a
negative impact on performance, set the -XX:+DisableExplicitGC option. This
debugging option disables explicit garbage collection. Applications should avoid the
use of system.gc() calls. If you suspect an application may be explicitly triggering
garbage collection, set this parameter and observe the differences in your garbage
collection behavior. If you determine that the application is making explicit
system.gc() calls, discuss with the application developer why this was done and
the impact of disabling the calls. Application developers sometimes use
system.gc() calls to trigger finalizers. This is not a recommended practice and can
yield indeterminate behavior.

Take the following steps to change the JVM command line options:

1. Navigate to the Home page for the OC4J instance.

2. Click Administration.

3. If necessary, expand the Properties section of the table by clicking the Expand icon.
Then, click the Go to Task icon in the Server Properties row.

4. In the Command Line Options area, modify or change the appropriate command
line options in the Options table.

5. Click Apply.

6. Navigate to the Cluster Topology page, select the OC4J instance that you modified,
and click Restart. On the Confirmation page, click Yes.

Note: The JVM provides a variety of parameters to allow you to
more finely tune heap management and garbage collection behavior.
See the following links for a detailed description of these topics.

See Also:

■ http://java.sun.com/j2se/1.5/pdf/jdk50_ts_
guide.pdf

■ http://java.sun.com/docs/hotspot/gc5.0/ergo5.html

■ http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_
5.html

Top Performance Areas

3-6 Oracle Application Server Performance Guide

3.1.4 Reuse Database Connections
To obtain better performance in your application, by lowering the overhead of creating
and recreating database connections, specify the connection pool min-connections
attribute to set the minimum number of connections that the connection pool
maintains.

By default, the value of min-connections is 0. For best performance, you should
specify a value for min-connections other than 0. If min-connections is set to a
value other than zero, the specified number of connections is maintained; OC4J
maintains the connections when they are not in use and they do not time out when the
specified inactivity-timeout is reached. The min-connections attribute does
not specify that OC4J pre-create connections at startup. Specify the initial-limit
attribute to set the number of connections in the connection pool when the pool is
initially created or reinitialized. Oracle recommends that you set the initial-limit
attribute to the same value as the min-connections attribute.

If the specified value for min-connections is less than max-connections, then
you should set the inactivity-timeout to make sure that connections only time
out after an appropriately long period of inactivity. The connection pool
inactivity-timeout specifies the time, in seconds, to cache unused connections
before closing the connection.

To improve performance, you can set the inactivity-timeout to a value that
allows the connection pool to avoid dropping and then reacquiring connections while
your J2EE application is running. The default value for the inactivity-timeout is
60 seconds, which is typically too low for frequently accessed applications where there
may be some inactivity between requests. For most applications, to improve
performance, Oracle recommends that you increase the inactivity-timeout to 120
seconds.

To determine if the default inactivity-timeout is too low, monitor your system. If
you see that the number of database connections grows and then shrinks during an
idle period, and grows again soon after that, you have two options: you can increase
the inactivity-timeout, or you can increase the min-connections.

Notes for reusing database connections:

■ Limiting the total number of open database connections to a number your
database can handle is an important tuning consideration. You should check with
your database administrator to make sure that the database is configured to
support a number of connections that is greater than the following:

At least as large a number of connections as the sum of the values specified for all
the connection pool min-connections that could be concurrently active, and as
large as the maximum desired concurrency across all the datasources for the
database.

■ If the min-connections is set to a value other than zero, the specified number of
connections is maintained; OC4J maintains the connections when they are not in
use, and they do not time out when the specified inactivity-timeout is
reached.

Once the specified connections are opened, you need to either stop OC4J or use the
refresh operation to close the connections. Application Server Control shows the
refresh operation in Connection Pool area on the JDBC Resources page. Click the
icon in the Refresh Connection Pool field to initiate a refresh operation.

Top Performance Areas

Top Performance Areas 3-7

3.1.5 Specify Sufficient Oracle HTTP Server Connections
The Oracle HTTP Server MaxClients directive limits the number of clients that can
simultaneously connect to your web server, and thus the number of httpd processes.

For Windows, the analogous parameter is ThreadsPerChild. The Oc4jCacheSize
directive specifies the maximum number of idle connections that mod_oc4j maintains
per OC4J JVM, relevant only on Windows.

You can use the MaxClients, ThreadsPerChild, and Oc4jCacheSize directives
to limit incoming connections to the OC4J instances from the Oracle HTTP Server. This
section covers the following topics:

■ Configuring the MaxClients Directive (for UNIX)

■ Configuring the ThreadsPerChild Directive (for Windows)

■ Configuring the Oc4jCacheSize Directive

3.1.5.1 Configuring the MaxClients Directive (for UNIX)
You can configure the MaxClients directive in the httpd.conf file up to a
maximum of 8K (the default value is 150). If your system is not resource-saturated and
you have a user population of more than 150 concurrent HTTP connections, you can
improve your performance by increasing MaxClients to increase server concurrency.
Increase MaxClients until your system becomes fully utilized (85% is a good
threshold).

When system resources are saturated, increasing MaxClients does not improve
performance. In this case, the MaxClients value could be reduced as a throttle on the
number of concurrent requests on the server.

If the server handles persistent connections, then it may require sufficient concurrent
httpd server processes to handle both active and idle connections. When you specify
MaxClients to act as a throttle for system concurrency, you need to consider that
persistent idle httpd connections also consume httpd processes. Specifically, the
number of connections includes the currently active persistent and non-persistent
connections and the idle persistent connections. A persistent, KeepAlive, HTTP
connection consumes an httpd child process, or thread, for the duration of the
connection, even if no requests are currently being processed for the connection.

If you have sufficient capacity, KeepAlive should be enabled; using persistent
connections improves performance and prevents wasting CPU resources
reestablishing HTTP connections. Normally, you should not need to change
KeepAlive parameters.

Note: The discussion in this section only applies for the default
Oracle HTTP Server supplied with Oracle Application Server (based
on Apache 1.3). This discussion does not apply for the Apache 2.0
based standalone version of Oracle HTTP Server.

Note: The default maximum requests for a persistent connection is
100, as specified with the MaxKeepAliveRequests directive in
httpd.conf. By default, the server waits for 15 seconds between
requests from a client before closing a connection, as specified with
the KeepAliveTimeout directive in httpd.conf.

Top Performance Areas

3-8 Oracle Application Server Performance Guide

When there are no httpd processes available, connection requests are queued in the
TCP/IP system until a process becomes available, and eventually clients terminate
connections.

3.1.5.2 Configuring the ThreadsPerChild Directive (for Windows)
You can configure the ThreadsPerChild directive in the httpd.conf file up to a
maximum of 8K (the default value is 50). The ThreadsPerChild parameter on
Windows systems works like the MaxClients parameter on UNIX systems.

3.1.5.3 Configuring the Oc4jCacheSize Directive
The Oc4jCacheSize directive specifies the maximum number of idle connections
that mod_oc4j maintains per OC4J JVM. On Windows only, it is sometimes useful to
change the default value of this directive.

On UNIX systems where each Oracle HTTP Server process is single threaded, the only
meaningful values are 1 which is the default value, and zero (0). A value of zero (0)
specifies that Oracle HTTP Server should not maintain any connections and should
open a new connection for every request. Since each process is single threaded, a
process never needs more than one connection and hence a value of 1 or greater has
the same effect on UNIX systems. For best performance, on UNIX systems, do not
change the default value for Oc4jCacheSize.

On Windows systems, the default Oc4jCacheSize value is 75% of the value of
ThreadsPerChild; the connection cache is shared among threads in the child
process. If Oracle HTTP Server is serving a mixed load of static content along with
OC4J requests, then the default should be adequate. If the user's load is all OC4J
requests, that is, Oracle HTTP Server serves up little or no content and serves just as a
front end for OC4J, then it is a good idea to set Oc4jCacheSize equal to
ThreadsPerChild. This setting provides a dedicated connection per thread, if
needed, and should give the best performance.

3.1.6 Enable Statement Caching for Data Sources
Enable statement caching to lower the overhead of repeated cursor creation and
repeated statement parsing and creation by setting the num-cached-statements
attribute to a value greater than 0 (the default value is 0, disabled). The number you
set for num-cached-statements should be the number of SQL statements that you
use in your application.

3.1.7 Verify Database Tuning
To achieve optimal performance in Oracle Application Server, for applications that use
the database, the database tables you access need to be designed with performance in
mind and you need to monitor and tune the database server to assure that the system
is performant.

This section covers the following:

■ Tuning init.ora Database Parameters

■ Tuning Redo Logs Location and Sizing

See Also: "Configuring the MaxClients Directive (for UNIX)" on
page 3-7

See Also: "Statement Caching with Managed Data Sources" in Oracle
Containers for J2EE Services Guide

Top Performance Areas

Top Performance Areas 3-9

■ Automatic Segment-Space Management (ASSM)

3.1.7.1 Tuning init.ora Database Parameters
Table 3–2 shows tuning information for several of the init.ora database initialization
parameters.

See Also: Oracle Database Performance Tuning Guide

Table 3–2 Important init.ora Database Tuning Parameters

nit.ora Parameter Description

DB_BLOCK_SIZE The default block size of 8K is optimal for most systems. However, OLTP systems
occasionally benefit from smaller block sizes, and DSS systems occasionally benefit
from larger block sizes.

See Also: table 8-3, "Block Size Advantages and Disadvantages" in the Oracle
Database Performance Tuning Guide.

PGA_AGGREGATE_TARGET Specifies the target aggregate PGA memory available to all server processes attached
to the instance.

See Also: "Memory Configuration and Use" in the Oracle Database Performance Tuning
Guide for information on PGA memory management.

PROCESSES Sets the maximum number of operating system processes that can be connected to
Oracle concurrently. The value of this parameter must be 6 or greater (5 for the
background processes plus 1 for each user process). For example, if you plan to have
50 concurrent users, set this parameter to at least 55. Many other initialization
parameter values are deduced from this value.

SGA_MAX_SIZE This parameter is the maximum size of the SGA for a running instance. Set this
parameter to the amount of memory that you want dedicated for the SGA, which
includes the following memory pools:

■ Database buffer cache

■ Shared pool

■ Large pool

■ Java pool

It is a good practice to regularly monitor the buffer cache hit ratio and size the SGA
so that the buffer cache has an adequate number of frames for the workload. The
buffer cache hit ratio may be calculated from data in the view V$SYSSTAT. Also the
view V$DB_CACHE_ADVICE provides data that can be used to tune the buffer cache.

See Also: the chapter, "Memory Configuration and Use" in the Oracle Database
Performance Tuning Guide for detailed information on how to set the SGA_MAX_SIZE
parameter, including on how to use the V$SYSSTAT and V$DB_CACHE_ADVICE
views to optimize the buffer cache hit ratio.

SGA_TARGET Setting this parameter to a nonzero value enables Automatic Shared Memory
Management. Oracle strongly recommends the use of automatic memory
management, both to simplify configuration and to improve performance.
Automatic Shared Memory Management was introduced with the Oracle Database
10g (10.1). For prior versions, you must manually configure individual SGA memory
pools.

See Also: the section, "Automatic Shared Memory Management" in the Chapter,
"Memory Configuration and Use" in the Oracle Database Performance Tuning Guide for
details on chosing a value for the SGA_TARGET parameter.

UNDO_TABLESPACE

UNDO_MANAGEMENT

Oracle strongly recommends that you use automatic undo management (UNDO_
MANAGEMENT = AUTO) and manage undo space using an UNDO_TABLESPACE. For
backward compatibility reasons, the default value of UNDO_MANAGEMENT is
MANUAL.

See Also: Oracle Database Performance Tuning Guide for additional information on
undo space management.

Top Performance Areas

3-10 Oracle Application Server Performance Guide

3.1.7.2 Tuning Redo Logs Location and Sizing
Managing the database I/O load balancing is a non-trivial task. However, tuning the
redo log options can provide performance improvement for applications running in an
Oracle Application Server environment, and in some cases, you can significantly
improve I/O throughput by moving the redo logs to a separate disk.

The size of the redo log files can also influence performance, because the behavior of
the database writer and archiver processes depend on the redo log sizes. Generally,
larger redo log files provide better performance by reducing checkpoint activity. It is
not possible to provide a specific size recommendation for redo log files, but redo log
files in the range of a hundred megabytes to a few gigabytes are considered
reasonable. Size your online redo log files according to the amount of redo your
system generates. A rough guide is to switch logs at most once every twenty minutes.
Set the initialization parameter LOG_CHECKPOINTS_TO_ALERT = true to have
checkpoint times written to the alert file.

The complete set of required redo log files can be created during database creation.
After they are created, the size of a redo log size cannot be changed. However, new,
larger files can be added later, and the original (smaller) ones can subsequently be
dropped.

3.1.7.3 Automatic Segment-Space Management (ASSM)
For permanent tablespaces, Oracle recommends using automatic segment-space
management. Such tablespaces, often referred to as bitmap tablespaces, are locally
managed tablespaces with bitmap segment space management.

For backward compatibility, the default local tablespace segment-space management
mode is MANUAL.

3.1.8 Verify Logging Levels
You need to assure that application and server logging levels are set appropriately, and
that debugging properties or other application level debugging flags are set to
appropriate levels or disabled. Set Oracle Application Server OC4J logger log levels to
log messages at the INFO level (do not set log levels to levels that produce more
diagnostic message, including the FINE or TRACE levels).

To configure OC4J component loggers through Application Server Control Console, do
the following from the OC4J home page:

1. Click the Administration link

2. In the table, under Properties, click the task for Logger Configuration.

3. In the table, under Loggers, set the root Log Level to the desired value, or expand
the tree to select individual Log Levels for specified loggers.

4. Click Apply to apply your changes to the OC4J runtime.

See Also: The chapters, "Configuring a Database for Performance"
and "I/O Configuration and Design" in the Oracle Database Performance
Tuning Guide

See Also: Oracle Database Concepts for a discussion of free space
management, and Oracle Database Administrator's Guide for more
information on creating and using automatic segment-space
management for tablespaces.

Advanced Performance Areas

Top Performance Areas 3-11

3.1.9 Reuse EJB Instances
This section describes EJB tuning options for creating and reusing instances to improve
EJB performance; these options are specific to OC4J and apply for all types of EJBs
(except Stateful Session EJBs). You can configure these options by setting attributes in
orion-ejb-jar.xml.

The min-instances attribute specifies the minimum number of bean
implementation instances to be kept instantiated or pooled. The default value is 0. For
best performance, you should specify a value for min-instances other than 0. If
min-instances is > 0, OC4J maintains the min-instances number of instances in
the pool when they are not in use. For instances above the min-instances, the
instances are removed from the pool after the pool-cache-timeout specified
timeout expires. The pool-cache-timeout cache expiration removes all bean
instances that have not been accessed during the timeout window. For example, with
the default value for pool-cache-timeout, all beans that have not been touched in
60 seconds would be removed from the pool and active or recently used beans are left
in the pool.

The default value for the pool-cache-timeout is 60 seconds, which is typically too
low for frequently accessed EJBs. If the pool-cache-timeout is 0 or negative, then the
pool-cache-timeout is disabled and beans are not removed from the pool.

For performance tuning, try to reduce the frequency of the removal of beans from the
pool by setting the pool-cache-timeout to a large value. You should set the
pool-cache-timeout to a large enough value to allow OC4J to avoid destroying
and then re-creating instances while your J2EE application is running.

3.2 Advanced Performance Areas
This section describes areas that can provide improved performance for some usage
cases and environments.

This section covers the following topics:

■ Managing Concurrency and Limiting Connections

■ Load Balancing

■ Using the -XX:AppendRatio Option (on Standalone OC4J)

3.2.1 Managing Concurrency and Limiting Connections
Oracle Application Server lets you limit concurrency at multiple layers of the system
to match specific usage needs. In addition to controlling HTTP connections, you can
control concurrency at additional levels of the product to meet specific usage
requirements.

This section covers the following topics:

■ Using OC4J Thread Pools to Control Concurrency

■ Setting the Maximum Number of Connections for Data Sources

■ Controlling the Number of EJB Instances When Using EJBs

■ Limiting Remote EJB Client Connections

See Also: "Specify Sufficient Oracle HTTP Server Connections" on
page 3-7

Advanced Performance Areas

3-12 Oracle Application Server Performance Guide

3.2.1.1 Using OC4J Thread Pools to Control Concurrency
By default, OC4J creates thread pools, as described in the following list. New threads
are created and added to the pools on an as-needed basis.

■ http thread pool: A thread pool serving HTTP and AJP requests and possibly RMI
requests (if rmi request thread pool is not configured) and RMI connections (if
rmi connection thread pool is not configured). The default behavior provides
for a maximum of 1024 threads, and threads for this pool are created on demand.

■ jca thread pool: contains the pool of threads that OC4J reserves specifically for use
by deployed resource adapters. The default behavior provides for a maximum of
1024 threads, and threads for this pool are created on demand.

■ system thread pool: contains internal OC4J threads. The default behavior provides
for a maximum of 1024 threads and threads for this pool are created on demand.

Thread pools create and store threads for use and reuse by an OC4J process. The
default thread pool management configuration should be sufficient for most common
usage scenarios. Reusing existing threads from a thread pool improves performance
and reduces the burden on the JVM and on the underlying operating system.

There are cases where changing the default behavior, by specifying thread pool
management options, can improve performance, including the following:

■ A hardware resource is nearing maximum capacity on Oracle Application Server
10g. For example, consider the case where a site has a user population of 1000
users with the site often processing 20 concurrent requests; at this rate, the site is
nearing full resource utilization. Occasionally, the site needs to handle peaks of 75
to 100 concurrent requests. Specifying a thread pool with a maximum number of
threads value in the range of 20 to 25 is likely to yield better overall results (setting
the value in the range of 75 to 100 is unlikely to improve peak performance, since
at this level there are no additional resources available to service the threads).

■ A hardware resource is nearing maximum capacity on the database or the
database is a bottleneck due to other limitations, and you want to limit
connections to the database using OC4J thread control (in addition, you can limit
database connections using the datasource max-connections parameter).

Thread pool tuning does not improve performance in the following situations:

■ There are sufficient hardware resources available on the system when the system
is under maximum load and there are no other known software issues such as
database locking problems. This includes both Oracle Application Server 10g tier
and database systems. For example, consider the case where a site has a user
population of 1000 users but typically only sees a few concurrent requests. In this
case, using application server thread pool tuning to limit threads is not
advantageous, since the number of threads is determined by the concurrent
request rate, which for this case is very low.

■ There already are sufficient concurrency limits specified elsewhere in Oracle
Application Server 10g or in the database systems. For example when the Oracle
HTTP Server MaxClients directive is set to control concurrency, at the HTTP

Note: When you use the thread pool management options, this is
considered an expert-mode task. If you modify the default thread pool
configuration, it is important to consider that the resulting
concurrency is determined by the sum of the threads in all thread
pools for the OC4J process.

Advanced Performance Areas

Top Performance Areas 3-13

server level, or when the data source max-connections attribute is set to control
concurrency for connections to the database.

3.2.1.1.1 Controlling and Using Application Server Thread Pools This section describes how
to manage and use the thread pool configuration options.

You can manage application server thread pools as follows:

■ Adding the <thread-pool> element with appropriate attributes in
server.xml. For example,

<thread-pool name="http" min="120" max="120" queue="240" \>

■ Updating the attributes in the ThreadPool MBean, which is accessible through
the system MBean Browser in Application Server Control Console.

■ Using the Thread Pool Configuration page in Application Server Control Console
which is accessible from the OC4J Home page by selecting the Administration
secondary tab and then clicking the Thread Pool Configuration task (see
Figure 3–1).

Note: If the number of incoming requests is consistently higher than
the request rate that the physical hardware can support, consider
increasing the physical resources at the site. Likewise, if the response
time at peak periods is unacceptable, then you may need to increase
the hardware configuration to remedy this situation.

See Also:

■ "Specify Sufficient Oracle HTTP Server Connections" on page 3-7

■ "Setting the Maximum Number of Connections for Data Sources"
on page 3-15

Note: This section describes the OC4J thread pool configuration
options for Oracle Application Server 10g Release 3 (10.1.3.1.0). This
release also supports the OC4J thread pool configuration options that
were available in previous Oracle Application Server releases. The
<global-thread-pool> and <work-manager-thread-pool>
elements in server.xml configure thread pools in an older format.
These elements are deprecated in OC4J 10g (10.1.3.1.0). For details, see
Oracle Containers for J2EE Configuration and Administration Guide.

Advanced Performance Areas

3-14 Oracle Application Server Performance Guide

Figure 3–1 Application Server Control Console Thread Pool Configuration

Notes for specifying thread pool options:

■ Oracle recommends setting the min value (Minimum Pool Size) equal to the max
value (Maximum Pool Size). When min=max, you should set the queue to a value
equal to the maximum concurrent number of requests you expect. For example, if
you are using Oracle HTTP Server with one OC4J instance and no direct RMI
connections, then the value of MaxClients would represent your maximum
concurrency. Note: if you set MaxClients to a very large number, a setting of 300
or less for the queue size is probably sufficient. See "Validating and Monitoring
Thread Pool Performance" on page 3-15 for instructions on monitoring your
thread pool and queues.

Oracle recommends starting with a smaller number of threads, for example, using
Oracle Application Server 10g Release 3 (10.1.3.1.0) with the Basic install option,
set min and max to a value in the range of 80 to 100 and then monitor your
resulting performance. In a standalone OC4J configuration, set min and max to a
value in the range of 15 to 40, and then monitor your performance. If the site has
sufficient CPU and memory resources available, and the concurrent request rate is
higher than the current thread count setting, try increasing the number of threads.
If you observe that the system is resource saturated, then try reducing the number
of threads. Specific thread settings depend on the characteristics of your
application.

■ A recommended starting value for setting thread pool options is to set the min
value equal to the max value. However, if you set a larger max value to
accommodate occasional peaks of traffic, OC4J will add a new thread on each
request until the minimum number of threads are created. After the minimum
number of threads are created, new threads will not be created until the queue is
full. OC4J attempts to keep the number of threads at or near the minimum, unless
the queue is full. If you set the min value less than the max value, it is generally
advisable to keep the queue size small; the queue default value is 0, meaning
requests are not queued and a new thread will be created if the number of threads
is less than the specified max value. If you do not see your threads increasing
beyond the minimum value, then you should decrease the queue size.

Advanced Performance Areas

Top Performance Areas 3-15

3.2.1.1.2 Using RMI Connection and RMI Request Thread Pools OC4J supports a thread pool
for RMI connection threads. By default the RMI connection threads are allocated from
the application server thread pool named http. Using the RMI connection thread pool
provides a separate thread pool whose threads block-read on the RMI connections.
Defining an RMI connection thread pool puts a separate limit on the RMI connections;
they are not taken from the http thread pool. Specify the RMI connection thread pool,
using the rmi connection name in the <thread-pool> element in server.xml,
to separate potentially long-lived RMI connection threads from the threads used for
application work. This configuration allows you to free other threads to do work,
instead of being allocated to long lived RMI connections.

When an RMI connection thread pool is defined, the work from the RMI connections
executes either from threads in the http thread pool, or if you also specify an RMI
request thread pool, then the work from the RMI connections executes from threads in
the RMI request thread pool (you specify the RMI request thread pool with the name
rmi request specification in a <thread-pool> element in server.xml). Specify a
RMI request thread pool if you want to control the work associated with the RMI
connections, separately from other work (for example HTTP requests).

3.2.1.1.3 Using the Work Manager (JCA) Thread Pool Starting with 10g Release 3 (10.1.3),
EJBs of type MDB use receiver threads with the JMS Resource Adapter. OC4J allocates
these threads and threads for other JCA resource adapters from the work manager
thread pool (jca thread pool). However, you need to consider receiver threads to
control the overall concurrency on the system. Oracle recommends leaving the jca
thread pool at the default setting (by default, JCA work manager threads are limited to
a maximum value of 1024). When you want to control the concurrency for EJB MDBs,
use the JMS ReceiverThreads maximum values. The overall concurrency limit on
your system includes the max threads specified for the http thread pool, plus the sum
of all the MDB receiverThreads configured for your applications deployed to
OC4J, or the max jca threads if smaller (plus the RMI connection max threads and the
RMI request max threads, if they are configured).

3.2.1.1.4 Validating and Monitoring Thread Pool Performance You can use the Application
Server Control Console Current Pool Size and Current Queue Size metrics to observe
OC4J thread use on your system. You can access these metrics from OC4J home page
by clicking the Administration secondary tab and then clicking the Thread Pool
Configuration task (see Figure 3–1). The Current Pool Size shows the current number
of threads in the pool. The Current Queue Size shows the current number of requests
waiting in the queue for a thread to become available. Oracle recommends starting
with the default settings and observing the behavior on your system. You should also
observe these metrics after changing the thread pool or queue size limits for your
instance.

3.2.1.2 Setting the Maximum Number of Connections for Data Sources
For applications that use a database, performance can improve when the connection
pool associated with a data source limits the number of connections. You can use the

See Also: Oracle Containers for J2EE Configuration and Administration
Guide for more details on using the application server thread pool

Note: Specifying the rmi connection thread pool and the rmi
request thread pool is only needed if you anticipate many
concurrent RMI connections, where the number varies greatly and
you are trying to bound the active worker threads.

Advanced Performance Areas

3-16 Oracle Application Server Performance Guide

max-connections attribute to limit the database requests from Oracle Application
Server so that incoming requests do not saturate the database, or to limit the database
requests so that the database access does not overload the Oracle Application
Server-tier resource.

The connection pool max-connections attribute specifies the maximum number of
connections that a connection pool allows. By default, the value of
max-connections is set to -1 (unlimited). For best performance, you should specify
a value for max-connections that matches the number appropriate to your database
performance characteristics.

Limiting the total number of open database connections to a number your database
can handle is an important tuning consideration. You should check to make sure that
your database is configured to allow at least as large a number of open connections as
the total of the values specified for all the data sources max-connections option, as
specified in all the applications that access the database.

3.2.1.3 Controlling the Number of EJB Instances When Using EJBs
You may want to limit the number of EJB instances to reduce memory usage or to
control concurrency to reduce contention on resources that the EJBs use (for example a
data source).

The max-instances parameter specifies the number of bean instances allowed in
memory – either instantiated or pooled.

■ For all types of EJBs except stateful session beans, when the max-instances
value is reached, and a new EJB is requested, the container waits the number of
milliseconds set in the call-timeout attribute to see if a bean instance becomes
available in the pool. If no bean instance is available in the pool then a
TimeoutExpiredException is thrown back to the client.

■ For stateful session beans, when the max-instances value is reached, the
container attempts to passivate the oldest bean instance from memory. If
unsuccessful, the container waits the number of milliseconds set in the
call-timeout attribute to see if a bean instance is removed from memory, either
through passivation, using the remove() method, or by bean expiration before a
TimeoutExpiredException is thrown back to the client.

To allow an unlimited number of bean instances, use max-instances = 0 (the default
value is 0).

Set max-instances < 0, for example to -1, to disable instance pooling. In this case
OC4J creates a new bean instance or context when starting the EJB call, and releases
the context and throws the instance away to Non-existence state at the end of the
call.

The exception, com.evermind.server.ejb.TimeoutExpiredException:
timeout expired waiting for an instance, occurs when there is no
available EJB instance. To avoid this problem set the max-instances and
call-timeout parameters appropriately.

3.2.1.4 Limiting Remote EJB Client Connections
To limit remote EJB client connections you can change the max value for the http
thread pool to specify limits for all threads, or you can use the thread pool features
that control the maximum number of threads that service incoming EJB clients. By
default, the threads for remote EJB client connections come from the http thread pool.
When you want use the RMI connection thread pool, configure the rmi connection

Advanced Performance Areas

Top Performance Areas 3-17

name in the <thread-pool> element in server.xml. By setting the max value of
the RMI connection thread pool, you can limit remote EJB client connections.

3.2.2 Load Balancing
Oracle Application Server provides load-balancing features that spread the J2EE
application load and incoming requests among multiple application server instances,
which generally results in higher throughput and shorter response time. Using
multiple application server instances with load-balancing allows you to improve
performance by directing requests across the multiple application server instances. In
addition, you can use multiple application server instances running on multiple hosts
to handle high availability and failover needs.

This section covers the following topics:

■ Configuring Multiple Oracle Application Server Instances

■ Web Application Load Balancing

■ EJB Application Load Balancing

3.2.2.1 Configuring Multiple Oracle Application Server Instances
This section covers the following:

■ Determining the Number of OC4J Processes

■ Partitioning Applications into Different OC4J Instances

3.2.2.1.1 Determining the Number of OC4J Processes Determining the optimal ratio of
OC4J processes to available CPUs is dependent on the characteristics of the
applications you run, the OC4J configuration, the hardware configuration, and the
type and number of expected incoming requests. In hardware configurations with a
small number of CPUs, you may only need one OC4J instance.

Adding OC4J instances beyond the available resources of the system does not improve
performance. For example, if one OC4J instance is sufficient to saturate the CPU
resources of a system, adding additional OC4J instances is not likely to improve
performance and may, in fact, degrade it. A good starting point is to initially configure
one OC4J instance and measure the performance improvement from adding additional
OC4J instances.

3.2.2.1.2 Partitioning Applications into Different OC4J Instances Partitioning different
applications to be run under different OC4J instances, each of which has different
requirements, may help improve the performance of your applications. In this case,
you may want to configure different OC4J instances to service the different

See Also: Oracle Containers for J2EE Configuration and Administration
Guide for more details on using the application server thread pool

Note: The Oracle Application Server features that provide
replication for failover with Web sessions and for stateful session EJBs
have a performance overhead; only use these features if you need
replication for failover.

See Also:

■ Oracle Application Server High Availability Guide

■ Oracle Containers for J2EE Configuration and Administration Guide

Advanced Performance Areas

3-18 Oracle Application Server Performance Guide

applications. After deploying the applications to different OC4J instances, you can
monitor the performance to see if the overall throughput increases, or the response
time decreases.

3.2.2.2 Web Application Load Balancing
In an Oracle Application Server environment, the Oracle HTTP Server uses mod_oc4j
to load balance requests between the available OC4J instances. In this environment
you can select mod_oc4j configuration options to choose the appropriate load
balancing policies to improve performance. By default, the requests are routed using a
roundrobin algorithm.

At many sites Oracle Application Server uses the Oracle HTTP Server module mod_
oc4j to load balance incoming stateless HTTP requests. By selecting the appropriate
load balancing policy for mod_oc4j you can improve performance on your site.

The mod_oc4j module supports several configurable load balancing policies,
including the following:

■ Round robin routing (this is the default mod_oc4j load balancing policy)

■ Random routing

■ Round robin or random with local affinity routing, using the local option

■ Round robin or random with host-level weighted routing, using the weighted
option

Recommendations for Load Balancing with mod_oc4j:

1. On a Single Host for both Oracle HTTP Server and OC4J, the default load
balancing policy, round robin load balancing is recommended. Random load
balancing typically gives comparable performance.

2. With Oracle HTTP Server on a separate host from OC4J:

■ Using a Single OC4J host the default load balancing policy, round robin load
balancing is recommended. Random load balancing typically gives
comparable performance.

■ Using Multiple OC4J hosts, if all OC4J hosts provide comparable capacity, the
default load balancing is recommended. Note that the number of OC4J
processes started on a host will implicitly weight the number of requests sent
to that host even with random or round robin load balancing. A host with 4
OC4J processes will receive 4 times as many requests as a host with 1 OC4J
process.

■ With Multiple OC4J Hosts with varying hardware resources or capacity, you
may wish to weight the number of requests sent to each host explicitly to
match its capacity. In this case, use either the round robin with weighted
option or the random with weighted option. If the hosts have comparable
capacity, use simple random or round robin load balancing.

Note: For a session based request mod_oc4j always directs the
request to the original OC4J which created the session, unless the
original OC4J process is not available. In case of failure, mod_oc4j
sends the request to another OC4J within the same group as the
original request (either within same host if available, or on a
different host).

Advanced Performance Areas

Top Performance Areas 3-19

For example, to configure the mod_oc4j module in Oracle HTTP Server to
specify round robin with a routing weight of 3 for Host_A and a routing
weight of 1 for Host_B, add the following directives to mod_oc4j.conf:

Oc4jSelectMethod roundrobin:weighted
Oc4jRoutingWeight Host_A 3

In this example, you do not need to specify a routing weight for Host_B, since
the default routing weight is 1.

3. With Multiple hosts with Oracle HTTP Server and OC4J on each host:

■ Multiple hosts with Oracle HTTP Server and OC4J on each host, and a
hardware load balancer. Select the local affinity option to direct mod_oc4j to
only select the local OC4J processes to service incoming requests. This will
generally improve performance. When no local OC4J processes are available,
mod_oc4j selects from the list of available remote OC4J processes.

For example, to select the round robin policy with local affinity, specify the
following directive in mod_oc4j.conf:

Oc4jSelectMethod roundrobin:local

3.2.2.3 EJB Application Load Balancing
After an EJB application is deployed to multiple OC4J instances, an EJB client-side
application can load balance its requests across the available OC4J instances. To use
load balancing, the client-side application configures the JNDI properties to use load
balancing. For good performance in some clients, you need to set
oracle.j2ee.rmi.loadBalance=context to load balance for every initialcontext
call, rather than only once for the entire client.

3.2.3 Using the -XX:AppendRatio Option (on Standalone OC4J)
With the Sun 5.0 JVM, under some circumstances under heavy load, synchronization
in an application can result in thread starvation. This may cause some requests for an
application to appear hung or to timeout after a long time.

In 10g Release 3 (10.1.3.1.0) the parameter: -XX:AppendRatio=3 is specified by
default for managed OC4J. For standalone OC4J, if you believe your installation has
this problem, we recommend setting the JDK parameter: -XX:AppendRatio=3 to
avoid this problem.

See Also:

■ "Configuring ORMI Request Load Balancing" in the Oracle
Containers for J2EE Services Guide

■ "Understanding OC4J EJB Application Clustering Services" in the
Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

See Also: See the SUN bug database for a description of this issue
and the suggested workaround:
http://bugs.sun.com/bugdatabase/view_bug.do?bug_
id=4985566

Advanced Performance Areas

3-20 Oracle Application Server Performance Guide

Additional Performance Areas 4-1

4
Additional Performance Areas

This chapter covers performance information for the following Oracle Application
Server areas:

■ Improving TopLink Performance

■ Improving JTA Performance

■ Improving EJB Performance

Improving TopLink Performance

4-2 Oracle Application Server Performance Guide

4.1 Improving TopLink Performance
Oracle TopLink (TopLink) provides features to optimize application performance,
including the following important areas:

■ Cache Configuration: In TopLink, to avoid stale data the cache must be properly
configured, and configured in conjunction with locking and query refreshing. In
addition, to provide applications with high performance and scalability you
should understand how the cache works, its relationship to query and transaction
processing, and the cache configuration options.

■ Efficient Querying: In TopLink, it is important to understand the batch and join
reading options on queries to ensure that minimal SQL executes, and to retrieve
the graph of required objects. For searching use cases and the use of projections,
you should use ReportQueries to show that only objects that may be modified
or shared between requests need to be read in and cached as objects.

■ Efficient Transactions: In TopLink, you should understand how to use the
UnitOfWork to minimize transaction scope and thus commit cycles.

The TopLink documentation includes information on these important TopLink
performance areas. See the appropriate chapters in the documentation for more
information about tuning your application to optimize TopLink performance.

4.2 Improving JTA Performance
This section describes JTA performance options, including the following topics:

■ Configuring Two-Phase Commit Logging for Performance

■ Configuring JTA Data Sources for Performance

■ Monitoring JTA Resources

4.2.1 Configuring Two-Phase Commit Logging for Performance
Using configuration options you can control the type and level of two-phase commit
logging. To change the configuration options, you can modify the
transaction-manager.xml file or use the JTA Resource MBean available from the
Transaction Manager page in Application Server Control Console. When you
configure two-phase commit logging, you need to be aware of the transactional
ramifications of turning two-phase commit logging off.

Table 4–1 shows the two-phase commit logging configuration options that you can set
in transaction-manager.xml or using the JTA Resource MBean.

See Also:

■ Chapter 11 "Optimization", in the Oracle TopLink Developer’s Guide

■ Chapter 90 "Understanding the Cache", in the Oracle TopLink
Developer’s Guide

■ Chapter 96 "Understanding TopLink Queries", in the Oracle
TopLink Developer’s Guide

Note: Two-phase commit logging is off by default. When you use the
default logging level, JTA resources do not support recovery and full
ACID properties.

Improving JTA Performance

Additional Performance Areas 4-3

4.2.1.1 Setting JTA Store File Logging Options
Table 4–2 describes the performance settings for file store logging that you can set in
transaction-manager.xml or using the JTA Resource MBean. The default settings
are adequate if the maximum concurrent number of two-phase commit transactions is
less than 256.

To determine the maximum concurrent number of two-phase commit transactions,
you can use the TwoPhaseCommitCompletion.maxActive metric from the
JTAResource metric table.

Table 4–1 Two-phase Commit Logging Log Type Configuration Options

Log Type Description Performance Notes

none Specifies no logging (or recovery).

This is the default value.

When recovery and ACID properties are not
required, use this option for best performance.

file File logging specifies logging to the file
system for transaction recovery.

File logging typically performs better than
database logging, due to lower overhead.

database Database logging specifies logging to an
Oracle database for transaction recovery.

File logging typically performs better than
database logging.

See Also: See the Oracle Containers for J2EE Services Guide for more
information on setting two-phase commit logging configuration
options, and for the details on the transactional and recovery
ramifications of specifying different log type configuration options.

See Also: Table D–1 on page D-2 for details on JTA resource metrics

Table 4–2 JTA File Store Logging Parameters

Parameter Description Performance Notes

maxOpenFiles Specifies the maximum number of file descriptors
that can remain open or active; when this number
is exceeded the oldest file descriptors are released
until the xid is requested again.

Avoid exceeding the maxOpenFiles if possible.

Default Value: 256

The optimal value is large enough to cover the
maximum number of concurrent requests that use
two-phase commit transactions (plus a small
additional number of files that may be required for
recovery).

The maxOpenFiles value is limited by the
Operating System open file descriptor limit.

minPoolSize Specifies the number of files that are pre-allocated
to the pool during startup.

Default Value: 40

The optimal value is large enough to handle the
maximum number of concurrent two-phase
commit requests.

Note: if the maximum concurrency is large, then to
avoid a high cost at startup, you can increase this
value from the default, but set the value to
something smaller than maxOpenFiles value.

oldFileReleaseSize Specifies the number of the oldest file handles
which are closed when maxOpenFiles is
exceeded.

Default Value: 20

If you expect that you will repeatedly exceed the
maxOpenFiles value, which is not
recommended, then increasing this value to
release more file handles may help reduce the
number of times that maxOpenFiles is exceeded.

Note: The number specified for maxOpenFiles does not limit the
number of transactions; if maxOpenFiles is exceeded, old file
handles are released, but new transactions can still be created (see the
oldFileReleaseSize parameter).

Improving JTA Performance

4-4 Oracle Application Server Performance Guide

4.2.2 Configuring JTA Data Sources for Performance
This section covers the following areas:

■ Specify the Data Source Type

■ Use Last Resource Commit

■ Use a Single Data Source Where Possible

4.2.2.1 Specify the Data Source Type
Non-XA compliant data sources are generally faster than XA data sources. When a full
XA-compliant two-phase commit is required, you must use an XA data source.

If transaction logging is set to none, any number of XA or non-XA compliant
resources can be enlisted in a global transaction; however, in this case there are no
ACID guarantees nor recovery.

If transaction logging is enabled, participants in a global transaction must be
XA-compliant. The last resource commit feature allows for a single non-XA-compliant
resource to participate in an XA transaction.

4.2.2.2 Use Last Resource Commit
In addition to allowing a single non-XA resource to participate in a global transaction,
last resource commit can also be used as a performance optimization. By enlisting an
XA-capable resource as a non-XA resource and using last resource commit, a gain in
performance is achieved because the resource does not need to perform XA logging.
Also, the resource would never be put in doubt, that is prepared, which would prevent
resources from being locked. Although last resource commit can be used as a
performance optimization, it is at the cost of guaranteed correctness.

4.2.2.3 Use a Single Data Source Where Possible
When your application uses multiple data sources to access a single resource, this can
lead to unintended use of two-phase commit operations (using XA-transactions). In
some cases you can improve performance by changing the configuration; this
configuration change allows OC4J to eliminate two-phase commits and replace them
with one-phase commits.

You can use the following metrics to check the number of one-phase commits,
two-phase commits, and the count of global transactions that do not enlist any
resources:

/oc4j/JTA/SinglePhaseCommitCompletion.completed
/oc4j/JTA/TwoPhaseCommitCompletion.completed
/oc4j/JTA/AverageCommitTime.completed

Whenever there are multiple data sources used within the same global transaction, use
of XA two-phase commit transactions occurs, even if the data sources actually point to
the same database. If you have deployed the data sources for your application in a

See Also: Oracle Containers for J2EE Services Guide

See Also: Oracle Containers for J2EE Services Guide

Note: The /oc4j/JTA/AverageCommitTime.completed metric
shows all JTA involved transactions but does not show local
transactions.

Improving EJB Performance

Additional Performance Areas 4-5

single database and schema, you may be able to reconfigure your application to use a
single data source. This would improve performance by changing two-phase commits
to single-phase commits.

Thus, transactional applications that use both traditional database resources, such as
tables, and also use OJMS, where resources reside on the same database, can avoid
some two-phase commits by specifying a single data source for each resource. This
change should improve performance and requires that the OJMS data source
configuration matches that specified for accessing the tables.

4.2.3 Monitoring JTA Resources
When you monitor JTA resources, be aware that errors can cause performance
problems. You can determine if there are JTA errors by looking for Rollback or
Exception counts greater than 0 using the metrics in the JTAResource metric table. For
example, look at the values of the following metrics: RollbackExceptionCount,
RolledbackCount, or SystemExceptionCount.

Note that certain performance problems may also affect JTA errors. For example if
performance is bad, timeout errors may occur. In this case, look at the value of the
metric RolledbackDueToTimedOutCount.

4.3 Improving EJB Performance
This section includes the following topics:

■ Improving MDB Performance

■ Improving EJB CMP 2.1 Performance

4.3.1 Improving MDB Performance
This section covers some of the important performance related EJB configuration
properties specified in the orion-ejb-jar.xml configuration file that apply for
Message Driven Beans (MDBs), including the following:

■ Setting the JMS Connector Receiver Threads

■ Using the ejbCreate Method for One Time Initialization

■ Monitoring MDB Resources

4.3.1.1 Setting the JMS Connector Receiver Threads
When you set the number JMS Connector receiver threads for an MDB, this can
improve performance either when there are many concurrent users sending messages
to the queue of an MDB, or when significant processing occurs in the onMessage
method. For example, if the onMessage method contains code to call another EJB and
the EJB processing can occur concurrently while processing other messages, then
setting the JMS Connector receiver threads to a value greater than one can improve
performance. Depending on the underlying JMS Connector and the specific MDB,

See Also: Oracle Containers for J2EE Services Guide for more
information on Local and Global Transactions

See Also: Table D–1 in "JTA Resource Metrics" on page D-2

See Also: Oracle Containers for J2EE Services Guide and the chapter,
Chapter, "Oracle Enterprise Messaging Service (OEMS)" for more
information on using and configuring MDBs

Improving EJB Performance

4-6 Oracle Application Server Performance Guide

some applications may see significant performance improvements when you increase
the value of the JMS Connector ReceiverThreads configuration property.

For example, if a queue contains 100 messages, and the ReceiverThreads is set to
the default value, 1, then only one MDB receiver thread processes the messages, in a
serial fashion. When you set the ReceiverThreads to 5, this specifies that there can
be a maximum of 5 MDB instances that take messages from the queue and process the
messages in parallel. In this example, the total time required to complete the
processing for the 100 messages may decrease, since in this case OC4J uses up to 5
MDB threads to dequeue and process the messages.

When you specify a JMS Connector ReceiverThreads value greater than 1, this
enables multiple instances of the MDB to concurrently process messages from queues.
However, in this case any performance improvement depends on the application and
on the number of threads you specify. If you specify a value that is too large, this can
cause performance to degrade due to resource contention.

4.3.1.1.1 Consider Message Processing Order Requirements for MDBs Use JMS Connector
ReceiverThreads set to the value 1 if the messages must be processed in order. If
you use ReceiverThreads with a value greater than 1, messages are still removed
from a queue serially, but the order of processing the messages cannot be guaranteed
since the MDB is processing the messages with multiple threads.

4.3.1.1.2 Coordinate Thread Pool and Bean Instance Settings OC4J allocates the threads
used as JMS Connector receiver threads from the work manager thread pool (shown as
the jca thread pool using Application Server Control Console and in server.xml)
You can limit the number of JMS Connector receiver threads in the work manager
thread pool using the max parameter for the jca thread pool. You can also use the min
value to set the initial number of available work manager thread pool threads.

Note: The JMS Connector ReceiverThreads value specifies a
maximum value for threads; not all the threads are necessarily used,
depending on the load.

Note: For JMS topics, always set the JMS Connector
ReceiverThreads configuration property to the value 1 (only for
queues are values over 1 meaningful).

Performance Note: Oracle recommends leaving the jca work
manager thread pool at the default setting. Thus, if you want to
control concurrency for EJB MDBs, use the JMS Connector
ReceiverThreads value.

Improving EJB Performance

Additional Performance Areas 4-7

You need to coordinate the following configuration options when you set the value for
the JMS Connector ReceiverThreads:

■ Overall Concurrency Limit: On the system this includes all the thread-pool max
threads plus either:

a. The sum of all the MDB JMS Connector ReceiverThreads configured for
your applications deployed to OC4J (if the max for the work manager thread
pool, shown as the jca thread pool, is specified at the default value, plus the
sum of all threads used by other JCA adapters).

b. The maximum allowed number of work manager thread pool threads, shown
as jca, specified with the max parameter (if this is smaller than the maximum
number specified for the sum of all of the JMS Connector
ReceiverThreads).

■ Set Minimum MDB Instances Appropriate for the Receiver Threads: There is a
one-to-one correspondence between the JMS Connector ReceiverTheads
created and the number of active MDB bean instances. When the initial processing
time for an MDB may be significant, you should set the min-instances MDB
setting to match the number of desired JMS Connector ReceiverTheads, so that
these instances are initialized at startup.

Also, you should configure the MDB configuration min-instances value to be
at most as large as the JMS Connector ReceiverThreads setting per MDB.

To maintain the desired number of instances, set the pool-cache-timout to a
value that is large enough so that the MDB instances are not removed when idle.

4.3.1.1.3 Consider the Database Connections When Setting JMS Connector Receiver Threads
The number of JMS Connector ReceiverThreads also multiplies of the number of
required database connections, if any, for the MDB. For example, if a particular MDB
uses 5 database connections concurrently, and there are 5 active MDB instances, then
the number of requested concurrent database connections would be 25. Thus, the
number of JMS Connector ReceiverThreads must be included in the calculation of
the data source max-connections count.

4.3.1.2 Using the ejbCreate Method for One Time Initialization
An MDB is stateless and contains no specific client state across invocations. However,
for nonclient related state, an MDB instance can contain some state across client
message handling. For example, state can be maintained for a lookup. In addition,
other state information that you may want to cache across onMessage invocations,
such as a reference to an EJB, can be initialized in the ejbCreate method and cached
to optimize MDB performance.

Remember to destroy the state in the ejbRemove method in case idle MDB objects are
removed from the pool and reallocated when needed.

See Also: "Using OC4J Thread Pools to Control Concurrency" on
page 3-12

See Also: "Reuse Database Connections" on page 3-6

Improving EJB Performance

4-8 Oracle Application Server Performance Guide

4.3.1.3 Monitoring MDB Resources
When MDBs use OracleAS JMS as a message provider, DMS message related metrics
are available from the Oracle Application Server performance monitoring tools.

For example, the OracleAS JMS JMSStoreStats metric table includes information
for a destination corresponding to a queue that an MDB uses:

destination.value: name
messageDequeued.count: x ops
messageEnqueued.count: x ops
messageCount.value: n

These metrics show the destination name, the total messages enqueued, the total
number of messages dequeued, and the total number currently in the queue.

You can also check the MDB onMessage metrics to check that the time in onMessage
is as expected and use the maxActive metric to see the total number of concurrent
receiver threads is as expected.

client.active: 1 threads
client.avg: 112 msecs
client.completed: 4 ops
client.maxActive: 1 threads
client.maxTime: 70 msecs
client.minTime: 130 msecs
client.time: 121 msecs

Application Server Control Console provides information for the performance of all
MDBs and of individual MDBs.

To access the summary MDB information, do the following:

1. From the OC4J home page, select the Administration secondary tab.

2. In the table, under Services, select the JMS Providers task.

3. In the in the Performance area, Application Server Control Console displays the
following summary information:

Active Connections
Messages Waiting for Read
Messages Waiting for Commit
Messages Enqueued per Second
Messages Dequeued per Second
Messages Paged In per Second
Messages Paged Out per Second
Messages Committed Since Startup
Messages Rolled Back Since Startup
Messages Expired Since Startup

To access the individual MDB information, use the Application Server Control Console
performance area:

1. From the OC4J home page, select the Applications secondary tab.

Note: When monitoring a JMS destination, other applications
besides the MDB may access the destination. Thus, when you test
the performance of an application, make sure that you know
whether the application is responsible for the message activity that
is reported in the metrics.

Improving EJB Performance

Additional Performance Areas 4-9

2. Select the application that you want to monitor.

3. In the Modules table, select the appropriate EJB module.

4. In the Message Driven Beans area, select the MDB you want to monitor to see the
following information:

Messages Dequeued
Messages Rolled Back
Average Message Processing Time (seconds)
Number of Available Instances
Number of Used Instances

4.3.2 Improving EJB CMP 2.1 Performance
This section covers some of the available performance options for entity beans using
CMP, and includes the following topics:

■ Using Efficient SQL Statements and Querying

■ Cache Configuration Performance Tuning

■ Monitoring CMP Resources

4.3.2.1 Using Efficient SQL Statements and Querying
This section covers using efficient SQL statements and SQL querying. Table 4–3 and
Table 4–4 show tuning parameters and performance recommendations related to SQL
statements and querying.

See Also: "OC4J JMS Metrics" on page D-13

Note: This section describes several EJBs options that you can use to
improve performance of your applications. This section does not
describe how to set these options. For details on configuring your EJBs
to use various options, refer to the Oracle Containers for J2EE Enterprise
JavaBeans Developer’s Guide and the Oracle TopLink Developer’s Guide.

See Also:

■ "Optimization", in the Oracle TopLink Developer’s Guide

■ "Understanding the Cache" in the Oracle TopLink Developer’s Guide

■ "Understanding TopLink Queries" in the Oracle TopLink Developer’s
Guide

■ "Using Advanced Unit of Work API" in the Oracle TopLink
Developer’s Guide

■ "Database Transaction Isolation Levels" in the Oracle TopLink
Developer’s Guide

Improving EJB Performance

4-10 Oracle Application Server Performance Guide

Table 4–3 CMP EJBs Using Efficient SQL Statements and Querying

Tuning Parameter Description

Performance Notes

Parameterized SQL
Binding

Using parameterized SQL and prepared statement caching, you
can improve performance by reducing the number of times the
database SQL engine parses and prepares SQL for a frequently
called query. TopLink and OC4J/CMP does not enable
parameterized SQL and prepared statement caching by default,
because not all databases and JDBC drivers support these
options. Note that the Oracle JDBC driver bundled with OC4J
does support these options

Default Value: off

See Also: Oracle TopLink Developer’s Guide section, "Configuring
Named Query Parameterized SQL and Statement Caching at
the Project Level"

Turn SQL parameter binding on for all
queries (at the project level). Oracle
recommends that you enable
parameterized SQL and prepared
statement caching for selected
databases and JDBC drivers that
support these options.

JDBC Statement
Caching

Statement caching is used to lower the overhead of repeated
cursor creation and repeated statement parsing and creation;
this can improve performance for applications using a database.

Note: Use the data source statement caching (and do not use
TopLink Statement Caching for CMP).

Default Value: off

See Also: Oracle Containers for J2EE Services Guide section,
"Statement Caching with Managed Data Sources"

You should always enable statement
caching if your JDBC driver supports
this option. The Oracle JDBC driver
supports this option. Set this option in
data-sources.xml by setting
num-cached-statements.

Fetch Size The JDBC fetch size gives the JDBC driver a hint as to the
number of rows that should be fetched from the database when
more rows are needed. For large queries that return a large
number of objects you can configure the row fetch size used in
the query to improve performance by reducing the number
database hits required to satisfy the selection criteria.

Most JDBC drivers use a default fetch size of 10. If you are
reading 1000 objects, increasing the fetch size to 256 can
significantly reduce the time required to fetch the query's
results.

Note: The default value means use the JDBC driver default
value, which is typically 10 rows for the Oracle JDBC driver.

Default Value: 0

See Also: Oracle TopLink Developer’s Guide

The optimal fetch size is not always
obvious. Usually, a fetch size of one
half or one quarter of the total
expected result size is optimal. Note
that if you are unsure of the result set
size, incorrectly setting a fetch size too
large or too small can decrease
performance.

Batch Writing Batch writing can improve database performance by sending
groups of INSERT, UPDATE, and DELETE statements to the
database in a single transaction, rather than individually.

Default Value: off

See Also: Oracle TopLink Developer’s Guide section, "Data Access
Optimization"

Enable for all EJBs.

Improving EJB Performance

Additional Performance Areas 4-11

4.3.2.1.1 Querying Container Managed Relationships Performance Tuning Table 4–4 shows
the CMR parameters for performance tuning.

Table 4–4 CMP EJBs and CMR Query Performance Options

Tuning Parameter Description Performance Notes

Batch Reading Batch reading propagates query selection criteria
through an object's relationship attribute mappings.
You can also nest batch read operations down
through complex object graphs. This significantly
reduces the number of required SQL select
statements and improves database access efficiency.

Default Value: off

See Also: Oracle TopLink Developer’s Guide
section,"Using Batch Reading"

Use for queries of tables with columns mappings to
table data you also need to retrieve.

You should only use either batch-reading or joining
if you know that you are going to access all of the
data; if you do not intend to access the
relationships, then just let indirection defer their
loading.

Batch reading is more efficient for 1-m and other
relationships as it reads less data from the
database, that is, n versus n*m. Batch reading is
also more efficient on logical m-1 relationships as
less data may be read. Batch reading also performs
better with caching, because if the original object
and its relationship were already cached then the
batch query does not need to execute (where
joining would have already read in all of the data).
TopLink supports batch reading for most mappings
(1-1, 1-m, m-m, dc, ac) at the query and mapping
level.

Join Join reading is a query optimization feature that
allows a single query for a class to return the data to
build the instances of that class and its related
objects. Use this feature to improve query
performance by reducing database access. By
default, relationships are not join-read: each
relationship is fetched separately when accessed if
you are using indirection, or as a separate database
query if you are not using indirection.

Default Value: not used

See Also: Oracle TopLink Developer’s Guide section,
"Using Join Reading"

Use for queries of tables with columns mappings to
table data you also need to retrieve.

You should only use either batch-reading or joining
if you know that you are going to access all of the
data; if you do not intend to access the
relationships, then just let indirection defer their
loading.

TopLink supports joining for only 1-1 and 1-m at
the query level, but only 1-1 (inner) at the mapping
level. For performance, Join is recommended only
for joining logical 1-1 relationships.

Joining is not supported to related classes that use
inheritance and have subclasses that span multiple
tables.

Indirection Without indirection on, when TopLink retrieves a
persistent object, it retrieves all of the dependent
objects to which it refers. When you configure
indirection (also known as lazy reading, lazy
loading, and just-in-time reading) for an attribute
mapped with a relationship mapping, TopLink uses
an indirection object as a place holder for the
referenced object: TopLink defers reading the
dependent object until you access that specific
attribute. This can result in a significant performance
improvement, especially if the application is
interested only in the contents of the retrieved object,
rather than the objects to which it is related.

Default Value: Value Holder Indirection On for all
CMRs

See Also: Oracle TopLink Developer’s Guide
section,"Indirection"

Leave the indirection option at the default value.
That is, use indirection for CMP for all situations.
Querying the referenced object using Join or Batch
Reading is more efficient.

Improving EJB Performance

4-12 Oracle Application Server Performance Guide

4.3.2.2 Cache Configuration Performance Tuning
Table 4–5 shows the cache configuration options.

Table 4–5 CMP EJBs and Cache Configuration Options

Tuning Parameter Description Performance Notes

Object Cache TopLink sessions provide an object cache. CMP 2.1 applications which use the
TopLink persistence manager create TopLink sessions which by default use this
cache. This cache, known as the session cache, retains information about objects
that are read from or written to the database, and is a key element for
improving the performance of a TopLink application. Typically, a server
session’s object cache is shared by all client sessions acquired from it. Isolated
sessions provide their own session cache isolated from the shared object cache.

Default Value: enabled

See Also: Oracle TopLink Developer’s Guide section, "Object Cache"

Disable (use isolated
cache) for pessimistic
queries.

Query Result Set
Cache

In addition to the object cache in TopLink, TopLink also supports a query
cache:

■ The object cache indexes objects by their primary key, allowing primary
key queries to obtain cache hits. By using the object cache, queries that
access the data source can avoid the cost of building the objects and their
relationships if the object is already present

■ The query cache is distinct from the object cache. The query cache is
indexed by the query and the query parameters – not the object’s primary
key. This allows for any query executed with the same parameters to
obtain a query cache hit and return the same result set

Default Value: not used

See Also: Oracle TopLink Developer’s Guide, section, "Caching Query Results in
the Session Cache"

Use for frequently
executed non-primary
key queries with
infrequently changing
result sets.

Use with a cache
validation timeout to
refresh as needed.

Cache Size Default Value: SoftCacheWeakIdentityMap size 100 (per EJB).

See Also: Oracle TopLink Developer’s Guide section, "Guidelines for Configuring
the Cache and Identity Maps"

Set the cache size to be as
large as the maximum
number of objects (of the
same type) referenced
within a transaction

Locking Oracle supports the locking policies shown in Table 4–6.

Default Value: no locking

See Also: Oracle TopLink Developer’s Guide sections, "Configuring Locking
Policy" and "Understanding Descriptors and Locking"

.

Improving EJB Performance

Additional Performance Areas 4-13

Cache Usage Using Cache Usage conform does not check the session cache. For read-all it
first checks the database, then conforms the result with the unit of work
changes and new and deleted objects. For read-object is first checks the unit of
work changes and new objects for a matching object, then checks the database
and then conforms the results with changes and deleted objects.

Conforming is more similar to the POJO default option
CheckCacheByPrimaryKey than CheckCacheThenDatabase, although
somewhat similar to CheckCacheThenDatabase for read-object queries.
Conforming adds additional overhead as it must conform the query results
with unit of work changes and new and deleted objects.

For CMP, the default is ConformResultsInUnitofWork. To avoid
conforming, normally you can change this to CheckCacheByPrimaryKey; for
read-all queries this basically means the same as DoNotCheckCache.

Default: ConformResultsInUnitofWork

Turn Cache Usage
Conform off if you do not
need uncommitted data
read in your transaction,
especially for read-only
operations, in each
descriptor and at the
query level if not needed.

Isolation There is not a single tuning parameter that sets a particular database
transaction isolation level in a CMP application that uses TopLink. In a typical
CMP application, a variety of factors affect when database transaction isolation
levels apply and to what extent a particular database transaction isolation can
be achieved, including the following:

■ Locking mode

■ Use of the Session Cache

■ External Applications

■ Database Login method setTransactionIsolation

See Also: Oracle TopLink Developer’s Guide section, "Database Transaction
Isolation Levels"

Table 4–5 (Cont.) CMP EJBs and Cache Configuration Options

Tuning Parameter Description Performance Notes

Improving EJB Performance

4-14 Oracle Application Server Performance Guide

The default settings for CMP2.1 used with the TopLink persistence manager and cache
are no locking, no cache refresh, and cache-usage conform. To assure that your
application doesn't read stale data from the cache when you don't have exclusive
access, and gets the required data consistency level, you need to configure these and
other isolation related settings appropriately.

The locking modes, as shown in Table 4–6, along with TopLink cache-usage and query
refreshing options, assures data consistency for EJB entity beans using CMP. The
different combinations have both functional and performance implications, but often
the functional requirements for up-to-date data and data consistency will lead to the
settings for these options, even when it may be at the expense of performance.

Cache Refreshing By default, TopLink caches objects read from a data source. Subsequent queries
for these objects access the cache and thus improve performance by reducing
data source access and avoiding the cost of rebuilding object's and their
relationships. Even if a query, such as a read-all query, accesses the data source,
if the objects corresponding to the records returned are in the cache, TopLink
uses the cached objects. This default caching policy can lead to stale data in the
application.

Refreshing can be enabled at the descriptor level (alwaysRefreshCache) and
the query level (refreshIdentityMapResult). If set at the descriptor level
primary-read-object queries will still get cache hits unless you also set
(disableCacheHits).

Using an appropriate locking policy is the only way to ensure that stale or
conflicting data does not get committed to the database. Thus, there are a few
cases to consider for data refreshing in the cache, all with performance
implications:

■ In the case where you never want cached data and always want fresh
data, we recommend using an isolated cache. This is the case when certain
data in the application changes so frequently that it is desirable to always
refresh the data, instead of only refreshing the data when a conflict is
detected.

■ In the case when you want to avoid stale data, but getting stale data is not
a major issue, then using a cache-invalidation policy would be the
recommended solution. In this case you should also use optimistic
locking, and typically also need a method to refresh stale objects when a
locking error occurs. In this case you need to define a finder such as
findAndRefreshByPrimaryKey that had
(refreshIdentityMapResult) set to force refreshing of the object. If
using optimistic locking you could also enable alwaysRefreshCache
and onlyRefreshCacheIfNewerVersion to allow queries that access
the database to refresh any stale objects returned, and avoid refreshing
invalid objects when unchanged. You may also want to enable refreshing
on certain finder operations when you know you want refreshed data, or
even provide the option of refreshing something from the client that
would call a refreshing finder.

■ In the case when you are not concerned about stale data.

In this case you should use optimistic locking and also write an error
handler to commit operations to refresh stale objects on locking errors.

Default: No Cache Refreshing

See Also: Oracle TopLink Developer’s Guide section, "Configuring Cache
Refreshing"

Try to avoid descriptor
level cache refresh and
instead, consider
configuring the
following:

■ cache refresh on a
query-by-query
basis

■ cache expiration

■ isolated caching

Note: By default, TopLink assumes that your application has
exclusive access to the data it is using (that is, there are no external,
nonTopLink, applications modifying the data). If your application
does not have exclusive access to the data, then you need to change
some of the defaults from Table 4–5.

Table 4–5 (Cont.) CMP EJBs and Cache Configuration Options

Tuning Parameter Description Performance Notes

Improving EJB Performance

Additional Performance Areas 4-15

4.3.2.3 Monitoring CMP Resources
Check the DMS metric table type named oc4j_ejb_method and the metrics
wrapper.avg or client.avg to see if your EJB methods are taking significant time
(check for unexpectedly large values, as some methods you may expect to take a long
time to complete). For example, check the metric values for the methods ejbCreate,
create, findAll, or your application specific EJB methods.

You can also check the metrics that Application Server Control Console provides to see
how the response times and transactions per second are changing over time, as
follows:

1. From the OC4J home page, select the Applications secondary tab.

2. In the table, under All Applications, select the application that you want to
monitor.

3. In the Modules table, select the EJB module of that you want to monitor.

You can also view CMP TopLink metrics for additional information on CMP
performance.

Table 4–6 Locking Policies

Locking Option Description Performance Notes

No Locking The application does not prevent users overwriting each
other's changes. This is the default locking mode.Use this
mode if the Bean is never updated concurrently or
concurrent reads and updates to the same rows with
read-committed semantics is sufficient.

See Also: Oracle TopLink Developer’s Guide sections,
"Configuring Locking Policy" and "Understanding
Descriptors and Locking"

In general, no locking will be faster, but may
not meet your needs for data consistency

Optimistic All users have read access to the data. When a user attempts
to make a change, the application checks to ensure the data
has not changed since the user read the data.

See Also: Oracle TopLink Developer’s Guide sections,
"Configuring Locking Policy" and "Understanding
Descriptors and Locking"

Pessimistic The first user who accesses the data with the purpose of
updating it locks the data until completing the update.

See Also: Oracle TopLink Developer’s Guide sections,
"Configuring Locking Policy" and "Understanding
Descriptors and Locking"

If frequent concurrent updates to the same
rows are expected, pessimistic locking may be
faster than optimistic locking that is getting a
lot of concurrent access exceptions and retries.
When using pessimistic locking at the bean
level, it is recommended that you use it with
an isolated cache for best performance

Read Only Setting a CMP bean descriptor to read-only ensures that the
entity bean cannot be modified and allows TopLink to
optimize unit of work performance.

See Also: Oracle TopLink Developer’s Guide sections,
"Configuring Locking Policy" and "Understanding
Descriptors and Locking"

Defining a bean as read-only will perform
better than a bean that is not defined as
read-only, yet does no inserts, updates, or
deletes, since it allows TopLink to optimize the
unit of work performance.

Note: You need to set the DMS configuration OC4J command
line-property -Doracle.dms.sensors to the value Heavy or All to
turn on collection of TopLink related DMS metrics.

Improving EJB Performance

4-16 Oracle Application Server Performance Guide

See Also:

■ Table D–11 in "OC4J J2EE Application Metrics" on page D-6

■ Oracle TopLink Developer’s Guide, Table 11–1 TopLink DMS Metrics
for details on the available metrics

Optimizing PL/SQL Performance 5-1

5
Optimizing PL/SQL Performance

This chapter provides references to the information that describes improving PL/SQL
performance for web applications. Most of this information is in the Oracle
Application Server mod_plsql User’s Guide.

See Also:

■ Oracle Application Server mod_plsql User’s Guide for information
on optimizing PL/SQL performance

■ Appendix C, "Performance Metrics" for information on mod_
plsql metrics

■ Oracle HTTP Server Administrator’s Guide for details on DAD
Parameters

■ Oracle Application Server PL/SQL Web Toolkit Reference for
information on the PL/SQL Web Toolkit that enables you to
develop Web applications as PL/SQL procedures stored in an
Oracle database server

5-2 Oracle Application Server Performance Guide

Optimizing Oracle HTTP Server 6-1

6
Optimizing Oracle HTTP Server

This chapter discusses the techniques for optimizing Oracle HTTP Server performance
in Oracle Application Server.

This chapter contains:

■ Configuring Oracle HTTP Server Directives

■ Oracle HTTP Server Logging Options

■ Oracle HTTP Server Security Performance Considerations

■ Oracle HTTP Server Performance Tips

Configuring Oracle HTTP Server Directives

6-2 Oracle Application Server Performance Guide

6.1 Configuring Oracle HTTP Server Directives
Oracle HTTP Server uses directives in httpd.conf to configure the application
server. This configuration file specifies the maximum number of HTTP requests that
can be processed simultaneously, logging details, and certain limits and timeouts.

Table 6–1 lists directives that may be significant for performance.

Table 6–1 Oracle HTTP Server Configuration Properties

Directive Description

ListenBackLog Specifies the maximum length of the queue of pending connections. Generally no
tuning is needed or desired. Note that some Operating Systems do not use exactly
what is specified as the backlog, but use a number based on, but normally larger than,
what is set.

Default Value: 511

MaxClients Specifies a limit on the total number of servers running, that is, a limit on the number
of clients who can simultaneously connect. If the number of client connections reaches
this limit, then subsequent requests are queued in the TCP/IP system up to the limit
specified with the ListenBackLog directive (after the queue of pending connections
is full, new requests generate connection errors until a process becomes available).

The maximum allowed value for MaxClients is 8192 (8K).

Default Value: 150

MaxRequestsPerChild The number of requests each child process is allowed to process before the child dies.
The child will exit so as to avoid problems after prolonged use when Apache (and
maybe the libraries it uses) leak memory or other resources. On most systems, this
isn't really needed, but some UNIX systems have notable leaks in the libraries. For
these platforms, set MaxRequestsPerChild to something like 10000 or so; a setting
of 0 means unlimited.

This value does not include KeepAlive requests after the initial request per
connection. For example, if a child process handles an initial request and 10
subsequent "keep alive" requests, it would only count as 1 request toward this limit.

Note: On Windows systems MaxRequestsPerChild should always be set to 0
(unlimited). On Windows there is only one server process, so it is not a good idea to
limit this process.

MaxSpareServers

MinSpareServers

Server-pool size regulation. Rather than making you guess how many server
processes you need, Oracle HTTP Server dynamically adapts to the load it sees, that
is, it tries to maintain enough server processes to handle the current load, plus a few
spare servers to handle transient load spikes (for example, multiple simultaneous
requests from a single Netscape browser).

It does this by periodically checking how many servers are waiting for a request. If
there are fewer than MinSpareServers, it creates a new spare. If there are more
than MaxSpareServers, some of the spares die off.

The default values are probably ok for most sites.

Default Values:

MaxSpareServers: 10

MinSpareServers: 5

StartServers Number of servers to start initially. If you expect a sudden load after restart, set this
value based on the number child servers required.

Default Value: 5

Timeout The number of seconds before incoming receives and outgoing sends time out.

Default Value: 300

Oracle HTTP Server Logging Options

Optimizing Oracle HTTP Server 6-3

6.1.1 How Persistent Connections Can Reduce httpd Process Availability
The default settings for the KeepAlive directives are:

KeepAlive on
MaxKeepAliveRequests 100
KeepAliveTimeOut 15

These settings allow enough requests per connection and time between requests to
reap the benefits of the persistent connections, while minimizing the drawbacks. You
should consider the size and behavior of your own user population in setting these
values on your system. For example, if you have a large user population and the users
make small infrequent requests, you may want to reduce the keepAlive directive
default settings, or even set KeepAlive to off. If you have a small population of users
that return to your site frequently, you may want to increase the settings.

6.2 Oracle HTTP Server Logging Options
This section discusses types of logging, log levels, and the performance implications
for using logging.

6.2.1 Access Logging
For static page requests, access logging of the default fields results in a 2-3%
performance cost.

6.2.2 Configuring the HostNameLookups Directive
By default, the HostNameLookups directive is set to Off. The server writes the IP
addresses of incoming requests to the log files. When HostNameLookups is set to on,
the server queries the DNS system on the Internet to find the host name associated
with the IP address of each request, then writes the host names to the log.

Performance degraded by about 3% (best case) in Oracle in-house tests with
HostNameLookups set to on. Depending on the server load and the network
connectivity to your DNS server, the performance cost of the DNS lookup could be
high. Unless you really need to have host names in your logs in real time, it is best to
log IP addresses.

On UNIX systems, you can resolve IP addresses to host names off-line, with the
logresolve utility found in the $ORACLE_HOME/Apache/Apache/bin/ directory.

KeepAlive Whether or not to allow persistent connections (more than one request per
connection). Set to Off to deactivate.

Default Value: On

MaxKeepAliveRequests The maximum number of requests to allow during a persistent connection. Set to 0 to
allow an unlimited amount.

If you have long client sessions, you might want to increase this value.

Default Value: 100

KeepAliveTimeout Number of seconds to wait for the next request from the same client on the same
connection.

Default Value: 15 seconds

Table 6–1 (Cont.) Oracle HTTP Server Configuration Properties

Directive Description

Oracle HTTP Server Security Performance Considerations

6-4 Oracle Application Server Performance Guide

6.2.3 Error logging
The server notes unusual activity in an error log. The ErrorLog and LogLevel
directives identify the log file and the level of detail of the messages recorded. The
default level is warn. There was no difference in static page performance on a loaded
system between the warn, info, and debug levels.

For requests that use dynamic resources, for example requests that use mod_osso,
mod_plsql, or mod_oc4j, there is a performance cost associated with setting higher
debugging levels, such as the debug level.

6.3 Oracle HTTP Server Security Performance Considerations
This section covers the following topics:

■ Oracle HTTP Server Secure Sockets Layer (SSL) Performance Issues

■ Oracle HTTP Server Port Tunneling Performance Issues

6.3.1 Oracle HTTP Server Secure Sockets Layer (SSL) Performance Issues
Secure Sockets Layer (SSL) is a protocol developed by Netscape Communications
Corporation that provides authentication and encrypted communication over the
Internet. Conceptually, SSL resides between the application layer and the transport
layer on the protocol stack. While SSL is technically an application-independent
protocol, it has become a standard for providing security over HTTP, and all major
web browsers support SSL.

SSL can become a bottleneck in both the responsiveness and the scalability of a
web-based application. Where SSL is required, the performance challenges of the
protocol should be carefully considered. Session management, in particular session
creation and initialization, is generally the most costly part of using the SSL protocol,
in terms of performance.

This section covers the following SSL Performance related information:

■ Oracle HTTP Server SSL Caching

■ SSL Application Level Data Encryption

■ SSL Performance Recommendations

6.3.1.1 Oracle HTTP Server SSL Caching
When an SSL connection is initialized, a session based handshake between client and
server occurs that involves the negotiation of a cipher suite, the exchange of a private
key for data encryption, and server and, optionally, client authentication through
digitally-signed certificates.

After the SSL session state has been initiated between a client and a server, the server
can avoid the session creation handshake in subsequent SSL requests by saving and
reusing the session state. The Oracle HTTP Server caches a client’s Secure Sockets
Layer (SSL) session information by default. With session caching, only the first
connection to the server incurs high latency.

The SSLSessionCacheTimeout directive in httpd.conf determines how long the
server keeps a saved SSL session (the default is 300 seconds). Session state is
discarded if it is not used after the specified time period, and any subsequent SSL
request must establish a new SSL session and begin the handshake again. The

See Also: Oracle Application Server Security Guide

Oracle HTTP Server Security Performance Considerations

Optimizing Oracle HTTP Server 6-5

SSLSessionCache directive specifies the location for saved SSL session information,
the default location on UNIX is the $ORACLE_HOME/Apache/Apache/logs/
directory or on Windows systems, %ORACLE_HOME%\Apache\Apache\logs\.
Multiple Oracle HTTP Server processes can use a saved session cache file.

Saving SSL session state can significantly improve performance for applications using
SSL. For example, in a simple test to connect and disconnect to an SSL-enabled server,
the elapsed time for 5 connections was 11.4 seconds without SSL session caching. With
SSL session caching enabled, the elapsed time for 5 round trips was 1.9 seconds.

The reuse of saved SSL session state has some performance costs. When SSL session
state is stored to disk, reuse of the saved state normally requires locating and
retrieving the relevant state from disk. This cost can be reduced when using HTTP
persistent connections. Oracle HTTP Server uses persistent HTTP connections by
default, assuming they are supported on the client side. In HTTP over SSL as
implemented by Oracle HTTP Server, SSL session state is kept in memory while the
associated HTTP connection is persisted, a process which essentially eliminates the
overhead of SSL session reuse (conceptually, the SSL connection is kept open along
with the HTTP connection).

6.3.1.2 SSL Application Level Data Encryption
In most applications using SSL, the data encryption cost is small compared with the
cost of SSL session management. Encryption costs can be significant where the volume
of encrypted data is large, and in such cases the data encryption algorithm and key
size chosen for an SSL session can be significant.

In general there is a trade-off between security level and performance. For example, on
a modern processor, RSA estimates its RC4 cipher to take in the vicinity of 8-16
machine operations per output byte. Standard DES encryption will incur roughly 8
times the overhead of RC4, and triple DES will take about 25 times the overhead of
DES. However, when using triple DES, the encryption costs will not be noticeable in
most applications. Oracle HTTP Server supports these three cipher suites, and other
cipher suites as well.

Oracle HTTP Server negotiates a cipher suite with a client based on the
SSLCipherSuite attribute specified in httpd.conf.

6.3.1.3 SSL Performance Recommendations
The following recommendations can assist you with determining performance
requirements when working with Oracle HTTP Server and SSL.

1. The SSL handshake is an inherently expensive process in terms of both CPU usage
and response time. Thus, use SSL only where needed. Determine the parts of the
application that require the security, and the level of security required, and protect
only those parts at the requisite security level. Attempt to minimize the need for
the SSL handshake by using SSL sparingly, and by reusing session state as much
as possible. For example, if a page contains a small amount of sensitive data and a
number of non-sensitive graphic images, use SSL to transfer the sensitive data
only, use normal HTTP to transfer the images. If the application requires server
authentication only, do not use client authentication. If the performance goals of
an application cannot be met by this method alone, additional hardware may be
required.

See Also: Oracle HTTP Server Administrator’s Guide for
information on using supported cipher suites

Oracle HTTP Server Performance Tips

6-6 Oracle Application Server Performance Guide

2. Design the application to use SSL efficiently. Group secure operations together to
take advantage of SSL session reuse and SSL connection reuse.

3. Use persistent connections, if possible, to minimize cost of SSL session reuse.

4. Tune the session cache timeout value (the SSLSessionCacheTimeout attribute
in httpd.conf). A trade-off exists between the cost of maintaining an SSL session
cache and the cost of establishing a new SSL session. As a rule, any secured
business process, or conceptual grouping of SSL exchanges, should be completed
without incurring session creation more than once. The default value for the
SSLSessionCacheTimeout attribute is 300 seconds. It is a good idea to test an
application’s usability to help tune this setting.

5. If large volumes of data are being protected through SSL, pay close attention to the
cipher suite being used. The SSLCipherSuite directive specified in
httpd.conf controls the cipher suite. If lower levels of security are acceptable,
use a less-secure protocol using a smaller key size (this may improve performance
significantly). Finally, test the application using each available cipher suite for the
desired security level to find the most performant suite.

6. Having taken the preceding considerations into account, if SSL remains a
bottleneck to the performance and scalability of your application, consider
deploying multiple Oracle HTTP Server instances over a hardware cluster or
consider the use of SSL accelerator cards.

6.3.2 Oracle HTTP Server Port Tunneling Performance Issues
When OracleAS Port Tunneling is configured, every request processed passes through
the OracleAS Port Tunneling infrastructure. Thus, using OracleAS Port Tunneling can
have an impact on the overall Oracle HTTP Server request handling performance and
scalability.

With the exception of the number of OracleAS Port Tunneling processes to run, the
performance of OracleAS Port Tunneling is self tuning. The only performance control
available is to start more OracleAS Port Tunneling processes, this increases the number
of available connections and hence the scalability of the system.

The number of OracleAS Port Tunneling processes is based on the degree of
availability required, and the number of anticipated connections. This number cannot
be automatically determined because for each additional process a new port must be
opened through the firewall between the DMZ and the intranet. You cannot start more
processes than you have open ports, and you do not want less processes than open
ports, since in this case ports would not have any process bound to them.

To measure the OracleAS Port Tunneling performance, determine the request time for
servlet requests that pass through the OracleAS Port Tunneling infrastructure. The
response time of an Oracle Application Server instance running with OracleAS Port
Tunneling should be compared with a system without OracleAS Port Tunneling to
determine whether your performance requirements can be met using OracleAS Port
Tunneling.

6.4 Oracle HTTP Server Performance Tips
The following tips can enable you to avoid or debug potential Oracle HTTP Server
(OHS) performance problems:

See Also: Oracle HTTP Server Administrator’s Guide for
information on configuring OracleAS Port Tunneling

Oracle HTTP Server Performance Tips

Optimizing Oracle HTTP Server 6-7

■ Analyze Static Versus Dynamic Requests

■ Analyze Time Differences Between Oracle HTTP Server and OC4J Servers

■ Beware of a Single Data Point Yielding Misleading Results

6.4.1 Analyze Static Versus Dynamic Requests
It is important to understand where your server is spending resources so you can
focus your tuning efforts in the areas where the most stands to be gained. In
configuring your system, it can be useful to know what percentage of the incoming
requests are static and what percentage are dynamic.

Generally, you want to concentrate your tuning effort on dynamic pages because
dynamic pages can be costly to generate. Also, by monitoring and tuning your
application, you may find that much of the dynamically generated content, such as
catalog data, can be cached, sparing significant resource usage.

6.4.2 Analyze Time Differences Between Oracle HTTP Server and OC4J Servers
In some cases, you may notice a high discrepancy between the average time to process
a request in Oracle Containers for J2EE (OC4J) and the average response time
experienced by the user. If the time is not being spent actually doing the work in OC4J,
then it is probably being spent in transport.

If you notice a large discrepancy between the request processing time in OC4J and the
average response time, consider tuning the Oracle HTTP Server directives shown in
the section, "Configuring Oracle HTTP Server Directives" on page 6-2.

6.4.3 Beware of a Single Data Point Yielding Misleading Results
You can get unrepresentative results when data outliers appear. This can sometimes
occur at start-up. To simulate a simple example, assume that you ran a PL/SQL "Hello,
World" application for about 30 seconds. Examining the results, you can see that the
work was all done in mod_plsql.c:

 /ohs_server/ohs_module/mod_plsql.c
 handle.maxTime: 859330
 handle.minTime: 17099
 handle.avg: 19531
 handle.active: 0
 handle.time: 24023499
 handle.completed: 1230

Note that handle.maxTime is much higher than handle.avg for this module. This
is probably because when the first request is received, a database connection must be
opened. Later requests can make use of the established connection. In this case, to
obtain a better estimate of the average service time for a PL/SQL module, that does
not include the database connection open time which causes the handle.maxTime to
be very large, recalculate the average as in the following:

(time - maxTime)/(completed -1)

For example, in this case this would be:

(24023499 - 859330)/(1230 -1) = 18847.98

Oracle HTTP Server Performance Tips

6-8 Oracle Application Server Performance Guide

Oracle BPEL Process Manager Performance Tuning 7-1

7
Oracle BPEL Process Manager Performance

Tuning

Oracle BPEL Process Manager provides a number of property settings that can be
configured to optimize performance at the process, domain, application server, Java
Virtual Machine (JVM), and dehydration store database levels. This chapter describes
these property settings and provides recommendations on how to use them.

This chapter contains the following sections:

■ Performance Tuning Overview

■ Process Level Performance Settings

■ Tables Impacted By Instance Data Growth

■ Domain Level Performance Tuning

■ Tuning OC4J for Oracle BPEL

■ Java Virtual Machine Performance Tuning for Oracle BPEL Server

■ Dehydration Store Database Performance Tuning

■ Summary

Performance Tuning Overview

7-2 Oracle Application Server Performance Guide

7.1 Performance Tuning Overview
This section provides an overview of key Oracle BPEL Process Manager tuning
concepts. Review this section before attempting to configure any property settings.

This section contains the following topics:

■ Domain and Process Configuration Property Settings

■ Durable and Transient Processes

■ One-Way and Two-Way Invocations

■ Idempotent Activities

■ In-Flight Database Storage

■ JTA Transactions for Two-way Invocations

■ BPEL Threading Model

7.1.1 Domain and Process Configuration Property Settings
Domain and process configuration properties can be set at two different levels in
Oracle BPEL Process Manager:

■ Domain level: enables you to configure all processes deployed in a specific
domain.

■ Process level: enables you to specify which processes to configure, and which not
to configure, in a specific domain. If a setting at the domain level conflicts with the
same setting at the process level, the process level setting take priority.

7.1.2 Durable and Transient Processes
Oracle BPEL Process Manager uses the dehydration store database to maintain
long-running asynchronous processes and their current state information in a database
while they wait for asynchronous callbacks. Storing the process in a database
preserves the process and prevents any loss of state or reliability if a system shuts
down or a network problem occurs. There are two types of processes in Oracle BPEL
Process Manager. These processes impact the dehydration store database in different
ways.

■ Transient processes: this process type does not incur any intermediate dehydration
points during process execution. If there are unhandled faults or there is system
downtime during process execution, the instances of a transient process do not
leave a trace in the system. Instances of transient processes cannot be saved
in-flight (whether they complete normally or abnormally). Transient processes are
typically short-lived, request-response style processes. The synchronous process
you design in Oracle JDeveloper is an example of a transient process.

■ Durable processes: this process type incurs one or more dehydration points in the
database during execution because of the following activities:

– Receive activity

– OnMessage branch in a pick activity

– OnAlarm branch in a pick activity

– Wait activity

Instances of durable processes can be saved in-flight (whether they complete
normally or abnormally). These processes are typically long-living and initiated

Performance Tuning Overview

Oracle BPEL Process Manager Performance Tuning 7-3

through a one-way invocation. Because of out-of-memory and system downtime
issues, durable processes cannot be memory-optimized.

7.1.3 One-Way and Two-Way Invocations
There are two types of invocations into BPEL process instances:

■ A one-way invocation: a request-only operation and has only an inbound
message.

■ A two-way invocation: a request-and-response operation. The caller thread is
blocked until a response is ready.

Table 7–1 describes the use of one-way and two-way invocations.

7.1.4 Idempotent Activities
An idempotent activity is an activity that can be retried (for example, an assign activity
or an invoke activity). Oracle BPEL Server saves the instance after a nonidempotent
activity.

7.1.5 In-Flight Database Storage
Over its life cycle, a BPEL instance in its current state of execution can be saved
multiple times in the dehydration store database. There are two cases in which this
occurs:

■ When the instance is waiting for an event. It can be either an alarm or an
invocation message. This happens when one of the following BPEL activities is
being executed:

– Wait activity

– OnAlarm branch of a pick activity

– Receive activity

– OnMessage branch of a pick activity

Table 7–1 One-Way and Two-Way Invocations

Use One-Way Invocation Two-Way Invocation

WSDL file
definition

<operation name="oneway">
 <input message="in"/>
</operation>

<operation name="twoway">
 <input message="in"/>
 <output message="out"/>
</operation>

Variable
declarations in
BPEL activities

<receive operation="oneway"
 variable="in"/>

<receive operation="twoway"
 variable="in"/>
...
<reply operation="twoway"
 variable="out"/>

Through-delivery
service

The request is saved in the delivery
service. The caller thread does not
block until the message is delivered
to the targeted instance.

The request is delivered into Oracle
BPEL Server and the targeted BPEL
instance. The caller thread is
blocked until the response is ready.

See Also: "idempotent BPEL Property" on page 7-7 for additional
details

Performance Tuning Overview

7-4 Oracle Application Server Performance Guide

When a BPEL instance is saved to the dehydration store database, the instance is
known as being dehydrated. When the event later occurs (the alarm expires or the
message comes in), the instance is read from the database and resumes execution.

■ After a nonidempotent activity. Instance storage is necessary here if you want to
retry the steps. The retry occurs from the steps after the nonidempotent activity.

7.1.6 JTA Transactions for Two-way Invocations
For two-way invocations, if the process being called is a transient process, Oracle BPEL
Server honors the caller's Java Transaction API (JTA) transaction. If the process being
called is a durable process, meaning an in-flight database save can be occurring, Oracle
BPEL Server creates a new transaction.

7.1.7 BPEL Threading Model
Review the BPEL threading model details in this section before attempting to
configure any property settings.

Figure 7–1 shows thread usage during a request-response and one-way process
instance invocation.

Figure 7–1 Thread Usage

7.1.7.1 Request-Response Invocation
In Figure 7–1, the client is running in thread T1. When the caller initiates a process
instance, the same thread is used during processing. Eventually, when database
operations must be performed, the thread obtains a database connection (C1 in
Figure 7–1) from the connection pool.

7.1.7.2 One-Way Invocation
In Figure 7–1, the one-way invocation client is running in thread T2. When the client
initiates a process instance, the invocation request is placed in a queue. At this point,
thread T2 is released by Oracle BPEL Server and the caller can continue its own
processing. Inside Oracle BPEL Server, a message-driven bean (MDB), WorkerBean,
monitors the queue for invocation requests. When a message is dequeued, Oracle
BPEL Server allocates a separate thread (T3) to process the message. This thread is
used by Oracle BPEL Process Manager to process the instance. When database

Application Server

Request-Response
Invocation Client

One-way
Invocation

Client

Oracle BPEL
Server

Connection
Pool

Dehydration Store
(Database)

C1 (T1)

C1 (T3)(T3)
WorkerBean

Queue(T2)

(T1) (T1)

Process Level Performance Settings

Oracle BPEL Process Manager Performance Tuning 7-5

operations must be performed, the thread obtains a database connection from the
connection pool.

7.1.7.3 Threading and Connection Pool Relationships
From Figure 7–1 and the previous sections, some important relationships can be
derived for properly setting the threading and connection pooling parameters.

The number of concurrent instances being processed is determined by the number of
request-response client requests and the number of WorkerBean threads allocated. The
following relationship can be stated.

Maximum DB Connections >= (WorkerBean listener threads) + (Maximum concurrent
request-response invocations)

The dspMaxThreads property allocates WorkerBean threads to various domains. This
leads to the following relationships:

If only one domain exists, these formulas can be simplified further:

 dspMaxThreads = (WorkerBean listener threads)
Maximum DB Connections >= (dspMaxThreads) + (Maximum concurrent request-response
invocations)

7.2 Process Level Performance Settings
This section describes process level performance tuning properties.

Process level performance properties are set in the bpel.xml file for a specific BPEL
process. This file is in the same directory as the process’s .bpel file. After modifying
the settings in the JDev_Oracle_Home\jdev\mywork\workspace_
name\process_name\bpel\bpel.xml file, the process must be redeployed for the
new settings to take effect.

7.2.1 completionPersistLevel BPEL Property
This property controls the type (and amount) of data to save after instance completion.

When process instances complete, Oracle BPEL Server by default saves the final state
(for example, the variable values) of the process. If you do not need to save these
values after completion, you can set this property to save only instance metadata
(completion state, start and end dates, and so on). This property is applicable to
transient BPEL processes.

See Also: "Oracle BPEL Server EJB Configuration" on page 7-23 for
additional details about WorkerBean

Note: You can also set these properties in the Deployment Descriptor
Properties window of Oracle JDeveloper.

See Also: "Domain and Process Configuration Property Settings" on
page 7-2

dspMaxThreads = (WorkerBean listener threads)∑domains

dspMaxThreads) + (Maximum concurrent request-response invocations)Maximum DB Connections >= (∑domains

Process Level Performance Settings

7-6 Oracle Application Server Performance Guide

This property is used only when the inMemoryOptimization performance property
is set to true. Use the completionPersistLevel property in conjunction with the
completionPersistPolicy property.

This property can greatly impact database growth (in particular, the cube_instance,
cube_scope, and work_item tables). It can also impact throughput (due to reduced
I/O).

Values
This property has the following values:

■ all (default): Oracle BPEL Server saves the complete instance, including the final
variable values, work item data, and audit data. This setting causes the database to
grow in size.

■ instanceHeader: The Oracle BPEL Process Manager saves only the instance
metadata.

Example
In the following example, only faulted instances are persisted
(completionPersistPolicy=faulted). For the faulted instances, all variable
values associated with the instance are saved (competionPersistLevel=All).

<BPELSuitcase>
 <BPELProcess src="HelloWorld.bpel" id="HelloWorld">
 ...
 <configurations>
 <property name="inMemoryOptimization">true</property>
 <property name="completionPersistPolicy">faulted</property>
 <property name="completionPersistLevel">All</property>
 </configurations>
 </BPELProcess>
</BPELSuitcase>

7.2.2 completionPersistPolicy BPEL Property
This property controls if and when to persist instances. If an instance is not saved, it
does not appear in Oracle BPEL Control. This property is applicable to transient BPEL
processes.

This property is only used when inMemoryOptimization is set to true. If you set
completionPersistPolicy to a value other then off, you can then set
completionPersistLevel to more finely tune the persistence data to save.

This parameter strongly impacts the amount of data stored in the database (in
particular, the cube_instance, cube_scope, and work_item tables). It can also
impact throughput.

See Also:

■ "completionPersistPolicy BPEL Property" on page 7-6

■ "inMemoryOptimization BPEL Property" on page 7-8

■ Table 7–2 on page 7-10 for additional details about the cube_
instance, cube_scope, and work_item tables

Process Level Performance Settings

Oracle BPEL Process Manager Performance Tuning 7-7

Values
This property has the following values:

■ on: (default): Completed instances are saved normally.

■ deferred: Completed instances are saved with a different thread and in another
transaction. If a server fails, some instances may not be saved.

■ faulted: Only faulted instances are saved.

■ off: No instances (and their data) are saved.

Example
In the following example, completionPersistPolicy is set to deferred:

 <BPEL Suitcase>
 <BPELProcess src="HelloWorld.bpel" id="HelloWorld">
 . . .
 <configurations>
 <partnerLinkBinding name="PartnerService">
 <property name="inMemoryOptimization">true</property>
 <property name="completionPersistPolicy">deferred</property>
 </partnerLinkBinding>
 </configurations>
 </BPELProcess>
 </BPEL Suitcase>

7.2.3 idempotent BPEL Property
A BPEL invoke activity is by default an idempotent activity, meaning that the BPEL
process does not dehydrate instances immediately after invoke activities. Therefore, if
idempotent is set to true and Oracle BPEL Server fails right after an invoke activity
executes, Oracle BPEL Server performs the invoke again after restarting. This is
because no record exists that the invoke activity has executed. This property is
applicable to both durable and transient processes.

If idempotent is set to false, the invoke activity is dehydrated immediately after
execution and recorded in the dehydration store. If Oracle BPEL Server then fails and
is restarted, the invoke activity is not repeated, because Oracle BPEL Process Manager
sees that the invoke already executed.

When idempotent is set to false, it provides better failover protection, but at the
cost of some performance, since the BPEL process accesses the dehydration store much
more frequently. This setting can be configured for each partner link in the bpel.xml
file.

Setting this parameter to true can significantly improve throughput. However, as
mentioned previously, you must ensure that the partner's service can be safely retried
in the case of a server failure. Some examples of where this property can be set to true
are read-only services (for example, CreditRatingService) or local EJB/WSIF
invocations that share the instance's transaction.

Values
This property has the following values:

See Also:

■ "completionPersistLevel BPEL Property" on page 7-5

■ "inMemoryOptimization BPEL Property" on page 7-8

Process Level Performance Settings

7-8 Oracle Application Server Performance Guide

■ false: activity is dehydrated immediately after execution and recorded in the
dehydration store

■ true (default): If Oracle BPEL Server fails, it performs the activity again after
restarting. This is because the server does not dehydrate immediately after the
invoke and no record exists that the activity executed.

Example
The following bpel.xml file example shows the idempotent property. This example
shows a one-way invocation message being saved to the dehydration store database.
This property can be set for each partner link.

<BPELSuitcase>
 <BPELProcess src="Invoke.bpel" id="Invoke">
 <partnerLinkBindings>
 . . .
 <partnerLinkBinding name="PartnerService">
 <property name="wsdlLocation">
 partner-wsdl
 </property>
 <property name="idempotent">false</property>
 </partnerLinkBinding>
 </partnerLinkBindings>
 </BPELProcess>
</BPELSuitcase>

7.2.4 inMemoryOptimization BPEL Property
This property indicates to Oracle BPEL Server that this process is a transient process
and dehydration of the instance is not required. When set to true, Oracle BPEL Server
keeps the instances of this process in memory only during the course of execution.
This property can only be set to true for transient processes (that is, those that do not
contain any middle process receive, pick, or wait activities).

The default for this property is false, which means that instances are persisted
completely and recorded in the dehydration store database for a synchronous BPEL
process.

When inMemoryOptimization is set to true, dehydration is deactivated, and
Oracle BPEL Process Manager keeps instances in memory only. The settings for the
completionPersistPolicy and completionPersistLevel properties are also
examined to determine persistence behavior. The inMemoryOptimization property
can improve throughput when set to true and, in conjunction with these two other
properties, can minimize database growth.

Values
This property has the following values:

■ false (default): instances are persisted completely and recorded in the
dehydration store database for a synchronous BPEL process.

■ true: Oracle BPEL Process Manager keeps instances in memory only.

See Also:

■ "completionPersistLevel BPEL Property" on page 7-5

■ "completionPersistPolicy BPEL Property" on page 7-6

Process Level Performance Settings

Oracle BPEL Process Manager Performance Tuning 7-9

Example
The following bpel.xml file example shows the inMemoryOptimization property
for the synchronous Hello World BPEL process:

 <BPEL Suitcase>
 <BPELProcess src="HelloWorld.bpel" id="HelloWorld">
 . . .
 <configurations>
 <property name="inMemoryOptimization">true</property>
 </configurations>
 </BPELProcess>
 </BPEL Suitcase>

7.2.5 nonBlockingInvoke BPEL Property
This property can improve performance when executing multiple branches of a flow
or flowN activity. By default, Oracle BPEL Process Manager executes in a single
thread, executing the branches sequentially instead of in parallel. When this property
is set to true, the process manager creates a new thread to perform each branch’s
invoke activity in parallel. This setting can be configured for each partner link in the
bpel.xml file. This property is applicable to both durable and transient processes.

Consider setting this property to true if you have invoke activities in multiple flow or
flowN branches. This is especially effective if the parallel invoke activities are
two-way, but some benefits can be realized for parallel one-way invokes as well.

Values
This property has the following values:

■ true : Oracle BPEL Server spawns a new thread to execute the invocation. This
thread is essentially the InvokerBean message driven bean thread. If the process
has additional nonblocking invoke activities, increase the InvokerBean thread
value. You may also need to increase the connection pool maximum size:

connection pool size >= (InvokerBean listener threads + WorkerBean listener
threads + maximum concurrent request-response invocations

■ false (default): Oracle BPEL Server executes the invoke activity in the single
process thread.

Example
The following bpel.xml file example enables the nonBlockingInvoke property:

<BPELSuitcase>
 <BPELProcess src="Invoke.bpel" id="Invoke">
 <partnerLinkBindings>
 . . .
 <partnerLinkBinding name="PartnerService">
 <property name="wsdlLocation">
 partner-wsdl
 </property>
 <property name="nonBlockingInvoke">true</property>
 </partnerLinkBinding>
 </partnerLinkBindings>
 </BPELProcess>
</BPELSuitcase>

See Also: "InvokerBean" on page 7-24 for instructions on
configuring the InvokerBean

Tables Impacted By Instance Data Growth

7-10 Oracle Application Server Performance Guide

7.3 Tables Impacted By Instance Data Growth
Instance data occupies space in Oracle BPEL Process Manager schema tables.
Table 7–2 describes the tables that are impacted by instance data growth. A brief
description is provided of each table. The values to which you can set some domain
level performance properties described in "Domain Level Performance Tuning" on
page 7-11 impact the growth of these tables.

Table 7–2 Oracle BPEL Process Manager Tables Impacted By Instance Data Growth

Table Name Table Description

audit_details Stores audit details that can be logged through the API. Activities such as an assign activity
log the variables as audit details by default. You can set this behavior through the
auditLevel property in Oracle BPEL Control under Manage BPEL Domain >
Configuration.

Audit details are separated from the audit_trail table due to their large size. To view a
detail, click a link on the Audit tab for a specific instance in Oracle BPEL Control and load
the detail separately. The auditDetailThreshold property in Oracle BPEL Control under
Manage BPEL Domain > Configuration is used by this table. If the size of a detail is larger
than the value specified for this property, it is placed in this table. Otherwise, it is placed in
the audit_trail table.

See Also: "auditDetailThreshold BPEL Property" on page 7-11 and "auditLevel BPEL
Property" on page 7-12

audit_trail Stores the audit trail for instances. The audit trail viewed in Oracle BPEL Control is created
from an XML document. As an instance is processed, each activity writes events to the audit
trail as XML.

cube_instance Stores process instance metadata (for example, the instance creation date, current state, title,
and process identifier)

cube_scope Stores the scope data for an instance (for example, all variables declared in the BPEL flow
and some internal objects that help route logic throughout the flow).

dlv_message Stores callback messages upon receipt. This table only stores the metadata for a message (for
example, current state, process identifier, and receive date).

dlv_
subscription

Stores delivery subscriptions for an instance. Whenever an instance expects a message from
a partner (for example, the receive or onMessage activity) a subscription is written out for
that specific receive activity.

document_ci_ref Stores cube instance references to data stored in the xml_document table.

document_dlv_
msg_ref

Stores references to invoke_message and dlv_message documents stored in the xml_
document table.

invoke_message Stores incoming (invocation) messages (messages that result in the creation of an instance).
This table only stores the metadata for a message (for example, current state, process
identifier, and receive date).

schema_md Stores metadata about columns defined in the Oracle BPEL Process Manager schema
(orabpel).

task Stores tasks created for an instance. The TaskManager process keeps its current state in this
table.

work_item Stores activities created by an instance. All activities in a BPEL flow have a work_item
table. This table includes the metadata for the activity (current state, label, and expiration
date (used by wait activities)).

xml_document Stores all large objects in the system (for example, invoke_message documents, dlv_
message documents, and so on). This table stores the data as binary large objects (BLOBs).
Separating the document storage from the metadata enables the metadata to change
frequently without being impacted by the size of the documents.

Domain Level Performance Tuning

Oracle BPEL Process Manager Performance Tuning 7-11

7.4 Domain Level Performance Tuning
This section describes domain level performance tuning properties.

Oracle recommends that you modify these settings in Oracle BPEL Control under
Manage BPEL Domain > Configuration. Oracle BPEL Control checks the existing
settings and any new settings entered, and validates them without requiring a restart.
Domain level performance settings are located in the SOA_Oracle_
Home\bpel\domains\domain_name\config\domain.xml file. If you directly
edit the domain.xml file, you must restart Oracle BPEL Server for the new settings to
take effect.

7.4.1 Oracle BPEL Control Properties That Cannot Be Edited
The following properties display in Oracle BPEL Control under Manage BPEL
Domain > Configuration. These properties have empty Name and Comment columns
in the Configuration tab. Do not modify these properties; this has no impact on system
performance tuning.

■ cbCacheHighWatermark

■ cbCacheLowWatermark

■ cbCachePolicy

■ cbCacheUnits

■ instCacheUnits

■ invCacheHighWatermark

■ invCacheLowWatermark

■ invCachePolicy

■ invCacheUnits

■ subCacheHighWatermark

■ subCacheLowWatermark

■ subCachePolicy

■ subCacheUnits

Instead, see the following subsections for details about properties that can be set to
optimize performance.

7.4.2 auditDetailThreshold BPEL Property
This property sets the maximum size (in kilobytes) of an audit trail details string
before it is stored separately from the audit trail. If an audit trail details string is larger
than the threshold setting, it is not immediately loaded when the audit trail is initially
retrieved; a link is displayed with the size of the details string. Strings larger than the
threshold setting are stored in the audit_details table, instead of the audit_
trail table.

This property is applicable to durable processes.

See Also: "Domain and Process Configuration Property Settings" on
page 7-2

Domain Level Performance Tuning

7-12 Oracle Application Server Performance Guide

The details string typically contains the contents of a BPEL variable. In cases where the
variable is very large, performance can be severely impacted by logging it to the audit
trail.

Values
The default value is 50 kilobytes.

7.4.3 auditLevel BPEL Property
This property sets the audit trail logging level. This process is applicable to both
durable and transient processes.

This property controls the amount of audit events logged by a process. This setting
greatly impacts performance because more audit events means more database inserts
into the audit_trail table. This audit information is used only for viewing the state
of the process from Oracle BPEL Control.

Use this property if you do not want to store all audit information. Choose the level
according to your business requirement. Auditing information has a significant impact
on database growth and throughput. For optimal performance, set this property to the
lowest acceptable level.

Values
This property has the following values:

■ off: No audit events (activity execution information) are persisted and no logging
is performed; this can result in a slight performance boost for processing instances.

■ minimal: all events are logged; however, no audit details (variable content) are
logged. This setting is recommended for larger payload processes.

■ production: all events are logged. The audit details for assign activities are not
logged; the details for all other activities are logged. This setting is recommended
for smaller payload processes.

■ development (default): all events are logged; all audit details for all activities are
logged.

7.4.4 bpelcClasspath BPEL Property
This property sets the BPEL process compiler classpath.

This is the server-side BPEL process compiler classpath. Any user-specific classes and
libraries used by a BPEL Java exec activity (that have not been packaged in the BPEL
archive) must be specified in this classpath. This enables the server-side BPEL process
compiler to successfully compile the BPEL process.

This process is applicable to both durable and transient processes.

Values
The default value is:

Oracle_Home\bpel\system\classes;

See Also: Table 7–2 on page 7-10 for additional information about
the audit_trail and audit_details tables

See Also: Table 7–2 on page 7-10 for additional information about
audit level details and the audit_trail table

Domain Level Performance Tuning

Oracle BPEL Process Manager Performance Tuning 7-13

Oracle_Home\bpel\lib\j2ee_1.3.01.jar

7.4.5 datasourceJndi BPEL Property
This property sets the domain data source JNDI name.

This data source can refer to any data source (JTA is not required).

This process is applicable to both durable and transient processes.

Values
The default value is jdbc/BPELServerDataSourceWorkflow.

7.4.6 deliveryPersistPolicy BPEL Property

This property enables and disables database persistence of messages entering Oracle
BPEL Server. By default, incoming requests are saved in the following delivery service
database tables:

■ dlv_message

■ invoke_message

These requests are later acquired by Oracle BPEL Server worker threads and delivered
to the targeted BPEL process. In the case where performance is preferred over
reliability, persisting the incoming messages in the database can be skipped. This
property persists delivery messages and is applicable to durable processes.

One-way invocation messages are stored in the delivery cache until delivered. If the
rate at which one-way messages arrive is much higher than the rate at which Oracle
BPEL Server delivers them or if the server fails, some messages can get lost. In Oracle
BPEL Control (under Manage BPEL Domain >Threads), you can monitor the size of
the delivery cache by viewing the New Instance Requests and Callback Requests
statistics in the Pending Requests section. The Scheduled column indicates the
number of cached messages.

Values
This property has the following values:

■ on (default): delivery messages are persisted in the database

■ off: incoming delivery messages are kept only in the in-memory cache. If more
messages are delivered, the system can become overloaded (messages become
backlogged in the scheduled queue) and you receive out-of-memory errors. Tune
the number of WorkerBean threads to accommodate the number of incoming
messages.

■ off.immediate: directs Oracle BPEL Server to bypass the scheduling of
messages in the invoke queue, and invokes the BPEL instance synchronously.

WARNING: Oracle recommends that this property remain set to the
default value of on. If you set this property to off and your system
fails, you lose messages. Exercise extreme care if changing this
property setting from the default value.

See Also: Table 7–2 on page 7-10 for additional details about the
delivery service database tables

Domain Level Performance Tuning

7-14 Oracle Application Server Performance Guide

7.4.7 dspAgentDelay BPEL Property
This property sets the number of seconds between triggers of the dispatcher agent.
This agent cleans up any messages in the dispatcher layer that have not been
processed due to a failure in the JMS layer.

This process is applicable to durable processes.

Values
The default value is 120 seconds.

7.4.8 dspInvokeAllocFactor BPEL Property
This property sets the percentage of active threads to be tasked to process incoming
invocation messages. After a thread has finished processing a message, it can be tasked
again to process an Oracle BPEL Server or invocation message, depending upon the
current thread allocation situation.

This process is applicable to durable processes.

Values
The default value is 0.4 (40%).

7.4.9 dspMaxRequestDepth BPEL Property
This property sets the maximum number of in-memory activities to process within the
same request. After processing an activity request, Oracle BPEL Process Manager
attempts to process as many subsequent activities as possible without jeopardizing the
transactionality of the request. Once the activity processing chain has reached this
depth, the instance is dehydrated and the next activity is performed in a separate
transaction.

If the request depth is too large, the total request time can exceed the application
server transaction timeout limit.

This process is applicable to durable processes.

Values
The default value is 600 activities.

7.4.10 dspMaxThreads BPEL Property
This property sets the maximum number of active dispatcher threads that process
messages during peak load times. This property is applicable to durable processes and
is dependent on the application server configuration.

This is the simplest way to improve the performance and scalability of the domain.
Oracle BPEL Server uses MDB threads to process Oracle BPEL Server messages. The
maximum value for this property is dependent upon the Oracle BPEL Server's MDB
J2EE listener threads setting. For Oracle Application Server, this count is configured in
the orion-ejb-jar.xml deployment descriptor file.

For example, if the total number of MDB J2EE listener threads is 120, the value of
dspMaxThreads can be set to 120 or less. If you have configured multiple domains,

See Also: "WorkerBean" on page 7-24

Domain Level Performance Tuning

Oracle BPEL Process Manager Performance Tuning 7-15

the sum of the dspMaxThreads settings for all domains must not exceed the MDB
J2EE listener threads setting.

If the CPU utilization of your application server and database hosts are well below
capacity, try increasing this value and the MDB J2EE listener threads setting when
necessary. If the CPUs are still not fully utilized, then consider running multiple Oracle
BPEL Server instances.

Values
The default value is 100 threads.

7.4.11 dspMinThreads BPEL Property
This property sets the minimum number of active dispatcher threads that process
messages during peak load times.

If the current number of active threads is under this number, the load factor is not
taken into consideration when determining whether or not to allocate a new thread.

This process is applicable to durable processes.

Values
The default value is 5 threads.

7.4.12 expirationMaxRetry BPEL Property
This property sets the maximum number of times a failed expiration call (in a wait
activity or an onAlarm branch of a pick activity) is retried before failing.

If the activity or instance targeted by the expiration call cannot be found, the call is
rescheduled again.

The retry count does not include the first (original) attempt by the expiration call.

This process is applicable to durable processes.

Values
The default value is 5.

Note: MDB J2EE listener threads configuration is specified in the
following file:

■ For the Oracle BPEL Process Manager for Developers installation
type, this file is located at SOA_Oracle_
Home\j2ee\home\application-deployments\orabpel\ej
b_ob_engine\orion-ejb-jar.xml under WorkerBean.

■ For the Oracle BPEL Process Manager for OracleAS Middle Tier
installation type, this file is located at SOA_Oracle_
Home\j2ee\home\application-deployments\orabpel\ej
b_ob_engine\orion-ejb-jar.xml under WorkerBean.

See Also:

■ "BPEL Threading Model" on page 7-4 for complete details

■ "Oracle BPEL Server EJB Configuration" on page 7-23 for MDB
J2EE listener thread details

Domain Level Performance Tuning

7-16 Oracle Application Server Performance Guide

7.4.13 idempotentThreshold BPEL Property
This property sets the maximum time (in seconds) in which an idempotent service
must successfully complete an activity. If an idempotent service takes longer than this
time to complete, the service is considered nonidempotent and the current transaction
is committed to the database. This feature prevents lengthy services from having to
redo work in case another service in the idempotent chain fails.

Values
The default value is 30 seconds.

7.4.14 instanceKeyBlockSize BPEL Property
This property controls the instance ID range size. Oracle BPEL Server creates instance
keys (a range of process instance IDs) in batches using this number. After creating this
range of in-memory IDs, the next range is updated and saved in the ci_id_range
table. For example, if instanceKeyBlockSize is set to 100, Oracle BPEL Server creates
a range of instance keys in-memory (100 keys, which are later inserted into the cube_
instance table as cikey). If the block size is smaller then the number of updates to
the ci_id_range table, this may cause performance issues.

Values
The default value is 10000.

7.4.15 instCacheHighWatermark BPEL Property

This property sets the maximum number of in-flight instances that can be placed in the
cache before pruning occurs. Once the high watermark is reached, the cache removes
(prunes) enough older instances from cache to reach the low watermark value (set
with the instCacheLowWatermark property). Pruned instances can be retrieved as
needed from the dehydration store. This property is applicable to durable processes.

This value is only used when the instCachePolicy property is set to lru or hybrid.
Consider the following factors when setting this property:

■ The number of in-flight instances Oracle BPEL Process Manager is expected to
handle at any point in time

■ The amount of memory each process instance takes. The memory usage can be
determined using a Java Profiler.

You can run a single instance through the system and measure the corresponding
increase in memory utilization.

If this property is set too high, your system can encounter OutOfMemoryException
error messages. The system can also actually slow down if this value is set too high
because the garbage collector runs more frequently. To monitor the garbage collector,

See Also: "Idempotent Activities" on page 7-3

See Also: Table 7–2 on page 7-10 for additional details about the
cube_instance table

Note: Oracle recommends that you do not change this parameter.
Only change this parameter if you fully understand JVM issues.

Domain Level Performance Tuning

Oracle BPEL Process Manager Performance Tuning 7-17

use Sun's visual garbage collection (GC) tool
(http://java.sun.com/performance/jvmstat).

Values
The default value is 3000; zero implies no limit.

7.4.16 instCacheLowWatermark BPEL Property

This property sets the number of in-flight instances to which the cache is pruned when
pruning occurs. This property is applicable to durable processes.

 When the high watermark in the cache is reached, the cache removes enough
instances to reach this level.

Cache pruning occurs when the cache size grows to the high watermark value (set
with the instCacheHighWatermark property). This instCacheLowWatermark
property controls how much pruning occurs. The default value is 75% of the high
watermark setting. This indicates the cache is reduced to 75% of the high watermark
value when pruning occurs. This value is only used when the instCachePolicy
property is set to lru or hybrid.

Monitor instance cache statistics by going to Manage BPEL Domain > Threads in
Oracle BPEL Control. In the Server cache statistics section at the bottom of this page is
the instance cache entry. You can view the cache size and hit percentage. If the hit
percentage is quite low, consider increasing your cache size or the low watermark
value.

If this property is set too high, your system can encounter OutOfMemoryException
errors. The system can also actually slow down if this value is set too high. This is
because the garbage collector must run more frequently. To monitor the garbage
collector, use Sun's visual GC tool
(http://java.sun.com/performance/jvmstat).

Values
The default value is 2250 (75%).

See Also:

■ "instCacheLowWatermark BPEL Property" on page 7-17

■ "instCachePolicy BPEL Property" on page 7-18

■ "optCacheOn BPEL Property" on page 7-19

Note: Oracle recommends that you do not change this parameter.
Only change this parameter if you fully understand JVM issues.

See Also:

■ "instCacheHighWatermark BPEL Property" on page 7-16

■ "instCachePolicy BPEL Property" on page 7-18

■ "optCacheOn BPEL Property" on page 7-19

Domain Level Performance Tuning

7-18 Oracle Application Server Performance Guide

7.4.17 instCachePolicy BPEL Property
This property sets the eviction policy to use when removing in-flight instances from
the cache. This property is applicable to durable processes.

This property takes effect only when the optCacheOn property is set to true.

If you want to fine tune cache management, use this property. If the number of process
instances that must be kept in memory is well known, Oracle recommends the lru
setting. When using the lru setting, the instCacheHighWatermark and
instCacheLowWatermark properties must also be set.

Values
This property has the following values:

■ lru: least recently used; this setting first removes those instances that have not
been accessed for the longest period of time. This setting is recommended.

■ auto (default): delegates the removal decision to the JVM. Instances are removed
when the garbage collector reaps soft references.

■ soft-lru: combination of lru and auto.

7.4.18 invokerQueueConnectionPoolMinSize BPEL Property
This property sets the invoker queue connection pool minimum size. This value must
match the number of invoker threads. If the invoker threads are set to 200, this value
can be set to 200 to avoid JMS warm up.

This property is applicable to both durable and transient processes.

Values
The default value is 25.

7.4.19 largeDocumentThreshold BPEL Property
This property sets the large XML document persistence threshold. This is the
maximum size (in kilobytes) of a BPEL variable before it is stored in a separate location
from the rest of the instance scope data.

This property is applicable to both durable and transient processes.

Note: Some JVM implementations have been observed to display an
OutOfMemoryException error message when cache values are set to
auto. This happens because the auto caching setting relies on JVM soft
references. If you encounter this error, set the caching value to lru.

See Also:

■ "instCacheHighWatermark BPEL Property" on page 7-16

■ "instCacheLowWatermark BPEL Property" on page 7-17

■ "optCacheOn BPEL Property" on page 7-19

See Also: "InvokerBean" on page 7-24 for details about invoker
threads

Domain Level Performance Tuning

Oracle BPEL Process Manager Performance Tuning 7-19

Large XML documents impact the performance of the entire Oracle BPEL Server if
they are constantly read in and written out whenever processing on an instance must
be performed.

Values
The default value is 50 kilobytes.

7.4.20 minBPELWait BPEL Property
This property sets the minimum BPEL activity wait.

If the wait time for a wait activity or an onAlarm branch of a pick activity is less than
the value defined here, the wait is ignored.

This property is applicable to durable processes.

Values
The default value is 2 seconds.

7.4.21 optCacheOn BPEL Property
This property sets the in-memory cache for in-flight instances. This property is
applicable to durable processes.

If set to true, Oracle BPEL Process Manager attempts to load active instances from
in-memory cache rather than looking them up from the database. To disable
optimization, specify a value other than true.

Set this property to false if your process is long running and the subprocesses do not
immediately call back. Consider this if you are dealing with shorter processes, which
expect many callbacks.

Setting this property to true necessitates setting the following caching-related
settings:

■ instCacheHighWatermark

■ instCacheLowWatermark

■ instCachePolicy

If you can meet your performance goals without using the cache, Oracle recommends
leaving this setting as false to simplify administration and tuning.

Values
This property has the following values:

■ true: Oracle BPEL Server attempts to load active instances from in-memory
cache rather than looking them up from the database.

■ false (default): Oracle BPEL Server loads the instance from the database every
time.

Note: Enabling the cache may adversely impact performance. This
can happen if cache values are set too high, causing the JVM garbage
collector to run at frequent intervals. Use Sun's visual GC tool
(http://java.sun.com/performance/jvmstat) to monitor the
garbage collector.

Domain Level Performance Tuning

7-20 Oracle Application Server Performance Guide

7.4.22 optIdempotentRouting BPEL Property

This property sets a routing shortcut for idempotent services.

If set to true, Oracle BPEL Server attempts to process as many activities as possible
within the same transaction if the activity services are idempotent.

This property is applicable to durable processes.

The default value is true. To disable optimization, specify a value other than true.

Values
The default value is true.

7.4.23 optSoapShortcut BPEL Property

This property sets a short-cut for a local SOAP request.

Local SOAP calls are normally performed with an internal call instead of sending a
message through the SOAP stack.

The default behavior for the Oracle BPEL Process Manager is to optimize all by
bypassing the SOAP stack. To disable optimization, specify a value other than true.

This property is applicable to both durable and transient processes.

Values
■ true (default): Local SOAP calls bypass the SOAP stack.

■ false: Local SOAP calls go through the SOAP stack.

7.4.24 processCheckSecs BPEL Property
This property sets the number of seconds to wait since the last time Oracle BPEL
Server checked the BPEL archive before checking it again. Checking means to check
the last modified time stamp on the BPEL archive for a particular process. If the
specified number of seconds has passed and the BPEL archive file has been modified
since the last time checked, the process is refreshed from the new archive. If not
enough time has passed since the last time the stale check was performed, the
currently-loaded process classes are used.

This property is applicable to both durable and transient processes.

See Also:

■ "instCacheHighWatermark BPEL Property" on page 7-16

■ "instCacheLowWatermark BPEL Property" on page 7-17

■ "instCachePolicy BPEL Property" on page 7-18

Note: Oracle recommends that you do not change this parameter.

Note: Oracle recommends that you do not change this parameter.

Domain Level Performance Tuning

Oracle BPEL Process Manager Performance Tuning 7-21

To disable process checking, use a value of -1. In this case, once a process has been
loaded, Oracle BPEL Server never checks if a newer version of the same process has
been deployed.

Values
The default value is 1 second.

7.4.25 relaxBpelAssignRules BPEL Property

This property relaxes enforcement of the Business Process Execution Language for Web
Services Specification Version 1.1 assign rules. If set to true, Oracle BPEL Process
Manager does not apply rules while assigning BPEL variables. For example, Oracle
BPEL Process Manager does not display an error about null assignments (which are
not allowed in the BPEL specifications).

This property is applicable to both durable and transient processes.

Values
This property has the following values:

■ false (default): does not relax assignment rules.

■ true: relaxes assignment rules.

7.4.26 slowPerfThreshold BPEL Property
This property sets the maximum time (in seconds) for a service to successfully
complete an activity. If a service takes longer than this time to complete, the service is
considered slow. Oracle BPEL Process Manager collects statistics on slow services.

This property is applicable to durable processes.

Values
The default value is 1 second.

7.4.27 statsLastN BPEL Property
This property sets the size of the most-recently processed request list. After each
request is finished, statistics for the request are kept in a list. A value less than or equal
to zero disables statistics gathering.

This property is applicable to both durable and transient processes.

You can view statistics from Oracle BPEL Control under Manager BPEL Domain >
Statistics.

Values
The default value is 1000.

Note: While this property does display in Oracle BPEL Control,
Oracle recommends that you do not use this property. This property
has been deprecated.

Domain Level Performance Tuning

7-22 Oracle Application Server Performance Guide

7.4.28 syncMaxWaitTime BPEL Property
This property sets the maximum time the process result receiver waits for a result
before returning. Results from asynchronous BPEL processes are retrieved
synchronously by a receiver that waits for a result from Oracle BPEL Server.

This property is applicable to transient processes.

Values
The default value is 45 seconds.

7.4.29 txDatasourceJndi BPEL Property
This property sets the domain transactional data source JNDI name. This data source
must be configured for JTA support.

This property is applicable to both durable and transient processes.

Values
The default value is jdbc/BPELServerDataSource.

7.4.30 uddiLocation BPEL Property
This property specifies the inquiry URL of the Universal Description, Discovery, and
Integration (UDDI) version 3-compliant registry.

If you use virtual locations, meaning that you only reference the abstract WSDL in
your partner link and provide a property named registryServiceKey in the
deployment descriptor on the partner link binding level, this property is used to
connect to the UDDI registry to retrieve the information.

Values
There is no default value.

7.4.31 validateXML BPEL Property
This property validates incoming and outgoing XML documents.

If set to true, the Oracle BPEL Process Manager applies schema validation for
incoming and outgoing XML documents.

This property is applicable to both durable and transient processes.

values
The default value is false.

7.4.32 workerQueueConnectionPoolMinSize BPEL Property
This property sets the worker queue connection pool minimum size. This value must
match the number of worker threads. If the number of worker threads is 200, this
value can be set to 200 to avoid JMS warm up.

This property is applicable to durable processes.

Values
The default value is 25.

Tuning OC4J for Oracle BPEL

Oracle BPEL Process Manager Performance Tuning 7-23

7.5 Tuning OC4J for Oracle BPEL
The parameters described in this section are set at the Oracle Application Server level.
You must restart the OC4J instance for these parameters to take effect.

This section contains the following topics:

■ Tuning JTA Transaction Timeout for Oracle BPEL Process Manager

■ Oracle BPEL Server EJB Configuration

■ Configuring Data Sources for Oracle BPEL

7.5.1 Tuning JTA Transaction Timeout for Oracle BPEL Process Manager
Oracle BPEL Server uses JTA to achieve atomicity. The transaction timeout value is set
by default to 60000 milliseconds in the transaction-manager.xml file. The
location of this file depends on the method by which you installed Oracle BPEL
Process Manager:

■ For Oracle Application Server SOA installations, the file is located in SOA_
Oracle_Home\j2ee\home\config.

■ For Oracle BPEL Process Manager installations, the file is located in SOA_
Oracle_Home\bpel\system\appserver\oc4j\j2ee\home\config.

You can sometimes experience transaction rollback errors due to timeouts, especially
when Oracle BPEL Server is under stress. The timeout can happen for many reasons:

■ Insufficient resources (for example, not enough database connections in the
connection pool, the server thread waits for 60 seconds and displays a timeout
error, and so on).

■ Large document manipulation (for example, database writes of very large
documents can take longer than 60 seconds).

Change this value according to your process. The following example sets the timeout
to 120 seconds:

<transaction-config timeout="120000" />

If your process invokes partners that take longer than the specified timeout threshold,
call them using a one-way request or set the nonBlockingInvoke partner link
property to true in the bpel.xml deployment descriptor file.

7.5.2 Oracle BPEL Server EJB Configuration
To increase performance, Oracle recommends removing the max-instances attribute
for all of Oracle BPEL Server's EJBs in the orion-ejb-jar.xml file. For the Oracle
BPEL Process Manager for OracleAS Middle Tier installation type, this file is located in
SOA_Oracle_Home\j2ee\home\application-deployments\orabpel\ejb_
ob_engine.

This enables the application server to allocate more resources to heavily-used beans.

See Also: "WorkerBean" on page 7-24

See Also: Oracle Application Server Administrator’s Guide for
instructions on starting and stopping Oracle Application Server

See Also: "nonBlockingInvoke BPEL Property" on page 7-9

Tuning OC4J for Oracle BPEL

7-24 Oracle Application Server Performance Guide

7.5.2.1 WorkerBean
Oracle BPEL Server uses an MDB called WorkerBean to perform processing.
Therefore, it is important to allocate enough threads to this MDB. Otherwise, resource
utilization is not optimal. The following code from the orion-ejb-jar.xml file
shows an allocation of 70 threads.

<message-driven-deployment name="WorkerBean"
 destination-location="jms/collaxa/BPELWorkerQueue"
 connection-factory-location="jms/collaxa/BPELWorkerQueueFactory"
 listener-threads="70" min-instances="100">
 <ejb-ref-mapping name="ejb/local/DispatcherLocalBean" />
 ..
 ..
</message-driven-deployment>

7.5.2.2 InvokerBean
The invoker bean is used only for nonblocking invoke activities. If you set some
invokes to be nonblocking, increase the number of threads allocated to the
InvokerBean. The following orion-ejb-jar.xml code shows an allocation of 30
threads.

<message-driven-deployment name="InvokerBean"
 destination-location="jms/collaxa/BPELInvokerQueue"
 connection-factory-location="jms/collaxa/BPELInvokerQueueFactory"
 listener-threads="30" min-instances="100">
<ejb-ref-mapping name="ejb/local/ProcessManagerLocalBean" />
 …
 …
</message-driven-deployment>

7.5.3 Configuring Data Sources for Oracle BPEL
Oracle BPEL Server obtains database connections using an application server JTA data
source. Oracle BPEL Server by default is configured to use the Oracle Database Lite
dehydration store. For stress testing and production, Oracle recommends that you use
Oracle Database 10g. Oracle Database Lite packaged with the default installation to
ease the initial developer experience.

Be aware of the following issues when configuring the Oracle BPEL Server data source
entry. For the Oracle BPEL Process Manager for OracleAS Middle Tier installation
type, the data source entry is located in the SOA_Oracle_
Home\j2ee\home\config\data-sources.xml file.

Note: The sum of the InvokerBean and WorkerBean threads must
be greater than or equal to the value specified for the dspMaxThreads
domain property in Oracle BPEL Control under Manage BPEL
Domain > Configuration. If you configured multiple domains, add
the dspMaxThreads property for all your domains and compare that
sum to the MDB total thread count.

See Also:

■ "nonBlockingInvoke BPEL Property" on page 7-9

■ "dspMaxThreads BPEL Property" on page 7-14

Java Virtual Machine Performance Tuning for Oracle BPEL Server

Oracle BPEL Process Manager Performance Tuning 7-25

■ When configuring the data source, ensure that the connection pool has enough
free connections to serve Oracle BPEL Server.

■ The connection pool size must be greater than or equal to the sum of the
dspMaxThreads property value in Oracle BPEL Control. If you have configured
multiple domains, add all dspMaxThreads property values and compare that
value with the data source's max-connections value. The default
max-connections value is unlimited.

■ For Oracle Database 10g, the data source must also use the thin driver. For the
Oracle9i Database, Oracle Call Interface (OCI) performs slightly better.

When database persistence is enabled, Oracle BPEL Server generally performs better
with JDBC statement caching enabled using the num-cached-statements attribute.
Statement caching eliminates overhead due to repeated cursor creation and repeated
statement parsing and creation. Statement caching also reduces the overhead of
communication between the application server and the database server.

7.6 Java Virtual Machine Performance Tuning for Oracle BPEL Server
JVM parameters can have an impact Oracle BPEL Server performance. The major
factors that impact performance relate to the heap size. The heap size controls the
amount of memory the JVM uses. If your BPEL process instance runs on a dedicated
host, set the heap size value as high as possible.

Another important heap configuration is the garbage collector's generational settings.
The garbage collector optimizes collection by classifying objects by how long they live.
Most Oracle BPEL Server objects are short-lived; thus they live in the Eden space.
Oracle recommends sizing the Eden space to be 60 to 70 percent of the total heap size.

The JVM -Xmn setting startup option sets an explicit value for the Eden space size. Do
the following to set this option:

1. Calculate the 60-70 percent value, based on the specified maximum heap size.

2. Use the calculated value to set the JVM -Xmn command line parameter.

Take the following steps to change JVM command line options:

1. Navigate to the Home page for the OC4J instance.

2. Click Administration.

3. If necessary, expand the Properties section of the table by clicking the Expand icon.
Then, click the Go to Task icon in the Server Properties row.

4. In the Command Line Options area, modify or change the appropriate command
line options in the Options table.

5. Click Apply.

See Also:

■ "dspMaxThreads BPEL Property" on page 7-14

■ Oracle BPEL Process Manager Installation Guide for instructions on
configuring an Oracle Database as the Oracle BPEL Process
Manager dehydration store

■ Oracle Containers for J2EE Services Guide for additional information
on setting JDBC statement caching

■ "Enable Statement Caching for Data Sources" on page 3-8

Dehydration Store Database Performance Tuning

7-26 Oracle Application Server Performance Guide

6. Navigate to the Cluster Topology page, select the OC4J instance that you modified,
and click Restart. On the Confirmation page, click Yes.

7.7 Dehydration Store Database Performance Tuning
Oracle BPEL Server performance is related to the dehydration store's capacity. Oracle
recommends the following:

■ Moving the redo logs into a separate RAID 1+0 disk

■ Increasing the size of each redo log file to a large value (for example, 1 GB)

■ Creating a separate database tablespace for Oracle BPEL Server

The database parameters shown in Table 7–3 impact Oracle BPEL Process Manager
performance. The specific values to use depend on your hardware configuration.

7.8 Summary
This chapter describes how to configure Oracle BPEL Process Manager property
settings to optimize performance at the process, domain, application server, Java

See Also:

■ "Ensure Sufficient Java Heap for OC4J" on page 3-3

■ "Tune the JVM Garbage Collection Options" on page 3-4

Table 7–3 Database Parameters Impacting Oracle BPEL Process Manager Performance

Parameter Name Sample Value

LOG_BUFFER 1048576

SHARED_POOL_SIZE 400M

JOB_QUEUE_PROCESSES 1

DB_CACHE_SIZE 1000M

DB_FILE_MULTIBLOCK_READ_COUNT 8

UNDO_RETENTION 0

PROCESSES 300

SESSION_CACHED_CURSORS 100

See Also: Oracle Database Tuning and Oracle Database Reference for
your Oracle Database release:

■ For Oracle Database 10g Release 2 (10.2)

http://www.oracle.com/technology/documentation/databas
e10gr2.html

■ For Oracle Database 10g Release 1 (10.1)

http://www.oracle.com/technology/documentation/databas
e10g.html

■ For Oracle Database 9i Release 2 (9.2)

http://www.oracle.com/technology/documentation/oracle9
i.html

Summary

Oracle BPEL Process Manager Performance Tuning 7-27

Virtual Machine (JVM), and dehydration store database levels. This chapter describes
these property settings and provides recommendations on how to use them.

Summary

7-28 Oracle Application Server Performance Guide

Oracle Business Activity Monitoring Performance 8-1

8
Oracle Business Activity Monitoring

Performance

To achieve the highest performance for Oracle Business Activity Monitoring, you
should maintain a database on its own hardware dedicated to the Oracle Business
Activity Monitoring system. Additionally, following certain database administration
practices maximizes the throughput of incoming Oracle Business Activity Monitoring
transactions. These practices are based on specific testing and observations of the
Oracle Business Activity Monitoring system. General database administration
practices, as described in the Database Performance Tuning Guide, also apply to a
database dedicated to Oracle Business Activity Monitoring.

This chapter includes the following sections:

■ Managing the Redo Log Files

■ Avoiding Frequent Log Switches and Checkpoints

■ Tuning the System Global Area

■ Database Re-Organization in the Presence of Deletion Activity

■ Configuring Multiple Plan Monitor Services and Enterprise Links

Managing the Redo Log Files

8-2 Oracle Application Server Performance Guide

8.1 Managing the Redo Log Files
When Oracle Business Activity Monitoring receives input data at a high rate, the
Oracle Business Activity Monitoring Active Data Cache (ADC) sends the data it
receives to the database with little or no loss of input bandwidth incurred in the ADC
server. Thus, the limiting factor for input data throughput is the rate at which the
database can capture data it receives from the ADC server. At high data rates, the
database throughput is limited by the ability of the database to write redo log records
to disk, also called a log file sync. When an application, in this case the ADC server,
commits data at a rate that is faster than the rate at which redo log data can be written
to disk, subsequent requests to commit or rollback a transaction must wait.

The overall goal of redo log file tuning is to reduce or eliminate log file sync waits
since they limit insertion throughput. There are two main strategies to reduce the
number of log file sync waits in an Oracle database:

■ You can increase the I/O bandwidth available to redo log sync activity. To do this,
move the redo log files onto their own physical disk so they do not have to
compete with other I/O activity in the system.

■ You can modify the database insert workload to increase the number of rows
inserted into the database per transaction committed. This strategy involves
modifying the application to issue fewer commits. By batching a larger number of
operations in each transaction, the demand for commit processing is reduced. The
downside of such an approach, however, is that when there is a system failure, all
data input since the previous commit is lost. With frequent commits, a small
amount of data is lost when there is a system failure. With less frequent commits, a
larger amount of recently captured data is lost. This tradeoff between performance
and reliability implies that selecting a larger number of input operations per
transaction must be consistent with the reliability requirements of the application.
In the case of Oracle BPEL Process Manager sending data to Oracle Business
Activity Monitoring, batching is an option that can be used and even if higher
numbers are used for batching, there is no data loss in the case of Oracle Business
Activity Monitoring failure, because Oracle BPEL Process Manager can retry the
operations.

Redo log sync bandwidth may also be increased by striping the redo log files across
multiple disks, using either a RAID or operating system based striping mechanism.
Because log sync activity involves sequential writing, a large stripe depth such as 32K
or 64K provides the best performance.

Note: Avoid RAID-5 usage for redo logs because it is known that
redo log sync activity performs poorly when the redo logs are stored
on a RAID-5 storage system. If you must use RAID-5, consider
removing one or more disks from the RAID-5 configuration on which
you store the redo log groups.

See Also:

■ Chapter 6, "Managing the Redo Log" in the Database
Administrator's Guide for more information on managing redo
logs.

■ Chapter 8, "I/O Configuration and Design" in the Database
Performance Tuning Guide for more information on high
performance I/O architectures, including the management of redo
logs for high performance.

Tuning the System Global Area

Oracle Business Activity Monitoring Performance 8-3

8.2 Avoiding Frequent Log Switches and Checkpoints
An Oracle database must have at least two redo log files so that when one file is full,
the database can switch to another and the space in the file can be reclaimed
asynchronously. Because these log switches have a significant negative impact on
database performance, the redo log files should be sized to reduce the frequency of the
switches to an acceptably low rate. A good rule of thumb is to have no more than 1 log
switch every 20 minutes.

You can determine the rate of log switches by setting the database initialization
parameter LOG_CHECKPOINTS_TO_ALERT to TRUE. This writes log switch events to
the database alert log with a timestamp, so that you can monitor the alert log for an
excessive frequency of log switches.

Incremental checkpoints also degrade performance. In order to limit the amount of the
redo log that must be processed during database crash recovery (and thus limit the
time to startup a database after a system failure), the database checkpoints the redo log
at regular intervals. These checkpoint events are written to the alert log when the LOG_
CHECKPOINTS_TO_ALERT parameter is set to TRUE.

Normally, the frequency of incremental checkpoints is set implicitly. When you set the
FAST_START_MTTR_TARGET initialization parameter, this specifies the target instance
startup time for crash recovery after a crash. Setting a large value for FAST_START_
MTTR_TARGET allows for infrequent incremental checkpoints, which benefits runtime
performance (this is at the expense of crash recovery time during instance startup).
Setting a small value for FAST_START_MTTR_TARGET causes frequent incremental
checkpoints that can decrease the required crash recovery time during instance
startup, at the expense of runtime performance. Application requirements should
dictate the analysis of this tradeoff. When runtime performance is the dominant
consideration, setting the initialization parameter, FAST_START_MTTR_TARGET to be
large enough to completely eliminate incremental checkpoints is desirable. In this case,
checkpoints are made at the time of a log switch.

8.3 Tuning the System Global Area
Oracle Business Activity Monitoring database performance is sensitive to the size
specified for the db_cache and log_buffer in the database System Global Area
(SGA), as well as the overall SGA size (the size specified should be relative to the size
of the objects managed within the SGA).

Configure a dedicated Oracle Business Activity Monitoring database with a minimum
SGA size of 1024MB. Set the SGA size using the SGA_MAX_SIZE initialization
parameter. Use either SGA autotuning to set the values of memory pools within the

See Also:

■ "Tuning Redo Logs Location and Sizing" on page 3-10 for more
information on tuning the redo log options.

■ The chapters, "Configuring a Database for Performance" and "I/O
Configuration and Design" in the Oracle Database Performance
Tuning Guide

Note: The optimal SGA size is dependent on the complete database
workload; thus, these guidelines for SGA tuning for an Oracle
Business Activity Monitoring database only apply if the database is
dedicated to Oracle Business Activity Monitoring data.

Tuning the System Global Area

8-4 Oracle Application Server Performance Guide

SGA, or use fixed sized pools. To specify autotuning, set the SGA_TARGET
initialization parameter to the same value as SGA_MAX_SIZE.

You may obtain better performance by manually setting the internal SGA memory
pools. Autotuning of the SGA is disabled by setting the SGA_TARGET initialization
parameter to 0. For an installation with an SGA maximum size set to 1024MB, the
settings shown in Example 8–1 are a good starting point, when autotuning is disabled.

Example 8–1 Sample SGA Initialization with Autotuning Disabled

db_cache_size = 820M
java_pool_size = 16M
large_pool_size = 16M
streams_pool_size = 16M
shared_pool_size = 144M
log_buffer = 10485760

The database cache or buffer pool holds recently accessed data from the database, to
avoid repeated reading of the same data pages. In the case of Oracle Business Activity
Monitoring database, database insert performance depends on fast primary key
constraint checking, which is accomplished by virtue of the indexes created for each
primary key being held in the database cache. The buffer pool hit ratio is a good
indicator of a database cache that is too small. In general, the hit ratio should be above
95%. For an Oracle Business Activity Monitoring database, you should try to maintain
a hit ratio at 99% or higher; this is generally is feasible with workloads that primarily
insert incoming data to the database. With workloads having substantial report
querying, 95% is a good target for the buffer pool hit ratio. You can obtain the buffer
pool hit ratio using the following query:

SELECT NAME, PHYSICAL_READS, DB_BLOCK_GETS, CONSISTENT_GETS,
 1 - (PHYSICAL_READS / (DB_BLOCK_GETS + CONSISTENT_GETS))
 "Hit Ratio" FROM V$BUFFER_POOL_STATISTICS;

Oracle Business Activity Monitoring is also sensitive to the log buffer size. When the
database has a log file sync wait, the log buffer holds any pending requests for commit
processing. When there are a large number of log file sync waits, the log buffer may
become full. When a request for the log buffer is unable to be fulfilled, the requester
continues to make the request after short delay, called a log buffer retry.

Log buffer retries have a significant negative impact on performance. For workloads
with a data input batch size in the thousands or for any workload with a significant
number of log buffer retries, the log buffer size might need to be increased.

Use the following query to monitor the buffer retries in the database:

SELECT NAME, VALUE FROM V$SYSSTAT
 WHERE NAME = 'redo buffer allocation retries';

This metric is normally measured by collecting the value at the start of a workload,
and again at the end of a workload, and then the difference between the two values is
the number of log buffer retries required for running the workload. If the database is
restarted at the beginning of a test workload, then the beginning value is 0, and only
the end value is needed. Over about a 10 minute interval, the number of log buffer
retries should be under 100 (in the ideal case, the value would be 0). Values in the
100-300 range only moderately impact performance, but larger values can have a
sizable impact.

It is important to note that whenever you increase the size of an SGA component, such
as the log buffer or the database cache, it is also important to increase the total SGA
size by the same amount (the same amount increase as the component is increased).

Database Re-Organization in the Presence of Deletion Activity

Oracle Business Activity Monitoring Performance 8-5

Otherwise, the increased component takes the memory away from other objects in the
SGA.

8.4 Database Re-Organization in the Presence of Deletion Activity
When Oracle Business Activity Monitoring is installed, the Oracle Business Activity
Monitoring tablespace, ORACLEBAM, is created to hold datasets and metadata. When a
Oracle Business Activity Monitoring user creates a dataset, an Oracle Database table is
create to store objects in the dataset. This table has a system-generated primary key,
named SysIterID. When a Oracle Business Activity Monitoring user creates Oracle
Business Activity Monitoring indexes on columns in a Oracle Business Activity
Monitoring dataset, corresponding indexes are created on the corresponding table in
the database.

The Oracle Business Activity Monitoring tablespace is created with automatic segment
space management enabled. This helps to manage free space in segments mapped to
Oracle Business Activity Monitoring tables, and enables database re-organization to
take place without taking down the system. However, it does not completely eliminate
the need for manual re-organization of the database, particularly after a significant
accumulation of deletion activity

After a significant amount of deletion activity, the segments mapped to a Oracle
Business Activity Monitoring dataset table may become sparsely filled with data, this
condition is usually called internal fragmentation and leads to a very significant
increase in the amount of I/O required to perform operations on the table. When there
is internal fragmentation, any indexes created on the table, including the index for the
primary key, will not be structured in an optimal, balanced configuration after a
significant number of deletion operations. Thus, after a significant number of deletion
operations, you should perform a database re-organize to improve the structure of the
indexes and better pack the rows of the table in a smaller number of data pages. You
could also write a script to delete the obsolete Oracle Business Activity Monitoring
data and perform the reorganization as part of the deletion job.

The procedure for reorganizing segments for a Oracle Business Activity Monitoring
dataset table is to drop the primary key for the table, drop indexes on the table, enable
row movement for the table, shrink space on the table, deallocate unused space in the
table, re-create the primary key for the table, re-create indexes for the table, and
disable row movement for the table.

Example 8–2 shows a sample script that reorganizes segments for two Oracle Business
Activity Monitoring datasets, Call_Detail, and Call_Agg that are stored in
database tables _Call_Detail and _Call_Agg.

Note: The SGA size is rounded up to the next higher multiple of
4MB at database startup.

Note: The reorganization procedure for an Oracle Business Activity
Monitoring dataset table should be scheduled at regular intervals,
such as once a week or once a month, or after significant deletion
activity, or with deletion included in the script as noted.

Before you perform the reorganization procedure, you should be sure
to perform a backup.

Configuring Multiple Plan Monitor Services and Enterprise Links

8-6 Oracle Application Server Performance Guide

Example 8–2 Sample Oracle Business Activity Monitoring Table Reorganization

alter table "ORABAM"."_Call_Detail" drop primary key;
alter table "ORABAM"."_Call_Agg" drop primary key;
<drop indexes on "ORABAM"."_Call_Detail">
<drop indexes on "ORABAM"."_Call_Agg”>
alter table "ORABAM"."_Call_Detail" enable row movement;
alter table "ORABAM"."_Call_Agg" enable row movement;

< Note: include deletion activity here, if it is added as part of the script>

alter table "ORABAM"."_Call_Detail" shrink space;
alter table "ORABAM"."_Call_Agg" shrink space;
alter table "ORABAM"."_Call_Detail" deallocate unused;
alter table "ORABAM"."_Call_Agg" deallocate unused;
alter table "ORABAM"."_Call_Detail" disable row movement;
alter table "ORABAM"."_Call_Agg" disable row movement;
alter table "ORABAM"."_Call_Detail" add primary key ("SysIterID");
alter table "ORABAM"."_Call_Agg" add primary key ("SysIterID");

<rebuild indexes on "ORABAM"."_Call_Detail">
<rebuild indexes on "ORABAM"."_Call_Detail">

8.5 Configuring Multiple Plan Monitor Services and Enterprise Links
Oracle Business Activity Monitoring users can configure multiple plan monitor
services and multiple Enterprise Links to achieve higher performance.

Note: If Oracle Business Activity Monitoring tables are configured to
run with row movement enabled, then you need to change the script
shown in Example 8–2 to remove the disable row movement
commands.

See Also: Oracle Business Activity Monitoring Installation Guide

Oracle Application Server Wireless Messaging Server Performance Tuning 9-1

9
Oracle Application Server Wireless

Messaging Server Performance Tuning

This document describes the steps that need to be taken by the DBAs to configure the
Oracle Application Server Wireless Messaging Server for high performance.

The performance enhancements include SQL optimizations which improve the
messaging server’s one-way and two-way performance on both RAC and non-RAC
environments. The following topics are described:

■ "Configuring Oracle Application Server Wireless Messaging Server for High
Performance"

■ "Factors Affecting Messaging Server Performance"

■ "Handling RAC Instance Failure"

■ "RAC Reconfiguration"

■ "Test Scenario and Result"

9.1 Configuring Oracle Application Server Wireless Messaging Server for
High Performance

Various benchmarking tests on RAC environment revealed that the application must
be carefully designed in a highly cooperative manner and properly tuned to leverage
high performing AQ running in a multi-node RAC environment.

Throughput in a multi-node RAC can be increased considerably by creating multiple
queues, such that (a) each queue has affinity with a particular RAC node, and (b) the
enqueue/dequeue requests on a RAC node pick messages only from the queue that it
has affinity with. This avoids the cache buffer waits that the requests from two or
more RAC nodes experience while accessing a shared queue.

Some of the performance recommendations are also applicable to non-RAC
environments.

The following subsections describe the steps that should be performed for configuring
the messaging server for high performance.

For a more detailed explanation of the factors affecting the messaging server
performance, see the section "Factors Affecting Messaging Server Performance".

9.1.1 Overview
This section discusses the steps to apply the one-off patch to Oracle Application Server
10.1.2.0.2 Wireless Messaging Server.

Configuring Oracle Application Server Wireless Messaging Server for High Performance

9-2 Oracle Application Server Performance Guide

9.1.2 Database Tuning and OS Tuning
The database should be tuned to provide optimal performance for a high-transaction
environment. We recommend the following steps to tune the database.

1. Stop the application server instance(s).

2. Reduce checkpoint waits.

The redo logs should be set to at least 500MB, with at least 3 members per group
(or 3 groups).

3. Reduce the frequency of checkpointing.

The log_checkpoint_timeout can be set to 0 to disable automatic checkpoints.

Use the following command:

alter system set log_checkpoint_timeout=0 scope=both;

4. Increase the System Global Area (SGA) to at least 1GB.

5. Increase the Shared Pool Size to at least a recommended minimum size of 300 MB.

6. Change the number of LMS (lock manager server) processes for RHEL 4. This is
the key component of the global cache service. The LMS process is responsible for
maintaining global cache coherency and moving blocks between instances for
cache fusion requests.

For improved performance set LMS=1 by using the following command:

alter system set gcs_server_processes = 1 scope=spfile sid=’*’

7. If you are using RHEL 4, you may consider tuning the network interfaces
according to metalink note: 363147.1

8. Start the application server instance(s).

Table 9–1 summarizes the database system parameters and recommended values.

For a more detailed explanation of the database tuning and OS factors affecting
the messaging server performance see the section "Database Tuning"

Note: If your environment has a single RAC node (or is a single
database machine), some of the tuning suggestions provided may not
impact performance.

Table 9–1 Database System Parameters and Recommended Values

Database System Parameter Recommended Value(s) Remarks

Redo log 500 MB (minimum)

3 members per group

Reduce checkpoint waits.

Log_checkpoint_timeout 0 Disables automatic
checkpointing

System Global Area 1 GB (minimum)

Shared Pool Size 300 MB (minimum)

LMS processes 1

Configuring Oracle Application Server Wireless Messaging Server for High Performance

Oracle Application Server Wireless Messaging Server Performance Tuning 9-3

9.1.3 Optimizing Performance in a Multi-RAC Environment
Perform the following procedure to optimize performance in a multi-node RAC
environment only.

1. Connect to the database as sysdba and run the following script:

SQL> @@trans_tbs_create.sql

2. When prompted, enter the path to the base directory for the datafiles of this
database.

For example, "/product/10.1.0/oradata/orcl"

The create script first attempts to create the tablespace without specifying the path
to the datafile. On a typical RAC environment with ASM, this would run
successfully. However on a typical non-RAC environment, the command would
fail with an error indicating that datafile path was not specified. The script catches
this error and then attempts to create the tablespace with the user-specified
datafile base dir and the file name "trans.dbf".

SQL> @@trans_tbs_migrate.sql

3. Restart all Wireless mid-tiers (including OC4J_Wireless and Wireless
components).

9.1.4 Messaging Server Configuration
This section describes the following messaging server configuration:

■ updating the dequeue navigation mode

■ adding a node-specific db connect string on the mid-tier instances.

9.1.4.1 Updating the Dequeue Navigation Mode
Updating the dequeue navigation mode from “first” to “next” message will provide
an added increase in throughput, but with loss of message priority semantics. Perform
the following steps to do so:

Login to the database as the wireless user and run the following command:

SQL> @@trans_config_update.sql dequeue_navigation_mode next

Note: Do not perform this procedure for a non-RAC setup.

Note: “trans_tbs_create.sql” creates a new tablespace "TRANS" with
ASSM (Automatic Segment Space Management). ASSM is required in
a RAC environment for optimal performance of the messaging server.

Note: trans_tbs_migrate.sql migrates/moves all transport (i.e.,
messaging server) tables and indexes to the new tablespace "TRANS".

Note: On Windows, also start Enterprise Manager.

Configuring Oracle Application Server Wireless Messaging Server for High Performance

9-4 Oracle Application Server Performance Guide

Usage: SQL> @@trans_config_update.sql <attr_name> <attr_val>

To revert to the default dequeue navigation mode run the following command:

SQL> @@trans_config_update.sql dequeue_navigation_mode first

9.1.4.2 Adding Node-Specific DB Connect String on Mid-Tier Instances
In a multi-node RAC environment, to achieve high messaging performance in a
multiple node RAC environment, the messaging server and OC4J_Wireless processes
on a mid-tier instance should specifically always connect to only one RAC node.
Owing to this configuration, if there are more RAC nodes than mid-tier instances, the
messaging server will not utilize the extra RAC nodes. Figure 9–1 and Figure 9–2 show
some valid configurations.

Figure 9–1 Three Mid-Tiers and Three RAC Nodes Each Connected to One Specific RAC

Figure 9–2 Three Mid-Tiers and Two RAC Nodes

To configure the mid-tier instances as described above, we can specify a customized
connect string as a JVM parameter for these processes. The steps are as follows:

1. For each mid-tier instance, login to its Enterprise Manager and go to its home
page.

2. Under the section “Related Links”, click on the “Process Management” link.

3. Locate the XML section for the process-type "messaging_server".

For example, look for the XML: <process-type id="messaging_server"
module-id="messaging">

4. In that section, add or modify the following XML:

<module-data>
 <category id="start-parameters">

Note: To configure some attributes used by the messaging server.
We provide a script, trans_config_update.sql, to add or update these
attributes.

Factors Affecting Messaging Server Performance

Oracle Application Server Wireless Messaging Server Performance Tuning 9-5

 <data id="java-parameters"
 value="-Xms64M -Xmx256M -Dwireless.db.instance.string=
(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=<%hostname%>)(PORT
=<%port%>))(CONNECT_DATA=(SID=<%sid%>)))"/>
 </category>
</module-data>

Replace the tokens <%hostname%>, <%port%> and <%sid%> with the
appropriate ones for each RAC node.

5. Locate the XML section for the process-type “OC4J_Wireless”.

For example, look for the XML: <process-type id="OC4J_Wireless"
module-id="OC4J">

6. In that section, find the “java-options” data node, i.e. look for the XML: <data
id="java-options" value=”…”/>

Append the following JVM parameter to the “value” attribute:

-Dwireless.db.instance.string=
(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=<%hostname%>)(PORT
=<%port%>))(CONNECT_DATA=(SID=<%sid%>)))

Replace the tokens <%hostname%>, <%port%> and <%sid%> with the
appropriate ones for each RAC node.

7. Restart the OC4J_Wireless and Wireless components on all mid-tier machines for
the changes to take effect.

9.2 Factors Affecting Messaging Server Performance
To tune the messaging server for high performance, perform the following procedures.

9.2.1 Sequencing Cache for trans_mid and trand_did Index
Two of the sequences, trans_mid and trans_did, are used extensively by the messaging
server to generate various ids like status ids, message ids, store id etc.

Recommendation: A cache of 50,000 pre-allocated sequence numbers is provided in
the instance’s SGA for faster access.

You may also increase it further to 100,000 to reduce disk I/O and cr waits, though
care must be taken to ensure that the large cache does not reduce the memory
footprint for other applications.

Warning: The DBA must be aware that large sequence caches can cause disordering of
message ids and can also create “gaps” in ids when the database is restarted.

Note: You can specify any valid db connect string (without the
“username/password@” prefix). For example, you may want to add a
fail-over instance to the connect string. However, it is important that
you use “SID” instead of “SERVICE_NAME”, since we want to force
the mid-tier process to connect to the specified RAC instance, rather
than have the listener attempt any load balancing amongst the RAC
instances.

Factors Affecting Messaging Server Performance

9-6 Oracle Application Server Performance Guide

9.2.2 Forcing Use of Index on Table trans_ids
object_id column of the table trans_ids were accessed very frequently.

Recommendation: Provided in the software, the forced use of index created on object_
id column of the table trans_ids.

The tests showed a significant improvement in messaging performance.

9.2.3 Changing the Navigation Mode
The default implementation of dequeue operation uses first message as navigation
mode (dequeue_option.navigation = DBMS_AQ.FIRST_MESSAGE).

Recommendation: Change the navigation mode to next message (dequeue_
option.navigation = DBMS_AQ.NEXT_MESSAGE). Instructions are in section
"Updating the Dequeue Navigation Mode".

The tests showed a marginal increase in messaging performance. But the increase in
performance comes with a limitation. With next message as navigation mode, the
cursor used to select message from queue is cached and dequeue operation gets a
snapshot of the queue. So any new message enqueued to the queue will not be visible.
This will become a problem if the new message enqueued is of high priority and needs
processed before the message present in the snapshot. Hence this change should be
applied only if it is known that the priorities of the entire incoming message would be
same.

9.2.4 Database Tuning
A high transaction system will generate a lot of redo. This can cause too frequent
checkpoints at log switches. Checkpoints are logged in the databases alert.log file.

Recommendation: Reduce frequency of checkpointing and log switching.

To reduce checkpoint waits, the redo logs should be set to a minimum of 500MB with
at least 3 members per group (or 3 groups). Additionally, the parameter log_
checkpoint_timeout can be set to 0 to disable automatic checkpoints.

To realize high throughout, some database parameters related to resource sharing
should be fine-tuned.

Recommendation: Set the SGA and the Shared Pool to a sufficient size.

The SGA should be set to at least 1GB.

The shared pool should be set to at least 300MB.

The tests showed significant improvement in messaging performance.

9.2.5 Multiple Queues with Node Affinity
The benchmark tests on two RAC nodes revealed that the application must be
carefully designed in a highly cooperative manner and properly tuned to take full
advantage of high performing AQ running in a multi-node RAC environment.

Recommendation: Provided in the software, multiple queues have been created, such
that (a) each queue has affinity with a particular RAC node, and (b) the enqueue or
dequeue requests on a RAC node select messages only from the queue that it has
affinity with. This avoids the cache buffer waits that the requests from two or more
RAC nodes experience while accessing a shared queue.

The tests showed sizable improvement in messaging performance.

Factors Affecting Messaging Server Performance

Oracle Application Server Wireless Messaging Server Performance Tuning 9-7

9.2.6 ASSM Tablespace
When data is frequently inserted into the messaging server tables from multiple
nodes, performance issues were found due to concurrent access to data blocks, table
segment headers, and other global resource demands.

Using ASSM separates the data structures associated with the free space management
of a table into disjoint sets that are available for individual instances. With ASSM, the
performance issues among processes working on different instances are reduced
because data blocks with sufficient free space for inserts are managed separately for
each instance.

Recommendation: Use ASSM tablespace for the messaging server (transport) tables
and indexes. Refer to "Optimizing Performance in a Multi-RAC Environment".

9.2.7 Load Balancing
Since we now need multiple queues, the mid-tier instances also need to be balanced
accordingly.

If the client or messaging server on one mid-tier instance unevenly connects among
the available RAC nodes, some queues may get processed faster than other queues.
Moreover, too many enqueuers or dequeuers on one queue can reduce the throughput
performance on that RAC node.

Recommendation: To avoid this imbalance, we tie the messaging_server and OC4J_
Wireless processes of a mid-tier instance to one particular RAC node. Instructions are
in the section "Adding Node-Specific DB Connect String on Mid-Tier Instances"

9.2.8 Number of Enqueue and Dequeue Threads
The number of enqueue and dequeue threads have a big impact on the overall
throughput. It is important to note that once a real driver is used and real client
applications are used, the number of threads may have to be tuned again to get the
best results. If there are too many enqueuers or dequeuers on a given queue (on a RAC
node), the throughput for that queue (and other queues on that RAC node) can be
negatively affected. The optimal number of enqueuers or dequeuers (governed by
Driver Sending Threads, Driver Receiving Threads or Client Sending and Receiving
Threads) also depends on the physical hardware characteristics of the RAC nodes,
middle tier machines, disk storage, etc.

Recommendation: Assuming each enqueuing thread (Client Sending Threads in the
case of sending, or Driver Receiving Threads in the case of receiving) generates equal
load, the number of threads to set depends on the number of messages in the queue
after several minutes of sustained load. If the queues are mostly empty, then the
enqueue rate could be increased by increasing the number of enqueue threads (for
sending, Client Sending Threads). Then if the queue size begins to grow beyond
bounds (constantly rising as the client is enqueuing messages), then the dequeue
threads (for sending, Driver Sending Threads) should be increased. You get the best
results when you can get the queue sizes (on each RAC node) to stay constant (no
more than 2000 messages during a 100,000 message test). It's a fine line, and requires a
lot of iterative testing to get the best results. Too few threads or too many threads (for
both driver and client) reduce the maximum achievable throughput.

9.2.9 DB Parameter aq_tm_processes
Oracle Streams AQ time manager processes can be controlled by the init.ora parameter
AQ_TM_PROCESSES, which can be set to nonzero to perform time monitoring on

Factors Affecting Messaging Server Performance

9-8 Oracle Application Server Performance Guide

queue messages and for processing messages with delay and expiration properties
specified. It was observed in one of our test environment that this parameter was set
with the value ‘10’ – this caused an issue in the AQ queue monitoring processes and
caused one of the processes to consume all CPU cycles in a tight loop and reducing the
CPU time available to other processes. Killing the corresponding process did not solve
the issue as another process is spawned to replace the killed process. The
recommendation from Oracle’s AQ team to set this parameter’s value to 9 fixed this
behavior.

In fact, according to AQ team in Oracle Streams AQ release 10.1, this has been changed
to a coordinator-slave architecture, where a coordinator is automatically spawned if
Oracle Streams AQ or Streams is being used in the system. This process, named
QMNC, dynamically spawns slaves depending on the system load. The slaves, named
qXXX, do various background tasks for Oracle Streams AQ or Streams. Because the
number of processes is determined automatically and tuned constantly, you no longer
need to set AQ_TM_PROCESSES. However, it was observed on a test environment
that removing this parameter caused the messaging server to create more queues than
it intended. If the value was set to 9 the messaging server behaved as expected and
created the desired number of queues.

If you observe any one of the following:

■ The number of driver queues created by the messaging server for a channel is
more than the number of RAC nodes (and likewise for service queues)

■ It takes several minutes for the messaging server to complete creating queues
(observed using “select * from wireless.trans_queue”, “select * from
wireless.trans_driver_queue” and “select * from wireless.trans_service_queue”).

■ Even after you stop the messaging server, you observe a db process on the Infra
nodes consuming 100% CPU that does not stop even after waiting for several
minutes.

Then, perform the following tasks:

■ Stop all middle tiers.

■ Check the value of the aq_tm_processes parameter:

SQL> show parameter aq_tm_processes;

■ If the value is 0 or 10, then set the value to 9. An example that shows how to
change the value as sysdba:

SQL> alter system set aq_tm_processes=9 scope=memory sid='*';

■ Connect to the database as the wireless user and run:

SQL> execute transport.drop_all_queues;

■ Restart one middle tier – verify that none of the issues listed above are observed.

■ Restart remaining middle tiers.

Note: To permanently change the value, you may have to create a
pfile from the spfile, update the value, and create the spfile using the
updated pfile.

Factors Affecting Messaging Server Performance

Oracle Application Server Wireless Messaging Server Performance Tuning 9-9

9.2.10 RAC Interconnect on RHEL4
This information is extracted from http://metalink.oracle.com Note: 363147.1.

9.2.10.1 Purpose
Upgrading from RHEL3 to RHEL4 could result in poor performance under certain set
of circumstances for the RAC interconnect. This note will detail the steps involved in
identifying the issue and resolve it.

9.2.10.2 Scope and Application
This section applies to the following:

■ Customers who have upgraded from RHEL3 to RHEL4

■ New customers using RHEL4

Global cache lost blocks and IP fragmentation failures causing poor RAC interconnect
performance: After upgrading RAC cluster from Linux from RHEL3 (2.4.21) to RHEL4
(2.6.9), it was observed high rate of global cache blocks lost up to 1.5 per second, gc cr
block lost in the top five wait event, and degraded performance up to 30% drop in
throughput. The amount of gc blocks lost is associated with the amount of packets
reassemble failure. These observations do not depend on Oracle release version. This
could also happen in any system that using RHEL4.

Further analysis showed this was due to a change in Ethernet flow control setting for
Intel e1000 driver between RHEL3 to RHEL4.

Internal and Customer system configuration this issue was observed:

■ Intel Xeon based server both 32bit and 64bit EM64T

■ Intel GigE Ethernet card with e1000 driver

■ Redhat Enterprise Linux 4 upgrade 2 (32bit and 64 bit kernels)

■ Running Oracle RAC database (not version dependent) in a Cluster environment

How to confirm you are running into the same issue:

■ From Oracle awr or statspack report

– 'global cache cr block lost' or 'global cache current block lost' shows up in the
top five waits

– 'global cache block lost' statistic has non zero value and drop rate is greater
than 0.4 blocks per second

■ From OS 'netstat -s ' output IP statistics

– ’packet reassembles failed' is non zero value and its rate is associated with
'global cache block lost'.

9.2.10.3 How to Resolve the Issue
In RHEL4 (2.6.9), RX flow control of the network adapter e1000 is turned off by
default, which is on in RHEL3. Enabling RX flow control of the adapter eliminates lost
blocks and packets reassemble failures.

The following syntax uses eth1 as an example to illustrate setting of flow control.

■ To check flow control setting of eth1: ethtool –a eth1

■ To enable rx flow control setting for eth1: ethtool –A eth1 rx on

Handling RAC Instance Failure

9-10 Oracle Application Server Performance Guide

■ To make flow control persistent after reboot:

edit /etc/modprobe.conf, and add the following in modprobe.conf:

options e1000 FlowControl=1,1

Perform a reboot. The setting will be preserved.

The full syntax: FlowControl value: 0-3 (0=none, 1=Rx only, 2=Tx only, 3=Rx&Tx)
Specify the value for each adapter, separated by comma.

9.2.10.4 Explanation for the Issue
For Intel Xeon servers with e1000 network adaptor, in RHEL3 (2.4), RX (i.e., e1000
responding to frames sent by the switches) flow control of the network adapter is
enabled by default. But after upgrading to RHEL4 (2.6.9), RX flow control is turned off
by default, and causes blocks lost. The reason for this change in this change in
behavior is still under investigation. Note that the default setting for flow control
depends on both the version of the e1000 driver in kernel and the revision of the e1000
card itself. With the availability of Intel GigE NIC's based on different chipsets and
different e1000 drivers complicates the issue. We need to observe the exact set of
problems described above and use solution suggested. This behavior is not pervasive
in either RHEL4 or all Intel GigE NIC's.TX flow control in both Linux 2.4 and 2.6.9 are
disabled (by default). It is not advised enabling TX flow control.

9.3 Handling RAC Instance Failure
This section discusses what the messaging server does when one of the RAC instances
fails (or goes offline).

When the driver queues and service queues are created, the messaging server assigns
a primary node and a secondary node to the queue. By default, the primary node is the
“active” node (the node that the queue currently has affinity with). When the primary
node fails, AQ makes the secondary node active, i.e., assigns affinity to the secondary
node.

The messaging server could/should keep track of such changes, because it needs to
select the appropriate queue for enqueuing and dequeueing when it connects to a
node.

In our current implementation, we have a lightweight dbms job that monitors the
queue affinities at a specified time interval (every two minutes) and automatically
updates the queue to RAC node mappings used by the messaging server.

Thus, in case of a node failure, the messaging server will continue to process messages
from the queues that have changed affinities. When the failed node comes back online,
the mappings are automatically reassigned by the dbms job. The DBA does need not
do anything to handle the failure of a single instance.

In case the RAC instance downtime is planned, and one does not wish to wait for the
dbms job to update the queue to RAC node mappings, the DBA can force this update
using the following steps (after bringing down a RAC node):

1. Sqlplus as wireless/<%wireless_pwd%>@<%db-connect-string%>

2. Run the following SQL command to update the queue to RAC node mappings
maintained by the messaging server:

SQL> execute transport.monitor_queues;

Test Scenario and Result

Oracle Application Server Wireless Messaging Server Performance Tuning 9-11

9.4 RAC Reconfiguration
This section describes the steps required to reconfigure the messaging server when
RAC nodes and mid-tiers are added or removed (permanently).

9.4.1 Adding or Removing RAC Nodes
When you add or remove a RAC node (permanently) then you need to reconfigure the
messaging server so that it can recreate the queues appropriately. Perform the
following steps:

1. Stop opmn on all mid-tier instances.

2. Change to $ORACLE_HOME/wireless/repository/sql directory

3. Perform sqlplus <wireless/<%wireless_pwd%>@<%db_conn_string%>.

4. Drop the existing queues.

execute transport.drop_all_queues;

5. Start opmn on all mid-tier instances.

The queues are auto-created at startup.

9.4.2 Adding or Removing Mid-Tiers
Since load balancing is essential to achieve optimal throughput, it is important that
there be at least as many mid-tier instances as RAC nodes (configured for the
messaging server).

If there are fewer mid-tier instances than RAC nodes, the messaging server will only
make use of the RAC nodes that the mid-tier instances connect to.

On the other hand, if there are more mid-tier instances than RAC nodes, you could
configure the db connect strings of the mid-tier instances as discussed in section 1.4.1.
However, note that if there are too many enqueuers or dequeuers on a given queue
(on a RAC node), the throughput for that queue (and other queues on that RAC node)
can be negatively affected. The optimal number of enqueuers or dequeuers (governed
by Driver Sending Threads, Driver Receiving Threads or Client Sending and Receiving
Threads) depends on the physical hardware characteristics of the RAC nodes, middle
tier machines, disk storage, etc.

9.5 Test Scenario and Result
This section describes the setup for the test scenarios and the result.

9.5.1 Setup Details
This section describes the machine, software, hardware, and RAC setup.

9.5.1.1 Machine Setup Details
Six identical machines were used for performing these tests.

Middle tier was installed in 3 of these machines; Database was on RAC configured
with 3 Nodes. IM was installed on a separate machine.

Test Scenario and Result

9-12 Oracle Application Server Performance Guide

9.5.1.2 Machine Hardware Details
All six machines (3 Middle tiers, 3 RAC nodes) are 2 Intel Xeon CPUs (from OS visible
as 4) 4GB, 3.0 GHz.

9.5.1.3 Software Details
OS: Red Hat Enterprise Linux AS R4 (Nahant Update 3)

Oracle Application server 10.1.2.0.2

9.5.1.4 RAC Setup Details
DB and CRS are 10.2.0.2; ASM 2.0

The database servers are configured in RAC. To allow the DB servers to access the
same database, a network storage unit is required that can be shared between the three
servers. This was resolved using a set of SAN disks (described in Table 9–2), connected
to servers with fibre channel. The SAN provides fast and easy disk access from the
database servers, and it is easily configurable using a web-based client tool.

9.5.2 One-way Test Scenario
One-way test was performed before and after performance improvements in the code
were implemented. The details of the test scenario and result are shown below.

9.5.2.1 Test Scenario
Total number of messages for which the test was run = 100,000 in each Mid Tier

Number of client programs running = 1 in each middle tier machine.

Number of messaging server running = 1 in each middle tier machine.

9.5.2.2 Client Configuration
Number of client threads sending messages from each middle tier = 10

Number of message each client threads send from each middle tier = 10,000.

Delay between two send operation = 0

Table 9–2 SAN Disks

Vendor EMC

Model and version EMC Clarion CX 300

Disks 3* 33GB, Fibre Channel in RAID 0 configuration,
disk0,disk1,disk2 2 * 33GB, Fibre Channel, RAID 1
configuration, disk3

Additional information disk0,disk1 and disk2 were added to DATADG ASM
Diskgroup, and are used to contain database datafiles and
spfile.

They are visible from db01,db02 and db03 as /dev/sdc,
/dev/sdd and /dev/sdedisk3 was divided into 3
partitions, first two are used as raw devices for voting disk
(/dev/sdb1) and cluster repository (/dev/sdb2). Third
one (/dev/sdb3) was added to LOGDG Asm Diskgroup,
and keeps database redo logs.

Test Scenario and Result

Oracle Application Server Wireless Messaging Server Performance Tuning 9-13

9.5.2.3 Driver Configuration
Number of driver sending threads in each middle tier messaging server instance = 8.

9.5.2.4 Test Result
After applying the performance enhancement patch, the one-way throughput results
are illustrated in Figure 9–3.

Figure 9–3 One-Way Throughput Test Results

9.5.2.5 Test Data
Table 9–3 shows two-way test data generated using a dummy driver.

9.5.3 Two-way Test Scenario
Two-way test was run before and after applying the performance enhancements. The
details of the test scenario and the result are below.

Note: he driver used is dummy because it does not connect to any
real SMSC or SMSC Simulator. The actual test results in a real live
scenario may differ slightly.

Table 9–3 One-way Test Detail

Test Detail
Send Throughput
(msg/sec)

Test 1: Result for one way testing (Send) after performance enhancement
(tuning messaging server and database) with one DB node configuration.

185

Test 2: Result for one way testing (Send) after performance enhancement
(tuning messaging server and database) with two DB node configuration.

290

Test 3: Result for one way testing (Send) after performance enhancement
(tuning messaging server and database) with three DB node
configuration.

420

Note: The throughputs reported are steady-state throughputs (since
the system and the test has a ramp-up period).

Test Scenario and Result

9-14 Oracle Application Server Performance Guide

9.5.3.1 Test Scenario
Total number of messages for which the test was run = 20,000 on each mid tier.

Number of client programs running = 1 in each middle tier machine

Number of messaging server running = 1 in each middle tier machine.

Client configuration:

Number of receiving threads set for the client running from each middle tier = 4.

Driver configuration:

Number of driver sending threads in each middle tier messaging server instance = 3.

Number of driver receiving threads in each middle tier messaging server instance = 2.

9.5.3.2 Test Result
The two-way test scenario results are shown below.

Figure 9–4 Two-Way Throughput Test Results

9.5.3.3 Test Data
Table 9–4 shows two-way test data generated using a dummy driver.

Note: The driver used is dummy and does not connect to any real
SMSC or SMSC Simulator. The actual test results in a real live scenario
may differ slightly.

Test Scenario and Result

Oracle Application Server Wireless Messaging Server Performance Tuning 9-15

Table 9–4 Two-way Test Data

Test Detail
Send Throughput
(msg/sec)

Receive
Throughput
(msg/sec)

Test 1: Result for two-way testing (Send and
Receive) after performance enhancements (tuning
messaging server and database) with one DB node
configuration.

86 140

Test 2: Result for two-way testing (Send and
Receive) after performance enhancements (tuning
messaging server and database) with two DB node
configuration.

130 140

Test 3: Result for two-way testing (Send and
Receive) after performance enhancements (tuning
messaging server and database) with three DB node
configuration.

160 160

Note: The throughputs reported are steady-state throughputs (since
the system and the test has a ramp-up period).

Test Scenario and Result

9-16 Oracle Application Server Performance Guide

Monitoring Using Built-in Performance Tools A-1

A
Monitoring Using Built-in Performance Tools

This appendix includes the following sections:

■ Summary of Oracle Application Server Built-in Performance Metrics

■ Viewing Performance Metrics Using AggreSpy with Basic Installation

■ Viewing Performance Metrics Using AggreSpy with Web Server

■ Viewing Performance Metrics Using dmstool

■ Viewing Performance Metrics Using AggreSpy (for Standalone OC4J)

■ Using Built-in Performance Metrics on Windows Systems

Summary of Oracle Application Server Built-in Performance Metrics

A-2 Oracle Application Server Performance Guide

A.1 Summary of Oracle Application Server Built-in Performance Metrics
You can monitor performance using the Application Server Control Console
Performance secondary tab, using the System MBean Browser from the JMX area of
the Administration secondary tab, or by viewing the Oracle Application Server
built-in performance metrics.

This appendix describes how to view the built-in performance metrics using the
Oracle Application Server AggreSpy servlet or using the dmstool command.

Table A–1 summarizes the built-in tools that allow you to view performance metrics.

A.2 Viewing Performance Metrics Using AggreSpy with Basic Installation
The AggreSpy Servlet displays metrics for Oracle Application Server processes,
including: OC4J, Oracle Process Manager and Notification Server, and other Oracle
Application Server component processes.

A.2.1 Using the AggreSpy Display
AggreSpy organizes metrics into two areas: DMS Spies and Metric Tables.

■ DMS Spies show the available metrics by parent process type and parent process
number. By selecting individual DMS Spies, you can view, in text form, all metrics
collected for the associated process.

■ Metric Tables show the available metrics by metric table type and when multiple
OC4Js are running include OC4J metrics from multiple OC4J instances. By
selecting individual metric tables you can view, in table form, all metrics of a
specified type. For example, metric tables allow you to view the metrics associated
with OC4J Servlets and Oracle Process Manager and Notification Server processes.

DMS metric tables are identified by a name, such as oc4j_servlet and opmn_
process. In AggreSpy, the term metric table refers to the built-in performance metric
table names.

You can access performance metrics using AggreSpy from the following URL:

http://host:port/dmsoc4j/AggreSpy

where:

host is the host for the OC4J that provides the HTTP listener, for example,
tv.us.oracle.com.

Table A–1 Oracle Application Server Built-in Monitoring Commands

Command Description

AggreSpy AggreSpy is a pre-packaged servlet that reports performance metrics for an Oracle Application
Server instance. You can only run AggreSpy when the home OC4J instance is running. By
default the OC4J instance named home supports AggreSpy.

Note: in some cases the home instance needs to be started to use AggreSpy.

dmstool Allows you to monitor a specific performance metric, a set of performance metrics, or all
performance metrics. Options allow you to specify a reporting interval to report the requested
metrics. This command also allows you to show a text report listing all the built-in performance
metrics available on the site. The dmstool command is located in the directory $ORACLE_
HOME/bin on UNIX systems and in %ORACLE_HOME%\bin on Windows systems.

See Also: Appendix C, "Performance Metrics"

Viewing Performance Metrics Using AggreSpy with Basic Installation

Monitoring Using Built-in Performance Tools A-3

port is the OC4J provided HTTP listener port, for example 8888.

Figure A–1 shows a sample AggreSpy display. The display shows two frames, one
containing a list of DMS Spies and DMS Metric Tables, and one showing selected
values for the DMS Spies or the Metric Tables.

AggreSpy provides navigation and display options, including:

■ Access DMS Spies and Metric Tables using the links in the left frame.

■ Sort rows in metric tables by clicking on the column headings.

■ Display a table containing the descriptions of a Metric Table metrics by clicking
the Metric Definitions link shown on each metric table.

You need to refresh your browser to display built-in metric data after you start
AggreSpy. When you first use AggreSpy many of the fields, and the complete list of
DMS Spies may not contain all of the current Metric Tables. If you wait a short time,
and then refresh the display, the data is available and AggreSpy shows the complete
list of Metric Tables.

Note: You can only run AggreSpy when the home OC4J instance
is running. By default, the OC4J instance named home supports
AggreSpy.

Note: The OC4J home instance must be running to use AggreSpy.

In the Basic install, the home instance starts up with the command,
opmnctl startall, or by clicking Start using Application Server
Control Console.

Viewing Performance Metrics Using AggreSpy with Web Server

A-4 Oracle Application Server Performance Guide

Figure A–1 AggreSpy Performance Metric Display

A.3 Viewing Performance Metrics Using AggreSpy with Web Server
The AggreSpy Servlet displays metrics for Oracle Application Server processes,
including: Oracle HTTP Server, OC4J, Oracle Process Manager and Notification
Server, and other Oracle Application Server component processes.

This section covers the following topics:

■ Using the AggreSpy Display

■ AggreSpy URL and Access Control with Web Server

■ AggreSpy URL and Access Control with Web Server

■ AggreSpy Limitation When Using Load Balancing With Multiple Instances

Note: This section describes viewing performance metrics using
AggreSpy using Oracle HTTP Server. Depending on the type of
advanced installation that you choose, Oracle HTTP Server is installed
on your system. If Oracle HTTP Server is not installed on your system,
then the commands in this section will not work on your system.

Viewing Performance Metrics Using AggreSpy with Web Server

Monitoring Using Built-in Performance Tools A-5

A.3.1 Using the AggreSpy Display with Web Server
AggreSpy organizes metrics into two areas: DMS Spies and Metric Tables.

■ DMS Spies show the available metrics by parent process type and parent process
number. By selecting individual DMS Spies, you can view, in text form, all metrics
collected for the associated process.

■ Metric Tables show the available metrics by metric table type and when multiple
OC4Js are running include OC4J metrics from multiple OC4J instances. By
selecting individual metric tables you can view, in table form, all metrics of a
specified type. For example, metric tables allow you to view the metrics associated
with OC4J Servlets, Oracle HTTP Server Modules, and Oracle Process Manager
and Notification Server processes.

DMS metric tables are identified by a name, such as ohs_server for the Oracle HTTP
Server metrics. In AggreSpy, the term metric table refers to the built-in performance
metric table names.

You can access performance metrics using AggreSpy from the following URL:

http://host:port/dms0/AggreSpy

where:

host is the Oracle HTTP Server host, for example, tv.us.oracle.com.

port is the Oracle HTTP Server listener port, for example 7777.

Figure A–1 shows a sample AggreSpy display. The display shows two frames, one
containing a list of DMS Spies and DMS Metric Tables, and one showing selected
values for the DMS Spies or the Metric Tables.

AggreSpy provides navigation and display options, including:

■ Access DMS Spies and Metric Tables using the links in the left frame.

■ Sort rows in metric tables by clicking on the column headings.

■ Display a table containing the descriptions of a Metric Table’s metrics by clicking
the Metric Definitions link shown on each metric table.

You need to refresh your browser to display built-in metric data after you start
AggreSpy. When you first use AggreSpy many of the fields, and the complete list of
DMS Spies may not contain all of the current Metric Tables. If you wait a short time,

Note: To view DMS metrics using AggreSpy, you may need to
configure your browser to disable the use of a proxy for the
localhost, if your system is configured to use proxies. By default
Oracle Application Server only allows access for the localhost. See
"AggreSpy URL With a Proxy Server with Web Server" on page A-6
for details.

Note: You can only run AggreSpy when the home OC4J instance
is running. By default, the OC4J instance named home supports
AggreSpy. Using an OracleAS Infrastructure, the home
instance needs to be started to use AggreSpy, since by default the
home instance is installed with OracleAS Infrastructure, but
it is not started.

Viewing Performance Metrics Using AggreSpy with Web Server

A-6 Oracle Application Server Performance Guide

and then refresh the display, the data is available and AggreSpy shows the complete
list of Metric Tables.

Figure A–2 AggreSpy Performance Metric Display

A.3.2 AggreSpy URL With a Proxy Server with Web Server
If your browser is configured to use a proxy server, then to access AggreSpy on the
localhost, you need to configure the browser to disable the use of proxies for the
localhost. The exact steps required to disable the use of a proxy server for the localhost
depends on the browser you use.

Note: The OC4J home instance must be running to use AggreSpy.
When the home instance is down, requests to AggreSpy,
http://<host>:<port>:/dms0/AggreSpy, report an HTTP 500
Internal Server error.

In the J2EE install, the home instance starts up with the command,
opmnctl startall, or by clicking Start using Application Server
Control Console.

Viewing Performance Metrics Using AggreSpy with Web Server

Monitoring Using Built-in Performance Tools A-7

A.3.3 AggreSpy URL and Access Control with Web Server
By default, the dms0/AggreSpy URL is redirected and the redirect location is
protected, allowing only the localhost (127.0.0.1) to access the AggreSpy Servlet.

To view metrics from a system other than the localhost you need to change the DMS
configuration for the system that is running the Oracle Application Server that you
want to monitor by modifying the file
$ORACLE_HOME/Apache/Apache/conf/dms.conf on UNIX, or
%ORACLE_HOME%\Apache\Apache\conf\dms.conf on Windows systems.

Example A–1 shows a sample default configuration from dms.conf. This
configuration limits AggreSpy to access metrics on the localhost (127.0.0.1). The port
shown, 7200, may differ on your installation.

Example A–1 Sample dms.conf File for localhost Access for DMS Metrics

proxy to DMS AggreSpy
Redirect /dms0/AggreSpy http://localhost:7200/dmsoc4j/AggreSpy
#DMS VirtualHost for access and logging control
Listen 127.0.0.1:7200
OpmnHostPort http://127.0.0.1:7200
<VirtualHost 127.0.0.1:7200>
 ServerName 127.0.0.1

By changing the dms.conf configuration to specify the host that provides, or serves
DMS metrics, you can allow users on systems other than the localhost to access the
DMS metrics from the location http://host:port/dms0/AggreSpy.

To view metrics from a system other than the localhost (127.0.0.1), do the following:

1. Modify dms.conf by changing the entries with the value for localhost "127.0.0.1"
shown in Example A–1 to the name of the server providing the metrics (obtain the
server name from the ServerName directive in the httpd.conf file, for example
tv.us.oracle.com).

2. Example A–2 shows a sample updated dms.conf that allows access from a
system other than the localhost (127.0.0.1).

Example A–2 Sample dms.conf File for Remote Host Access for DMS Metrics

proxy to DMS AggreSpy
Redirect /dms0/AggreSpy http://tv.us.oracle.com:7200/dmsoc4j/AggreSpy
#DMS VirtualHost for access and logging control
Listen tv.us.oracle.com:7200
OpmnHostPort http://tv.us.oracle.com:7200
<VirtualHost tv.us.oracle.com:7200>
ServerName tv.us.oracle.com

3. Restart, or stop and start the Oracle HTTP Server using Application Server Control
Console or using the opmnctl command. For example,

%opmnctl restartproc process-type=HTTP_Server

Caution: Modifying dms.conf has security implications. Only
modify this file if you understand the security implications for your
site. By exposing metrics to systems other than the localhost, you
allow other sites to potentially view critical Oracle Application
Server internal status and runtime information.

Viewing Performance Metrics Using dmstool

A-8 Oracle Application Server Performance Guide

or

%opmnctl stopproc process-type=HTTP_Server
%opmnctl startproc process-type=HTTP_Server

A.3.4 AggreSpy Limitation When Using Load Balancing With Multiple Instances
AggreSpy does not work as expected when using Oracle Application Server with
multiple instances. When the Oracle HTTP Server mod_oc4j component load
balances OC4J requests across multiple instances, AggreSpy may report results for
systems that are not the localhost (127.0.0.1).

A.4 Viewing Performance Metrics Using dmstool
The dmstool command allows you to view a specific performance metric, a set of
performance metrics, or all performance metrics for an Oracle Application Server
instance. The dmstool command also supports an option that allows you to set a
reporting interval, specified in seconds, to report updated metrics every t seconds.

For example, you can monitor the performance of a specific servlet, JSP, EJB, EJB
method, or database connection and you can request periodic snapshots of metrics
specific to these components.

The format for using dmstool to display built-in performance metrics is:

% dmstool [options] metric metric ...

or

% dmstool [options] –list

or

% dmstool [options] –dump

Table A–2 lists the dmstool command-line options. Following Table A–2 this
section presents examples that show sample usage with specific performance metrics.
The dmstool command is located in the $ORACLE_HOME/bin directory on UNIX or
in %ORACLE_HOME%\bin directory on Windows.

See Also: Oracle Application Server Security Guide for information
on Oracle HTTP Server access control

Note: In this case it is recommended that you use dmstool
instead of AggreSpy.

Note: You can use dmstool in scripts or in combination with
other monitoring tools to gather performance data, to check
application performance, or to build tools that modify your system
based on the values of performance metrics.

Viewing Performance Metrics Using dmstool

Monitoring Using Built-in Performance Tools A-9

A.4.1 Access Control for dmstool
By default, dmstool shows metrics only when it is run from the localhost (127.0.0.1).
If you want to view metrics from an Oracle Application Server running on a remote
host, then you need to use dmstool with the -a option, on the local host, and update
the dms.conf file of the remote Oracle Application Server instance in the $ORACLE_
HOME/Apache/Apache/conf/ directory on UNIX or %ORACLE_
HOME%\Apache\Apache\conf\ directory on Windows.

The configuration changes required to control the access to metrics using dmstool are
the same as those for accessing dms0/AggreSpy.

See Also:

"Using dmstool to List the Names of All Metrics" on page A-11

Appendix C, "Performance Metrics" for a list and description of the
DMS metrics

See Also: "AggreSpy URL and Access Control with Web Server"
on page A-6

Viewing Performance Metrics Using dmstool

A-10 Oracle Application Server Performance Guide

Table A–2 dmstool Command-line Options

Option Description

-a[ddress] opmn://
host[:port]

By default, without the -a option, dmstool gets metrics from the Oracle
Application Server instance with the same $ORACLE_HOME as dmstool.
When dmstool runs in the same $ORACLE_HOME as the Oracle Process
Manager and Notification Server, OPMN, the -a option is not required.

You can specify –a with the opmn:// prefix and the arguments shown to
monitor the Oracle Application Server processes under OPMN control that
produce DMS metrics (some OPMN controlled processes, for example Oracle
Web Cache, do not expose DMS metrics).

Where:

host is the domain name or IP address of the host on which the OPMN process
is running.

port specifies the OPMN request port that supplies metrics. The request port is
specified in $ORACLE_HOME/opmn/conf/opmn.xml.

For example, the following shows the specification in opmn.xml for a request
port (request="6003"):

<notification-server>
<port local="6100" remote="6200" request="6003"/>
.
.
</notification-server>

Note, if you use dmstool -a to request metrics from a remote system, the system
must be configured to provide metrics (by default you can access DMS metrics
on the localhost).

See Also: "AggreSpy URL and Access Control with Web Server" on page A-7

-c[ount] num Specifies the number of times to retrieve values when monitoring metrics. If not
specified, dmstool continues retrieving metric values until the process is
stopped.

The –count option is not used with the –list option.

-dump [format=xml] Using dmstool with the -dump option reports all the available metrics on the
standard output. Oracle recommends that you run with the -dump option
periodically, such as every 15 to 20 minutes, to capture and save a record of
performance data for your Oracle Application Server server.

The -dump option also supports the format=xml query. Using this query at
the end of the command line supplies the metric output in XML format.

-help List the dmstool command-line options.

-i[nterval] secs Specifies the number of seconds to wait between metric retrievals. The default
is 5 seconds. The interval argument is not used with the –list option. The
interval specified is approximate.

Note: if the system load is high, the actual interval may vary from the interval
specified using the –interval option.

Viewing Performance Metrics Using dmstool

Monitoring Using Built-in Performance Tools A-11

A.4.2 Using dmstool to List the Names of All Metrics
Every Oracle Application Server performance metric has a unique name. Using
dmstool with the –list option produces a list of all metric names. The –list output
contains the metric names that you can use with dmstool to request monitoring
information for a specific metric or set of metrics.

Using the following command, dmstool displays a list of all metrics available on the
server:

% dmstool –list

This command displays a list of the available metrics.

A.4.3 Using dmstool to Report Values for Specific Performance Metrics
To monitor a specific metric or set of metrics, use dmstool and include the metric
name on the command-line. For example, to monitor the time the JVM has been
running, perform the following steps:

1. Use dmstool with the -list option to find the name of the metric that shows the
JVM uptime:

% dmstool -list | grep JVM/upTime.value
/system1/OC4J:12502:6100/JVM/upTime.value

2. Use dmstool and supply the full metric name as an argument to show the metric
value:

% dmstool /system1/OC4J:12502:6100/JVM/upTime.value
 Wed Dec 21 15:37:08 PST 2005
/system1/OC4J:12502:6100/JVM/upTime.value 159312 msecs

-l[ist] [-table] Generates a list of all metrics available. Use the -list option with the -table
option to display a list of all the metric table names.

Note, including metric names on the command-line is not valid when using the
–list option with dmstool.

-reset [-table metric_
table]

Resets the specified metrics or with the -table option, all of the metrics
contained in the specified metric table.

Event and phaseEvent metrics are reset to 0 (as if they were never updated).
State metrics are reset to the current value (as if they started with the current
value).

Note: The reset option may reset information that Application Server Control
Console uses to compute and report values.

-table metric_table Includes all the performance metrics for the specified metric table with the
name, metric_table.

See Appendix C, "Performance Metrics" or run AggreSpy for a list of metric
table names.

See Also: Appendix C, "Performance Metrics"

Table A–2 (Cont.) dmstool Command-line Options

Option Description

Viewing Performance Metrics Using dmstool

A-12 Oracle Application Server Performance Guide

Using dmstool, the default repeat interval is 5 seconds, so this command shows the
updated metric every 5 seconds. Use the -count option to limit the number of times
dmstool reports values.

For example:

% dmstool /system1/OC4J:12502:6100/JVM/upTime.value -count 2
Wed Dec 21 15:39:38 PST 2005
/system1/OC4J:12502:6100/JVM/upTime.value 310031 msecs
Wed Dec 21 15:39:43 PST 2005
/system1/OC4J:12502:6100/JVM/upTime.value 314516 msecs

A.4.4 Using dmstool With the Interval and Count Options
To monitor the requests completed for an application over an interval of one minute,
use the following dmstool command, supplying metric names on the command-line:

% dmstool -i 60 -c 120 \
/system1/OC4J:3301:6003/oc4j/default/WEBs/processRequest.completed

This command reports 120 sets of output for the metric listed on the command line,
while collecting data at intervals of 60 seconds:

Tue Oct 12 14:43:43 PDT 2004
/system1/OC4J:3301:6003/oc4j/default/WEBs/processRequest.completed 8576 ops

Tue Oct 12 14:44:43 PDT 2004
/system1/OC4J:3301:6003/oc4j/default/WEBs/processRequest.completed 8581 ops

Tue Oct 12 14:45:43 PDT 2004
/system1/OC4J:3301:6003/oc4j/default/WEBs/processRequest.completed 8588 ops
.
.
.

A.4.5 Using dmstool to Report All Metrics with Metric Values
Using dmstool with the -dump option displays all the metrics from an Oracle
Application Server instance to the standard output.

The following command displays all available metrics:

% dmstool –dump

Oracle recommends that you run dmstool with the -dump option periodically, such
as every 15 to 20 minutes, to capture and save a record of performance data. If you
save performance data over time, this data can assist you if you need to analyze
system behavior to improve performance or when problems occur.

A.4.6 Using dmstool to Report All Metrics with Metric Values in XML Format
When you need to process metric data, use the format=xml query on the dmstool
command line to report all metric values in XML format.

Note: In some cases, the full path of a metric name may contain a
space. If the path contains a space, the space must be quoted on the
dmstool command line, so that the shell sends the metric name to
dmstool as a single argument.

Viewing Performance Metrics Using AggreSpy (for Standalone OC4J)

Monitoring Using Built-in Performance Tools A-13

The following command displays all available metrics using XML format:

% dmstool –dump format=xml

A.4.7 Using dmstool to Reset Metric Values
When you want to reset metric values, use the reset option on the dmstool
command line to reset values for a set of metrics, or for all metrics in a specified metric
table.

Using the reset option, Event and phaseEvent metrics are reset to 0, as if they were
never updated, and State metrics are reset to the current value (as if they started with
the current value).

The following command resets the specified metric:

% dmstool –reset /system1/OC4J:3000:6004/JVM/upTime.value

The following command resets the specified metric table:

% dmstool –reset /system1/OC4J:3000:6004/JVM/upTime.value

A.4.8 Using dmstool to View Metrics on a Remote Oracle Application Server System
Using dmstool with the -a option reports the metrics from a remote Oracle
Application Server instance.

The following command displays all available metrics and metric values on the Oracle
Application Server Instance, as specified with the –a option:

% dmstool –a opmn://system1:6003 -list

Using the dmstool -a option, supply an argument with the prefix opmn:// and
include the host name where you want to obtain metrics, and the OPMN request port
number. The port specifies the OPMN request port that supplies metrics for Oracle
Application Server which is specified the request attribute under the
<notification-server> element in $ORACLE_HOME/opmn/conf/opmn.xml on
UNIX and %ORACLE_HOME%\opmn\conf\opmn.xml on Windows.

A.5 Viewing Performance Metrics Using AggreSpy (for Standalone OC4J)
When you are using OC4J in standalone mode, without the Oracle Application Server,
the AggreSpy Servlet allows you to access OC4J metrics.

Note: The reset option may reset information that Application
Server Control Console uses to compute and report values.

Note: By default the Oracle Application Server only allows
dmstool to access metrics from the localhost. You need to modify
dms.conf to support access from systems other than the localhost.
See "AggreSpy URL and Access Control with Web Server" on
page A-7 for information on DMS access control.

See Also: "AggreSpy URL and Access Control with Web Server"
on page A-7

Using Built-in Performance Metrics on Windows Systems

A-14 Oracle Application Server Performance Guide

When running OC4J standalone, access performance metrics using AggreSpy from
the following URL:

http://myhost:myport/dms0/AggreSpy

Table A–3 covers the dmstool option that only applies to OC4J standalone mode. In
addition, the options shown in Table A–2 also apply to dmstool (except the -a option
with the opmn:// prefix.

A.6 Using Built-in Performance Metrics on Windows Systems
Using Oracle Application Server on Windows systems, statistics collection needs to be
enabled to view certain DMS metrics. If some DMS metrics report the value "0" for
values that you expect to be other than 0, then statistics collection may be disabled on
your system. To enable statistics collection on Windows systems where statistics
collection is disabled, set the value of the following registry entry to 0.

HKEY_LOCAL MACHINE\SYSTEM\CurrentControlSet\Services\PerfProc\Performance\Disable
Performance Counters

Note: You can only run AggreSpy when OC4J is configured to
support it, and OC4J is running. By default, OC4J supports
AggreSpy.

Table A–3 dmstool Command-line Options (for Standalone OC4J only)

Option Description

-a[ddress]
host[:port][path],...

For a standalone OC4J system, use the -a option. This specifies the http://
protocol, where:

host is the domain name or IP address of the host on which the Oracle HTTP
Server is running and port specifies the associated port.

Note: Incorrectly editing the registry may severely damage your
system. At the very least, you should back up any valued data on the
computer before making changes to the registry.

Instrumenting Applications With DMS B-1

B
Instrumenting Applications With DMS

The Oracle Dynamic Monitoring Service (DMS) enables application developers,
support analysts, system administrators, and others to measure application specific
performance information. This chapter describes DMS and shows a sample application
that demonstrates how to instrument Oracle Application Server Java applications
using DMS.

This chapter includes the following sections:

■ Introducing DMS Performance Metrics

■ Adding DMS Instrumentation To Java Applications

■ Validating and Testing Applications Using DMS Metrics

■ Understanding DMS Security Considerations

■ Conditional Instrumentation Using DMS Sensor Weight

■ Dumping DMS Metrics To Files

■ Resetting and Destroying Sensors

■ DMS Coding Recommendations

■ Using A High Resolution Clock To Increase DMS Precision

■ Rolling Up DMS Data for Descendent Nouns

Note: Oracle Application Server provides a number of built-in
metrics. Using DMS to instrument applications adds new metrics to
the set of built-in metrics.

See Also: Appendix C, "Performance Metrics"

Introducing DMS Performance Metrics

B-2 Oracle Application Server Performance Guide

B.1 Introducing DMS Performance Metrics
The Dynamic Monitoring Service (DMS) API allows you to add performance
instrumentation to Oracle Application Server applications. At runtime OC4J collects
performance information, called DMS metrics, that developers, system administrators,
and support analysts use to help analyze system performance or monitor system
status.

This section includes the following:

■ Instrumenting Applications With DMS Metrics

■ Monitoring DMS Metrics

■ Understanding DMS Terminology (Nouns and Sensors)

■ DMS Naming Conventions

B.1.1 Instrumenting Applications With DMS Metrics
DMS Instrumentation refers to the process you use when you insert DMS calls into
application code. By using the DMS API you can enable your application to measure,
collect, and save performance information.

To create DMS metrics you add DMS API calls that notify DMS when events occur,
when important intervals begin and end, or when pre-computed values change their
state. At runtime, DMS stores metrics in memory and allows you to save or view the
metrics.

Oracle Application Server includes built-in DMS metrics. By adding DMS calls to your
applications you can expand the set of built-in metrics. When you instrument your
applications with DMS calls, you use the same API that the built-in metrics use. In
addition, to save and display your metrics, you use the same monitoring tools that you
use with built-in metrics.

B.1.2 Monitoring DMS Metrics
Monitoring DMS metrics refers to the process of retrieving performance metrics. When
an application runs, DMS stores metrics in memory and allows you to show metrics on
the console or to view metrics using a web browser.

Oracle Application Server provides several runtime tools for viewing and saving DMS
metrics, including dmstool and the AggreSpy Servlet.

Example B–1 shows a set of metrics output using dmstool.

Example B–1 Set of Sample dmsDemo Metrics Using dmstool

 /dmsDemo [type=n/a]
 /dmsDemo/BasicBinomial [type=MathSeries]
 computeSeries.active: 0 threads
 computeSeries.avg: 21.181818181818183 msecs
 computeSeries.completed: 11 ops
 computeSeries.maxActive: 1 threads

Note: Oracle Application Server components, including OC4J,
provide a number of predefined metrics. For a listing of the
predefined metrics see Appendix C, "Performance Metrics".

Tip: "Adding DMS Instrumentation To Java Applications" on
page B-8

Introducing DMS Performance Metrics

Instrumenting Applications With DMS B-3

 computeSeries.maxTime: 93 msecs
 computeSeries.minTime: 0 msecs
 computeSeries.time: 233 msecs
 lastComputed.value: 184756
 loops.count: 604 ops

B.1.3 Understanding DMS Terminology (Nouns and Sensors)
This section introduces the terminology you need to understand to use DMS.
Figure B–1 illustrates the organization of a set of DMS metrics corresponding to the
metrics in the demo application described in this chapter and the metrics shown in
Example B–1.

This section covers the following topics:

■ DMS Metrics

■ DMS Sensors

■ DMS Nouns

■ DMS Rollup Nouns

■ DMS Object Relationships

Figure B–1 Organization of Sample Metrics From dmsDemo Application

See Also: Appendix A, "Monitoring Using Built-in Performance
Tools"

Sensor:
computeSeries

Noun:
BasicBinomial

Noun: dmsDemo

Sensor:
loops

Sensor:
lastComputed

Noun Type:
Parent: /

Sensor Type: PhaseEvent
Description: Time to
 Compute a Binomial
 Series

Sensor Type: Event
Description: Iterations
to compute series

Sensor Type: State
Description: Value of
 last computed series
 element

computeSeries.active
computeSeries.avg
computeSeries.completed
computeSeries.maxActive
computeSeries.maxTime
computeSeries.minTime
computeSeries.time

loops.countlastComputed.value

Metrics MetricsMetrics

Noun Type: MathSeries
Parent: /dmsDemo

Introducing DMS Performance Metrics

B-4 Oracle Application Server Performance Guide

B.1.3.1 DMS Metrics
DMS Metrics track performance information that developers, system administrators,
and support analysts use to help analyze system performance or monitor system
status.

B.1.3.2 DMS Sensors
DMS Sensors measure performance data and allow DMS to define and collect a set of
metrics. Certain metrics are always included with a Sensor and other metrics are
optionally included with a Sensor.

B.1.3.2.1 DMS PhaseEvent Sensors A DMS PhaseEvent Sensor measures the time spent
in a specific section of code that has a beginning and an end. Use a PhaseEvent Sensor
to track time in a method or in a block of code.

DMS can calculate optional metrics associated with a PhaseEvent, including: the
average, maximum, and minimum time that is spent in the PhaseEvent Sensor.

Table B–1 describes metrics available with a PhaseEvent Sensor.

B.1.3.2.2 DMS Event Sensors A DMS Event Sensor is a Sensor that counts system
events. Use a DMS Event Sensor to track system events that have a short duration, or
where the duration of the event is not of interest but the occurrence of the event is of
interest.

Table B–2 describes the metric that is associated with an Event Sensor.

Table B–1 DMS PhaseEvent Sensor Metrics

Metric Description

sensor_name.time Specifies the total time spent in the phase sensor_name.

Default metric: time is a default PhaseEvent Sensor metric.

sensor_name.completed Specifies the number of times the phase sensor_name, has
completed since the process was started.

Optional metric

sensor_name.minTime Specifies the minimum time spent in the phase sensor_name,
for all the times the phase completed.

Optional metric

sensor_name.maxTime Specifies the maximum time spent in the phase sensor_name,
over all the times the sensor_name phase completed.

Optional metric

sensor_name.avg Specifies the average time spent in the phase sensor_name,
computed as the (time total)/(number of times the phase
completed).

Optional metric

sensor_name.active Specifies the number of threads in the phase sensor_name, at
the time the DMS statistics are gathered (the value may change
over time).

Optional metric

sensor_name.maxActive Specifies the maximum number of concurrent threads in the
phase sensor_name, since the process started.

Optional metric

Introducing DMS Performance Metrics

Instrumenting Applications With DMS B-5

B.1.3.2.3 DMS State Sensors A DMS State Sensor is a Sensor to which you assign a
precomputed value. State Sensors track the value of Java primitives or the content of a
Java Object. The supported types include integer, double, long, and object. Use a State
Sensor when you want to track system status information or when you need a
performance metric that is not associated with an event. For example, use State
Sensors to represent queue lengths, pool sizes, buffer sizes, or host names.

Table B–3 describes the State Sensor metrics. State Sensors support a default metric
value, as well as optional metrics. The optional minValue and maxValue metrics
only apply for State Sensors if the State Sensor represents a numeric Java primitive (of
type integer, double, or long).

B.1.3.3 DMS Nouns
DMS Nouns (Nouns) organize performance data. Each Sensor, with its associated
metrics is organized in a hierarchy according to Nouns. Nouns allow you to organize
DMS metrics in a manner comparable to a directory structure in a file system. For
example, Nouns can represent classes, methods, objects, queues, connections,
applications, databases, or other objects that you want to measure.

A Noun type is a name that reflects the set of metrics being collected. For example, in
the built-in metrics the Noun type oc4j_servlet represents the metrics collected for
each servlet in each Web module within each J2EE application. And the Noun type
JVM represents the set of metrics for each Java process (OC4J) currently running in the
site.

The Noun naming scheme uses a '/' as the root of the hierarchy, with each Noun acting
as a container under the root, or under its parent Noun.

Table B–2 DMS Event Sensor Metrics

Metric Description

sensor_name.count Specifies the number of times the event has occurred since the
process started, where sensor_name is the name of the Event
Sensor as specified in the DMS instrumentation API.

Default: count is the default metric for an Event Sensor. No other
metrics are available for an Event Sensor.

Table B–3 DMS State Sensor Metrics

Metric Description

sensor_name.value Specifies the metric value for sensor_name, using the type
assigned when sensor_name is created.

Default: value is the default State metric.

sensor_name.count Specifies the number of times sensor_name is updated.

Optional metric

sensor_name.minValue Specifies the minimum value for sensor_name since startup.

Optional metric

sensor_name.maxValue Specifies the maximum value this sensor_name since startup.

Optional metric

Note: In Appendix C, "Performance Metrics", the Noun type is
called the metric table name.

Introducing DMS Performance Metrics

B-6 Oracle Application Server Performance Guide

B.1.3.4 DMS Rollup Nouns
DMS Rollup Nouns are nouns that DMS generates when you include instrumentation
to request a set of aggregate nouns. The rollup noun contains metrics from a set of
Sensors in the descendent nouns of a spcified noun type. A rollup noun also contains
summary information.

B.1.3.5 DMS Object Relationships
This section describes the object relationships and attributes for DMS metrics, Sensors,
and Nouns.

Table B–4 describes the relationships between DMS objects. Figure B–1 illustrates the
relationships shown in Table B–4 using a sample set of metrics.

B.1.4 DMS Naming Conventions
Certain guidelines apply for defining DMS names. By following these guidelines,
people viewing DMS metric reports can easily understand metrics across applications
and across Oracle Application Server components.

This section covers the following topics:

■ General DMS Naming

■ General DMS Naming Conventions and Character Sets

■ Noun and Noun Type Naming Conventions

■ Sensor Naming Conventions

B.1.4.1 General DMS Naming
DMS metric names consist of a Sensor name plus the "." character plus the metric. For
example, the names: computeSeries.time, loops.count, and
lastComputed.value are valid DMS metric names.

A Sensor name is a simple string, not including the "." or the derivation. For example
computeSeries, loops, and lastComputed are Sensor names. A Sensor full name
consists of the Sensor name, preceded by the name of its associated Noun, and a
delimiter. For example, /dmsDemo/BasicBinomial/computeSeries,

See Also: Appendix C, "Performance Metrics"

See Also: "Rolling Up DMS Data for Descendent Nouns" on
page B-21

Table B–4 DMS Object Relationships and Attributes

Object Contains Attributes

Noun Sensors or other Nouns Name, Noun Type, Parent

Sensor Metrics Name, Description, Sensor Type, Parent

There are three Sensor Types: PhaseEvent, Event, and State.

Metric Value Name, Units designation

Note: View the naming conventions as guidelines; for each
convention there may be an exception. Try to be as clear as possible,
if there is a conflict, you may need to make an exception.

Introducing DMS Performance Metrics

Instrumenting Applications With DMS B-7

/dmsDemo/BasicBinomial/loops, and
/dmsDemo/BasicBinomial/lastComputed.

A Noun name is a simple string, not including a delimiter. For example
BasicBinomial is a Noun name. A Noun full name consists of the Noun name,
preceded by the full name of its parent, and a delimiter. For example
/dmsDemo/BasicBinomial is a full Noun name.

B.1.4.2 General DMS Naming Conventions and Character Sets
DMS names should be as compact as possible. Whenever possible, when you define
Noun and Sensor names, avoid special characters such as white space, slashes,
periods, parenthesis, commas, and control characters.

Table B–5 shows DMS replacement for special characters in names.

B.1.4.3 Noun and Noun Type Naming Conventions
A Noun name should be a name which identifies a specific entity of interest.

Noun types should have names which clearly reflect the set of metrics being collected.
For example, Servlet is the type for a Noun under which the metrics that are specific to
a given servlet fall.

Noun type names should start with a capitol letter to distinguish them from other
DMS names. All Nouns of a given type should contain the same set of sensors.

B.1.4.4 Sensor Naming Conventions
The following list outlines DMS Sensor naming conventions.

1. Sensor names should be descriptive, but not redundant. Sensor names should not
contain any part of the Noun name hierarchy, or type, as this is redundant.

2. Sensor names should avoid containing the specification of the units for the
individual metrics.

Table B–5 DMS Naming Special Character Replacement

Character DMS Replacement Character

Space " " or Period "." Underscore "_"

Control Character Underscore "_"

"<" "("

 ">" ")"

"&" "^"

"" (double quote) "‘" (backquote) That is, a backquote
replaces a double quote.

’’ (single quote) " (backquote). That is, a backquote
replaces a single quote.

Note: Oracle Application Server includes a number of built-in
metrics. The Oracle Application Server built-in metrics do not
always follow the DMS naming conventions.

Adding DMS Instrumentation To Java Applications

B-8 Oracle Application Server Performance Guide

3. Where multiple words are required to describe a Sensor, the first word should start
with a lowercase letter, and the following words should start with uppercase
letters. For example computeSeries.

4. In general, using a "/" in a Sensor name should be avoided. However, there are
cases where it makes sense to use a name that contains "/" . If a "/" is used in a
Noun or Sensor name, then when you use the Sensor in a string with DMS
methods, you need to use an alternative delimiter, such as "," or "_", which does
not appear anywhere in the path; this allows the "/" to be properly understood as
part of the Noun or Sensor name rather than as a delimiter.

For example, a child Noun can have a name such as:

examples/jsp/num/numguess.jsp

and you can look this up using the string:

,oc4j,default,WEBs,defaultWebApp,JSPs,example/jsp/num/numguess.jsp,service

Where the delimiter is the "," character.

5. Event Sensor and PhaseEvent Sensor names should have the form verbNoun where
verb and Noun are interpreted as defined by English grammar. For example,
activateInstance and runMethod. When a PhaseEvent monitors a function,
method, or code block, it should be named to reflect the task performed as clearly
as possible.

6. The name of a State Sensor should be a Noun, possibly preceded by an adjective,
which describes the semantics of the value which is tracked with this State. For
example, lastComputed, totalMemory, port, availableThreads,
activeInstances.

7. To avoid confusion, do not name Sensors with strings such as: ".time", ".value", or
".avg", that are the same as the default metrics or optional derivations for a Sensor,
as shown in Table B–1, Table B–2, and Table B–3.

B.2 Adding DMS Instrumentation To Java Applications
You can collect performance information in Java applications by adding DMS
instrumentation to existing applications or by creating new applications that include
DMS instrumentation.

The DMS samples shown in this chapter are supplied on the Oracle Technology
Network Web site

http://www.oracle.com/technology/tech/java/oc4j/demos/index.html

The DMS demo.zip file includes a ready to deploy .ear file and source code with
build instructions. The demo includes two servlets, BasicBinomial.java and
ImprovedBinomial.java.

The BasicBinomial servlet shows how to use the DMS API to add DMS Sensors.

The ImprovedBinomial servlet expands on the BasicBinomial and illustrates
measuring the improved code, as compared with the BasicBinomial.
ImprovedBinomial servlet also shows how to add more costly metrics that gather
more detailed information.

Refer to the sample code for full details on the examples in this chapter.

To use DMS instrumentation, add DMS calls by performing the following steps:

■ Including DMS Imports

Adding DMS Instrumentation To Java Applications

Instrumenting Applications With DMS B-9

■ Organizing Performance Data

■ Defining and Using Metrics for Timing

■ Defining and Using Metrics for Counting

■ Defining and Using Metrics for Recording Status Information (State Sensors)

B.2.1 Including DMS Imports
To use DMS you need to add DMS imports. The following example shows the imports
that the sample application BasicBinomial.java requires.

import oracle.dms.instrument.DMSConsole;
import oracle.dms.instrument.Event;
import oracle.dms.instrument.Noun;
import oracle.dms.instrument.PhaseEvent;
import oracle.dms.instrument.State;
import oracle.dms.instrument.Sensor;

B.2.2 Organizing Performance Data
Define DMS Nouns to organize Sensors and their associated metrics. DMS Nouns
organize Sensors in a tree hierarchy in a manner comparable to a directory structure in
a file system, starting with a root at the top of the tree.

Example B–2 shows a section of code using Noun.create() from the
BasicBinomial.java.

In Example B–2, MathSeries specifies the Noun type. The Noun type is a name that
reflects the set of metrics being collected. For example, MathSeries represents the
metrics collected for the sample application containing a Binomial series computation.
AggreSpy displays Sensors using the same Noun type together.

It is good practice to only use Noun types for Nouns that directly contain Sensors.
When a Noun contains only Nouns, as in the Noun dmsDemo, and does not directly
contain Sensors, AggreSpy displays the Noun type as a metric table, with no metrics.
Example B–2 shows the dmsDemo Noun that includes a Noun, BasicBinomial, but
no Sensors. When the Noun type is not included for such a Noun, AggreSpy does not
display a metric table associated with the Noun.

Example B–2 Using Noun.create To Organize Sensors

private Noun binRoot; // Container for Binomial series DMS metrics.
Noun base = Noun.create("/dmsDemo");
binRoot = Noun.create(base, "BasicBinomial", "MathSeries");

B.2.2.1 Choosing Noun Types
In general, nouns should not be of the same noun type as any of their ancestor or
descendent nouns. Usually, this is easy to code, and provides a logical hierarchy for
nouns of the same type at the same level. For example, in the dmsDemo application,
there is a second servlet, ImprovedBinomial, and there is the BasicBinomial
servlet. In this case, the instrumentation uses the noun of type MathSeries for both.

Note: Start Noun type names with a capital letter to distinguish
them from other DMS names.

See Also: "DMS Naming Conventions" on page B-6

Adding DMS Instrumentation To Java Applications

B-10 Oracle Application Server Performance Guide

This noun is created under /dmsDemo in the same hierarchy level for both servlets.
Adhering to this practice makes the generated metric tables easier to understand. It
also prevents some minimal information loss in the reporting process.

B.2.3 Defining and Using Metrics for Timing
To create metrics that measure the duration of a segment of code, define and use a
PhaseEvent Sensor using the following steps:

■ Defining PhaseEvent Sensors

■ Using PhaseEvent Sensors

B.2.3.1 Defining PhaseEvent Sensors
Example B–3 shows the DMS calls that declare and create the computeSeries
PhaseEvent Sensor. This code defines a DMS metric named
/dmsDemo/BasicBinomial/computeSeries.time.

PhaseEvent Sensors support a set of optional metrics, along with the default metric
.time (representing the time, as measured between the PhaseEvent start() and
the PhaseEvent stop() calls). You can derive optional metrics with PhaseEvent
Sensors individually or as a complete set. Table B–1 shows the available metrics for a
PhaseEvent Sensor. The binComp.deriveMetric(Sensor.all) call in
Example B–3 causes all the supported optional metrics to be computed and reported.

Example B–3 Defining PhaseEvent Sensors

private PhaseEvent binComp; // Time to compute Binomial series.
.
.
.
binComp = PhaseEvent.create(binRoot, "computeSeries",
 "Time to compute a Binomial series");
binComp.deriveMetric(Sensor.all);

B.2.3.2 Using PhaseEvent Sensors
To use a PhaseEvent Sensor, an application calls the start() method to indicate the
beginning of a phase and subsequently calls the stop() method to indicate the
completion of the phase.

Example B–4 shows a code segment from BasicBinomial.java that uses the
start() and stop() methods for the
/dmsDemo/BasicBinomial/computeSeries.time metric. The long value
named token that is returned from the PhaseEvent start() method must be passed
to the corresponding PhaseEvent stop() method. This value is a timestamp
representing the start time. Passing this value to the stop() method allows DMS to
compute the PhaseEvent duration.

Note: Using the method deriveMetric(Sensor.all) is
recommended for adding optional metrics. Using this method with
Sensor.all adds all metrics; this is good practice since the list of
optional metrics could change in a future Oracle Application Server
release. In addition, the metrics are efficient to compute and are
often useful in evaluating performance.

Adding DMS Instrumentation To Java Applications

Instrumenting Applications With DMS B-11

Example B–4 Using start() and stop() With PhaseEvent Sensors

long token = 0; // DMS
try {
 token = binComp.start(); // DMS
 BigInteger bins[] = bin(length);
 out.println("<H2>Binomial series for " + length + "</H2>");
 for (int i = 0; i < length; i++)
 out.println("
" + bins[i]);
 }
 finally {
 binComp.stop(token); // DMS
 out.close();
 }

Example B–4 shows code instrumented such that each time a phase starts, it is stopped
(since the stop method is placed in the finally clause). This prevents runaway Phase
Sensors; however, this can result in the time required to throw an exception possibly
contributing to phase statistics. To prevent exception handling from impacting a
PhaseEvent, use the abort() method, as shown in Example B–5.

Example B–5 shows a code sample where a Phase that is not successfully stopped will
be aborted. The abort call removes the statistics corresponding to the corresponding
start, and these statistics do not contribute to metric calculations.

Example B–5 Using abort() with PhaseEvent Sensors

PhaseEvent pe = heavyPhase(param);
 long token1 = 0;
 long token2 = 0;
 boolean stopped = false;
 try {
 token1 = binComp.start();
 if (pe != null) token2 = pe.start();
 BigInteger bins[] = bin(length);
 out.println("<H2>ImprovedBinomial series for " + length + "</H2>");
 for (int i = 0; i < length; i++)
 out.println("
" + bins[i]);
 if (pe != null) pe.stop(token2);
 binComp.stop(token1);
 stopped = true;
 }
 finally {
 if (!stopped) {
 if (pe != null) pe.abort(token2);
 binComp.abort(token1);
 }

B.2.4 Defining and Using Metrics for Counting
To create metrics that count the occurrences of an event, define and use an Event
Sensor as follows:

■ Defining Event Sensors

Note: To assure that PhaseEvents are stopped, each PhaseEvent
start() method, together with the code to be measured should be
in a try block with the PhaseEvent stop() method in a
corresponding finally block, as shown in Example B–4.

Adding DMS Instrumentation To Java Applications

B-12 Oracle Application Server Performance Guide

■ Using Event Sensors

B.2.4.1 Defining Event Sensors
Example B–6 shows the DMS calls that define an Event Sensor. This code allocates a
counter and defines a DMS metric named
/dmsDemo/BasicBinomial/loops.count.

Example B–6 Defining Event Sensors

private Event binLoop; // Loops needed for Binomial series.
.
.
.

binLoop = Event.create(binRoot, "loops", "Iterations to compute series");

B.2.4.2 Using Event Sensors
DMS increments a counter when an application calls the occurred() method for an
Event Sensor. Example B–7 shows the occurred() call for an Event Sensor that
increments the /dmsDemo/BasicBinomial/loops.count metric.

Example B–7 Using occurred() With Event Sensors

binLoop.occurred();

B.2.5 Defining and Using Metrics for Recording Status Information (State Sensors)
DMS captures status information with State Sensors. State Sensors track the value of
Java primitives or the content of a Java Object. The supported types include integer,
double, long, and object, as specified in the third argument to the create() method.
When a Java primitive State Sensor is updated with the wrong type, DMS attempts to
convert the supplied value to the correct type. For Object type State Sensors, DMS
stores a reference to the Object and by default and calls toString() on the object
when the DMS value is sampled.

To create metrics that record status information, define and use a State Sensor as
follows:

■ Defining State Sensors

■ Using State Sensors

B.2.5.1 Defining State Sensors
State Sensors support a default metric value, as well as optional metrics. You can
define the minValue and maxValue optional metrics with State Sensors only if the
State Sensor represents a numeric Java primitive (of type integer, double, or long).
Table B–3 shows the available metrics for a State Sensor. Example B–3 shows how to
enable optional metrics.

Example B–8 shows the DMS calls that declare and create a State Sensor. This code
defines a DMS metric named /dmsDemo/BasicBinomial/lastComputed.value.

Example B–8 Defining State Sensors

private State binLast; // Value of the last computed element in series.
.

Validating and Testing Applications Using DMS Metrics

Instrumenting Applications With DMS B-13

.

.
binLast = State.create(binRoot, "lastComputed", State.OBJECT, "",
 "Value of last computed series element");

When you define a State Sensor, use an empty string in the fourth argument to the
create() method if no units are associated with the State Sensor, otherwise use a
string listing the appropriate units (see Example B–8). State Sensors are created
without an initial value. If you need to check whether a State Sensor has been
initialized, use the isInitialized() method.

If you want your State Sensor to store the string value of an object, and not store a
reference to the object, use the setCopy() method with the value TRUE. This tells the
State Sensor to store the result of calling toString() on an object rather than using a
reference to the object for the metric value.

B.2.5.2 Using State Sensors
When an application calls a State Sensor’s update() method, DMS updates the value
of the State Sensor. Example B–9 shows the update() call for a State Sensor that
updates the /dmsDemo/BasicBinomial/lastComputed.value metric.

Example B–9 Using update() With State Sensors

binLast.update(bins[k-1].toString());

B.3 Validating and Testing Applications Using DMS Metrics
You should test and verify the accuracy of the metrics that you add to Java
applications.

This section includes the following:

■ Validating DMS Metrics

■ Testing DMS Metrics For Efficiency

B.3.1 Validating DMS Metrics
Use the dmstool and the other available DMS monitoring tools to verify and test new
metrics.

Try to validate the following for new metrics:

■ Do expected metrics appear in the display? Test this by examining the code to
make sure that all the metric names added using DMS instrumentation appear in
your display or saved set of metrics.

■ Do unexpected metrics appear in the display? Verify that you have only added the
metrics that you planned to add.

■ Are the metric values you see within reasonable ranges? Usually, upper and lower
bounds for metrics can be established. You then test that the reported values for
metrics do not exceed the expected bounds.

For example, a "size of pool" metric should never report a negative value.

■ Make sure that new metrics are needed. For example, if you add a PhaseEvent that
always measures an event of very short duration, consider changing the metric to
an Event metric, or remove the metric.

Validating and Testing Applications Using DMS Metrics

B-14 Oracle Application Server Performance Guide

■ Make sure that new metrics are accurate. For most applications using DMS
metrics, accuracy is more important than the performance cost of adding the DMS
instrumentation. New DMS metrics should provide reliable and useful
information.

Testing for accuracy can be difficult; however, if an alternate means of measuring a
particular metric is available then use it to verify metric values. For example, if
you submit a known number of requests to a server and measure total time for the
experiment, then you predict correct values for the relevant metrics and compare
them with the actual monitored values. As another example, you can verify an
Event Sensor count metric by examining records that you write to a log file or to
the console.

Check for timing inaccuracies that may apply for the metrics. Timing inaccuracies
may be caused when low-resolution clocks time metrics for an interval of short
duration. For example on Windows systems, the default Java clock advances only
once every 15 milliseconds. DMS metrics reported for brief events on these
systems must be analyzed with care. Consider using the high resolution clock to
address this issue.

B.3.2 Testing DMS Metrics For Efficiency
The use of DMS metrics has some influence on application performance. When adding
metrics, note the following:

■ The processing required for computing and storing metrics can slow down the
execution of an application. DMS is fast, but it does have some required overhead
cost. In addition, DMS cannot prevent developers from using the DMS API
inefficiently. Therefore, before adding DMS instrumentation, establish reasonable
expectations. After completing the implementation, measure the actual costs and
compare them to your expectations. Be prepared to make changes to the
instrumentation to reduce overhead costs until the measurements agree with
expectations.

■ DMS provides the DMSConsole.getSensorWeight() method to help you
control the use of metrics. The central setting is an advisory measurement level
that DMS does not enforce. To control which metrics to include, at runtime, the
code must test the value for SensorWeight to determine whether to make DMS
calls.

■ When integrating DMS instrumentation with an existing package or when
implementing a new feature, you should consider insulating a previously working
system. For example, you could include an option to enable and disable new DMS
metrics.

■ Worrying about performance too soon often leads to costly design and
implementation errors. According to Donald Knuth, "Premature optimization is
the root of all evil".

■ You should run your performance tests with and without DMS enabled. If your
tests show unacceptable results with DMS enabled, then you may want to
re-design or re-implement metrics.

See Also: "Using A High Resolution Clock To Increase DMS
Precision" on page B-17

Dumping DMS Metrics To Files

Instrumenting Applications With DMS B-15

B.4 Understanding DMS Security Considerations
DMS metrics do not support user based access to DMS reports. When you define and
use a DMS metric, the metric is available to any administrator that has access to DMS
metrics. This means when you add DMS metrics, it is good practice to avoid placing
customer sensitive information in the metrics.

When you add DMS instrumentation, the following users have access to the DMS
metrics that you create:

■ Applications running in the same OC4J instance can access the DMS metrics.

■ All users that have access to the dmstool command, or the AggreSpy Servlet
have access to the metrics (by default this is limited to Administrators).

B.5 Conditional Instrumentation Using DMS Sensor Weight
Use the DMS Sensor weight feature to conditionally limit your instrumentation. With
Sensor weight, you specify that applications execute expensive instrumentation only
when the Sensor weight is set to a particular value. Using this feature enables you to
include expensive metrics that you may only need for debugging.

Example B–10 shows how to use DMSConsole.getSensorWeight() to test the
value of the Sensor weight, and optionally define and use a metric.

The Sensor weight is set globally using the oracle.dms.sensors property on the
command-line. Set this property using the OC4J startup options. Supported values for
this property include: none, normal, heavy, and all.

Example B–10 Using SensorWeight for Conditional Instrumentation

 /* DMS Method
 *
 * If the SensorWeight is high enough, return a phase with the
 * parameter in the name. Otherwise, return null.
 */
PhaseEvent heavyPhase(String param) {
PhaseEvent pe = null;
if (DMSConsole.getSensorWeight() > DMSConsole.NORMAL) {
 Noun base = Noun.create(binRoot, param, "MathSeries");
 pe = PhaseEvent.create(base, "computeSeries",
 "Time to compute a Binomial series");
 pe.deriveMetric(Sensor.all);
 }
return pe;

B.6 Dumping DMS Metrics To Files
In a Java application, use the following method to dump DMS metrics to a file.

The following code allows you to append or replace the contents of the specified file
with the current metrics:

See Also:

■ "AggreSpy URL and Access Control with Web Server" on
page A-7

■ "Access Control for dmstool" on page A-9

Resetting and Destroying Sensors

B-16 Oracle Application Server Performance Guide

DMSConsole cons2 = new DMSConsole();
DMSConsole.dump("dmsmathseries.log", true, true);

The first argument specifies the file path name, the second argument specifies the
output format, and the third argument specifies if the output is appended to the file or
replaces the contents of the file.

B.7 Resetting and Destroying Sensors
The Sensor abstract class provides methods to control PhaseEvent, Event, and State
Sensors. The reset() method resets a Sensor’s metrics to initial values. The
getResetTime() method determines if a Sensor has been reset. The destroy()
method removes a Sensor from DMS and releases references to its underlying
resources.

B.8 DMS Coding Recommendations
The following list includes coding recommendations for working with DMS.

1. There is a global name space for DMS metrics. When you create a new Noun
Sensor (PhaseEvent, Event, or State), its full name must not conflict with names in
use by Oracle built-in metrics, or by other applications. It is therefore a good idea
to have a root Noun for your application that contains the application’s full name.
This prevents name space collisions.

2. Be sure all PhaseEvents are stopped. If the code block to be measured is not in a
try block, then put it in a try block that includes PhaseEvent’s start(). Put the
PhaseEvent’s stop() in a finally block. Alternatively, make use of the
abort() method in the finally block, as shown in Example B–5.

3. Use the DMS naming conventions.

4. Avoid creating any DMS Sensor or Noun more than once. The DMS API allows
this, and avoids creation of multiple objects, but DMS performs lookups for each
subsequent creation attempt. Thus, whenever possible, you should define Sensors
and Nouns during static initialization, or in the case of a Servlet, in the init()
method.

5. Assign a type for each Noun that contains Sensors. If no type is assigned, the type
is given the value "n/a" (not available). Nouns with the type specified as "n/a" are
not shown in the AggreSpy display.

Note: Do not use these methods to reset or destroy built-in metrics.
The reset() and destroy() methods are intended for use with
metrics that you create. Application Server Control Console, and other
Oracle Application Server administrative facilities could report
unexpected values or have unexpected behavior if you use these
methods on internal, built-in metrics.

See Also: "General DMS Naming" on page B-6

See Also: "Using PhaseEvent Sensors" on page B-10

See Also: "DMS Naming Conventions" on page B-6

Using A High Resolution Clock To Increase DMS Precision

Instrumenting Applications With DMS B-17

6. Only use PhaseEvents to measure a section of code that is expensive to execute,
and takes a significant time to execute under some conditions. In the case where
the code never takes significant time to execute, use an Event metric, or remove
the PhaseEvent.

7. The DMS API calls are threadsafe; they provide sufficient synchronization to
prevent races and access bugs.

B.8.1 Isolating Expensive Intervals Using PhaseEvent Metrics
Carefully consider the requirements for new metrics when you add DMS
instrumentation. It is important to add a sufficient number of metrics to validate that
your code is behaving as desired.

Try to observe the following guidelines when you add DMS metrics:

1. Add PhaseEvent Sensors only to provide an overview of the time the system
spends in your block of code or module. You do not need to collect performance
data for every method call, or for every distinct phase of your code or module.

2. When your code calls external code that you do not control, and that you expect
could take a significant amount of time, add a PhaseEvent Sensor to track the start
and the completion of the external code.

Following these guidelines for adding PhaseEvent metrics provides the following
benefits:

■ Helps to limit the amount of information that DMS collects.

■ Allows those analyzing the system to prove that a module gives the expected
runtime performance.

■ Ensures that people viewing DMS metrics can validate runtime performance
without seeing an overwhelming amount of data.

■ Allows those analyzing system performance to separate and track your module
from other system modules that are either expensive or failure prone.

B.9 Using A High Resolution Clock To Increase DMS Precision
By default DMS uses the system clock for measuring time intervals during a
PhaseEvent. The default clock reports microsecond precision in C processes such as
Apache and reports millisecond precision in Java processes such as OC4J. Optionally,
DMS supports a high resolution clock to increase the precision of performance
measurements and lets you select the units for reporting time intervals. You can use a
high resolution clock when you need to time phase events more accurately than is
possible using the default clock or when the system's default clock does not provide
the resolution needed for your requirements.

Note: The resolution of the default clock and of the high resolution
clock is system dependent. On some systems the default clock may
not provide sufficient resolution for timing requirements. In
particular, on Windows platforms, many users request greater
precision than the default clock provides, because it advances only
once every 15 milliseconds. DMS metrics reported for brief events on
these systems must be analyzed with care. Consider using the high
resolution clock to address this issue.

Using A High Resolution Clock To Increase DMS Precision

B-18 Oracle Application Server Performance Guide

This section covers the following topics:

■ Configuring DMS Clocks for Reporting Time for OC4J (Java)

■ Configuring DMS Clocks for Reporting Time for Oracle HTTP Server

B.9.1 Configuring DMS Clocks for Reporting Time for OC4J (Java)
For Java processes, the default clock uses
java.lang.System.currentTimeMillis(). Selecting the high resolution clock
changes this call for all applications running on the process where the clock is
changed. You set the DMS clock and the reporting units globally using the
oracle.dms.clock and oracle.dms.clock.units properties, which control
process startup options.

For example, to use the high resolution clock with the default units, set the following
property on the Java command line for OC4J.

-Doracle.dms.clock=highres

Table B–6 shows supported values for the oracle.dms.clock property.

Table B–7 shows supported values for the oracle.dms.clock.units property.

Caution: Using the high resolution clock, the default units are
different than the value that Application Server Control Console
expects (msecs). If you need the Application Server Control Console
displays to be correct when using the high resolution clock, then you
need to set the units property as follows:

-Doracle.dms.clock.units=msecs

See Also:

Table B–6 oracle.dms.clock Property Values

Value Description

DEFAULT Specifies that DMS use the default clock. With the default clock, DMS uses
the Java call java.lang.System.currentTimeMillis() to obtain
times for PhaseEvents.

The default value for the units for the default clock is MSECS.

HIGHRES Specifies that DMS use the high resolution clock. DMS accesses the high
resolution clock using JNI (the JNI calls depend on the clocks available on
the underlying operating system).

The default value for the units for the HIGHRES clock is NSECS.

Using A High Resolution Clock To Increase DMS Precision

Instrumenting Applications With DMS B-19

Note the following when using the high resolution DMS clock:

■ When you set the oracle.dms.clock and the oracle.dms.clock.units
properties, any combination of upper and lower case characters is valid for the
value that you select (case is not significant). For example, any of the following
values are valid to select the high resolution clock: highres, HIGHRES, HighRes.

■ DMS checks the property values at startup. When you set the clock with a value
that does not match those listed in Table B–6, then DMS uses the default clock. If
the oracle.dms.clock property is not set, DMS also uses the default clock.

■ If the specified clock units property value does not match those listed in Table B–7,
then DMS uses the default units for the specified clock. If the
oracle.dms.clock.units property is not set, DMS uses the default units for
the specified the clock.

Table B–8 lists the platform specific environment variables settings for supported
platforms. To use the high resolution DMS clock, the environment variables need to be
set appropriately. The high resolution clock uses the DMS C library. On UNIX systems,
this requires libdms2.so to be in the specified environment variable path. On Windows
systems this requires yod.dll to be in the PATH environment. If a nanosecond clock is
not available, high resolution timings use a microsecond clock.

Note: On Windows platforms with a Pentium processor, DMS uses
the QueryPerformanceCounter function to provide timing for the
high resolution clock (HIGHRES). If you are running on a system
without a Pentium processor, DMS uses the DMS C clock to provide
timing for the high resolution clock. The DMS C clock has
microsecond precision which offers a significant improvement over
the default clock available with System.currentTimeMillis().

Table B–7 oracle.dms.clock.units Property Values

Value Description

MSECS Specifies that the time be converted to milliseconds and reported as
"msecs".

Note: This is the default value for the default clock.

NSECS Specifies that the time be converted to nanoseconds and reported as "nsecs".

Note: This is the default value for the high resolution clock.

USECS Specifies that the time be converted to microseconds and reported as
"usecs".

Table B–8 Library Path Environment Variables for Supported Platforms

Platform Environment Variable

AIX LIBPATH

$ORACLE_HOME/lib/libdms2.so is required in the path

LD_LIBRARY_PATH

$ORACLE_HOME/lib/libdms2.so is required in the path

Using A High Resolution Clock To Increase DMS Precision

B-20 Oracle Application Server Performance Guide

B.9.2 Configuring DMS Clocks for Reporting Time for Oracle HTTP Server
The default clock for measuring Oracle HTTP Server performance has a resolution of
microseconds (usecs). You can optionally select a higher resolution clock to monitor C
processes running under Oracle HTTP Server. To use the High Resolution clock under
Oracle HTTP Server, you need to set configuration options in httpd.conf, or specify
environment variables on the command line.

Table B–9 lists the environment variables that control the Oracle HTTP Server DMS
clock. Table B–10 describes the httpd.conf configuration options that control the Oracle
HTTP Server DMS clock. If you set both the command line options and the httpd.conf
configuration options, the configuration options override the values set on the
command line.

HP-UX SHLIB_PATH

$ORACLE_HOME/lib/libdms2.so is required in the path

LD_LIBRARY_PATH

$ORACLE_HOME/lib/libdms2.so is required in the path

Linux LD_LIBRARY_PATH

$ORACLE_HOME/lib/libdms2.so is required in the path

Tru64 UNIX LD_LIBRARY_PATH

$ORACLE_HOME/lib/libdms2.so is required in the path

Solaris LD_LIBRARY_PATH

$ORACLE_HOME/lib/libdms2.so is required in the path

Windows 2000 %ORACLE_HOME%\Apache\Apache\yod.dll must be in the PATH

Windows 2003 %ORACLE_HOME%\Apache\Apache\yod.dll must be in the PATH

Windows XP %ORACLE_HOME%\Apache\Apache\yod.dll must be in the PATH

Table B–9 OHS DMS Clock Environment Variables

Environment Variable Description

DMS_CLOCK Specifies the clock to use for DMS timing. The values are interpreted
the same as with oracle.dms.clock.

Valid Values: DEFAULT, HIGHRES

DMS_CLOCK_UNITS Specifies the units for reporting DMS timing values. The values are
Interpreted the same as with oracle.dms.clock.units.

Valid Values: MSECS, NSECS, USECS

Default Value: USECS

Table B–10 OHS DMS Clock Configuration Parameters

Parameter Description

DmsClock Specifies the clock for HTTP listener processes started by OHS, as
the oracle.dms.clock property does for Java processes.

Valid Values: DEFAULT, HIGHRES

Table B–8 (Cont.) Library Path Environment Variables for Supported Platforms

Platform Environment Variable

Rolling Up DMS Data for Descendent Nouns

Instrumenting Applications With DMS B-21

For example, if you want to use the high resolution clock and use the same units to
show times for Java processes running under OC4J and for mod_oc4j running under
Oracle HTTP Server, update the Oracle HTTP Server httpd.conf file to include the
following parameters and values:

DmsClock=HIGHRES
DmsClockUnits=MSECS

Also, include the following values as startup options for the OC4J process:

-Doracle.dms.clock=HIGHRES
-Doracle.dms.clock.units=MSECS
Using these options DMS uses a high resolution clock for all the Oracle HTTP Server
processes that it monitors, for the Java OC4J processes that it monitors, and DMS
reports values using the milliseconds units (msecs).

B.10 Rolling Up DMS Data for Descendent Nouns
Oracle Application Server 10g Release 3 (10.1.3.1.0) includes the DMS Rollup feature
that lets you specify metric aggregation. You can use the Rollup feature to specify
metric aggregation during DMS instrumentation; rollup is specified to apply to
descendents of a specified noun type. You can specify whether the rollup should only
apply to direct descendents or to all descendents. Example B–11 shows code that
generates a DMS tree, as represented in Figure B–2. Each noun of type myContainer
contains the percentageFull, close, and open Sensors (see Figure B–2).

DmsClockUnits Specifies the time units for HTTP listener processes started by OHS,
exactly as the oracle.dms.clock.units property is for Java processes.

Valid Values: MSECS, NSECS, USECS

Default Value: USECS

Note: On Windows platforms with a Pentium processor, DMS uses
the QueryPerformanceCounter function to provide timing for the
high resolution clock (HIGHRES). If you are running on a system
without a Pentium processor, DMS uses the DMS C clock to provide
timing for the high resolution clock. The DMS C clock has
microsecond precision which offers a significant improvement over
the default clock available with System.currentTimeMillis().

Caution: Using the high resolution clock for the Oracle HTTP
Server, the default units for the high resolution clock are NSECS on
most platforms. If you need to use Application Server Control
Console, it expects USECS for the units. If you need the Application
Server Control Console displays to be correct when using the high
resolution clock, then you need to set the units property as follows:

DmsClock=HIGHRES
DmsClockUnits=USECS

Table B–10 (Cont.) OHS DMS Clock Configuration Parameters

Parameter Description

Rolling Up DMS Data for Descendent Nouns

B-22 Oracle Application Server Performance Guide

Example B–11 DMS sample code creating noun hierarchy of metrics

// Create DMS Noun hierarchy for metrics.
Noun home = Noun.create(Noun.getRoot(), "Home", "myContainer");
Noun containers = Noun.create(home, "Containers", "myContainer");
Noun closets = Noun.create(containers, "Closets", "myContainer");
Noun bedrooms = Noun.create(closets, "Bedrooms", "myContainer");
Noun br1 = Noun.create(bedrooms, "BR1", "myContainer");

// Create a closet Noun and create Sensors for it.
Noun c1 = Noun.create(br1, "C1", "myContainer");
State percent = State.create(br1, "percentageFull", State.INTEGER, "percent",
"percentage full");
Event close = Event.create(br1, "close", "container closed");
PhaseEvent open = PhaseEvent.create(br1, "open", "open container");

// Derive metrics for State and PhaseEvent Sensors
percent.deriveMetric(Sensor.all);
open.deriveMetric(Sensor.all);

Figure B–2 Containers DMS Hierarchy Showing Tree Containing Metrics

Figure B–3 shows a tree with a set of descendent containers. The nouns C1 and C2
under the bedrooms BR1 and BR2 are of type myContainer (see Figure B–3 for a
description of myContainer metrics).

Note: The code in Example B–11 generates a noun tree hierarchy that
violates the guidance described in, "Choosing Noun Types" on
page B-9. In this example, it makes sense for some nouns to have
descendents and ancestors of the same noun type. The rollup feature
described in this section can collect data which might otherwise be
lost.

Rolling Up DMS Data for Descendent Nouns

Instrumenting Applications With DMS B-23

Figure B–3 Noun myContainer showing Sample Sensors

Using the rollup feature, DMS lets you aggregate a summary for descendent Nouns.
For example, you can add the rollup call to a bedrooms noun, as shown in
Example B–11. To aggregate myContainer type metrics under BR1, use the following
call:

br1.rollup("myContainer", Noun.DIRECT);

This call creates a rollup noun named myContainer_rollup under
/Home/Containers/Closets/Bedrooms/BR1. The rollup noun contain the same
sensors as the associated noun, including: percentageFull, close, and open.

DMS rollup metrics let you rollup the sensors in all descendent nouns of the given
types or only those in the direct descendent nouns. Specifying Noun.DIRECT in the
rollup call aggregates only direct descendent nouns of the specified type. To aggregate
the metrics from all descendent nouns of type myContainer instead, use a call such
as the following including Noun.ALL:

closets.rollup("myContainer", Noun.ALL);

Rollup metrics include aggregate summary information for their contents. Table B–11
shows the available derived rollup metrics for each Sensor type.

Table B–11 Rollup Metrics Included Derived Metrics

Metric Description

PhaseEvent The derived metrics for a PhaseEvent rollup metric include the following:

■ time: the sum of time metrics.

■ completed: the sum of the completed metrics.

■ maxTime: the maximum of the maxTime metrics.

■ minTime: the minimum of the minTime metrics:

■ avg: the average time computed for all Sensors.

■ active: the sum of the active metrics.

Event The derived metrics for a Event rollup metric include the following:

■ sum: the total of all count metrics.

■ avg: the average of all count metrics.

Rolling Up DMS Data for Descendent Nouns

B-24 Oracle Application Server Performance Guide

Example B–12 shows sample metrics created for the myContainer rollup noun under
/Home/Containers/Closets.

Example B–12 Test

myContainer_rollup
 descendent.value: all
 percentageFull.sum 40 percent
 percentageFull.avg 10.0 percent
 percentageFull.min 1 percent
 percentageFull.max 29 percent
 close.sum: 3
 close.avg: 0.75
 open.time: 871 msecs
 open.completed: 4 ops
 open.maxTime: 722 msecs
 open.minTime: 23 msecs
 open.avg: 217.7 msecs
 open.active: 0
 rolled.value: 4 nouns
 refresh.maxActive: 1 threads
 refresh.active: 0 threads
 refresh.avg: 0.2857142857142857 msecs
 refresh.maxTime: 1 msecs
 refresh.minTime: 0 msecs
 refresh.completed: 7 ops
 refresh.time: 2 msecs

Note that the metrics are similar to the myContainer metrics. The rollup metrics have
several key differences, as follows:

1. The rollup noun contains the descendent, rolled, and refresh metrics (see
Table B–11 for details).

2. The percentageFull State contains sum and avg metrics rather than the value
metric. The name of each metric reflects its content.

3. The close Event contains sum and avg metrics rather than the count metric.
The name of each metric reflects its content.

4. The open PhaseEvent does not contain a maxActive metric as it would have no
meaning in this context.

State The derived metrics for a State rollup metric include the following:

■ sum: the total of all value metrics.

■ avg: the average of all value metrics.

■ maxValue: the maximum of the maxValue metrics.

■ minValue: the minimum of the minValue metrics.

descendents The rollup noun includes a descendents state sensor that reports whether
the rollup covers only direct descendents or all descendents.

rolled The rollup noun includes a rolled state sensor, which reports the number
of nouns that are rolled up.

refresh The rollup noun includes a refresh phase event, which reports the time
spent aggregating the metrics for this rollup noun.

Table B–11 (Cont.) Rollup Metrics Included Derived Metrics

Metric Description

Rolling Up DMS Data for Descendent Nouns

Instrumenting Applications With DMS B-25

See Also: Oracle Application Server DMS API Reference Javadoc

Rolling Up DMS Data for Descendent Nouns

B-26 Oracle Application Server Performance Guide

Performance Metrics C-1

C
Performance Metrics

This appendix lists built-in metrics that can help you analyze Oracle Application
Server performance. The metrics fall into several distinct areas, such as Oracle HTTP
Server, Oracle Containers for J2EE (OC4J). Each table in this chapter lists the metrics
that are included in a corresponding Dynamic Monitoring Services metric table.

This appendix contains:

■ Oracle HTTP Server Metrics

■ JVM Metrics

■ JDBC Metrics

■ mod_plsql Metrics

■ Oracle Process Manager and Notification Server - OPMN Metrics

■ DMS Internal Metrics

Oracle HTTP Server Metrics

C-2 Oracle Application Server Performance Guide

C.1 Oracle HTTP Server Metrics
The tables, Table C–1 through Table C–5 describe the Oracle HTTP Server metrics.

Table C–1 describes the HTTP server metrics. The metric table name is ohs_server.

C.1.1 Oracle HTTP Server Child Server Metrics
Table C–2 describes the child server metrics.

The metric table name is ohs_child.

Table C–1 HTTP Server Metrics (ohs_server)

Metric Description Unit

busyChildren.value Number of busy Child processes processes

childFinish.count Number of child processes that finish processes

childStart.count Number of child processes that start processes

connection.active Number of connections currently open threads

connection.avg Average time spent servicing HTTP connections usecs

connection.completed Number of times an HTTP connection was established. ops

connection.maxTime Maximum time spent servicing any HTTP connection usecs

connection.minTime Minimum time spent servicing any HTTP connection usecs

connection.time Total time spent servicing HTTP connections usecs

error.count Number of HTTP errors count

get.count Number of GET requests count

handle.active Child servers currently in the handle processing phase threads

handle.avg Average time spent in module handler usecs

handle.completed Number of times the handle processing phase has completed ops

handle.maxTime Maximum time spent in module handler usecs

handle.minTime Minimum time spent in module handler usecs

handle.time Total time spent in module handler usecs

internalRedirect.count Number of times a module redirected a request to a new, internal URI ops

lastConfigChange.value Time and date configuration was last modified time

numChildren.value Total number of processes for request handling processes

numMods.value Number of loaded modules ops

post.count Number of POST requests ops

readyChildren.value Number of processes ready to handle a request processes

request.active Child servers currently in the request processing phase threads

request.avg Average time required to service an HTTP request usecs

request.completed Number of HTTP request completed ops

request.maxTime Maximum time required to service an HTTP request usecs

request.minTime Minimum time required to service an HTTP request usecs

request.time Total time required to service HTTP requests usecs

responseSize.value Size of response bytes

Oracle HTTP Server Metrics

Performance Metrics C-3

C.1.2 Oracle HTTP Server Responses Metrics
The Oracle HTTP Server responses metrics are included in the metric table type ohs_
responses. This metric table includes one metric containing the count, number of
times the response was generated, for each HTTP response type.

For example, Success_OK_200.count: 28 ops.

C.1.3 Oracle HTTP Server Virtual Host Metrics
Table C–3 shows the Oracle HTTP Server virtual host metrics.

The metrics table type is ohs_vhostSet.

The ohs_virtualHost metric table type contains information on virtual host names
and locations, and request and response metrics.

C.1.4 Aggregate Module Metrics
Table C–4 shows the Oracle HTTP Server module metrics.

The metric table type is ohs_module.

Table C–2 Oracle HTTP Server Child Server Metrics (ohs_child)

Metric Description Unit

pid.value Child`s process identifier

slot.value Child`s slot identifier

status.value Current status of child

time.value Time spent by this child in processing most recent request

url.value URL of most recent request

Table C–3 Oracle HTTP Server Virtual Host Metrics (ohs_virtualHost)

Metric Description Unit

request.active Number of requests currently being processed by this host threads

request.avg Average time spent processing requests for this virtual host usecs

request.completed Number of requests processed by this virtual host ops

request.maxTime Maximum time spent processing any single request for this virtual
host

usecs

request.minTime Minimum time spent processing any single request for this virtual
host

usecs

request.time Total time spent processing requests for this virtual host usecs

responseSize.value Size of response bytes

vhostType.value Type of virtual host

Table C–4 Oracle HTTP Server Modules Metrics

Metric Description Unit

numMods.value Number of loaded modules

Oracle HTTP Server Metrics

C-4 Oracle Application Server Performance Guide

C.1.5 HTTP Server Module Metrics
There is one set of metrics for each module loaded into the server.

The metric table name is ohs_module.

C.1.6 Oracle HTTP Server mod_oc4j Metrics
Table C–6 shows the mod_oc4j Failure Causes metrics. This table represents the
categorization of errors that return an INTERNAL_SERVER_ERROR to the client.

The metric table name is mod_oc4j_request_failure_causes.

Table C–7 shows the mod_oc4j Mount Point metrics. There is one mount point metric
table for each mount point specified in mod_oc4j.conf. This table includes a set of
metrics for each mount point specified, with each set grouped under the mntPtid.
Where id is an integer that is automatically generated during module initialization.

The metric table name is mod_oc4j_mount_pt_metrics.

Table C–5 Oracle HTTP Server Modules/mod_*.c Metrics (ohs_module)

Metric Description Unit

decline.count Number of requests declined ops

handle.active Number of requests currently being handled by this module requests

handle.avg Average time required for this module usecs

handle.completed Number of requests handled by this module ops

handle.maxTime Maximum time required for this module usecs

handle.minTime Minimum time required for this module usecs

handle.time Total time required for this module usecs

Table C–6 HTTP Server mod_oc4j Request Failure Causes Metrics

Metric Description Unit

IncorrectReqInit.count The total number of times an internal error occurred. There could be a
number of reasons, including: mod_oc4j not finding a connection
endpoint, configuration errors, and others.

ops

Oc4jUnavailable.count The total number of times that an oc4j JVM could not be found to
service requests.

ops

UnableToHandleReq.count The total number of times mod_oc4j declined to handle a request. ops

Table C–7 HTTP Server mod_oc4j Mount Point Metrics

Metric Description Unit

Destination.value Specifies the destination name. For example, with:

 Oc4jMount /j2ee/* home

The Destination.value would be home

String

ErrReq.count Specifies the total number of requests, both session and non-session, that mod_oc4j
failed to route to an OC4J.

ops

ErrReqNonSess.count Specifies the total number of non session requests that mod_oc4j failed to route to an
oc4j process.

ops

ErrReqSess.count Specifies the total number of session requests that mod_oc4j failed to route to an OC4J
process.

ops

Oracle HTTP Server Metrics

Performance Metrics C-5

Table C–8 shows the mod_oc4j Destination Metrics. This table includes a set of metrics
for a specific destination. Each destination can have multiple mount points. There is
one mntPts subtree for each mount point specified in mod_oc4j.conf.

The metric table name is mod_oc4j_destination_metrics.

Failover.count Shows the total number of requests that have had a failover (which means that the
had an error while talking to a JVM and switched over to another JVM.

ops

Name.value Specifies the echo of the value specified as the path for Oc4jMount directive in mod_
oc4j.conf. DMS changes certain characters, including: ’/’ and ’*’ to ’_’ . To preserve the
actual path names specified, an internal table containing a mapping between mntPtid
and the actual path name is created during mod_oc4j initialization. For example,
with: Oc4jMount /j2ee/* home Name.value would be /j2ee/*

String

NonSessFailover.count Specifies the total number of failovers for nonsession requests. Shows the number of
requests that have had a failover (which means that the request had an error while
talking to a JVM and switched over to another JVM.

ops

SessFailover.count Specifies the total number of failovers for session requests. Shows the number of
requests that have had a failover (which means that the request had an error while
talking to a JVM and switched over to another JVM.

ops

SucReq.count Specifies the total number of requests, both session and non-session, that mod_oc4j
successfully routed to an OC4J instance.

ops

SucReqNonSess.count Specifies the total number of non session requests that mod_oc4j successfully routed
to an OC4J process.

ops

SucReqSess.count Specifies the total number of session requests that mod_oc4j successfully routed to an
OC4J process.

ops

Table C–8 HTTP Server mod_oc4j Destination Metrics

Metric Description Unit

ErrReq.count Specifies the total number of requests, both session and non-session, that mod_oc4j
failed to route to an OC4J.

ops

ErrReqNonSess.count Specifies the total number of non session requests that mod_oc4j failed to route to
an OC4J process.

ops

ErrReqSess.count Specifies the total number of session requests that mod_oc4j failed to route to an
OC4J process.

ops

Failover.count Shows the total number of requests that have had a failover (which means that the
had an error while talking to a JVM and switched over to another JVM..

ops

JVMCnt.value Specifies the total number of routable OC4J JVMs that belong to this destination. Number of
JVMs

Name.value Specifies the echo of the value specified as destination for Oc4jMount directive in
mod_oc4j.conf, a single destination may appear several times in mod_oc4j.conf.

Example: Oc4jMount /j2ee/* home,oc4jinstance2

Name.value would be home,oc4jinstance2

String

NonSessFailover.count Specifies the total number of failovers for non session requests. ops

SessFailover.count Specifies the total number of failovers. ops

SucReq.count Specifies the total number of requests, both session and non-session, that mod_oc4j
successfully routed to an OC4J.

ops

SucReqNonSess.count Specifies the total number of non session requests that mod_oc4j successfully
routed to an OC4J process.

ops

SucReqSess.count Specifies the total number of session requests that mod_oc4j successfully routed to
an OC4J process.

ops

Table C–7 (Cont.) HTTP Server mod_oc4j Mount Point Metrics

Metric Description Unit

JVM Metrics

C-6 Oracle Application Server Performance Guide

C.1.7 Oracle HTTP Server SSL Metrics
Table C–9 describes the OSSL metrics.

The metric table type ohs_ossl.

C.2 JVM Metrics
Table C–10 shows the JVM metrics. There is one set of metrics for each Java process
(OC4J) running in the site.

The metric table type is JVM.

C.2.1 JVM Properties Metrics
Oracle Application Server creates a metric to track the value of each Java Property
available through a call to System.getProperties() on any Java process. For each
Java Property, a metric is created under the /JVM/Properties noun.

Table C–9 OHS_OSSL Metrics

Metric Description Unit

checkcrl.time SSL checkcrl was invoked time

closessl.time SSL connection was closed time

connectssl.time SSL connection was established time

dataReceive.value OSSL Data received kilobytes

dataSent.value OSSL Data Sent kilobytes

entercache.time SSL entercache was invoked time

getcache.time SSL getcache was invoked time

handshake.time SSL handshake was invoked time

receive.time an encrypted message was received time

receiveErrors.count an error occurred in receive ops

send.time an encrypted message was sent time

sendErrors.count an error occurred in send ops

setfixup.time SSL setfixup was invoked time

Table C–10 JVM Metrics (JVM)

Metric Description Unit

activeThreadGroups.value The number of active thread groups in the JVM integer

activeThreadGroups.minValue The minimum number of active thread groups in the JVM integer

activeThreadGroups.maxValue The maximum number of active thread groups in the JVM integer

activeThreads.value The number of active threads in the JVM threads

activeThreads.minValue The minimum number of active threads in the JVM threads

activeThreads.maxValue The maximum number of active threads in the JVM threads

upTime.value Up time for the JVM msecs

freeMemory.value The amount of heap space free in the JVM kilobytes

freeMemory.minValue The minimum amount of heap space free in the JVM kilobytes

freeMemory.maxValue The maximum amount of heap space free in the JVM kilobytes

totalMemory.value The total amount of heap space in the JVM kilobytes

totalMemory.minValue The minimum amount of total heap space in the JVM kilobytes

totalMemory.maxValue The maximum amount of total heap space in the JVM kilobytes

JDBC Metrics

Performance Metrics C-7

For example, each process should have a metric that contains the value of the
java.version system property named, /JVM/Properties/java_
version.value. The system converts property name components with a period, '.' to
'_'.

If, during the life of a process, a property is deleted from the JVM system properties,
the corresponding metric is deleted. If the value changes, this is reflected in the metric
value the next time it is accessed. If a new property is added to the system properties,
a new metric is created.

C.3 JDBC Metrics
The following tables list the Oracle Application Server JDBC metrics.

C.3.1 JDBC Driver Metrics
Table C–12 shows the JDBC driver metrics. There is one set of JDBC Driver metrics per
JVM.

The metric table type is JDBC_Driver.

C.3.2 JDBC Data Source Metrics
Table C–13 shows the JDBC datasource metrics. There is one set of data source metrics
per data source.

The metric table type is JDBC_DataSource.

Note: The JVM Properties metrics are only available for viewing
using the Spies text link in AggreSpy, or using the dmstool
command to display metrics.

Table C–11 JVM/Properties - JVM System Properties Metrics

Metric Description Unit

A metric is created for each system
property. Each property name has any
of the "." characters in the name
replaced with "_".

Contains the value of the Java system property. String

Table C–12 /JDBC/Driver - JDBC_Driver Metrics

Metric Description Unit

ConnectionCloseCount.count Total number of connections that have been closed. ops

ConnectionCreate.active Current number of threads creating connections. ops

ConnectionCreate.avg Average time spent creating connections. msecs

ConnectionCreate.completed Number of times this PhaseEvent has started and ended. ops

ConnectionCreate.maxTime Maximum time spent creating connections. msecs

ConnectionCreate.minTime Minimum time spent creating connections. msecs

ConnectionCreate.time Time spent creating connections. msecs

ConnectionOpenCount.count Total number of connections that have been opened. ops

JDBC Metrics

C-8 Oracle Application Server Performance Guide

C.3.3 JDBC Driver Specific Connection Metrics
Table C–14 shows the JDBC driver connection metrics. There is one set of JDBC
Connection metrics per connection.

The metric table type is JDBC_Connection.

C.3.4 JDBC Data Source Specific Connection Metrics
Table C–15 shows the JDBC data source metrics. There is one set of JDBC data source
specific connection metrics per data source per connection.

The metric table type is JDBC_Connection.

Table C–13 /JDBC/data-source-name - JDBC_Data Source Metrics

Metric Description Unit

ConnectionCloseCount.count Total number of connections that have been closed. ops

ConnectionCreate.active Current number of threads creating connections. ops

ConnectionCreate.avg Average time spent creating connections. msecs

ConnectionCreate.completed Number of times this PhaseEvent has started and ended. ops

ConnectionCreate.maxTime Maximum time spent creating connections. msecs

ConnectionCreate.minTime Minimum time spent creating connections. msecs

ConnectionCreate.time Time spent creating connections. msecs

ConnectionOpenCount.count Total number of connections that have been opened. ops

Table C–14 /JDBC/Driver/CONNECTION - JDBC Driver Connection Metrics

Metric Description Unit

CreateNewStatement.avg Average time spent creating a new statement. msecs

CreateNewStatement.completed Number of times a request for a statement failed to be satisfied from the
cache.

ops

CreateNewStatement.maxTime Maximum time spent creating a new statement. msecs

CreateNewStatement.minTime Minimum time spent creating a new statement. msecs

CreateNewStatement.time Time spent creating a new statement (this does not include the time required
to parse the statement. For information on the metric that includes the parse
time see Execute.Time in Table C–17).

msecs

CreateStatement.avg Average time spent getting a statement from the statement cache. msecs

CreateStatement.completed Number of times a request for a statement was satisfied from the cache. ops

CreateStatement.maxTime Maximum time spent getting a statement from the statement cache. msecs

CreateStatement.minTime Minimum time spent getting a statement from the statement cache. msecs

CreateStatement.time Time spent getting a statement from the statement cache. msecs

JDBC_Connection_URL Url specified for the connection

JDBC_Connection_Username User name used for the connection

LogicalConnection.value If this is a physical connection, then this refers to its logical connection, if any.

StatementCacheHit.count Statement found in cache ops

StatementCacheMiss.count Statement not found in cache ops

JDBC Metrics

Performance Metrics C-9

C.3.5 JDBC Connection Source Metrics
Table C–16 shows the JDBC connection source metrics.

The metric table type is JDBC_ConnectionSource.

C.3.6 JDBC Driver Statement Metrics
Table C–17 shows the JDBC statement metrics. There is a set of JDBC statement
metrics per connection per statement.

Table C–15 /JDBC/data-source-name/CONNECTION - JDBC Datasource Connection Metrics

Metric Description Unit

CreateNewStatement.avg Average time spent creating a new statement. msecs

CreateNewStatement.completed Number of times a request for a statement failed to be satisfied from the
cache.

ops

CreateNewStatement.maxTime Maximum time spent creating a new statement. msecs

CreateNewStatement.minTime Minimum time spent creating a new statement. msecs

CreateNewStatement.time Time spent creating a new statement (this time does not include the time
required to parse the statement. For information on the metric that includes
the parse time see Execute.Time in Table C–18).

msecs

CreateStatement.avg Average time spent getting a statement from the statement cache. msecs

CreateStatement.completed Number of times a request for a statement was satisfied from the cache. ops

CreateStatement.maxTime Maximum time spent getting a statement from the statement cache. msecs

CreateStatement.minTime Minimum time spent getting a statement from the statement cache. msecs

CreateStatement.time Time spent getting a statement from the statement cache. msecs

JDBC_Connection_Url Url specified for the connection

JDBC_Connection_Username User name used for the connection

LogicalConnection.value If this is a physical connection, then this refers to its logical connection, if any.

StatementCacheHit.count Statement found in cache

StatementCacheMiss.count Statement not found in cache

Table C–16 JDBC Connection Source Metrics

Metric Description Unit

CacheFreeSize.count Number of free slots in the connection cache. ops

CacheFreeSize.maxValue Maximum number of free slots in the connection cache. connections

CacheFreeSize.minValue Minimum number of free slots in the connection cache. connections

CacheFreeSize.value Number of free slots in the connection cache. connections

CacheGetConnection.active threads

CacheGetConnection.avg Average time spent getting a connection from the cache. msecs

CacheGetConnection.completed Number of times this PhaseEvent has started and ended. ops

CacheGetConnection.maxTime Maximum time spent getting a connection from the cache. msecs

CacheGetConnection.minTime Minimum time spent getting a connection from the cache. msecs

CacheGetConnection.time Time spent getting a connection from the cache or not. msecs

CacheHit.count Number of times a request for a connection has been satisfied from the
cache.

ops

CacheMiss.count Number of times a request for a connection failed to be satisfied from
the cache.

ops

CacheSize.value Number of physical connections in the cache ops

JDBC Metrics

C-10 Oracle Application Server Performance Guide

The metric table type is JDBC_Statement.

C.3.7 JDBC Data Source Statement Metrics
Table C–18 shows the JDBC statement metrics. There is a set of statement metrics per
data source per connection per statement.

The metric table type is JDBC_Statement.

Note: The JDBC statement metrics are only available for JDBC
connections that have enabled statement caching, and set the
property oracle.jdbc.DMSStatementCachingMetrics to the
value true. When JDBC statement caching is disabled, you can
make the JDBC statement metrics available by setting the property
oracle.jdbc.DMSStatementMetrics to true. To improve
performance and to avoid collecting expensive metrics, by default
these properties are both set to false.

Table C–17 /JDBC/Driver/CONNECTION/STATEMENT JDBC Statement Metrics

Metric Description Unit

Execute.time The time this statement has spent executing the SQL including the first fetch and the
time required to parse the statement.

msecs

Fetch.time The time this statement has spent in other fetches. msecs

SQLText.value The SQL being executed.

Note: The JDBC statement metrics are only available for JDBC
connections that have enabled statement caching and set the
property oracle.jdbc.DMSStatementCachingMetrics to the
value true. When JDBC statement caching is disabled, you can
make the JDBC statement metrics available by setting the property
oracle.jdbc.DMSStatementMetrics to true. To improve
performance and to avoid collecting expensive metrics, by default
these properties are set to false.

Table C–18 /JDBC/data-source-name/CONNECTION/STATEMENT JDBC Statement Metrics

Metric Description Unit

Execute.time The time this statement has spent executing the SQL including the first fetch and the
time required to parse the statement.

msecs

Fetch.time The time this statement has spent in other fetches. msecs

SQLText.value The SQL being executed.

mod_plsql Metrics

Performance Metrics C-11

C.3.8 JDBC Connection Pool Stats Metrics
Table C–19 shows the JDBC connection pool stats metrics.

The metric table type is jdbc_connection_pool_stats.

C.4 mod_plsql Metrics
This section describes the Oracle Application Server mod_plsql metrics.

Figure C–1, "mod_plsql Metric Tree" shows the structure of the mod_plsql metrics.
The tables in this section describe the relevant metrics.

Table C–19 JDBC Connection Pool Stats Metrics

Metric Description Units

CloseConnectionCount.value The number of connections closed. connections

CreateConnectionCount.value The number of connections created. connections

FreePoolSize.maxValue The number of available connections in the pool. connections

FreePoolSize.minValue The upper bound of number of available connections in the pool. connections

FreePoolSize.value The upper bound of number of available connections in the pool connections

FreePoolSizeUpperBound.value The upper bound of number of available connections in the pool connections

PoolSize.maxValue The total number of connections in the pool (used and available) connections

PoolSize.minValue The total number of connections in the pool (used and available) connections

PoolSize.value The total number of connections in the pool (used and available) connections

PoolSizeLowerBound.value The lower bound of total number of connections in the pool connections

PoolSizeUpperBound.value The upper bound of total number of connections in the pool connections

UseTime.time The time spent using a connection time

WaitTime.time The time spent waiting for a connection to be available time

WaitingThreadCount.maxValue The number of threads waiting for a connection count

WaitingThreadCount.minValue The number of threads waiting for a connection count

WaitingThreadCount.value The number of threads waiting for a connection count

mod_plsql Metrics

C-12 Oracle Application Server Performance Guide

Figure C–1 mod_plsql Metric Tree

The /modplsql/HTTPResponseCodes Metrics lists the response codes returned by
mod_plsql.

The metric table name is modplsql_HTTPResponseCodes. This metric table
includes one metric containing the count, number of times the response was
generated, for each HTTP response type.

 [type=modplsql_HTTPResponseCodes]

For example, the http404.count metric holds a count of the "HTTP 404: Not found"
response codes.

Table C–20 lists the set of metrics for the mod_plsql session cache.

The metric table name is modplsql_Cache.

Table C–20 mod_plsql/SessionCache Metrics

Metric Description Unit

cacheStatus.value Status of the cache. This can be either enabled or disabled. status

newMisses.count Number of session cache misses (new) ops

modplsql

ContentCache

SQLError2

SQLError1

SQLError10

HTTPResponseCodes

SQLGroup2

SQLGroup1

SQLGroupX

LastNSQLErrors

SessionCache

SQLErrorGroups

SuperUserConnectionPool

RequestOwnerConnectionPool

NonSSOConnectionPool

...

...

mod_plsql Metrics

Performance Metrics C-13

Table C–21 lists the set of metrics for the mod_plsql content cache.

The metric table name is modplsql_ContentCache.

The SQLErrorGroups metrics show the predefined groupings of SQL errors. For each
group, the metrics in Table C–22 are recorded.

The metric table name is modplsql_SQLErrorGroup:

/modplsql/SQLErrorGroups/group [type=modplsql_SQLErrorGroup]

The group is based on the groupings in the Oracle Database Error Messages guide. For
example, the metric name Ora24280Ora29249 represents the grouping Ora-24280 to
Ora-29249. Each SQL error that occurs as a result of executing a request is put into the
appropriate group based on its error code. If you are getting a high number of the
same errors, you should investigate what is causing the problem, using the Oracle
Database Error Messages guide for further details on the error message.

The LastNSQLErrors statistics show the last 10 SQL errors that have occurred while
executing requests. These are updated in a round robin fashion. For each error, the
metrics in Table C–23 are recorded.

The metric table name is modplsql_LastNSQLError:

/modplsql/LastNSQLErrors/<SQL Error Slot> [type=modplsql_LastNSQLError]

If you are getting a large number of the same errors, you should investigate what is
causing the problem. Refer to the Oracle Database Error Messages guide for further
details of the error represented by the errorText.value metric.

staleMisses.count Number of session cache misses (stale) ops

hits.count Number of session cache hits ops

requests.count Number of requests to the session cache ops

Table C–21 mod_plsql/ContentCache Metrics

Metric Description Unit

cacheStatus.value Status of the cache, either enabled or disabled.

newMisses.count Number of content cache misses (new) ops

staleMisses.count Number of content cache misses (stale) ops

hits.count Number of content cache hits ops

requests.count Number of requests to the content cache ops

Table C–22 mod_plsql/SQLErrorGroups Metrics

Metric Description Unit

lastErrorDate.value Date of the last request to cause the SQL error date

lastErrorRequest.value Last request to cause the SQL error url

lastErrorText.value SQL error text of the last error error

error.count Number of errors that have occurred within the group ops

Table C–20 (Cont.) mod_plsql/SessionCache Metrics

Metric Description Unit

mod_plsql Metrics

C-14 Oracle Application Server Performance Guide

Table C–24 lists the set of metrics for the Non-SSO connection pool.

The metric table name is modplsql_DatabaseConnectionPool:

/modplsql/NonSSOConnectionPool [type=modplsql_DatabaseConnectionPool]

Table C–25 lists the set of metrics for the request owner connection pool.

The metric table name is modplsql_DatabaseConnectionPool:

/modplsql/RequestOwnerConnectionPool [type=modplsql_DatabaseConnectionPool]

Table C–26 lists the set of metrics for the super user connection pool.

The metric table name is modplsql_DatabaseConnectionPool:

/modplsql/SuperUserConnectionPool [type=modplsql_DatabaseConnectionPool]

Table C–23 mod_plsql/LastNSQLErrors Metrics

Metric Description Unit

errorDate.value Date the request caused the SQL error date

errorRequest.value Request causing the SQL error url

errorText.value SQL error text error

Table C–24 mod_plsql/NonSSOConnectionPool Metrics

 Metric Description Unit

connFetch.maxTime Maximum time to fetch a connection from the pool usecs

connFetch.minTime Minimum time to fetch a connection from the pool usecs

connFetch.avg Average time to fetch a connection from the pool usecs

connFetch.active Child servers currently in the pool fetch phase threads

connFetch.time Total time spent fetching connections from the pool usecs

connFetch.completed Number of times a connection has been requested from the pool ops

newMisses.count Number of connection pool misses (new) ops

staleMisses.count Number of connection pool misses (stale) ops

hits.count Number of connection pool hits ops

Table C–25 mod_plsql/RequestOwnerConnectionPool Metrics

Metric Description Unit

connFetch.maxTime Maximum time to fetch a connection from the pool usecs

connFetch.minTime Minimum time to fetch a connection from the pool usecs

connFetch.avg Average time to fetch a connection from the pool usecs

connFetch.active Child servers currently in the pool fetch phase threads

connFetch.time Total time spent fetching connections from the pool usecs

connFetch.completed Number of times a connection has been requested from the pool ops

newMisses.count Number of connection pool misses (new) ops

staleMisses.count Number of connection pool misses (stale) ops

hits.count Number of connection pool hits ops

Oracle Process Manager and Notification Server - OPMN Metrics

Performance Metrics C-15

C.5 Oracle Process Manager and Notification Server - OPMN Metrics
This sections lists the Oracle Process Manager and Notification Server (opmn) metrics.

This section includes the following:

■ OPMN_PM Metric Table

■ OPMN_OC4J_PROC Table

■ OPMN_HOST_STATISTICS Metric Table

■ OPMN_IAS_INSTANCE Metric Table

■ OPMN_IAS_COMPONENT Table

■ OPMN ONS Metrics

■ OPMN_APPCTX Table

C.5.1 OPMN_PM Metric Table
The opmn_pm metric table is the root of the process manager subtree for the OPMN
DMS metrics. The metrics in this metric table contain statistics about OPMN requests.
An OPMN request is a command that has been issued to OPMN from a client, for
example DCM, to perform an operation on one or more OPMN managed processes.

Requests can have one of three possible results:

■ Success – success means OPMN handles the request successfully.

■ Partial Success – partial Success means OPMN only handles part of the request
successfully. For example, if a client wants OPMN to start three OC4J processes,
and only two are successfully started, the request result is partial success.

■ Failure – failure means the request fails.

Table C–27 shows the metric table type opmn_pm.

Table C–26 mod_plsql/SuperUserConnectionPool Metrics

Metric Description Unit

connFetch.maxTime Maximum time to fetch a connection from the pool usecs

connFetch.minTime Minimum time to fetch a connection from the pool usecs

connFetch.avg Average time to fetch a connection from the pool usecs

connFetch.active Threads currently in the pool fetch phase threads

connFetch.time Total time spent fetching connections from the pool usecs

connFetch.completed Number of times a connection has been requested from the pool ops

newMisses.count Number of connection pool misses (new) ops

staleMisses.count Number of connection pool misses (stale) ops

hits.count Number of connection pool hits ops

Oracle Process Manager and Notification Server - OPMN Metrics

C-16 Oracle Application Server Performance Guide

C.5.2 OPMN_OC4J_PROC Table
Table C–28 shows the OPMN OC4J proc metrics that provides information on the
OC4J process.

The metric table type is opmn_oc4j_proc.

C.5.3 OPMN_HOST_STATISTICS Metric Table
The OPMN host statistics metric table provides information on the host running the
OPMN process.

Table C–29 shows the metric table type opmn_host_statistics.

C.5.4 OPMN_IAS_INSTANCE Metric Table
The OPMN IAS instance subtree shows the Oracle Application Server instance node
name.

Table C–30 shows the metric table type opmn_ias_instance.

Table C–27 OPMN_PM Metrics

Metric Description Unit

jobWorkerQueue.value Specifies the number of jobs in the OPMN worker queue ops

lReq.count Specifies the number of local HTTP requests which OPMN handles ops

procDeath.count Specifies the number of processes which die after the process manager starts
them

ops

procDeathReplace.count Specifies the number of processes which are restarted after the process
manager detects they are dead

ops

reqFail.count Specifies the number of HTTP requests which fail ops

reqPartialSucc.count Specifies the number of HTTP requests which partially succeed ops

reqSucc.count Specifies the number of HTTP requests which succeed ops

rReq.count Specifies the number of remote HTTP requests which OPMN handles ops

workerThread.value Specifies the number of worker threads threads

Table C–28 OPMN_OC4J_proc Metrics

Metric Description Unit

oc4jinstance.value

oc4jIsland.value This is a backward compatibility metric.

Table C–29 OPMN_HOST_STATISTICS Metrics

Metric Description Unit

cpuIdle.value Specifies the number of milliseconds the cpu(s) have been idle since an
unspecified time.

milliseconds

freePhysicalMem.value Specifies the amount of free physical memory on the host machine. kilobytes

numProcessors.value Specifies the number of processors available on the host machine. integer

timestamp.value Specifies the time that host statistics are taken. The timestamp is the
number of milliseconds from an unspecified time.

milliseconds from
an unspecified time

totalPhysicalMem.value Specifies the total physical memory available on the host machine. kilobytes

Oracle Process Manager and Notification Server - OPMN Metrics

Performance Metrics C-17

C.5.5 OPMN_IAS_COMPONENT Table
The OPMN IAS component subtree represents an Oracle Application Server
component. The OPMN IAS component subtree includes several metric tables
containing component information.

Table C–31 shows the metric table type opmn_process_type.

Table C–32 shows the metric table type opmn_process_set.

Table C–33 shows the metric table type opmn_process.

Table C–30 OPMN_IAS_INSTANCE Metrics

Metric Description Unit

iasCluster.value Specifies the Oracle Application Server cluster name for the Oracle
Application Server instance.

String

Table C–31 OPMN_PROCESS_TYPE Metrics

Metric Description Unit

moduleId.value Specifies the values of attribute module-IDs, as specified in the
process-type tag in the opmn.xml configuration file.

String

Table C–32 OPMN_PROCESS_SET Metrics

Metric Description Unit

numProcConf.value Specifies the number, or maximum number, of processes configured for this
process set.

String (integer)

numProcs.value Number of process that exist for this process set

IsService.value Process set is configured as a service String

reqFail.count Specifies the number of HTTP requests which fail for this process set. ops

reqPartialSucc.count Specifies the number of HTTP requests which partially succeed for this
process set.

ops

reqSucc.count Specifies the number of HTTP requests which succeed for this process set ops

restartOnDeath.value Specifies whether, when a process dies, OPMN should restart the process. String (boolean)

Table C–33 OPMN_PROCESS Metrics

Metric Description Unit

cpuTime.value Shows the amount of CPU time used by the process. CPU msecs

heapSize.value Shows the heap size of the process. Kilobytes

iasCluster.value Shows the Oracle Application Server cluster name for the process String

iasInstance.value Shows the Oracle Application Server instance name for the process String

indexInSet.value Shows the process index in the process set. This value is only valid for OPMN
managed processes, for OPMN unmanaged processes, this value has no meaning,
and the value is always 0.

String
(integer)

Oracle Process Manager and Notification Server - OPMN Metrics

C-18 Oracle Application Server Performance Guide

Table C–34 shows the metric table type opmn_connect.

C.5.6 OPMN ONS Metrics
The Oracle Process Manager and Notification Server ONS subtree contains Oracle
Notification System (ONS) information.

Table C–35 shows the metric table type opmn_ons.

memoryUsed.value The amount of memory used by the process.

This metric is calculated in an operating system specific manner.

On UNIX, this is the process image memory used value. This is all the memory in
use by the process.

On Windows, this is the working set memory used value. This is the same value that
is reported by the Task Manager under the mem usage column. The working set is
the set of memory pages touched recently by the threads in the process. If free
memory in the system is over a certain threshold, pages are left in the working set of
a process, even if they are not in use. When free memory falls below a certain
threshold, pages are trimmed from the working sets. If needed, pages are
soft-faulted back into the working set before they leave main memory.

pid.value The process ID for the process.

privateMemory.value The private memory of the process. Kilobytes

sharedMemory.value The shared memory for the process Kilobytes

startTime.value The start time of the process. msecs

status.value The status of the process. The status can have the following values:

■ NONE – New process slot, no operations have been applied yet (no status).

■ Init – process has been started, opmn is waiting for initialization to complete.

■ Alive – process is fully started.

■ Stop – process stop operation is in progress.

■ Stopped – process has been fully stopped.

■ Bounce – non-terminating process restart is in progress.

■ Restart – process stop operation is in progress, prior to a new start being
issued.

■ InitFail – failure before init timeout reached, a stop and start will be
attempted in the retry limit has not been reached.

■ BounceFail – non-terminating process restart failed, as stop and start will be
attempted if the retry limit has not been reached.

String

type.value The type of the process. See Table C–31 for information on process types.

uid.value The OPMN assigned ID for the process.

upTime.value The uptime for the process. msecs

Table C–34 OPMN_CONNECT Metrics

Metric Description Unit

desc.value Shows the port description, if available String

host.value Shows the host name String (host name)

protocol.value

port.value Shows the port number String (port number)

Table C–33 (Cont.) OPMN_PROCESS Metrics

Metric Description Unit

Oracle Process Manager and Notification Server - OPMN Metrics

Performance Metrics C-19

Table C–36 shows the local_port metrics. The ../ons/local_port subtree
shows information about the ONS local port.

The metric table type is opmn_connect

Table C–37 shows the remote_port metrics. The ../ons/remote_port subtree
shows information about the ONS remote port.

The metric table type is opmn_connect

Table C–38 shows the request_port metrics. The ../ons/request_port subtree
shows information about the ONS request port.

 The metric table type is opmn_connect

Table C–39 shows the opmn_ons_topo_entry metrics.

Table C–35 OPMN_ONS Metrics

Metric Description Unit

notifProcessed.value The number of notifications processed by ONS. ops

notifProcessQueue.value The number of notifications in the process queue. ops

notifReceived.value The number of notifications received by ONS. ops

notifReceiveQueue.value The number of notifications in the receive queue. ops

workerThread.value The number of worker threads. String (threads)

Table C–36 OPMN ONS LOCAL_PORT Metrics

Metric Description Unit

desc.value Port description String

host.value Host name String

port.value Port number String

Table C–37 OPMN ONS REMOTE_PORT Metrics

Metric Description Unit

desc.value Port description String

host.value Host name String

port.value Port number String

Table C–38 OPMN ONS REQUEST_PORT Metrics

Metric Description Unit

desc.value Port description String

host.value Host name String

port.value Port number String

DMS Internal Metrics

C-20 Oracle Application Server Performance Guide

C.5.7 OPMN_APPCTX Table
Table C–40 shows the opmn_appctx metrics.

C.6 DMS Internal Metrics
Table C–41 shows the DMS internal clock metrics.

Table C–42 shows the DMS internal log metrics.

Table C–43 shows the DMS internal measurement metrics.

Table C–39 OPMN ONS TOPO Entry Metrics

Metric Description Unit

protocol.value ons protocol version

port.value port value

ip.value ip address

Table C–40 OPMN APPCTX Metrics

Metric Description Unit

rtid.value

routable.value

state.value

Table C–41 DMS-Internal Clock Metrics

Metric Description Unit

logicalTime.value The current time as measured with the DMS clock. ticks

measuredFrequency.value Number of clock ticks per second - measured. ticks

measuredResolution.value Time between ticks as measured with this clock.

name.value

overheadPerCall.value The average duration of a call to get the time with this clock.

reportedFrequency.value The number of ticks per second the clock time is reported in. ticks

requestedUnits.value The string description of the units that times are reported in.

Table C–42 DMS-Internal Log Metrics

Metric Description Unit

initLogging.count ops

messagesLogged.count ops

status.value

Table C–43 DMS-Internal Measurement Metrics

Metric Description Unit

createNoun.count ops

createSensor.count ops

destroyNoun.count ops

DMS Internal Metrics

Performance Metrics C-21

Table C–44 shows the DMS internal collector metrics.

Table C–45 shows the DMS internal transtrace metrics.

destroySensor.count ops

lastTreeNodeID.value

sampleMetric.count ops

sensorWeight.value

treeNodes.maxValue

treeNodes.value

Table C–44 DMS-Internal Collector Metrics

Metric Description Unit

logger.count ops

logger.logged ops

responseGenerateTime.active threads

responseGenerateTime.avg

responseGenerateTime.completed

responseGenerateTime.maxActive

responseGenerateTime.maxTime

responseGenerateTime.minTime

responseGenerateTime.time

Table C–45 DMS-Internal Transtrace Metrics

Metric Description Unit

expireMessages.avg

expireMessages.completed

expireMessages.maxActive

expireMessages.maxTime

expireMessages.minTime

expireMessages.time

messageCount.value

pendingMessageCount.value

s_debugEnabled.value

s_dumpEnabled.value

s_ecidEnabled.value

s_transTraceEnabled.value

storeSize.value

Table C–43 (Cont.) DMS-Internal Measurement Metrics

Metric Description Unit

DMS Internal Metrics

C-22 Oracle Application Server Performance Guide

OC4J Performance Metrics D-1

D
OC4J Performance Metrics

This appendix covers the following metrics:

■ JTA Resource Metrics

■ JCA Metrics

■ OC4J J2EE Application Metrics

■ OC4J JMS Metrics

■ OC4J Task Manager Metrics

■ Java Object Cache JOC Metrics

JTA Resource Metrics

D-2 Oracle Application Server Performance Guide

D.1 JTA Resource Metrics
Table D–1 shows the JTA resource metrics.

The metric table type is JTAResource.

Table D–1 /oc4j/JTAResource Metrics

Metric with

JSR-77 JTA Resource Description Unit

ActiveCount

jtaresource_active

Total count of active transactions. A consistently high value can indicate a
heavy load on a server.

ops

AverageCommitTime

jtaresource_averageCommit

Average commit time of all transactions. This is the average of the
jtaresource_performTransaction values, however, this is a mean
average so there may be spikes in the system indicating other issues as well.

msecs

CommittedCount

jtaresource_committed

Total count of transactions which have committed. ops

HeuristicCommittedCount

jtaresource_heuristicCommitted

Total count of heuristically committed transactions.

A high value suggests the system or application may not be automated
enough, for example, too much system administration in general or
inadequate handling of transaction architecture, or a particular issue has
occurred which required extensive administration. This is due to a
subordinate TransactionManager and not a resource manager being
rollbacked while in the prepared state.

ops

HeuristicCount

jtaresource_heuristic

Total count of all heuristically rolledback and committed transactions. See
comments for heuristicCommittedCount and
heuristicRolledbackCount.

ops

HeuristicMixedExceptionCount

jtaresource_heuristicMixedException

Total count of HeuristicMixedExceptions encountered.

A high value can indicate a high number of potentially non-ACID outcomes
resulting from inconsistent or inappropriate administrative intervention.

ops

HeuristicRollbackExceptionCou

nt

jtaresource_heuristicRollbackException

Total count of HeuristicRollbackExceptions encountered.

A high value suggests the system or application may not be automated
enough, for example, too much system administration in general or
inadequate handling of transaction architecture, or a particular issue has
occurred which required extensive administration. Unlike the
rolledbackDueToAdminCount metric which indicates adminstrative
rollback at the root transaction manager level while a transaction is active,
this is due to either a subordinate TransactionManager or resource manager
being rolledback while in the prepared state.

ops

HeuristicRolledbackCount

jtaresource_heuristicRolledback

Total count of heuristically rolledback transactions.

A high value here suggests the system or application may not be automated
enough for example, too much system administration in general or
inadequate handling in transaction architecture, or a particular issue has
occurred which required extensive administration. This is due to a
subordinate TransactionManager and not a resource manager being
committed while in the prepared state.

ops

IllegalStateExceptionCount

jtaresource_illegalStateException

Total count of IllegalStateExceptions encountered.

A high value should be rare and should only be possible as a result of prior
administrative intervention.

ops

PerformTransaction

jtaresource_performTransaction

Time from begin to end of the transaction.

This is useful as a high-level indicator of performance issues, however, as it
is a measure from the begin to the end of the transaction only, anything that
occurs within this time could be the cause. For example, application logic,
database activity, JMS activity, or transaction processing.

msecs

RollbackCompletion

jtaresource_rollbackCompletion

Time required for a rollback completion.

A high value indicates delays in the rollback calls on resourcemanagers
which may be a result of network latency or resource manager issues.

JTA Resource Metrics

OC4J Performance Metrics D-3

RollbackExceptionCount

jtaresource_rollbackException

Total count of RollbackExceptions encountered.

A high value can indicate an issue in the system (for example, a database is
down) which results in performance degradation. This can result from both
a direct internal system failure or from the application calling
setRollbackOnly for some reason.

Suggest examining the fine-grained rollback cause counts and logs for the
cause of the rollbacks as well as looking into application code which calls
setRollbackOnly.

ops

RolledbackCount

jtaresource_rolledback

Total count of transactions which have rolledback.

A high value can indicate an issue in the system (for example a database is
down) which results in performance degradation.

ops

RolledbackDueToAdminCount

jtaresource_rolledbackDueToAdmin

Total count of transactions that have rolledback due to administrative
action.

A high value here suggests the system or application may not be automated
enough. For example, too much system administration in general or
inadequate handling of transaction architecture, or a particular issue has
occurred which required extensive administration.

ops

RolledbackDueToAppCount

jtaresource_rolledbackDueToApp

Total count of transactions that have rolledback due to the application
calling setRollbackOnly or rollback explicitly.

A high value here can occur for any reason, but most often occurs due to
some handled exception within an application, for example, SQLException
during database update.

Suggest looking into application code which calls setRollbackOnly or
rollback to see why it is doing so.

ops

RolledbackDueToResourceCount

jtaresource_rolledbackDueToResource

Total count of transactions that have rolledback due to and error in an
enlisted resource.

A high value here can indicate an issue with one or more resource
managers, for example, database or the network connection between OC4J
and these resources.

ops

RolledbackDueToTimedOutCount

jtaresource_rolledbackDueToTimedOut

Total count of transactions that have rolledback due to timeout.

A high number can indicate any number of issues are causing the
transaction, or activity within transactional bounds, to take too long or the
timeout value specified is not flexible enough.

Suggest looking into what activities within the transactions involved, which
may be of a certain type or application, are taking up time or adjust the
transaction-timeout value in the transaction-manager.xml
configuration file.

ops

SecurityExceptionCount

jtaresource_securityException

Total count of SecurityExceptions encountered.

A high value, or any value getter than 0, can indicate an issue with the
identity on the thread executing this.

ops

SinglePhaseCommitCompletion

jtaresource_
singlePhaseCommitCompletion

Time required for a single-phase commit completion.

A single phase commit involves committing of a single resource only and
therefore no 2PC costs, for example logging, are incurred and a large value
here generally indicates an issue with the resource which is being
committed, for example network latency to the database, suggest looking
closer at the metrics of the resource involved in the commit.

Table D–1 (Cont.) /oc4j/JTAResource Metrics

Metric with

JSR-77 JTA Resource Description Unit

JCA Metrics

D-4 Oracle Application Server Performance Guide

D.2 JCA Metrics
Table D–2 shows the JCA metrics.

The metric table type is jca_connection_stats.

Table D–3 shows the JCA connection pool stats metrics.

SystemExceptionCount

jtaresource_systemException

Total count of SystemExceptions encountered.

A high value here should never occur and indicates a serious failure in the
system. Suggest analyzing OC4J and resource manager logs.

TransactionSuspended

jtaresource_transactionSuspended

Time transaction has been suspended.

A high value here indicates that the transactions are being held in a
suspended state waiting for return a call in a different or no transactional
context, generally from an EJB method call, or during propagation of a
transaction context.

Suggest analyzing the application to determine what activity is taking place
during the suspend or whether there is a network latency in the case of
propagation.

TwoPhaseCommitCompletion

jtaresource_
twoPhaseCommitCompletion

Time required for a two-phase commit completion.

A high value here indicates delays in the prepare and commit calls on
resource managers or the transaction record logging in OC4J.

Suggest looking closer at the metrics of the resources involved in the
prepare and commit as well as performance settings in for transaction
record logging in OC4J found in the transaction-manager.xml
configuration file.

Table D–2 oc4j/application/OracleASjms/JCAmetrics Metrics

Metric Description Unit

closeCount.count Number of connection handles closed count. ops

createCount.count Number of connection handles created count. ops

poolName.value Name of connection pool value. pool name

useTime.avg Time spent using a connection. time

useTime.completed Time spent using a connection. ops

useTime.maxTime Time spent using a connection. time

useTime.minTime Time spent using a connection. time

useTime.time Time spent using a connection. time

waitTime.avg Time spent waiting for a connection to be available. time

waitTime.completed Time spent waiting for a connection to be available. ops

waitTime.maxTime Time spent waiting for a connection to be available. time

waitTime.minTime Time spent waiting for a connection to be available. time

waitTime.time Time spent waiting for a connection to be available. time

Table D–1 (Cont.) /oc4j/JTAResource Metrics

Metric with

JSR-77 JTA Resource Description Unit

JCA Metrics

OC4J Performance Metrics D-5

The metric table type is jca_connection_pool_stats.

Table D–3 /oc4j/jca_connection_pool_stats Metrics

Metric Description Unit

closeCount.count Number of ManagedConnections closed. ops

createCount.count Number of ManagedConnections created. ops

errorCount.count Number of connection error events. ops

expiredCount.count Number of expired connections removed from pool. ops

freePoolSize.maxValue Number of free connections in the pool. connections

freePoolSize.minValue Number of free connections in the pool. connections

freePoolSize.value Number of free connections in the pool. connections

inactivityTimeout.value Configuration parameter: timeout for unused connections. time

inactivityTimeoutCheck.value Configuration parameter: when to check for unused
connections.

initial-capacity.value Configuration parameter: number of connections to be
pre-created by the pool.

ops

invalidCount.count Number of invalid connections removed from pool. ops

maxPoolSize.value Configuration parameter: maximum number of connections. connections

minPoolSize.value Configuration parameter: minimum number of connections. connections

poolSize.maxValue Size of connection pool. connections

poolSize.minValue Size of connection pool. connections

poolSize.value Size of connection pool. connections

requestTimeoutCount.count Number of failed connection requests due to timeout. ops

scheme.value Scheme configuration parameter: connection pooling
scheme.

useTime.avg Time spent using a connection time

useTime.completed Time spent using a connection ops

useTime.maxTime Time spent using a connection time

useTime.minTime Time spent using a connection time

useTime.time Time spent using a connection time

waitTime.avg Time spent waiting for a connection to be available time

waitTime.completed Time spent waiting for a connection to be available ops

waitTime.maxTime Time spent waiting for a connection to be available time

waitTime.minTime Time spent waiting for a connection to be available time

waitTime.time Time spent waiting for a connection to be available time

waitTimeout.value Configuration parameter: timeout waiting for a connection
in fixed_wait scheme

waitingThreadCount.active Number of threads waiting for connection. ops

waitingThreadCount.avg Number of threads waiting for connection active.

waitingThreadCount.completed Number of threads waiting for connection active. ops

waitingThreadCount.maxActive Number of threads waiting for connection active. threads

waitingThreadCount.maxTime Number of threads waiting for connection active. time

waitingThreadCount.minTime Number of threads waiting for connection active. time

waitingThreadCount.time Number of threads waiting for connection active. time

OC4J J2EE Application Metrics

D-6 Oracle Application Server Performance Guide

D.3 OC4J J2EE Application Metrics
This section lists the OC4J J2EE application related metrics.

This section covers the following metrics:

■ Web Module Metrics

■ Web Context Metrics

■ OC4J Servlet Metrics

■ OC4J JSP Metrics

■ OC4J EJB Metrics

■ OC4J OPMN Info Metrics

■ OC4J Work Management Pool Metrics

D.3.1 Web Module Metrics
There is one set of metrics for each Web module within each J2EE application.

Table D–4 shows the web module metrics.

The metric table type is oc4j_web_module.

Table D–4 OC4J/application/WEBs Metrics

Metric Description Units

parseRequest.active Current number of threads trying to read/parse AJP or HTTP requests

parseRequest.avg Average time spent to read/parse requests msecs

parseRequest.completed Number of web requests that have been parsed ops

parseRequest.maxActive Maximum number of threads trying to read/parse AJP or HTTP
requests

threads

parseRequest.maxTime Maximum time spent to read/parse requests msecs

parseRequest.minTime Minimum time spent to read/parse requests msecs

parseRequest.time Total time spent to read/parse requests from the socket msecs

processRequest.active Current number of threads servicing web requests

processRequest.avg Average time spent servicing web requests msecs

processRequest.completed Number of web requests processed by this application ops

processRequest.maxActive Maximum number of threads servicing web requests threads

processRequest.maxTime Maximum time spent servicing a web request msecs

processRequest.minTime Minimum time spent servicing a web request msecs

processRequest.time Total time spent servicing this application’s web requests msecs

resolveContext.active Current number of threads trying to create/find the servlet context

resolveContext.avg Average time spent to create/find the servlet context msecs

resolveContext.completed Count of completed context resolves ops

resolveContext.maxActive Maximum number of threads trying to create/find the servlet context threads

resolveContext.maxTime Maximum time spent to create/find the servlet context msecs

resolveContext.minTime Minimum time spent to create/find the servlet context msecs

resolveContext.time Total time spent to create/find the servlet context. Each web module
(WAR) maps to a servlet context

msecs

OC4J J2EE Application Metrics

OC4J Performance Metrics D-7

D.3.2 Web Context Metrics
Table D–5 shows the web context metrics. There is one set of web context metrics for
each Web context module within each J2EE application.

The metric table type is oc4j_context.

D.3.3 OC4J Servlet Metrics
Table D–6 shows the servlet metrics. There is one set of servlet metrics for each servlet
in each Web module within each J2EE application.

The metric table type is oc4j_servlet.

D.3.4 OC4J JSP Metrics

Table D–5 OC4J/application/Webs/context Metrics

Metric Description Unit

resolveServlet.time Total time spent to create/locate servlet instances (within
the servlet context). This includes the time for any
required authentication.

msecs

resolveServlet.completed Total Number of lookups for a servlet by OC4J ops

resolveServlet.minTime Minimum time spent to create/locate the servlet
instance (within the servlet context)

msecs

resolveServlet.maxTime Maximum time spent to create/locate the servlet
instance (within the servlet context)

msecs

resolveServlet.avg Average time spent to create/locate the servlet instance
(within the servlet context)

msecs

sessionActivation.active Number of active sessions ops

sessionActivation.time Total time in which sessions have been active msecs

sessionActivation.completed Number of session activations ops

sessionActivation.minTime Minimum time a session was active msecs

sessionActivation.maxTime Maximum time a session was active msecs

sessionActivation.avg Average session lifetime msecs

service.time Total time spent servicing requests. The service metrics
for the servlet include any time spent in the calls to the
database. If you need to determine just the oc4j service
time, subtract the appropriate execution times.

msecs

service.completed Total number of requests serviced ops

Table D–6 OC4J/application/WEBs/context /SERVLETS/servlet Metrics

Metric Description Units

service.active Current number of threads servicing this servlet threads

service.avg Average time spent in servicing the servlet msecs

service.completed Total number of calls to service()

service.maxActive Maximum number of threads servicing this servlet threads

service.maxTime Maximum time spent on a servlet’s service() call ops

service.minTime Minimum time spent on a servlet’s service() call msecs

service.time Total time spent on the servlet’s service() call msecs

OC4J J2EE Application Metrics

D-8 Oracle Application Server Performance Guide

D.3.4.1 JSP Runtime Metrics
Table D–7 shows the JSP metrics. There is one set of JSP metrics for each Web context
for each J2EE application.

The metric table type is oc4j_jspExec.

D.3.4.2 JSP Metrics
Table D–8 shows the JSP metrics. There is one set of metrics for each JSP in each Web
module.

The metric table types are oc4j_jsp(threadsafe=true) and oc4j_
jsp(threadsafe=false).

To list these metrics using dmstool, enclose the metric table type in quotation marks.

For example:

dmstool -table "oc4j_jsp(threadsafe=true)"

D.3.5 OC4J EJB Metrics

D.3.5.1 OC4J EJB Session Bean Metrics
Table D–9 shows the EJB Session bean metrics showing information on each session
bean.

Table D–7 OC4J/application/WEBs/context /JSP Metrics

Metric Description Unit

processRequest.time Time spent processing requests for JSPs

Only used for Context/Application name

msecs

processRequest.completed Number of requests for JSPs processed by this application ops

processRequest.minTime Minimum time spent processing requests for JSPs msecs

processRequest.maxTime Maximum time spent processing requests for JSPs msecs

processRequest.avg Average time spent processing requests for JSPs msecs

processRequest.active Current number of active requests for JSPs ops

Table D–8 OC4J/application/WEBs/context /JSPjsp_name Metrics

Metric Description Unit

activeInstances.value Number of active instances. Only used when threadsafe=false instances

availableInstances.value Number of available (that is, created) instances.

This value is only provided when threadsafe=false.

instances

service.active Current number of active requests for the JSP

service.avg Average time spent servicing the JSP msecs

service.completed Number of requests for JSPs processed by this JSP ops

service.maxTime Maximum time spent servicing the JSP msecs

service.minTime Minimum time spent servicing the JSP msecs

service.time Time to serve a JSP (that is, actual execution time of the JSP) msecs

OC4J J2EE Application Metrics

OC4J Performance Metrics D-9

The metric table type is oc4j_ejb_session_bean.

D.3.5.2 EJB Entity Bean Metrics
Table D–10 shows the entity bean metrics. Oracle Application Server provides a set of
these metrics for each type of bean in each EJB jar file in each J2EE application.

The metric table type is oc4j_ejb_entity_bean.

D.3.5.3 EJB Method Metrics
Table D–11 shows the EJB method metrics. There is one set of EJB method metrics for
each method within each type of EJB bean.

The metric table type is oc4j_ejb_method.

The client.* metrics show values for the actual implementation of the method. The
wrapper.* metrics show values for the wrapper that was automatically generated for
the method.

Table D–9 OC4J EJB Session Bean Metrics

Metric Description Unit

session-type.value Provides information on the session type: Stateless or Stateful String

transaction-type.value Provides information on the transaction type: Container or Bean String

Table D–10 OC4J/application/EJBs/ejb-jar-module/ejb-name Metrics

Metric Description Unit

transaction-type.value Possible values: container or bean

session-type.value Possible values: stateful or stateless

bean-type.value Possible values: session or entity bean

exclusive-write-access.value Possible values: true or false

isolation.value Possible values: serializable, uncommitted, committed,
repeatable_read, none, DB-determined

The value is DB-determined when the isolation attribute is omitted.

persistence-type.value Possible values: container or bean or

See Also: Chapter 6, "Advanced EJB Subjects" in Oracle Containers
for J2EE Enterprise JavaBeans Developer’s Guide for information on
automatically generated wrappers.

Table D–11 OC4J/application/EJBs/ejb-jar-module/ejb-name/method-name Metrics

Metric Description Unit

client.active Current number of threads accessing the actual implementation of this method ops

client.avg Average time spent inside the actual implementation of this method msecs

client.completed Number of requests for beans processed by this application ops

client.maxActive Maximum number of threads accessing the actual implementation of this
method

ops

client.maxTime Maximum time spent inside the actual implementation of this method msecs

client.minTime Minimum time spent inside the actual implementation of this method msecs

client.time Time spent inside the actual implementation of this method msecs

OC4J J2EE Application Metrics

D-10 Oracle Application Server Performance Guide

D.3.5.4 EJB Stateless Bean Metrics
Table D–12 shows the EJB stateless bean metrics.

The metric table type is oc4j_ejb_stateless_bean.

D.3.5.5 EJB Stateful Bean Metrics
Table D–13 shows the EJB stateful bean metrics.

The metric table type is oc4j_ejb_stateful_bean.

ejbPostCreate.active Current number of threads executing ejbPostCreate ops

ejbPostCreate.avg Average time spent in ejbPostCreate msecs

ejbPostCreate.completed Number of times this ejbPostCreate has been called ops

ejbPostCreate.maxTime Maximum time spent in ejbPostCreate msecs

ejbPostCreate.minTime Minimum time spent in ejbPostCreate msecs

ejbPostCreate.time Time spent in the ejbPostCreate method (entity beans) msecs

trans-attribute.value Transaction attribute. Possible values: NotSupported, Supports,
RequiresNew, Mandatory, and Never

wrapper.active Current number of threads accessing the automatically generated wrapper
method

wrapper.avg Average time spent inside the automatically generated wrapper method msecs

wrapper.completed Number of requests for beans processed by this application ops

wrapper.maxActive Maximum number of threads that access the wrapper ops

wrapper.maxTime Maximum time spent inside the automatically generated wrapper method msecs

wrapper.minTime Minimum time spent inside the automatically generated wrapper method msecs

wrapper.time Time spent inside the automatically generated wrapper method. Note: Not all
the wrapper methods invoke the actual bean implementation at runtime (for
example, create method in a stateless bean). This means that the time spent in
the wrapper code could be less than the time spent in the bean implementation

msecs

Table D–12 OC4J EJB Stateless Bean Metrics

Metric Description Unit

pooled.count Number of Pooled Instances count count

pooled.maxValue Number of Pooled Instances ops

pooled.minValue Number of Pooled Instances ops

pooled.value Number of Pooled Instances ops

ready.count Number of Ready Instances count

ready.maxValue Number of Ready Instances ops

ready.minValue Number of Ready Instances ops

ready.value Number of Ready Instances

session-type.value Session type

Table D–11 (Cont.) OC4J/application/EJBs/ejb-jar-module/ejb-name/method-name Metrics

Metric Description Unit

OC4J J2EE Application Metrics

OC4J Performance Metrics D-11

D.3.5.6 EJB Message-Driven Bean Metrics
Table D–14 shows the message-driven bean metrics.

The metric table type is oc4j_ejb_message-driven_bean.

Table D–13 OC4J EJB Stateful Bean Metrics

Metric Description

passive.count Number of Passivated Instances count

passive.maxValue Number of Passivated Instances ops

passive.minValue Number of Passivated Instances ops

passive.value Number of Passivated Instances ops

ready.count Number of Ready Instances count

ready.maxValue Number of Ready Instances ops

ready.minValue Number of Ready Instances ops

ready.value Number of Ready Instances ops

session-type.value Session type

transaction-type.value Transaction

Table D–14 OC4J EJB Message-driven Bean Metrics

Metric Description Units

applicationExceptionCount.count Number of application exceptions thrown count

failedMessageDeliveryCount.count Number of failed message deliveries count

messageDelivery.avg Message delivery attempts time

messageDelivery.completed Message delivery attempts ops

messageDelivery.maxTime Message delivery attempts time

messageDelivery.minTime Message delivery attempts time

messageDelivery.time Message delivery attempts time

messageEndpointCount.value Number of message endpoints ops

messageEndpointType.value Message endpoint type Class name

pooled.count Number of Pooled Instances count

pooled.maxValue Number of Pooled Instances ops

pooled.minValue Number of Pooled Instances ops

pooled.value Number of Pooled Instances ops

ready.count Number of Ready Instances count

ready.maxValue Number of Ready Instances ops

ready.minValue Number of Ready Instances ops

ready.value Number of Ready Instances ops

startTime.value The MDB available time for service time

successfulMessageDeliveryCount.co
unt

Number of successful message deliveries count

systemExceptionCount.count Number of SystemExceptions thrown count

transaction-type.value Transaction value

OC4J J2EE Application Metrics

D-12 Oracle Application Server Performance Guide

D.3.6 OC4J OPMN Info Metrics
Table D–15 shows the OC4J OPMN information metrics.

The metric table type is oc4j_opmn.

D.3.7 OC4J Work Management Pool Metrics
Table D–16 shows the OC4J Work management pool metrics.

The metric table type is oc4j_workManagementPool.

Table D–15 OC4J OPMN Information Metrics

Metric Description Unit

default_application_log.value Specifies the default application log file path.

ias_cluster.value Specifies the Oracle Application Server cluster name. String

ias_instance.value Specifies the Oracle Application Server instance name. String

jms_log.value Specifies the JMS log file path. String

oc4j_instance.value Specifies the OC4J instance ID. String

oc4j_island.value Specifies the OC4J island ID. String

opmn_group.value Specifies the OPMN group ID. String

opmn_sequence.value Specifies the OPMN sequence ID. String

rmi_log.value Specifies the RMI log file path name. String

server_log.value Specifies the application server log file path. String

Table D–16 OC4J Work Management Pool Metrics

Metric Description Unit

idleThreadCount Number of idle threads in the pool. This is a current thread pool state metric. threads

keepAlive Time before idle threads are removed from available pool. This is a configuration
value metric

milliseconds

maxPoolSize Maximum number of threads in the pool. This is a configuration value metric threads

maxQueueSize Maximum queue size. This is a configuration value metric. work_requests

minPoolSize Minimum number of threads in the pool. This is a configuration value metric. threads

queueFullEvent Number of work submission failures due to full queue. This is a current thread
pool state metric.

ops

queueSize Current queue size. This is a current thread pool state metric. work_requests

totalThreadCount Total number of threads in the pool. This is a current thread pool state metric. threads

workStartDuration Duration between work accepted and work started events. This is a current thread
pool state metric. Waiting time is defined as the time period between the work
submission is accepted and the execution of the work starts. This metric measures
the duration between a work request submission is accepted by the pool and the
time when a thread is allocated from the thread pool to run the work. If a thread is
readily available, this would measure the processing overhead of the threadpool in
finding an available thread and setting up the proper context for processing the
work. If all available threads are busy handling other work requests, this time
would also include the queuing time.

ops

OC4J JMS Metrics

OC4J Performance Metrics D-13

D.4 OC4J JMS Metrics
OC4J JMS metrics are organized into metric tables and fall into two categories:

■ JMS API-level metrics: collected on objects visible to the JMS API (for example,
connections, sessions, producers, consumers, and browsers). JMS API-level metrics
are collected and maintained only for Web and EJB clients (application clients also
collect API-level metrics, but do so in their own JVM; these metrics are not
available on the OC4J JMS server).

■ JMS Server-level metrics: collected by the OC4J JMS server and maintained
independent of client-state. JMS Server-level metrics are collected and maintained
for all types of clients: Application, Web, and EJB.

Each OC4J JMS metric table (metric table type) contains metrics for instances of the
same type; different instances have unique names. For each instance in a metric table,
a set of metrics is collected. The names for metrics in each instance are unique IDs that
OC4J JMS generates.

Instances may have one or more metrics whose value is the name of another metric
instance. For example, the JMS session instances contain metrics that point to the
parent containing JMS connection instance. You can use the pointers to navigate
through the metrics.

A parent metric instance usually includes a counter metric indicating the number of
child metrics of a certain type that have been created. Child metric instances may
appear and disappear as the underlying objects are created and destroyed; the counter
keeps track of the total number of such instances that were created during the lifetime
of the parent.

D.4.1 JMS Metric Tables
OC4J JMS metrics are divided into three types, based on how they are updated:

1. CTOR Metrics: Metrics that are set in the constructor or initialization routine of
the associated JMS object, and are never changed during the lifetime of the object.

2. Normal Metrics: Object level state metrics that are updated as soon as the
associated state of the JMS object changes.

3. Lazy Metrics: these state metrics are updated lazily, that is, not as soon as the
underlying metric value changes, but only periodically (these are typically server
store metrics and are updated each time the store is cleaned up of expired
messages).

Table D–17 shows a summary of the organization of the OC4J JMS metric tables.

Note: Oracle Application Server JMS metrics are available only for
OC4J JMS (thus, metrics are not available for OJMS).

See Also: Oracle Containers for J2EE Services Guide for more
information on OC4J JMS

OC4J JMS Metrics

D-14 Oracle Application Server Performance Guide

D.4.2 JMS Stats Metric Table
Table D–18 shows the JMS Stats metrics.

The metric table type is JMSStats.

Table D–17 OC4J JMS Metric Tables

JMS Metric Table Type Parent Table Type
Number of
Instances Description

JMSConnectionStats JMSStats 1 per JMS
connection

Statistics for the JMS connections active in this
server

JMSDestinationStats JMSStats 1 per permanent
JMS destination

Statistics for each permanent JMS destination
known to the OC4J JMS server

JMSDurableSubscriberStats JMSStats 1 per JMS durable
subscriber

Statistics for each JMS durable subscription
known to this server

JMSMessageBrowserStats JMSSessionStats 1 per JMS queue
browser

 Statistics for the JMS queue browsers in this
server

JMSMessageConsumerStats JMSSessionStats 1 per JMS message
consumer

Statistics for the JMS consumers active in this
server

JMSMessageProducerStats JMSSessionStats 1 per JMS message
producer

Statistics for the JMS producers active in this
server

JMSPersistenceStats JMSDestinationStats 1 per server-side
persistent
destination

Statistics for operations on the persistence file for
each persistent destination

JMSRequestHandlerStats JMSStats 1 per remote JMS
connection

Statistics for the request handler thread servicing
a remote JMS connection.

JMSSessionStats JMSConnectionStats 1 per JMS session Statistics for the JMS sessions active in this
server

JMSStats none 1 Statistics for the OC4J JMS Server

JMSStoreStats JMSDestinationStats
JMSTemporaryDestin
ationStats

1 per server-side
message store

Statistics for each message store (one per queue,
one per subscription per topic) on the OC4J JMS
server

JMSTemporaryDestinationStats JMSStats 1 per temporary
JMS destination

Statistics for each temporary JMS destination
known to the OC4J JMS server

Table D–18 JMSStats Metric Table

Metric Description Update Unit

activeConnections

activeHandlers

address The hostname(s) from which the JMS server accepts remote
connections

ctor string

closeConnection

closeConsumer

commit

connections

createConsumer

deqMessage

enqMessage

host.value The explicit hostname on which the OC4J JMS server is
running.

ctor string

OC4J JMS Metrics

OC4J Performance Metrics D-15

listMessages

messageCommitted

messageCount

messageDequeued

messageDiscarded

messageEnqueued

messageExpired

messagePagedIn

messagePagedOut

messageRecovered

messageRolledback

oc4j.jms.checkPermissions

oc4j.jms.debug Value of the oc4j.jms.debug OC4J JMS control knob ctor bool

oc4j.jms.forceRecovery Value of the oc4j.jms.forceRecovery OC4J JMS control
knob

ctor bool

oc4j.jms.j2ee14

oc4j.jms.listenerAttempts Value of the oc4j.jms.listenerAttempts OC4J JMS
control knob

ctor int

oc4j.jms.maxOpenFiles Value of the oc4j.jms.maxOpenFiles OC4J JMS control
knob

ctor int

oc4j.jms.messagePoll Value of the oc4j.jms.messagePoll OC4J JMS control
knob

ctor msecs

oc4j.jms.noDms Value of the oc4j.jms.noDms OC4J JMS control knob ctor bool

oc4j.jms.noJmx

oc4j.jms.pagingThreshold

oc4j.jms.printStackTrace

oc4j.jms.reconnectAttempts

oc4j.jms.reconnectWait

oc4j.jms.rememberALLXids

oc4j.jms.saveAllExpired Value of the oc4j.jms.saveAllExpired OC4J JMS control
knob

ctor bool

oc4j.jms.serverPoll Value of the oc4j.jms.serverPoll OC4J JMS control
knob

ctor msecs

oc4j.jms.socketBufsize Value of the oc4j.jms.socketBufsize OC4J JMS control
knob

ctor int

peekMessage

pendingMessageCount

port.value The TCP/IP port on which the JMS server listens for incoming
connections

ctor int

registerConnection

rollback

startTime System.currentTimeMillis() when the OC4J JMS server
was started

ctor msecs

Table D–18 (Cont.) JMSStats Metric Table

Metric Description Update Unit

OC4J JMS Metrics

D-16 Oracle Application Server Performance Guide

D.4.3 JMS Request Handler Stats
Table D–19 shows the JMS Request Handler Stats.

The metric table type is JMSRequestHandlerStats.

D.4.4 JMS Connection Stats
Table D–20 shows the JMS Connection Stats.

The metric table type is JMSConnectionStats.

D.4.5 JMS Session Stats
Table D–21 shows the JMS Session Stats.

stats

storeSize

taskManagerInterval The scheduling interval of the OC4J task manager (and the
scheduling interval for the OC4J JMS expiration task)

ctor msecs

Table D–19 JMSRequestHandlerStats Metrics

Metric Description Update Unit

address.value The hostname from which the remote connection originates (may be an
implicit, special address)

ctor string

connectionID.value The ID of the JMSConnectionStats instance ctor string

host.value The explicit hostname from which the remote connection originates ctor string

port.value The TCP/IP port from which the remote connection originates ctor int

startTime.value System.currentTimeMillis() when the request handler was started ctor string

Table D–20 JMSConnectionStats Metrics

Metric Description Update Unit

address.value The implicit hostname of the remote JMS server host for this connection
as specified in the connection factory used to create this connection; set
only for non-local connections.

ctor string

clientID.value The administratively configured (for ctor) or programmatically set (for
normal) clientID for this connection

ctor/normal string

domain.value The JMS domain ("queue", "topic", or "unified") of this connection ctor string

exceptionListener
.value

The stringified name of the current exception listener for this connection normal string

host.value The explicit hostname of the remote JMS server host for this connection;
set only for non-local connections

ctor string

isLocal.value "true" if and only if the JMS connection is local to the OC4J JMS server in
the same JVM

ctor boolean

isXA.value "true" if and only if the connection is in XA mode ctor boolean

port.value The remote JMS server port for this connection; set only for non-local
connections

ctor int

startTime.value System.currentTimeMillis() when this connection was created ctor msecs

user.value The user identity for this connection ctor string

method-name An interval timer metric (PhaseEvent Sensor) for every major method
call in this connection object.

normal

Table D–18 (Cont.) JMSStats Metric Table

Metric Description Update Unit

OC4J JMS Metrics

OC4J Performance Metrics D-17

The metric table type is JMSSessionStats.

D.4.6 JMS Message Producer Stats
Table D–22 shows the JMS Producer Stats.

The metric table type is JMSProducerStats.

D.4.7 JMS Message Browser Stats
Table D–23 shows the JMS Browser Stats.

The metric table type is JMSBrowserStats.

Table D–21 JMSSessionStats Metrics

Metric Description Update Unit

acknowledgeMode.value The acknowledge mode of this session. The valid modes are: AUTO_
ACKNOWLEDGE, CLIENT_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE,
and SESSION_TRANSACTED.

ctor string

domain.value The JMS domain ("queue", "topic", or "unified") of this session ctor string

isXA.value "true" if and only if the session is in XA mode ctor boolean

sessionListener.value The stringified name of the current distinguished listener for this
session

normal string

startTime.value System.currentTimeMillis() when this session was created ctor msecs

transacted.value "true" if and only if the session is transacted ctor boolean

txid.value The integer count of the current local transaction associated with this
session; the counter is increment each time a local transaction is
committed/rolledback; not set for non-transacted session

normal int

xid.value The Xid of the current distributed transaction associated with this
session; set to a null/empty string when in a local transaction mode;
not set if the session never participates in a global transaction

normal string

method-name An interval timer metric (PhaseEvent Sensor) for every major method
call in this session object

normal

Table D–22 JMSProducerStats Metrics

Metric Description Update Unit

deliveryMode.value The current delivery mode of this producer. The valid delivery
mode values are: PERSISTENT and NON_PERSISTENT.

normal string

destination.value The name of the identified destination for this producer;
null/empty for an unidentified producer

ctor string

disableMessageID.value The value is true when message IDs are disabled for the producer normal boolean

disableMessageTimestamp
.value

The value is true when message timestamps are disabled for the
producer

normal boolean

domain.value The JMS domain ("queue", "topic", or "unified") of this producer ctor string

priority.value The current priority of this producer normal int

startTime.value System.currentTimeMillis() when this producer was created ctor msecs

timeToLive.value The current timeToLive of this producer normal msecs

method-name A phase timer (PhaseEvent Sensor) metric for every major method
call in this producer object

normal

OC4J JMS Metrics

D-18 Oracle Application Server Performance Guide

D.4.8 JMS Message Consumer Stats
Table D–24 shows the JMS Message Consumer Stats.

The metric table type is JMSMessageConsumerStats.

D.4.9 JMS Durable Subscription Stats
Table D–25 shows the JMS Durable Subscription Stats.

The metric table type is JMSDurableSubscriptionStats.

D.4.10 JMS Destination Stats
Table D–26 shows the JMS Destination Stats metrics

The metric table type is JMSDestinationStats.

Table D–23 JMSBrowserStats Metrics

Metric Description Update Unit

destination.value The name of the destination for this browser ctor string

selector.value The message selector for this browser; null/empty string if unspecified ctor string

startTime.value System.currentTimeMillis() when this browser was created ctor msecs

method-name An interval timer metric (PhaseEvent Sensor) for every major method call in
this browser object; calls to "hasMoreElements" and "nextElement" are made
on individual enumeration objects, but counted as PhaseEvents in the
browser object to simplify data collection, multiple enumerations can be
active on the same browser

normal

Table D–24 JMSMessageConsumerStats

Metric Description Update Unit

destination.value The name of the destination for this consumer ctor string

domain.value The JMS domain ("queue", "topic", or "unified") of this consumer ctor string

messageListener.value The stringified name of the current message listener for this
consumer

normal string

name.value The name of the durable subscriber for this consumer; set only for
durable topic subscriptions

ctor string

noLocal.value The noLocal setting of a subscription; set only for topic consumers ctor boolean

selector.value The message selector for this consumer; null/empty string if
unspecified

ctor string

startTime.value System.currentTimeMillis() when this consumer was
created

ctor msecs

method-name An interval timer metric (PhaseEvent Sensor) for every major
method call in this consumer object

normal

Table D–25 JMSDurableSubscriptionStats Metrics

Metric Description Update Unit

clientID.value The clientID associated with this durable subscriptions ctor string

destination.value The name of the topic for this durable subscription ctor string

isActive.value "true" if and only if the durable subscription is currently active (being
used by a consumer)

normal boolean

name.value The user-provided name of the durable subscription ctor string

noLocal.value The noLocal flag for this durable subscription ctor boolean

selector.value The JMS message selector for this durable subscription ctor string

OC4J JMS Metrics

OC4J Performance Metrics D-19

D.4.11 JMS Temporary Destination Stats
Table D–27 shows the JMS Temporary Destination Stats.

The metric table type is JMSTempoaryDestinationStats.

D.4.12 JMS Store Stats
Table D–28 shows the JMS StoreStats metric table.

The metric table type is JMSStoreStats.

 The following identity holds:

Table D–26 JMSDestinationStats Metrics

Metric Description Update Unit

domain.value JMS domain, "queue"or "topic", of the destination ctor string

name.value The configured name of the destination. As defined in jms.xml ctor string

locations.value A comma-delimited list of JNDI names bound to the destination.
As defined in jms.xml

ctor string

method-name An interval timer metric (PhaseEvent Sensor) for every major
method call in the destination object

normal

Table D–27 JMSTemporaryDestinationStats Metrics

Metric Description Update Unit

connectionID.value The ID of the JMSConnectionStats instance from which this temporary
destination was created

ctor string

domain.value JMS domain, for example "queue" or "topic", of the destination ctor string

method-name An interval timer metric (PhaseEvent Sensor) for every major method
call in the destination object

normal

Table D–28 JMSStoreStats Metric

Metric Description Update Unit

destination.value A pretty-printed name of the JMS destination associated with this
message store

ctor string

messageCount.value Total number of messages contained in this store lazy int

messageDequeued.count Total number of message dequeues (transacted or otherwise) normal ops

messageDiscarded.count Total number of message discarded after the rollback of an enqueue normal ops

messageEnqueued.count Total number of message enqueues (transacted or otherwise) normal ops

messageExpired.count Total number of message expirations normal ops

messagePagedIn.count Total number of message bodies paged in normal ops

messagePagedOut.count Total number of message bodies paged out normal ops

messageRecovered.count Total number of messages recovered (either from a persistence file,
or after the rollback of a dequeue)

normal ops

pendingMessageCount.value Total number of messages part of an enqueue/dequeue of an active
transaction

lazy int

storeSize.value Total size, in bytes, of the message store. lazy bytes

method-name An interval timer metric (PhaseEvent Sensor) for every major
method call in the message store object

normal

OC4J Task Manager Metrics

D-20 Oracle Application Server Performance Guide

messageCount = messageRecovered + messageEnqueued -
messageDequeued - messageDiscarded - messageExpired

If a message is both enqueued and dequeued in the same transaction, the
messageEnqueued and messageDequeued events occur, but the
messageRecovered and messageDiscarded events do not.

D.4.13 JMS Persistence Stats
Table D–29 shows the JMS Persistence Stats.

The metric table type is JMSPersistenceStats.

D.5 OC4J Task Manager Metrics
Table D–30 shows the OC4J Task Manager metrics.

The metric table type is oc4j_task.

D.6 Java Object Cache JOC Metrics
Table D–31 shows the top level Java Object Cache metrics.

The metric table type is joc.

Table D–29 JMSPersistenceStats Metrics

Metric Description Update Unit

destination.value A pretty-printed name for the JMS destination associated with this
persistence file

ctor string

holePageCount.value The number of 512b pages currently free in this file normal int

isOpen.value "true" iff the persistence file descriptor is currently open (for LRU
caching)

normal boolean

lastUsed.value System.currentTimeMillis() when this persistence file was last
used (for LRUcaching)

normal msecs

persistenceFile.value The absolute path name of the persistence file used for this persistent
destination. This value differs depending on the operating system where
OC4J is running.

ctor string

usedPageCount.value The number of 512b pages currently in use in this file normal int

method-name An interval timer metric (PhaseEvent Sensor) for every major method
call in the persistence file object

normal

Table D–30 OC4J_taskManager Metrics

Metric Description Unit

interval.value Shows how often the task should run. The task manager executes all the tasks
in a round-robin fashion. If the interval is zero, then the task manager executes
the task when it is selected in the round robin.

msecs (Milliseconds)

run().active Number of active threads. threads

run().avg Average time for the taskmanager to run the task msecs

run().completed Number of times the taskmanager has run the task. ops

run().maxActive Maximum number of active tasks. threads

run().maxTime Maximum time for the task to run. msecs

run().minTime Minimum time for the task to run. msecs

run().time Total time spent running the task manager msecs

Java Object Cache JOC Metrics

OC4J Performance Metrics D-21

Table D–32 shows the java object cache region metrics.

The metric table type is java_cache_region.

Note: The JOC metrics are only visible when the DMS element of the
javacache.xml configuration file is set to the value true.

Table D–31 JOC Java Object Cache Metrics

Metric Description Unit

disk_Size.value Total number of bytes of disk consumed by objects in the cache bytes

memory_object_count.value Total number of objects in the cache bytes

memory_size.value Total number of bytes of memory consumed by objects in the
cache

bytes

response_q_size.value Response Queue size ops

task_count.value Total number of async tasks ops

time_q_size.value Time Queue size ops

worker_thread_count.value Total number of worker threads threads

Table D–32 Java Cache Region Metrics

Metric Description Unit

disk_Count.value Total number of objects in the region on disk

disk_Size.value Total number of bytes of disk consumed by objects in the region

disk_average_load_time.value The average load time for objects in the region

memory_average_load_time.value The average load time for objects in the region

memory_object_access_

count.value

Total number of access of objects in the region

memory_object_count.value Total number of objects in the region

memory_size.value Total number of bytes of memory consumed by objects in the region

Java Object Cache JOC Metrics

D-22 Oracle Application Server Performance Guide

Index-1

Index

A
access logging, 6-3
active threads

setting the percentage of threads to be tasked to
process incoming threads, 7-14

activities
idempotent, 7-3
setting the maximum amount in memory within

the same request, 7-14
setting the maximum completion time for an

idempotent service, 7-16
setting the maximum time for a service to

successfully complete an activity, 7-21
AggreSpy

access control, A-7
performance monitoring, A-2, A-4
URL, A-7
using, A-2, A-4
using with standalone OC4J, A-13

Application Server Control
monitoring Oracle Application Server with, 2-2

archive
setting a time for checking the BPEL archive, 7-20

audit events
controlling the amount, 7-12

audit trail
setting, 7-12
setting details, 7-11
setting the logging level, 7-12

audit_details table
definition, 7-10
for storing strings larger than the threshold

setting, 7-11
audit_trail table

controlling the amount of audit events logged by a
process, 7-12

definition, 7-10
for storing strings within the threshold

setting, 7-11
auditDetailThreshold property

definition, 7-11
values, 7-12

auditLevel property
controlling the amount of audit events logged by a

process, 7-12

definition, 7-12
values, 7-12

B
BPEL

activities
impacted by durable processes, 7-2
impacted by in-flight database storage, 7-3

archive
setting a time for checking, 7-20

dehydration store database
database parameters tuning, 7-26
redo logs performance tuning, 7-26
tablespace tuning, 7-26

delivery cache
monitoring the size of, 7-13

domain configuration property settings
definition, 7-2

domain level
performance properties, 7-11
performance properties that cannot be

edited, 7-11
dspMaxThreads property

allocates WorkerBean threads, 7-5
idempotent activity

definition, 7-3
in-flight database storage

definition, 7-3
invocations

descriptions of, 7-3
JTA transactions

timeout value, 7-23
OC4J performance tuning

JTA transaction timeout, 7-23
one-way invocations

definition, 7-3
stored in the delivery cache, 7-13

performance tuning
See tuning Oracle BPEL, 7-1

pick activity
impacting durable processes, 7-2
in-flight database storage, 7-3

process configuration property settings
definition, 7-2

process level

Index-2

performance properties, 7-5
receive activity

impacting durable processes, 7-2
in-flight database storage, 7-3

tables
impacted by instance data growth, 7-10

threading model
one-way invocation, 7-4
overview, 7-4
relationship with connecting pooling, 7-5
request-response invocation, 7-4

transient processes
definition, 7-2

tuning
dehydration store database performance

tuning, 7-26
wait activity

impacting durable processes, 7-2
in-flight database storage, 7-3

worker queue connection pool
setting the minimum size, 7-22

WorkerBean threads, 7-5
bpelcClasspath property

definition, 7-12
values, 7-12

bpel.xml file
for setting process level performance

properties, 7-5
built-in performance metrics, 2-2

C
cache

high water mark, 7-16
low water mark, 7-17
monitoring cache statistics in Oracle BPEL

Control, 7-17
removing in-flight instance from, 7-18
warning about impacting performance, 7-19

cached messages
viewing the number of, 7-13

capacity, 1-6
ci_id_range table

saving the instance ID range, 7-16
com.evermind.server.ejb.TimeoutExpiredException

from EJB, 3-16
completionPersistLevel property

definition, 7-5
example of use, 7-6
values, 7-6

completionPersistPolicy property
definition, 7-6
example of use, 7-7
values, 7-7

concurrency
defined, 1-2
limiting, 1-6

connection pooling
relationship with threading, 7-5
setting the invoker queue minimum size, 7-18

setting the worker queue minimum size, 7-22
size must be greater than or equal to sum of

dspMaxThreads property value, 7-25
contention, 1-4

defined, 1-2
CPUs

insufficient, 1-4
optimizing use of, 7-15

cube_instance table
definition, 7-10
growth impacted by completionPersistLevel

property, 7-6
growth impacted by completionPersistPolicy

property, 7-6
cube_scope table

definition, 7-10
growth impacted by completionPersistLevel

property, 7-6
growth impacted by completionPersistPolicy

property, 7-6

D
data source configuration, 7-24
database

log file sync, 8-2
redo log files, 8-2
SGA tuning, 8-3

database parameters
DB_CACHE_SIZE, 7-26
DB_FILE_MULTIBLOCK_READ_COUNT, 7-26
JOB_QUEUE_PROCESSES, 7-26
LOG_BUFFER, 7-26
PROCESSES, 7-26
SESSION_CACHED_CURSORS, 7-26
SHARED_POOL_SIZE, 7-26
tuning, 7-26
UNDO_RETENTION, 7-26

database tables
audit_details, 7-11
audit_trail, 7-12
ci_id_range, 7-16
cube_instance, 7-6
cube_scope, 7-6
dlv_message, 7-13
document, 7-18, 7-19
growth impacted by completionPersistLevel

property, 7-5
growth impacted by completionPersistPolicy

property, 7-6
impacted by instance data growth, 7-10
work_item, 7-6

datasourceJndi property
definition, 7-13
values, 7-13

datasources
inactivity-timeout option, 3-6
initial-limit option, 3-6
max-connections attribute, 3-15
min-connections option, 3-6, 3-16

Index-3

num-cached-statements attribute, 3-8
stmt-cache-size attribute, 3-8

data-sources.xml file
configuring the data source entry, 7-24
location of, 7-24

DB_CACHE_SIZE parameter
tuning, 7-26

DB_FILE_MULTIBLOCK_READ_COUNT parameter
tuning, 7-26

dehydration store database
in-flight database storage, 7-3
performance tuning, 7-26

delivery cache
for storing one-way invocations, 7-13

delivery service database tables
dlv_message, 7-13
invoke_message, 7-13

deliveryPersistPolicy property
definition, 7-13
values, 7-13
warning about changing this property, 7-13

directives
See also httpd.conf directives

dispatcher agent
setting the number of second between triggers

of, 7-14
dispatcher threads

setting the maximum number of, 7-14
setting the minimum number of, 7-15

dlv_message table
definition, 7-10
for saving incoming requests, 7-13

dlv_subscription table
definition, 7-10

DMS
coding tips, B-16
conditional instrumentation, B-15
Event sensors, B-4

using, B-10
getSensorWeight, B-15
instrumentation

definition of, B-2
using, B-8

metrics
definition of, B-4
dumping to files, B-15

monitoring metrics, B-2
naming conventions, B-6
nouns, B-3, B-5

naming conventions, B-7
using, B-9

PhaseEvent sensors, B-4
using, B-10

rollup
descendents, B-24
refresh, B-24
rolled, B-24

rollup nouns, B-6
security, B-15
sensors, B-3

definition of, B-4
destroying, B-16
resetting, B-16

State sensors, B-4
using, B-11

terminology, B-3
testing metrics, B-14
validating metrics, B-13

DMS metric tables, A-2, A-5
dmstool

access control, A-8
address option, A-10, A-13
count option, A-10
dump option, A-10, A-12
format=xml option, A-10
interval option, A-10
list option, A-11
options, A-8
reset option, A-11
table option, A-11
using, A-8

DNS
domain name server, 6-3

document persistence threshold
setting, 7-18

document table
storing large XML documents, 7-18

document_ci_ref table
definition, 7-10

document_dlv_msg_ref table
definition, 7-10

documents
validating, 7-22

domain data source JNDI name
setting, 7-13

domain properties
auditDetailThreshold, 7-11
auditLevel, 7-12
bpelcClasspath, 7-12
datasourceJndi, 7-13
deliveryPersistPolicy, 7-13
dspAgentDelay, 7-14
dspInvokeAllocFactor, 7-14
dspMaxRequestDepth, 7-14
dspMaxThreads, 7-14
dspMinThreads, 7-15
expirationMaxRetry, 7-15
idempotentThreshold, 7-16
instanceKeyBlockSize, 7-16
instCacheHighWatermark, 7-16
instCacheLowWatermark, 7-17
instCachePolicy, 7-18
invokerQueueConnectionPoolMinSize, 7-18
largeDocumentThreshold, 7-18
minBPELWait, 7-19
optCacheOn, 7-19
optIdempotentRouting, 7-20
optSoapShortcut, 7-20
processCheckSecs, 7-20
relaxBpelAssignRules, 7-21

Index-4

slowPerfThreshold, 7-21
statsLastN, 7-21
syncMaxWaitTime, 7-22
txDatasourceJndi, 7-22
uddiLocation, 7-22
validateXML, 7-22
workerQueueConnectionPoolMinSize, 7-22

domain transaction data source JNDI name
setting, 7-22

domains
improving performance and scalability, 7-14

domain.xml file
for setting domain level performance

properties, 7-11
dspAgentDelay property

definition, 7-14
values, 7-14

dspInvokeAllocFactor property
definition, 7-14
values, 7-14

dspMaxRequestDepth property
definition, 7-14
values, 7-14

dspMaxThreads property
connection pooling size must be greater than or

equal to the sum of, 7-25
definition, 7-14
sum of InvokerBean and WorkerBean threads

related to dspMaxThreads property
value, 7-24

values, 7-15
dspMinThreads property

definition, 7-15
values, 7-15

durable processes
activities that impact, 7-2
definition, 7-2

E
EJB configuration

InvokerBean threads, 7-24
Oracle BPEL Server, 7-23
WorkerBean threads, 7-24

EJBs
metrics, D-8

ErrorLog
directive, 6-4

Event sensors, B-4
eviction policy

setting, 7-18
expiration calls

setting the maximum number of, 7-15
expirationMaxRetry property

definition, 7-15
values, 7-15

F
FAST_START_MTTR_TARGET parameter, 8-3

functional demand, 1-6

G
garbage collection

monitoring with the visual garbage collection (VC)
tool, 7-17, 7-19

garbage collection options, 3-4

H
hash

defined, 1-2
heap size

setting, 3-3
HostNameLookups

directive, 6-3
httpd.conf

directives
ErrorLog, 6-4
HostNameLookups, 6-3
KeepAlive, 6-3
KeepAliveTimeout, 6-3
ListenBacklog, 6-2
LogLevel, 6-4
MaxClients, 3-7, 6-2
MaxKeepAliveRequests, 6-3
MaxRequestsPerChild, 6-2
MaxSpareServers, 6-2
MinSpareServers, 6-2
StartServers, 6-2
ThreadsPerChild, 3-8
Timeout, 6-2

I
idempotent property

definition, 7-7
example of use, 7-8
values, 7-7

idempotent services
setting a routing shortcut for, 7-20
setting the maximum completion time, 7-16

idempotentThreshold property
definition, 7-16
values, 7-16

inactivity-timeout attribute, 3-6
incoming messages

saving, 7-13
tuning the WorkerBean threads, 7-13

incoming requests
saving to database tables, 7-13

in-flight database storage
activities that impact, 7-3
pick activity, 7-3
receive activity, 7-3
wait activity, 7-3

in-flight instances
removing from the cache, 7-18
setting the in-memory cache, 7-19
setting the maximum number to place in the cache

Index-5

before pruning, 7-16
setting the number to which the cache is

pruned, 7-17
INFO logging level, 3-10
initial-limit attribute, 3-6
in-memory activities

setting the maximum amount within the same
request, 7-14

in-memory cache
setting for in-flight instances, 7-19

inMemoryOptimization property
definition, 7-8
example of use, 7-9
improving throughput, 7-8
values, 7-8

instance cache
monitoring cache statistics in Oracle BPEL

Control, 7-17
instance data

impacting database table growth, 7-10
instance IDs

controlling the instance ID range size, 7-16
instanceKeyBlockSize property

definition, 7-16
values, 7-16

instCacheHighWatermark property
definition, 7-16
values, 7-17
warning about changing, 7-16

instCacheLowWatermark property
definition, 7-17
values, 7-17
warning about changing, 7-17

instCachePolicy property
definition, 7-18
values, 7-18

invocations
one-way, 7-3, 7-4
request-response, 7-4
two-way, 7-3

invoke activities
using the nonBlockingInvoke property, 7-9

invoke_message table
definition, 7-10
for saving incoming requests, 7-13

invoker queue connection pooling
setting the minimum size of, 7-18

InvokerBean threads
configuring, 7-24

invokerQueueConnectionPoolMinSize property
definition, 7-18
values, 7-18

J
J2EE

metrics, D-6
Java options

-XX+AggressiveHeap, 3-5
-XX+DisableExplicitGC, 3-5

Java Virtual Machine (JVM)
performance tuning, 7-25

jca thread-pool, 3-15
JDBC

metrics, C-7
stmt-cache-size, 3-8

JOB_QUEUE_PROCESSES parameter
tuning, 7-26

JSPs
metrics, D-7

JTA transactions
reasons for transactions timing out, 7-23
two-way invocations, 7-4

JVM
metrics, C-6
setting heap size, 3-3

JVM garbage collection, 3-4
JVM metrics

Properties metrics, C-6
JVM system properties metrics, C-6

K
KeepAlive directive, 3-7, 6-3
KeepAlive httpd.conf directive, 6-3
KeepAliveTimeout httpd.conf directive, 6-3

L
large XML documents

impact on performance, 7-19
largeDocumentThreshold property

definition, 7-18
values, 7-19

latency
defined, 1-2

ListenBacklog httpd.conf directive, 6-2
listener threads

configuring, 7-14, 7-15
lists

setting the size of request lists, 7-21
load variances, 1-7
local SOAP requests

setting a shortcut for, 7-20
LOG_BUFFER parameter

tuning, 7-26
LOG_CHECKPOINTS_TO_ALERT parameter, 8-3
logging

access, 6-3
error, 6-4
performance and, 6-3
performance implications of, 6-3

logging level
setting, 7-12

logging levels
setting, 3-10

LogLevel directive, 6-4
logresolve utility, 6-3

Index-6

M
MaxClients directive, 3-7, 6-2
max-connections attribute, 3-15
MaxKeepAliveRequests directive, 3-7
MaxKeepAliveRequests httpd.conf directive, 6-3
MaxRequestsPerChild httpd.conf directive, 6-2
MaxSpareServers httpd.conf directive, 6-2
memory

JVM heap size, 3-3
metric table names, A-2, A-5
metric table types

java_cache_region, D-21
jca_connection_pool_stats, D-5
jca_connection_stats, D-4
JDBC_Connection, C-8
jdbc_connection_pool_stats, C-11
JDBC_ConnectionSource, C-9
JDBC_DataSource, C-7
JDBC_Driver, C-7
JDBC_Statement, C-10
JMSBrowserStats, D-17
JMSConnectionStats, D-16
JMSDestinationStats, D-18
JMSDurableSubscriptionStats, D-18
JMSMessageConsumerStats, D-18
JMSPersistenceStats, D-20
JMSProducerStats, D-17
JMSRequestHandlerStats, D-16
JMSSessionStats, D-17
JMSStats, D-14
JMSStoreStats, D-19
JMSTempoaryDestinationStats, D-19
joc, D-20
JTAResource, D-2
JVM, C-6
mod_oc4j_destination_metrics, C-5
mod_oc4j_mount_pt_metrics, C-4
mod_oc4j_request_failure_causes, C-4
modplsql_Cache, C-12, C-13
modplsql_DatabaseConnectionPool, C-14
modplsql_HTTPResponseCodes, C-3, C-12
modplsql_LastNSQLError, C-13
modplsql_SQLErrorGroup, C-13
oc4j_context, D-7
oc4j_ejb_entity_bean, D-9
oc4j_ejb_message-driven_bean, D-11
oc4j_ejb_method, D-9
oc4j_ejb_session_bean, D-9
oc4j_ejb_stateful_bean, D-10
oc4j_ejb_stateless_bean, D-10
oc4j_jsp(threadsafe=false), D-8
oc4j_jsp(threadsafe=true), D-8
oc4j_jspExec, D-8
oc4j_opmn, D-12
oc4j_servlet, D-7
oc4j_task, D-20
oc4j_web_module, D-6
oc4j_workManagementPool, D-12
ohs_child, C-2
ohs_module, C-3, C-4

ohs_ossl, C-6
ohs_responses, C-3
ohs_server, C-2
ohs_vhostSet, C-3
ohs_virtualHost, C-3
opmn_appctx, C-20
opmn_connect, C-18, C-19
opmn_host_statistics, C-16
opmn_ias_instance, C-16
opmn_oc4j_proc, C-16
opmn_ons, C-18
opmn_ons_topo_entry, C-19
opmn_pm, C-15
opmn_process, C-17
opmn_process_set, C-17
opmn_process_type, C-17

metrics
acknowledgeMode.value, D-17
activeConnections.time, D-14
ActiveCount, D-2
activeHandlers.time, D-14
activeInstances.value, D-8
activeThreadGroups.maxValue, C-6
activeThreadGroups.minValue, C-6
activeThreadGroups.value, C-6
activeThreads.maxValue, C-6
activeThreads.minValue, C-6
activeThreads.value, C-6
address.value, D-14, D-16
applicationExceptionCount.count, D-11
availableInstances.value, D-8
AverageCommitTime, D-2
bean-type.value, D-9
busyChildren.value, C-2
CacheFreeSize.value, C-9
CacheGetConnection.avg, C-9
CacheHit.count, C-9
CacheMiss.count, C-9
CacheSize.value, C-9
cacheStatus.value, C-12, C-13
checkcrl.time, C-6
childFinish.count, C-2
childStart.count, C-2
client.active, D-9
client.avg, D-9
client.completed, D-9
clientID.value, D-16, D-18
client.maxActive, D-9
client.maxTime, D-9
client.minTime, D-9
client.time, D-9
CloseConnectionCount.value, C-11
closeConnection.time, D-14
closeConsumer.time, D-14
closeCount.count, D-4, D-5
closessl.time, C-6
CommittedCount, D-2
commit.time, D-14
connection.active, C-2
connection.avg, C-2

Index-7

ConnectionCloseCount.count, C-7, C-8
connection.completed, C-2
ConnectionCreate.active, C-7, C-8
ConnectionCreate.avg, C-7, C-8
ConnectionCreate.completed, C-7, C-8
ConnectionCreate.maxTime, C-7, C-8
ConnectionCreate.minTime, C-7
ConnectionCreate.time, C-7, C-8
connectionID.value, D-16, D-19
connection.maxTime, C-2
connection.minTime, C-2
ConnectionOpenCount.count, C-7, C-8
connections, D-14
connection.time, C-2
connectssl.time, C-6
connFetch.active, C-14, C-15
connFetch.avg, C-14, C-15
connFetch.completed, C-14, C-15
connFetch.maxTime, C-14, C-15
connFetch.minTime, C-14, C-15
connFetch.time, C-14, C-15
cpuIdle.value, C-16
cpuTime.value, C-17
CreateConnectionCount.value, C-11
createConsumer.time, D-14
createCount.count, D-4, D-5
CreateNewStatement.avg, C-8, C-9
CreateStatement.avg, C-8, C-9
dataReceive.value, C-6
dataSent.value, C-6
decline.count, C-4
default_application_log.value, D-12
deliveryMode.value, D-17
deqMessage.time, D-14
desc.value, C-19
Destination.value, C-4
destination.value, D-17, D-18, D-19, D-20
disableMessageID.value, D-17
disableMessageTimestamp.value, D-17
disk_average_load_time.value, D-21
disk_Count.value, D-21
disk_Size.value, D-21
domain.value, D-16, D-17, D-18, D-19
EJB, D-8
ejbPostCreate.active, D-10
ejbPostCreate.avg, D-10
ejbPostCreate.completed, D-10
ejbPostCreate.maxTime, D-10
ejbPostCreate.minTime, D-10
ejbPostCreate.time, D-10
enqMessage.time, D-14
entercache.time, C-6
error.count, C-2, C-13
errorCount.count, D-5
errorDate.value, C-14
errorRequest.value, C-14
errorText.value, C-14
ErrReq.count, C-4, C-5
ErrReqNonSess.count, C-4, C-5
ErrReqSess.count, C-4, C-5

exceptionListener.value, D-16
exclusive-write-access.value, D-9
Execute.time, C-10
expiredCount.count, D-5
failedMessageDeliveryCount.count, D-11
Failover.count, C-5
Fetch.time, C-10
freeMemory.maxValue, C-6
freeMemory.minValue, C-6
freeMemory.value, C-6
freePhysicalMem.value, C-16
freePoolSize.maxValue, D-5
freePoolSize.minValue, D-5
FreePoolSizeUpperBound.value, C-11
freePoolSize.value, D-5
getcache.time, C-6
get.count, C-2
handle.active, C-2, C-4
handle.avg, C-2, C-4
handle.completed, C-2, C-4
handle.maxTime, C-2, C-4
handle.minTime, C-2, C-4
handle.time, C-2, C-4
handshake.time, C-6
heapSize.value, C-17
HeuristicCommittedCount, D-2
HeuristicCount, D-2
HeuristicMixedExceptionCount, D-2
HeuristicRollbackExceptionCount, D-2
HeuristicRolledbackCount, D-2
hits.count, C-13, C-14, C-15
holePageCount.value, D-20
host.value, C-19, D-14, D-16
ias_cluster.value, D-12
ias_instance.value, D-12
iasCluster.value, C-17
iasInstance.value, C-17
idleThreadCount, D-12
IllegalStateExceptionCount, D-2
inactivityTimeoutCheck.value, D-5
inactivityTimeout.value, D-5
IncorrectReqInit.count, C-4
indexInSet.value, C-17
initial-capacity.value, D-5
internalRedirect.count, C-2
interval.value, D-20
invalidCount.count, D-5
isActive.value, D-18
isLocal.value, D-16
isolation.value, D-9
isOpen.value, D-20
isXA.value, D-16, D-17
J2EE, D-6
JDBC_Connection_URL, C-8
JDBC_Connection_Url, C-9
JDBC_Connection_Username, C-8, C-9
jms_log.value, D-12
jobWorkerQueue.value, C-16
JSP, D-7
JVM, C-6

Index-8

JVMCnt.value, C-5
keepAlive, D-12
lastConfigChange.value, C-2
lastErrorDate.value, C-13
lastErrorRequest.value, C-13
lastErrorText.value, C-13
lastUsed.value, D-20
listMessages, D-15
locations.value, D-19
LogicalConnection.value, C-8, C-9
lReq.count, C-16
maxPoolSize, D-12
maxPoolSize.value, D-5
maxQueueSize, D-12
memory_average_load_time.value, D-21
memory_object_access_count.value, D-21
memory_object_count.value, D-21
memory_size.value, D-21
memoryUsed.value, C-18
messageCommitted, D-15
messageCount, D-15
messageCount.value, D-19
messageDelivery.avg, D-11
messageDelivery.completed, D-11
messageDelivery.maxTime, D-11
messageDelivery.minTime, D-11
messageDelivery.time, D-11
messageDequeued, D-15
messageDequeued.count, D-19
messageDiscarded, D-15
messageDiscarded.count, D-19
messageEndpointCount.value, D-11
messageEndpointType.value, D-11
messageEnqueued, D-15
messageEnqueued.count, D-19
messageExpired, D-15
messageExpired.count, D-19
messageListener.value, D-18
messagePagedIn, D-15
messagePagedIn.count, D-19
messagePagedOut, D-15
messagePagedOut.count, D-19
messageRecovered, D-15
messageRecovered.count, D-19
messageRolledback, D-15
minPoolSize, D-12
minPoolSize.value, D-5
mod_plsql, C-11
moduleId.value, C-17
Name.value, C-5
name.value, D-18, D-19
newMisses.count, C-12, C-13, C-14, C-15
noLocal.value, D-18
NonSessFailover.count, C-5
notifProcessed.value, C-19
notifProcessQueue.value, C-19
notifReceived.value, C-19
numChildren.value, C-2
numMods.value, C-2, C-3
numProcConf.value, C-17

numProcessors.value, C-16
oc4j_instance.value, D-12
oc4j_island.value, D-12
oc4j.jms.checkPermissions, D-15
oc4j.jms.debug.value, D-15
oc4j.jms.forceRecovery.value, D-15
oc4j.jms.j2ee14, D-15
oc4j.jms.listenerAttempts.value, D-15
oc4j.jms.maxOpenFiles.value, D-15
oc4j.jms.messagePoll.value, D-15
oc4j.jms.noDms.value, D-15
oc4j.jms.noJmx, D-15
oc4j.jms.pagingThreshold, D-15
oc4j.jms.printStackTrace, D-15
oc4j.jms.reconnectAttempts, D-15
oc4j.jms.reconnectWait, D-15
oc4j.jms.rememberALLXids, D-15
oc4j.jms.saveAllExpired.value, D-15
oc4j.jms.serverPoll.value, D-15
oc4j.jms.socketBufsize.value, D-15
Oc4jUnavailable.count, C-4
opmn_group.value, D-12
opmn_sequence.value, D-12
Oracle Application Server performance, C-1
parseRequest.active, D-6
parseRequest.avg, D-6
parseRequest.completed, D-6
parseRequest.maxActive, D-6
parseRequest.maxTime, D-6
parseRequest.minTime, D-6
parseRequest.time, D-6
passive.count, D-11
passive.maxValue, D-11
passive.minValue, D-11
passive.value, D-11
peekMessage, D-15
pendingMessageCount, D-15
pendingMessageCount.value, D-19
PerformTransaction, D-2
persistenceFile.value, D-20
persistence-type.value, D-9
pid.value, C-18
pooled.count, D-10, D-11
pooled.maxValue, D-10, D-11
pooled.minValue, D-10, D-11
pooled.value, D-10, D-11
poolName.value, D-4
PoolSizeLowerBound.value, C-11
PoolSize.maxValue, C-11
poolSize.maxValue, D-5
poolSize.minValue, D-5
poolSize.value, D-5
port.value, C-19, D-15, D-16
post.count, C-2
priority.value, D-17
privateMemory.value, C-18
procDeath.count, C-16
procDeathReplace.count, C-16
processRequest.active, D-6, D-8
processRequest.avg, D-6, D-8

Index-9

processRequest.completed, D-6, D-8
processRequest.maxActive, D-6
processRequest.maxTime, D-6, D-8
processRequest.minTime, D-6, D-8
processRequest.time, D-6, D-8
queueFullEvent, D-12
queueSize, D-12
readyChildren.value, C-2
ready.count, D-10, D-11
ready.maxValue, D-10, D-11
ready.minValue, D-10, D-11
ready.value, D-10, D-11
receiveErrors.count, C-6
receive.time, C-6
registerConnection, D-15
reqFail.count, C-16, C-17
reqPartialSucc.count, C-16, C-17
reqSucc.count, C-16, C-17
request.active, C-2, C-3
request.avg, C-2, C-3
request.completed, C-2, C-3
requestHandlers.count, D-15
request.maxTime, C-2, C-3
request.minTime, C-2, C-3
requests.count, C-13
request.time, C-2, C-3
requestTimeoutCount.count, D-5
resolveContext.active, D-6
resolveContext.avg, D-6
resolveContext.completed, D-6
resolveContext.maxActive, D-6
resolveContext.maxTime, D-6
resolveContext.minTime, D-6
resolveContext.time, D-6
resolveServlet.avg, D-7
resolveServlet.completed, D-7
resolveServlet.maxTime, D-7
resolveServlet.minTime, D-7
resolveServlet.time, D-7
response_q_size.value, D-21
responseSize.value, C-2, C-3
restartOnDeath.value, C-17
rmi_log.value, D-12
RollbackCompletion, D-2
RollbackExceptionCount, D-3
RolledbackCount, D-3
RolledbackDueToAdminCount, D-3
RolledbackDueToAppCount, D-3
RolledbackDueToResourceCount, D-3
RolledbackDueToTimedOutCount, D-3
rReq.count, C-16
run().active, D-20
run().avg, D-20
run().completed, D-20
run().maxActive, D-20
run().maxTime, D-20
run().minTime, D-20
run().time, D-20
scheme.value, D-5
SecurityExceptionCount, D-3

selector.value, D-18
sendErrors.count, C-6
send.time, C-6
server_log.value, D-12
service.active, D-7, D-8
service.avg, D-7, D-8
service.completed, D-7, D-8
service.maxActive, D-7
service.maxTime, D-7, D-8
service.minTime, D-7, D-8
service.time, D-7, D-8
SessFailover.count, C-5
sessionActivation.avg, D-7
sessionActivation.completed, D-7
sessionActivation.maxTime, D-7
sessionActivation.minTime, D-7
sessionActivation.time, D-7
sessionListener.value, D-17
session-type.value, D-9, D-10, D-11
setfixup.time, C-6
sharedMemory.value, C-18
SinglePhaseCommitCompletion, D-3
SQLText.value, C-10
staleMisses.count, C-13, C-14, C-15
startTime.value, D-11, D-15, D-16, D-17, D-18

opmn_process, C-18
StatementCacheHit.count, C-8
StatementCacheMiss.count, C-8, C-9
stats, D-16
status.value, C-18
storeSize, D-16
storeSize.value, D-19
successfulMessageDeliveryCount.count, D-11
SucReq.count, C-5
SucReqNonSess.count, C-5
SucReqSess.count, C-5
SystemExceptionCount, D-4
systemExceptionCount.count, D-11
task_count.value, D-21
taskManagerInterval.value, D-16
time_q_size.value, D-21
timestamp.value, C-16
timeToLive.value, D-17
totalMemory.maxValue, C-6
totalMemory.minValue, C-6
totalMemory.value, C-6
totalPhysicalMem.value, C-16
totalThreadCount, D-12
transacted.value, D-17
TransactionSuspended, D-4
transaction-type.value, D-9, D-11
trans-attribute.value, D-10
TwoPhaseCommitCompletion, D-4
txid.value, D-17
type.value, C-18
uid.value, C-18
UnableToHandleReq.count, C-4
upTime.value, C-6, C-18
usedPageCount.value, D-20
user.value, D-16

Index-10

useTime.avg, D-4, D-5
useTime.completed, D-4, D-5
useTime.maxTime, D-4, D-5
useTime.minTime, D-4, D-5
UseTime.time, C-11
useTime.time, D-4, D-5
vhostType.value, C-3
waitingThreadCount.active, D-5
waitingThreadCount.avg, D-5
waitingThreadCount.completed, D-5
waitingThreadCount.maxActive, D-5
waitingThreadCount.maxTime, D-5
WaitingThreadCount.maxValue, C-11
waitingThreadCount.minTime, D-5
WaitingThreadCount.minValue, C-11
waitingThreadCount.time, D-5
waitTime.avg, D-4, D-5
waitTime.completed, D-4, D-5
waitTime.maxTime, D-4, D-5
waitTime.minTime, D-4, D-5
waitTimeout.value, D-5
WaitTime.time, C-11
waitTime.time, D-4, D-5
worker_thread_count.value, D-21
workerThread.value, C-16, C-19
workStartDuration, D-12
wrapper.active, D-10
wrapper.avg, D-10
wrapper.completed, D-10
wrapper.maxTime, D-10
wrapper.minTime, D-10
wrapper.time, D-10
xid.value, D-17

minBPELWait property
definition, 7-19
values, 7-19

min-connections attribute, 3-6
min-connections datasources option, 3-16
min-instances attribute, 3-11
MinSpareServers httpd.conf directive, 6-2
mod_plsql metrics, C-11
modplsql_Cache

metric table type, C-12, C-13
modplsql_DatabaseConnectionPool

metric table type, C-14
modplsql_HTTPResponseCodes

metric table type, C-12
modplsql_LastNSQLError

metric table type, C-13
modplsql_SQLErrorGroup

metric table type, C-13
monitoring

performance statistics, 2-2

N
naming conventions

DMS, B-6
nonBlockingInvoke property

definition, 7-9

example of use, 7-9
setting if you have invoke activities in multiple

flow or flowN branches, 7-9
values, 7-9

nouns
creating, B-9
DMS, B-5
naming conventions, B-7
rollup, B-6
type, B-5

num-cached-statements attribute, 3-8

O
OC4J

monitoring performance statistics, 2-2
OC4J performance tuning

data source configuration, 7-24
InvokerBean threads configuration, 7-24
Oracle BPEL Server EJB configuration, 7-23
WorkerBean thread configuration, 7-24

OC4J thread pool
thread-pool element, 3-13

oc4j_context
metric table type, D-7

oc4j_ejb_entity_bean
metric table type, D-9

oc4j_ejb_method
metric table type, D-9

oc4j_jspExec
metric table type, D-8

oc4j_servlet
metric table type, D-7

oc4j_web_module
metric table type, D-6

Oc4jCacheSize, 3-8
onAlarm branch

setting the minimum wait time, 7-19
opmn.xml file

configuring JVM parameters, 7-25
optCacheOn property

definition, 7-19
values, 7-19

optIdempotentRouting property
definition, 7-20
values, 7-20

optSoapShortcut property
definition, 7-20
do not change, 7-20
values, 7-20

Oracle BPEL Control
domain level performance properties that cannot

be edited, 7-11
for setting domain level performance

properties, 7-11
monitoring cache statistics, 7-17
monitoring instance cache statistics, 7-17
viewing statistics, 7-21

Oracle BPEL Server
EJB configuration, 7-23

Index-11

InvokerBean threads configuration, 7-24
WorkerBean threads configuration, 7-24

Oracle Database
recommended for stress testing and production

environments, 7-24
Oracle HTTP Server

configuring with directives, 6-2
Oracle Service Delivery Platform Messaging Enabler

installing, 9-1
oracle.j2ee.rmi.loadBalance property, 3-19
orion-ejb-jar.xml file

configuring MDB J2EE listener threads, 7-14

P
parameters

KeepAlive, 6-3
KeepAliveTimeout, 6-3
ListenBacklog, 6-2
MaxClients, 3-7, 6-2
MaxKeepAliveRequests, 6-3
MaxRequestsPerChild, 6-2
MaxSpareServers, 6-2
MinSpareServers, 6-2
Oc4jCacheSize, 3-8
StartServers, 6-2
ThreadsPerChild, 3-8
Timeout, 6-2

performance
goals, 1-6
monitoring

native operating system, 2-3
network monitoring tools, 2-3

performance properties
completionPersistLevel, 7-5
completionPersistPolicy, 7-6
idempotent, 7-7
inMemoryOptimization, 7-8
nonBlockingInvoke, 7-9

persistent connections
KeepAlive directive, 6-3

PhaseEvent sensors, B-4
pick activity

setting the minimum wait time with the onAlarm
branch, 7-19

pool-cache-timeout attribute, 3-11
processCheckSecs property

definition, 7-20
values, 7-21

processes
durable, 7-2
transient, 7-2

PROCESSES parameter
tuning, 7-26

pruned instances, 7-17
retrieving, 7-16

R
redo log file, 8-3

redo log files, 8-2
redo logs

tuning, 7-26
relaxBpelAssignRules property

definition, 7-21
do not use this property, 7-21
values, 7-21

request lists
setting the size of, 7-21

response time, 1-4
defined, 1-2
goal, 1-6
improving, 1-3
peak load, 1-7

rollup
DMS, B-21

S
scalability

defined, 1-2
schema_md table

definition, 7-10
server.xml file

setting the transaction timeout value, 7-23
service time, 1-3, 1-4

defined, 1-2
SESSION_CACHED_CURSORS parameter

tuning, 7-26
SGA_MAX_SIZE parameter, 8-3
SGA_TARGET parameter, 8-3
SHARED_POOL_SIZE parameter

tuning, 7-26
slow services

collecting statistics on, 7-21
slowPerfThreshold property

definition, 7-21
values, 7-21

SOAP requests
setting a shortcut for local requests, 7-20

StartServers httpd.conf directive, 6-2
State sensors, B-4
statistics

viewing from Oracle BPEL Control, 7-21
statsLastN property

definition, 7-21
values, 7-21

syncMaxWaitTime property
definition, 7-22
values, 7-22

system properties
DMS metrics, C-6

T
tables

audit_details, 7-11
audit_trail, 7-12
ci_id_range, 7-16
cube_instance, 7-6

Index-12

cube_scope, 7-6
dlv_message, 7-13
document, 7-18, 7-19
growth impacted by completionPersistLevel

property, 7-5
growth impacted by completionPersistPolicy

property, 7-6
work_item, 7-6

tablespaces
tuning, 7-26

task table
definition, 7-10

think time
defined, 1-2

thread pool options, 3-12
thread-pool element, 3-13
threads

InvokerBean threads configuration, 7-24
setting the maximum number of dispatcher

threads, 7-14
setting the minimum number of dispatcher

threads, 7-15
setting the percentage of active threads to be

tasked to process incoming threads, 7-14
sum of InvokerBean and WorkerBean threads

related to dspMaxThreads property
value, 7-24

WorkerBean configuration, 7-24
ThreadsPerChild directive, 3-8
throughput

defined, 1-2
demand limiter and, 1-5
improving with the inMemoryOptimization

property, 7-8
increasing, 1-4

Timeout httpd.conf directive, 6-2
TimeoutExpiredException

from EJB, 3-16
transactions

reasons for transactions timing out, 7-23
setting the timeout value, 7-23

tuning
Java Virtual Machine (JVM) performance

tuning, 7-25
OC4J performance tuning, 7-23

two-way invocations
definition, 7-3
JTA transactions, 7-4

txDatasourceJndi property
definition, 7-22
values, 7-22

U
uddiLocation property

definition, 7-22
UNDO_RETENTION parameter

tuning, 7-26
unit consumption, 1-6

V
validateXML property

definition, 7-22
values, 7-22

validating
incoming and outgoing documents, 7-22

validation
setting, 7-22

visual garbage collection (GC) tool
monitoring garbage collection, 7-17, 7-19

W
wait activity

setting the minimum wait time, 7-19
wait time

contention and, 1-4
defined, 1-2
parallel processing and, 1-3
setting the maximum time to wait for a result

before returning, 7-22
Windows

performance counters, A-14
Windows metrics

enabling Performance Counters, A-14
work_item table

definition, 7-10
growth impacted by completionPersistLevel

property, 7-6
growth impacted by completionPersistPolicy

property, 7-6
WorkerBean threads

configuring, 7-24
tuning for incoming messages, 7-13

workerQueueConnectionPoolMinSize property
definition, 7-22
values, 7-22

X
XML document persistence threshold

setting, 7-18
XML documents

impact of large documents on performance, 7-19
validating, 7-22

xml format output for dmstool, A-10
xml_document table

definition, 7-10
-Xms option, 3-3
-Xmx option, 3-3
-XX+AggressiveHeap option, 3-5
-XX+DisableExplicitGC option, 3-5
-XXAppendRatio option, 3-19

	Contents
	Preface
	Intended Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	1 Performance Overview
	1.1 Introduction to Oracle Application Server Performance
	1.1.1 Performance Terms

	1.2 What Is Performance Tuning?
	1.2.1 Response Time
	1.2.2 System Throughput
	1.2.3 Wait Time
	1.2.4 Critical Resources
	1.2.5 Effects of Excessive Demand
	1.2.6 Adjustments to Relieve Problems

	1.3 Performance Targets
	1.3.1 User Expectations
	1.3.2 Performance Evaluation

	1.4 Performance Methodology
	1.4.1 Factors in Improving Performance

	2 Monitoring Oracle Application Server
	2.1 Oracle Enterprise Manager 10g Application Server Control Console
	2.2 Oracle Application Server Built-in Performance Metrics
	2.3 Centralized Management of Oracle Application Server Instances
	2.4 Native Operating System Performance Commands
	2.5 Network Performance Monitoring Tools

	3 Top Performance Areas
	3.1 Top Performance Areas
	3.1.1 Ensure Sufficient Hardware Resources
	3.1.2 Ensure Sufficient Java Heap for OC4J
	3.1.3 Tune the JVM Garbage Collection Options
	3.1.4 Reuse Database Connections
	3.1.5 Specify Sufficient Oracle HTTP Server Connections
	3.1.5.1 Configuring the MaxClients Directive (for UNIX)
	3.1.5.2 Configuring the ThreadsPerChild Directive (for Windows)
	3.1.5.3 Configuring the Oc4jCacheSize Directive

	3.1.6 Enable Statement Caching for Data Sources
	3.1.7 Verify Database Tuning
	3.1.7.1 Tuning init.ora Database Parameters
	3.1.7.2 Tuning Redo Logs Location and Sizing
	3.1.7.3 Automatic Segment-Space Management (ASSM)

	3.1.8 Verify Logging Levels
	3.1.9 Reuse EJB Instances

	3.2 Advanced Performance Areas
	3.2.1 Managing Concurrency and Limiting Connections
	3.2.1.1 Using OC4J Thread Pools to Control Concurrency
	3.2.1.2 Setting the Maximum Number of Connections for Data Sources
	3.2.1.3 Controlling the Number of EJB Instances When Using EJBs
	3.2.1.4 Limiting Remote EJB Client Connections

	3.2.2 Load Balancing
	3.2.2.1 Configuring Multiple Oracle Application Server Instances
	3.2.2.2 Web Application Load Balancing
	3.2.2.3 EJB Application Load Balancing

	3.2.3 Using the -XX:AppendRatio Option (on Standalone OC4J)

	4 Additional Performance Areas
	4.1 Improving TopLink Performance
	4.2 Improving JTA Performance
	4.2.1 Configuring Two-Phase Commit Logging for Performance
	4.2.1.1 Setting JTA Store File Logging Options

	4.2.2 Configuring JTA Data Sources for Performance
	4.2.2.1 Specify the Data Source Type
	4.2.2.2 Use Last Resource Commit
	4.2.2.3 Use a Single Data Source Where Possible

	4.2.3 Monitoring JTA Resources

	4.3 Improving EJB Performance
	4.3.1 Improving MDB Performance
	4.3.1.1 Setting the JMS Connector Receiver Threads
	4.3.1.2 Using the ejbCreate Method for One Time Initialization
	4.3.1.3 Monitoring MDB Resources

	4.3.2 Improving EJB CMP 2.1 Performance
	4.3.2.1 Using Efficient SQL Statements and Querying
	4.3.2.2 Cache Configuration Performance Tuning
	4.3.2.3 Monitoring CMP Resources

	5 Optimizing PL/SQL Performance
	6 Optimizing Oracle HTTP Server
	6.1 Configuring Oracle HTTP Server Directives
	6.1.1 How Persistent Connections Can Reduce httpd Process Availability

	6.2 Oracle HTTP Server Logging Options
	6.2.1 Access Logging
	6.2.2 Configuring the HostNameLookups Directive
	6.2.3 Error logging

	6.3 Oracle HTTP Server Security Performance Considerations
	6.3.1 Oracle HTTP Server Secure Sockets Layer (SSL) Performance Issues
	6.3.1.1 Oracle HTTP Server SSL Caching
	6.3.1.2 SSL Application Level Data Encryption
	6.3.1.3 SSL Performance Recommendations

	6.3.2 Oracle HTTP Server Port Tunneling Performance Issues

	6.4 Oracle HTTP Server Performance Tips
	6.4.1 Analyze Static Versus Dynamic Requests
	6.4.2 Analyze Time Differences Between Oracle HTTP Server and OC4J Servers
	6.4.3 Beware of a Single Data Point Yielding Misleading Results

	7 Oracle BPEL Process Manager Performance Tuning
	7.1 Performance Tuning Overview
	7.1.1 Domain and Process Configuration Property Settings
	7.1.2 Durable and Transient Processes
	7.1.3 One-Way and Two-Way Invocations
	7.1.4 Idempotent Activities
	7.1.5 In-Flight Database Storage
	7.1.6 JTA Transactions for Two-way Invocations
	7.1.7 BPEL Threading Model
	7.1.7.1 Request-Response Invocation
	7.1.7.2 One-Way Invocation
	7.1.7.3 Threading and Connection Pool Relationships

	7.2 Process Level Performance Settings
	7.2.1 completionPersistLevel BPEL Property
	7.2.2 completionPersistPolicy BPEL Property
	7.2.3 idempotent BPEL Property
	7.2.4 inMemoryOptimization BPEL Property
	7.2.5 nonBlockingInvoke BPEL Property

	7.3 Tables Impacted By Instance Data Growth
	7.4 Domain Level Performance Tuning
	7.4.1 Oracle BPEL Control Properties That Cannot Be Edited
	7.4.2 auditDetailThreshold BPEL Property
	7.4.3 auditLevel BPEL Property
	7.4.4 bpelcClasspath BPEL Property
	7.4.5 datasourceJndi BPEL Property
	7.4.6 deliveryPersistPolicy BPEL Property
	7.4.7 dspAgentDelay BPEL Property
	7.4.8 dspInvokeAllocFactor BPEL Property
	7.4.9 dspMaxRequestDepth BPEL Property
	7.4.10 dspMaxThreads BPEL Property
	7.4.11 dspMinThreads BPEL Property
	7.4.12 expirationMaxRetry BPEL Property
	7.4.13 idempotentThreshold BPEL Property
	7.4.14 instanceKeyBlockSize BPEL Property
	7.4.15 instCacheHighWatermark BPEL Property
	7.4.16 instCacheLowWatermark BPEL Property
	7.4.17 instCachePolicy BPEL Property
	7.4.18 invokerQueueConnectionPoolMinSize BPEL Property
	7.4.19 largeDocumentThreshold BPEL Property
	7.4.20 minBPELWait BPEL Property
	7.4.21 optCacheOn BPEL Property
	7.4.22 optIdempotentRouting BPEL Property
	7.4.23 optSoapShortcut BPEL Property
	7.4.24 processCheckSecs BPEL Property
	7.4.25 relaxBpelAssignRules BPEL Property
	7.4.26 slowPerfThreshold BPEL Property
	7.4.27 statsLastN BPEL Property
	7.4.28 syncMaxWaitTime BPEL Property
	7.4.29 txDatasourceJndi BPEL Property
	7.4.30 uddiLocation BPEL Property
	7.4.31 validateXML BPEL Property
	7.4.32 workerQueueConnectionPoolMinSize BPEL Property

	7.5 Tuning OC4J for Oracle BPEL
	7.5.1 Tuning JTA Transaction Timeout for Oracle BPEL Process Manager
	7.5.2 Oracle BPEL Server EJB Configuration
	7.5.2.1 WorkerBean
	7.5.2.2 InvokerBean

	7.5.3 Configuring Data Sources for Oracle BPEL

	7.6 Java Virtual Machine Performance Tuning for Oracle BPEL Server
	7.7 Dehydration Store Database Performance Tuning
	7.8 Summary

	8 Oracle Business Activity Monitoring Performance
	8.1 Managing the Redo Log Files
	8.2 Avoiding Frequent Log Switches and Checkpoints
	8.3 Tuning the System Global Area
	8.4 Database Re-Organization in the Presence of Deletion Activity
	8.5 Configuring Multiple Plan Monitor Services and Enterprise Links

	9 Oracle Application Server Wireless Messaging Server Performance Tuning
	9.1 Configuring Oracle Application Server Wireless Messaging Server for High Performance
	9.1.1 Overview
	9.1.2 Database Tuning and OS Tuning
	9.1.3 Optimizing Performance in a Multi-RAC Environment
	9.1.4 Messaging Server Configuration
	9.1.4.1 Updating the Dequeue Navigation Mode
	9.1.4.2 Adding Node-Specific DB Connect String on Mid-Tier Instances

	9.2 Factors Affecting Messaging Server Performance
	9.2.1 Sequencing Cache for trans_mid and trand_did Index
	9.2.2 Forcing Use of Index on Table trans_ids
	9.2.3 Changing the Navigation Mode
	9.2.4 Database Tuning
	9.2.5 Multiple Queues with Node Affinity
	9.2.6 ASSM Tablespace
	9.2.7 Load Balancing
	9.2.8 Number of Enqueue and Dequeue Threads
	9.2.9 DB Parameter aq_tm_processes
	9.2.10 RAC Interconnect on RHEL4
	9.2.10.1 Purpose
	9.2.10.2 Scope and Application
	9.2.10.3 How to Resolve the Issue
	9.2.10.4 Explanation for the Issue

	9.3 Handling RAC Instance Failure
	9.4 RAC Reconfiguration
	9.4.1 Adding or Removing RAC Nodes
	9.4.2 Adding or Removing Mid-Tiers

	9.5 Test Scenario and Result
	9.5.1 Setup Details
	9.5.1.1 Machine Setup Details
	9.5.1.2 Machine Hardware Details
	9.5.1.3 Software Details
	9.5.1.4 RAC Setup Details

	9.5.2 One-way Test Scenario
	9.5.2.1 Test Scenario
	9.5.2.2 Client Configuration
	9.5.2.3 Driver Configuration
	9.5.2.4 Test Result
	9.5.2.5 Test Data

	9.5.3 Two-way Test Scenario
	9.5.3.1 Test Scenario
	9.5.3.2 Test Result
	9.5.3.3 Test Data

	A Monitoring Using Built-in Performance Tools
	A.1 Summary of Oracle Application Server Built-in Performance Metrics
	A.2 Viewing Performance Metrics Using AggreSpy with Basic Installation
	A.2.1 Using the AggreSpy Display

	A.3 Viewing Performance Metrics Using AggreSpy with Web Server
	A.3.1 Using the AggreSpy Display with Web Server
	A.3.2 AggreSpy URL With a Proxy Server with Web Server
	A.3.3 AggreSpy URL and Access Control with Web Server
	A.3.4 AggreSpy Limitation When Using Load Balancing With Multiple Instances

	A.4 Viewing Performance Metrics Using dmstool
	A.4.1 Access Control for dmstool
	A.4.2 Using dmstool to List the Names of All Metrics
	A.4.3 Using dmstool to Report Values for Specific Performance Metrics
	A.4.4 Using dmstool With the Interval and Count Options
	A.4.5 Using dmstool to Report All Metrics with Metric Values
	A.4.6 Using dmstool to Report All Metrics with Metric Values in XML Format
	A.4.7 Using dmstool to Reset Metric Values
	A.4.8 Using dmstool to View Metrics on a Remote Oracle Application Server System

	A.5 Viewing Performance Metrics Using AggreSpy (for Standalone OC4J)
	A.6 Using Built-in Performance Metrics on Windows Systems

	B Instrumenting Applications With DMS
	B.1 Introducing DMS Performance Metrics
	B.1.1 Instrumenting Applications With DMS Metrics
	B.1.2 Monitoring DMS Metrics
	B.1.3 Understanding DMS Terminology (Nouns and Sensors)
	B.1.3.1 DMS Metrics
	B.1.3.2 DMS Sensors
	B.1.3.3 DMS Nouns
	B.1.3.4 DMS Rollup Nouns
	B.1.3.5 DMS Object Relationships

	B.1.4 DMS Naming Conventions
	B.1.4.1 General DMS Naming
	B.1.4.2 General DMS Naming Conventions and Character Sets
	B.1.4.3 Noun and Noun Type Naming Conventions
	B.1.4.4 Sensor Naming Conventions

	B.2 Adding DMS Instrumentation To Java Applications
	B.2.1 Including DMS Imports
	B.2.2 Organizing Performance Data
	B.2.2.1 Choosing Noun Types

	B.2.3 Defining and Using Metrics for Timing
	B.2.3.1 Defining PhaseEvent Sensors
	B.2.3.2 Using PhaseEvent Sensors

	B.2.4 Defining and Using Metrics for Counting
	B.2.4.1 Defining Event Sensors
	B.2.4.2 Using Event Sensors

	B.2.5 Defining and Using Metrics for Recording Status Information (State Sensors)
	B.2.5.1 Defining State Sensors
	B.2.5.2 Using State Sensors

	B.3 Validating and Testing Applications Using DMS Metrics
	B.3.1 Validating DMS Metrics
	B.3.2 Testing DMS Metrics For Efficiency

	B.4 Understanding DMS Security Considerations
	B.5 Conditional Instrumentation Using DMS Sensor Weight
	B.6 Dumping DMS Metrics To Files
	B.7 Resetting and Destroying Sensors
	B.8 DMS Coding Recommendations
	B.8.1 Isolating Expensive Intervals Using PhaseEvent Metrics

	B.9 Using A High Resolution Clock To Increase DMS Precision
	B.9.1 Configuring DMS Clocks for Reporting Time for OC4J (Java)
	B.9.2 Configuring DMS Clocks for Reporting Time for Oracle HTTP Server

	B.10 Rolling Up DMS Data for Descendent Nouns

	C Performance Metrics
	C.1 Oracle HTTP Server Metrics
	C.1.1 Oracle HTTP Server Child Server Metrics
	C.1.2 Oracle HTTP Server Responses Metrics
	C.1.3 Oracle HTTP Server Virtual Host Metrics
	C.1.4 Aggregate Module Metrics
	C.1.5 HTTP Server Module Metrics
	C.1.6 Oracle HTTP Server mod_oc4j Metrics
	C.1.7 Oracle HTTP Server SSL Metrics

	C.2 JVM Metrics
	C.2.1 JVM Properties Metrics

	C.3 JDBC Metrics
	C.3.1 JDBC Driver Metrics
	C.3.2 JDBC Data Source Metrics
	C.3.3 JDBC Driver Specific Connection Metrics
	C.3.4 JDBC Data Source Specific Connection Metrics
	C.3.5 JDBC Connection Source Metrics
	C.3.6 JDBC Driver Statement Metrics
	C.3.7 JDBC Data Source Statement Metrics
	C.3.8 JDBC Connection Pool Stats Metrics

	C.4 mod_plsql Metrics
	C.5 Oracle Process Manager and Notification Server - OPMN Metrics
	C.5.1 OPMN_PM Metric Table
	C.5.2 OPMN_OC4J_PROC Table
	C.5.3 OPMN_HOST_STATISTICS Metric Table
	C.5.4 OPMN_IAS_INSTANCE Metric Table
	C.5.5 OPMN_IAS_COMPONENT Table
	C.5.6 OPMN ONS Metrics
	C.5.7 OPMN_APPCTX Table

	C.6 DMS Internal Metrics

	D OC4J Performance Metrics
	D.1 JTA Resource Metrics
	D.2 JCA Metrics
	D.3 OC4J J2EE Application Metrics
	D.3.1 Web Module Metrics
	D.3.2 Web Context Metrics
	D.3.3 OC4J Servlet Metrics
	D.3.4 OC4J JSP Metrics
	D.3.4.1 JSP Runtime Metrics
	D.3.4.2 JSP Metrics

	D.3.5 OC4J EJB Metrics
	D.3.5.1 OC4J EJB Session Bean Metrics
	D.3.5.2 EJB Entity Bean Metrics
	D.3.5.3 EJB Method Metrics
	D.3.5.4 EJB Stateless Bean Metrics
	D.3.5.5 EJB Stateful Bean Metrics
	D.3.5.6 EJB Message-Driven Bean Metrics

	D.3.6 OC4J OPMN Info Metrics
	D.3.7 OC4J Work Management Pool Metrics

	D.4 OC4J JMS Metrics
	D.4.1 JMS Metric Tables
	D.4.2 JMS Stats Metric Table
	D.4.3 JMS Request Handler Stats
	D.4.4 JMS Connection Stats
	D.4.5 JMS Session Stats
	D.4.6 JMS Message Producer Stats
	D.4.7 JMS Message Browser Stats
	D.4.8 JMS Message Consumer Stats
	D.4.9 JMS Durable Subscription Stats
	D.4.10 JMS Destination Stats
	D.4.11 JMS Temporary Destination Stats
	D.4.12 JMS Store Stats
	D.4.13 JMS Persistence Stats

	D.5 OC4J Task Manager Metrics
	D.6 Java Object Cache JOC Metrics

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

