
Oracle® Application Server
Developer's Guide for Microsoft Office Interoperability 

10g Release 3 (10.1.3.1.0)  

B28947-01

July 2006



Oracle Application Server Developer's Guide for Microsoft Office Interoperability, 10g Release 3 (10.1.3.1.0)   

B28947-01

Copyright © 2006, Oracle. All rights reserved.

Primary Authors: Peter Lubbers, Susan Highmoor

Contributing Authors: Ingrid Snedecor, Lalithashree Rajesh, Pravin Prabhakar

Contributors: Abhinav Agarwal, Albert Tam, Andy Page, Beth Morgan, Bhagat Nainani, Carolyn Bruse, 
Celia Coakley, Christine Jacobs, Chuck Murray, Dan Hynes, Deanna Bradshaw, Don Gosselin, Dawn Tyler, 
Frank Knifsend, Frank Rovitto, Guus Ramackers, Harpal Kochar, Jacques Vigeant, James Owen, Joe Garcia, 
Jon Maron, Luke Kowalski, Mahasweta Dey, Marc Houle, Marcie Caccamo, Mark Kennedy, Marty Roth, 
Michael McGrath, Michele Cyran, Navneet Singh, Olaf Stullich, Orlando Cordero, Parsha Reddy, Philipp 
Weckerle, Promila Chitkara, Raj Gupta, Rajesh Ramachandran, Raji Mahalingam, Ranga Polisetti, Ravi 
Rangaswamy, Robin Clark, Rohit Marwaha, Saheli Dey, Susan Shephard, Tal Broda, Thomas Kurian, Tim 
Dexter, Tom Pfaeffle, Vasuki Ashok, Vinayak Hegde, Virginia Beecher

The Programs (which include both the software and documentation) contain proprietary information; they 
are provided under a license agreement containing restrictions on use and disclosure and are also protected 
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, 
or decompilation of the Programs, except to the extent required to obtain interoperability with other 
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in 
the documentation, please report them to us in writing. This document is not warranted to be error-free. 
Except as may be expressly permitted in your license agreement for these Programs, no part of these 
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any 
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on 
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data 
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" 
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As 
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation 
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license 
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial 
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently 
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, 
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such 
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its 
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third 
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. 
You bear all risks associated with the use of such content. If you choose to purchase any products or services 
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: 
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the 
third party, including delivery of products or services and warranty obligations related to purchased 
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from 
dealing with any third party.



iii

Contents

Preface ...............................................................................................................................................................    xv

Audience.....................................................................................................................................................     xv
Documentation Accessibility ...................................................................................................................     xv
Related Documents ...................................................................................................................................    xvi
Conventions ...............................................................................................................................................    xvi
Accessing the Demonstration Support Files .........................................................................................    xvi

Part I  Overview 

1  Microsoft Office in the Enterprise Architecture 

1.1 Understanding the Need for Using Microsoft Office in an Enterprise Architecture........   1-1
1.2 Meeting the Need for Using Microsoft Office in an Enterprise Environment...................   1-3
1.2.1 Simplifying and Improving the User Experience ...........................................................   1-3
1.2.2 Streamlining and Automating Enterprise Business Processes......................................   1-4
1.2.3 Synchronizing User Information with Enterprise Information ....................................   1-4
1.3 Getting Started with Microsoft Office......................................................................................   1-4
1.3.1 Microsoft Office Versions and Editions............................................................................   1-5
1.3.2 Microsoft Office Components............................................................................................   1-5
1.3.3 Microsoft Software Development Kits, Utilities, and References.................................   1-6
1.3.4 Coding Languages Supported in Microsoft Office 2003 ................................................   1-8

2  Understanding Microsoft Office 2003 Extensibility Technologies 

2.1 XML Schemas ..............................................................................................................................   2-2
2.1.1 XML Reference Schemas.....................................................................................................   2-2
2.1.2 Custom-Defined XML Schemas.........................................................................................   2-4
2.2 Smart Technology .......................................................................................................................   2-6
2.2.1 Smart Documents.................................................................................................................   2-6
2.2.2 Smart Tags ............................................................................................................................   2-8
2.2.3 Difference Between Smart Documents and Smart Tags .............................................    2-10
2.2.4 Smart Clients .....................................................................................................................    2-10
2.3 Task Panes.................................................................................................................................    2-11
2.4 Research and Reference Services ...........................................................................................    2-11
2.5 Microsoft Office 2003 Web Services Toolkit.........................................................................    2-12
2.6 Primary Interop Assemblies...................................................................................................    2-13
2.7 Network Deployment of Documents....................................................................................    2-13



iv

3  Understanding Oracle Application Server Interoperability with Microsoft 
Office 

3.1 Overview of Microsoft Office Interoperability with Oracle Application Server...............   3-1
3.2 Oracle Application Server Component Support for Microsoft Office Interoperability....   3-2
3.2.1 Oracle Application Server Forms Services.......................................................................   3-3
3.2.2 Oracle Application Server Integration B2B......................................................................   3-3
3.2.3 Oracle Application Server Integration Business Activity Monitoring.........................   3-4
3.2.4 Oracle Application Server Portal.......................................................................................   3-4
3.2.5 Oracle Application Server Web Services..........................................................................   3-4
3.2.6 Oracle Application Server Wireless ..................................................................................   3-5
3.2.7 Oracle Business Intelligence Beans ...................................................................................   3-5
3.2.8 Oracle Business Intelligence Discoverer...........................................................................   3-6
3.2.9 Oracle BPEL Process Manager...........................................................................................   3-6
3.2.10 Oracle Collaboration Suite .................................................................................................   3-6
3.2.10.1 Oracle Calendar ............................................................................................................   3-7
3.2.10.2 Oracle Connector for Outlook ....................................................................................   3-7
3.2.10.3 Oracle Drive ..................................................................................................................   3-7
3.2.10.4 Real Time Collaboration Add-in for Outlook ..........................................................   3-7
3.2.11 Oracle Identity Management ............................................................................................   3-8
3.2.12 Oracle Internet Directory....................................................................................................   3-8
3.2.13 Oracle JDeveloper ................................................................................................................   3-8
3.2.14 Oracle Mobile Collaboration ..............................................................................................   3-9
3.2.15 Oracle Reports ......................................................................................................................   3-9
3.2.16 Oracle Secure Enterprise Search ........................................................................................   3-9
3.2.17 Oracle Xellerate .................................................................................................................    3-10
3.2.18 Oracle XML Publisher ......................................................................................................    3-10

Part II  Building Microsoft Office Interoperability Solutions 

4  Creating Smart Documents That Interact with Self-Service Business 
Processes

4.1 Overview......................................................................................................................................   4-1
4.2 Prerequisites ................................................................................................................................   4-1
4.3 Step-by-Step Procedures ............................................................................................................   4-3
4.3.1 Configuring the E-Mail Server...........................................................................................   4-4
4.3.2 Deploying the BPEL Process ..............................................................................................   4-5
4.3.3 Creating a Smart Document Form ....................................................................................   4-6
4.3.4 Creating the Microsoft Word Template for the Loan Result Notification ...............    4-14
4.3.5 Validating the Solution ....................................................................................................    4-17
4.4 Related Documentation...........................................................................................................    4-19

5  Completing Forms and Entering Data Using Microsoft Office 

5.1 Overview......................................................................................................................................   5-1
5.2 Prerequisites ................................................................................................................................   5-2
5.3 Step-by-Step Procedures ............................................................................................................   5-3
5.3.1 Developing a Smart Document to Retrieve and Update Enterprise Information......   5-3



v

5.3.1.1 Developing a Web Service in Oracle JDeveloper.....................................................   5-4
5.3.1.2 Defining a Template Document in Microsoft Word................................................   5-9
5.3.1.3 Generating a Proxy Class with Microsoft Office 2003 Web Services Toolkit ...    5-11
5.3.1.4 Mapping Template Fields to Web Service Parameters ........................................    5-14
5.3.1.5 Automatically Loading and Saving Web Service Data........................................    5-16
5.3.2 Developing a Microsoft InfoPath Form.........................................................................    5-17
5.3.2.1 Developing the Web Service in Oracle JDeveloper ..............................................    5-17
5.3.2.2 Defining a Form in Microsoft InfoPath ..................................................................    5-17
5.4 Troubleshooting .......................................................................................................................    5-22
5.5 Related Documentation...........................................................................................................    5-23

6  Securing Smart Documents and Web Services 

6.1 Overview......................................................................................................................................   6-1
6.2 Prerequisites ................................................................................................................................   6-1
6.3 Step-by-Step Procedures ............................................................................................................   6-2
6.3.1 Copying the Demonstration Files......................................................................................   6-3
6.3.2 Creating and Deploying the Web Service ........................................................................   6-3
6.3.3 Creating the Smart Document DLL ..................................................................................   6-3
6.3.4 Attaching the XML Schema and the Expansion Pack to the Smart Document ..........   6-5
6.3.4.1 Attaching the XML Expansion Pack ..........................................................................   6-6
6.3.4.2 Enabling Manifest Security Check .............................................................................   6-6
6.3.4.3 Signing the Manifest Using XMLSign.exe ................................................................   6-7
6.3.5 Securing Communication Between the Smart Document and the Web Service ........   6-8
6.3.5.1 Securing the Web Service Proxy and the Web Service Using Username Token.   6-8
6.3.5.1.1 Securing the Client Side .......................................................................................   6-8
6.3.5.1.2 Securing the Web Service on the Server Side ....................................................   6-9
6.3.5.2 Securing the Web Service Proxy and the Web Service Using X.509 Token ......    6-10
6.3.5.2.1 Generating and Deploying Public and Private Keys ....................................    6-10
6.3.5.2.2 Securing the Client Side ....................................................................................    6-16
6.3.5.2.3 Securing the Web Service on the Server Side .................................................    6-17
6.3.5.3 Securing the Web Service using OWSM Gateway ...............................................    6-17
6.3.5.4 Integrating with Oracle Identity Management .....................................................    6-17
6.3.6 Testing the Smart Document Configuration.................................................................    6-18
6.4 Related Documentation...........................................................................................................    6-18

7  Delivering Business Activity Monitoring Alerts and Reports to Microsoft 
Outlook 

7.1 Overview......................................................................................................................................   7-1
7.2 Prerequisites ................................................................................................................................   7-2
7.3 Step-by-Step Procedures ............................................................................................................   7-2
7.3.1 Sending E-Mail Alerts with Links .....................................................................................   7-2
7.3.1.1 Creating a Report..........................................................................................................   7-3
7.3.1.2 Creating an Alert Rule .................................................................................................   7-6
7.3.1.3 Verifying That the Alert Is Working..........................................................................   7-9
7.3.2 Sending Reports as E-Mail Attachments.......................................................................    7-10
7.3.2.1 E-Mailing the Report.................................................................................................    7-10



vi

7.3.2.2 Verifying That the Report Was Sent .......................................................................    7-11
7.4 Related Documentation...........................................................................................................    7-11

8  Delivering Business Intelligence Information to Microsoft Excel 

8.1 Overview......................................................................................................................................   8-1
8.2 Prerequisites ................................................................................................................................   8-3
8.3 Step-by-Step Procedures ............................................................................................................   8-4
8.3.1 Pushing Business Intelligence Information to Microsoft Excel.....................................   8-4
8.3.1.1 Saving an OracleBI Discoverer Worksheet as a Microsoft Excel Worksheet.......   8-4
8.3.1.2 Saving an OracleBI Discoverer Workbook as a Microsoft Excel Web Query......   8-7
8.3.1.3 Sending a Worksheet as an E-Mail Attachment.......................................................   8-7
8.3.2 Pulling Live Data into Microsoft Excel.............................................................................   8-8
8.4 Related Documentation...........................................................................................................    8-15

9  Managing Tasks and Collaborating in Microsoft Outlook 

9.1 Overview......................................................................................................................................   9-1
9.1.1 Oracle Collaboration Suite 10g Calendar .........................................................................   9-2
9.1.2 Oracle Connector for Outlook............................................................................................   9-3
9.1.3 Oracle Collaboration Suite 10g Real-Time Collaboration ..............................................   9-3
9.1.4 Oracle Drive..........................................................................................................................   9-4
9.2 Prerequisites ................................................................................................................................   9-4
9.3 Step-by-Step Procedures ............................................................................................................   9-4
9.3.1 Creating Tasks......................................................................................................................   9-5
9.3.2 Scheduling Meetings ...........................................................................................................   9-6
9.3.3 Viewing Contact Information ............................................................................................   9-9
9.3.4 Chatting with Other Users ..............................................................................................    9-11
9.3.5 Starting an Instant Conference........................................................................................    9-12
9.3.6 Viewing Conference Archives ........................................................................................    9-13
9.4 Related Documentation...........................................................................................................    9-14

10  Provisioning User Identity Information and Alerting Microsoft Outlook 
Contacts 

10.1 Overview...................................................................................................................................    10-1
10.2 Prerequisites .............................................................................................................................    10-4
10.3 Step-by-Step Procedures .........................................................................................................    10-5
10.3.1 Procedure 1: Synchronizing Enterprise Identity Information....................................    10-5
10.3.1.1 Configuring Microsoft Active Directory Synchronization Profiles for Microsoft 

Exchange   10-7
10.3.1.2 Enabling the Profiles for Synchronization .............................................................    10-8
10.3.1.3 Verifying the Synchronization.................................................................................    10-9
10.3.2 Procedure 2: Configuring BPEL-Based Organization Alerts ...................................    10-10
10.3.2.1 Configuring the BPEL Process...............................................................................    10-12
10.3.2.2 Configuring Oracle Directory Integration Platform Profile ..............................    10-16
10.3.2.3 Testing the Identity Alerting Configuration........................................................    10-17
10.4 Troubleshooting .....................................................................................................................    10-18
10.5 Related Documentation.........................................................................................................    10-18



vii

11  Accessing in-Context Web Information and Invoking an Enterprise Portal 

11.1 Overview...................................................................................................................................    11-1
11.2 Prerequisites .............................................................................................................................    11-1
11.3 Step-by-Step Procedures .........................................................................................................    11-2
11.3.1 Embedding a Static Hyperlink to Invoke an Enterprise Portal..................................    11-3
11.3.2 Using VBA Code to Invoke an Enterprise Portal .........................................................    11-4
11.3.3 Using Smart Tags to Invoke an Enterprise Portal........................................................    11-6
11.4 Troubleshooting .....................................................................................................................    11-10
11.5 Related Documentation.........................................................................................................    11-10

12   Saving Microsoft Office Documents to the OracleAS Portal Content 
Repository

12.1 Overview...................................................................................................................................    12-1
12.2 Prerequisites .............................................................................................................................    12-3
12.3 Step-by-Step Procedures .........................................................................................................    12-3
12.3.1 Setting Up OracleAS Portal for WebDAV.....................................................................    12-3
12.3.2 Setting Up Your WebDAV Client...................................................................................    12-3
12.3.3 Using Oracle Drive as a WebDAV Client......................................................................    12-4
12.3.4 Using Web Folders as a WebDAV Client......................................................................    12-8
12.3.5 Using Microsoft Office as a WebDAV Client .............................................................    12-11
12.4 Troubleshooting .....................................................................................................................    12-12
12.5 Related Documentation.........................................................................................................    12-13

13  Delivering Enterprise Reports to Microsoft Office with Oracle Reports 

13.1 Overview...................................................................................................................................    13-1
13.2 Prerequisites .............................................................................................................................    13-2
13.3 Step-by-Step Procedures .........................................................................................................    13-3
13.3.1 Creating a Report..............................................................................................................    13-3
13.3.2 Displaying Report Output in Microsoft Excel ..............................................................    13-3
13.3.3 Displaying Report Output in Microsoft Word .............................................................    13-5
13.3.4 Sending Report Output to E-Mail Recipients ...............................................................    13-7
13.4 Troubleshooting .......................................................................................................................    13-9
13.5 Related Documentation.........................................................................................................    13-11

Part III  Appendixes 

A  Code Examples

A.1 Contents of the AutoLoanSmartDocument.cs File................................................................    A-1
A.2 Contents of the ManagedManifest.xml File for Chapter 4...................................................    A-7
A.3 Contents of the ManagedManifest.xml File for Chapter 6...................................................    A-7
A.4 Contents of the AutoLoanTypes.xsd File ...............................................................................    A-8
A.5 Contents of the SecureDocument.xsd File..............................................................................    A-9
A.6 Contents of the SecureSmartDocument.cs File......................................................................    A-9



viii

A.7 Contents of the UsernameTokenDialog.cs File....................................................................    A-14

Index



ix



x

List of Examples

4–1 WSDL Root Element in the AutoLoanFlow.cs File .............................................................    4-12
4–2 Host and Port Entries in the AutoLoanFlow.cs File ...........................................................    4-12
5–1 EmpService Java Class ...............................................................................................................   5-5
5–2 GetEmployeeInfo Module ......................................................................................................    5-12
5–3 GetEmployeeInfo Module for REST Services ......................................................................    5-13
5–4 SetEmployeeInfo Module .......................................................................................................    5-13
5–5 SetEmployeeInfo Module for REST Services .......................................................................    5-14
5–6 Invoking the getAddress Web Service..................................................................................    5-16
6–1 Code to Add to the onTextboxContentChange() Method (Username Token)...................   6-9
6–2 Code to Add to the onTextboxContentChange() Method (X.509 Token) ........................    6-16
10–1 New Connection String Details in the oc4j-ra.xml File ....................................................    10-13
10–2 Parameters in the E-Mail Configuration File .....................................................................    10-13
11–1 VBA Code to Invoke Employee Portal .................................................................................    11-5
11–2 Programmatically Constructing a URL ................................................................................    11-6
11–3 XML Code for MOSTL Smart Tag .........................................................................................    11-7
A–1 AutoLoanSmartDocument.cs ...................................................................................................    A-1
A–2 ManagedManifest.xml for Chapter 4 ......................................................................................    A-7
A–3 ManagedManifest.xml for Chapter 6 ......................................................................................    A-7
A–4 AutoLoanTypes.xsd...................................................................................................................    A-8
A–5 SecureDocument.xsd .................................................................................................................    A-9
A–6 SecureSmartDocument.cs .........................................................................................................    A-9
A–7 UsernameTokenDialog.cs .......................................................................................................    A-15



xi

List of Figures

1–1 Microsoft Office Documents Accessed by Different Types of Users...................................   1-2
1–2 Oracle Application Server Interoperability with Microsoft Office ......................................   1-3
2–1 Example of a Document with Smart Tags...............................................................................   2-9
3–1 Microsoft Office Interoperation with Oracle Application Server ........................................   3-2
4–1 BPEL Flow....................................................................................................................................   4-3
4–2 The Oracle BPEL Control Page .................................................................................................   4-6
4–3 Adding a Schema ........................................................................................................................   4-7
4–4 Adding Content to LoanDemo.doc ..........................................................................................   4-8
4–5 XML Structure Pane Showing Available Root Elements ......................................................   4-9
4–6 XML Structure Pane Showing Available Child Elements..................................................    4-10
4–7 XML Options Dialog Box........................................................................................................    4-10
4–8 Structured Smart Document...................................................................................................    4-14
4–9 Adding Content to LoanResult.doc.......................................................................................    4-15
4–10 XML Structure of the Loan Result Document .....................................................................    4-16
4–11 Saving as WordML File...........................................................................................................    4-17
4–12 Filling In Loan Details .............................................................................................................    4-18
4–13 Loan Approval Information ...................................................................................................    4-18
4–14 Loan Approval Mail ................................................................................................................    4-19
5–1 Manipulating Enterprise Information in Smart Documents ................................................   5-2
5–2 The Microsoft Word Application..............................................................................................   5-4
5–3 Create Java Class Dialog Box ....................................................................................................   5-5
5–4 Selecting the Class.......................................................................................................................   5-6
5–5 Specifying the Message Format ................................................................................................   5-7
5–6 WSDL Document in JDeveloper ...............................................................................................   5-8
5–7 The Oracle JDeveloper Log Window .......................................................................................   5-8
5–8 Running the Web Service...........................................................................................................   5-9
5–9 Table for Looking Up an Employee's Address.......................................................................   5-9
5–10 Table for Specifying a New Employee Address..................................................................    5-10
5–11 The Document Template.........................................................................................................    5-10
5–12 The Text Form Field Icon on the Forms Toolbar .................................................................    5-10
5–13 Selecting the Web Service .......................................................................................................    5-12
5–14 Options for the Employee Name Field .................................................................................    5-15
5–15 Options for the New Address Field ......................................................................................    5-15
5–16 Microsoft InfoPath Main Window ........................................................................................    5-18
5–17 Receive Data from the Web Service ......................................................................................    5-19
5–18 Select Web Service Operation ................................................................................................    5-19
5–19 Data Connection Name...........................................................................................................    5-20
5–20 Microsoft InfoPath Default Form ..........................................................................................    5-20
5–21 Form with Input and Output Fields......................................................................................    5-21
5–22 Formatted Form .......................................................................................................................    5-22
6–1 XML Structure of SecureSmartDocument.doc........................................................................   6-5
6–2 Export File Format ...................................................................................................................    6-12
6–3 File to Export.............................................................................................................................    6-13
6–4 File to Import ............................................................................................................................    6-14
6–5 Add Certificates Snap-In.........................................................................................................    6-15
7–1 E-Mail Alert for Media Sales .....................................................................................................   7-3
7–2 Selecting a Tiled Report .............................................................................................................   7-4
7–3 Selecting the Type of Chart for a Tile in a Report ..................................................................   7-4
7–4 Choosing Data Fields..................................................................................................................   7-5
7–5 Media Sales Report .....................................................................................................................   7-6
7–6 Specifying a Filter for the Alert.................................................................................................   7-7
7–7 Specifying the Alert Message ....................................................................................................   7-8
7–8 Specifying Alert Recipients .......................................................................................................   7-8
7–9 Triggering the Alert ....................................................................................................................   7-9



xii

7–10 Alert History.............................................................................................................................    7-10
7–11 Specifying Details for E-Mailing a Report............................................................................    7-11
8–1 Business Intelligence Interoperation with Microsoft Excel...................................................   8-3
8–2 OracleBI Discoverer Worksheet with Formatting..................................................................   8-5
8–3 Exporting a Worksheet in Microsoft Excel Format ................................................................   8-6
8–4 Exported Worksheet in Microsoft Excel (with Formatting Preserved)...............................   8-6
8–5 Sending a Worksheet as a Microsoft Excel Attachment........................................................   8-8
8–6 OracleBI Spreadsheet Add-In Menu Option...........................................................................   8-9
8–7 Connecting to the Database....................................................................................................    8-10
8–8 Items for the Query..................................................................................................................    8-10
8–9 Layout of OLAP Query ...........................................................................................................    8-11
8–10 Members for the Geography Dimension..............................................................................    8-11
8–11 Members for the Products Dimension ..................................................................................    8-12
8–12 OLAP Query Results in Microsoft Excel ..............................................................................    8-13
8–13 OLAP Data with Microsoft Excel Formatting......................................................................    8-13
8–14 Microsoft Excel Subtotal of OLAP Data ...............................................................................    8-14
8–15 Microsoft Excel Chart Based on OLAP Data........................................................................    8-15
9–1 Viewing Oracle Calendar Tasks Using Microsoft Outlook ..................................................   9-5
9–2 New Outlook Task .....................................................................................................................   9-6
9–3 New Calendar Task Entry Viewed in Microsoft Outlook.....................................................   9-6
9–4 Search Resources .........................................................................................................................   9-7
9–5 Resource Scheduling in Microsoft Outlook Using Oracle Calendar ...................................   9-7
9–6 Selecting Meeting Attendees .....................................................................................................   9-8
9–7 Creating a Meeting in Microsoft Outlook Using Oracle Calendar ......................................   9-8
9–8 Viewing Attendee Availability in Microsoft Outlook Using Oracle Calendar..................   9-9
9–9 Address Book............................................................................................................................    9-10
9–10 Contact Properties....................................................................................................................    9-10
9–11 Oracle Real-Time Collaboration Toolbar in Microsoft Outlook........................................    9-11
9–12 Oracle Messenger Instant Messaging Window ...................................................................    9-12
9–13 Instant Conference Details......................................................................................................    9-12
9–14 Oracle Web Conference Details .............................................................................................    9-13
9–15 Archived Conferences .............................................................................................................    9-14
10–1 Oracle Internet Directory Interoperability with Microsoft Active Directory and Microsoft 

Exchange   10-6
10–2 Generating Organization Alerts Using Oracle BPEL Process Manager.........................    10-11
10–3 IdentityNotification BPEL Process ......................................................................................    10-15
10–4 Entering Authentication Details in the BPEL Process Manager Connection Wizard..    10-16
11–1 Smart Document with Hyperlink that Invokes the Employee Portal ..............................    11-4
11–2 The Command Button Icon in the Control Toolbox ...........................................................    11-5
11–3 Smart Document with Button that Invokes the Employee Portal ....................................    11-6
11–4 Enabling Smart Tags................................................................................................................    11-9
11–5 Smart Tag Icon..........................................................................................................................    11-9
11–6 Smart Document with Smart Tag that Invokes the Employee Portal ............................    11-10
12–1 Pages and Content in WebDAV and OracleAS Portal .......................................................    12-2
12–2 Oracle Drive Service Properties .............................................................................................    12-5
12–3 Saving Files Directly to a Network Drive.............................................................................    12-6
12–4 Setting Properties of a File on the Network Drive ..............................................................    12-7
12–5 Portal Displayed As a Network Drive in Windows Explorer .........................................    12-10
12–6 Dragging and Dropping Files into the Web Folder ..........................................................    12-11
12–7 Working Directly with Files on the Web Folder................................................................    12-12
13–1 Report Output in Microsoft Excel..........................................................................................    13-5
13–2 Report Output in Microsoft Word.........................................................................................    13-7
13–3 Mail Dialog Box .......................................................................................................................    13-9



xiii



xiv

List of Tables

4–1 Self-Service Files.........................................................................................................................   4-2
4–2 XML Elements for E-Mail Server Configuration...................................................................   4-4
5–1 Forms Files ..................................................................................................................................   5-3
6–1 Example Smart Document Files...............................................................................................   6-2
10–1 Identity Management Files and Folders ..............................................................................    10-4
10–2 Parameters for Running the dipassistant Tool ...................................................................    10-7
11–1 Smarttags Files.........................................................................................................................    11-2
13–1 Example Report File ...............................................................................................................    13-3



xv

Preface

This guide describes how to enable interoperability between the Microsoft Office suite 
of products and the Oracle Application Server set of components. This includes a 
description of the Microsoft Office-centric architecture, the Microsoft Office 
Extensibility technologies, the Oracle Application Server components that can 
interoperate, and many step-by-step procedures that describe how to build Microsoft 
Office interoperability solutions. 

Audience
This guide is intended for Oracle Application Server developers and administrators 
who want to configure Oracle Application Server components to interoperate with 
Microsoft Office, and are familiar with Microsoft Office applications and Microsoft 
programming languages.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation 
accessible, with good usability, to the disabled community. To that end, our 
documentation includes features that make information available to users of assistive 
technology. This documentation is available in HTML format, and contains markup to 
facilitate access by the disabled community. Accessibility standards will continue to 
evolve over time, and Oracle is actively engaged with other market-leading 
technology vendors to address technical obstacles so that our documentation can be 
accessible to all of our customers. For more information, visit the Oracle Accessibility 
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The 
conventions for writing code require that closing braces should appear on an 
otherwise empty line; however, some screen readers may not always read a line of text 
that consists solely of a bracket or brace. 

Note: For the portable document format (PDF) version of this guide, 
when a URL breaks onto two lines, the full URL data is not sent to the 
browser when you click it. To get to the correct target of any URL 
included in the PDF, copy and paste the URL into your browser's 
address field. In the HTML version of this guide, you can click a link 
to directly display its target in your browser.



xvi

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or 
organizations that Oracle does not own or control. Oracle neither evaluates nor makes 
any representations regarding the accessibility of these Web sites. 

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services 
within the United States of America 24 hours a day, seven days a week. For TTY 
support, call 800.446.2398.

Related Documents
You can find all documentation related to Oracle Application Server, including the 
release notes, on the Oracle Application Server documentation page of the Oracle 
Technology Network (OTN): 
http://www.oracle.com/technology/documentation/appserver.html

For additional information and to post queries about Oracle Application Server and 
Microsoft Office interoperability, access the Microsoft Office Interoperability 
discussion forum on OTN:

http://forums.oracle.com/forums/forum.jspa?forumID=266 

Conventions
The following text conventions are used in this document:

Accessing the Demonstration Support Files
The demonstration support files that are described in various chapters of this guide 
are available on the ORACLE FUSION MIDDLEWARE and Microsoft Interoperability 
page on Oracle Technology Network (OTN) at 
http://www.oracle.com/technology/products/middleware/fusion-midd
leware-microsoft-interoperability.html. The ZIP file 
microsoft-interoperability-guide-demo-support.zip (found in the 
Developer’s Guide section) contains folders with support files for specific chapters in 

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated 
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for 
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code 
in examples, text that appears on the screen, or text that you enter.

CAPITALIZED Capitalized text indicates procedure names.

< > Angle brackets enclose user-supplied information.

[ ] Brackets enclose optional clauses from which you can choose one or 
none.

    .

    .

    .

Vertical ellipsis points in an example mean that information not directly 
related to the example has been omitted.



xvii

this guide. These support files are necessary to run the example procedures. The 
individual chapters' prerequisites sections will have additional details about what 
must be done with the support files. The following table maps example folders to the 
chapters in which they are used.

Folder Name Chapter Title

selfservice Chapter 4, "Creating Smart Documents That Interact with 
Self-Service Business Processes"

fillingforms Chapter 5, "Completing Forms and Entering Data Using Microsoft 
Office"

securingsmartdocs Chapter 6, "Securing Smart Documents and Web Services"

identitymanagement Chapter 10, "Provisioning User Identity Information and Alerting 
Microsoft Outlook Contacts"

smarttags Chapter 11, "Accessing in-Context Web Information and Invoking 
an Enterprise Portal"

reports Chapter 13, "Delivering Enterprise Reports to Microsoft Office 
with Oracle Reports"

See Also: Appendix A, "Code Examples" for details about code 
samples and template content that you may need to use in the sample 
demonstrations that are described in various chapters of this guide.



xviii



Part I
Overview

Part I describes the Microsoft Office-centric architecture, the Microsoft Office 
Extensibility technologies available in Microsoft Office 2003, and the Oracle 
Application Server components that can interoperate with Microsoft Office. It contains 
the following chapters:

■ Chapter 1, "Microsoft Office in the Enterprise Architecture"

■ Chapter 2, "Understanding Microsoft Office 2003 Extensibility Technologies"

■ Chapter 3, "Understanding Oracle Application Server Interoperability with 
Microsoft Office"





Microsoft Office in the Enterprise Architecture 1-1

1
Microsoft Office in the Enterprise

Architecture

This chapter contains the following topics:

■ Understanding the Need for Using Microsoft Office in an Enterprise Architecture

■ Meeting the Need for Using Microsoft Office in an Enterprise Environment

■ Getting Started with Microsoft Office

1.1 Understanding the Need for Using Microsoft Office in an Enterprise 
Architecture

Microsoft Office is a product that is widely used, especially by knowledge workers, 
but it has not always been effectively used in conjunction with enterprise applications. 
Users of Microsoft Office and enterprise applications can often be thought of in two 
categories: transaction workers and knowledge workers. Transaction workers use one 
or more fixed transaction applications for work, for example, help desk, customer 
service, order entry, or inventory. Knowledge workers are involved in tasks like 
searching, organizing, storing, and analyzing information and then using the 
knowledge gained appropriately. Both have a need to work with Microsoft Office and 
enterprise applications, but their interactions vary as shown in Figure 1–1.



Understanding the Need for Using Microsoft Office in an Enterprise Architecture

1-2 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 1–1 Microsoft Office Documents Accessed by Different Types of Users

Transaction workers work almost entirely in an enterprise application environment 
and use Microsoft Office sparingly. However, they frequently must get information 
created in the Microsoft Office environment into enterprise applications and send 
information, forms, reports, and so on to other people who prefer, or want, the 
information in a Microsoft Office format.

Knowledge workers on the other hand, spend most of their time using Microsoft 
Office and use enterprise applications sparingly, or may even be mobile users who do 
not always have a connection to an enterprise application. For the knowledge workers, 
it may be much more familiar and comfortable to do most of their work in the context 
of the Microsoft Office environment rather than having to copy or repeat work in the 
enterprise application.

Given the different needs of these different users, it would be better if Microsoft Office 
and enterprise applications could be better integrated, making the overall experience 
more seamless. For example:

■ Transaction workers do not need to learn the more advanced features of Microsoft 
Office and can continue to work in the environment with which they are familiar, 
yet still providing the preferred documents to their audience at the same time. 

■ Knowledge workers can continue to use the Microsoft Office environment with 
which they are familiar, without having to spend time learning a new, and 
potentially complex, enterprise application that is not designed to meet their 
specific working methods.

■ Mobile workers can work offline in Microsoft Office when necessary and then 
update the enterprise application later when they are able to connect.



Meeting the Need for Using Microsoft Office in an Enterprise Environment

Microsoft Office in the Enterprise Architecture 1-3

1.2 Meeting the Need for Using Microsoft Office in an Enterprise 
Environment

Oracle Application Server provides the opportunity to improve productivity by 
presenting the right information, at the right time, in a familiar tool.

Oracle Application Server enables developers to build enterprise applications that 
automate transaction processing, streamline business processes, and access and deliver 
information within the enterprise as shown in Figure 1–2.

Figure 1–2 Oracle Application Server Interoperability with Microsoft Office

Enabling interoperability between Microsoft Office suite of products and the Oracle 
Application Server set of components provides the following benefits:

■ Simplifying and Improving the User Experience

■ Streamlining and Automating Enterprise Business Processes

■ Synchronizing User Information with Enterprise Information

1.2.1 Simplifying and Improving the User Experience
It is important to simplify and improve the user experience associated with enterprise 
applications interaction. Specifically, today most enterprise applications have 
Web-based user interfaces, but knowledge workers often find that these user 



Getting Started with Microsoft Office

1-4 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

interaction models are less intuitive to use and interfere with their daily work in 
Microsoft Office.

Using Oracle Application Server, developers can create Microsoft Office solutions that 
manipulate enterprise information. This combines the familiar Microsoft Office 
interface with the power of the underlying enterprise application. For more 
information, refer to the following chapters in this guide:

■ Chapter 4, "Creating Smart Documents That Interact with Self-Service Business 
Processes"

■ Chapter 5, "Completing Forms and Entering Data Using Microsoft Office"

1.2.2 Streamlining and Automating Enterprise Business Processes
To streamline and automate enterprise business processes, there are two requirements:

■ When tasks within the context of enterprise business processes require human 
participation, users would like this participation to occur from within the 
Microsoft Office suite of applications. For example: handling workflow alerts and 
notifications received in e-mail.

Refer to Chapter 7, "Delivering Business Activity Monitoring Alerts and Reports to 
Microsoft Outlook" for information about how Oracle Application Server enables 
this.

■ When tasks within the context of enterprise business processes require the use of 
Microsoft Office documents, users would like the ability to direct enterprise 
business processes from the Microsoft Office environment itself. For example: 
managing a travel request or an absence template form in Microsoft Word or 
Microsoft Excel.

Oracle Application Server provides this ability. Refer to Chapter 4, "Creating Smart 
Documents That Interact with Self-Service Business Processes" to find out how.

1.2.3 Synchronizing User Information with Enterprise Information
It is critical that identity information is always up-to-date so that all enterprise users 
and applications are synchronized. In many enterprise environments, however, a 
number of systems have to be configured to make this work. Additionally, developers 
can use Oracle Application Server components to configure their systems to send 
notifications about changes in identity information directly to Microsoft Outlook.

Refer to Chapter 10, "Provisioning User Identity Information and Alerting Microsoft 
Outlook Contacts" for information about how this can be done.

1.3 Getting Started with Microsoft Office
Prerequisites for using Microsoft Office for the extensibility and interoperability tasks 
discussed in this guide are as follows:

■ Microsoft Office. The version of Microsoft Office required may change from 
chapter to chapter.

In this guide, the focus is primarily on Microsoft Office version 2003. This is to 
leverage different technologies that Microsoft Office 2003 offers for extensibility 
and interoperability. Refer to Chapter 2, "Understanding Microsoft Office 2003 
Extensibility Technologies" for more information.

■ Information about how to configure Microsoft Office and Microsoft Exchange.



Getting Started with Microsoft Office

Microsoft Office in the Enterprise Architecture 1-5

The general Microsoft Office setup is straight-forward, because it is a simple 
desktop installation and not a complex distributed enterprise deployment. 

1.3.1 Microsoft Office Versions and Editions
As mentioned earlier, this guide primarily focuses on the extensibility technologies 
supported in Microsoft Office 2003.

Microsoft Office is available in various editions such as, Office Professional Edition, 
Office Small Business Edition, Office Student and Teacher Edition, and Office Standard 
Edition. All these editions include the following applications:

■ Microsoft Word

■ Microsoft Excel

■ Microsoft PowerPoint

■ Microsoft Outlook

Solutions that use the extensibility technologies discussed in this guide require 
Microsoft Office Professional Edition 2003 at run time in most cases. For example, a 
few applications, like Microsoft Access and Microsoft InfoPath, are available only in 
Microsoft Office Professional Edition 2003. 

1.3.2 Microsoft Office Components
The following Microsoft Office suite of products can interoperate with the Oracle 
Application Server set of components: 

■ Microsoft Word

Microsoft Word supports smart documents, which help in building interactive 
documents that can access disparate data sources and communicate with Web 
services. This minimizes the need to switch between browsers and applications.

■ Microsoft Excel

Output from various Oracle Application Server reporting tools can be saved in 
Microsoft Excel format.

■ Microsoft PowerPoint

Microsoft PowerPoint supports the use of smart tags, which can start enterprise 
applications from Microsoft PowerPoint presentations. It also provides support for 
Oracle Real-Time Collaboration Add-in for Microsoft Office that supports chatting 
with other Oracle Messenger users and starting instant Web conferences from 
within the Microsoft PowerPoint application.

Notes:

■ In addition to the requirements in this section, each chapter has its 
own prerequisites.

■ For some cases, an earlier version of Microsoft Office will work, 
and this will be specifically mentioned in the Prerequisites section 
of the relevant chapters.

■ For some procedures, the .NET framework is required. It is 
important that the .NET framework be installed before installing 
Microsoft Office.



Getting Started with Microsoft Office

1-6 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

■ Microsoft Outlook

Some of the extensibility and interoperability options possible with Microsoft 
Outlook include support for Oracle Real-Time Collaboration Add-in for Microsoft 
Office, and provisioning of user identity information in Microsoft Outlook from 
Oracle Internet Directory. 

■ Microsoft Infopath

Web services built in Oracle JDeveloper can be invoked in Microsoft InfoPath.

1.3.3 Microsoft Software Development Kits, Utilities, and References
To perform the tasks discussed in this guide, the following Microsoft Software 
Development Kits, toolkits, and utilities may need to be installed:

■ Microsoft Office 2003 .NET Framework Software Development Kit

■ Microsoft Office 2003 VBA Language References

■ Microsoft Office 2003 XML Reference Schemas

■ Web Services Enhancements

■ Microsoft Office 2003 Web Services Toolkit

■ Microsoft PKI Utilities

■ Office 2003 Update: Redistributable Primary Interop Assemblies

■ Microsoft Office Schema Tag Lists

■ Microsoft Office WordprocessingML Transform Inference Tool

Downloading the Software
Perform the following tasks to download the required software from the Microsoft 
Web site:

1. Access the Microsoft downloads page at

http://www.microsoft.com/downloads/

2. In the search criteria, enter the name of the Software Development Kit, toolkit, 
utility, or reference document, and click GO. 

3. Select an appropriate version of the software.

4. Follow the instructions on the page, and click Download.

Microsoft Office 2003 .NET Framework Software Development Kit
The .NET Framework programming model simplifies development and deployment 
and allows for integration with different programming languages.

To download this, perform the steps mentioned in "Downloading the Software" by 
entering .NET Framework Software Development Kit as the search criteria on the 
Microsoft downloads page.



Getting Started with Microsoft Office

Microsoft Office in the Enterprise Architecture 1-7

Microsoft Office 2003 VBA Language References
The appropriate VBA language reference must be downloaded depending on the 
Microsoft Office application in which Visual Basic editor is used. This contains 
programming references, technical articles, and so on, and may contain tools and 
sample code to help customize and extend the Microsoft Office application to enable 
interoperability with other applications.

To download this, perform the steps mentioned in "Downloading the Software" by 
entering VBA Language Reference as the search criteria on the Microsoft downloads 
page. Click the appropriate link depending on the Microsoft Office application used, 
and then click Download.

Microsoft Office 2003 XML Reference Schemas
XML reference schemas represent the structure of Microsoft Word documents, 
Microsoft Excel spreadsheets, and Microsoft InfoPath form templates. Microsoft Office 
2003 Edition XML Schema References and related documentation are available as part 
of this download.

To download this, perform the steps mentioned in "Downloading the Software" by 
entering XML Schemas as the search criteria on the Microsoft downloads page. Click 
Office 2003: XML Schemas, and then click Download.

Web Services Enhancements
Web Services Enhancements enables developers to leverage the latest Web services 
protocol specifications and develop secure Web services. Web Services Enhancements 
3.0 for Microsoft .NET is an add-on to Microsoft Visual Studio 2005 and the Microsoft 
.NET Framework 2.0.

To download this, perform the steps mentioned in "Downloading the Software" by 
entering Web Services Enhancements as the search criteria on the Microsoft 
downloads page. Click Web Services Enhancements (WSE) 3.0 for Microsoft .NET, and 
then click Download.

Microsoft Office 2003 Web Services Toolkit
Microsoft Office 2003 Web Services Toolkit is used to provide XML Web services 
features with Microsoft Office 2003 applications.

To download this, perform the steps mentioned in "Downloading the Software" by 
entering Microsoft Office 2003 Web Services Toolkit as the search criteria on the 
Microsoft downloads page. Click Microsoft Office 2003 Web Services Toolkit 2.01, and 
then click Download.

Note: You must install the .NET Framework before you install 
Microsoft Office. If you have installed Microsoft Office first, then you 
must refer to the "Getting the Office 2003 PIAs When Installing .NET 
Framework 1.1 After Installing Office 2003" section in the article titled 
"Installing and Using the Office 2003 Primary Interop Assemblies" at 
http://msdn.microsoft.com/library/default.asp?url=/l
ibrary/en-us/dno2k3ta/html/OfficePrimaryInteropAssem
bliesFAQ.asp. 



Getting Started with Microsoft Office

1-8 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Microsoft PKI Utilities
The makecert.exe (Certificate Creation tool) is used to generate X.509 certificates for 
testing purposes, the cert2spc.exe (Software Publisher Certificate Test Tool) for 
digital code signing, and the pvkimprt.exe utility to import digital certificate files.

makecert.exe and cert2spc.exe are available with the installation of Microsoft 
.NET Framework SDK.

To download this, perform the steps mentioned in "Downloading the Software" by 
entering PVK Digital Certificate Files Importer as the search criteria on the Microsoft 
downloads page. Click Office 2000 Tool: PVK Digital Certificate Files Importer, and 
then click Download.

Office 2003 Update: Redistributable Primary Interop Assemblies
To download this, perform the steps mentioned in "Downloading the Software" by 
entering Redistributable Primary Interop Assemblies as the search criteria on the 
Microsoft downloads page. Click Office 2003 Update: Redistributable Primary 
Interop Assemblies, and then click Download.

Microsoft Office Schema Tag Lists
Microsoft Office Smart Tag List (MOSTL) enables creation of smart tags as XML files.

To download this, perform the steps mentioned in "Downloading the Software" by 
entering XML Schema for Smart Tag Lists as the search criteria on the Microsoft 
downloads page. Click Office XP: XML Schema for Smart Tag Lists, and then click 
Download.

Microsoft Office WordprocessingML Transform Inference Tool
This tool is also known as the XSLT Inference tool, and it enables transformation of 
XML files into WordprocessingML by creating XSL transformations.

To download this, perform the steps mentioned in "Downloading the Software" by 
entering WordprocessingML Transform Inference Tool as the search criteria on the 
Microsoft downloads page. Click Office 2003 Tool: WordprocessingML Transform 
Inference Tool, and then click Download.

1.3.4 Coding Languages Supported in Microsoft Office 2003
When performing the tasks outlined in this guide, the following languages can be used 
to develop code in Microsoft Office applications:

Microsoft Visual Basic for Applications
Microsoft Visual Basic for Applications provides an integrated development 
environment that can be used to develop rich client applications and integrate them 
with existing data and systems. Microsoft Visual Basic for Applications is similar to 
Microsoft Visual Basic, because the elements and programming tools are based on the 
Microsoft Visual Basic development system. 

The Microsoft Visual Basic for Applications development environment is included 
inside Microsoft Office applications, and can be invoked easily. For example, click 
ALT+F11 to invoke Microsoft Visual Basic for Applications in Microsoft Word. 
However, Microsoft Visual Basic for Applications has certain limitations. For example, 
it is not possible to create a DLL similar to the one created in Section 6.3.3, "Creating 
the Smart Document DLL". This can be done by using Microsoft Visual Studio, which 
is described in the next section. 



Getting Started with Microsoft Office

Microsoft Office in the Enterprise Architecture 1-9

Microsoft Visual Studio
Microsoft Visual Studio enables to efficiently build richer, more interactive 
applications. Microsoft Visual Studio provides a single integrated development 
environment for all development tasks, and includes programming languages like 
Microsoft Visual Basic and Microsoft Visual C# .NET.

These programming languages make it easier to create smart documents and other 
Microsoft Office interoperability tasks. For example, creating or securing a DLL for a 
smart document is a lot easier in Microsoft Visual C# .NET. 

See Also:

■ An example showing how Microsoft Visual Basic for Applications 
is used to invoke a Web Service in a Microsoft Word document in 
Section 5, "Completing Forms and Entering Data Using Microsoft 
Office".

■ An example showing how Microsoft Visual C# .NET is used to 
create a DLL in Chapter 4, "Creating Smart Documents That 
Interact with Self-Service Business Processes". 



Getting Started with Microsoft Office

1-10 Oracle Application Server Developer's Guide for Microsoft Office Interoperability



Understanding Microsoft Office 2003 Extensibility Technologies 2-1

2
Understanding Microsoft Office 2003

Extensibility Technologies

This chapter identifies and describes the different extensibility and interoperability 
technologies that Microsoft Office 2003 has to offer. This chapter requires a good 
working knowledge of Microsoft Office technology.

This chapter contains the following sections: 

■ XML Schemas

■ Smart Technology

■ Research and Reference Services

■ Task Panes

■ Microsoft Office 2003 Web Services Toolkit

■ Primary Interop Assemblies

■ Network Deployment of Documents

Compared to previous versions, Microsoft Office 2003 has made a lot of progress when 
it comes to extensibility and interoperability. Enhancements as compared to earlier 
versions are as follows:

■ Microsoft Office 2003 provides Extensible Markup Language (XML) and Web 
services-based technologies that developers can use to build solutions that extend 
the Microsoft Office Suite and allow Microsoft Office users to interact easily with 
enterprise-wide business processes and data. Solutions built in this way provide 
enhanced quality of decision making, improved document handling capabilities, 
and smoother flow of information.

■ Microsoft Office 2003 offers smart documents, smart tags, and document 
distribution and management solutions for easier deployment.

■ Efficient and productive developers tools and software enable secure and strong 
solution development.

This chapter describes the specific extensibility technologies and interfaces that 
Microsoft makes available in Microsoft Office 2003. 

See Also: The Microsoft Office Web page for more information 
about the various Microsoft Office technologies at

http://www.microsoft.com/office/



XML Schemas

2-2 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

2.1 XML Schemas
Microsoft Office 2003 supports XML in two ways:

■ XML Reference Schemas: World Wide Web Consortium (W3C)-compliant XML 
schemas defined by Microsoft to represent the structure of Microsoft Word 
documents, Microsoft Excel spreadsheets, and Microsoft InfoPath form templates. 

■ Custom-Defined XML Schemas: Custom-defined XML schemas to define any 
schema that represents business information so that the associated data can be 
used within Microsoft Office 2003.

2.1.1 XML Reference Schemas

Definition
XML reference schemas are fully documented and published schemas, which contain 
data from Microsoft Office documents and enable developers to understand and 
manipulate documents using any software that can process industry standard XML, 
without using programs in Microsoft Office 2003. This is advantageous to application 
developers because it allows server-based document creation, indexing and searching 
of documents, sharing data across different systems, and formatting information as 
required. All of this can now be done without the need for Microsoft Office on the 
server, or the use of complex document object model programming. The different XML 
reference schemas available are the following:

■ WordprocessingML: schema for Microsoft Word 2003

■ SpreadsheetML: schema for Microsoft Excel 2003

■ FormTemplate Schemas: schema for Microsoft InfoPath 2003

Technology
Each of the following Microsoft Office applications supports XML reference schemas:

Microsoft Word 2003 WordprocessingML, the Microsoft Word 2003 XML format or 
schema, is available in all versions of Microsoft Word 2003. This schema saves all the 
information that is saved in the Microsoft Word binary format and has a format similar 
to the .doc binary file format. Microsoft Word or specific templates in Microsoft Word 
can be configured to save in the WordprocessingML format by default. When a 
document is saved as WordprocessingML and reopened, all document features are 
retained by Microsoft Word. Opening a WordprocessingML file from Microsoft 
Windows Explorer or Microsoft Internet Explorer will open the XML file directly in 
Microsoft Word. This is because Microsoft Word saves the WordprocessingML file with 
a processing instruction at the top of the file. When a Microsoft Word document is 
saved as XML, a detailed XML file with several name spaces is created. However, the 
structure of a simple WordprocessingML document has only five elements and one 
namespace.

Most of the document's details are stored as text. Items such as images, Microsoft 
ActiveX controls, and Microsoft Visual Basic for Application projects that do not 
provide a mechanism for Microsoft Word to save as text, are stored using base-64 
encoding.

Microsoft Excel 2003 SpreadsheetML, the Microsoft Excel 2003 XML format or 
schema, is available in all versions of Microsoft Excel 2003. Unlike WordprocessingML, 
SpreadsheetML does not save all details associated with a workbook. When a user 
opens a SpreadsheetML file from Windows Explorer or Internet Explorer, the XML file 



XML Schemas

Understanding Microsoft Office 2003 Extensibility Technologies 2-3

is opened in Microsoft Excel 2003. This is because Microsoft Excel saves the 
SpreadsheetML file with a processing instruction at the top of the file for this purpose. 
The content in this schema includes information about workbooks, worksheets, 
formulas, formatting, and so on. 

Microsoft InfoPath 2003 Information captured through InfoPath is saved in the XML 
format defined by an InfoPath solution developer. Therefore, InfoPath does not define 
a file format, but uses FormTemplate Schemas, which is saved with a file extension of 
.xsf, to define the layout for InfoPath forms. InfoPath automatically creates and 
manages files for solutions created by the InfoPath designer. Information, like user 
interface customizations, XML schemas, views, business logic, events, deployment 
settings, and so on, which is used within an InfoPath form, is defined in a 
FormTemplate. The .xsf file holds information about how the form is constructed, 
used, and deployed.

Benefits
In earlier versions, the use of document content in a Microsoft program was restricted. 
This is because binary file formats were used and as a result, to interpret content, the 
appropriate Microsoft Office program had to be started and automated through its 
object model. Also, there was no support for writing or running Microsoft Office 
programs from a server. With the introduction of XML file formats, it is now possible 
to read and manipulate XML files from outside of the Microsoft Office programs by 
using tools and techniques that support XML standards.

This can be useful for developers in the following ways: 

■ A Microsoft Word document, Microsoft Excel spreadsheet, or InfoPath form 
template can be assembled on a server by using XML. An XML transform (XSLT) 
can be applied to information from a database or Web service to create a rich 
document by adding format and structure to it. This technique is useful, for 
example, in creating a report periodically such as an on-demand, customized 
report, or a document with customized information.

■ Microsoft Office 2003 onward, information is reused when creating plans and 
schedules for similar projects. Users often copy information from existing 
documents, particularly those created from the same template. For example, 
project plans and schedules are created frequently and large part of the documents 
are often the same as previous versions. In the past, finding the right document 
with related information was difficult, and if found, the information had to be 
copied manually into the new document. Also, building a solution to help the user 
was difficult as information was difficult to access from the binary file formats. By 
using the XML file formats, Microsoft Office 2003 documents are saved as text 
files. These files can then be processed to find the required information and then 
extract only the desired section from an existing document. This takes away from 
all the difficulties and shortcomings faced in earlier versions. By using the 
XML-based solution, even users who are not familiar with XML can now complete 
a task more efficiently.

■ Because XML documents are text-based, they can be read on all platforms. Binary 
documents cannot be shared easily as they are platform-dependent. XML enables 
cross-platform computer-based processing. Documents now have a satisfactory 
transfer format for solutions.

■ When information is presented in a Microsoft Word document, formatting is a key 
aspect that must be considered, and many times content from databases may be 
displayed without any specific format, for example, when generating reports. By 
using XML transforms, developers can associate XML data streams with specific 



XML Schemas

2-4 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

formatting so that, the transformed XML data is displayed in Microsoft Word in 
the required format. This makes it easier to perform routine formatting work, 
which can otherwise be very tedious.

2.1.2 Custom-Defined XML Schemas

Definition
The type of data and structure for each element in an XML document is defined in a 
schema. Developers can specify a custom format for information needed for a 
particular application by defining it in a schema. This schema can then be used to 
ensure that valid XML data is captured and formatted. 

Technology
The new user interface in Microsoft Office 2003 supports mapping data elements from 
a schema to specific sections in Microsoft Word and Microsoft Excel documents, and to 
controls in InfoPath forms. XML tags are invisible to the user of the solution. XML 
features can be defined from the user interface and by using object model support. 
Custom-defined XML schema information is retained in the XML document formats to 
enable further processing specific to the custom XML data. Custom-defined XML 
schema support in each major Microsoft Office Application is enabled as follows:

Microsoft Word 2003 In addition to retaining the ability to use the rich editing 
features, including spell check, change tracking, AutoCorrect and more, XML adds 
structure to a Microsoft Word document in the following ways:

■ Microsoft Word 2003 Task Pane: Users can map schema elements to specific 
sections in a Microsoft Word document or template by using the task pane. When 
editing the document, the structure can be compared against the intended view by 
toggling between the tagged view and the standard view. Microsoft Word 
validates the document data against the attached schema as it is entered or edited, 
flags the errors through the user interface, and raises validation error events. XML 
tags in the document reveal exact locations of the XML elements. The elements 
must exist in the same order in the document as they are in the schema. To use a 
schema that does not have the same structure as the desired document layout, 
developers must first create a schema to match the document layout, and then 
change the format of the data when bringing it in or sending it out of the 
document, by using XSLT transforms. 

■ WordprocessingML: An input data stream can be transformed to become valid 
WordprocessingML, and can then be inserted in Microsoft Word. Documents using 
a custom-defined schema can be saved as data-only, where Microsoft Word saves 
only the XML data in a file based on the custom schema's structure. Alternatively, 
documents can be saved by using the full Microsoft Word XML schema 
(WordprocessingML). By saving in the WordprocessingML format, all custom 
XML elements are incorporated, allowing standard XML techniques to be used 
against the saved XML file to access and change any of the WordprocessingML or 
custom XML markup. WordprocessingML can be inserted in a document with any 
valid Microsoft Word formatting characteristics. There are two ways of inserting 
only data into an existing Microsoft Word template with custom XML tags: 
transform the XML to WordprocessingML and replace a selection with this, or, 
copy the XML data element by element. 

■ Schema Library: The Schema Library provides features to manage multiple 
custom schemas on a computer, and to configure Microsoft Word to process XML 
by applying a transform. This is possible as the schemas are organized according 



XML Schemas

Understanding Microsoft Office 2003 Extensibility Technologies 2-5

to namespaces and a mechanism is provided to associate transforms (XSLT files) 
and smart documents with a namespace.

Microsoft Excel 2003 Using XML, it is possible to build Microsoft Excel solutions 
that collect data and provide analytical capabilities. In Microsoft Excel, developers can 
map the elements of any custom-defined W3C-compliant XML schema within the 
structure of one or more spreadsheets.

■ Visual Data Mapping Tool: A visual data-mapping tool is available in a task pane 
in Microsoft Excel. In Microsoft Excel, mapped elements are designated with blue, 
nonprinting cell borders. Individual elements are mapped as defined by the 
schema to single cells, and repeating cells are mapped to the new List feature.

■ Microsoft Excel Lists: Microsoft Excel Lists can be accessed programmatically by 
using the object model. However, it is not easy to work with XML that includes 
repeating elements within other repeating elements.

■ Mapping Multiple Schemas: Multiple elements can be mapped to the same cell 
location. Multiple schemas can be mapped to a workbook. Microsoft Excel makes 
it very easy to bring XML data into a schema map, or to export it. For example, 
data can be imported into one schema and exported from another. 

■ SpreadsheetML: If an XML file that does not have a reference to a schema is 
opened in Microsoft Excel, then Microsoft Excel assumes a schema from the XML 
data and structure. When a workbook is saved as SpreadsheetML, Microsoft Excel 
saves complete copies of the respective schemas and also saves the map details in 
the file format.

■ Data Validation and Web Services: With the two-dimensional layout of a 
spreadsheet, it is difficult to identify where the user last worked, and therefore, 
real-time validation against any attached schemas is not performed when using 
Microsoft Excel. However, based on a request, validation can be performed at any 
time to notify a user of errors at specific stages of a solution. Microsoft Excel does 
not provide native support for Web services, but it is easy to receive data from a 
Web service by using code, because the XML map in a worksheet acts like a 
display transform. Data can then be placed directly into a map by using one 
method in the Microsoft Excel object model.

Microsoft InfoPath 2003 Most Microsoft InfoPath form solutions are based on 
custom-defined XML schemas. XML elements defined by the schema map to controls 
on Microsoft InfoPath Forms, and Microsoft InfoPath implements the validity of the 
captured information according to the schema. Information captured in Microsoft 
InfoPath is stored in an XML file in the format of the custom-defined XML schema. 
Microsoft InfoPath has no special file format. A form can be based only on one schema. 
Microsoft InfoPath provides the following benefits:

■ When designing a form from a custom-defined schema, InfoPath provides controls 
based on the data type specified by the schema, for example, a date control is 
suggested for the XSD date type.

■ When captured information is saved as an XML file in InfoPath, to ensure that the 
document is always connected with that specific form template, InfoPath includes 
an XML processing instruction at the top of the document that finds the 
appropriate template solution. Similarly, it is possible to open any XML file in that 
namespace with the InfoPath form template.



Smart Technology

2-6 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Benefits
By using custom-defined XML schemas in Microsoft Office 2003, developers can work 
with data that is marked according to certain business rules defined in a schema, 
instead of plain text items in Microsoft Office documents. Earlier, when 
custom-defined XML schemas were not supported, this data was available only as 
numbers in the cells of a spreadsheet or somewhere within a Microsoft Word 
document region. When an item was moved to another position in the document, it 
was tedious to find and change every line of code that used the value. This is resolved 
by mapping an XML schema to the document. It is easy to read or set the value by 
referring to an XPath statement based on the schema. To access data in this way, it is 
not necessary to know where the data appears in the document because it directly 
references the XML structure.

These benefits of working with XML schemas enable any of the following:

■ Access data in documents programmatically

■ Format data being integrated in Microsoft Office 2003

■ Incorporate data from external sources

■ Extract data from a document or file

In addition, Microsoft Word and Microsoft Excel enable creation of more intelligent 
solutions by providing events relating to the custom-defined XML structure in a 
document. An example is the smart document solution model described subsequently 
in this guide. Microsoft Word and Microsoft Excel-based solutions can more directly 
exchange information with Web services. Integration of a document with corporate 
data and business processes is simplified by using XML and custom-defined XML 
schemas. 

2.2 Smart Technology
Smart technology refers to technology used to build an adaptive, responsive, and rich 
interactive experience, and to provide the capability to connect to disparate data 
sources. Smart technology includes smart documents, smart tags, and smart clients. 
This section contains the following subsections:

■ Smart Documents

■ Smart Tags

■ Difference Between Smart Documents and Smart Tags

■ Smart Clients

2.2.1 Smart Documents

Definition
Smart documents are solutions that enhance the user experience when working with 
Microsoft Office documents. Smart documents enable developers to perform any of 
the following:

■ Enter data automatically in documents

■ Access external data automatically and place it appropriately in a document

■ Provide contextual help to guide knowledge workers in the preparation of 
complicated documents

■ Share information in a smart document across disparate systems and applications



Smart Technology

Understanding Microsoft Office 2003 Extensibility Technologies 2-7

Smart documents provide a user with help and additional information, various 
actions, custom tools, and even custom-designed ActiveX controls to specified sections 
in the document. When a user works in that section of the document, these items are 
presented dynamically through the Document Actions task pane. This is possible by 
making use of programming logic that defines the way documents are used and 
thereby controlling how data in the documents can be manipulated. Smart document 
solutions are supported in Microsoft Word 2003 and Microsoft Excel 2003, and make 
use of the custom-defined XML schema capabilities in these products.

Technology
The following subsections describe how smart documents work.

Overview Smart documents can be used for many tasks like managing a travel 
request or an absence template form in Microsoft Word or Microsoft Excel.

Developing Smart Documents A smart document solution can be built by using an 
existing document or by starting from scratch.

The steps involved in developing a smart document are as follows:

1. Attach the document to an underlying XML schema. The document then uses the 
XML schema as the basis for marking it with corresponding XML elements. 

2. Write code to respond to events that start when the user's insertion point enters a 
document range mapped to an XML element. This code can provide the user with 
a customized user interface in the task pane.

3. Create an XML expansion pack, which contains information about the solution 
code, its version, and how it should be installed for the solution to work (that is, 
on the server, on the client, or in a particular directory).

4. Place the smart document code, expansion pack, and all the files used by the smart 
document in a trusted location.

5. From the user interface, reference an XML expansion pack and attach the solution 
to the document or workbook. When the user opens this type of smart document, 
the expansion pack technology in Microsoft Office 2003 inspects the expansion 
pack to ensure that the entire solution is available, operational, and secure, and 
that any new files are downloaded as needed.

6. Make this smart document or workbook available as a template. By using this 
template, the smart document and any supporting files used by the smart 
document are downloaded and registered on the user's computer.

The document or template and the code that controls the solution are independent of 
each other and as a result the deployment and maintenance of smart documents is 
simplified. It is easier to create new versions and update these documents separately.

Smart documents can be created by using different techniques including:

■ ISmartDocument Interface

■ Visual Studio Tools for Microsoft Office

■ Information Bridge Framework

Each technique is based on a different technology and is suitable for the needs of a 
different solution. 



Smart Technology

2-8 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Deploying Smart Documents Smart document solutions are deployed by using a 
mechanism that downloads the solution code on-demand when a user opens a 
document. 

Smart document solutions can implement security that is subject to Microsoft Office 
security settings, demand trusted servers for deployment sites, and require all solution 
code to be signed. 

Smart documents can also update themselves from a trusted server location 
automatically, making solution upgrades easier. There is no need to install or manage 
the client-side code directly.

Benefits
Smart documents have the following important benefits:

■ Productivity: Users become more productive with smart documents because 
content is presented in the task pane as they navigate through a document, 
reducing the time spent searching for or filling in data, or looking for help. 

■ Familiarity: Users find it convenient and easy as they continue to work in 
Microsoft Word and Microsoft Excel, which they are familiar with.

■ Extensibility: Users can create solutions that enable documents to interoperate 
with other processes and systems seamlessly, offer a varied user interface, and 
provide content that is relevant to the specific task that a user must perform within 
a specific section of a document. This is possible because the programmable task 
pane can contain any variation of data, help, and common controls (such as 
buttons, check boxes, option buttons, and list boxes), hyperlinks, images, free text, 
and more. It is also possible to manage task pane events to perform actions on 
behalf of the user. All of this allows an enterprise to manage its information with a 
higher level of integrity.

2.2.2 Smart Tags

Definition
Smart tags are pointers in a document that are programmed to identify terms and 
regions that are of interest to those working with the document. A smart tag appears 
as a dotted underline, next to which a menu icon appears when the user clicks or 
moves the mouse cursor over the marked region. The context-specific menus for smart 
tags present users with actions related to the text, cells, or regions of a document 
where they appear. Smart tags can be used with names of people by using the Personal 
menu in Microsoft Outlook and all task panes in Microsoft Office 2003. Developers can 
also use smart tag actions in Microsoft Internet Explorer for smart tags that are 
embedded in Web pages. 

Figure 2–1 shows an example of a Microsoft Word document that uses a smart tag.

See Also: The following chapters, which implement smart 
documents:

■ Chapter 4, "Creating Smart Documents That Interact with 
Self-Service Business Processes"

■ Chapter 5, "Completing Forms and Entering Data Using Microsoft 
Office"

■ Chapter 6, "Securing Smart Documents and Web Services"



Smart Technology

Understanding Microsoft Office 2003 Extensibility Technologies 2-9

Figure 2–1 Example of a Document with Smart Tags

Technology
Within Microsoft Office 2003, the smart tag feature is available in Microsoft Word, 
Microsoft Excel, Microsoft Access, and in Microsoft PowerPoint, and in Microsoft 
Outlook when Microsoft Word 2003 is used as the e-mail editor.

Implementing smart tags requires the following:

■ A recognizer for recognizing and marking text

■ An action handler for executing actions

Along with recognizers for dates and times, stock ticker symbols, person names, and 
addresses, the Microsoft Office system includes a recognizer that identifies terms 
stored in special text files on the local hard disk. These text files can be edited to 
include or delete words and phrases that will be recognized by Microsoft Office 
applications.

Microsoft Office 2003 supports building smart tags by using the following 
technologies:

■ COM DLLs

■ Primary Interop Assemblies

■ XML files with Microsoft Office Smart Tag List (MOSTL)

Recognizers and action handlers can be implemented using a combination of these 
technologies.

Benefits
Smart tags provide the ability to recognize key data terms inside documents and 
e-mail messages, allowing users to efficiently perform custom actions associated with 
the specific data elements directly from their document. Smart tags can link users to 
relevant corporate data, streamline cumbersome tasks, or perform any operations that 
are associated with the tagged data.



Smart Technology

2-10 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

2.2.3 Difference Between Smart Documents and Smart Tags
Though smart documents are based on the Smart Tag Application Programming 
Interface (API), they are functionally different from smart tags in that the focus is on 
the document structure, unlike smart tags that focus on content structure. Smart 
documents are useful when working with data, that is, retrieving it from a database or 
any other location and saving it.

In smart documents, schema elements are accessed at run time and corresponding 
elements in specific regions in the document are populated. Users can create solutions 
that extend documents to interoperate with other processes and systems and provide 
content that is relevant to the specific task that a user must perform within a specific 
section of a document. 

In smart tags, the smart tag recognizer examines the content of the document for 
information to which smart tags can be mapped. The context-specific menus present 
users with actions related to the text, cells, or regions of a document where they 
appear. Smart tags can link users to relevant corporate data, streamline cumbersome 
tasks, or perform any operations that are associated with the tagged data.

2.2.4 Smart Clients
Smart clients are client applications that optimize local resources to provide an 
adaptive, responsive, and rich interactive experience, and connect to disparate data 
sources. Smart clients are easy to deploy and manage.

To provide a rich user experience, a smart client application includes the following:

Local resources
Smart client applications provide various features, one such being the ability to 
optimize local resources such as hardware for storage, processing, or data capture. 
Smart client solutions enhance all that the Microsoft Windows platform offers. 
Examples of well known smart client applications are Microsoft Word and Microsoft 
Excel. Smart client applications reside on a user's local computer and can be used 
online or offline. Smart client applications work efficiently offline and online, but 
provide a richer experience when online.

Connectivity
By using smart client applications, it is easy to connect to systems across the enterprise 
or the internet, and exchange data with these systems. Smart client solutions with Web 
Services, utilize industry standard protocols such as XML, HTTP, and SOAP to 
exchange information with remote systems. Smart clients also enable synchronization 
and exchange of information between various back-end systems.

Offline capabilities
Smart client applications, for example, Microsoft Outlook, can work both, offline and 
online. Local caching and processing capabilities are enhanced to enable operation 
during periods of no network connectivity or intermittent network connectivity. This 
is a highly significant feature of smart clients.

Desktop solutions can update back-end systems by taking advantage of offline 
architecture, and thereby keeping the user interface responsive and improving the 

See Also: Chapter 11, "Accessing in-Context Web Information and 
Invoking an Enterprise Portal"



Research and Reference Services

Understanding Microsoft Office 2003 Extensibility Technologies 2-11

overall user experience. This architecture provides a cost-effective, high-performance 
system.

2.3 Task Panes
When using Microsoft Office applications, there may be need for more information or 
options than a toolbar can provide. To address this, Microsoft Office 2003 provides task 
panes, which provide a common area for additional information and options. This 
section describes task panes and how to use them. 

Description
Task panes appear as fixed dialog boxes on the right-hand side of the workspace in 
Microsoft Office applications like Microsoft Word, Microsoft Excel, Microsoft 
PowerPoint, Microsoft Outlook, and Microsoft Access. Most task panes provide access 
to the Microsoft Office online Web site and look up Microsoft Office templates and 
Help. Task panes provide features for creating and locating documents, searching for 
information, tools, and services, formatting documents, researching, and collaborating 
with peers. The following task panes appear in one or more of these Microsoft Office 
programs: 

■ Startup

■ Search 

■ Clipboard

■ Insert Clip Art

In addition, Microsoft Office 2003 includes a new task pane called Research and 
Reference, which allows users to research information while working, and to look up 
references from both internal and external resources.

The Research and Reference task pane, also known as the Research task pane, shares 
cookies and caching with Microsoft Internet Explorer.

The Research and Reference task pane uses a discovery Web service to provide 
Research and Reference services. Microsoft Office 2003 provides support for certain 
basic tasks such as displaying results and copying items to the clipboard. Such tasks 
do not require any client-side code. However, by performing certain additional tasks, a 
Research and Reference service can be configured to contain smart tag actions for 
extended document interactions. To include smart tags in a document, a Dynamic Link 
Library (DLL) must be installed locally. 

2.4 Research and Reference Services

Definition
Research and Reference Services is a new feature introduced with Microsoft Office 
2003. This feature is provided by means of a task pane, which allows users to search 
for a word or phrase in a number of information sources from within the Microsoft 
Office application. Research and Reference services provide Microsoft Internet 
Explorer-based search capabilities from within the Microsoft Office applications. This 
eliminates the need to switch between applications intermittently to search for 
information when working on Microsoft Office documents.

The Research and Reference task pane is the same in all Microsoft Office applications.



Microsoft Office 2003 Web Services Toolkit

2-12 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Technology
By default, a few research services are registered and available with Microsoft Office 
2003 applications. This includes Search options that come with Microsoft Office 2003, 
basic resources such as thesauruses and dictionaries in multiple languages, language 
translation, an online encyclopedia, and Web searching.

In addition, custom research services can be created to expose information from 
enterprise applications into the Research and Reference task pane. This requires a Web 
service and a Research and Reference task pane add-in.

Searches can be configured to access local and remote data sources. These data sources 
can be behind either a corporate firewall or on the Internet. There are no specific 
security considerations required when using the Research and Reference services. 
However, for services that may require authentication (for example, if the response 
contains a link to an installation program for integrated smart tag functions), Microsoft 
Windows authentication or Internet passwords can be used.

Benefits
As the Research and Reference Services feature is available in most Microsoft Office 
programs, users can look up of information from within their applications. This 
service provides a convenient way to look up terms within the context of user 
documents, and insert content into the documents. Enterprises can benefit by making 
corporate information available in the task pane to all appropriate users. The services 
available can be configured and updated from a server or through a policy.

2.5 Microsoft Office 2003 Web Services Toolkit

Definition 
Web services are an industry standard used for the following purposes:

■ Enabling the exchange of data between applications or systems

■ Moving data across heterogeneous systems

■ Communicating between distributed systems

Web services use open, XML-based standards and transport protocols to exchange 
data with applications. 

Technology
Microsoft Office applications can be made to interoperate with Web services by using 
the Microsoft Office 2003 Web Services Toolkit. This toolkit helps in searching for Web 
services and integrating them with Microsoft applications, by creating the code 
necessary to interface with basic Web services. Simple Object Access Protocol (SOAP) 
is one of the main protocols defining the type of communication to a Web service. 
Developers can interact with Web services by manually interpreting the SOAP 
messages. 

Benefits
By using Web services, data from legacy systems can be exposed to authorized users 
within the enterprise. Earlier, before Web services were used in such solutions, these 
users found it difficult to access such useful information. 



Network Deployment of Documents

Understanding Microsoft Office 2003 Extensibility Technologies 2-13

2.6 Primary Interop Assemblies
Solutions built using managed code, that is, code that runs on the .NET framework can 
be very productive. For managed code to interoperate with COM interfaces, such as 
the Microsoft Office object models, developers must use a managed assembly that 
describes the COM interface types.

Primary Interop Assembly is one such managed assembly, which provides a run time 
interface for the .NET Framework, and allows applications to bind to the COM types 
at compile time. To make it easier for developers to write code using Visual Studio 
.NET to automate Microsoft Office applications, Microsoft provides Primary Interop 
Assemblies in Microsoft Office 2003 installations, but, for this it is necessary to have 
installed Microsoft .NET Framework version 1.1. Primary Interop Assemblies are also 
available for the smart tag and ISmartDocument interfaces.

2.7 Network Deployment of Documents
Code solutions are easier to manage when deployed from a network server. This is a 
primary reason why Web-based solutions are so popular. Microsoft provides support 
for deploying Microsoft Office documents from a network server to Microsoft Office 
clients. 

Technology
Microsoft Office 2003 provides two technologies for deploying code for the following 
types of solutions from a network: 

■ Smart document solutions. These solutions are built using the ISmartDocument 
interface with an XML solution manifest file. 

■ Solutions built using the Visual Studio Tools for Microsoft Office. 

Both technologies support document-based solutions for Microsoft Word and 
Microsoft Excel only. The solution code is placed on a trusted server and the user is 
given the document or template for the solution. When the network user opens the 
document, appropriate security checks are made. Custom code is downloaded to the 
local computer once all security checks are completed and no violations are found. At 
regular intervals, when the user opens the document, the server is checked for 
updates. 

Server deployment of smart documents built with ISmartDocument interface A 
smart document built with ISmart document interface will contain a custom document 
property that has a reference to the XML solution manifest file. Microsoft Office 2003 
verifies this document for the following:

■ The manifest file is digitally signed

■ The code components are signed

Along with the smart document, the code must also exist on a trusted server location. 
In addition, if the smart document solution is built with managed code, it also 
undergoes .NET-based security checks.

Once the document passes the security checks, depending on how the solution was 
configured, the solution code can either be saved on the server or installed locally. If it 
is installed locally and the solution does not need other network resources, then the 
solution can be used offline. Depending on the version numbers for each individual 
file in the XML solution manifest file, solutions will be updated. An XML element in 
the solution provides information about the frequency at which the server is checked 
for updates. 



Network Deployment of Documents

2-14 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Server deployment of documents built with Visual Studio Tools for Microsoft Office
A document built in this way will also contain a custom document property, which, in 
this case, points to the main interfacing assembly. Once the document passes the 
security checks, the solution code is downloaded into the Internet Explorer cache. The 
solution can be accessed from the cache and will work offline. When the system is 
connected, the local cached copy is updated with a new version, if available. 

Benefits
There are three important benefits of network deployment of Microsoft Office 
documents:

■ It is easier to manage a solution from a server as newer versions can be published 
on the server and the local copy gets updated automatically. In earlier versions, 
deploying client-side code was an arduous task. 

■ More of the application and data access privileges in a server-based deployment 
are managed from a centralized server within a trusted zone, thereby improving 
the security of desktop solution code. 

■ A more robust security protocol can be used with solutions that are built with 
managed code.



Understanding Oracle Application Server Interoperability with Microsoft Office 3-1

3
Understanding Oracle Application Server

Interoperability with Microsoft Office

This chapter highlights how different components of Oracle Application Server and 
Oracle Collaboration Suite interoperate with Microsoft Office. This interoperability 
ranges from sending e-mails to Microsoft Outlook to complete smart document 
solutions using Web services and BPEL processes.

This chapter contains the following sections:

■ Overview of Microsoft Office Interoperability with Oracle Application Server

■ Oracle Application Server Component Support for Microsoft Office 
Interoperability

3.1 Overview of Microsoft Office Interoperability with Oracle Application 
Server

Oracle Application Server can be used to develop enterprise applications that 
automate transaction processing; streamline business processes; and access and deliver 
information within the enterprise. With the seamless interoperability capabilities of 
Oracle Application Server, this information can then be configured to be accessed 
using Microsoft Office within the context of enterprise applications. There are many 
ways in which Oracle Application Server components interoperate with the Microsoft 
Office suite of products. 

There is an extensive range of capabilities provided in Oracle Application Server to 
enable the communication between Microsoft applications and enterprise applications 
and infrastructure. These capabilities leverage, among other things, the functionality 
provided within Microsoft Office to make it easier to use Microsoft Office along with 
XML and Web Services.

Figure 3–1 shows at a high level, how Oracle Application Server interoperates with 
enterprise applications as well as Microsoft Office applications. It is Oracle Application 
Server that enables Microsoft applications to communicate with enterprise 
applications and infrastructure services.



Oracle Application Server Component Support for Microsoft Office Interoperability

3-2 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 3–1 Microsoft Office Interoperation with Oracle Application Server

You can see how components of Oracle Application Server described in this chapter 
enable interoperability between the Microsoft infrastructure (Microsoft Office, 
Microsoft Active Directory, Microsoft Exchange, .NET applications, and so on.) and 
disparate enterprise applications, such as packaged and legacy applications, 
databases, directories, and application servers.

This chapter describes how Oracle Application Server enables enterprise application 
technology to work with Microsoft Office. Oracle Application Server effectively forms 
the bridge between the Microsoft components and the back-end applications by taking 
advantage of a set of standards-based features in Microsoft Office.

3.2 Oracle Application Server Component Support for Microsoft Office 
Interoperability

This section lists, in alphabetical order, the Oracle Application Server components that 
interoperate with Microsoft Office including a brief description of the components and 
their integration points with relevant documentation links. The following Oracle 
Application Server components are described:

■ Oracle Application Server Forms Services

■ Oracle Application Server Integration B2B

■ Oracle Application Server Integration Business Activity Monitoring

■ Oracle Application Server Portal



Oracle Application Server Component Support for Microsoft Office Interoperability

Understanding Oracle Application Server Interoperability with Microsoft Office 3-3

■ Oracle Application Server Web Services

■ Oracle Application Server Wireless

■ Oracle Business Intelligence Beans

■ Oracle Business Intelligence Discoverer

■ Oracle BPEL Process Manager

■ Oracle Collaboration Suite

■ Oracle Identity Management

■ Oracle Internet Directory

■ Oracle JDeveloper

■ Oracle Mobile Collaboration

■ Oracle Reports

■ Oracle Secure Enterprise Search

■ Oracle Xellerate

■ Oracle XML Publisher

3.2.1 Oracle Application Server Forms Services
OracleAS Forms Services interoperates with Microsoft office at several points 
including the following:

■ WebUtil interoperates with Microsoft Office in several areas.

WebUtil is designed for developers who are migrating client/server applications 
from Microsoft Windows desktops to the Web, but still need some interoperability 
between their Oracle Forms applications and external packages such as the 
Microsoft Office Suite running on the client browsers' computers.

■ Forms Builder provides several Oracle Forms Built-ins that help in enabling 
interoperability between Microsoft Office functions and OracleAS Forms Services.

OracleAS Forms Services provides an interface for interoperating with Oracle 
Application Server-side Microsoft OLE objects. By using WebUtil, client-side objects 
can also be made interoperable.

3.2.2 Oracle Application Server Integration B2B
OracleAS Integration B2B enables business partners to exchange data across networks 
such as the Internet, and incorporates the partners' host applications and business 
processes. As business messages are exchanged, instance data exists in the run-time 
repository. The OracleAS Integration B2B user interface tool enables to query this 
information to see what is occurring, and to perform business analysis. 

Depending on the type of report being generated, this information can be queried in 
several different ways. Generated reports can be saved in XML files, or in a 
comma-delimited format. Reports saved in a comma-delimited format can be viewed 
by using Microsoft Excel.

See Also: Oracle Forms Developer WebUtil User's Guide at 

http://www.oracle.com/technology/products/forms/htdo
cs/webutil/web_util.pdf



Oracle Application Server Component Support for Microsoft Office Interoperability

3-4 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

3.2.3 Oracle Application Server Integration Business Activity Monitoring
OracleAS Integration Business Activity Monitoring provides real-time visibility into 
enterprise operations, which enables business users to cut costs and improve processes 
while business events, such as a drop in inventory levels, occur. The OracleAS 
Integration Business Activity Monitoring architecture utilizes messaging, data 
integration, advanced data caching, analytics monitoring, alerting, and reporting 
technology to deliver requested critical information within seconds of an event or 
change in status.

Alerts can be sent when data changes in a report, or periodic reports can be sent to 
users daily or at set intervals. It is possible to create solutions to send alerts from 
OracleAS Integration Business Activity Monitoring directly into users' Microsoft 
Outlook e-mail clients. These alerts can be regular links that open in a browser, or 
more sophisticated with embedded Microsoft Office documents sent as e-mail 
attachments.

3.2.4 Oracle Application Server Portal
To make information accessible and easy to find, the ideal solution is to save the data 
in one central content repository, such as the one provided by OracleAS Portal. For 
simple, distributed, low-volume file transfer, the Portal schema in the Oracle 
Application Server Metadata Repository can be mapped as a Web Folder.

There are several WebDAV tools for saving Microsoft Office documents to the 
OracleAS Portal content repository. For example, the Portal schema can be mapped as 
a drive by using Oracle Drive. It is then possible to work with Microsoft Office files 
within that drive.

3.2.5 Oracle Application Server Web Services
Oracle Application Server Web Services include a set of messaging protocols, 
programming standards, and network registration and discovery facilities. When they 
are used together, these features enable the publication of business functions to 
authorized parties over the Internet from any device connected to the Web.

A Web service supports direct interactions with other software applications using 
XML-based messages and Internet-based products.

By following a set of guidelines discussed in this guide, developers can use Oracle 
JDeveloper to create enterprise Web services that can be invoked from Microsoft Office 
applications, specifically Microsoft Word, Microsoft Excel, and Microsoft InfoPath.

Developers can use the Visual Basic editor included with these Microsoft Office 
applications to invoke a proxy class to these Web services. This proxy class can be 
generated by using the Microsoft Office 2003 Web Services Toolkit (a separate 
download). Alternatively, a proxy class can be created using Microsoft Visual C# .NET 
and Microsoft Visual Studio.

Representational State Transfer (REST) Web services architecture conforms to the Web 
architecture defined by W3C, and leverages its architectural principles. REST Web 

See Also: Oracle Application Server Integration B2B User’s Guide

See Also: Chapter 7, "Delivering Business Activity Monitoring 
Alerts and Reports to Microsoft Outlook"

See Also: Chapter 12, "Saving Microsoft Office Documents to the 
OracleAS Portal Content Repository"



Oracle Application Server Component Support for Microsoft Office Interoperability

Understanding Oracle Application Server Interoperability with Microsoft Office 3-5

services use XML documents, not SOAP envelopes, for sending messages. Unlike 
SOAP Web Services, REST is a "style" and has no standards or tools support from 
vendors. REST Web services can be deployed similar to OracleAS Web Services. The 
OracleAS Web Services platform will transform the SOAP response on the server into 
a REST response before sending it to the client. The REST response will be an XML 
document whose root element is the first child element of the SOAP body.

OracleAS Web Services can assemble REST Web services only where the use, or 
encoding mechanism, is literal (use=literal). It does not support REST Web 
services where the message format is encoded.

The Create Java Web Service wizard in Oracle JDeveloper provides an option for 
enabling REST functions for a Web service. For more information on using Oracle 
JDeveloper to enable REST functionality in a Web Service, see the Oracle JDeveloper 
on-line Help.

3.2.6 Oracle Application Server Wireless
OracleAS Wireless provides a complete set of Web-based tools, which provide 
functions for developing and publishing mobile applications, creating mobile users, 
providing help desk support, and managing the OracleAS Wireless server. OracleAS 
Wireless enables users to connect from a wireless device to their company's e-mail, 
calendar, and files systems.

OracleAS Wireless provides support for accessing, searching, and faxing Microsoft 
Office documents from the users mobile devices.

3.2.7 Oracle Business Intelligence Beans
Oracle Business Intelligence Beans enables developers to productively build business 
intelligence applications that take advantage of the extensive Online Analytical 
Processing (OLAP) functions in the Oracle Database. OracleBI Beans includes 
presentation beans: graph and crosstab, data beans: query and calculation builders, 
and persistence services, which may be deployed in both HTML client and Java client 
applications. OracleBI Beans is seamlessly integrated into Oracle JDeveloper to 
provide the most productive development environment for building custom business 
intelligence applications.

In an OracleBI Beans application, the application developer can let users export data 
from a crosstab to a text file or to an HTML file that can be read by Microsoft Excel 
2000 and later.

The Oracle Business Intelligence Spreadsheet Add-In, which is based on OracleBI 
Beans, is an add-in to Microsoft Excel and enables users to display data from Oracle 
OLAP in Microsoft Excel spreadsheets. This add-in is available as part of Oracle 
Developer Suite, and can also be downloaded from Oracle Technology Network 
(OTN) at

http://www.oracle.com/technology/products/bi/spreadsheet_
addin/index.html

See Also:

■ Chapter 5, "Completing Forms and Entering Data Using Microsoft 
Office"

■ Details about assembling REST Web services in the Oracle 
Application Server Web Services Developer’s Guide.

See Also: Oracle Application Server Wireless Developer’s Guide



Oracle Application Server Component Support for Microsoft Office Interoperability

3-6 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

3.2.8 Oracle Business Intelligence Discoverer
Oracle Business Intelligence Discoverer is an intuitive ad-hoc query, reporting, 
analysis, and Web-publishing tool that empowers business users at all levels of the 
enterprise to gain immediate access to information from data marts, data warehouses, 
online transaction processing systems and Oracle E-Business Suite.

Using OracleBI Discoverer, a OracleBI Discoverer workbook can be saved as a 
Microsoft Excel Spreadsheet. The following options are available when exporting to 
Microsoft Excel:

■ Excel worksheet with formatting preserved.

■ Excel worksheet with an Excel Pivot Table created. This option is available for 
OracleBI Discoverer crosstabs.

■ Comma-separated values (CSV). This option is suitable when it is not necessary to 
format information, and when there is a need to conserve the file size.

■ Microsoft Excel Web Query (.IQY). This option means that end users can access 
dynamic OracleBI Discoverer worksheets in Microsoft Excel. It is possible to 
export data to Microsoft Excel Web Query format from both OracleBI Discoverer 
Plus Relational and OracleBI Discoverer Viewer.

3.2.9 Oracle BPEL Process Manager
Oracle BPEL Process Manager provides a framework for easily designing, deploying, 
monitoring, and administering processes based on Business Process Execution 
Language (BPEL) standards.

Oracle BPEL Process Manager adds value and ease of use to BPEL functionality by 
providing support in Oracle JDeveloper BPEL Designer for Transformations, 
workflows, worklists, notifications, sensors, technology adapters, and third-party 
adapters.

Using Oracle BPEL Process Manager, it is possible to set up a BPEL process, which can 
create and receive organization alerts that trigger when users' identity information 
changes. These alerts can be in the form of e-mail notifications with Microsoft Office 
XML documents sent to the Microsoft Outlook e-mail client of appropriate users.

3.2.10 Oracle Collaboration Suite
The following Oracle Collaboration Suite components support Microsoft Office 
interoperability in different ways.

See Also: Chapter 8, "Delivering Business Intelligence Information 
to Microsoft Excel"

See Also:

■ Chapter 8, "Delivering Business Intelligence Information to 
Microsoft Excel"

■ Oracle Business Intelligence Discoverer Plus User’s Guide

See Also:

■ Chapter 4, "Creating Smart Documents That Interact with 
Self-Service Business Processes"

■ Chapter 10, "Provisioning User Identity Information and Alerting 
Microsoft Outlook Contacts"



Oracle Application Server Component Support for Microsoft Office Interoperability

Understanding Oracle Application Server Interoperability with Microsoft Office 3-7

3.2.10.1 Oracle Calendar
Oracle Calendar is scalable scheduling software, based on open standards, for 
efficiently scheduling people, resources, and events. Among other features, it offers 
real-time lookups and free-time searches; multiple time zone support, and UTF-8 
encoding to support international deployments; e-mail and wireless alerts; 
multiplatform support and an extensible authentication, compression, and encryption 
(ACE) framework for enhanced security.

The Oracle Calendar server is the back end to an integrated suite of scheduling and 
scheduling products. Networked users can use Microsoft Outlook to manage their 
calendars. 

3.2.10.2 Oracle Connector for Outlook
Oracle Connector for Outlook extends Microsoft Outlook to provide a unified 
environment for e-mail, voicemail, fax, Web conferencing and real-time calendaring. 
As a MAPI service provider, Oracle Connector for Outlook communicates directly 
with the calendar and e-mail servers, converting e-mail, fax, voicemail, and calendar 
data into MAPI constructs for display in the Microsoft Outlook interface.

3.2.10.3 Oracle Drive
Oracle Drive is the desktop client for Oracle Content Services. Oracle Drive enables 
access to content (files) and file properties through a mapped drive in Windows 
Explorer, from any Windows applications, and Microsoft Office applications. Content 
is also accessible through a Web browser.

3.2.10.4 Real Time Collaboration Add-in for Outlook
The Oracle Real-Time Collaboration Add-in for Microsoft Office provides a convenient 
way to schedule Web conferences, start instant conferences, or chat with Oracle 
Messenger users from within Microsoft Office applications such as Microsoft Excel, 
Microsoft Outlook, Microsoft PowerPoint, or Microsoft Word. 

See Also: Overview of Oracle Calendar in the Oracle Calendar 
Administrator's Guide available at 

http://www.oracle.com/pls/cs101/vbook_
subject?subject=calendar

See Also:

■ Chapter 9, "Managing Tasks and Collaborating in Microsoft 
Outlook"

■ http://my.oracle.com/portal/page?_
pageid=100,4501033&_dad=myo&_schema=PHP

See Also:

■ Section 12.3.3, "Using Oracle Drive as a WebDAV Client"

■ Oracle Content Services Administrator's Guide at

http://download-west.oracle.com/docs/cd/B25553_
01/content.1012/b25275/protocol.htm#sthref396



Oracle Application Server Component Support for Microsoft Office Interoperability

3-8 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

3.2.11 Oracle Identity Management 
Using Oracle Identity Management, it is possible to reduce administrative time and 
costs by enabling applications and directories to interoperate with Oracle Internet 
Directory. This includes third-party Lightweight Directory Access Protocol (LDAP) 
directories. It does this by using Oracle Directory Integration Platform.

Throughout the interoperability process, Oracle Directory Integration Platform ensures 
that the applications and other directories receive and provide the necessary 
information in a reliable way. Oracle provides centralized security administration by 
integrating components with Oracle Identity Management. Similarly, Microsoft 
provides centralized security administration in Microsoft Windows by integrating all 
Microsoft applications with Microsoft Active Directory. If the environment uses both 
Oracle Identity Management and Microsoft Active Directory, then, for these two 
systems to interoperate, their data must be synchronized. Active Directory Connector 
that is part of Oracle Directory Integration Platform is used for this purpose.

3.2.12 Oracle Internet Directory
Oracle Internet Directory is a critical component of Oracle Application Server 
management and security infrastructure. It ensures that user accounts and groups are 
managed centrally through the LDAP Version 3 standard. Oracle Application Server 
enables users to be created centrally in Oracle Internet Directory and shared across all 
components in Oracle Application Server. When users log in, they are authenticated 
once by Oracle Application Server Single Sign-On against their Oracle Internet 
Directory credentials, and can thereby access multiple applications seamlessly.

If Oracle Internet Directory is the central directory, and if Microsoft Exchange with 
Microsoft Active Directory is used, then to ensure up-to-date identity information in 
Microsoft Outlook contacts, Oracle Internet Directory and Microsoft Active Directory 
must be synchronized by using Oracle Directory Integration Platform's Active 
Directory Connector.

3.2.13 Oracle JDeveloper
Oracle JDeveloper is a free, integrated development environment (IDE) with 
end-to-end support for modeling, developing, debugging, optimizing, and deploying 
Java applications and Web services.

Oracle BPEL Process Manager can be used to set up BPEL processes for creating alerts, 
which will be sent to users as e-mail notifications. Oracle BPEL Process Manager is 
available as part of the Oracle JDeveloper installation, and uses the Oracle JDeveloper 
BPEL Designer and BPEL Control to build, deploy and test the BPEL processes.

See Also:

■ Chapter 9, "Managing Tasks and Collaborating in Microsoft 
Outlook"

■ Troubleshooting information and FAQ at 
http://www.oracle.com/technology/products/cs/user
_info/ortc/office_addin_index.html

See Also: Chapter 10, "Provisioning User Identity Information and 
Alerting Microsoft Outlook Contacts"

See Also: Chapter 10, "Provisioning User Identity Information and 
Alerting Microsoft Outlook Contacts"



Oracle Application Server Component Support for Microsoft Office Interoperability

Understanding Oracle Application Server Interoperability with Microsoft Office 3-9

Developers can use Oracle JDeveloper to create enterprise Web services that can be 
invoked from Microsoft Office applications, specifically Microsoft Word, Microsoft 
Excel, and Microsoft InfoPath.

3.2.14 Oracle Mobile Collaboration
Oracle Collaboration Suite 10g provides a complete collaborative platform to 
enterprise customers, including services such as mail, calendar, files (Oracle Content 
Services), and Web conferences. Because users need access to these services while they 
are away from their desks, Oracle Collaboration Suite provides the Oracle 
Collaboration Suite 10g Mobile Collaboration. Oracle Mobile Collaboration provides 
users with a continuous connection to the enterprise, enabling them to access company 
e-mail, voice mail, calendars, address books, tasks, online files, and directories from 
any location using any mobile device, including those with voice access.

Oracle Mobile Collaboration provides the mobile and voice access to such 
browser-based applications as Oracle Collaboration Suite 10g Mail, Calendar, Search 
and Content Services through the following services:

■ Oracle Collaboration Suite 10g Mobile Access

■ Oracle Collaboration Suite 10g Mobile Push Mail

■ Oracle Collaboration Suite 10g Mobile Data Sync

■ Oracle Collaboration Suite 10g Mobile Device Management

Oracle Mobile Collaboration enables accessing, searching, and faxing Microsoft Office 
documents from mobile devices.

3.2.15 Oracle Reports
Oracle Reports is a powerful enterprise reporting tool that enables developers to 
rapidly develop and deploy sophisticated Web and paper reports against any data 
source, including XML, Microsoft Excel (through JDBC), Text, and so on. Reports built 
with Oracle Reports can be delivered to Microsoft Office. Report output can be saved 
as a Microsoft Excel spreadsheet, or a Microsoft Word document, or sent as an e-mail 
attachment.

3.2.16 Oracle Secure Enterprise Search
Oracle Secure Enterprise Search (OSES) provides uniform search capabilities over 
multiple repositories. OSES supports searching the following Microsoft documents 
with the built-in Web, file, and OracleAS Portal source types:

■ Microsoft Word

■ Microsoft Excel

■ Microsoft PowerPoint

See Also:

■ Chapter 5, "Completing Forms and Entering Data Using Microsoft 
Office"

■ Chapter 10, "Provisioning User Identity Information and Alerting 
Microsoft Outlook Contacts"

See Also: Chapter 13, "Delivering Enterprise Reports to Microsoft 
Office with Oracle Reports"



Oracle Application Server Component Support for Microsoft Office Interoperability

3-10 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

■ Microsoft Access

■ Microsoft Words Database

■ Microsoft Works Word Processor

■ Microsoft Write

3.2.17 Oracle Xellerate
Oracle Xellerate provides interoperability with Microsoft Active Directory, similar to 
the Oracle Directory Integration Platform synchronization with Microsoft Active 
Directory, discussed in Chapter 10, "Provisioning User Identity Information and 
Alerting Microsoft Outlook Contacts". 

Oracle Xellerate includes the following Microsoft connectors:

■ Microsoft Exchange 5.5

■ Microsoft Exchange 2000

■ Microsoft Active Directory

■ Microsoft Active Directory Password synchronization

3.2.18 Oracle XML Publisher
Oracle XML Publisher enables customers to utilize a set of familiar desktop tools to 
create and maintain their own report formats. These reports formats are based on XML 
data extracts from their existing Oracle applications. At run time, Oracle XML 
Publisher merges the custom templates with the concurrent request data extracts to 
generate output in PDF, HTML, RTF, or Microsoft Excel (HTML). Oracle XML 
Publisher can interoperate with Microsoft Office Applications as follows:

■ Report layouts - Use Microsoft Word to build reports layouts. A plug-in to 
Microsoft Word helps in building the report structures. Microsoft Word functions 
can then be used to add look and feel to the report layout. This layout is 
interpreted to an XSL formatting object (XSL-FO) format, and a formatting engine 
on the server then generates documents in PDF, RTF, Microsoft Excel, and so on.

■ Report output - Output can be generated in Microsoft Word (RTF) and Microsoft 
Excel. For both Microsoft Word and Microsoft Excel, Java engines on the server 
side including the RTF to XSLFO compiler, a binary Excel engine (read/write) and 
an Excel calculation engine is available. No Microsoft Office components are 
required on the server to create this output format.

See Also: Oracle Secure Enterprise Search documentation page on 
OTN at 
http://www.oracle.com/technology/products/oses/index
.html

See Also: The Oracle XML Publisher page on OTN at

http://www.oracle.com/technology/products/applicatio
ns/publishing/index.html



Part II
Building Microsoft Office Interoperability

Solutions

Part II contains a number of step-by-step procedures that describe how you can make 
Oracle Application Server components interoperate with Microsoft Office. It contains 
the following chapters:

■ Chapter 4, "Creating Smart Documents That Interact with Self-Service Business 
Processes"

■ Chapter 5, "Completing Forms and Entering Data Using Microsoft Office"

■ Chapter 6, "Securing Smart Documents and Web Services"

■ Chapter 7, "Delivering Business Activity Monitoring Alerts and Reports to 
Microsoft Outlook"

■ Chapter 8, "Delivering Business Intelligence Information to Microsoft Excel"

■ Chapter 9, "Managing Tasks and Collaborating in Microsoft Outlook"

■ Chapter 10, "Provisioning User Identity Information and Alerting Microsoft 
Outlook Contacts"

■ Chapter 11, "Accessing in-Context Web Information and Invoking an Enterprise 
Portal"

■ Chapter 12, "Saving Microsoft Office Documents to the OracleAS Portal Content 
Repository"

■ Chapter 13, "Delivering Enterprise Reports to Microsoft Office with Oracle 
Reports"





Creating Smart Documents That Interact with Self-Service Business Processes 4-1

4
Creating Smart Documents That Interact with

Self-Service Business Processes

This chapter describes how you can create a smart document that interacts with a 
BPEL process that sends an e-mail message with a Microsoft Word XML file as an 
attachment.

It contains the following sections:

■ Overview

■ Prerequisites

■ Step-by-Step Procedures

■ Related Documentation

4.1 Overview
You can perform self-service tasks from within Microsoft Office applications by using 
Smart documents, avoiding the need to switch between browsers and your 
applications. Smart documents can automatically enter data, making it easier for users 
to complete forms or work with templates. Smart documents can also automatically 
access external data and place it in the right place in a document, or provide 
contextual help to assist you in the preparation of documents. For more details, see 
section Section 2.2.1, "Smart Documents".

Oracle BPEL Process Manager provides a user-friendly and reliable solution for 
designing, deploying, and managing BPEL business processes. The built-in integration 
services let you use advanced connectivity and transformation capabilities of standard 
BPEL processes, which support XSLT and XQuery transformation, and bindings to 
legacy systems through J2EE Connector Architecture (JCA) adapters and native 
protocols. A user task service is provided as a built-in BPEL service to enable you to 
participate in BPEL workflows. For more details, see 
http://www.oracle.com/technology/bpel.

4.2 Prerequisites
To perform the steps outlined in this chapter, the following software must be installed:

■ Oracle BPEL Process Manager 10g Release 2 (10.1.2.0.2)

■ Microsoft Office 2003 Professional



Prerequisites

4-2 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

■ The .NET Framework and Software Developer Kit (version 1.1 or later)

Refer to Section 1.3.3, "Microsoft Software Development Kits, Utilities, and 
References" for details about downloading this software.

■ The Microsoft Office WordprocessingML Transform Inference Tool (wml2xslt.exe)

Refer to Section 1.3.3, "Microsoft Software Development Kits, Utilities, and 
References" for details about downloading this software.

■ E-mail Server Configuration. This business process sends e-mail notifications and 
requires e-mail settings. Refer to Section 4.3.1, "Configuring the E-Mail Server" for 
details.

■ The support files in the selfservice demonstration folder. Refer to Accessing 
the Demonstration Support Files in the Preface for details about the demonstration 
support files. The support files and folders in the selfservice demonstration 
folder are listed and described in Table 4–1.

Note: You must install the .NET Framework before you install 
Microsoft Office. If you have installed Microsoft Office first, then you 
must refer to the "Getting the Office 2003 PIAs When Installing .NET 
Framework 1.1 After Installing Office 2003" section in the article titled 
"Installing and Using the Office 2003 Primary Interop Assemblies" at 
http://msdn.microsoft.com/library/default.asp?url=/l
ibrary/en-us/dno2k3ta/html/OfficePrimaryInteropAssem
bliesFAQ.asp. 

Table 4–1 Self-Service Files

File or Folder Description

README.html The readme file for this demonstration. Contains 
instructions on installation and configuration of files.

build.xml ANT build script file

LoanDemoWordSD (folder) This folder contains the code examples needed to build 
the smart document solution.

AutoLoanCreditRatingService 
(folder)

This folder contains the AutoLoanCreditRatingService 
BPEL files.

AutoLoanFlow (folder) This folder contains the AutoLoanFlow BPEL files.

UnionLoan (folder) This folder contains the UnionLoan BPEL files.

UnionLoanUI (folder) This folder contains the UnionLoanUI BPEL files.

WesternLoan (folder) This folder contains the WesternLoan BPEL files.

Note: Download the contents of the selfservice folder into a new 
folder named MSOfficeIntegration under the BPEL_ORACLE_
HOME\integration\orabpel\samples\demos folder, for 
example, C:\OraBPELPM_
1\integration\orabpel\samples\demos\MSOfficeIntegrat
ion\.



Step-by-Step Procedures

Creating Smart Documents That Interact with Self-Service Business Processes 4-3

4.3 Step-by-Step Procedures
In this scenario, a loan applicant seeking a car loan from the Fast Loan broker submits 
a loan application using a Microsoft Word smart document. The Word document 
initiates a BPEL process workflow that first gets the applicant's credit rating.

If the applicant has a good credit rating, the BPEL process sends the loan application 
details to two different loan companies - Western Loan and Union Loan. In one 
company, the loan approval process is automated. In the other, loans are approved 
manually. 

The BPEL process takes the replies from the two loan companies, and sends the one 
with the lowest APR to the loan applicant using a Microsoft Word 2003 XML 
document.

If the loan applicant has negative credit rating, the process sends an e-mail to the loan 
applicant with a loan rejection message.

This chapter describes how you can create a smart document loan application form, 
create a Microsoft Word template for the loan result notification, configure your e-mail 
server, and deploy required BPEL processes.

Figure 4–1 gives an overview of the BPEL process used by the smart document for 
processing this sample loan application scenario, which is explained in detail in this 
chapter. The smart document invokes a BPEL process and provides the expected input. 
The BPEL process takes the input and passes it to the getAutoLoanCreditRating 
function, which sends the details to the creditRatingService. The loan application 
details are then passed to WesternLoanService and UnionLoanService. The loan offers 
from the two loan services are evaluated and the best offer is passed to the 
NotificationService that sends the reply to the loan applicant.

Figure 4–1 BPEL Flow

Perform the steps in the following sections to create a smart document template that 
interacts with a BPEL workflow process:

■ Configuring the E-Mail Server



Step-by-Step Procedures

4-4 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

■ Deploying the BPEL Process

■ Creating a Smart Document Form

■ Creating the Microsoft Word Template for the Loan Result Notification

■ Validating the Solution

4.3.1 Configuring the E-Mail Server
The ns_emails.xml file in the directory BPEL_ORACLE_
HOME\integration\orabpel\system\services\config contains the 
configuration for e-mail accounts. Each EmailAccount element sets the configuration 
of a specific e-mail account. The name attribute in the EmailAccount element is the 
name of the account.

A default e-mail account is specified in the e-mail configuration file. This account is 
used when there is no account specified to which to send an e-mail notification. This 
account is also used for task-related notifications. A default e-mail account must 
always be specified in the configuration file. 

The EmailAccount element contains the OutgoingServerSettings and 
IncomingServerSettings attributes. For notifications that require action in a 
workflow process, both IncomingServerSettings and 
OutgoingServerSettings attributes are required. 

Table 4–2 describes the XML elements for the e-mail notification configuration stored 
in the ns_emails.xml file.

Table 4–2 XML Elements for E-Mail Server Configuration 

Name Description

EmailAccount/Name Name of the account. This can be any name, but 
must be unique within this server.

EmailAccount/GeneralSettings/From
Name

Name of the From e-mail address.

EmailAccount/GeneralSettings/From
Address

E-mail address for the From e-mail address.

EmailAccount/OutgoingServerSettings
/SMTPHost

Name of the outgoing SMTP server.

EmailAccount/OutgoingServerSettings
/SMTPPort

Port of the outgoing SMTP server.

EmailAccount/IncomingServerSettings
/Server

Name of the incoming e-mail server.

EmailAccount/IncomingServerSettings
/Port

Port of the incoming e-mail server.

EmailAccount/IncomingServerSettings
/UserName

User ID of the e-mail address.

EmailAccount/IncomingServerSettings
/Password

User password.

EmailAccount/IncomingServerSettings
/Password[encrypted]

Encrypted attribute of the password. It is true if the 
password is encrypted and false if it is not. 
Generally, you should set this to false when you 
first enter the password. The server automatically 
encrypts the password the first time it reads the 
configuration file and sets the attribute to true.



Step-by-Step Procedures

Creating Smart Documents That Interact with Self-Service Business Processes 4-5

4.3.2 Deploying the BPEL Process
To deploy the BPEL process, perform the following steps:

1. Download the sample demonstration support files from OTN and save it in the 
BPEL_ORACLE_HOME\integration\orabpel\samples\demos folder, for 
example, C:\OraBPELPM_1\integration\orabpel\samples\demos\.

Refer to "Accessing the Demonstration Support Files" in the Preface for details 
about downloading the demonstration ZIP file.

2. Start the Oracle BPEL Process Manager server. Click Start, All Programs, Oracle - 
ORACLE_HOME, Oracle BPEL Process Manager 10.1.2, and then Start BPEL PM 
Server.

3. Open a command prompt window, or start the Oracle BPEL Process Manager 
developer prompt. Click Start, All Programs, Oracle - ORACLE_HOME, Oracle 
BPEL Process Manager 10.1.2, and then Developer Prompt.

4. Navigate to the BPEL_ORACLE_
HOME\integration\orabpel\samples\demos\MSOfficeIntegration\ 
folder.

5. Run the following command:

BPEL_ORACLE_HOME\integration\orabpel\bin\obant

You will see a BUILD SUCCESSFUL message in the command prompt. For 
example:

BUILD SUCCESSFUL
Total time: 33 seconds

6. Verify and test that the BPEL processes are deployed by performing the following 
steps:

a. Click Start, All Programs, Oracle - ORACLE_HOME, Oracle BPEL Process 
Manager 10.1.2, and then BPEL Console. 

b. Log in by specifying the BPEL developer credentials.

EmailAccount/IncomingServerSettings
/UseSSL

Secure sockets layer (SSL) attribute. It is true if the 
incoming server requires SSL and false if it does 
not.

EmailAccount/IncomingServerSettings
/Folder

Name of the folder from which to read the incoming 
messages.

EmailAccount/IncomingServerSettings
/PollingFrequency

Polling interval for reading messages from the 
incoming messages folder.

See Also: The information about configuring an e-mail server in the 
Oracle BPEL Process Manager Developer's Guide, located in Oracle 
Application Server 10g Release 2 (10.1.2.0.2) Documentation library at 
http://www.oracle.com/technology/documentation/appse
rver101202.html 

Click View Library in the Oracle Application Server 10g Release 2 
(10.1.2.0.2) table, and then click the E-Business Integration tab.

Table 4–2 (Cont.) XML Elements for E-Mail Server Configuration 

Name Description



Step-by-Step Procedures

4-6 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

You will see the Oracle BPEL Control page, as shown in Figure 4–2. Ensure 
that the AutoLoanFlow, UnionLoan, WesternLoan, and 
AutoLoanCreditRatingService processes are displayed in the list of deployed 
processes.

Figure 4–2 The Oracle BPEL Control Page

4.3.3 Creating a Smart Document Form
Smart documents are solutions that enhance the user experience when working with 
Microsoft Office documents. In this section, the steps involved in creating a loan 
application form that can be used by the auto loan process are discussed.

To create a smart document, perform the following steps:

1. Navigate to the BPEL_ORACLE_
HOME\integration\orabpel\samples\demo\MSOfficeIntegration\Loa
nDemoWordSD folder. For this example, you can use the LoanDemo.doc file 
provided, or create a new document in Microsoft Word.

2. Start Microsoft Word.

3. Save a blank document as LoanDemo.doc in the LoanDemoWordSD folder, or use 
the LoanDemo.doc file provided.

4. Attach the AutoLoanTypes.xsd schema to LoanDemo.doc. To do this, perform 
the following steps:

a. From the Microsoft Word menu bar, click Tools, and then select Templates and 
Add-Ins.

b. In the Templates and Add-ins dialog box, select the XML Schema tab.

c. Click Schema Library.

d. Remove any schema that uses the namespace 
http://www.autoloan.com/ns/autoloan. If there is such a schema, then select 
it and click Delete Schema.

e. Click Add Schema, and browse to BPEL_ORACLE_
HOME\integration\orabpel\samples\demo\MSOfficeIntegration\
LoanDemoWordSD\AutoLoanTypes.xsd. Name the schema AutoLoan, and 
click OK as shown in Figure 4–3.



Step-by-Step Procedures

Creating Smart Documents That Interact with Self-Service Business Processes 4-7

Figure 4–3 Adding a Schema

f. Click OK, and then OK again to exit.

5. Add content to the LoanDemo.doc file in the form of banners, tables, and so on, 
as shown in figure Figure 4–4.



Step-by-Step Procedures

4-8 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 4–4 Adding Content to LoanDemo.doc

6. Add structure to your word document by mapping XML elements to the word 
document. To do this, perform the following steps:

a. Click View, Task Pane, and then select XML Structure in the Task Pane.

b. Add the correct elements into the document, as shown in Figure 4–5. Place the 
cursor just below the image. When the cursor is in this position, you can map 
only three elements that are the root elements defined in the XML Schema 
Document (XSD).

Click the loanApplication element. When prompted, click Apply to Entire 
Document.



Step-by-Step Procedures

Creating Smart Documents That Interact with Self-Service Business Processes 4-9

Figure 4–5 XML Structure Pane Showing Available Root Elements

c. When the cursor is placed anywhere within the <loanApplication> tag, 
the XML Structure pane shows the child elements of the loanApplication 
element. Add the child elements to the corresponding table cells, as shown in 
Figure 4–6.



Step-by-Step Procedures

4-10 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 4–6 XML Structure Pane Showing Available Child Elements

7. Set XML options by performing the following steps:

a. In the XML Structure pane, click the XML Options link. The XML Options 
dialog box is displayed as shown in Figure 4–7.

Figure 4–7 XML Options Dialog Box



Step-by-Step Procedures

Creating Smart Documents That Interact with Self-Service Business Processes 4-11

b. If the document contains both unstructured text and XML elements, then 
select Ignore Mixed Content.

c. To hide the XML elements in the document, select Show placeholder text for 
all empty elements.

d. If you want to save XML that does not conform to the schema, then select 
Allow saving as XML even if not valid. 

e. Click OK.

8. In the XML Structure pane, clear the Show XML tags in the document option to 
hide the XML structures.

9. Create an XML file called ManagedManifest.xml, and add the code from 
Section A–2, "ManagedManifest.xml for Chapter 4" to this file.

10. Enable or disable the manifest security check of the smart document manifest file. 
To enable the manifest security check, follow the steps described in Section 6.3.4.2, 
"Enabling Manifest Security Check".

To disable the manifest security check, perform the following steps:

a. Back up the Windows registry. In the Registry Editor, click Registry, and then 
click Export Registry File, and save it in a suitable location.

b. Navigate to HKEY_LOCAL_MACHINE/Software/Microsoft/Office. 

c. Create a key called Common.

d. Under Common, create a key called Smart Tag.

e. In the right pane, right-click and select New, and then select DWORD Value.

f. Enter DisableManifestSecurityCheck in the Name field.

g. Right-click DisableManifestSecurityCheck, and select Modify.

h. Enter 00000001 in the Value data field.

11. Save the document.

12. Generate a Web service proxy by using the Microsoft WSDL.exe tool. To do this, 
open the Windows command prompt window, and navigate to C:\OraBPELPM_
1\integration\orabpel\samples\demos\MSOfficeIntegration\LoanD
emoWordSD folder, and run the following command:

"C:\Program Files\Microsoft.NET\SDK\v1.1\Bin\WSDL" /l:CS /protocol:SOAP 
http://localhost:9700/orabpel/default/AutoLoanFlow/1.0/AutoLoanFlow?wsdl

This creates the proxy class file AutoLoanFlow.cs in the LoanDemoWordSD 
folder.

Important: You must disable XML expansion pack manifest 
security checking within a testing environment only and not on the 
end users' computers. The option to disable XML expansion pack 
security checking helps developers to easily test smart documents in 
the development phase. For more information about security 
checking for XML expansion packs, see "Security for XML 
Expansion Packs" at 
http://msdn.microsoft.com/library/en-us/sdsdk/html/s
dconSecurityXMLExpansionPacks_HV01074377.asp.



Step-by-Step Procedures

4-12 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

13. Include the root element of the WSDL in the AutoLoanFlow.cs file for 
serialization. Place the text in bold, just below the line as shown in Example 4–1:

Example 4–1 WSDL Root Element in the AutoLoanFlow.cs File

/// <remarks/>
[System.Xml.Serialization.XmlTypeAttribute(Namespace="http://www.autoloan.com/ns/a
utoloan")]
[XmlRoot (ElementName="loanApplication", 
Namespace="http://www.autoloan.com/ns/autoloan")]
public class LoanApplicationType {

The smart document invokes this Web service proxy, which in turn invokes the 
Web service as if it were local.

14. The Web service proxy assumes that the BPEL server is running on the same host 
at port 9700. If this is incorrect, then change it in the BPEL_ORACLE_
HOME\integration\orabpel\samples\demos\MSOfficeIntegration\Lo
anDemoWordSD\AutoLoanFlow.cs file. The file must be updated with the 
correct port number, as shown in bold, in Example 4–2:

Example 4–2 Host and Port Entries in the AutoLoanFlow.cs File

public class AutoLoanFlowBinding : 
System.Web.Services.Protocols.SoapHttpClientProtocol {
    
    public EndpointReferenceType ReplyTo;
    
    public AttributedURI MessageID;
    
    /// <remarks/>
    public AutoLoanFlowBinding() {
        this.Url = "http://localhost:9700/orabpel/default/AutoLoanFlow/1.0";
    }

If you change the values, then you must re-create the DLL file, as described in Step 
16.

15. Create the smart document implementation class file 
AutoLoanSmartDocument.cs by pasting the code from Section A–1, 
"AutoLoanSmartDocument.cs" into a text file, and saving it in the 
LoanDemoWordSD folder. Alternatively, you can use the 
AutoLoanSmartDocument.cs file provided in the LoanDemoWordSD folder.

16. Run the following command from a command prompt window:

%WINDIR%\Microsoft.NET\Framework\v1.1.4322\csc /t:library ^
/reference:"%WINDIR%\assembly\GAC\Microsoft.Office.Interop.SmartTag\
11.0.0.0__71e9bce111e9429c\Microsoft.Office.Interop.SmartTag.dll";
"%WINDIR%\assembly\GAC\Microsoft.Office.Interop.Word\
11.0.0.0__71e9bce111e9429c\Microsoft.Office.Interop.Word.dll" ^
AutoLoanSmartDocument.cs AutoLoanFlow.cs

Note: The AutoLoanSmartDocument class implements the 
Microsoft.Office.Interop.SmartTag.ISmartDocument 
interface as shown in AutoLoanSmartDocument.cs.



Step-by-Step Procedures

Creating Smart Documents That Interact with Self-Service Business Processes 4-13

Verify that the csc path and .NET Framework SDK version are correct. See the 
text in bold in the preceding command.

This creates the AutoLoanSmartDocument.dll file, which makes up the brains 
of your smart document.

17. From the LoanDemoWordSD folder, run the following commands from a 
command prompt window:

%WINDIR%\Microsoft.NET\Framework\v1.1.4322\caspol -pp off -ag 1.1 -url ^
"C:\OraBPELPM_
1\integration\orabpel\samples\demos\MSOfficeIntegration\LoanDemoWordSD\*" ^
FullTrust -n LoanDemo

%WINDIR%\Microsoft.NET\Framework\v1.1.4322\caspol -pp on

Verify the path of the MSOfficeIntegration\LoanDemoWordSD directory and 
caspol, if required.

This gives full trust to the smart document library file.

18. Attach the XML expansion pack to the document. To do this, perform the 
following steps:

a. From the Microsoft Word menu bar, click Tools, and then click 'Templates and 
Add-Ins. 

b. In the Templates and Add-ins dialog box, select the XML Expansion Packs 
tab.

c. Click Add and select BPEL_ORACLE_
HOME\integration\orabpel\samples\demos\MSOfficeIntegration
\LoanDemoWordSD\ManagedManifest.xml.

d. In the security dialog box, decide whether you want to enable or disable XML 
expansion pack security. If you disabled the manifest security check earlier, 
then you must click No.

e. Click OK.

19. Go to the Document Actions pane to see the document. Place the cursor within the 
<loanApplication> tags to see the Submit for Approval button, as shown in 
Figure 4–8.



Step-by-Step Procedures

4-14 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 4–8 Structured Smart Document

4.3.4 Creating the Microsoft Word Template for the Loan Result Notification
This section provides information on how to create a Microsoft Word template based 
on the smart document form created, as explained in Section 4.3.3, "Creating a Smart 
Document Form". This template is used by the AutoLoanFlow process to create a 
Microsoft Word document with the loan details and sends it to the e-mail address of 
the loan applicant.

To create a Microsoft Word template, perform the following steps:

1. Start Microsoft Word.

2. Save a blank document as LoanResult.doc in the BPEL_ORACLE_
HOME\integration\orabpel\samples\demo\MSOfficeIntegration\Loa
nDemoWordSD folder. Alternatively, you can use the LoanResult.doc file 
provided in the LoanDemoWordSD folder.

3. Attach AutoLoanTypes.xsd to the document. To do this, perform the following 
steps:

a. From the Microsoft Word menu bar, click Tools, and then select Templates and 
Add-Ins.

b. In the Templates and Add-ins dialog box, select the XML Schema tab.

c. Click Schema Library.

d. Remove any schema that uses the namespace 
http://www.autoloan.com/ns/autoloan. If there is such a schema, then select 
it and click Delete Schema.

e. Click Add Schema, and browse to BPEL_ORACLE_
HOME\integration\orabpel\samples\demo\MSOfficeIntegration\



Step-by-Step Procedures

Creating Smart Documents That Interact with Self-Service Business Processes 4-15

LoanDemoWordSD\AutoLoanTypes.xsd. Name the schema AutoLoan, and 
click OK.

f. Click OK, and then OK again to exit.

4. Add content to the LoanResult.doc file in the form of banners, tables, and so 
on, as shown in Figure 4–9.

Figure 4–9 Adding Content to LoanResult.doc

5. Add structure to your word document by mapping XML elements to the word 
document. To do this, perform the following steps:

a. Click View, Task Pane, and then XML Structure.

b. Place the cursor just below the banner image and click the loan element. When 
prompted, click Apply to Entire Document. The document displays data from 
both children of the loan element – loanApplication and loanOffer.

c. Place the cursor below the image and select the content up to the second table 
in the document. Click the loanApplication element.

Note: Alternatively, you can create a new XSD file, copy the code 
from Section A.4, "Contents of the AutoLoanTypes.xsd File" into it, 
and save it as AutoLoadTypes.xsd. You can then add this schema.



Step-by-Step Procedures

4-16 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

d. Select the text Loan Approval Information and the subsequent table. Click the 
loanOffer element.

e. Add the child elements to the corresponding table cells, as shown in 
Figure 4–10

Figure 4–10 XML Structure of the Loan Result Document

6. Set XML options by performing the following steps:

a. In the XML Structure pane, click the XML Options link. The XML Options 
dialog box is displayed as shown in Figure 4–7.

b. If the document contains both unstructured text and XML elements, then 
select Ignore Mixed Content.

c. To hide the XML elements in the document, select Show placeholder text for 
all empty elements.

d. If you want to save XML that does not conform to the schema, then select 
Allow saving as XML even if not valid. 

e. Click OK.

7. In the XML Structure pane, clear the Show XML tags in the document option to 
hide the XML structures.

8. Save the document as LoanResultWordML.xml, as shown in Figure 4–11.



Step-by-Step Procedures

Creating Smart Documents That Interact with Self-Service Business Processes 4-17

Figure 4–11 Saving as WordML File

9. Navigate to BPEL_ORACLE_
HOME\integration\orabpel\samples\demos\MSOfficeIntegration\Lo
anDemoWordSD, and run the following command in a command prompt window:

wml2xslt LoanResultWordML.xml

The XSLT for the LoanResultWordML.xml document is created. By default, 
wml2xslt.exe is located in the C:\Program Files\Microsoft Office 
2003 Developer Resources\ directory.

10. Copy the LoanResultWordML.xsl file from Step 9 to the BPEL_ORACLE_
HOME\integration\orabpel\samples\demos\MSOfficeIntegration\Au
toLoanFlow directory and run the obant.bat file from the AutoLoanFlow 
directory, as follows:

BPEL_ORACLE_HOME\integration\orabpel\bin\obant

You will see a BUILD SUCCESSFUL message in the command prompt. For 
example:

BUILD SUCCESSFUL
Total time: 15 seconds

4.3.5 Validating the Solution
The auto loan process is used to process a loan application. The user submits the loan 
application from a Microsoft Word document. The word document invokes a BPEL 
process that gets the credit rating of the loan applicant from the 
AutoLoanCreditRatingService process, and performs either of the following: 

■ If the applicant has a good credit rating, then the process sends queries to two loan 
processing business processes: 

■ UnionLoan

■ WesternLoan

Upon receiving replies from these two processes, the AutoLoanFlow process 
chooses the loan offer with the lowest APR and creates a Microsoft Word 



Step-by-Step Procedures

4-18 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

document with the loan details, and sends the document by e-mail to the loan 
applicant.

■ If the loan applicant has a bad credit rating, the process sends an e-mail to the loan 
applicant with the loan application rejection message.

To test the loan application process using the smart documents created in Section 4.3.3, 
"Creating a Smart Document Form" and Section 4.3.4, "Creating the Microsoft Word 
Template for the Loan Result Notification", perform the following steps: 

1. Open LoanDemo.doc.

2. Fill in the loan application details, as shown in Figure 4–12.

Figure 4–12 Filling In Loan Details

3. In the Task pane, click Submit for Approval.

4. You can monitor the BPEL process in the Oracle BPEL Control page.

5. A Loan Result document is created with the Loan Approval information, as shown 
in Figure 4–13.

Figure 4–13 Loan Approval Information

6. Log in to the Union Loan Console at http://localhost:9700/bpelconsole.

7. Check for e-mail messages from who was requesting the loan. A sample mail that 
includes a Word document as an attachment is shown in Figure 4–14.



Related Documentation

Creating Smart Documents That Interact with Self-Service Business Processes 4-19

Figure 4–14 Loan Approval Mail

4.4 Related Documentation
Refer to the following documents at the Oracle BPEL Process Manager home page at 
http://www.oracle.com/technology/bpel/:

■ BPEL: Learn by Example

■ Quick Start Tutorial - JDeveloper 10g

■ Quick Start Tutorial - Eclipse



Related Documentation

4-20 Oracle Application Server Developer's Guide for Microsoft Office Interoperability



Completing Forms and Entering Data Using Microsoft Office 5-1

5
Completing Forms and Entering Data Using

Microsoft Office

This chapter shows how to use Microsoft Office templates and Web services to create 
forms for entering data into enterprise applications.

This chapter contains the following sections:

■ Overview

■ Prerequisites

■ Step-by-Step Procedures

■ Troubleshooting

■ Related Documentation

5.1 Overview
Microsoft Office 2003 Professional provides a familiar user interface for many users. 
Enterprise applications typically have their own specific user interface. For those types 
of users that only intermittently access enterprise information, Microsoft Office 
provides a set of facilities around smart documents (particularly templates, form 
fields, and Web service integration) that enable the development of Microsoft Office 
applications that manipulate enterprise information. Smart documents can 
automatically enter data, making it easier for users to complete forms or work with 
templates. Smart documents can also automatically access external data and place it 
appropriately in a document, or provide contextual help to assist users in the 
preparation of documents.

Oracle Application Server provides the ability to deploy and run JAX-RPC Web 
services that are based on Java, Enterprise Java Beans (EJB), or PL/SQL. Oracle 
JDeveloper provides a design-time environment for developing J2EE and Web service 
applications.

By following a set of guidelines discussed in this chapter, developers can use Oracle 
JDeveloper to create enterprise Web services that can be invoked from Microsoft Office 
applications, specifically Microsoft Word, Microsoft Excel, and Microsoft InfoPath (see 
Figure 5–1). Developers can use the Visual Basic editor included with these 
applications to invoke a proxy class to these Web services. This proxy class can be 
generated by using the Microsoft Office 2003 Web Services Toolkit as described in 
Section 5.2, "Prerequisites".



Prerequisites

5-2 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 5–1 Manipulating Enterprise Information in Smart Documents

This chapter describes how to use Oracle JDeveloper, the Microsoft Office 2003 Web 
Services Toolkit, and Microsoft Office 2003 Professional to access enterprise 
applications.

5.2 Prerequisites
To perform the steps outlined in this chapter, first install the following software:

■ Oracle JDeveloper 10g Release 3 (10.1.3.1.0)

Oracle JDeveloper contains an embedded Oracle Containers for J2EE that is 
sufficient for developing and testing the integration described in this chapter. For 
user testing and preproduction deployment, Oracle Application Server 10g Release 
3 (10.1.3.1.0) is required.

■ Microsoft Office 2003 Professional, specifically Microsoft Word 2003

■ Microsoft Office 2003 Web Services Toolkit 2.01: refer to Section 1.3.3, "Microsoft 
Software Development Kits, Utilities, and References".

■ Microsoft Internet Explorer 6.0, Mozilla Firefox 1.0, or equivalent browser

■ The support files in the fillingforms demonstration folder. Refer to Accessing 
the Demonstration Support Files in the Preface for details about the demonstration 
support files. The support files in the fillingforms demonstration folder are 
listed and described in Table 5–1.

Note:  These applications can also be developed by using Microsoft 
Visual Studio, instead of Visual Basic for Applications (VBA) code in 
Microsoft Word or Microsoft Excel. The steps described in this chapter 
(including usage of the Microsoft Office 2003 Web Services Toolkit) 
also apply in that context.



Step-by-Step Procedures

Completing Forms and Entering Data Using Microsoft Office 5-3

5.3 Step-by-Step Procedures
This section describes two step-by-step procedures that illustrate how Microsoft Office 
can interoperate with Web services hosted on Oracle Application Server:

■ Developing a Smart Document to Retrieve and Update Enterprise Information

■ Developing a Microsoft InfoPath Form

5.3.1 Developing a Smart Document to Retrieve and Update Enterprise Information
The example in this section shows how to develop a Web service in JDeveloper and 
integrate it with Microsoft Word by using Visual Basic for Applications code, together 
with a wrapper class that is generated with the Microsoft Office 2003 Web Services 
Toolkit. The example covers a Web service built from a simple Java class.

This example is based on the custom HR enterprise application used by Union Loan. 
This application is used by HR and administrative personnel. Recently, the need has 
arisen for other users to be able to view employee addresses, and be able to update 
them. Rather than providing access to the (fairly complicated) HR system, the 
company decides to quickly develop a Microsoft Word 2003 Professional application 
shown in Figure 5–2, using JDeveloper to expose an existing Java implementation as a 
Web service that provides access to employee addresses. This Web service provides 
two operations in its interface: GetAddress and SetAddress.

Table 5–1 Forms Files

Files Description

unionloan_banner.gif Banner graphic for Microsoft Word smart document and 
Microsoft InfoPath form.

Download this file to your local file system. We 
recommend that you download it to:

C:\OfficeInt\samples\forms. 

Note: JDeveloper also offers facilities for developing EJB and 
PL/SQL Web services. The constraints and integration steps described 
subsequently also apply to these technologies.

Note: The example in this section uses a Web service to access public 
data and therefore requires no security. If you require a more secure 
connection to your Web service, refer to Chapter 6, "Securing Smart 
Documents and Web Services".



Step-by-Step Procedures

5-4 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 5–2 The Microsoft Word Application

To develop a form that communicates with a Web service, perform the steps in the 
following sections:

■ Developing a Web Service in Oracle JDeveloper

■ Defining a Template Document in Microsoft Word

■ Generating a Proxy Class with Microsoft Office 2003 Web Services Toolkit

■ Mapping Template Fields to Web Service Parameters

There is also an optional fifth step, as shown in the following section:

■ Automatically Loading and Saving Web Service Data

5.3.1.1 Developing a Web Service in Oracle JDeveloper
To create a Microsoft Office compatible Web service in Oracle JDeveloper 10g Release 3 
(10.1.3.1.0), perform the following steps:

1. Start JDeveloper.

2. From the File menu, select New, select General, and then select Application.

3. Click OK.

4. In the Application Name field, enter MSOffice.

5. Click OK.

6. In the Project Name field, enter Rpc-enc.

7. Click OK.

Tip: You may need to make sure that you select All Items from the 
Filter By list.

Tip: You may need to choose No Template [All Technologies] from 
the Application Template list.



Step-by-Step Procedures

Completing Forms and Entering Data Using Microsoft Office 5-5

8. In the Applications Navigator, right-click the Rpc-enc project, and select New 
from the shortcut menu.

9. Select General, then select Java Class.

10. Click OK.

11. In the Name field, enter EmpService (see Figure 5–3).

Figure 5–3 Create Java Class Dialog Box

12. Click OK.

The class is now visible in the code editor.

13. Replace the existing code with that shown in  Example 5–1:

Example 5–1 EmpService Java Class

package rpcenc;

public class EmpService {

private String adr = null;

    public EmpService() {
    }

    public void setAddress (String address) {
        adr = address;
        return;
    }

    public String getAddress (String empno) {
        if (adr == null) {
        return empno + " Address"; }
        else return adr;
    }
}

This Java class declares an internal variable (adr) to hold the employee address 
data. The operation setAddress takes an input string and assigns it to this 
variable. The operation getAddress takes an employee number as input and 
returns a concatenated string consisting of the employee number and the address 



Step-by-Step Procedures

5-6 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

string as output. In anything except this very simple example, this class would 
likely call a database or enterprise application API to retrieve the data.

14. Save your application.

15. From the File menu, select New.

16. Expand the Business Tier node and select Web Services, then select Java Web 
Service.

17. Click OK.

18. Ensure that J2EE 1.4 (JAX-RPC) Web Service is selected, then click OK.

19. Click Next, if necessary, to move past the Welcome page of the wizard.

20. From the Component To Publish list, select the EmpService class (see Figure 5–4).

Figure 5–4 Selecting the Class

21. Click Next.

22. From the SOAP Message Format list, select RPC/Encoded (see Figure 5–5).



Step-by-Step Procedures

Completing Forms and Entering Data Using Microsoft Office 5-7

Figure 5–5 Specifying the Message Format

The SOAP message format can also be RPC/Literal. You can also use the 
document style.

23. Click Next.

24. For this example, you do not have to specify a mapping file, so click Next again.

25. In the Available Methods list, select both the getAddress and setAddress methods.

26. Click Next.

27. Click Next again.

28. Select the Stateful service check box.

29. From the State Scope list, select Session.

30. In the Session Timeout(s) field, enter 1000.

31. Click Finish.

You can now see the Web Services Description Language (WSDL) document that is 
generated by the wizard (see Figure 5–6). In the Application Navigator, a Web 
Service node named MyWebService1 has been added, as well as a Java endpoint 
interface named MyWebService1.java. This file is required for JAX-RPC, but 
does not have to be edited for this example.

Note: If you are using REST for your Web service, select the Enable 
REST Access to SOAP Ports check box.

Note: Web services called from Microsoft Office 2003 may be stateful 
or stateless. The Web service in this example is stateful.

Note: You can define further details for the JAX-RPC Web service, 
but these are optional and are not necessary for this example.



Step-by-Step Procedures

5-8 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 5–6 WSDL Document in JDeveloper

32. In the Application Navigator, right-click the MyWebService1 node, and select Run 
from the menu.

JDeveloper automatically deploys the service to its embedded OC4J container and 
displays the message shown in Figure 5–7 in the log window.

Figure 5–7 The Oracle JDeveloper Log Window

33. Click the URL in the log window.

The resulting page displays the running Web service (see Figure 5–8).



Step-by-Step Procedures

Completing Forms and Entering Data Using Microsoft Office 5-9

Figure 5–8 Running the Web Service

5.3.1.2 Defining a Template Document in Microsoft Word
To define a template document in Microsoft Word 2003 Professional that invokes the 
Web service developed in Section 5.3.1.1, "Developing a Web Service in Oracle 
JDeveloper", perform the following steps:

1. Start Microsoft Word.

2. From the Insert menu, select Picture, then select From File. Select the 
unionloan_banner.gif image you downloaded in Section 5.2, "Prerequisites".

3. Add the title Employee Information in bold font, size 18point.

4. Enter the following text to describe how to look up an employee address:

In the Name field, enter the name of the employee, then press 
the Tab key to retrieve the employee's address details.

5. From the Table menu, select Insert, then select Table. Create a table with 2 rows 
and 2 columns.

6. In the first column of the first row, enter NAME.

7. In the first column of the second row, enter ADDRESS (see Figure 5–9).

Figure 5–9 Table for Looking Up an Employee's Address

8. Enter the following text to describe how to update an employee address:

You can update the address information by entering the new 
employee address below.



Step-by-Step Procedures

5-10 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

9. From the Table menu, select Insert, then select Table. Create a table with 1 row 
and 2 columns.

10. In the first column, enter NEW ADDRESS (see Figure 5–10).

Figure 5–10 Table for Specifying a New Employee Address

Your document should now look something like Figure 5–11.

Figure 5–11 The Document Template

Next, add form fields to the document to display the live data from the Web 
service.

11. From the View menu, select Toolbars, then select Forms.

12. Place the cursor in the table cell that will contain the value of the employee name.

13. In the Forms Toolbar, click the Text Form Field button (see Figure 5–12).

Figure 5–12 The Text Form Field Icon on the Forms Toolbar

This inserts a grey area in the cell to indicate the position of the form field.

14. Place the cursor in the table cell that will contain the retrieved value of the 
employee address, and click the Text Form Field button.

15. Place the cursor in the table cell that will contain the new employee address, and 
click the Text Form Field button.

Before you save the document, protect it to control the template definition, and to 
enable the form completion process for the user.



Step-by-Step Procedures

Completing Forms and Entering Data Using Microsoft Office 5-11

16. From the Tools menu, select Protect Document.

17. In the task pane that appears:

a. In the Editing Restrictions section, select the Allow only this type of editing 
in the document check box.

b. From the list, select Filling in forms.

c. Click Yes, Start Enforcing Protection.

18. Enter a password to protect the document.

19. From the File menu, select Save As.

20. From the Save as type list, select Document Template (*.dot).

21. Use the default file name.

22. Click Save.

You will edit this document in Section 5.3.1.4, "Mapping Template Fields to Web 
Service Parameters" to connect the fields to the actual running Web service using 
VBA code.

5.3.1.3 Generating a Proxy Class with Microsoft Office 2003 Web Services Toolkit
To create VBA code that invokes the deployed Web service, you must use the 
Microsoft Office 2003 Web Services Toolkit (see Section 5.2, "Prerequisites") to generate 
a class that serves as a proxy, or wrapper, class to the Web service. The VBA code 
developed in Section 5.3.1.4, "Mapping Template Fields to Web Service Parameters" 
calls the proxy class generated in this section.

To generate the proxy class, perform the following steps:

1. Start Microsoft Word and open the template you created in Section 5.3.1.2, 
"Defining a Template Document in Microsoft Word".

2. From the Tools menu, select Macro, and then select Visual Basic Editor.

3. Make sure the Employee Information project is selected in the Project Navigator.

4. From the Tools menu of the Visual Basic Editor, select Web Service References to 
invoke the Microsoft Office 2003 Web Services Toolkit.

5. In the Microsoft Office 2003 Web Services Toolkit dialog, select the Web Services 
URL radio button.

6. In the URL field, enter the URL of the running Web service.

7. Add ?wsdl to the end of the URL. The URL should look something like the 
following:

Note: If you are using REST for your Web service:

1. From the Tools menu of the Visual Basic Editor, select References.

2. Select the Microsoft XML, v5.0 check box and click OK.

You do not need to perform steps 4 through 9.

Tip: You can copy this URL from the Address field of the browser 
window you opened at the end of Section 5.3.1.1, "Developing a Web 
Service in Oracle JDeveloper".



Step-by-Step Procedures

5-12 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

http://mymachine:8988/MSOffice-Rpc-enc-context-root/MyWebService1SoapHttpPort?w
sdl

8. Click Search. This adds the Web service to the top right pane (see Figure 5–13).

Figure 5–13 Selecting the Web Service

9. Select MyWebService1, then click Add.

The Toolkit dialog closes and a generated class with the name clsws_
mywebservice1 is added to the Project Explorer under the Class Modules node.

10. From the Insert menu, select Module.

11. In the Properties window, change the name to GetEmployeeInfo.

12. Add the code shown in Example 5–2 to the module, by entering it in the editor 
window:

Example 5–2 GetEmployeeInfo Module

Public Sub GetEmployeeInfo()

    Dim ename As String
    ename = ActiveDocument.Fields(1).Result.Text

    Dim employeeWS As clsws_MyWebService1
    Set employeeWS = New clsws_MyWebService1

    'Send the service the employee name
    Dim eadr As String
    eadr = employeeWS.wsm_getAddress(ename)
    ActiveDocument.Fields(2).Result.Text = eadr

End Sub

The GetEmployeeInfo subroutine declares an employee name string (ename) 
and assigns the value of the Name field in the document to this variable (ename = 
ActiveDocument.Fields(1).Result.Text). It then creates a reference to the 



Step-by-Step Procedures

Completing Forms and Entering Data Using Microsoft Office 5-13

Web service and calls it. The output of the service is assigned to the Address field 
in the document (ActiveDocument.Fields(2).Result.Text=eadr).

If you are using REST the code should be as shown in Example 5–3:

Example 5–3 GetEmployeeInfo Module for REST Services

Public Sub GetEmployeeInfo()

    Dim eid As String
    eid = ActiveDocument.Fields(1).Result.Text

    
    Dim query As String
    query = 
"http://mymachine:8988/MSOffice-Rpc-enc-context-root/MyWebService1SoapHttpPort/get
Address?empno=" + eid

    'define xml and http components
    Dim queryResult As New MSXML2.DOMDocument
    Dim employeeService As New MSXML2.XMLHTTP
    
    'create HTTP request
    employeeService.Open "GET", query, False

    'send the request
    employeeService.send

    'parse result
    queryResult.LoadXml(employeeService.responseText)
    ActiveDocument.Fields(2).Result.Text = 
queryResult.SelectSingleNode("//ns0:result").Text

End Sub

13. Add another subroutine with the name SetEmployeeInfo and enter the code 
shown in Example 5–4:

Example 5–4 SetEmployeeInfo Module

Public Sub SetEmployeeInfo()

    Dim eadr As String
    eadr = ActiveDocument.Fields(3).Result.Text

    Dim employeeWS As clsws_MyWebService1
    Set employeeWS = New clsws_MyWebService1

    'Send the service the new emp address
    employeeWS.wsm_setAddress(eadr)

End Sub

The SetEmployeeInfo subroutine declares a variable (eadr) and assigns it the 
value of the Address field in the document. It then initializes the Web service and 
calls the setAddress operation with this value.

If you are using REST, the code should be as shown in Example 5–5:



Step-by-Step Procedures

5-14 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Example 5–5 SetEmployeeInfo Module for REST Services

Public Sub SetEmployeeInfo()

    Dim address As String
    address = ActiveDocument.Fields(3).Result.Text
    
    Dim query As String
    query = 
"http://mymachine:8988/MSOffice-Rpc-enc-context-root/MyWebService1SoapHttpPort/set
Address?address=" + address
    
    'define xml and http components
    Dim queryResult As New MSXML2.DOMDocument
    Dim employeeService As New MSXML2.XMLHTTP

    'create HTTP request
    employeeService.Open "GET", query, False
    
    'sent the request
    employeeService.send
   
End Sub

14. Save the project.

15. Exit the Visual Basic Editor and return to Microsoft Word.

5.3.1.4 Mapping Template Fields to Web Service Parameters
To link the VBA code developed in Section 5.3.1.3, "Generating a Proxy Class with 
Microsoft Office 2003 Web Services Toolkit" with the template document created in 
Section 5.3.1.2, "Defining a Template Document in Microsoft Word", perform the 
following steps:

1. Start Microsoft Word.

2. Open the template you created in Section 5.3.1.2, "Defining a Template Document 
in Microsoft Word".

3. From the Tools menu, select Unprotect Document, and enter the password when 
prompted.

4. Right-click the form field where the user will enter a value for the employee name, 
and select Properties from the shortcut menu.

5. In the Default text field, enter TYPE A NAME HERE.

6. From the Text format list, select First capital.

7. From the Exit list, select GetEmployeeInfo (see Figure 5–14). This invokes the VBA 
code created in Section 5.3.1.4, "Mapping Template Fields to Web Service 
Parameters" when the user enters a value in the field and then leaves the field 
(typically by pressing the Tab key).



Step-by-Step Procedures

Completing Forms and Entering Data Using Microsoft Office 5-15

Figure 5–14 Options for the Employee Name Field

8. Enter similar properties for the form field where the user will update the address, 
but this time invoke the SetEmployeeInfo subroutine (see Figure 5–15).

Figure 5–15 Options for the New Address Field

9. Protect the document, as described at the end of Section 5.3.1.2, "Defining a 
Template Document in Microsoft Word".

10. Save and close the document.



Step-by-Step Procedures

5-16 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

11. In Windows Explorer, double-click the template to create a document based on the 
template.

12. The cursor will be placed in the first form field, so enter the name of an employee, 
for example, James Cooper.

13. Press the Tab key to move to the next field.

The second field is populated with the value James Cooper Address.

14. Press Tab again to move to the field where you can specify a new address.

15. Enter a new address for the employee.

16. Press the Tab key again to move to the first field.

The employee's address now reflects the new address.

5.3.1.5 Automatically Loading and Saving Web Service Data
You can automatically load and save data in your document. To do this in Microsoft 
Word, perform the following steps:

1. Start Microsoft Word.

2. Open the template you created in Section 5.3.1.2, "Defining a Template Document 
in Microsoft Word".

3. From the Tools menu, select Unprotect Document, and enter the password when 
prompted.

4. From the Tools menu, select Macro, and then select Visual Basic Editor.

5. In the Project Explorer, under your template project, double-click ThisDocument.

6. From the Object list, select Document.

7. From the Procedure list, select Open.

An empty subroutine is added to the class module.

8. Add the Visual Basic instructions shown in Example 5–6 to invoke the 
getAddress Web service.

Example 5–6 Invoking the getAddress Web Service

Private Sub Document_Open()

    Dim ename As String
    ename = ActiveDocument.Fields(1).Result.Text

    Dim employeeWS As clsws_MyWebService1
    Set employeeWS = New clsws_MyWebService1

    'Send the service the employee name
    Dim eadr As String
    eadr = employeeWS.wsm_getAddress(ename)
    ActiveDocument.Fields(2).Result.Text = eadr

End Sub

This code is identical to the GetAddressInfo subroutine you created in 
Section 5.3.1.3, "Generating a Proxy Class with Microsoft Office 2003 Web Services 
Toolkit", that is, it calls the getAddress Web service to retrieve the address of a 
given employee. Because this code is declared as an onOpen procedure for the 



Step-by-Step Procedures

Completing Forms and Entering Data Using Microsoft Office 5-17

document, it will be automatically executed when the document is opened. The 
default value for the Name field will be passed into the Web service. The result is a 
default address value that is computed by adding the string address to the name. 
In a real application, you would not want to pass in default values. It is used in 
this example only for demonstrating automatic Web service invocation on opening 
a template document.

9. Save the project.

10. Exit the Visual Basic Editor and return to Microsoft Word.

11. Protect the document, as described at the end of Section 5.3.1.2, "Defining a 
Template Document in Microsoft Word".

12. Save and close the document.

13. To run the document, open the file in Microsoft Word.

On opening, the Web service is invoked by passing in the default value for the 
Name field: TYPE A NAME HERE. In this example, the default value returned is 
therefore TYPE A NAME HERE Address.

5.3.2 Developing a Microsoft InfoPath Form
Microsoft InfoPath enables the form designer to quickly add fields to a form that are 
mapped to Web service invocations.

To develop a form that communicates with a Web service, perform the following tasks:

■ Developing the Web Service in Oracle JDeveloper

■ Defining a Form in Microsoft InfoPath

5.3.2.1 Developing the Web Service in Oracle JDeveloper
To create a Web service in JDeveloper to be used with Microsoft InfoPath, perform the 
following steps:

1. Follow the steps as described in Section 5.3.1.1, "Developing a Web Service in 
Oracle JDeveloper".

2. If you are not using Microsoft Visual Studio .NET, make the following change:

In the Message Format step (step 2) of the Create Java J2EE 1.4 Web Service 
Wizard, make sure that the SOAP Message Format is set to Document/Wrapped.

5.3.2.2 Defining a Form in Microsoft InfoPath
To define a form in Microsoft InfoPath that calls an Oracle Web service, perform the 
following steps:

1. Start Microsoft InfoPath.

2. On the left hand side of the dialog, select Design a Form.

The InfoPath main window displays as shown in Figure 5–16.



Step-by-Step Procedures

5-18 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 5–16 Microsoft InfoPath Main Window

3. Under Design a new form, click New from Data Connection.

4. On the first step of the Data Connection Wizard, select Web Service as the type of 
connection.

5. Click Next.

6. Select Receive data (see Figure 5–17).



Step-by-Step Procedures

Completing Forms and Entering Data Using Microsoft Office 5-19

Figure 5–17 Receive Data from the Web Service

7. Click Next.

8. Enter the URL of the deployed Web service, adding ?WSDL to the end.

9. Click Next.

10. In the Select an operation list, select getAddress (see Figure 5–18).

Figure 5–18 Select Web Service Operation

11. Click Next.

12. Enter Get Address as the name for the data connection (see Figure 5–19).



Step-by-Step Procedures

5-20 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 5–19 Data Connection Name

13. Click Finish.

Microsoft InfoPath generates a default form as shown in Figure 5–20.

Figure 5–20 Microsoft InfoPath Default Form

14. In the Data Source panel, expand the queryFields node.



Step-by-Step Procedures

Completing Forms and Entering Data Using Microsoft Office 5-21

15. Drag the ns1:getAddressElement element onto the area of the form labeled 
Drag query fields here, and select Section with Controls.

16. Expand the dataFields node.

17. Drag the ns1:getAddressResponse element onto the area of the form labeled 
Drag data fields here.

The form now looks like Figure 5–21.

Figure 5–21 Form with Input and Output Fields

18. Place the cursor at the top of the form.

19. From the Insert menu, select Picture, then select From File. Select the image you 
downloaded in Section 5.2, "Prerequisites".

20. Change the title of the form to Employee Information.

21. Enter the following descriptive text in the area labeled Click to add form content:

Enter the name of the employee and click the Get Address 
button to retrieve the employee address.

22. Change the label of the input field (Get Address Element) to Enter Employee 
Name.

23. Change the label of the output field (Get Address Response Element) to 
Employee Address.

24. Double-click the Run Query button and change the label to Get Address.



Troubleshooting

5-22 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

25. Reduce the area of the form for the input and output fields by selecting them and 
dragging the outline with the mouse.

The form should now look like Figure 5–22.

Figure 5–22 Formatted Form

26. Save the template form and close Microsoft InfoPath.

27. Open Microsoft InfoPath and select your new template form in the Fill out a Form 
dialog.

28. In the Enter Employee Name field, enter James Cooper.

29. Click Get Address.

The Employee Address field is populated with the value James Cooper Address.

5.4 Troubleshooting
This section lists hints and tips that address potential issues that you might encounter.

Making sure the endpoint URL in the WSDL is pointing to the correct service
JDeveloper generates a default endpoint URL that will work with a standalone server. 
Since release 10.1.3, the application server to which the service is deployed will update 
this URL. It is therefore important to insert the WSDL reference to the running service 
in the Microsoft Office 2003 Web Services Toolkit and Microsoft InfoPath Data 
Connection Wizard. In the log window, JDeveloper will always report the URL to the 



Related Documentation

Completing Forms and Entering Data Using Microsoft Office 5-23

deployed service. Copy and paste this URL into dialog boxes, and append ?wsdl to 
the endpoint. This can also be done in a browser to retrieve the WSDL.

Editing an existing template in Microsoft Word
To use a template, it must first be protected with a password (Tools menu, Protect 
Document option). When the document is opened, remember to remove the document 
protection (Tools menu, Unprotect Document option) first before attempting to edit the 
definition, otherwise edits will have unexpected results.

5.5 Related Documentation
■ Oracle Application Server Web Services Developer’s Guide



Related Documentation

5-24 Oracle Application Server Developer's Guide for Microsoft Office Interoperability



Securing Smart Documents and Web Services 6-1

6
Securing Smart Documents and Web

Services

This chapter demonstrates how you can configure smart documents to invoke 
enterprise Web services in a secure way. Communication from the smart document 
through the Web Services Proxy to the Web service and back must be secured. This 
requires configuration of the Web Service, the Web Service proxy, and the smart 
document. Additionally, it is important to digitally sign the manifest file that 
references the DLL file used by the smart document.

This chapter contains the following sections:

■ Overview

■ Prerequisites

■ Step-by-Step Procedures

■ Related Documentation

6.1 Overview
Smart documents greatly enhance the user experience of working with Microsoft 
Office documents. They allow automatic data entry in documents, access external data 
automatically and place it appropriately in a document. Smart documents can provide 
contextual help during the preparation of complicated documents, enabling 
information sharing across systems and applications.

Smart documents can communicate with Web services. If the Web service provides 
non-sensitive data, there is no need for securing the communication between the smart 
document and the Web service, but if the Web service provides sensitive and 
confidential data, security is a must. This chapter describes the necessary steps that 
must be performed to secure the communication between smart documents and Web 
services.

More information about smart documents and how they can be used in specific 
business cases is available in Chapter 4, "Creating Smart Documents That Interact with 
Self-Service Business Processes" and Chapter 5, "Completing Forms and Entering Data 
Using Microsoft Office".

6.2 Prerequisites
In order to perform the tasks outlined in this chapter, you must install the following 
applications and files:

■ Oracle JDeveloper 10g Release 3 (10.1.3.1.0)



Step-by-Step Procedures

6-2 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

■ Microsoft Visual Studio .Net 2003

■ Microsoft Office 2003 Professional

■ The following Microsoft SDKs and utilities:

– Microsoft .NET Framework SDK (version 1.1 or later)

– Microsoft Web Services Enhancements 2.0

– Microsoft Office Smart Document SDK

– Office 2003 Update: Redistributable Primary Interop Assemblies

– Microsoft PKI utilities: makecert.exe, pvkimprt.exe, cert2spc.exe, 
sn.exe, and signcode.exe.

– xmlsign.exe (part of Microsoft Office Smart Document SDK)

Refer to Section 1.3.3, "Microsoft Software Development Kits, Utilities, and 
References"for information on obtaining these files.

■ The Web service created in Chapter 5, "Completing Forms and Entering Data 
Using Microsoft Office".

■ The support files in the securingsmartdocs demonstration folder. Refer to 
Accessing the Demonstration Support Files in the Preface for details about the 
demonstration support files. The demonstration files used in this chapter are 
described in Table 6–1.

6.3 Step-by-Step Procedures
You can use Oracle JDeveloper to expose an existing Java implementation as a Web 
service that provides access to confidential or restricted information. This Web service 
can be secured so that smart documents can safely communicate with it. 

An example scenario could be the Star Loan Company that has exposed a Web service 
on its site to receive loan applications from people. The loan application, which is 
invoked by a smart document form requires a few confidential pieces of information 
from an applicant, like Social Security number, Annual Income, and so on. When an 

Table 6–1 Example Smart Document Files

File Description

SecureSmartDocUtoken\SecureD
ocument.xsd

The smart document XML Schema Definition file.

SecureSmartDocUtoken\Managed
Manifest.xml

The XML manifest file that contains the location of 
the smart document's DLL.

SecureSmartDocUtoken\SecureS
martDocument.doc

The secure Microsoft Word smart document.

Note: This file can also be created by following the 
steps given in Section 5.3.1.2, "Defining a Template 
Document in Microsoft Word".

SecureSmartDocX509\SecureDoc
ument.xsd

The smart document XML Schema Definition file.

SecureSmartDocX509\ManagedMa
nifest.xml

The XML manifest file that contains the location of 
the smart document's DLL.

SecureSmartDocX509\SecureSma
rtDocument.doc

The secure Microsoft Word smart document.

Note: This file can also be created by following the 
steps given in Section 5.3.1.2, "Defining a Template 
Document in Microsoft Word".



Step-by-Step Procedures

Securing Smart Documents and Web Services 6-3

applicant fills an application form and submits it to Star Loan Company, this transfer 
of information must be secured. A security implementation between smart documents 
and Web services addresses this situation appropriately.

In this chapter, we secure the sample Web service developed in Section 5.3.1, 
"Developing a Smart Document to Retrieve and Update Enterprise Information", as 
well as a smart document solution that uses a secure Web services proxy. 

To develop this secure solution, perform the following steps:

■ Copying the Demonstration Files

■ Creating and Deploying the Web Service

■ Creating the Smart Document DLL

■ Attaching the XML Schema and the Expansion Pack to the Smart Document

■ Securing Communication Between the Smart Document and the Web Service

■ Testing the Smart Document Configuration

6.3.1 Copying the Demonstration Files
Unzip the demonstration support ZIP file to C:\ on your computer. Refer to Table 6–1, 
" Example Smart Document Files" for more details.

6.3.2 Creating and Deploying the Web Service
Create a Web Service by performing the steps outlined in Section 5.3.1.1, "Developing a 
Web Service in Oracle JDeveloper".

6.3.3 Creating the Smart Document DLL
Create the smart document DLL using Microsoft Visual Studio .Net 2003, by 
performing the following steps:

1. Open Microsoft Visual Studio .Net 2003.

2. Create a new Visual C# Class Library project. Click File, New, and then Project. 

3. In the New Project dialog box, select Visual C# Projects and then Class Library. 
Use the project name SecureDoc.

4. Right-click the project (SecureDoc) and select Add Reference.

5. In the Add Reference dialog box, add the following DLL files:

■ System.dll

■ System.data.dll

■ System.Web.dll

■ System.Web.Services.dll

■ System.Windows.Forms.dll

■ System.Drawing.dll

■ System.XML.dll

6. Add references to the Microsoft.Office.Interop.SmartTag.dll and 
Microsoft.Office.Interop.Word.dll files. These DLLs are located in the 
Global Assembly Cache (GAC) and therefore you cannot browse to them in the 



Step-by-Step Procedures

6-4 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Add Reference dialog box. You can add these DLLs by performing the following 
steps:

a. Close the SecureDoc project in Microsoft Visual Studio .Net 2003.

b. Using a text editor, open the SecureDoc project file (SecureDoc.csproj), in 
the location where you saved your project in the preceding steps.

c. Add the following lines to the file, within the <References> tag, for example:

<Reference
    Name = "Microsoft.Office.Interop.Word"
    AssemblyName = "Microsoft.Office.Interop.Word"
    HintPath = 
"..\..\..\..\..\WINDOWS\assembly\GAC\Microsoft.Office.Interop.Word\11.0.0.0
__71e9bce111e9429c\Microsoft.Office.Interop.Word.dll"
/>

<Reference
    Name = "Microsoft.Office.Interop.SmartTag"
    AssemblyName = "Microsoft.Office.Interop.SmartTag"
    HintPath = 
"..\..\..\..\..\WINDOWS\assembly\GAC\Microsoft.Office.Interop.SmartTag\11.0
.0.0__71e9bce111e9429c\Microsoft.Office.Interop.SmartTag.dll"
/>

d. Save and close the file.

e. Open the SecureDoc project in Microsoft Visual Studio .Net 2003.

7. Enable Web Services Enhancements for this Visual Studio project, by performing 
the following steps:

a. In the Solution Explorer pane, right-click SecureDoc, and select WSE Settings 
2.0.

b. In the resulting dialog box, click the General tab, and select Enable this 
project for Web Service Enhancements.

c. Click OK.

This adds Microsoft.Web.Services2.dll to your reference list.

8. Generate the secure Web service proxy, by adding a Web reference to your 
EmpService Web service created using Oracle JDeveloper in Section 5.3.1.1, 
"Developing a Web Service in Oracle JDeveloper". To do this, perform the 
following steps:

a. In the Solution Explorer pane, right-click References, and select Add Web 
Reference.

b. In the Add Web Reference dialog box, enter the WSDL of the EmpService Web 
service. This is the URL of the WSDL file, shown at the end of the Web service 
creation in Oracle JDeveloper. You must append ?WSDL to this URL.

c. Change the Web reference name to SecureWS, and click Add Web Reference.

d. Double-click the SecureWS link in the Solution Explorer pane, and expand 
SecureDoc.SecureWS. You should see a file MyWebService1Wse.

9. Create a class that implements the ISmartDocument interface. Right-click the 
project (SecureDoc), and click Add, and then Add Class. Name the class as 
SecureSmartDocument.cs. Copy the contents from Section A.6, "Contents of 
the SecureSmartDocument.cs File" into this file and save it.



Step-by-Step Procedures

Securing Smart Documents and Web Services 6-5

10. Build the project. A DLL file is created in the project_path/bin/debug 
directory.

11. Copy the DLL file to the SecureSmartDocUtoken and SecureSmartDocX509 
demonstration support folders on your computer, for example, 
C:\microsoft-interoperability-guide-demo-support\securingsmar
tdocs\SecureSmartDocUtoken\.

6.3.4 Attaching the XML Schema and the Expansion Pack to the Smart Document
To attach the XML schema and the XML expansion pack to the smart document that 
you copied in Section 6.3.1, "Copying the Demonstration Files", perform the following 
steps:

1. Open the example document (SecureSmartDocument.doc) in the 
demonstration support folder on your computer, for example, 
C:\microsoft-interoperability-guide-demo-support\securingsmar
tdocs\SecureSmartDocUtoken\SecureSmartDocument.doc.

2. From the Microsoft Word menu bar, click Tools, and then click Templates and 
Add-Ins.

3. In the Templates and Add-ins dialog box, select the XML Schema tab.

4. Click Schema Library.

5. If there are schemas already attached, then select them and click Delete Schema.

6. Click Add Schema, and select SecureDocument.xsd from the demonstration 
support folder, for example, 
C:\microsoft-interoperability-guide-demo-support\securingsmar
tdocs\SecureSmartDocUtoken. Name the schema SecureDoc, and click OK.

7. Click OK.

8. Select Show XML tags in the document in the XML Structure pane.

9. Place the cursor just below the banner image, and select the report element from 
the XML Structure pane. When prompted, click Apply to Entire Document.

10. Select the text Enter Name and click the name element in the XML Structure pane. 
The document should now look as shown in Figure 6–1.

Figure 6–1 XML Structure of SecureSmartDocument.doc

Note: Alternatively, you can create a new XSD file, copy the code 
from Section A.5, "Contents of the SecureDocument.xsd File" into it, 
and save it as SecureDocument.xsd. You can then add this schema.



Step-by-Step Procedures

6-6 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

11. Save the document.

To attach the XML expansion pack to the smart document that you created in the 
preceding steps, perform the following steps:

■ Attaching the XML Expansion Pack

■ Enabling Manifest Security Check

■ Signing the Manifest Using XMLSign.exe

6.3.4.1 Attaching the XML Expansion Pack
To attach the XML expansion pack, perform the following steps:

1. Create an XML file called ManagedManifest.xml, and add the code from 
Example A–3, "ManagedManifest.xml for Chapter 6" to this file. Alternatively, you 
can use the ManagedManifest.xml file provided in the 
securingsmartdocs\SecureSmartDocUtoken demonstration folder.

2. Attach the XML expansion pack to the document. To do this, perform the 
following steps:

a. From the Microsoft Word menu bar, click Tools, and then click Templates and 
Add-Ins. 

b. In the Templates and Add-ins dialog box, select the XML Expansion Packs 
tab.

c. Click Add and select ManagedManifest.xml from the demonstration 
support folder, for example, 
C:\microsoft-interoperability-guide-demo-support\securings
martdocs\SecureSmartDocUtoken\ManagedManifest.xml.

6.3.4.2 Enabling Manifest Security Check
To enable manifest security check of the smart document manifest file, perform the 
following steps:

1. Digitally sign the XML Expansion Pack with a trusted certificate using the XML 
Expansion Pack Signing Utility that comes with the Microsoft Office Smart 
Document SDK.

2. Create a trusted certificate for signing using the makecert utility, by running the 
following command:

makecert -r -n "CN=mansign" -sv mansign.pvk mansign.cer

makecert.exe is part of the Microsoft Visual Studio .Net 2003 installation. You 
can skip Step 2 through Step 6 if you have an existing trusted certificate.

3. Copy the certificate file (mansign.cer) and the private key file (mansign.pvk) 
to the demonstration support files directory, for example, 
C:\microsoft-interoperability-guide-demo-support\securingsmar
tdocs\certs.

4. Install the certificate in the personal store by performing the following steps: 

a. Right-click the .cer file and select Install Certificate. The Certificate Import 
Wizard is displayed.

b. Click Next.

c. In the Certificate Store wizard dialog box, select Place all certificates in the 
following store and browse to the Personal store, and click OK.



Step-by-Step Procedures

Securing Smart Documents and Web Services 6-7

d. Click Next, and then click Finish.

5. Verify that your certificate was stored successfully. See "Step 3: Checking If Your 
Certificate Was Stored Successfully". In the last step, verify that a certificate with 
the alias mansign exists.

6. To make this certificate trusted, perform the following steps: 

a. In Windows, click Start, and then click Run.

b. Enter mmc, and click OK. This starts the Microsoft Management Console 
(MMC) tool.

c. Click Console Root, Certificates, and then click Trusted Root Certification 
Authorities.

d. Right-click Certificates, All Tasks and click Import.

e. In the Certificate Import Wizard, select mansign.cer.

f. Click Next and then click Finish.

6.3.4.3 Signing the Manifest Using XMLSign.exe
To sign the manifest using XMLSign.exe, perform the following steps:

1. Navigate to the C:\Program Files\Microsoft Office 2003 Developer 
Resources\Microsoft Office 2003 Smart Document SDK\Tools 
directory.

2. Run the following command:

xmlsign.exe -c mansign.cer -v mansign.pvk ManagedManifest.xml

Where ManagedManifest.xml is the XML expansion pack of your smart 
document. XMLSign.exe is part of the Microsoft Office 2003 Smart Document 
SDK.

3. Use the sn utility to compile the managed Smart Document assembly with a 
Strong Name, which consists of a simple text assembly name, a version number, 
culture information, public key, and a digital signature. Run sn as shown here:

sn -k PSS_SmartDoc.snk

sn.exe is part of the Microsoft Visual Studio .Net 2003 installation.

4. In the AssemblyInfo.cs file of the SecureDoc visual project, set the 
AssemblyKeyFile attribute to point to the Strong Name key, as shown here:

[assembly: AssemblyDelaySign(false)]
 [assembly: AssemblyKeyFile("C:\demos\certs\PSS_SmartDoc.snk")]
  [assembly: AssemblyKeyName("")]

Provide the absolute path to the PSS_SmartDoc.snk file.

5. Rebuild your smart document project.

6. Digitally sign the strong-named assembly, using the signcode utility. To do this, 
perform the following steps:

a. Create an SPC file for signing, using cert2spc.exe, as follows:

Cert2spc mansign.cer mansign.spc



Step-by-Step Procedures

6-8 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

b. Using the signcode utility located at C:\Program 
Files\Microsoft.NET\SDK\v1.1\Bin, sign the smart document DLL, as 
follows:

signcode /spc mansign.spc /v mansign.pvk 
C:/microsoft-interoperability-guide-demo-support/securingsmartdocs/SecureSm
artDocUtoken/SecureDoc.dll

Where SecureDoc.dll is the assembly for the secured document. 
signcode.exe is part of the Microsoft Visual Studio .Net 2003 installation.

6.3.5 Securing Communication Between the Smart Document and the Web Service
This section describes how you can secure communication between smart documents 
and Web services. This chapter describes two methods for securing communication 
between smart documents and Web services - Username token and X.509 token. This 
section contains the following subsections:

■ Securing the Web Service Proxy and the Web Service Using Username Token

■ Securing the Web Service Proxy and the Web Service Using X.509 Token

■ Securing the Web Service using OWSM Gateway

■ Integrating with Oracle Identity Management

6.3.5.1 Securing the Web Service Proxy and the Web Service Using Username 
Token
You can use the username token to propagate user credentials to the Web service. If 
you choose this approach, users must perform authentication by entering their user 
name (optional) and password before using the Web service from within the smart 
document. The following two sections describe the steps to configure username token 
authentication:

■ Securing the Client Side

■ Securing the Web Service on the Server Side

6.3.5.1.1 Securing the Client Side  

When giving access to confidential information, you must ensure that users are 
authenticated when they access a secure Web service. An authentication dialog box 
must be displayed to the user for entering valid credentials. To secure the client side, 
perform the following steps:

1. Open Microsoft Visual Studio .Net 2003.

2. Create a username token dialog class and add it to the visual project created in 
Section 6.3.3, "Creating the Smart Document DLL". Select the SecureDoc project in 
the Solution Explorer pane, and click Add, Add Class, and name it 
UsernameTokenDialog.cs.

3. Copy the contents from Section A.7, "Contents of the UsernameTokenDialog.cs 
File" into this file.

4. Integrate the smart document with the Web service proxy and pass the user name 
and password extracted in the previous step.

In Microsoft Visual Studio .Net 2003, add the code shown in Example 6–1 to the 
onTextboxContentChange() method in your smart document class created in 
Section 6.3.3, "Creating the Smart Document DLL".



Step-by-Step Procedures

Securing Smart Documents and Web Services 6-9

Example 6–1 Code to Add to the onTextboxContentChange() Method (Username Token)

{
 
   if (Value.Length > 0) 
   {
      String subName = Environment.UserName;
 
      UsernameTokenDialog dialog = new UsernameTokenDialog();
      String uname = null;
      String pwd = null;
 
      dialog.setDefaultUsername(subName);

      if (dialog.ShowDialog() == DialogResult.OK) 
      {
         uname = dialog.getUsername();
         pwd = dialog.getPassword();
      }

      if (uname == null || pwd == null) 
      {
         System.Windows.Forms.MessageBox.Show("Missing username / password ");
      } 
      else 
      {

         SecureDoc.SecureWS.MyWebService1Wse proxy = new 
SecureDoc.SecureWS.MyWebService1Wse();
 
         UsernameToken utoken = new UsernameToken(uname, pwd, 
PasswordOption.SendPlainText);

         // Add the UsernameToken token to the SOAP message.
         proxy.RequestSoapContext.Security.Tokens.Add(utoken);
 
         String res = proxy.getAddress(uname);

         Console.WriteLine("response : " + res);
         Console.ReadLine();
 
         System.Windows.Forms.MessageBox.Show(res);
 
         String result = res;
 
         Microsoft.Office.Interop.Word.Range objRange = 
(Microsoft.Office.Interop.Word.Range)Target;
         objRange.InsertAfter(result);

      }
   }
}

5. Rebuild the project to generate an updated DLL, and copy it to 
C:\microsoft-interoperability-guide-demo-support\securingsmar
tdocs\SecureSmartDocUtoken.

6.3.5.1.2 Securing the Web Service on the Server Side  

To secure the Web service on the server side, perform the following steps:



Step-by-Step Procedures

6-10 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

1. Open the Web service generated using Oracle JDeveloper. 

2. Right-click MyWebService1 and select Secure Web Service. This displays a 
wizard.

3. Select authentication option as Text Password.

4. Select the Authentication tab under Security, and select Expect Username token 
to Authenticate. 

5. In the Application Navigator, right-click the MyWebService1 node, and select 
Run. Oracle JDeveloper automatically deploys the service to its embedded OC4J 
container.

6. Copy the URL in the console window, paste it in the Address field in a new 
Internet Explorer window, and press Enter.

The resulting page displays the running Web service.

7. Add a user entry in the system-jazn-data.xml file by performing the 
following steps:

a. Stop the embedded OC4J server by clicking Run, Terminate, and then 
Embedded OC4J Server.

b. Navigate to the JDEV_HOME/Jdev/mywork/MSOffice directory and open 
the MSOffice-jazn-data.xml file for editing.

c. Enter the following user entry under the <users> tag:

<user>
    <name>jcooper</name>
    <display-name>Smart document user </display-name>
    <description>Smart document user</description>
    <credentials>!password</credentials>
</user>

8. Restart the OC4J Server.

9. Select MyWebService1 and click Run.

6.3.5.2 Securing the Web Service Proxy and the Web Service Using X.509 Token
You can use X.509 token for propagating the user credentials to the Web service. If you 
choose this approach, a Public Key Infrastructure (PKI) trust has to be set up before 
exchanging the X.509 token. The following sections describe the steps to configure 
X.509 token authentication:

■ Generating and Deploying Public and Private Keys

■ Securing the Client Side

■ Securing the Web Service on the Server Side

6.3.5.2.1 Generating and Deploying Public and Private Keys  

Public Key Infrastructure (PKI) enables an organization to secure its communications 
and business transactions by using digital certificates that are exchanged between 
authenticated users and trusted resources. A private key is required for the current 
user that is used to sign the client message, and a public key is required that is used by 

Note: The user name and password should be the same username 
and password that the client sends.



Step-by-Step Procedures

Securing Smart Documents and Web Services 6-11

the OC4J Web service for verifying signature and asserting identity. The procedure for 
deploying PKI to secure smart documents includes the following high-level steps:

■ Step 1: Creating X.509 Certificate and Corresponding Private Key File

■ Step 2: Installing the Private Key Certificate

■ Step 3: Checking If Your Certificate Was Stored Successfully

■ Step 4: Using X.509 Certificate Tool for Viewing the Certificate

■ Step 5: Importing the Public Key Certificate for Verifying Signature

Step 1: Creating X.509 Certificate and Corresponding Private Key File
To create an X.509 certificate and corresponding private key (pvk) file, perform the 
following steps:

1. Run the makecert utility as follows:

makecert -r -n %alias% -sv  %pvkfilename%  %cerfilename%

where alias is the alias of your certificate. For example, if the identity of the user 
logging in to the Windows system is jcooper, then create a certificate with alias 
CN=jcooper. 

For example:

makecert -r -n "CN=jcooper" -sv  jcooper.pvk jcooper.cer

2. In the Create Private Key Password dialog box, specify and confirm the password 
as oc4jnetsign, and click OK.

3. Create the SPC file needed to create the PFX file by running the following 
command:

Cert2spc.exe jcooper.cer jcooper.spc

This creates a jcooper.spc file.

4. Create the P12 file from the PVK and SPC files by running the following 
command:

Pvkimprt.exe -pfx jcooper.spc jcooper.pvk

5. In the Enter Private Key Password dialog box, enter the oc4jnetsign password, 
and click OK.

6. The Certificate Export Wizard is displayed, which starts creating the PFX file from 
the certificate and the associated private key for this. Click Next.

7. Click Yes to export the private key with the certificate.

8. In the Export File Format wizard dialog box, shown in Figure 6–2, ensure that the 
Enable strong protection option is not selected, and click Next.



Step-by-Step Procedures

6-12 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 6–2 Export File Format

9. In the Password wizard dialog box, enter the password that you specified earlier 
(oc4jnetsign), confirm the same, and click Next.

10. In the File to Export wizard dialog box, shown in Figure 6–3, specify the file name 
as oc4jnetp12.pfx and store it in the 
C:\microsoft-interoperability-guide-demo-support\securingsmar
tdocs\SecureSmartDocX509\Certificate folder. Click Next.



Step-by-Step Procedures

Securing Smart Documents and Web Services 6-13

Figure 6–3 File to Export

11. In the Certificate Store wizard dialog box, select Place all certificates in the 
following store. Click Browse and select Personal.

12. In the Completing the Certificate Export Wizard dialog box, click Finish.

Step 2: Installing the Private Key Certificate
To install the private key certificate in the Windows key store, perform the following 
steps:

1. Right-click oc4jnetp12.pfx and click Install PFX. This displays the Certificate 
Import Wizard.

2. Click Next. The File to Import wizard dialog box shows the oc4jnetp12.pfx file 
already selected, as shown in Figure 6–4.



Step-by-Step Procedures

6-14 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 6–4 File to Import

3. Click Next.

4. In the Password wizard dialog box, enter the password that you specified when 
creating the certificate (oc4jnetsign), and then click Next.

5. In the Certificate Store wizard dialog box, specify the certificate store to be 
Personal, and click Next.

6. In the Completing the Certificate Import Wizard dialog box, click Finish.

Step 3: Checking If Your Certificate Was Stored Successfully
To check if your certificate was stored successfully, perform the following steps:

1. In Windows, click Start, and then click Run.

2. Enter mmc, and click OK. This starts the Microsoft Management Console (MMC) 
tool.

3. Click Console, and then click Add/Remove Snap-in.

4. In the Standalone tab, click Add.

5. In the Add Standalone Snap-in dialog box, shown in Figure 6–5, double-click 
Certificates.



Step-by-Step Procedures

Securing Smart Documents and Web Services 6-15

Figure 6–5 Add Certificates Snap-In

6. In the Certificates snap-in dialog box, select My user account, and then click 
Finish.

7. In the Add Standalone Snap-in dialog box, click Close.

8. In the Add/Remove Snap-in dialog box, click OK.

9. Click Console Root, Certificates, Personal and then Certificates. In this example, 
the alias name should be jcooper.

Step 4: Using X.509 Certificate Tool for Viewing the Certificate
To see the key identifier of a particular certificate, you must use the X.509 Certificate 
Tool that is installed along with Web Service Enhancements 2.0. To view the certificate, 
perform the following steps:

1. Start the X.509 Certificate Tool. Click Start, Programs, Microsoft WSE 2.0, and 
then X509 Certificate Tool.

2. Specify Personal as the Store Name.

3. Click Open Certificate, and select jcooper.

Step 5: Importing the Public Key Certificate for Verifying Signature
To import the public key certificate from oc4jnet12.pfx to a Java keystore for 
verifying the signature, use the keytool utility as follows:

keytool -import -alias jcooper -file jcooper.cer -keypass jcooper -keystore 
myks.jks -storepass password



Step-by-Step Procedures

6-16 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

6.3.5.2.2 Securing the Client Side  

To secure the client side, perform the following tasks:

1. Generate the private key and public key certificate for the Windows user as 
described in Section 6.3.3, "Creating the Smart Document DLL".

2. Integrate the smart document with the Web service proxy and pass the certificate 
created in Section 6.3.3, "Creating the Smart Document DLL".

In Microsoft Visual Studio .Net 2003, add the code shown in Example 6–2 to the 
onTextboxContentChange() method in your smart document class created in 
Section 6.3.3, "Creating the Smart Document DLL":

Example 6–2 Code to Add to the onTextboxContentChange() Method (X.509 Token)

{
   if (Value.Length > 0) 
   {
      String subName = Environment.UserName;

      SecureDoc.SecureWS.MyWebService1Wse proxy = new 
SecureDoc.SecureWS.MyWebService1Wse();

      X509SecurityToken signtoken = 
RetrieveTokenFromStoreUsingSubName(subName);

      if (signtoken == null) 
      {
         throw new ApplicationException("Unable to obtain Sign security 
token.");
      }

      //Add the X.509 token 
      proxy.RequestSoapContext.Security.Tokens.Add(signtoken);

      //Sign the Body
      proxy.RequestSoapContext.Security.Elements.Add(new 
MessageSignature(signtoken)); 

      String res = proxy.getAddress(uname);
      Console.WriteLine("response : " + res);
      Console.ReadLine();

      System.Windows.Forms.MessageBox.Show(res);
 
      String result = res;
 
      Microsoft.Office.Interop.Word.Range objRange = 
(Microsoft.Office.Interop.Word.Range)Target;
      objRange.InsertAfter(result);
   }
}
public static X509SecurityToken RetrieveTokenFromStoreUsingSubName(string 
subName)
{
   // Open the CurrentUser Certificate Store and try MyStore only
   X509CertificateStore store = 
X509CertificateStore.CurrentUserStore(X509CertificateStore.MyStore);
   X509SecurityToken token = null;
   try



Step-by-Step Procedures

Securing Smart Documents and Web Services 6-17

   {
      if (store.OpenRead())
      {
         String modSubName = "CN="+subName;
         Console.WriteLine("Find certificate with Subject Name : " + 
modSubName);
         //Find certificate by Subject Name 
         X509CertificateCollection certs = 
store.FindCertificateBySubjectName(modSubName);
         if (certs.Count > 0)
         {
            // Get the first certificate in the collection
            token = new X509SecurityToken(((X509Certificate)certs[0]));
         }
      }
   }
   finally
   {
      if (store != null) 
      {
         store.Close();
      }
   }
   return token;
}

3. Rebuild the project to generate an updated DLL, and copy it to the demonstration 
support folder, for example, 
C:\microsoft-interoperability-guide-demo-support\securingsmar
tdocs\SecureSmartDocX509.

6.3.5.2.3 Securing the Web Service on the Server Side  

To secure the Web service on the server side, perform the following steps:

1. Open the Web service generated using Oracle JDeveloper.

2. Right-click MyWebService1 and select Secure Web Service. This displays a 
wizard.

3. Select authentication option as X.509 Digital Certificate.

4. Edit the keystore options and configure it to use myks.jks that was created earlier.

The keystore password is password.

6.3.5.3 Securing the Web Service using OWSM Gateway
The Web service can also be secured using OWSM Gateway. Refer to the Web Services 
Manager page on Oracle Technology Network (OTN), at 
http://www.oracle.com/technology/products/webservices_
manager/index.html.

6.3.5.4 Integrating with Oracle Identity Management
This example illustrates integration with system-jazn-data.xml, which is a 
lightweight XML repository for storing user and role information. If you have Oracle 
Identity Management (OID/SSO, COREid) and you want to integrate your Web 
service with Oracle Identity Management, refer to the chapter describing 
administering Web Services security in Oracle Application Server Web Services Security 
Guide.



Related Documentation

6-18 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

6.3.6 Testing the Smart Document Configuration
This section describes the steps to test the smart document security configuration.

To test the smart document with Username token:

1. Open the smart document from the demonstration support folder, for example, 
C:\microsoft-interoperability-guide-demo-support\securingsmar
tdocs\SecureSmartDocumentUtoken\SecureSmartDocument.doc.

2. Click Name, and enter your name.

A username token dialog box is displayed.

3. Enter password and click OK.

You should see the address printed on the document.

To test the smart document with X.509:

1. Open the smart document from the demonstration support folder, for example, 
C:\microsoft-interoperability-guide-demo-support\securingsmar
tdocs\SecureSmartDocumentX509\SecureSmartDocument.doc file.

2. Click Name, and enter your name.

You should see the address printed on the document.

6.4 Related Documentation
Oracle Application Server Web Services Security Guide



Delivering Business Activity Monitoring Alerts and Reports to Microsoft Outlook 7-1

7
Delivering Business Activity Monitoring
Alerts and Reports to Microsoft Outlook

This chapter demonstrates how to use Oracle Business Activity Monitoring to send 
alerts and reports to your Microsoft Outlook e-mail client.

This chapter contains the following sections:

■ Overview

■ Prerequisites

■ Step-by-Step Procedures

■ Related Documentation

7.1 Overview
In today's enterprise, there is a real need to streamline and automate enterprise 
business processes, especially those requiring human participation. By sending 
workflow alerts and notifications in e-mail, you draw attention to the events that 
triggered them, thus increasing the likelihood that those events are addressed swiftly 
and accurately.

Oracle Business Activity Monitoring provides real-time visibility into enterprise 
operations, which enables business users to cut costs and improve processes while 
business events, such as a drop in inventory levels, occur. The Oracle Business Activity 
Monitoring architecture utilizes messaging, data integration, advanced data caching, 
analytics monitoring, alerting, and reporting technology to deliver critical information 
within seconds of an event or change in status.

You can create alerts that are triggered by specific events and conditions. These alerts 
can, in turn, automatically send reports to specific users. Alerts can be sent when data 
changes in a report, or you can use alerts to send a report to users daily or at set 
intervals. As a result of events and conditions, your alerts can send reports to Oracle 
Business Activity Monitoring users through e-mail. In this chapter, the focus is on 
sending alerts and reports to a Microsoft Outlook e-mail client.

Instead of having business users constantly monitor their business processes or 
activities for changes, you can create solutions to send alerts from Oracle Business 
Activity Monitoring directly into their Microsoft Outlook e-mail clients. These alerts 
can be regular links that open in a browser, or embedded in documents sent as e-mail 
attachments.



Prerequisites

7-2 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

7.2 Prerequisites
To perform the steps outlined in this chapter, install the following software:

■ Oracle Business Activity Monitoring 10g Release 2 (10.1.2)

See Oracle Business Activity Monitoring Installation Guide or Oracle Business Activity 
Monitoring Quick Installation Guide for more information.

■ The Media Sales sample data object

This is installed with Oracle Business Activity Monitoring if you select the 
Samples option.

■ Microsoft Outlook (any version)

■ Microsoft Internet Explorer or Microsoft Word to open reports sent in the 
Multipurpose Internet Mail Extension HTML (.MHT format)

In addition, you must make sure that the From address is configured. To do this, 
perform the following steps:

1. Start Oracle Business Activity Monitoring Administrator.

2. From the drop-down list, choose Message Center management.

3. Click Edit.

4. Enter appropriate values in the Server Name, Server Port, and Email Account for 
Alerting fields.

5. Click Save.

6. Restart the Oracle Business Activity Monitoring Event Engine:

a. In the Control Panel, click Administrative Tools, then Services.

b. Right-click the Oracle BAM Event Engine Service, and choose Restart from the 
popup menu.

7. Click Continue.

7.3 Step-by-Step Procedures
Oracle Business Activity Monitoring lets you create the following solutions for 
sending alerts and reports to Microsoft Outlook e-mail clients:

■ Sending E-Mail Alerts with Links

■ Sending Reports as E-Mail Attachments

7.3.1 Sending E-Mail Alerts with Links
Oracle Business Activity Monitoring enables business executives and operations 
managers to improve their decision-making process by providing a real-time view of 
the business events occurring in their enterprise, then enabling them to use the 
derived intelligence to analyze and improve the efficiency of their business processes. 
For example, enterprises that run distributed global supply chains with just-in-time 
inventory practices must continually monitor their inventory levels and correlate them 
to the bills of material and replenishment requests they have sent to their suppliers 
and logistics partners. Failure to do so jeopardizes their ability to maintain a balanced 
flow of parts and inventory throughout their entire supply chain. With Oracle Business 
Activity Monitoring, as soon as the inventory level on a particular item drops below a 
certain level, the operations manager receives an alert. This alert can include a link to a 



Step-by-Step Procedures

Delivering Business Activity Monitoring Alerts and Reports to Microsoft Outlook 7-3

Web-based user interface through which the alert recipient can reorder the relevant 
item. 

Suppose a salesperson for a music retailer wants to receive an e-mail alert (shown in 
Figure 7–1) when the sales of any cassette or CD reach a certain level. The e-mail must 
contain a link to a report that shows the breakdown of sales for that particular cassette 
or CD.

Figure 7–1 E-Mail Alert for Media Sales

To configure Oracle Business Activity Monitoring to send an e-mail alert with a link, 
perform the steps in the following sections:

■ Creating a Report

■ Creating an Alert Rule

■ Verifying That the Alert Is Working

7.3.1.1 Creating a Report
To create a report in Oracle Business Activity Monitoring, perform the following steps:

1. Start Oracle Business Activity Monitoring Active Studio.

2. Click CREATE A NEW REPORT.

3. Click the Tiled Report option with a title and four tiles (see Figure 7–2).



Step-by-Step Procedures

7-4 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 7–2 Selecting a Tiled Report

4. Click Click to add a report title at the top of the page, and add the report title 
Media Sales Report.

5. In the top left tile, click the Bar Chart icon (see Figure 7–3).

Figure 7–3 Selecting the Type of Chart for a Tile in a Report

6. In the Data Objects section, double-click Samples.

7. Select Media Sales, and then click Next.

8. In the Group By list, select the Record Label check box.

9. In the Chart Values list, select the Costs check box.

10. In the Summary Function(s) list, select the Sum check box (see Figure 7–4).



Step-by-Step Procedures

Delivering Business Activity Monitoring Alerts and Reports to Microsoft Outlook 7-5

Figure 7–4 Choosing Data Fields

11. Click Next.

12. Click the Change View Properties icon.

13. In the View Title field, type Sales by Record Label.

14. Click OK.

15. In the top right tile, click the Pie Chart icon.

16. In the Data Objects section, double-click Samples.

17. Select Media Sales, and then click Next.

18. In the Group By list, select the Category check box.

19. In the Chart Values list, select the Costs check box.

20. In the Summary Function(s) list, select the Sum check box.

21. Click Next

22. Click the Change View Properties icon.

23. In the View Title field, type Sales by Category.

24. Click the Data Labels tab.

25. Select the Percent and Series Name check boxes.

26. Click OK.

27. In the bottom left tile, click the Line Chart icon.

28. In the Data Objects section, double-click Samples.

29. Select Media Sales, and then click Next.

30. In the Group By list, select the Quarter check box.

31. In the Chart Values list, select the Costs check box.

32. In the Summary Function(s) list, select the Sum check box.

33. Click Next.

34. Click the Change View Properties icon.

35. In the View Title field, type Sales by Quarter.

36. Click OK.

37. In the bottom right tile, click the Streaming List icon.

38. In the Data Objects section, double-click Samples.

39. Select Media Sales, and then click Next.

40. Select all the check boxes: Category, Costs, Media Format, Quarter, Record Label, 
Sales, and Year.



Step-by-Step Procedures

7-6 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

41. Click Next.

42. Click the Change View Properties icon.

43. In the View Title field, enter Detailed Sales Summary.

44. Click OK.

45. In the Actions pane, click Save Report. 

46. Select the My Reports folder in Save in.

47. In the Report Name field, enter Media Sales Report.

48. Click OK.

49. Start Oracle Business Activity Monitoring Active Viewer.

50. Click Select Report.

51. Select Media Sales Report, and then click OK.

You should see the Media Sales Report as shown in Figure 7–5.

Figure 7–5 Media Sales Report

7.3.1.2 Creating an Alert Rule
To create alert rules in Oracle Business Activity Monitoring, perform the following 
steps:

1. Start Oracle Business Activity Monitoring Active Studio.

2. Click the Alerts tab.

3. Click CREATE A NEW ALERT.

4. Click CREATE A RULE.

5. In the Rule Name field, type CD Sales.



Step-by-Step Procedures

Delivering Business Activity Monitoring Alerts and Reports to Microsoft Outlook 7-7

6. From the Select an Event list, select When a data field in a data object meets 
specified conditions.

7. Click Next.

8. From the Select an Action list, select Send a message via email.

9. In the Rule Expression section, click this data field has a condition of x to display 
the Alert Rule Editor.

10. In the Data Objects section, select Media Sales.

11. Click the Row Filter tab.

12. Click add new entry.

13. From the field list, choose Sales.

14. From the Comparison list, choose is equal to.

15. From the next list, select Value.

16. In the Value field, type 1111. This reflects the number of CDs or cassettes that 
must be sold in order to trigger the alert.

17. Click add entry (see Figure 7–6).

Figure 7–6 Specifying a Filter for the Alert

18. Click OK.

19. In the Rule Expression section, click create message to display the Alert Message 
dialog box.

20. In the Subject field, type New media sold. Sale price:.

21. Alerts can include the data that triggered the alert in the first place.

From the list on the left, select Sales, then click Insert into subject.

22. In the Message Text field, enter Check it out:.

23. From the list on the right, select the Media Sales Report that you created in 
Section 7.3.1.1, "Creating a Report".

24. From the list on the left, select Send Report Link, then click Insert into text (see 
Figure 7–7).



Step-by-Step Procedures

7-8 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 7–7 Specifying the Alert Message

25. Click OK.

26. In the row for the action, click select user to display the Select Names dialog box.

27. Select the user to whom you want to send the alert (see Figure 7–8). For the 
purposes of this exercise, send the alert to yourself.

Figure 7–8 Specifying Alert Recipients

28. Click OK.

Note: You can use Oracle Business Activity Monitoring 
Administrator to manage users and specify their e-mail addresses. For 
information about how to do this, refer to Oracle BAM Administrator's 
Guide.

It is also possible to configure Oracle Business Activity Monitoring to 
be provisioned with the user information stored in your corporate 
directory, for example Oracle Internet Directory.



Step-by-Step Procedures

Delivering Business Activity Monitoring Alerts and Reports to Microsoft Outlook 7-9

29. Click OK to close the Rule Creation and Edit dialog box.

An alert will now be sent to your e-mail client when sales of any CD or cassette reach 
1111.

7.3.1.3 Verifying That the Alert Is Working
As a developer, you typically want to test the alert without having to wait until the 
alert condition is satisfied. If you have administrative privileges, you can use Oracle 
Business Activity Monitoring Architect to manipulate the underlying data to trigger 
the alert. To do this, perform the following steps:

1. Start Oracle Business Activity Monitoring Architect.

2. In the Folders pane, click Samples.

3. In the Data Objects pane, click Media Sales.

4. Click Contents in the list of links at the top of the right pane.

5. In the top row, make a note of the current value for the Sales column.

6. Click Edit Contents.

7. In the top row, click Edit.

8. Change the value in the Sales column to 1111 (see Figure 7–9).

Figure 7–9 Triggering the Alert

9. Click Update.

10. In the Folders pane, click System, then click Alerts.

11. In the Data Objects pane, click History.



Step-by-Step Procedures

7-10 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

12. Click Contents in the list of links at the top of the right pane.

13. If necessary, scroll down to the end of the table. You should see that an alert has 
been sent to your e-mail account (see Figure 7–10).

Figure 7–10 Alert History

14. Check your e-mail client to make sure that you received the alert.

15. Open the message and click the link to view the report.

16. As soon as you have verified that the alert is working, remember to use Oracle 
Business Activity Monitoring Architect to reset any changes you made to the 
Media Sales data.

7.3.2 Sending Reports as E-Mail Attachments
Suppose that, instead of sending an alert, you want to e-mail a daily report that 
contains a snapshot of data from data objects in the Active Data Cache, as shown in 
Figure 7–5. Oracle Business Activity Monitoring enables you to e-mail such a report as 
an attachment in the .MHT format. Because .MHT files can be opened in either 
Microsoft Internet Explorer or Microsoft Word, the data can be reviewed even when 
the recipient is not connected to the Internet.

To configure Oracle Business Activity Monitoring to send reports to e-mail addresses, 
perform the steps in the following sections:

■ E-Mailing the Report

■ Verifying That the Report Was Sent

7.3.2.1 E-Mailing the Report
To e-mail a report to one or more Oracle Business Activity Monitoring users, perform 
the following steps:

1. Start Oracle Business Activity Monitoring Active Studio.

2. Click the My Reports tab.

3. Double-click the report that you created in Section 7.3.1.1, "Creating a Report".



Related Documentation

Delivering Business Activity Monitoring Alerts and Reports to Microsoft Outlook 7-11

4. In the Actions pane, click Email, and then click Report page.

The E-mail Report dialog box is displayed.

5. In the To, CC, and BCC fields, specify Oracle Business Activity Monitoring user 
names. You can send e-mail only to users of Oracle Business Activity Monitoring. 
Include yourself as one of the recipients.

6. In the Subject field, type Can you believe this?.

7. In the Message field, type Check out the attached report. (see 
Figure 7–11).

Figure 7–11 Specifying Details for E-Mailing a Report

8. Click Send.

7.3.2.2 Verifying That the Report Was Sent
To verify that the report was sent, perform the following steps:

1. Check your e-mail client to make sure that you received the message.

2. Open the message and download the attached .MHT file to your local file system.

3. Open the downloaded file in Microsoft Internet Explorer or Microsoft Word and 
view the report.

7.4 Related Documentation
■ Oracle Business Activity Monitoring Installation Guide

■ Oracle BAM Active Studio User's Guide

■ Oracle BAM Architect User's Guide

Tip: If you receive an error at this point, make sure that you have 
configured the From address as specified in Section 7.2, 
"Prerequisites".



Related Documentation

7-12 Oracle Application Server Developer's Guide for Microsoft Office Interoperability



Delivering Business Intelligence Information to Microsoft Excel 8-1

8
Delivering Business Intelligence Information

to Microsoft Excel

This chapter demonstrates how to deliver business intelligence information to 
Microsoft Office. It shows how you can save an Oracle Business Intelligence 
Discoverer worksheet as a Microsoft Excel worksheet and how you can use the Oracle 
Business Intelligence Spreadsheet Add-In to work with live OLAP data in Microsoft 
Excel.

This chapter contains the following sections:

■ Overview

■ Prerequisites

■ Step-by-Step Procedures

■ Related Documentation

8.1 Overview
Oracle Business Intelligence enables you to rapidly develop and deploy data 
warehouses and data marts with an integrated array of query, reporting, analysis, data 
integration and management, desktop integration, and Business Intelligence 
application development capabilities. Oracle Business Intelligence, available both as a 
standalone or as part of Oracle Application Server Enterprise Edition, includes the 
following components:

■ OracleBI Discoverer: An intuitive ad-hoc query, reporting, analysis, and 
Web-publishing tool that empowers business users at all levels to gain immediate 
access to information from data marts, data warehouses, online transaction 
processing systems, and Oracle E-Business Suite.

■ OracleBI Spreadsheet Add-In: Provides OLAP data access from within Microsoft 
Excel worksheets. You can also use the OracleBI Beans Calculation and Query 
Builder beans to analyze that data.

■ OracleBI Warehouse Builder: Enables rapid design, deployment, and management 
of data and metadata.

■ OracleBI Beans: Builds powerful custom business intelligence applications.

■ OracleAS Reports Services: Provides enterprise reporting.

Microsoft Excel remains the most widely used worksheet tool. It is also a product with 
which many users are familiar. While OracleBI Discoverer provides users with a 
powerful and secure environment to analyze and visualize data from data marts and 
data warehouses, it may be required at certain times to provide this data to users who 



Overview

8-2 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

do not have access to OracleBI Discoverer. Under this situation, it makes sense to 
provide users with access to the data in order to use the features of Microsoft Excel to 
further analyze data. OracleBI Discoverer enables users to do just this by exporting 
their OracleBI Discoverer worksheets as Microsoft Excel worksheets, with formatting 
and layout preserved.

OracleBI Discoverer also enables users to export crosstabs as Microsoft Excel pivot 
tables. This powerful feature means that users neither need to know how to create 
pivot tables in Microsoft Excel (which can be a nonintuitive exercise for novice users), 
nor do they need to waste time in report creation; instead they can spend more time on 
analysis.

Users can e-mail OracleBI Discoverer reports (tables or crosstabs) as Microsoft Excel 
worksheets to other people. This way they can share the results of their analysis and 
insight with others. By preserving the layout, format, and certain calculations in the 
exported worksheet, users can spend more time on analysis and less on re-creating 
reports.

The use of the Spreadsheet Add-In combines the features of Microsoft Excel with the 
robustness, security, and scalability of Oracle Database. Users can use the familiar 
interface of Microsoft Excel, and at the same time, have their data inside a secure 
Oracle Database. Users can also make use of the powerful analytics built inside the 
OLAP option of the database.

Figure 8–1 illustrates the various ways that Oracle Business Intelligence interoperates 
with Microsoft Office.



Prerequisites

Delivering Business Intelligence Information to Microsoft Excel 8-3

Figure 8–1 Business Intelligence Interoperation with Microsoft Excel

8.2 Prerequisites
To perform the steps outlined in this chapter, first install the following software:

■ Oracle Database 10g (10.1.0.3 or later)

■ Oracle Business Intelligence 10g Release 2 (10.1.2)

See Oracle Business Intelligence Installation Guide for your operating system for more 
information.

■ Oracle Business Intelligence Spreadsheet Add-In. You can download this add-in 
from OTN at

http://www.oracle.com/technology/products/bi/spreadsheet_
addin/download/index.html

For instructions on how to install the add-in, read the Installation Guide and 
Release Notes at

http://www.oracle.com/technology/products/bi/spreadsheet_
addin/docs/10121/html_ssa_ig_rn/output/toc.htm

■ Oracle Business Intelligence samples. The samples are available at

http://www.oracle.com/technology/products/bi/samples



Step-by-Step Procedures

8-4 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Download the ZIP file and follow the instructions provided in the samples_
readme.htm file. You must install the common schema and the OracleBI 
Discoverer sample workbooks.

■ Microsoft Excel 2000 or later

8.3 Step-by-Step Procedures
This chapter shows two ways that you can use Oracle Business Intelligence to send 
business intelligence information to Microsoft Excel:

■ Pushing Business Intelligence Information to Microsoft Excel

■ Pulling Live Data into Microsoft Excel

8.3.1 Pushing Business Intelligence Information to Microsoft Excel
If you want to share your OracleBI Discoverer worksheet with others, it is helpful to 
do so using a familiar format that does not require them to install additional software. 
OracleBI Discoverer enables you to meet this requirement in the following ways:

■ By viewing an OracleBI Discoverer worksheet on the Web in a browser.

■ By making a worksheet available in many different formats, including HTML, 
PDF, CSV, text, and so on.

■ By saving an worksheet as a Microsoft Excel worksheet. You can export the 
worksheet to the Microsoft Excel format, and also save any graphs within your 
worksheet as .PNG (or .GIF) files. You can then insert these graphics into the 
worksheet. When you export to Microsoft Excel, you can also export formats and 
formulas, and your worksheet fonts, colors, and styles are preserved.

Three ways you can push business intelligence information to Microsoft Excel are the 
following:

■ Saving an OracleBI Discoverer Worksheet as a Microsoft Excel Worksheet

■ Saving an OracleBI Discoverer Workbook as a Microsoft Excel Web Query

■ Sending a Worksheet as an E-Mail Attachment

8.3.1.1 Saving an OracleBI Discoverer Worksheet as a Microsoft Excel Worksheet
To save an OracleBI Discoverer worksheet as a Microsoft Excel worksheet, perform the 
following steps:

1. Start OracleBI Discoverer Plus and connect to the relational data source where you 
installed the samples as described in Section 8.2, "Prerequisites".

2. In the Open Workbook from Database dialog box, expand the Sales & Profits by 
Time, Geography, & Channel sample workbook.

3. Select the Annual Regional Sales & Profits by Channel sample worksheet and 
click Open.

4. Apply some formatting to the worksheet, for example, make some text bold and 
add some color (see Figure 8–2).

Tip: It is advisable that this task be performed by a DBA.



Step-by-Step Procedures

Delivering Business Intelligence Information to Microsoft Excel 8-5

Figure 8–2 OracleBI Discoverer Worksheet with Formatting

5. Select File, then Export to display the Export Wizard.

6. Select Current Worksheet.

7. Click Next.

8. From the Table list, select Microsoft Excel Workbook.

If the worksheet was a crosstab, you could, optionally, select Microsoft Excel 
Workbook with Pivot Table instead.

9. From the Graph list, select Portable Network Graphics.

10. In the Destination field, enter the location where you want to save the exported 
files. Click Browse, if necessary.

11. In the Name field, enter <YourName> Exported Worksheet (see Figure 8–3).

Note: You can also click the Export to Excel toolbar button. This 
exports your worksheet using default settings. If you want to specify 
the export settings yourself, use the menu.



Step-by-Step Procedures

8-6 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 8–3 Exporting a Worksheet in Microsoft Excel Format

12. Click Next.

13. Select Use Current On Screen Size for the size of the exported graph.

14. Click Finish to start the export operation.

When the export operation is completed, the Export Log dialog box displays a list 
of the files created during the export operation.

15. Click OK.

Figure 8–4 shows that the formatting you applied earlier has been preserved.

Figure 8–4 Exported Worksheet in Microsoft Excel (with Formatting Preserved)



Step-by-Step Procedures

Delivering Business Intelligence Information to Microsoft Excel 8-7

The graph is exported into a separate .PNG file. If you want to include it, you must 
manually insert it into the Microsoft Excel worksheet.

8.3.1.2 Saving an OracleBI Discoverer Workbook as a Microsoft Excel Web Query
You can also export OracleBI Discoverer workbooks in Microsoft Excel Web Query 
(.IQY) format. This means that the Microsoft Excel worksheet stores the query used to 
obtain the OracleBI Discoverer data, so that users can refresh the data within Microsoft 
Excel. This ensures that users can always view the most up-to-date data.

1. Start OracleBI Discoverer Plus and connect to the relational data source where you 
installed the samples as described in Section 8.2, "Prerequisites".

2. Expand the Sales & Profits by Time, Geography, & Channel sample workbook.

3. Select the Annual Regional Sales & Profits by Channel sample worksheet and 
click Open.

4. Select File, then Export to display the Export Wizard dialog box.

5. Select Current Worksheet.

6. Click Next.

7. From the Table list, select Web Query for Microsoft Excel 2000+.

8. In the Destination field, enter the location where you want to save the exported 
files. Click Browse, if necessary.

9. In the Name field, enter <YourName> Exported Worksheet2.

10. Click Finish to start the export.

When the export is completed, the Export Log dialog displays a list of the files 
created during the export.

11. Click OK.

You are prompted to enter the password for the current user.

12. Enter your password and click OK.

Microsoft Excel connects to the database, then retrieves and displays the latest 
data.

8.3.1.3 Sending a Worksheet as an E-Mail Attachment
If you want to send a worksheet directly to another user's e-mail account, you can use 
OracleBI Discoverer Viewer. You can e-mail the worksheet in a number of formats, 
such as HTML (in a ZIP file), Oracle Reports, XML, PDF, and a Microsoft Excel 
workbook.

To send a worksheet as an e-mail attachment, perform the following steps:

Note: You have the following options when exporting to Microsoft 
Excel:

■ Microsoft Excel worksheet with formatting preserved.

■ Microsoft Excel worksheet with an Microsoft Excel Pivot Table 
created. This option is available for Discoverer crosstabs.

In addition, you can export to a CSV (comma-delimited values) 
format, which is suitable when you do not need formatting and need 
to conserve the file size.



Step-by-Step Procedures

8-8 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

1. Start OracleBI Discoverer Viewer and connect to the relational data source where 
you installed the samples as described in Section 8.2, "Prerequisites".

2. Expand the Sales & Profits by Time, Geography, & Channel sample workbook.

3. Click the Annual Regional Sales & Profits by Channel sample worksheet.

4. From the Actions list, click Send as e-mail.

5. From the list, select Microsoft Excel Workbook.

6. Click Next.

7. In the Sender field, enter your own e-mail address.

8. In the Recipient field, enter the e-mail address of the user to whom you want to 
send the worksheet. For the purposes of this exercise, enter your own e-mail 
address.

9. In the Subject field, enter Here is that worksheet.

10. In the Body field, enter Attached. Regards (see Figure 8–5).

Figure 8–5 Sending a Worksheet as a Microsoft Excel Attachment

11. To preview what the attached file will look like, click View Attachment.

12. Click Finish.

13. Check your inbox to make sure that you received the worksheet.

14. Open the message and open the attached Microsoft Excel worksheet.

8.3.2 Pulling Live Data into Microsoft Excel
Many users within an enterprise are more familiar and prefer working with desktop 
applications, such as Microsoft Excel. Therefore, most enterprises have seen a 



Step-by-Step Procedures

Delivering Business Intelligence Information to Microsoft Excel 8-9

proliferation of data-extraction programs and downloading of static data into 
worksheets within their data warehouse environment. This causes enormous 
problems, both technical and business-related. Continually downloading and 
manipulating data in this manner causes an ever-expanding range of disconnected 
worksheets. It is never clear from the worksheet analysis how historical data based on 
numerous sources is managed. For example, what happens when the source systems 
are updated or restarted? Because there is no connection to the source data, the user is 
not alerted to the availability of refreshed data. As a result, it is never clear which 
worksheet is the latest version. Worksheets also have scalability limitations in terms of 
the volume of data that can be processed by a single sheet. Again, users resolve this by 
creating multiple worksheets and attaching them together with formulas.

The OracleBI Spreadsheet Add-In resolves all of these issues and many more. It 
combines the analytic power and scalability of Oracle OLAP with the familiarity of 
Microsoft Excel by embedding OLAP capabilities directly within Microsoft Excel. 
Users report against common business definitions that are stored centrally in Oracle 
Database. This provides a consistent and high-quality view of their corporate 
information. In addition, users can perform ad hoc analysis on this data using 
traditional OLAP exploration techniques such as drilling, pivoting, and paging the 
view of the data.

To pull data into Microsoft Excel, perform the following steps:

1. Start Microsoft Excel.

2. You should see a menu option for OracleBI, as shown in Figure 8–6.

Figure 8–6 OracleBI Spreadsheet Add-In Menu Option

3. Select OracleBI, then New Query to create a new OLAP query in your worksheet.

4. Click the Connection Editor tab.

5. Click New.

6. Enter an appropriate Description (see Figure 8–7), and then enter the Host Name, 
Port Number, and SID for the OLAP data source where you installed the samples 
as described in Section 8.2, "Prerequisites".

Note: If you do not see this option, make sure that you have 
downloaded and installed the OracleBI Spreadsheet Add-In as 
described in Section 8.2, "Prerequisites".



Step-by-Step Procedures

8-10 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 8–7 Connecting to the Database

7. Click Save.

8. Click the OLAP Connection tab.

9. Enter your User name and Password.

10. Click Connect.

The Oracle OLAP Query Wizard appears. This is the same as the Query Wizard in 
OracleBI Discoverer, so if you are already familiar with that, you do not need to 
learn how to use a new tool.

11. Click Next to continue from the Welcome page.

12. The Available list contains all the OLAP measures and dimensions that can be 
displayed in your worksheet.

Expand the Electronics - KPIs folder, select Sales Revenue, and click the 
right-angle bracket (>).

13. In this report, Promotions will not be part of the analysis, so select Promotion and 
click the left-angle bracket (<) to remove it from the list (see Figure 8–8).

Figure 8–8 Items for the Query

14. Click Next.



Step-by-Step Procedures

Delivering Business Intelligence Information to Microsoft Excel 8-11

15. In the Layout step of the wizard, you can change the layout of the data by 
dragging and dropping the appropriate dimension or measure tiles.

Move Channel to the Page Items region.

16. Move Product and Geography so that Product is displayed on the Row edge and 
Geography is displayed first in the Page Items region.

The layout should look like Figure 8–9.

Figure 8–9 Layout of OLAP Query

17. Click Next.

18. Select the members for the Channel dimension.

Click Channel total, then click the right-angle bracket (>).

19. Click Next.

20. Select the members for the Geography dimension.

a. Expand the World total node.

b. Expand the Americas node.

c. Expand the Northern America and Southern America nodes.

d. Select the following: Americas; Northern America; Canada; United States of 
America; Southern America; Argentina; and Brazil, then click the right-angle 
bracket (>) (see Figure 8–10).

Figure 8–10 Members for the Geography Dimension



Step-by-Step Procedures

8-12 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

21. Click Next.

22. Select the members for the Products dimension.

a. Click the Conditions tab.

b. Expand the Top/Bottom folder.

c. Select Top 10 based on Sales Revenue, and click the right-angle bracket (>).

d. In the Selected list, select the Top 10 condition.

e. Click the 10 hyperlink, then change the value to 5.

The condition now reads Start with Product: Top 5 based on Sales Revenue 
(see Figure 8–11).

Figure 8–11 Members for the Products Dimension

23. Click Next.

24. For the Times dimension, select 2000 and 2001, then click the right-angle bracket 
(>).

25. Click Finish to execute the query. The results should look something like 
Figure 8–12.



Step-by-Step Procedures

Delivering Business Intelligence Information to Microsoft Excel 8-13

Figure 8–12 OLAP Query Results in Microsoft Excel

The OLAP query returns the data for the top 5 products based on the sales 
revenue for the Americas, Channel total, and the year 2000.

Whenever the underlying data changes, you can refresh your worksheet so that it 
reflects those changes simply by selecting the data and choosing Refresh Query 
from the OracleBI menu.

26. Save your worksheet.

The data in the worksheet is preserved. This means that when you close the 
worksheet or disconnect from the database, you simply have to reconnect to the 
OLAP data source to retrieve the most recent data.

27. The results of the query use default formatting. You can use Microsoft Excel's 
formatting features to change the formatting as required.

a. In the worksheet, select the cells containing the revenue values.

b. Click the Currency Style tool.

Currency formatting is applied to the data.

c. Remove the decimal places by clicking the Decrease Decimal tool twice.

The OLAP data should now look something like Figure 8–13.

Figure 8–13 OLAP Data with Microsoft Excel Formatting

28. Save your worksheet.



Step-by-Step Procedures

8-14 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

29. You can add Microsoft Excel calculations, working with the OLAP data just as you 
would any other data in a Microsoft Excel worksheet.

a. To add a subtotal formula for the Revenue values, first select the cell below the 
last Revenue value, then click the Auto Sum tool.

The subtotal formula is created.

b. Press Enter to accept the formula. The results should look something like 
Figure 8–14.

Figure 8–14 Microsoft Excel Subtotal of OLAP Data

30. Save your worksheet.

31. You can also use the Microsoft Excel Chart Wizard to create charts based on the 
OLAP data, just as you do with regular Microsoft Excel data. 

a. Select the product and revenue values, then click the Chart Wizard tool.

b. From the Chart Type list, select Column.

c. Click Finish.

d. Drag the chart underneath the data and resize it appropriately so that it looks 
like Figure 8–15.



Related Documentation

Delivering Business Intelligence Information to Microsoft Excel 8-15

Figure 8–15 Microsoft Excel Chart Based on OLAP Data

32. Save your worksheet.

8.4 Related Documentation
■ Oracle Business Intelligence Discoverer Plus User’s Guide

■ Oracle Business Intelligence Discoverer Viewer User’s Guide 



Related Documentation

8-16 Oracle Application Server Developer's Guide for Microsoft Office Interoperability



Managing Tasks and Collaborating in Microsoft Outlook 9-1

9
Managing Tasks and Collaborating in

Microsoft Outlook

This chapter demonstrates how you can set up and use Oracle Connector for Outlook 
to access a broad array of collaborative functions through the familiar Microsoft 
Outlook interface. It also provides information on using Oracle Real-Time 
Collaboration tools that let you communicate and collaborate in real time with 
coworkers and business contacts.

This chapter contains the following sections: 

■ Overview

■ Prerequisites

■ Step-by-Step Procedures

■ Related Documentation

9.1 Overview
Until recently, business managers implementing systems for departmental 
communication and collaboration have been forced to choose between using 
fragmented applications from separate vendors, or collaborative products that did not 
meet all of their scalability, reliability, manageability, and security concerns. Oracle 
meets these concerns with Oracle Collaboration Suite 10g, a secure and reliable content 
management and collaboration solution built on Oracle Database 10g and Oracle 
Application Server 10g infrastructure.

With effortless integration with Microsoft Office and Microsoft Active Directory, 
Oracle Collaboration Suite processes unstructured content, documents, e-mail, 
scheduling, workspaces, discussion boards, and real-time collaboration as enterprise 
business processes, for which Microsoft Office can be configured to be the interface.

This section covers the following Oracle Collaboration Suite components:

■ Oracle Collaboration Suite 10g Calendar

■ Oracle Connector for Outlook

■ Oracle Collaboration Suite 10g Real-Time Collaboration

■ Oracle Drive



Overview

9-2 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

9.1.1 Oracle Collaboration Suite 10g Calendar
Oracle Calendar is the time management component of Oracle Collaboration Suite, 
combining group and resource scheduling functions with a variety of access methods 
to give you up-to-date task management information.

Microsoft Outlook is one of the most heavily used desktop applications in the world 
and can be deployed and managed in ways that will suit a wide range of enterprise 
needs. By using Oracle Connector for Outlook, you can integrate Oracle Calendar with 
Microsoft Outlook, and as a result, you can manage all your Oracle Calendar-related 
tasks from the Microsoft Outlook client.

The subsequent topics describe the features of Oracle Calendar that can be supported 
from Microsoft Outlook, as well as a few related concepts.

Meetings, Tasks, Daily Notes, and Contacts
The building blocks of your agenda are meetings, which are blocks of reserved time in 
your schedule for any type of activity with a start and an end time. You can use 
meetings to block off time in your agenda for any amount of time, or even an entire 
day.

Oracle Calendar enables you to create tasks to keep track of ongoing projects and work 
that must be completed within a specific time frame. You can set reminders, add 
details, and attach documents to those tasks. Daily notes and day events can be created 
to keep track of who is out of the office, statutory holidays, a coworker's birthday, and 
more. You can make sure that no event is forgotten, by setting reminders and 
notifications for your agenda entries. You can keep track of your business and personal 
contacts using the Oracle Calendar desktop client or Oracle Connector for Outlook 
address book. Add notes to your contacts if you want to be reminded of deadlines or 
other important events.

Real-Time Conflict Checking and Resolution Capabilities
Oracle Calendar offers real-time conflict checking and resolution capabilities to help 
ease the process of scheduling meetings and decrease the likelihood of absent invitees. 
When scheduling a meeting using the Oracle Calendar Web client or desktop client, 
click the Check Conflicts button to view scheduling conflicts with users or resources. 
If a conflict is found, then you can use the Suggest Date and Time feature to have 
Oracle Calendar suggest a series of available times for all invitees. The AutoPick 
feature in Oracle Connector for Outlook offers similar functions. Before you schedule a 
meeting, use the Group View feature to quickly check what date and time best suits 
the schedules of the invitees, including meeting resources, such as conference rooms, 
video equipment and so on. The Group View feature displays the agendas of the 
included users and resources, with unavailable time marked in red and mutually free 
time clearly indicated.

Resource Coordination
Administrators can designate a shared property, such as a conference room or 
projector, as a resource, available for all connected users to reserve. You can perform a 
search for a resource based on a set of parameters (location, size, resource type), and 
invite the resource as you would any other user, thereby booking the resource and 
making it unavailable for other users to book during that time. Resources can be set up 
to be reserved on a first-come, first-served basis. Oracle Calendar also supports the 
booking of resources that require approval from an administrator. If you book a 
resource that requires approval, then an e-mail is sent to the resource's administrator, 
who then approves or rejects your request.



Overview

Managing Tasks and Collaborating in Microsoft Outlook 9-3

Access Rights
You can control how much of your calendar can be accessed by other users, through 
the use of access rights. For example, you can grant one user access rights to view all 
your agenda entries marked as Normal, while you grant another user access rights to 
view all your agenda entries marked as Normal and Personal. Granting rights to other 
users allows them to create, modify, and reply to calendar events on your behalf. 
When granting rights, you can choose which type of calendar entries a particular 
person has permission to create and modify. For example, you can grant one person 
the right to modify your meetings, notes, day events, and tasks, while you grant 
another person the right to modify only your tasks.

Standalone Deployment Capabilities
When the Oracle Calendar server is installed, by default it is integrated with the 
Oracle Internet Directory server and other components of Oracle Collaboration Suite. 
However, the Oracle Calendar server can also be deployed as a standalone application.

In such installations, the Oracle Calendar server can be configured to use either an 
external or an internal directory. With an external directory, all user information is 
stored in a third-party LDAP directory server. With an internal directory, all user 
information is stored in the Oracle Calendar server database.

For more information on deploying the Oracle Calendar as a standalone product, see 
chapter 5, "Deploying Oracle Calendar" in Oracle Collaboration Suite Deployment Guide.

Alerts, Notifications, and Web Conferencing Integration
As part of a suite of collaborative applications, Oracle Calendar enables users to 
schedule and join Web conferences directly from their calendars as well as send 
notifications. You can also set alert reminders for an alternate e-mail address, or even a 
wireless account.

Data Synchronization with Oracle Calendar Sync
Oracle Calendar Sync synchronizes your Oracle Calendar data with your Personal 
Digital Assistant (PDA) using Palm Desktop for Windows or Macintosh (Palm 
devices), or Microsoft ActiveSync (Pocket PC devices). This enables you to download 
meetings, contacts, daily notes, day events, holidays, and tasks to your PDA. You can 
make updates and then synchronize them back to Oracle Calendar through your 
device's synchronization process.

9.1.2 Oracle Connector for Outlook
Oracle Connector for Outlook presents the enterprise collaboration market with a 
unique proposition, by enabling enterprises to offer their users access to a broad array 
of collaborative functionality, including e-mail, voice mail, calendar, directory, Web 
conferencing, and wireless services, through the convenience of the familiar Microsoft 
Outlook interface.

9.1.3 Oracle Collaboration Suite 10g Real-Time Collaboration
Oracle Collaboration Suite 10g Real-Time Collaboration (Oracle Real-Time 
Collaboration) tools let you communicate and collaborate in real time with coworkers 
and business contacts. This section covers the following Oracle Real-Time 
Collaboration products:

■ Oracle Web Conferencing: Lets customers, employees, teams, and partners meet 
online and collaborate in real time, from one-to-one instant conferences to large, 



Prerequisites

9-4 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

scheduled Web seminars. Oracle Web Conferencing is reliable, secure, flexible, and 
scalable, and can be customized to support various lines of business within your 
company.

■ Oracle Messenger: A full-featured Instant Messaging system that lets you 
exchange chat messages with another user and participate in chat conferences 
with multiple users. 

■ Oracle Real-Time Collaboration Add-in for Microsoft Office: Provides a 
convenient way to schedule Web conferences, start instant conferences, share 
Microsoft Office documents in a Web conference, and chat with other Oracle 
Messenger users from within Microsoft Office applications. 

9.1.4 Oracle Drive
Oracle Drive is the desktop client for Oracle Content Services. Oracle Drive enables 
you to access content (files) and file properties through a mapped drive in Windows 
Explorer, from any Windows applications, and Microsoft Office applications. Content 
is also accessible through a Web browser. The Oracle Drive client uses the WebDAV 
protocol to access Oracle Content Services.

9.2 Prerequisites
To manage Oracle Calendar tasks in Microsoft Outlook, you need the following 
prerequisite software:

■ Oracle Collaboration Suite or Oracle Calendar Standalone Installation

Refer to Oracle Collaboration Suite Installation Guide for Microsoft Windows for details.

■ Oracle Connector for Outlook

Refer to Section F.2, "Installing Oracle Connector for Outlook" in Oracle 
Collaboration Suite Installation Guide for Microsoft Windows for details.

After Oracle Connector for Outlook is installed, you will be able to see the 
corporate address book, corporate shared and public folders, and the corporate 
calendar in the left navigation pane of your Microsoft Outlook window.

■ Oracle Real-Time Collaboration

Refer to Oracle Collaboration Suite Installation Guide for Microsoft Windows for details.

■ Oracle Real-Time Collaboration Add-in for Microsoft Office

Refer to Oracle Collaboration Suite Installation Guide for Microsoft Windows for details.

■ Microsoft Outlook (version 2000 or later)

9.3 Step-by-Step Procedures
In this section, you will learn how to manage Oracle Calendar information and tasks, 
and Oracle Real-Time Collaboration tools, from within Microsoft Outlook. It contains 
the following subsections:

See Also: Section 12.3.3, "Using Oracle Drive as a WebDAV Client"

Caution: Installing Oracle Connector for Outlook removes all 
customizations you may have made earlier in Microsoft Outlook.



Step-by-Step Procedures

Managing Tasks and Collaborating in Microsoft Outlook 9-5

■ Creating Tasks

■ Scheduling Meetings

■ Viewing Contact Information

■ Chatting with Other Users

■ Starting an Instant Conference

■ Viewing Conference Archives

9.3.1 Creating Tasks
An employee at Star Loan Company, John Steinbeck, is responsible for handling loan 
requests and approving loans. He has multiple tasks to perform in a typical workday. 
To help keep track of important tasks, he uses Microsoft Outlook with Oracle Calendar 
and creates tasks that also serve as reminders. To create tasks, perform the following 
steps:

1. In Microsoft Outlook, click Tasks in the left navigation pane. This displays the 
tasks created earlier, as shown in Figure 9–1.

Figure 9–1 Viewing Oracle Calendar Tasks Using Microsoft Outlook

2. Click New from the Microsoft Outlook toolbar, or right-click anywhere in the tasks 
list pane, and select New Task. This displays the Task window, as shown in 
Figure 9–2. 



Step-by-Step Procedures

9-6 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 9–2 New Outlook Task 

3. After entering the required details, click Save and Close.

A new task is created in Oracle Calendar and appears in your Tasks list, as shown 
in Figure 9–3. You can keep track of the progress of this task and updated it if 
necessary. You can mark a task as completed when done.

Figure 9–3 New Calendar Task Entry Viewed in Microsoft Outlook

9.3.2 Scheduling Meetings
Let us assume a sample scenario where a manager at the Star Loan Company, David 
Cook, wants to communicate a new cutting edge loan program to the loan approvers 
that report to him, James Cooper and John Steinbeck. He wants to schedule a meeting 
on Wednesday with James and John in a conference room on the third floor. He uses 
the Oracle Calendar feature in Microsoft Outlook to organize this meeting.

There are multiple ways to schedule meetings. You can do this from Oracle Calendar, 
from the Microsoft Outlook File menu, or by clicking Resources in your Microsoft 
Outlook toolbar. The third option is outlined in the following steps:

1. In Microsoft Outlook, click Resources from the toolbar. This displays the Search 
criteria dialog box, as shown in Figure 9–4.



Step-by-Step Procedures

Managing Tasks and Collaborating in Microsoft Outlook 9-7

Figure 9–4 Search Resources

2. Specify location details and resource type, and click OK. This displays the 
Resource Scheduling dialog box, as shown in Figure 9–5.

Figure 9–5 Resource Scheduling in Microsoft Outlook Using Oracle Calendar

(Optional) You can click Find Resources to change location and find the relevant 
resources for that location.

3. From the Search Results pane, right-click the resource you want to reserve for your 
meeting, and choose Select resource.

4. Select the start and end times for your meeting, and click Make Meeting. This 
displays a window, which you can use to create the meeting, and add attendees.

5. Click To. This displays the Select Attendees and Resources dialog box, as shown in 
Figure 9–6. Select the meeting attendees and resources. You can add users either 
from your local Contacts list or from the corporate address book.



Step-by-Step Procedures

9-8 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 9–6 Selecting Meeting Attendees

6. Click OK. This displays the Calendar Appointment dialog box, as shown in 
Figure 9–7.

Figure 9–7 Creating a Meeting in Microsoft Outlook Using Oracle Calendar

7. You can view the availability of attendees at the scheduled meeting time, by 
clicking the Attendee Availability tab, as shown in Figure 9–8.



Step-by-Step Procedures

Managing Tasks and Collaborating in Microsoft Outlook 9-9

Figure 9–8 Viewing Attendee Availability in Microsoft Outlook Using Oracle Calendar

8. After you have verified that all attendees are available at the scheduled time, click 
the Appointment tab, and then click Send.

An e-mail message is sent to all attendees informing them about the meeting. 
Oracle Calendar also updates the schedules of the attendees to show the meeting 
time as busy.

9.3.3 Viewing Contact Information
You can view up-to-date contact information stored either in Oracle Internet Directory 
or Microsoft Exchange, using Microsoft Outlook. 

Assume that the address of James Cooper has changed. This change, when made in 
the HR application, is synchronized with Oracle Internet Directory, which in turn, 
synchronizes with, for instance, Microsoft Exchange. To look up this updated 
information, perform the following steps:

1. In Microsoft Outlook, press Ctrl+Shift+B, or from the menu bar, click Tools, and 
then Address Book. This displays the Address Book dialog box, as shown in 
Figure 9–9.

Note: If you are using Microsoft Exchange with Microsoft Active 
Directory, then you must synchronize Oracle Internet Directory and 
Microsoft Active Directory. For details, refer to Chapter 10, 
"Provisioning User Identity Information and Alerting Microsoft 
Outlook Contacts".



Step-by-Step Procedures

9-10 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 9–9 Address Book

2. From Show Names from the list, as shown in Figure 9–9, select your corporate 
address book.

3. In the Type Name or Select from List field, type the name of the contact for which 
you are searching. The list of names is automatically filtered as you type.

4. To view the properties of a contact, select the contact entry in the list. Click File, 
and then Properties. Alternatively, you can also right-click the contact and select 
Properties. The Contact Properties dialog box is displayed, as shown in 
Figure 9–10.

Figure 9–10 Contact Properties

5. Click OK to exit the dialog box.



Step-by-Step Procedures

Managing Tasks and Collaborating in Microsoft Outlook 9-11

9.3.4 Chatting with Other Users
Oracle Real-Time Collaboration Add-in for Microsoft Office lets you chat with other 
Oracle Messenger users from within Microsoft Office applications, such as Microsoft 
Excel, Microsoft Outlook, Microsoft PowerPoint, or Microsoft Word. 

Once you are logged in to Oracle Real-Time Collaboration, you can download and 
install the Oracle Real-Time Collaboration Add-in for Microsoft Office. Installing the 
Oracle Real-Time Collaboration Add-in for Microsoft Office adds the Oracle Real-Time 
Collaboration toolbar to all Microsoft Office applications, as shown in Figure 9–11.

Figure 9–11 Oracle Real-Time Collaboration Toolbar in Microsoft Outlook

To chat with other Oracle Messenger users from within Microsoft Outlook, perform 
the following steps:

1. From the Oracle Real-Time Collaboration toolbar in Microsoft Outlook, click the 
arrow next to Start Chat. This displays a list of other Oracle Messenger users who 
are online.

2. Select any user. This displays an instant message window, as shown in 
Figure 9–12.

Notes:

■ You must install and be signed in to Oracle Messenger if you want 
to chat with other Oracle Messenger users from Microsoft Office 
applications.

■ If you have already installed Oracle Connector for Outlook, and 
then you install the Oracle Real-Time Collaboration Add-in for 
Microsoft Office, then you won't be able to use this Add-in to 
schedule Web conferences. You can continue to schedule Web 
conferences using Oracle Connector for Outlook.



Step-by-Step Procedures

9-12 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 9–12 Oracle Messenger Instant Messaging Window

3. Close the window when finished, and return to Microsoft Outlook.

9.3.5 Starting an Instant Conference
With Oracle Real-Time Collaboration Add-in for Microsoft Office, you can schedule 
Web conferences and start instant conferences from within Microsoft Office 
applications such as Microsoft Excel, Microsoft Outlook, Microsoft PowerPoint, or 
Microsoft Word.

James Cooper is processing Irving Stone's loan application. While verifying the 
application, he comes across an invalid entry in the form. He is not sure how to 
proceed. He wants to consult John Steinbeck, his colleague, and also show him some 
more documents on his computer. With the Oracle Real-Time Collaboration Add-in for 
Microsoft Office, he can start an instant conference and share documents that John can 
view.

To start an instant conference from within Microsoft Outlook, perform the following 
steps:

1. From the Oracle Real-Time Collaboration toolbar in Microsoft Outlook, click 
Instant Conference. This displays the Oracle RTC Instant Conference dialog box, 
as shown in Figure 9–13.

Figure 9–13 Instant Conference Details

2. Change the conference details from the default values if you desire, and then click 
Start Conference.

3. A new browser window opens displaying the Oracle Web Conferencing Console 
initialization details. If a permission dialog box appears, click Yes to install Oracle 
Web Conferencing.



Step-by-Step Procedures

Managing Tasks and Collaborating in Microsoft Outlook 9-13

4. After the console is initialized, a dialog box with the Web Conference details is 
displayed, as shown in Figure 9–14.

Figure 9–14 Oracle Web Conference Details

5. You must then provide the details of the conference to anyone who wants to join 
your conference, for example, John Steinbeck. Refer to the steps in Section 9.3.4, 
"Chatting with Other Users" for details on how you can use Oracle Messenger to 
send these details to other users.

6. Click Apply to exit the dialog box. This displays the Oracle Web Conferencing 
console at the top of your window.

7. By default, nothing is shared to others. From the Share list, select the applications 
to share, or even your entire desktop.

8. When other users join your conference, you see a notification at the bottom of your 
window. 

9. When finished, close the console, and return to your Microsoft Office application.

9.3.6 Viewing Conference Archives
With Oracle Real-Time Collaboration Add-in for Microsoft Office, you can easily view 
details about the conferences you have hosted in the past. Not only can you view 
details about your own past conferences, but also other public conferences.

To go to the archives, and view details about your past conferences, perform the 
following steps:

1. From the Oracle Real-Time Collaboration toolbar in Microsoft Outlook, click 
Oracle RTC, and then select My Archives. A new browser window opens with 
details of your past Web conferences, as shown in Figure 9–15.



Related Documentation

9-14 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 9–15 Archived Conferences

2. If you are looking for a specific conference, you can use the Filter by list. Select an 
item from the Filter by list, type the relevant text in the text field, and then click 
Go.

3. To view previously hosted public conferences, click Archived Public Conferences.

9.4 Related Documentation
Refer to the following documents at the Oracle Collaboration Suite 10g Release 1 
(10.1.2) home page at http://www.oracle.com/pls/cs101/homepage:

■ Oracle Collaboration Suite Concepts Guide

■ Oracle Real-Time Collaboration Administrator's Guide

■ Oracle Calendar Administrator's Guide



Provisioning User Identity Information and Alerting Microsoft Outlook Contacts 10-1

10
Provisioning User Identity Information and

Alerting Microsoft Outlook Contacts

This chapter describes how you can do the following:

■ Get up-to-date information about employees whose identity information is 
integrated in Microsoft Outlook contacts.

■ Create and receive organization alerts that are sent when any user identity 
information is changed.

It contains the following sections:

■ Overview

■ Prerequisites

■ Step-by-Step Procedures

■ Related Documentation

10.1 Overview
Whether user information is stored in Microsoft Active Directory, or in Oracle Internet 
Directory, it is expected that information in Microsoft Outlook Contacts is always 
up-to-date. When changes are made in an enterprise application, such as Sales Force 
Automation, or a Human Resources Management Systems, updates to the directory 
should be reflected immediately in Microsoft Outlook Contacts. In addition, alerts 
about organizational changes may need to be sent as soon as they happen.

Oracle Identity Management enables you to reduce administrative time and costs by 
integrating your applications and directories, including third-party LDAP directories, 
with Oracle Internet Directory. It does this by using Oracle Directory Integration 
Platform.

Throughout the integration process, Oracle Directory Integration Platform ensures that 
the applications and other directories receive and provide the necessary information in 
a reliable way. Oracle provides centralized security administration by integrating 
components with Oracle Identity Management. Similarly, Microsoft provides 
centralized security administration in Microsoft Windows by integrating Microsoft 
applications with Microsoft Active Directory. If your environment uses both Oracle 
Identity Management and Microsoft Active Directory, then, to enable interoperability 
between the two systems, you must synchronize their data. You can do this by using 
Oracle's Active Directory Connector.

This chapter describes what must be done to ensure contact data in Microsoft Outlook 
Contacts is always up-to-date in an environment where both Microsoft Exchange and 



Overview

10-2 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Microsoft Active Directory are used together with Oracle Internet Directory. Microsoft 
Active Directory and Oracle Internet Directory must be synchronized (integrated) in 
order to ensure that both have the same up-to-date contact data. This chapter describes 
how to achieve accurate and timely directory synchronization.

In addition, this chapter also covers the steps that must be performed if an Oracle 
solution is used to send alerts about organizational changes. These steps include 
configuring Oracle Directory Integration Platform and Oracle BPEL Process Manager 
to generate organization alerts whenever user identity information changes in Oracle 
Internet Directory.

When user identity information changes in an enterprise application, Oracle Internet 
Directory is updated with this information. Using Active Directory Connector to 
synchronize Microsoft Active Directory and Oracle Internet Directory ensures that 
Microsoft Outlook Contacts data is always up-to-date.

The following topics describe the components used in enabling interoperability 
between Oracle Identity Management and Microsoft Active Directory, and a few 
related concepts.

Oracle Internet Directory
Oracle Internet Directory is a critical component of Oracle Application Server 
management and security infrastructure. It ensures that user accounts and groups are 
managed centrally through the LDAP Version 3 standard. Oracle Application Server 
enables user accounts and groups to be created centrally in Oracle Internet Directory 
and shared across all components in Oracle Application Server. When users log in, 
they are authenticated once by Oracle Application Server Single Sign-On against their 
Oracle Internet Directory credentials, and can thereby access multiple applications 
seamlessly. 

Oracle Directory Integration Platform
Oracle Directory Integration Platform enables users to synchronize data between 
various directories and Oracle Internet Directory. Oracle Directory Integration 
Platform is a set of services and interfaces that makes it possible to develop 
synchronization solutions with third-party directories and other enterprise 
repositories. Oracle Directory Integration Platform includes a connector, called Active 
Directory Connector, for out-of-the-box synchronization with Microsoft Active 
Directory.

Oracle Application Server Single Sign-On
OracleAS Single Sign-On enables users to access Oracle Web-based components by 
logging in only once. Oracle components delegate the login function to the OracleAS 
Single Sign-On server. When a user first logs in to an Oracle component, the 
component directs the login to the OracleAS Single Sign-On server. The OracleAS 
Single Sign-On server compares the credentials entered by the user to those stored in 
Oracle Internet Directory. After verifying the credentials, the OracleAS Single Sign-On 

Note: If you are using Oracle Collaboration Suite applications with 
Microsoft Outlook, then you must use Oracle Connector for Outlook, 
to enable interoperability of management tasks in Oracle 
Collaboration Suite applications with Microsoft Outlook. Refer to 
Chapter 9, "Managing Tasks and Collaborating in Microsoft Outlook" 
for more information.



Overview

Provisioning User Identity Information and Alerting Microsoft Outlook Contacts 10-3

server grants the user access to all components the user is authorized to use 
throughout the current session. 

OracleAS Single Sign-On enables native authentication in a Microsoft Windows 
environment, using the user's Kerberos credentials.

Directory Synchronization
Synchronization, which is a service of Oracle Directory Integration Platform, enables 
you to make changes persist between Oracle Internet Directory and connected 
directories, like Microsoft Active Directory. For all directories to both use and provide 
only the latest data, each directory must be informed of change made in the other 
connected directories. Synchronization ensures that any change to directory 
information is kept consistent.

Connectors for Directory Synchronization 
To synchronize between Oracle Internet Directory and a connected directory, Oracle 
Directory Integration Platform relies on a prepackaged connectivity solution called a 
connector. Minimally, this connector consists of a directory integration profile 
containing all the configuration information required for synchronization, including 
the following: 

■ Direction of synchronization 

■ Type of interface

■ Mapping rules and formats

■ Connection details of the connected directory

■ Other information

Active Directory Connector
Oracle Directory Integration Platform includes connectors to synchronize Oracle 
Internet Directory with other LDAP directories or identity stores. One of its 
connectors, Active Directory Connector, is designed to synchronize Oracle Internet 
Directory with Microsoft Active Directory. 

Active Directory Connector enables any the following:

■ Establishing one-way or two-way synchronization with Microsoft Active 
Directory. 

■ Synchronizing a specific subset of attributes. Configure appropriate mapping rules 
in the connector profile to do this.

■ Synchronizing with multiple Microsoft Active Directory domains. Synchronize 
changes with an individual domain or an entire Microsoft Active Directory 
environment by using Microsoft Global Catalog Server.

Using Active Directory Connector for Microsoft Exchange Provisioning
Active Directory Connector, available as part of Oracle Identity Management release 
10.1.2, can be used for provisioning users to Microsoft Exchange. This is applicable in 
deployments having Microsoft Active Directory Server 2000 or later as their identity 
store. Provisioning users to Microsoft Exchange Server involves creating a user 
account in the corresponding Microsoft Active Directory with Microsoft 
Exchange-specific user attributes. These attributes contain details about the Microsoft 

See Also: Oracle Identity Management Integration Guide for details 
about configuring Windows native authentication.



Prerequisites

10-4 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Exchange server, mail transfer agent, proxy address, and so on. To configure 
provisioning to Microsoft Exchange, the default mapping rules for Active Directory 
Connector are enhanced to include Microsoft Exchange-specific mapping rules.

10.2 Prerequisites
In the scenario described in this chapter, it is assumed that you have deployed 
Microsoft Exchange 2000 or later with Microsoft Active Directory as its back-end 
repository, and Microsoft Office, specifically Microsoft Outlook as the e-mail client. 
The scenario expects the following Oracle software components to be installed:

■ Oracle Application Server Infrastructure 10g Release 2 (10.1.2.0.2)

■ An Oracle Directory Integration Platform patch

This patch is required to perform Microsoft Exchange specific mappings in express 
configuration. Perform the following steps to install the patch:

1. Download an Automated Release Update (ARU) for bug 5066404.

You can download ARUs from OracleMetalink at 
http://metalink.oracle.com.

2. Follow the instructions provided in the Readme for the patch.

■ (Optional) Oracle BPEL Process Manager 10g Release 2 (10.1.2.0.2) 

To configure organization alerts using Oracle BPEL Process Manager, as shown in 
Section 10.3.2, "Procedure 2: Configuring BPEL-Based Organization Alerts", the 
following software must be installed:

– To configure the BPEL process, you must use the Oracle JDeveloper BPEL 
Designer that is part of the standalone version of Oracle BPEL Process 
Manager. You can install this by selecting the BPEL Process Manager for 
Developers option during installation.

– To deploy the sample BPEL process described in Section 10.3.2, "Procedure 2: 
Configuring BPEL-Based Organization Alerts", you must install BPEL Process 
Manager for Oracle Application Server middle tier. This requires a J2EE and 
Web Cache installation type of Oracle Application Server 10g Release 2 
(10.1.2.0.2) in the same Oracle home directory. Additionally, you must have 
Oracle Application Server Metadata Repository installed.

■ The support files and folders in the identitymanagement demonstration folder. 
Refer to Accessing the Demonstration Support Files in the Preface for details about 
the demonstration support files. These files and folders are listed and described in 
Table 10–1.

See Also: Oracle Application Server BPEL Process Manager Installation 
Guide on the Oracle BPEL Process Manager page on OTN at

 http://www.oracle.com/technology/bpel

Table 10–1 Identity Management Files and Folders

File or Folder Description

identitymanagement/
IdentityNotificatio
n

Folder that contains the BPEL process called 
IdentityNotification.

Copy the IdentityNotification folder, located in the 
identitymanagement folder, to the BPEL_ORACLE_
HOME/integration/orabpel/samples/demos directory.



Step-by-Step Procedures

Provisioning User Identity Information and Alerting Microsoft Outlook Contacts 10-5

10.3 Step-by-Step Procedures
This section will provide the following procedures, based on example data:

■ Procedure 1: Synchronizing Enterprise Identity Information

Configure an enterprise environment where the user identity information is 
always consistent and up-to-date between Oracle Internet Directory and Microsoft 
Exchange.

■ Procedure 2: Configuring BPEL-Based Organization Alerts

Use Oracle Directory Integration Platform and Oracle BPEL Process Manager to 
create and receive organization alerts that are sent when user identity information 
changes.

10.3.1 Procedure 1: Synchronizing Enterprise Identity Information
User identity information can be stored in many places, but some common directories 
are Oracle Internet Directory and Microsoft Active Directory. Microsoft Exchange 
version 2000 or later uses Microsoft Active Directory as its identity store. This 
procedure shows you how to synchronize Oracle Internet Directory with Microsoft 
Active Directory.

A very common enterprise scenario is illustrated in Figure 10–1. Enterprise 
applications, for example, the Human Resources Management System, update user 
identity information in Oracle Internet Directory. Oracle Directory Integration 
Platform synchronizes user identity information between Oracle Internet Directory 
and Microsoft Active Directory by using Active Directory Connector. Microsoft Active 
Directory is used by Microsoft Exchange as the identity store. Users in the enterprise 
use Microsoft Outlook to read their e-mail and to get up-to-date contact information. 
Besides setting up the Microsoft Active Directory synchronization, you must perform 
some additional configuration to provision Microsoft Exchange-specific attributes.

identitymanagement/
sql

Folder that contains the SQL script to create the schema, and 
corresponding packages to propagate organization alerts.

identitymanagement/
sql/notificationset
up.sql

SQL script file used to create a schema for organization alerts.

Note: Download the contents of the identitymanagement folder 
into a new folder named identitymanagement under the BPEL_
ORACLE_HOME\integration\orabpel\samples\demos folder, 
for example, C:\OraBPELPM_
1\integration\orabpel\samples\demos\identitymanageme
nt\.

Table 10–1 (Cont.) Identity Management Files and Folders

File or Folder Description



Step-by-Step Procedures

10-6 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 10–1 Oracle Internet Directory Interoperability with Microsoft Active Directory 
and Microsoft Exchange

The subsequent example describes how Microsoft Exchange and Microsoft Active 
Directory may need to be synchronized with Oracle Internet Directory.

The context of this example is the Union Loan Company, which has hundreds of 
employees. Union Loan Company uses Oracle Application Server for its enterprise 
applications, Oracle Internet Directory for central identity management, and Microsoft 
Exchange server with Microsoft Active Directory for e-mail and contact information. 
Employees use Microsoft Outlook. 

Assume that Union Loan Company hires John Steinbeck as a new loan approver. 
John's personal information is entered into the Human Resources Management 
System, and provisioned to Oracle Internet Directory. Directory synchronization is set 
up between Oracle Internet Directory and Microsoft Active Directory. Additional 
configuration modifications ensure that all the Microsoft Exchange-specific attributes 
were modified appropriately. As a result, John's profile now shows up in Microsoft 
Outlook and John's manager and co-workers can now quickly look up his telephone 
number. Directory integration ensures that change in user identity information, such 
as a change of John's telephone number, will almost immediately be visible in 
everyone's Microsoft Outlook Contacts.

To provision users in Microsoft Exchange, that is, to push data from Oracle Internet 
Directory to Microsoft Active Directory, you must use Active Directory Connector to 
synchronize all the attributes of the data that is exchanged. Figure 10–1 illustrates how 
this interoperability works. To ensure that this data is ready to be used by Microsoft 
Exchange, however, you must make some changes to the mapping rules. To 
synchronize between Oracle Internet Directory and Microsoft Active Directory, a 
directory integration profile for synchronization must be created that contains all the 
configuration information required for synchronization to Microsoft Exchange. To do 
this, perform the steps in the following sections:

■ Configuring Microsoft Active Directory Synchronization Profiles for Microsoft 
Exchange

■ Enabling the Profiles for Synchronization

■ Verifying the Synchronization



Step-by-Step Procedures

Provisioning User Identity Information and Alerting Microsoft Outlook Contacts 10-7

10.3.1.1 Configuring Microsoft Active Directory Synchronization Profiles for 
Microsoft Exchange
The Oracle Directory Integration Platform server includes an express configuration 
option that you can run with Directory Integration and Provisioning Assistant. This 
type of configuration uses certain predefined values and creates two synchronization 
connector profiles, one for import and one for export, pointing to Microsoft Active 
Directory. 

Run express configuration by using the Directory Integration and Provisioning 
Assistant tool as follows:

1. Start the Oracle Directory Integration Platform Server Administration tool by 
entering the following command: 

INFRA_ORACLE_HOME/bin/dipassistant expressconfig –h <oid_host> 
 -p <oid_non-SSL_port> -configset <DIP_configuration_set> 
 -3rdpartyds adforexchange

where, DIP_configuration_set refers to the configuration set for Oracle 
Directory Integration Platform. The default value is 1. For example:

INFRA_ORACLE_HOME/bin/dipassistant expressconfig –h m1.abc.com \
-p 389 -configset 1 -3rdpartyds adforexchange

2. You are prompted for information about the setup. Enter appropriate values as 
described in Table 10–2. 

See Also: Oracle Identity Management Integration Guide for more 
information about express configuration.

Table 10–2 Parameters for Running the dipassistant Tool

Parameter Description

OID user name Oracle Internet Directory user name.

Specify the super user, that is, cn=orcladmin, or any user that 
is a member of the Directory Integration and Provisioning 
Administrators group (cn=dipadmingrp, cn=odi, 
cn=oracle internet directory). 

OID password Password for the Oracle Internet Directory user.

Active Directory Host Host name of the Microsoft Active Directory. 

Active Directory Port Microsoft Active Directory port number.

Account Name User name of a privileged Microsoft Active Directory user. 

Note: To synchronize deletions, you must have the necessary 
administrative privileges in Microsoft Active Directory, for 
example, administrator@MyCompany.com.

Account Password Microsoft Active Directory password.

Connector name Name for the connector. Depending on the name specified here, 
two profiles, an import and an export profile, are created with 
names as <connector name>Import and <connector 
name>Export respectively.

For example, if you specify the name test, then the tool creates 
two profiles: testImport and testExport. 



Step-by-Step Procedures

10-8 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Running express configuration creates two synchronization connector profiles 
pointing to Microsoft Active Directory. The <Connectorname>IMPORT profile 
maintains the configuration information for importing user identity information from 
Microsoft Active Directory to Oracle Internet Directory and the 
<Connectorname>EXPORT profile maintains configuration details for exporting 
changes from Oracle Internet Directory to Microsoft Active Directory. By default, both 
profiles are configured to synchronize the data between the connected directories in 
one minute intervals. At the end of the express configuration, the necessary mapping 
rules are configured to handle Microsoft Active Directory and Microsoft 
Exchange-specific attributes in case of export of users from Oracle Internet Directory to 
the Microsoft Active Directory.

10.3.1.2 Enabling the Profiles for Synchronization
You now must enable the export and import profiles by performing the following 
steps:

1. If user identity information changes are made only in Human Resources 
Management System, from which the identity details are synchronized to Oracle 
Internet Directory, then users are synchronized from Oracle Internet Directory to 
Microsoft Active Directory. In this case, enable the export synchronization profile 
by using the Oracle Directory Integration Platform Server Administration tool 
with the modifyprofile option. The following Oracle Directory Integration 
Platform assistant command enables an export profile: 

INFRA_ORACLE_HOME/bin/dipassistant modifyprofile -profile <profile_name>
 [-host <oid_host>] [-port <oid_port>] [-dn "<oid_bindDN>"] 
 [-passwd <oid_bindDN_password>] odip.profile.status=ENABLE 

The following is an example of a command used to enable an export profile named 
testExport:

INFRA_ORACLE_HOME/bin/dipassistant modifyprofile –profile testExport \
 -host m1.abc.com -port 389 \
 -dn "cn=orcladmin" -passwd welcome1 odip.profile.status=ENABLE

In addition, if user entries created from a Human Resources Management System 
can be modified from Microsoft Active Directory and Microsoft Exchange server, 
then you must synchronize the data from Microsoft Active Directory to Oracle 
Internet Directory. In this case, you must enable the import profile. The following 
Oracle Directory Integration Platform assistant command enables an import 
profile:

INFRA_ORACLE_HOME/bin/dipassistant modifyprofile -profile <profile_name>
 [-host <oid_host>] [-port <oid_port>] [-dn "<oid_bindDN>"]
 [-passwd <oid_bindDN_password>] odip.profile.status=ENABLE

The following is an example of a command used to enable an import profile 
named testImport:

INFRA_ORACLE_HOME/bin/dipassistant modifyprofile –profile testImport \

Options to configure ACLs ACL configuration options. Enter y to update the access control 
policies for the default realm user search base, to give Oracle 
components the required access.

Default value is n.

Table 10–2 (Cont.) Parameters for Running the dipassistant Tool

Parameter Description



Step-by-Step Procedures

Provisioning User Identity Information and Alerting Microsoft Outlook Contacts 10-9

 -host m1.abc.com -port 389 \
 -dn "cn=orcladmin" -passwd welcome1 odip.profile.status=ENABLE

2. Start the Oracle Directory Integration Platform server as follows if this is not 
already running with the configuration set that contains the Microsoft Exchange 
profiles:

oidctl connect=<oid_metadatarep_connect_string> server=odisrv
 instance=<instance_number> configset=<configuration_set_number>
 [flags="flagname=<value> ..."]  {start | stop | restart}

For example:

oidctl connect=dbs1 server=odisrv instance=1 configset=1 \
 flags="host=ldaphost.company.com port=389" start

10.3.1.3 Verifying the Synchronization
To verify that the synchronization between Oracle Internet Directory and Microsoft 
Active Directory is working properly, perform the following steps:

1. After you have enabled the profiles, you can verify the status of synchronization 
by running the following command (the default interval for change 
synchronization is 1 minute): 

INFRA_ORACLE_HOME/bin/ldapsearch -h <oid_host> -p <oid_port> 
-D "<DN of privileged oid user>" -w "<password of privileged oid user>"
-b "orclodipagentname=testExport,cn=subscriber profile,
cn=changelog subscriber,cn=oracle internet directory" 
-s base "objectclass=*" 
orclodipsynchronizationstatus orclodiplastsuccessfulexecutiontime

For example:

INFRA_ORACLE_HOME/bin/ldapsearch -h m1.abc.com -p 389 -D "cn=orcladmin" \
-w "welcome1" 
-b "orclodipagentname=testExport,cn=subscriber profile,\
cn=changelog subscriber,cn=oracle internet directory" \
-s base "objectclass=*" \
orclodipsynchronizationstatus orclodiplastsuccessfulexecutiontime

When synchronization is successfully started: 

■ The value of the orclodipsynchronizationstatus attribute is 
Synchronization Successful.

■ The value of the orclodiplastsuccessfulexecutiontime attribute is 
the specific date and time of that execution. Note that this must be close to the 
current date and time.

 The following is an example of a result indicating successful synchronization: 

orclodipsynchronizationstatus=Synchronization Successful
orclodiplastsuccessfulexecutiontime=20060302170214

2. After verifying that synchronization has started, check if the entries in Oracle 
Internet Directory are actually synchronized to Microsoft Active Directory by 
performing the following steps:

a. Click Start, Programs, Microsoft Exchange, and then Active Directory Users 
and Computers.



Step-by-Step Procedures

10-10 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

b. Look for entries under the Users container under the Active Directory 
domain.

10.3.2 Procedure 2: Configuring BPEL-Based Organization Alerts
Although it is convenient to always have up-to-date information available in Microsoft 
Outlook, there are some changes for which you may want to be notified by e-mail. For 
example, if a change is made in the Human Resources Management System to John 
Steinbeck's telephone number, John might want to be notified about this.

If you are using Oracle Internet Directory and Microsoft Active Directory in an 
enterprise environment such as the one described in Figure 10–1, you can optimize the 
power of Oracle Directory Integration Platform, combined with Oracle BPEL Process 
Manager, to create a robust alerting system that generates organization alerts based on 
changes that happen to user identity information in the directory.

User identity information in Oracle Internet Directory can change for the following 
reasons:

1. Changes occur in Human Resources Management System and are synchronized to 
Oracle Internet Directory.

2. Modifications are directly applied to Oracle Internet Directory from other 
directory administration components in the deployment such as Oracle Delegated 
Administration Services or Oracle COREid administration service.

3. Modifications are made in Microsoft Active Directory or Microsoft Exchange in 
deployments where Microsoft Active Directory is the enterprise directory.

Extending our first example, Enterprise applications, for example, the Human 
Resources Management System, update user identity information in Oracle Internet 
Directory. Oracle Directory Integration Platform synchronizes user identity 
information between Oracle Internet Directory and Microsoft Active Directory by 
using Active Directory Connector. A BPEL process can be deployed on the enterprise's 
Oracle Application Server middle tier to send organization alerts when specific user 
identity information attributes change in a certain domain.

Figure 10–2 shows how a BPEL process is integrated into the directory synchronization 
process.



Step-by-Step Procedures

Provisioning User Identity Information and Alerting Microsoft Outlook Contacts 10-11

Figure 10–2 Generating Organization Alerts Using Oracle BPEL Process Manager

This example is an extension of Section 10.3.1, "Procedure 1: Synchronizing Enterprise 
Identity Information". When John's telephone number changes, it is updated in 
Human Resources Management System and synchronized with Oracle Internet 
Directory. John would like to receive an e-mail notifying him of the recent change.

Oracle Directory Integration Platform and Oracle BPEL Process Manager enable 
enterprise applications to create these kinds of organization alerts based on changes in 
Oracle Internet Directory.

The high-level steps in this scenario are the following:

1. A change is made in Union Loan's Human Resources Management System. For 
example, John Steinbeck's telephone number is changed. 

2. This change in John's profile is recorded in Oracle Internet Directory. The 
telephonenumber attribute in Oracle Internet Directory is updated with John's 
new telephone number.

3. Oracle Directory Integration Platform detects the change and writes this change to 
a database table.

4. A BPEL process, which is configured to check for changes in the same database 
table, picks up this change and sends an organization alert to John.

In this example, Oracle Directory Integration Platform must be configured to check 
Oracle Internet Directory for user identity information changes. It must provision 
these changes into the EXCHGSYNC schema in OracleAS Metadata Repository. 
Specifically, the changes should be written to the ORG_ALERTS table.

A BPEL process must be configured to check for changes in the ORG_ALERTS table, 
and send an organization alert to the interested parties depending on the attributes 
that are changed.

Note: Alternatively, the EXCHGSYNC schema can be present in any 
Oracle Database. 



Step-by-Step Procedures

10-12 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

The following sections show how to create and send organization alerts that trigger 
when user information changes:

■ Configuring the BPEL Process

■ Configuring Oracle Directory Integration Platform Profile

■ Testing the Identity Alerting Configuration

10.3.2.1 Configuring the BPEL Process
A sample BPEL process, IdentityNotification, SQL scripts to create EXCHGSYNC 
schema with the ORG_ALERTS table, and corresponding packages for attribute change 
propagation to the table are available in the demonstration folder described in 
Section 10.2, "Prerequisites". The BPEL process checks for user identity information 
changes in the table, EXCHGSYNC.ORG_ALERTS, and sends organization alerts to the 
user if specific attributes like telephone number have changed.

To set up the schema, and to configure and test the BPEL process, 
IdentityNotification, you must perform the steps in the following sections:

■ Installing the EXCHGSYNC Schema

■ Configuring the Database Adapter in the BPEL Process

■ Configuring E-Mail Server Settings to Enable Organization Alerts

■ Compiling and Deploying the IdentityNotification BPEL Process

Installing the EXCHGSYNC Schema
To install the EXCHGSYNC schema, you must perform the following steps:

1. Locate the notificationsetup.sql script. This is available in the 
identitymanagement/sql folder in the examples ZIP file, described in 
Section 10.2, "Prerequisites".

2. Run the notificationsetup.sql script as follows:

sqlplus "sys/<sys pwd>@<DB connect string> as SYSDBA" @notificationsetup.sql

3. Set the password for the database user, EXCHGSYNC, by performing the following 
steps:

a. Connect to the database as the SYS user.

b. Run the alter command as follows:

alter user EXCHGSYNC identified by <password>

Configuring the Database Adapter in the BPEL Process
After installing Oracle BPEL Process Manager, you must edit the database adapter's 
oc4j-ra.xml file to enter connection details for the databases to which you will be 
connecting. You must create a new connection called eis/DB/IdNotifySample, 
which lets you run the samples against the EXCHGSYNC schema in OracleAS Metadata 
Repository or your custom database. 

To connect to the EXCHGSYNC schema in the OracleAS Metadata Repository, perform 
the following steps:

1. Open the oc4j-ra.xml file, which is available in the BPEL_ORACLE_
HOME/j2ee/OC4J_BPEL/application-deployments/default/DbAdapter 
directory.



Step-by-Step Procedures

Provisioning User Identity Information and Alerting Microsoft Outlook Contacts 10-13

Here, BPEL_ORACLE_HOME is Oracle home on the Oracle Application Server 
middle tier that contains the BPEL Process Manager.

2. Add a new connector factory element called eis/DB/IdNotifySample, as 
shown in Example 10–1.

Example 10–1 New Connection String Details in the oc4j-ra.xml File

<connector-factory location="eis/DB/IdNotifySample" connector-name="Database 
Adapter">
      <config-property name="driverClassName" 
value="oracle.jdbc.driver.OracleDriver"/>
      <config-property name="connectionString" value=" 
jdbc:oracle:thin:@abc.unionloan.com:1521:iasdb "/>
      <config-property name="userName" value=" EXCHGSYNC "/>
      <config-property name="password" value="secret"/>
      <config-property name="minConnections" value="1"/>
      <config-property name="maxConnections" value="5"/>
      <config-property name="minReadConnections" value="1"/>
      <config-property name="maxReadConnections" value="5"/> 
      <config-property name="usesExternalConnectionPooling" value="false"/>
      <config-property name="dataSourceName" value=""/>
      <config-property name="usesExternalTransactionController" value="false"/>
      <config-property name="platformClassName" 
value="oracle.toplink.internal.databaseaccess.OraclePlatform"/>
      <config-property name="usesNativeSequencing" value="true"/>
      <config-property name="sequencePreallocationSize" value="50"/>
    </connector-factory>

Replace the values for connectionString and password (in bold) with the 
connection string for the EXCHGSYNC schema in OracleAS Metadata Repository or 
your custom database and EXCHGSYNC password respectively.

3. After editing the file, stop and restart the Oracle BPEL Process Manager server. To 
do this, click Start, Programs, Oracle-ORACLE_BPEL_HOME, Oracle BPEL 
Process Manager 10.1.2, Stop BPEL PM Server, and then click Start BPEL PM 
Server. 

Configuring E-Mail Server Settings to Enable Organization Alerts
The default e-mail account is used to send organization alert e-mail messages. 
Therefore, you must configure the e-mail server settings for the account, Default. To 
do this, perform the following steps:

1. Edit the e-mail server configuration file, ORACLE_
HOME/integration/orabpel/system/services/config/ns_
emails.xml, and change the parameters that are indicated in bold in 
Example 10–2.

Example 10–2 Parameters in the E-Mail Configuration File

<EmailAccount>
      <Name>Default</Name>
      <GeneralSettings>
         <FromName>Oracle BPM</FromName>
         <FromAddress>bpm1@m1.abc.com</FromAddress>
      </GeneralSettings>
      <OutgoingServerSettings>
         <SMTPHost>m1.abc.com</SMTPHost>
         <SMTPPort>225</SMTPPort>
      </OutgoingServerSettings>



Step-by-Step Procedures

10-14 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

      <IncomingServerSettings>
         <Server>m1.abc.com</Server>
         <Port>2110</Port>
         <Protocol>pop3</Protocol>
         <UserName>bpm1</UserName>
         <Password ns0:encrypted="false"  
xmlns:ns0="http://xmlns.oracle.com/ias/pcbpel/NotificationService">welcome</Passwo
rd>
         <UseSSL>false</UseSSL>
         <Folder>Inbox</Folder>
         <PollingFrequency>1</PollingFrequency>
         <PostReadOperation>
            <MarkAsRead/>
         </PostReadOperation>
      </IncomingServerSettings>
   </EmailAccount>

Compiling and Deploying the IdentityNotification BPEL Process
To compile and deploy the BPEL process to Oracle BPEL Process Manager on the 
Oracle Application Server middle tier, perform the following steps:

1. Open JDeveloper BPEL Designer. Click Start, All Programs, Oracle - ORACLE_
HOME, Oracle BPEL Process Manager 10.1.2, and then JDeveloper BPEL 
Designer.

2. Open the IdentityNotification.jpr file in JDeveloper BPEL Designer. This 
contains the IdentityNotification BPEL process shown in Figure 10–3.

The IdentityNotification.jpr file is located in the 
identitymanagement/IdentityNotification folder in the examples ZIP 
file, described in Section 10.2, "Prerequisites".

Note: The database connector feature in Oracle BPEL Process 
Manager requires the Oracle Application Server version of Oracle 
BPEL Process Manager for connectivity with Oracle Internet 
Directory. You cannot use the standalone version of Oracle BPEL 
Process Manager for this.



Step-by-Step Procedures

Provisioning User Identity Information and Alerting Microsoft Outlook Contacts 10-15

Figure 10–3 IdentityNotification BPEL Process

3. On the Navigator pane in JDeveloper BPEL Designer, right-click the Project node, 
and click Deploy. 

4. Click Invoke Deployment Tool.

5. In the Deploy Properties dialog box, click New. The BPEL Process Manager 
Connection wizard is displayed.

6. Specify your connection name, and click Next.

7. Specify authentication details using the Oracle Application Server middle tier host 
name and port number, as shown in Figure 10–4.



Step-by-Step Procedures

10-16 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 10–4 Entering Authentication Details in the BPEL Process Manager Connection 
Wizard

8. Click Next.

9. Test your connection, and click Finish.

10. Enter your password, and click OK.

You are now ready to deploy the BPEL process to the remote Oracle Application 
Server middle tier.

10.3.2.2 Configuring Oracle Directory Integration Platform Profile
To enable this capability, you must configure Oracle Directory Integration Platform by 
running the following command:

dipassistant exchgalertcfg -h <oid_host> -p <oid_non-ssl_port> -profile <profile_
name>

For example:

dipassistant exchgalertcfg -h stadd63 -profile testExport

The script prompts you for the following information. Default answers to the 
questions are given in brackets. Press Enter to accept the default values.

■ Account DN:(default: cn=orclAdmin) >

Specify the super user, that is, cn=orcladmin, or any user that is a member of the 
Directory Integration and Provisioning Administrators group 
(cn=dipadmingrp, cn=odi, cn=oracle internet directory).

■ Account Password >

Enter the account password.

■ User login attribute name:(default: uid) >

If the login ID is different from the user ID, then specify the login ID.

■ Oracle Database URL for Alert Notification: >

Specify the URL for accessing the database. This must be in the format 
localhost:port:iasdb.us.oracle.com.



Step-by-Step Procedures

Provisioning User Identity Information and Alerting Microsoft Outlook Contacts 10-17

■ Oracle Database User for Alert Notification:(default: 
EXCHGSYNC) >

Specify the database user who must receive the organization alert. Accept the 
default value, EXCHGSYNC, because that is the user you created in the section 
Installing the EXCHGSYNC Schema. 

■ Oracle Database Password for Alert Notification: >

Specify the EXCHGSYNC user password. This is the password you set in the section 
Installing the EXCHGSYNC Schema.

■ Microsoft Exchange Attributes to be propagated for Alert 
Notification:(default: mail, telephonenumber) >

Specify a comma-delimited list of attributes, for which organization alerts must be 
generated. For this example, accept the default values of mail and telephone 
number.

Oracle Directory Integration Platform will now check Oracle Internet Directory for 
changes to the user's mail information and telephone number. To enable the BPEL 
process to use this information, you must configure it as described in the next section.

10.3.2.3 Testing the Identity Alerting Configuration
After you configure, compile, and deploy the IdentityNotification BPEL 
process, you can now test if all these steps were correct, and if the sample BPEL 
process is working. To do this, perform the following steps:

1. Log in to Oracle Directory Manager as the Oracle Internet Directory administrator 
by running the following command:

On UNIX:

ORACLE_HOME/bin/oidadmin

On Windows:

From the Start menu, choose Programs, then ORACLE_HOME, then Integrated 
Management, then Oracle Directory Manager 

2. Update the telephonenumber attribute with a new telephone number in the 
container that is set up to be synchronized. To do this, perform the following steps:

a. Click Entry Management and locate the entry you want to modify. You can 
also perform a search for the entry.

b. At the top of the tab page, select View Properties: All.

c. Find the telephonenumber property and modify it.

d. Click Apply.

3. Check if the appropriate users receive an organization alert e-mail message about 
this change.

4. Access the Oracle BPEL Control. The URL has the following format:

http://<BPEL_Host>:<BPEL_Port>/BPELConsole

Look for the BPEL process that was invoked when the value for the 
telephonenumber attribute was changed.

See Also: Oracle Internet Directory Administrator’s Guide



Troubleshooting

10-18 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

10.4 Troubleshooting
Refer to the appendix titled "Troubleshooting Oracle Directory Integration and 
Provisioning" in Oracle Identity Management Integration Guide. 

10.5 Related Documentation
The following is a list of references to documents that provide more information about 
synchronizing and provisioning Oracle Identity Management with Microsoft Active 
Directory:

■ Chapter titled "Oracle Directory Synchronization Service" in Oracle Identity 
Management Integration Guide for more information about synchronization between 
Oracle Internet Directory and Microsoft Active Directory.

■ Section titled "Model of Integrating Oracle Identity Management in a Windows 
Environment" in Oracle Identity Management Infrastructure Administrator’s Guide.

■ Section titled "Configuring Mapping Rules" in Oracle Identity Management 
Integration Guide. 

■ Some Microsoft Exchange Scenarios explained in the chapter titled "Deployment 
Options for Integrating with Microsoft Active Directory" in Oracle Identity 
Management Integration Guide.

■ Oracle Application Server BPEL Process Manager Installation Guide on the Oracle 
BPEL Process Manager page on OTN at

 http://www.oracle.com/technology/bpel



Accessing in-Context Web Information and Invoking an Enterprise Portal 11-1

11
Accessing in-Context Web Information and

Invoking an Enterprise Portal

This chapter shows how to invoke an enterprise application directly from a Microsoft 
Office document.

This chapter contains the following sections:

■ Overview

■ Prerequisites

■ Step-by-Step Procedures

■ Troubleshooting

■ Related Documentation

11.1 Overview
Microsoft Office 2003 Professional provides facilities for invoking enterprise Web 
applications. These facilities enable enterprises to combine the familiar user interface 
of Microsoft Office with the ability to invoke enterprise applications in context when 
the user needs access to more detailed information.

Users can use Microsoft Office as a familiar user interface to access enterprise 
information. Sometimes a casual user may discover that he or she needs access to more 
detailed information, typically accessed through a Web application hosted on an 
enterprise portal. Microsoft Office 2003 Professional offers a number of options such as 
the following for using an Internet browser in order to invoke a Web application from 
the context of a Microsoft Office document:

■ Static hyperlinks; for more information, refer to Section 11.3.1, "Embedding a Static 
Hyperlink to Invoke an Enterprise Portal".

■ Microsoft Visual Basic for Application (VBA) code; for more information, refer to 
Section 11.3.2, "Using VBA Code to Invoke an Enterprise Portal".

■ Smart tags; for more information, refer to Section 11.3.3, "Using Smart Tags to 
Invoke an Enterprise Portal".

11.2 Prerequisites
To perform the steps outlined in this chapter, you must install the following software:

■ Oracle JDeveloper 10g Release 3 (10.1.3.1.0)

■ Microsoft Office 2003 Professional, specifically Microsoft Word 2003



Step-by-Step Procedures

11-2 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

■ Microsoft Internet Explorer 6.0, Mozilla Firefox 1.0, or equivalent browser

■ The smart document template created in Chapter 5, "Completing Forms and 
Entering Data Using Microsoft Office"

■ The support files in the smarttags demonstration folder. Refer to Accessing the 
Demonstration Support Files in the Preface for details about the demonstration 
support files. The support files in the smarttags demonstration folder are listed 
and described in Table 11–1.

11.3 Step-by-Step Procedures
This chapter provides the following examples of how to enable a Microsoft Office 
smart document to invoke an enterprise portal:

■ Embedding a Static Hyperlink to Invoke an Enterprise Portal

■ Using VBA Code to Invoke an Enterprise Portal

■ Using Smart Tags to Invoke an Enterprise Portal

These examples are based on the custom Human Resources enterprise application 
used by Union Loan Company. This application is used by HR and administrative 
personnel. You retrieve a subset of the enterprise data through a Microsoft Word 2003 
Professional application (such as the smart document described in Chapter 5, 
"Completing Forms and Entering Data Using Microsoft Office"). Sometimes you need 
more data to perform their business task. For this reason, the ability to invoke the HR 
enterprise application hosted in the Union Loan Company portal must be added to the 
Microsoft Word smart document.

Table 11–1 Smarttags Files

File or Folder Description

unionloan_home.htm A dummy home page for the Union Loan Portal.

Download this file to your local file system. We 
recommend that you download it to:

C:\OfficeInt\samples\smarttags

If you download this to another location, you must edit 
the code in Section 11.3.3, "Using Smart Tags to Invoke an 
Enterprise Portal" to point to the appropriate location.

unionloan_menu.gif One of the graphics that makes up the Union Loan Portal 
home page.

Download this file to the same location as unionloan_
home.htm.

unionloan_dashboard.gif One of the graphics that makes up the Union Loan Portal 
home page.

Download this file to the same location as unionloan_
home.htm.

Employee Information.dot The template document created in Chapter 5, "Completing 
Forms and Entering Data Using Microsoft Office".

Download this file to your local file system. We 
recommend that you download it to:

C:\OfficeInt\samples\smarttags



Step-by-Step Procedures

Accessing in-Context Web Information and Invoking an Enterprise Portal 11-3

11.3.1 Embedding a Static Hyperlink to Invoke an Enterprise Portal
The most simple and direct way of adding browser invocation to a Microsoft Office 
template is by providing a static hyperlink (URL). When you move a mouse pointer 
over the hyperlink in the document, Microsoft Office displays a pop-up window 
telling you to press the CTRL key and click the link to open a browser and go to the 
specified address. The browser that is opened will be the default system browser, as 
defined by the operating system. One limitation of this approach of invoking a portal 
by means of static hyperlinks is that the URL can contain only static parameters as part 
of the string, that is, the destination of the hyperlink is fixed. However, for many 
enterprisewide portals this restriction will not be an issue.

To create a hyperlink in a Microsoft Office smart document, perform the following 
steps:

1. Start Microsoft Word.

2. Open the template you created in Chapter 5, "Completing Forms and Entering 
Data Using Microsoft Office" (Employee Information.dot).

3. If necessary, from the Tools menu, select Unprotect Document and enter the 
appropriate password when prompted.

4. Place the cursor at the bottom of the template.

5. Enter the following text to introduce the hyperlink:

For more details, go to the 

6. From the Insert menu, select Hyperlink.

7. In the Text to display field, enter Employee Portal. This text is displayed in 
underlined blue font in the template, and is the text that users will click to invoke 
the portal.

8. In the Address field, enter the URL of the portal that you want to invoke. For our 
example, you must select the page you installed in Section 11.2, "Prerequisites", but 
this could be any URL.

9. Click OK.

10. Save and close the template.

11. In Windows Explorer, double-click the template to create a document based on the 
template.

12. Move your mouse pointer over the hyperlink.

A pop-up appears indicating that you can press the CTRL key and click the URL, 
as shown in Figure 11–1.

Tip: If you have not created this template, use the template you 
downloaded in Section 11.2, "Prerequisites".

Note: If a document is protected, you must remove the protection 
before attempting to edit the document, otherwise edits may have 
unexpected results.



Step-by-Step Procedures

11-4 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 11–1 Smart Document with Hyperlink that Invokes the Employee Portal

11.3.2 Using VBA Code to Invoke an Enterprise Portal
Another way of invoking an enterprise portal is to write VBA code. This code can be 
initiated by a button in the template document or in its task pane. One advantage of 
this approach is that it lets you programmatically structure the URL, enabling you to 
add parameters to the URL, which can be derived from data in the document, for 
example, from form fields.

To create a button in a Microsoft Office smart document that invokes a portal, perform 
the following steps:

1. Start Microsoft Word.

2. Open the template you created in Chapter 5, "Completing Forms and Entering 
Data Using Microsoft Office" (Employee Information.dot)

3. If necessary, from the Tools menu, select Unprotect Document and enter the 
appropriate password when prompted.

4. Place the cursor at the bottom of the template.

5. From the View menu, select Toolbars, then select Control Toolbox.

6. In the Control Toolbox, click the Command Button icon (see Figure 11–2).

Tip: If you have not created this template, use the template you 
downloaded in Section 11.2, "Prerequisites".

Note: If a document is protected, you must remove the protection 
before attempting to edit the document, otherwise edits may have 
unexpected results.



Step-by-Step Procedures

Accessing in-Context Web Information and Invoking an Enterprise Portal 11-5

Figure 11–2 The Command Button Icon in the Control Toolbox

7. Right-click the new button and select Properties from the shortcut menu.

8. In Caption field, enter Employee Portal.

9. Close the Properties window.

10. Resize the button to show the caption.

11. Double-click the button. This opens the Microsoft Visual Basic Editor.

12. Replace the generated subroutine CommandButton1_Click() with the code 
shown in Example 11–1:

Example 11–1 VBA Code to Invoke Employee Portal

Private Declare Function ShellExecute Lib _
              "shell32.dll" Alias "ShellExecuteA" _
              (ByVal hwnd As Long, _
               ByVal lpOperation As String, _
               ByVal lpFile As String, _
               ByVal lpParameters As String, _
               ByVal lpDirectory As String, _
               ByVal nShowCmd As Long) As Long
               
Private Const SW_SHOW = 1

Public Sub Navigate(ByVal NavTo As String)

  Dim hBrowse As Long
  hBrowse = ShellExecute(0&, "open", NavTo, "", "", SW_SHOW)

End Sub

Private Sub CommandButton1_Click()

Navigate "<URL>"

End Sub

13. Replace <URL> in the body of the code with the URL of the portal you want to 
invoke. For our example, use the URL of the page you downloaded in Section 11.2, 
"Prerequisites", but this could be any URL:

C:\OfficeInt\samples\smarttags\unionloan_home.htm

14. Save the project.

15. Exit the Microsoft Visual Basic Editor and return to Microsoft Word.

Tip: If the shortcut menu does not appear, make sure that you are in 
Design Mode, by clicking the Design Mode icon in the Control 
Toolbox.



Step-by-Step Procedures

11-6 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

16. Save and close the template.

17. In Windows Explorer, double-click the template to create a document based on the 
template.

The document should look something like Figure 11–3.

Figure 11–3 Smart Document with Button that Invokes the Employee Portal

18. Click Employee Portal.

A new browser window opens at the specified URL address.

If you wanted to programmatically construct a URL in Visual Basic, you could write 
something like the code shown in Example 11–2:

Example 11–2 Programmatically Constructing a URL

Private Sub CommandButton1_Click()
ActiveDocument.Fields(1).Result.Text = "PersonalLoans.htm"
Navigate "file:///C:/OfficeInt/samples/smarttags/" &
 ActiveDocument.Fields(1).Result.Text
End Sub

This code constructs the URL from a static string to which the value of the first form 
field is appended. For the purposes of this example, the value of the field is set to 
PersonalLoans.htm, but it could be a user-entered value, or one retrieved from a 
Web service (see Chapter 5, "Completing Forms and Entering Data Using Microsoft 
Office".)

11.3.3 Using Smart Tags to Invoke an Enterprise Portal
Another way of invoking an enterprise portal is to use the smart tag mechanism in 
Microsoft Office 2003 Professional. Smart tags are recognizers that scan the document as 
the user is typing. Whenever a specified phrase (that is, a literal text string, or a regular 
expression) for a smart tag is recognized, an associated action class is invoked. In 
principle, a newly developed smart tag is available to all document templates, but it 
must be enabled explicitly for each template to which it should apply.



Step-by-Step Procedures

Accessing in-Context Web Information and Invoking an Enterprise Portal 11-7

Developing new smart tags typically involves Visual Studio to create the action class 
that must be packaged with an XML deployment descriptor that defines the tag. 
However, Microsoft Office Professional also comes with a set of standard tags and 
associated default actions, the Microsoft Office Smart Tag List (MOSTL). Using the 
MOSTL tags and actions simplifies the development process to authoring an XML 
document that conforms to the MOSTL schema and placing it in the Microsoft Office 
installation directory. This declarative approach does have some limitations, notably in 
terms of parameters that can be accessed dynamically. Standard MOSTL tags for URL 
invocation can access only the recognized strings, not other values in the document 
(such as field values).

For information on where to find additional documentation about smart tags, refer to 
Section 11.5, "Related Documentation".

In this section, you will create a simple MOSTL tag that uses the predefined action to 
invoke a Web browser.

To create a MOSTL tag:

1. Start a standard XML editor, for example, Oracle JDeveloper or Macromedia 
Dreamweaver.

2. Create the sample XML document using the code shown in Example 11–3, which 
adheres to the standard MOSTL schema:

Example 11–3 XML Code for MOSTL Smart Tag

<FL:smarttaglist xmlns:FL="urn:schemas-microsoft-com:smarttags:list">
  <FL:name>Employee Portal Invocation</FL:name>
  <FL:lcid>1033,0</FL:lcid>
  <FL:description>Invoke the employee portal</FL:description>
  <FL:moreinfourl>http://msdn.microsoft.com/msdnmag</FL:moreinfourl>
  <FL:updateable>false</FL:updateable>
  <FL:autoupdate>false</FL:autoupdate>
  <FL:lastcheckpoint>0</FL:lastcheckpoint>
  <FL:lastupdate>0</FL:lastupdate>
  <FL:updateurl></FL:updateurl>
  <FL:updatefrequency>0</FL:updatefrequency>
  <FL:smarttag type="urn:schemas-microsoft-com:office:smarttags#launch">
    <FL:caption>Launch Employee Portal</FL:caption>
      <FL:re>    
        <FL:exp>Employee Portal</FL:exp>
      </FL:re>
    <FL:actions>
      <FL:action id="launch">
        <FL:caption>Launch Employee Portal</FL:caption> 
        <FL:url>
          file:///C:/OfficeInt/samples/smarttags/unionloan_home.htm
        </FL:url>
      </FL:action>
    </FL:actions>
  </FL:smarttag>

The first section of this XML file defines a set of general properties for the tag, for 
example, its location and if it is centrally updatable. The section 
<FL:exp>Employee Portal</FL:exp> defines the recognizer string, and the 
section 
<FL:url>file:///C:/OfficeInt/samples/smarttags/unionloan_
home.htm</FL:url> defines that the standard URL action is to be invoked.



Step-by-Step Procedures

11-8 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

3. Save the file under the name loan app smart tag.xml in the smart tag 
installation directory, for example:

C:\Program Files\Common Files\Microsoft Shared\Smart Tag\LISTS

or in a local subdirectory of that folder (for example 1033).

4. Start Microsoft Word.

5. Open the template you created in Chapter 5, "Completing Forms and Entering 
Data Using Microsoft Office" (Employee Information.dot).

6. If necessary, from the Tools menu, select Unprotect Document and enter the 
appropriate password when prompted.

7. Place the cursor at the bottom of the template.

8. Enter the following text:

For more information, go to the Employee Portal.

9. To enable the smart tag for the template:

a. From the Tools menu, select AutoCorrect Options. The AutoCorrect dialog 
box is displayed as shown in Figure 11–4.

b. Click the Smart Tags tab.

c. Select the Launch Employee Portal (Smart tag lists) option.

Tip: If you have not created this template, use the template you 
downloaded in Section 11.2, "Prerequisites".

Note: If a document is protected, you must remove the protection 
before attempting to edit the document, otherwise edits may have 
unexpected results.



Step-by-Step Procedures

Accessing in-Context Web Information and Invoking an Enterprise Portal 11-9

Figure 11–4 Enabling Smart Tags

10. Click OK.

11. Save and close the template.

12. In Windows Explorer, double-click the template to create a document based on the 
template.

13. Move your mouse pointer over the text Employee Portal.

An icon is displayed, as shown in Figure 11–5.

Figure 11–5 Smart Tag Icon

14. Click the icon to display a menu from which the browser can be invoked, as 
shown in Figure 11–6.



Troubleshooting

11-10 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 11–6 Smart Document with Smart Tag that Invokes the Employee Portal

11.4 Troubleshooting
The following information is a set of hints and tips that address potential issues:

Limitations on Using Smart Tags in Form Completing Documents
It does not appear to be possible to use smart tags in smart document templates that 
are restricted in editing actions to form filling mode only. Remove such restrictions in 
order to enable running smart tags with form fields (from the Tools menu, select 
Unprotect Document, and supply the appropriate password). Note that this does 
impact the usability of form completing for the end user (for example, be careful that 
tabbing does not add empty lines to a grid).

Editing an existing template in Microsoft Word
In order to run a form template, it must first be protected with a password (from the 
Tools menu, select Protect Document, then provide a password). When the document 
is run, remember to remove the document protection before attempting to edit the 
definition (from the Tools menu, select Unprotect Document, and supply the 
appropriate password), otherwise edits may have unexpected results.

Smart tags need security permission to run
Smart tags are considered a form of macros in terms of security. If the security level is 
set to High, then smart tags may not be able to run. Run the smart tags in Medium 
security level instead (From the Tools menu, select Macro, then select Security).

11.5 Related Documentation
You can find further information on smart tags on the Microsoft MSDN site:

■ Introduction:



Related Documentation

Accessing in-Context Web Information and Invoking an Enterprise Portal 11-11

http://msdn.microsoft.com/msdnmag/issues/05/02/ManagedSmartTa
gs/default.aspx

■ Smart tag end user guide:

http://office.microsoft.com/en-us/assistance/HP030833041033.a
spx

■ Sample application:

http://msdn.microsoft.com/library/default.asp?url=/library/en
-us/odc_2003_ta/html/odc_landoffice03_ta.asp

■ MOSTL standard schema: 

http://msdn.microsoft.com/library/default.asp?url=/library/en
-us/stagsdk/html/stconMOSTLNamespaces_HV01083883.asp

■ MOSTL sample:

http://msdn.microsoft.com/library/default.asp?url=/library/en
-us/sdsdk/html/sdconMOSTLSample_HV01083371.asp



Related Documentation

11-12 Oracle Application Server Developer's Guide for Microsoft Office Interoperability



Saving Microsoft Office Documents to the OracleAS Portal Content Repository 12-1

12
Saving Microsoft Office Documents to the

OracleAS Portal Content Repository

This chapter shows how you can use various tools to save Microsoft Office documents 
to the Oracle Application Server Metadata Repository.

This chapter contains the following sections:

■ Overview

■ Prerequisites

■ Step-by-Step Procedures

■ Troubleshooting

■ Related Documentation

12.1 Overview
In any enterprise, documents are frequently spread across many different data sources. 
To make the information accessible and easy to find, the ideal solution is to save the 
data in one central content repository, such as the one provided by OracleAS Portal. 
But how do you move and publish distributed content into your portal? For simple, 
distributed, low-volume file transfer, you can map the Portal schema in the Oracle 
Application Server Metadata Repository as a Web Folder (Figure 12–1).



Overview

12-2 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 12–1 Pages and Content in WebDAV and OracleAS Portal

OracleAS Portal supports the use of a Web-based Distributed Authoring and 
Versioning (WebDAV) protocol. Using a WebDAV client, such as Web Folders, you can 
manage your portal content re-creating your computer's file system. You can also drag 
and drop files between your desktop and your portal page groups, move content 
between page groups, and move content between source repositories and the Portal 
schema in the OracleAS Metadata Repository. For example, you can mount both the 
Oracle Content Services and the Portal schema in the OracleAS Metadata Repository 
through a Web Folder, and exchange files. You can perform in-place opening, editing, 
and saving of portal content using WebDAV-compliant desktop applications, such as 
Microsoft Office 2003.

Using WebDAV clients with OracleAS Portal takes full advantage of the portal's 
content management capabilities. It enables users to manage content through their file 
systems, while adhering to the content structure and access rules specified for the 
portal.

For example, you can access the Portal schema in the OracleAS Metadata Repository 
through a WebDAV client, such as Oracle Drive. Connect as a particular user, and 
create a ZIP archive starting from the page group's root page. This operation adheres 
to the access rules established for the portal—only the logged-in user's content is 
copied to the archive. And it respects the portal structure by maintaining the WebDAV 
folder hierarchy of the targeted page group.



Step-by-Step Procedures

Saving Microsoft Office Documents to the OracleAS Portal Content Repository 12-3

12.2 Prerequisites
To perform the steps outlined in this chapter, first install the following software:

■ Oracle Application Server Portal 9.0.4.2 or later

Oracle Application Server Portal is part of Oracle Application Server.

■ Oracle Drive. You can download the latest version of Oracle Drive from the Oracle 
Collaboration Suite Downloads page at

http://www.oracle.com/technology/software/products/cs

■ Microsoft Office (version 2000 or later)

12.3 Step-by-Step Procedures
This chapter shows you how to use several tools to save Microsoft Office documents to 
the OracleAS Portal content repository:

■ Setting Up OracleAS Portal for WebDAV

■ Setting Up Your WebDAV Client

■ Using Oracle Drive as a WebDAV Client

■ Using Web Folders as a WebDAV Client

■ Using Microsoft Office as a WebDAV Client

12.3.1 Setting Up OracleAS Portal for WebDAV
WebDAV is configured on both the server side (in OracleAS Portal) and the client side 
(your personal computer).

OracleAS Portal has a DAV configuration file (oradav.conf) that contains OraDAV 
parameters. When Oracle Application Server is installed, all required OraDAV 
parameters are set with values that enable access to Oracle Database content through a 
Web browser or a WebDAV client. If necessary, the portal administrator can modify 
parameter values if the default values do not meet your portal's needs.

If you are a portal administrator and would like detailed information about the 
oradav.conf file and how to modify OraDAV parameters, refer to Oracle Application 
Server Portal Configuration Guide.

Additionally, there are options within the OracleAS Portal user interface that you can 
set in advance to prepare the way for uploading content through a WebDAV client. For 
information about these options, refer to Oracle Application Server Portal User’s Guide.

12.3.2 Setting Up Your WebDAV Client
The steps required to set up a WebDAV client to connect to your portal vary 
depending on the client. But all clients will eventually request a URL. The WebDAV 

Note: If you encounter a problem with Oracle Drive, report it to the 
Portal Content Management Forum on the Oracle Technology 
Network at

http://www.oracle.com/technology/products/ias/portal
/discussion_forums.html



Step-by-Step Procedures

12-4 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

URL is very similar to the URL you use to access the portal in your Web browser. It 
uses the following format:

http://<hostname>:<port>/<dav_location>

Where dav_location is the location as specified in the oradav.conf file.

The default portal DAV URL is:

http://<hostname>:<port>/dav_portal/portal

■ The dav_portal part of the URL is the default name of a virtual directory that is 
used to differentiate between portal access through a WebDAV client and portal 
access through the portal user interface.

■ The portal part of the URL is the name of the database access descriptor (DAD) 
of the portal installation. Administrators can also configure virtual hosts to 
provide a different, simpler, or easier to remember URL for WebDAV access, if 
need be.

Directly access a particular page group or page by adding its name to the WebDAV 
URL, for example:

http://mymachine.mycompany.com:5000/dav_portal/portal/mypagegroup/mypage

You connect to a portal through WebDAV clients using the same user name and 
password that you use to log in to the portal itself. If the portal is in a hosted 
environment, then you also must add your company information to your user name, 
as follows:

<username>@<company>

If you are using Web Folders on Windows 2000, then you may be prompted for your 
user name and password twice: once when you click Next after specifying the 
WebDAV URL, and again when you click Finish.

Some WebDAV clients (such as, Windows 2000 or NT) do not support multiple 
simultaneous logins. If you want to log in as a new user, then you must clear your 
cookies, restart your computer to clear out the current login session, and then log in as 
the new user.

You may need to delete the file C:\Documents and Settings\<user>\Cookies 
from the command prompt window. You can do this only when no other processes are 
using the file.

If your WebDAV client has no explicit logout feature, you must log out of the 
operating system (such as Windows 2000 or NT) to log out of the portal.

12.3.3 Using Oracle Drive as a WebDAV Client
Oracle Drive is a powerful WebDAV client that you can use to map the Portal schema 
in the OracleAS Metadata Repository as a drive, and perform desktop authoring and 
publishing, and portal-specific metadata attribution directly from the Windows 
desktop.

Key highlights include the following:

■ Mount OracleAS Portal Repositories as Microsoft Windows Drives

■ Edit and view content with any Windows application

■ Work with offline content and synchronize when online



Step-by-Step Procedures

Saving Microsoft Office Documents to the OracleAS Portal Content Repository 12-5

■ Extra capabilities available in the right-click menus

■ Set properties, grant access, and preview content and pages

■ Access the repositories with a command line (DOS) utility

■ Search from Windows Explorer

In this example, a user (James Cooper) uses Oracle Drive to map the Portal schema as 
a drive and then work with Microsoft Office files within that portal.

To use Oracle Drive to add content to a page, perform the following steps:

1. Click the Oracle Drive icon in the system tray.

This displays the Oracle Drive dialog box, as shown in Figure 12–2.

2. If necessary, click the Connect tab to make it the active tab.

3. From the Service menu, select New.

4. In the Service name field, enter My Portal.

5. In the Username field, enter your portal user name.

6. In the Server field, enter the WebDAV URL for your portal. You can also specify a 
particular page within a portal. In our example, James enters the WebDAV URL of 
the Star Loan portal (see Figure 12–2)

http://www.starloan.com:5000/dav_portal/portal

Figure 12–2 Oracle Drive Service Properties

7. Click OK.

Note: The Server field has a limit of 64 characters, therefore if you 
have a long WebDAV URL or you are specifying a particular page, the 
whole URL may not fit. In this case, you can click the Advanced 
button and specify the Server, Port, and Server directory separately, 
for example:

■ Server: http://www.starloan.com

■ Port: 5000

■ Server directory: dav_portal/portal



Step-by-Step Procedures

12-6 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

8. From the Drive list, select a drive letter to map to the new Oracle Drive 
connection.

9. Click Connect.

10. Enter your portal password to authenticate and establish the connection.

11. The Oracle Drive WebDAV connection is assigned to the drive letter selected in 
Step 8 and is available in Windows Explorer. You can now use this drive in the 
same way as any other drive.

For example, James can create a new Microsoft Excel spreadsheet (myplan.xls) 
and save it directly to his portal, as shown in Figure 12–3.

Figure 12–3 Saving Files Directly to a Network Drive

12. In addition, when you right-click any file or folder under the mapped Oracle 
Drive, file and folder options specific to OracleAS Portal are displayed in the 
resulting menu.

For example, James wants to assign his spreadsheet to the Plan category, so he 
right-clicks the spreadsheet file, and then selects Set Properties from the shortcut 
menu, as shown in Figure 12–4.



Step-by-Step Procedures

Saving Microsoft Office Documents to the OracleAS Portal Content Repository 12-7

Figure 12–4 Setting Properties of a File on the Network Drive

After providing his user name and password (this happens the first time he opens 
a file or folder through Oracle Drive; he will not need to reauthenticate for any 
other files or folders during this session), James sees the Edit Item window where 
he can assign a category for the file.

File Menu Options include the following:

■ Set Properties—Displays the Edit Item window for the current Active version 
of the item. If approvals are enabled, and a user is accessing a Draft, then Set 
Properties displays the user's own draft version of the item, if a draft exists, 
and the current user created it. If the current user is the approver of the item, 
then Set Properties displays the Edit Item window for the Pending version of 
the item, if one exists.

■ Change Access Control—When item-level security is enabled, Change Access 
Control displays the Item Access window for the current Active version of the 
item.

■ Preview Content—Previews item content of the current Active version of the 
item. If approvals are enabled, and a user is accessing a Draft, then Preview 
Content previews the user's own draft version of the item, if a draft exists, and 
the current user created it. If the current user is the approver of the item, then 
Preview Content previews the Pending version of the item, if one exists.

■ View Versions—When version creation is enabled, View Versions displays the 
version history of the item.



Step-by-Step Procedures

12-8 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

■ Approve/Reject—This menu option is usable only when the current item is 
Pending and the current user is an approver; otherwise, when a user selects 
Approve/Reject, an error message displays.

■ Submit for Approval—This menu option is usable only when the current item 
is a Draft item and the current user is the creator of the draft; otherwise, when 
a user selects Submit for Approval, an error message is displayed.

Folder Menu Options include the following:

■ Set Properties—Displays the Page Properties window.

■ Change Access Control—Displays the Page Access tab in the Page Properties 
window.

■ View Page—Displays the page.

For information on which items are accessible in what states, refer to Oracle 
Application Server Portal User’s Guide.

12.3.4 Using Web Folders as a WebDAV Client
Web Folders is a Microsoft operating system extension that supports the WebDAV 
protocol. If you access Web Folders on your computer, then you can browse the 
content of your portal through Windows Explorer and drag and drop Microsoft Office 
documents into the pages of your portal.

In this example, a user (James Cooper) uses Web Folders to add a Microsoft Word 
document to the Star Loan portal.

To use Web Folders to add content to a page (Windows XP), perform the following 
steps:

1. Open Windows Explorer and click My Network Places.

2. Double-click Add Network Place to display the Add Network Place Wizard.

3. Make sure Choose another network location is selected, then click Next.

4. Enter the WebDAV URL for your portal. You can also specify a particular page 
within a portal. In our example, James enters the WebDAV URL of the Star Loan 
portal:

http://www.starloan.com:5000/dav_portal/portal

If you are not sure of the WebDAV URL for your portal, contact your portal 
administrator.

Note: This example shows you how to use Web Folders in Windows 
XP where the Web Folders feature is built into the operating system as 
part of My Network Places. You should be able to access the Add 
Network Place Wizard by clicking My Network Places then 
double-clicking Add Network Place. To use Web Folders in Windows 
9n/NT, you must install Internet Explorer 5.5 (rather than 6.0) and the 
Web Folders component. You can then upgrade to 6.0, and Web 
Folders will remain.

If you have Internet Explorer 5.5 installed, but cannot find a Web 
Folders node under My Computer, you must explicitly install the Web 
Folders component of Internet Explorer through Add/Remove 
Programs in the Control Panel.



Step-by-Step Procedures

Saving Microsoft Office Documents to the OracleAS Portal Content Repository 12-9

5. Click Next.

6. Enter a name for the network place. James enters My Portal.

7. Click Next.

8. Make sure that the Open this network place when I click Finish check box is 
selected, then click Finish.

9. When prompted, enter your portal user name and password.

10. Windows Explorer opens a window displaying the contents of the portal or page 
you specified. The portal is now listed as one of your network places, as shown in 
Figure 12–5.

Note: You can log in to Web Folders as one user at any given time. 
That is, multiple simultaneous logins are not allowed. If you want to 
log in to Web Folders as a new user, then clear your cookies, restart 
your computer to clear out the current login session, and then log in as 
the new user.

Windows Web Folders sometimes stores your user name and 
password, or your portal session cookie, or both, and uses these 
details when creating subsequent Web Folders or re-creating a Web 
Folder that has previously existed. Consequently, it may not be 
possible to create multiple Web Folders for portals on the same host 
using different authentication information. Unless you understand 
exactly how your Web Folder implementation acts, on a given 
machine, do not create more than one Web Folder referencing any 
single host. Also, if you attempt to create a Web Folder that references 
the same portal as an existing (or previous) Web Folder but with 
different user log in details, then be vigilant—Windows may perform 
the login step without prompting you.



Step-by-Step Procedures

12-10 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 12–5 Portal Displayed As a Network Drive in Windows Explorer

11. Because you can access your portal's Web Folder just like any other folder in 
Windows Explorer, you can drag and drop files from any other folder into your 
portal.

You can use the drag and drop feature to move or copy files within the same page 
group. Copying files across page groups is not supported; though you can 
overcome this limitation by copying a file to your desktop, then copying it into a 
different page group.

For example, James drags a Microsoft Word document called mynotes.doc from 
his local drive into My Portal, as shown in Figure 12–6.



Step-by-Step Procedures

Saving Microsoft Office Documents to the OracleAS Portal Content Repository 12-11

Figure 12–6 Dragging and Dropping Files into the Web Folder

12. When you next access the page in the portal, it includes the new file. You may 
need to refresh the page to see your changes.

The display name of the new item is the same as the file name (with the extension 
removed). You can edit the item later to change this.

12.3.5 Using Microsoft Office as a WebDAV Client
If you are using Microsoft Office 2003, a WebDAV-enabled desktop application, you 
can start the application, open a portal file that is exposed in a Web Folder, edit the 
content, and save it back to the portal. There is no need to download the document 
from the portal and then upload it again after you have edited it.

To use Microsoft Office 2003 to edit the content of a page, perform the following steps:

1. Set up Web Folders to access the page through Windows Explorer.

See Section 12.3.4, "Using Web Folders as a WebDAV Client".

2. Double-click the file, as shown in Figure 12–7.

Note: The item is added to the default item region as one of the 
default WebDAV item types (depending on whether the file is a ZIP 
file, an image file, or a regular file).



Troubleshooting

12-12 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

Figure 12–7 Working Directly with Files on the Web Folder

3. If prompted, enter your portal user name and password.

The selected file is opened by the relevant Microsoft Office 2003 application. For 
example, when James double-clicks mynotes.doc, it opens in Microsoft Word.

When opening a file, Microsoft Office 2003 locks the file and the related item is 
checked out in the portal. If the Microsoft Office application cannot lock the file 
(that is, it is locked by another WebDAV client, or the item was checked out in the 
portal), then it is opened as read-only. If the Microsoft Office application locked 
the document when it was opened, then it unlocks it when the document is closed.

4. Edit the document, and select File, then Save.

5. Exit Microsoft Word.

When you next access the file item in the portal, note that it includes the changes 
you made.

12.4 Troubleshooting
For troubleshooting information about using WebDAV clients with OracleAS Portal, 
refer to Oracle Application Server Portal User’s Guide.

Note: You can also use Microsoft Office 2003 to create new items in 
the portal. Simply create the file and then save it directly to the Web 
Folder for your portal. The item is created as the default WebDAV 
item type for regular files, and is added to the default item region.



Related Documentation

Saving Microsoft Office Documents to the OracleAS Portal Content Repository 12-13

12.5 Related Documentation
For more detailed information about using WebDAV clients with OracleAS Portal, 
including general tips and information about other WebDAV clients, refer to Oracle 
Application Server Portal User’s Guide.



Related Documentation

12-14 Oracle Application Server Developer's Guide for Microsoft Office Interoperability



Delivering Enterprise Reports to Microsoft Office with Oracle Reports 13-1

13
Delivering Enterprise Reports to Microsoft

Office with Oracle Reports

This chapter shows how to deliver reports built with Oracle Reports to Microsoft 
Office. It shows how you can save report output as a Microsoft Excel spreadsheet, as a 
Microsoft Word document, or send as an e-mail attachment.

This chapter contains the following sections:

■ Overview

■ Prerequisites

■ Step-by-Step Procedures

■ Troubleshooting

■ Related Documentation

13.1 Overview
Oracle Reports is a powerful enterprise reporting tool that enables you to rapidly 
develop and deploy sophisticated Web and paper reports against any data source 
(including an Oracle database, JDBC, XML, text files, and Oracle OLAP). Leveraging 
the latest J2EE technologies such as JSP and XML, you can publish your reports in a 
variety of formats (including HTML, XML, PDF, spreadsheet, delimited text, 
PostScript, and RTF) to any destination in a scalable, efficient manner. In addition to 
built-in destinations such as e-mail, Web browser, OracleAS Portal, file system, FTP, 
and WebDAV, you can define access to your own custom destination by using the 
Oracle Reports Java APIs.

If you want to share your reports with other people, it is helpful to do so using a 
familiar format that does not require people to install additional software. Oracle 
Reports runs a report directly to the output format you specify, with no additional 
setup required. By following the step-by-step instructions in this chapter, you can send 
a report to anyone who has a browser and Microsoft Office installed. 



Prerequisites

13-2 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

13.2 Prerequisites
To perform the steps outlined in this chapter, you must first ensure the following 
prerequisites are available on your machine:

■ Oracle Application Server 10g Release 2  (10.1.2). The steps in this chapter rely on 
the Business Intelligence and Forms installation. When working with other install 
types, refer to the Oracle Application Server documentation.

■ Optionally (to use Reports Builder), Oracle Developer Suite 10g Release 2 (10.1.2).

■ Access to an Oracle Database 10g database with the Sales History sample schema 
installed. To access an Oracle Database 10g database, your tnsnames.ora file (in 
ORACLE_HOME\network\admin) must include an entry for the database. If you 
do not know if the database has the Sales History sample schema installed, contact 
your database administrator. All sample schemas provided with Oracle Database 
10g installation are described in Oracle Database Sample Schemas. 

■ Microsoft Office 2000 or later.

■ A Web browser that supports displaying documents in Microsoft Excel and 
Microsoft Word.

■ A running instance of OC4J to enable deployment of the report on the Web:

– For Oracle Application Server installations, start Reports Server using Oracle 
Process Manager and Notification Server (OPMN). 

– For Oracle Developer Suite installations, start an OC4J instance on your 
machine before you submit a request, as follows:

– From the Start menu, select All Programs, Oracle iDS Home, Reports 
Developer, and then Start OC4J Instance.

– Or, open a command prompt, and enter:

cd %ORACLE_HOME%\j2ee\home
runoc4j.bat

The OC4J instance starts once the containers for J2EE have been initialized.

To confirm that OC4J is running and your environment is set up correctly to run a 
report request on the Web, enter the following URL in your browser to display the 
Reports Servlet (rwservlet) help page:

http://hostname:port/reports/rwservlet

If you see the help page, you are ready to run report requests on the Web.

Note: You can use Microsoft Excel as an ODBC data source using the 
JDBC-ODBC driver provided with Oracle Reports. For more 
information on the JDBC-ODBC driver, refer to the chapter 
"Configuring and Using the JDBC PDS" in Oracle Application Server 
Reports Services Publishing Reports to the Web.

To enhance the out-of-the-box integration with Microsoft Office, you 
can use the Oracle Reports Java API to create your own custom 
destinations and data sources. Refer to the Oracle Reports 10g Release 
2  (10.1.2) Java API documentation 
(http://download.oracle.com/docs/html/B14049_
01/toc.htm)



Step-by-Step Procedures

Delivering Enterprise Reports to Microsoft Office with Oracle Reports 13-3

■ The pluginParam element in the server configuration file (ORACLE_
HOME\reports\conf\server_name.conf) and the Reports Builder 
configuration file (ORACLE_HOME\reports\conf\rwbuilder.conf) specifies 
your outgoing SMTP mail server name. For example:

<pluginParam name="mailServer">smtpserver.mycompany.com</pluginParam>

■ The example report named reports\mypaperreport.rdf. For details on how 
to locate the example files, see Accessing the Demonstration Support Files in the 
Preface. The example file used in this chapter is listed and described in Table 13–1.

13.3 Step-by-Step Procedures
The steps in these sections show how to use Oracle Reports to develop reports and 
deploy them to Microsoft Office applications:

■ Creating a Report

■ Displaying Report Output in Microsoft Excel

■ Displaying Report Output in Microsoft Word

■ Sending Report Output to E-Mail Recipients

13.3.1 Creating a Report
To create a report with Oracle Reports, you must install Oracle Developer Suite, which 
includes Reports Builder.

Reports Builder provides user-friendly wizards that guide you through the report 
design process to develop dynamic reports for the Web and e-business requirements, 
as well as high-fidelity printed reports. You can also edit existing JSP and HTML files 
in Reports Builder to add report layouts.

Refer to Oracle Reports Tutorial and Oracle Reports Building Reports to learn how to use 
Reports Builder to develop Web-based or paper-based reports customized to your 
needs, using data from any data source. Once you have developed a report, you can 
deploy it to any destination. The sections that follow include the steps to deploy the 
example report that we have provided, mypaperreport.rdf, to Microsoft Excel, 
Microsoft Word, and e-mail recipients. 

13.3.2 Displaying Report Output in Microsoft Excel
This section illustrates the spreadsheet output capability introduced with Oracle 
Reports 10g Release 2  (10.1.2), which enables you to generate output with rich 
formatting from paper layout reports to Microsoft Excel-compatible HTML format that 
can be directly opened with Microsoft Excel 2000 or later.

Table 13–1 Example Report File

File Description

reports\mypaperreport.rdf The sample paper report. 

Note: You can also deploy a JSP-based Web report using Reports 
Server under OC4J to display it in Microsoft Excel in your Web 
browser. For the steps to do this, refer to the chapter "Building a 
Report for Spreadsheet Output" in Oracle Reports Building Reports.



Step-by-Step Procedures

13-4 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

To display a report in Microsoft Excel using rwservlet, perform the following steps:

1. As described in Section 13.2, "Prerequisites", ensure that your OC4J instance is 
started to enable the deployment of the report.

2. In a Web browser (for example, Internet Explorer), enter either of the following 
URLs:

■ To generate report output that is displayed in Microsoft Excel in the Web 
browser:

http://hostname:port/reports/rwservlet?report=report_name
&userid=username/password@database&destype=cache&desformat=spreadsheet

For example:

http://myas.us.oracle.com:8888/reports/rwservlet?report=mypaperreport.rdf
&userid=sh/sh@ora10g&destype=cache&desformat=spreadsheet

The output should look as shown in Figure 13–1.

■ To generate an HTML file that you can open in Microsoft Excel:

http://hostname:port/reports/rwservlet?report=report_name
&userid=username/password@database&destype=file&desformat=spreadsheet
&desname=output_filename.htm

For example:

http://myas.us.oracle.com:8888/reports/rwservlet?
report=mypaperreport.rdf&userid=sh/sh@ora10g&destype=file
&desformat=spreadsheet&desname=C:\temp\myexcel_output.htm

3. If you generated an HTML file that you can open in Microsoft Excel, start 
Microsoft Excel and open the report output file (for example, 
C:\temp\myexcel_output.htm). 

The output should look as shown in Figure 13–1.

Note: In Oracle Developer Suite installations, a standalone OC4J 
instance is provided for testing purposes to manually deploy an 
Oracle Reports application for running reports with rwservlet and 
running JSP reports. In Oracle Application Server installations, the 
OC4J_BI_Forms instance automatically deploys an Oracle Reports 
application.

Note: If the rwservlet command fails, refer to Section 13.4, 
"Troubleshooting" to resolve the error message that is displayed.



Step-by-Step Procedures

Delivering Enterprise Reports to Microsoft Office with Oracle Reports 13-5

Figure 13–1 Report Output in Microsoft Excel

It is not possible to generate spreadsheet output from Reports Builder. Instead, you 
run the report using Reports Server clients (rwservlet or rwclient) or rwrun, with 
desformat=spreadsheet. 

13.3.3 Displaying Report Output in Microsoft Word
Oracle Reports can generate report output to Rich Text Format (RTF) files, containing 
the formatted data and all objects. RTF can be read by many different word processing 
software packages, such as Microsoft Word. You can use the software's editing and 
graphics features to modify and enhance your report output. When you generate your 
report output to an RTF file, you can distribute the output to any RTF destination, 
including e-mail, printer, OracleAS Portal, and Web browser.

This section illustrates the RTF output capability available with Oracle Reports, which 
enables you to generate output from paper-based reports to RTF files that can be 
opened with Microsoft Word.

To display a report in Microsoft Word using rwservlet, perform the following steps:

Note: The graph embedded in the spreadsheet output is a static 
image file, and is not interactive. You may notice other differences 
between your report layout in Reports Builder and the Microsoft Excel 
output. These differences are caused by the way Microsoft Excel 
interprets the report layout. For detailed usage notes and restrictions 
about spreadsheet output, see "About spreadsheet output" in the 
Oracle Reports online Help, or the chapter "Advanced Concepts" in 
Oracle Reports Building Reports.



Step-by-Step Procedures

13-6 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

1. As described in Section 13.2, "Prerequisites", ensure that your OC4J instance is 
started to enable the deployment of the report.

2. In a Web browser (for example, Internet Explorer), enter either of the following 
URLs:

■ To generate report output that is displayed in RTF format in the Web browser:

http://hostname:port/reports/rwservlet?report=report_name
&userid=username/password@database&destype=cache&desformat=rtf
&mimetype=application/msword

For example:

http://myas.us.oracle.com:8888/reports/rwservlet?report=mypaperreport.rdf
&userid=sh/sh@ora10g&destype=cache&desformat=rtf
&mimetype=application/msword

The output should look as shown in Figure 13–2.

■ To generate an RTF file that you can open in Microsoft Word:

http://hostname:port/reports/rwservlet?report=report_name
&userid=username/password@database&destype=file&desformat=rtf
&desname=output_filename.rtf

For example:

http://myas.us.oracle.com:8888/reports/rwservlet?
report=mypaperreport.rdf&userid=sh/sh@ora10g&destype=file
&desformat=rtf&desname=C:\temp\myword_output.rtf

3. If you generated an RTF file that you can open in Microsoft Word, start Microsoft 
Word and open the report output file (for example, C:\temp\myword_
output.rtf). The output should look as shown in Figure 13–2.

Alternatively, if you have Oracle Developer Suite installed, you can use Reports 
Builder to generate RTF output to a file, as follows:

1. Start Reports Builder (either by selecting Start, All Programs, iDS Home, Reports 
Developer, and then Reports Builder, or by opening a command prompt window 
and typing rwbuilder).

Note: In Oracle Developer Suite installations, a standalone OC4J 
instance is provided for testing purposes to manually deploy an 
Oracle Reports application for running reports with rwservlet and 
running JSP reports. In Oracle Application Server installations, the 
OC4J_BI_Forms instance automatically deploys an Oracle Reports 
application.

Note: The mimetype=application/msword option is needed to 
open the RTF document with Microsoft Word.

Note: If the rwservlet command fails, refer to Section 13.4, 
"Troubleshooting" to resolve the error message that is displayed.



Step-by-Step Procedures

Delivering Enterprise Reports to Microsoft Office with Oracle Reports 13-7

2. In the Welcome to Reports Builder dialog box, select Open an existing report, then 
click OK.

3. In the Open dialog box, locate and open the example report 
mypaperreport.rdf.

4. Select File, Connect to connect to a database that includes the Sales History 
schema.

5. Click the Run Paper Layout button in the toolbar to run the report.

6. To preview your report output in a Microsoft Word document, select File, Preview 
Format, and then RTF.

7. To save your report output as an RTF file, select File, Generate to File, and then 
RTF.

8. In the Save dialog box, specify a location and file name (for example, 
C:\temp\myword_output.rtf). Click Save.

9. Start Microsoft Word, and open the report output file (for example, 
C:\temp\myword_output.rtf). The output should look as shown in 
Figure 13–2.

Figure 13–2 Report Output in Microsoft Word

13.3.4 Sending Report Output to E-Mail Recipients
You can e-mail reports in a variety of formats (including PDF, HTML, HTMLCSS, 
XML, RTF, ASCII, and delimited text) using any Internet Standard Protocol SMTP mail 
application, to recipients using e-mail utilities such as Microsoft Outlook.

To e-mail a report, perform the following steps:

Note: For detailed usage notes about RTF output, see "About RTF 
output" in the Oracle Reports online Help, or the chapter "Advanced 
Concepts" in Oracle Reports Building Reports.



Step-by-Step Procedures

13-8 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

1. In your browser (for example, Internet Explorer), enter the following URL:

http://hostname:port/reports/rwservlet?report=report_name
&userid=username/password@database&destype=mail
&desformat=pdf|html|htmlcss|xml|rtf|ascii|delimited
&desname=email_address[&from=email_address]

For example:

http://myas.us.oracle.com:8888/reports/rwservlet?
report=c:\orawin\examples\mypaperreport.rdf&userid=sh/sh@ora10g
&from=tom.smith@oracle.com
&desformat=pdf&destype=mail&desname=jan.jones@oracle.com

2. The e-mail recipient(s) can open the e-mail using their e-mail utility, such as 
Microsoft Outlook.

If you have Oracle Developer Suite installed, you can use Reports Builder to test 
sending e-mail output, as follows:

1. Start Reports Builder (either by selecting Start, All Programs, iDS Home, Reports 
Developer, and then Reports Builder, or by opening a command prompt and 
entering rwbuilder).

2. In the Object Navigator, select or open the example report mypaperreport.rdf.

3. If you are not already connected, select File, Connect to connect to a database that 
includes the Sales History schema.

4. Select File, Mail.

5. In the Mail dialog box, specify appropriate values in each field for your e-mail 
report, as shown in Figure 13–3.

Note: If the rwservlet command fails, refer to Section 13.4, 
"Troubleshooting" to resolve the error message that is displayed.

Note:  If already open, restart Reports Builder to activate the change 
you made to rwbuilder.conf. If your outgoing mail server was 
already previously defined in rwbuilder.conf, it is not necessary to 
restart Reports Builder.



Troubleshooting

Delivering Enterprise Reports to Microsoft Office with Oracle Reports 13-9

Figure 13–3 Mail Dialog Box 

6. Click OK to send the report in the specified output format to the recipient e-mail 
address(es).

13.4 Troubleshooting
This section discusses some of the errors or setup issues that you may encounter when 
performing the steps in this chapter. For additional troubleshooting information, refer 
to the appendix "Troubleshooting" in Oracle Application Server Reports Services 
Publishing Reports to the Web and to the Oracle Reports online Help for error messages, 
available in Reports Builder and on the Oracle Reports 10g page on the Oracle 
Technology Network 
(http://www.oracle.com/technology/products/reports/index.html).

If you encounter any of the following errors while performing the steps in the chapter, 
the information in this section should help you resolve them:

■ REP-51002: Bind to Reports Server failed

■ REP-110: Unable to open file 'report_name'

Note: You can also use Oracle Reports advanced distribution 
capability to burst and distribute a single report to multiple e-mail 
recipients in a required format. Using the mail element in your 
distribution XML file, you can specify many additional e-mail options. 
For more information, see the chapter "Creating Advanced 
Distributions" in Oracle Application Server Reports Services Publishing 
Reports to the Web.

Note: The recommended way to troubleshoot report issues is to 
enable tracing and the engine diagnosis option. For more information, 
refer to the chapter "Configuring OracleAS Reports Services" in Oracle 
Application Server Reports Services Publishing Reports to the Web.



Troubleshooting

13-10 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

■ REP-56048: Engine rwEng-0 crashed

■ REP-50159: Executed successfully but there were some errors when distributing 
the output

REP-51002: Bind to Reports Server failed
Cause: Reports Servlet (rwservlet) is not able to locate Reports Server.

Action: This error can occur for a number of reasons. Any of the following actions may 
resolve the error:

■ If you are connected to the network through VPN or if a firewall is used, then the 
Oracle Reports built-in broadcast mechanism for Reports Server discovery will not 
work. In this case, you must configure the discovery mechanism to use the 
Common Object Service (COS) naming service orbd, provided by Sun 
Microsystems' JDK. For details on using the COS naming service, refer to the 
chapter "Configuring OracleAS Reports Services" in Oracle Application Server 
Reports Services Publishing Reports to the Web.

■ If you are using the Oracle Reports in-process server, check that SERVER_IN_
PROCESS=YES in the servlet configuration file (ORACLE_
HOME\reports\conf\rwservlet.properties).

■ If you are using a standalone server, check if the server is running through Oracle 
Enterprise Manager 11.

■ If the Oracle Reports built-in broadcast mechanism for Reports Server discovery 
(multicast) is used, find out how much time it takes to locate a Reports Server 
in your network using the rwdiag utility. Reports Servlet (rwservlet) may be 
timing out while locating the Reports Server. This scenario is most likely to occur 
when the Reports Server is running on a different network subnet.

For example:

$ rwdiag.sh -find server_name

server_name found in the network
Time taken - 101 millisecond

If the time taken is more than (timeout * retry) values in your rwnetwork.conf 
file, then increase the timeout value in rwnetwork.conf and restart your Reports 
Server and OC4J_BI_Forms instance (or standalone OC4J in Oracle Developer Suite 
installations). This scenario is more likely to occur when Reports Server is running on 
a different network subnet.

REP-110: Unable to open file 'report_name'
Cause: Reports Server is not able to locate the report definition file.

Action: Modify REPORTS_PATH to include the folder that contains your report 
definition file.

For example, suppose c:\myreports contains your report definition files:

REPORTS_PATH=c:\myreports;C:\OraHome_5\reports\templates...

REP-56048: Engine rwEng-0 crashed
Cause: This error occurs if memory allocated for the engine process (JVM) is not 
sufficient to generate spreadsheet output. If your spreadsheet report contains a large 
number of pages (several hundreds of pages), then default heap memory allocated is 
not sufficient to generate the report.



Related Documentation

Delivering Enterprise Reports to Microsoft Office with Oracle Reports 13-11

Action: Increase the heap memory for the engine process (JVM) by setting the 
jvmOptions attribute of the engine element in the server configuration file 
(ORACLE_HOME\reports\conf\server_name.conf). For example:

<engine id="rwEng" jvmOptions="-Xmx512M" 
class="oracle.reports.engine.EngineImpl"...

For more details on setting the jvmOptions attribute, refer to the chapter 
"Configuring OracleAS Reports Services" in Oracle Application Server Reports Services 
Publishing Reports to the Web.

REP-50159: Executed successfully but there were some errors when distributing 
the output
This error can occur for a number of reasons when sending report output to an e-mail 
destination. 

Cause 1: Mail server is not configured properly.

Action 1: Configure the mail server in the server configuration file (ORACLE_
HOME\reports\conf\server_name.conf) and the Reports Builder configuration 
file (ORACLE_HOME\reports\conf\rwbuilder.conf). The pluginParam 
element should specify the outgoing SMTP server name. For example:

<pluginParam name="mailServer">smtpserver.mycompany.com</pluginParam>

For more details, refer to the chapter "Configuring OracleAS Reports Services" in 
Oracle Application Server Reports Services Publishing Reports to the Web.

Cause 2: The mail server is not responding or is not up and running.

Action 2: Check if the mail server is up and running and is responding in a timely 
manner. You can use your Microsoft Outlook client to connect to the mail server and 
check the status.

Cause 3: A valid recipient e-mail address is not specified for the desname keyword.

Action 3: Specify a valid recipient e-mail address for the desname keyword.

Cause 4: The mail server is SSL-enabled.

Action 4: Use a non-SSL mail server. Oracle Reports does not support SSL-enabled 
mail servers to send e-mail.

13.5 Related Documentation
■ Oracle Reports Building Reports

■ Oracle Application Server Reports Services Publishing Reports to the Web

■ Oracle Reports online Help

Note: The Reports engine may fail for a number of reasons. If an 
engine or job in Reports Server fails or stops responding, then the 
recommended solution is to set the engineResponseTimeout 
attribute of the engine element in the server configuration file 
(ORACLE_HOME\reports\conf\server_name.conf), as 
described in the chapter "Configuring OracleAS Reports Services" in 
Oracle Application Server Reports Services Publishing Reports to the Web.



Related Documentation

13-12 Oracle Application Server Developer's Guide for Microsoft Office Interoperability



Part III
Appendixes

Part III contains the following appendix:

■ Appendix A, "Code Examples"





Code Examples A-1

A
Code Examples

This appendix contains the following sections:

■ Contents of the AutoLoanSmartDocument.cs File

■ Contents of the ManagedManifest.xml File for Chapter 4

■ Contents of the ManagedManifest.xml File for Chapter 6

■ Contents of the AutoLoanTypes.xsd File

■ Contents of the SecureDocument.xsd File

■ Contents of the SecureSmartDocument.cs File

■ Contents of the UsernameTokenDialog.cs File

A.1 Contents of the AutoLoanSmartDocument.cs File
Example A–1 shows the contents of the AutoLoanSmartDocument.cs file. See 
Section 4.3.3, "Creating a Smart Document Form" for more details.

Example A–1 AutoLoanSmartDocument.cs

using System;
using System.IO;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using Microsoft.Office.Interop.SmartTag;
using Microsoft.Office.Interop.Word;

namespace AutoLoanSmartDocument
{
   //BASE CLASS
   public class clsActions : Microsoft.Office.Interop.SmartTag.ISmartDocument
   {
      //CONSTANTS
      //You need one constant for the schema namespace, one constant for each 
      //of the schema elements for which you want to provide smart document 
controls
      //and actions, and one constant for the total number of schema elements
      //for which there are associated actions.
      //Because XML is case-sensitive, the values
      //of these constants must be exact in both spelling and case.
      //Namespace constant
      const String cNAMESPACE = "http://www.autoloan.com/ns/autoloan";
      //Element constants



Contents of the AutoLoanSmartDocument.cs File

A-2 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

      const String cAutoLoanRootElemName = cNAMESPACE + "#loanApplication";
      //Number of types (or element constants)
      const Int32 cTYPES = 2;
      public void SmartDocInitialize( string ApplicationName, 
                                      object Document,
                                      string SolutionPath, 
                                      string SolutionRegKeyRoot)
      {
      }
      //SmartDocXMLTypeCount
      public int SmartDocXmlTypeCount
      {
         get
         {
            String message = "SmartDocXmlTypeName" + cTYPES;
            return cTYPES;
         }
      }
      //SmartDocXMLTypeName
      public string get_SmartDocXmlTypeName(int XMLTypeID)
      {
         String strTypeName = "";
         String message = "SmartDocXmlTypeName" + XMLTypeID;
         switch (XMLTypeID) {
               case 1:
                  strTypeName = cAutoLoanRootElemName;
                  break;
               default:
                  break;
         }
         return strTypeName;
      }
      //SmartDocXMLTypeCaption
      public string get_SmartDocXmlTypeCaption(int XMLTypeID, int LocaleID)
      {
         String strTypeCaption = "";
         
         switch (XMLTypeID) {
            case 1:
               strTypeCaption = "Please submit loan application";
               break;
            default:
               break;
         }
         
         return strTypeCaption;
      }
      //ControlCount
      public int get_ControlCount(string XMLTypeName)
      {
         Int32 intNumberOfControls = 0;
          
         switch (XMLTypeName) {
            case cAutoLoanRootElemName:
               intNumberOfControls = 1;
               break;
            default:
               break;
         }
      



Contents of the AutoLoanSmartDocument.cs File

Code Examples A-3

         return intNumberOfControls;
      }
      //ControlID
      //The ControlID for the first control you add will be 1.
      //For more information on specifying the ControlID, see the ControlID 
reference
      //topic in the References section of this SDK.
      public int get_ControlID(string XMLTypeName, int ControlIndex)
      {
         Int32 intControlID = 0;
         switch (XMLTypeName) {
                         
            case cAutoLoanRootElemName:
               intControlID = 1;
               break;
            default:
               break;
         }
    
         return intControlID;
      }
      //ControlNameFromID
      public string get_ControlNameFromID(int ControlID)
      {
         String strControlName = "";
         strControlName = cNAMESPACE + ControlID;
         return strControlName;
      }
      //ControlCaptionFromID
      public string get_ControlCaptionFromID(int ControlID, 
         string ApplicationName, int LocaleID, string Text, 
         string Xml, object Target)
      {
         String strControlCaption = "";
         switch (ControlID){
            case 1:
               strControlCaption = "Submit for Approval";
               break;
            default:
               break;
         }
         return strControlCaption;
      }
      //ControlTypeFromID
      public C_TYPE get_ControlTypeFromID(int ControlID, 
         string ApplicationName, int LocaleID)
      {
         C_TYPE type = new C_TYPE();
         switch (ControlID)
         {
            case 1:
               type = C_TYPE.C_TYPE_BUTTON;
               break;
            default:
               break;
         }
         return type;
      }
      public void PopulateHelpContent(int ControlID, 
         string ApplicationName, int LocaleID, string Text, string Xml, 



Contents of the AutoLoanSmartDocument.cs File

A-4 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

         object Target, Microsoft.Office.Interop.SmartTag.ISmartDocProperties 
Props, ref string Content)
      {
         switch (ControlID)
         {
            case 1:
               Content = "This document is an XML smart document that submits an 
loan application";
               break;
            default:
               break;
         }
      }
      // OnSubmitDocument
      public void InvokeControl(int ControlID, 
         string ApplicationName, object Target, string Text, string Xml, int 
LocaleID)
      {
         try {
            // Get the xml node
            Microsoft.Office.Interop.Word.Range objRange = 
(Microsoft.Office.Interop.Word.Range)Target;
            XMLNode objNode = objRange.XMLNodes[1];
            // MessageBox.Show (objNode.BaseName, "Base name",
// MessageBoxButtons.OKCancel, MessageBoxIcon.Asterisk);
            // MessageBox.Show (objNode.get_XML(true), "Data xml from objNode",
// MessageBoxButtons.OKCancel, MessageBoxIcon.Asterisk);
            // From the xml node, create a AutoLoan object for the web service 
input
            String xmlString = objNode.get_XML(true).ToString();
            // MessageBox.Show (xmlString, "xmlString",
// MessageBoxButtons.OKCancel, MessageBoxIcon.Asterisk);
            XmlDocument doc = new XmlDocument();
            doc.LoadXml(xmlString);
            XmlNode root = doc.DocumentElement;
            // MessageBox.Show (root.ToString(), "loan application",
// MessageBoxButtons.OKCancel, MessageBoxIcon.Asterisk);
            // MessageBox.Show ("Serialization to XML doc success", 
// "My Application", MessageBoxButtons.OKCancel, MessageBoxIcon.Asterisk);
            XmlReader xmlReader = new XmlNodeReader(doc);
            XmlSerializer serializer = new 
XmlSerializer(typeof(LoanApplicationType));
            LoanApplicationType loanApplicationMessage = (LoanApplicationType) 
serializer.Deserialize(xmlReader);
            // MessageBox.Show (loanApplicationMessage.ToString(), "loan 
application", MessageBoxButtons.OKCancel, MessageBoxIcon.Asterisk);
            // MessageBox.Show ("Serialization to input message success", "My 
Application", MessageBoxButtons.OKCancel, MessageBoxIcon.Asterisk);
            // Invoke the web service
            AutoLoanFlowBinding autoLoanFlowBindingProxy = new 
AutoLoanFlowBinding();
            autoLoanFlowBindingProxy.initiate(loanApplicationMessage);
            MessageBox.Show ("The loan application was successfully submitted for 
approval", 
                             "Application Submission Status",
                             MessageBoxButtons.OKCancel, MessageBoxIcon.Asterisk);
         } catch(XmlException xe){
           MessageBox.Show (xe.Message, "XML Parse Error", 
                            MessageBoxButtons.OK, MessageBoxIcon.Error);
         } catch(InvalidOperationException ioe){



Contents of the AutoLoanSmartDocument.cs File

Code Examples A-5

           MessageBox.Show (ioe.InnerException.Message, "XML Serialization Error", 
                            MessageBoxButtons.OK, MessageBoxIcon.Error);
         } catch(Exception ioe){
           MessageBox.Show (ioe.Message, "XML Serialization Error", 
                            MessageBoxButtons.OK, MessageBoxIcon.Error);
         }
      }
      public void PopulateCheckbox(int ControlID, string ApplicationName, 
         int LocaleID, string Text, string Xml, object Target, 
         Microsoft.Office.Interop.SmartTag.ISmartDocProperties Props, ref bool 
Checked) 
      {
         // do nothing
      }
      public void PopulateTextboxContent(int ControlID, string ApplicationName, 
int LocaleID, 
         string Text, string Xml, object Target, 
         Microsoft.Office.Interop.SmartTag.ISmartDocProperties Props, ref string 
Value) 
      {
         // do nothing
      }
      public void PopulateListOrComboContent(int ControlID, string 
ApplicationName, 
         int LocaleID, string Text, string Xml, object Target, 
         Microsoft.Office.Interop.SmartTag.ISmartDocProperties Props, ref 
System.Array List, 
         ref int Count, ref int InitialSelected) 
      {
         switch (ControlID)
         {
            case 101:
                 Count = 6;
                 List.SetValue("AirFare", 1);
                 List.SetValue("Rental", 2);
                 List.SetValue("Hotel", 3);
                 List.SetValue("Meals", 4);
                 List.SetValue("Phone", 5);
                 List.SetValue("Other", 6);
                 InitialSelected = -1;
                 break;
            default:
              break;
         }
      }
      public void OnCheckboxChange(int ControlID, object Target, bool Checked) 
      {
         // do nothing
      }
      public void OnTextboxContentChange(int ControlID, object Target, string 
Value) 
      {
         // do nothing
      }
      public void OnListOrComboSelectChange(int ControlID, object Target, int 
Selected, string Value) 
      {
         switch (ControlID)
         {
            case 101:



Contents of the AutoLoanSmartDocument.cs File

A-6 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

              Range objRange = (Range) Target;
              objRange.XMLNodes[1].Range.Text = Value;
              break;
            default:
              break;
         }
      }
      public void PopulateDocumentFragment(int ControlID, string ApplicationName, 
         int LocaleID, string Text, string Xml, object Target, 
         Microsoft.Office.Interop.SmartTag.ISmartDocProperties Props, 
         ref string DocumentFragment) 
      {
         // do nothing
      }
      public void PopulateActiveXProps(int ControlID, string ApplicationName, 
         int LocaleID, string Text, string Xml, object Target, 
         Microsoft.Office.Interop.SmartTag.ISmartDocProperties Props, 
         Microsoft.Office.Interop.SmartTag.ISmartDocProperties ActiveXPropBag) 
      {
         // do nothing
      }
      public void PopulateImage(int ControlID, string ApplicationName, int 
LocaleID, 
         string Text, string Xml, object Target, 
         Microsoft.Office.Interop.SmartTag.ISmartDocProperties Props, 
         ref string ImageSrc) 
      {
         // do nothing
      }
      public void ImageClick(int ControlID, string ApplicationName, object Target, 
         string Text, string Xml, int LocaleID, int XCoordinate, int YCoordinate) 
      {
         // do nothing
      }
      public void PopulateRadioGroup(int ControlID, string ApplicationName, 
         int LocaleID, string Text, string Xml, object Target, 
         Microsoft.Office.Interop.SmartTag.ISmartDocProperties Props, 
         ref System.Array List, ref int Count, ref int InitialSelected) 
      {
         // do nothing
      }
      public void OnRadioGroupSelectChange(int ControlID, object Target, int 
Selected, string Value) 
      {
         // do nothing
      }
      public void OnPaneUpdateComplete(object Document) 
      {
         // do nothing
      }
      public void PopulateOther(int ControlID, string ApplicationName, 
         int LocaleID, string Text, string Xml, object Target, 
         Microsoft.Office.Interop.SmartTag.ISmartDocProperties Props) 
      {
         // do nothing
      }
   }
}



Contents of the ManagedManifest.xml File for Chapter 6

Code Examples A-7

A.2 Contents of the ManagedManifest.xml File for Chapter 4
Example A–2 shows the contents of the ManagedManifest.xml file. See 
Section 4.3.3, "Creating a Smart Document Form" for more details.

Example A–2 ManagedManifest.xml for Chapter 4

<SD:manifest 
xmlns:SD="http://schemas.microsoft.com/office/xmlexpansionpacks/2003">
  <SD:version>1.1</SD:version>
  <SD:updateFrequency>20160</SD:updateFrequency>
  <SD:uri>http://www.autoloan.com/ns/autoloan</SD:uri>
  <SD:solution>
    <SD:solutionID>AutoLoanSmartDocument.clsActions</SD:solutionID>
    <SD:type>smartDocument</SD:type>
    <SD:alias lcid="*">Smart Word Document to submit loan application for a 
car</SD:alias>
    <SD:file>
      <SD:type>solutionActionHandler</SD:type>
      <SD:version>1.0</SD:version>
      <SD:filePath>AutoLoanSmartDocument.dll</SD:filePath>
      <SD:CLSNAME>AutoLoanSmartDocument.clsActions</SD:CLSNAME>
      <SD:runFromServer>True</SD:runFromServer>
      <SD:managed/>
    </SD:file>
  </SD:solution>
  <SD:solution>
    <SD:solutionID>schema</SD:solutionID>
    <SD:type>schema</SD:type>
    <SD:alias lcid="*">Sample schema</SD:alias>
    <SD:file>
      <SD:type>schema</SD:type>
      <SD:version>1.0</SD:version>
      <SD:filePath>AutoLoanTypes.xsd</SD:filePath>
      <SD:runFromServer>True</SD:runFromServer>
    </SD:file>
  </SD:solution>
</SD:manifest>

A.3 Contents of the ManagedManifest.xml File for Chapter 6
Example A–3 shows the contents of the ManagedManifest.xml file. See 
Section 6.3.4, "Attaching the XML Schema and the Expansion Pack to the Smart 
Document" for more details.

Example A–3 ManagedManifest.xml for Chapter 6

<SD:manifest 
xmlns:SD="http://schemas.microsoft.com/office/xmlexpansionpacks/2003">
  <SD:version>1.1</SD:version>
  <SD:updateFrequency>20160</SD:updateFrequency>
  <SD:uri>http://xmlns.oracle.com/SecureSmartDocument</SD:uri>
  <SD:solution>
    <SD:solutionID>SecureSmartDocument.clsActions</SD:solutionID>
    <SD:type>smartDocument</SD:type>
    <SD:alias lcid="*">Smart Word Document </SD:alias>
    <SD:file>
      <SD:type>solutionActionHandler</SD:type>
      <SD:version>1.0</SD:version>



Contents of the AutoLoanTypes.xsd File

A-8 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

      <SD:filePath>SecureDoc.dll</SD:filePath>
      <SD:CLSNAME>SecureSmartDocument.clsActions</SD:CLSNAME>
      <SD:runFromServer>True</SD:runFromServer>
      <SD:managed/>
    </SD:file>
  </SD:solution>
  <SD:solution>
    <SD:solutionID>schema</SD:solutionID>
    <SD:type>schema</SD:type>
    <SD:alias lcid="*">Sample schema</SD:alias>
    <SD:file>
      <SD:type>schema</SD:type>
      <SD:version>1.0</SD:version>
      <SD:filePath>SecureDocument.xsd</SD:filePath>
      <SD:runFromServer>True</SD:runFromServer>
    </SD:file>
  </SD:solution>
</SD:manifest>

A.4 Contents of the AutoLoanTypes.xsd File
Example A–4 shows the contents of the AutoLoanTypes.xsd file. See Section 4.3.3, 
"Creating a Smart Document Form" for more details.

Example A–4 AutoLoanTypes.xsd

<?xml version="1.0"?>
<schema attributeFormDefault="qualified" elementFormDefault="qualified" 
 targetNamespace="http://www.autoloan.com/ns/autoloan" 
 xmlns:tns="http://www.autoloan.com/ns/autoloan"
 xmlns="http://www.w3.org/2001/XMLSchema">
  <element name="loanApplication" type="tns:LoanApplicationType"/>
  <element name="loanOffer" type="tns:LoanOfferType"/>
  <element name="loan" type="tns:LoanType"/>
  <complexType name="LoanType">
      <sequence>
        <element ref="tns:loanApplication"/>
        <element ref="tns:loanOffer"/>
      </sequence>
  </complexType>
  <complexType name="LoanOfferType">
      <sequence>
<element name="providerName" type="string"/>
<element name="selected" type="boolean"/>
<element name="approved" type="boolean"/>
<element name="APR" type="double"/>
      </sequence>
  </complexType>
  <complexType name="LoanApplicationType">
      <sequence>
<element name="SSN" type="string"/>
<element name="email" type="string"/>
<element name="customerName" type="string"/>
<element name="customerAge" type="string"/>
<element name="customerAnnualIncome" type="string"/>
<element name="city" type="string"/>
<element name="state" type="string"/>
<element name="country" type="string"/>
<element name="loanAmount" type="double"/>



Contents of the SecureSmartDocument.cs File

Code Examples A-9

<element name="carMake" type="string"/>
<element name="carModel" type="string"/>
<element name="carYear" type="string"/>
<element name="creditRating" type="int"/>
      </sequence>
  </complexType>
</schema>

A.5 Contents of the SecureDocument.xsd File
Example A–5 shows the contents of the SecureDocument.xsd file. See Section 6.3.4, 
"Attaching the XML Schema and the Expansion Pack to the Smart Document" for more 
details.

Example A–5 SecureDocument.xsd

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<schema targetNamespace="http://xmlns.oracle.com/SecureSmartDocument"
     xmlns:tns="http://xmlns.oracle.com/SecureSmartDocument"
     xmlns="http://www.w3.org/2001/XMLSchema" 
     xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
     elementFormDefault="qualified" blockDefault="#all">
  <element name="Report">
    <complexType>
      <sequence>
        <element name="name" type="string" minOccurs="1" maxOccurs="1"/>
      </sequence>
    </complexType>
  </element>
  
</schema>

A.6 Contents of the SecureSmartDocument.cs File
Example A–6 shows the contents of the SecureSmartDocument.cs file. See 
Section 6.3.3, "Creating the Smart Document DLL" for more details.

Example A–6 SecureSmartDocument.cs

using System;
using System.IO;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using Microsoft.Office.Interop.SmartTag;
using Microsoft.Office.Interop.Word;
using Microsoft.Web.Services2.Security.Tokens;
using Microsoft.Web.Services2.Security.X509;
using Microsoft.Web.Services2.Security;
 
 
namespace SecureSmartDocument
{

Note: For information on how to locate the example files, see 
Accessing the Demonstration Support Files in the Preface.



Contents of the SecureSmartDocument.cs File

A-10 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

 
   //BASE CLASS
   public class clsActions : Microsoft.Office.Interop.SmartTag.ISmartDocument
   {
   
      //CONSTANTS
      //You need one constant for the schema namespace, one constant for each 
      //of the schema elements for which you want to provide smart document 
controls
      //and actions, and one constant for the total number of schema elements
      //for which there are associated actions.
      
      //Because XML is case-sensitive, the values
      //of these constants must be exact in both spelling and case.
      
      //Namespace constant
      const String cNAMESPACE = "http://xmlns.oracle.com/SecureSmartDocument";
      
      //Element constants
      
      const String cElemName = cNAMESPACE + "#name";
      
      //Number of types (or element constants)
      const Int32 cTYPES = 1;
      
      
      public void SmartDocInitialize( string ApplicationName, 
                                      object Document,
                                      string SolutionPath, 
                                      string SolutionRegKeyRoot)
      {
      
      }
      
      //SmartDocXMLTypeCount
      public int SmartDocXmlTypeCount
      {
         get
         {
            String message = "SmartDocXmlTypeName" + cTYPES;
            return cTYPES;
         }
      }
      
      //SmartDocXMLTypeName
      public string get_SmartDocXmlTypeName(int XMLTypeID)
      {
         String strTypeName = "";
       
         String message = "SmartDocXmlTypeName" + XMLTypeID;
       
         switch (XMLTypeID) 
         {
            case 1:
               strTypeName = cElemName;
               break;
              
            default:
               break;
         }



Contents of the SecureSmartDocument.cs File

Code Examples A-11

         return strTypeName;
      }
      
      //SmartDocXMLTypeCaption
      public string get_SmartDocXmlTypeCaption(int XMLTypeID, int LocaleID)
      {
         String strTypeCaption = "";
         
         switch (XMLTypeID) 
         {
            case 1:
               strTypeCaption = "Please Enter Name  ";
               break;
          
            default:
               break;
         }
         return strTypeCaption;
      }
 
      //ControlCount
      public int get_ControlCount(string XMLTypeName)
      {
         Int32 intNumberOfControls = 0;
         
         switch (XMLTypeName) 
         {
            case cElemName:
               intNumberOfControls = 1;
               break;
               
            default:
               break;
         }
         return intNumberOfControls;
      }
 
      //ControlID
      //The ControlID for the first control you add will be 1.
      //For more information on specifying the ControlID, see the ControlID 
reference
      //topic in the References section of this SDK.
      public int get_ControlID(string XMLTypeName, int ControlIndex)
      {
         Int32 intControlID = 0;
 
         switch (XMLTypeName) 
         {
                         
            case cElemName:
               intControlID = 1;
               break;
 
            default:
               break;
         }
         return intControlID;
      }
 
      //ControlNameFromID



Contents of the SecureSmartDocument.cs File

A-12 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

      public string get_ControlNameFromID(int ControlID)
      {
         String strControlName = "";
         strControlName = cNAMESPACE + ControlID;
         return strControlName;
      }
 
      //ControlCaptionFromID
      public string get_ControlCaptionFromID(int ControlID, 
         string ApplicationName, int LocaleID, string Text, 
         string Xml, object Target)
      {
         String strControlCaption = "";
 
         switch (ControlID)
         {
            case 1:
               strControlCaption = "Name";
               break;
 
            default:
               break;
         }
         return strControlCaption;
      }
 
      //ControlTypeFromID
      public C_TYPE get_ControlTypeFromID(int ControlID, 
         string ApplicationName, int LocaleID)
      {
         C_TYPE type = new C_TYPE();
 
         switch (ControlID)
         {
            case 1:
               type = C_TYPE.C_TYPE_TEXTBOX;
               break;
 
            default:
               break;
         }
         return type;
      }
 
      public void PopulateHelpContent(int ControlID, 
         string ApplicationName, int LocaleID, string Text, string Xml, 
         object Target, Microsoft.Office.Interop.SmartTag.ISmartDocProperties 
Props, ref string Content)
      {
         switch (ControlID)
         {
            case 1:
               Content = "This document is an XML smart document";
               break;
         
            default:
               break;
         }
      }
 



Contents of the SecureSmartDocument.cs File

Code Examples A-13

      public void InvokeControl(int ControlID, 
         string ApplicationName, object Target, string Text, string Xml, int 
LocaleID)
      {
         //do nothing 
      }
 
      public void PopulateCheckbox(int ControlID, string ApplicationName, 
         int LocaleID, string Text, string Xml, object Target, 
         Microsoft.Office.Interop.SmartTag.ISmartDocProperties Props, ref bool 
Checked) 
      {
         // do nothing
      }
 
      public void PopulateTextboxContent(int ControlID, string ApplicationName, 
int LocaleID, 
         string Text, string Xml, object Target, 
         Microsoft.Office.Interop.SmartTag.ISmartDocProperties Props, ref string 
Value)
      {
         //do nothing 
      }
 
      public void PopulateListOrComboContent(int ControlID, string 
ApplicationName, 
         int LocaleID, string Text, string Xml, object Target, 
         Microsoft.Office.Interop.SmartTag.ISmartDocProperties Props, ref 
System.Array List, 
         ref int Count, ref int InitialSelected) 
      {
         //do nothing 
      }
 
      public void OnCheckboxChange(int ControlID, object Target, bool Checked) 
      {
         // do nothing
      }
 
      public void OnTextboxContentChange(int ControlID, object Target, string 
Value) 
      {
         // Add code later ….
      }
 
 
      public void OnListOrComboSelectChange(int ControlID, object Target, int 
Selected, string Value) 
      {
      
      }
 
      public void PopulateDocumentFragment(int ControlID, string ApplicationName,
         int LocaleID, string Text, string Xml, object Target,
         Microsoft.Office.Interop.SmartTag.ISmartDocProperties Props,
         ref string DocumentFragment) 
      {
         // do nothing
      }
 



Contents of the UsernameTokenDialog.cs File

A-14 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

      public void PopulateActiveXProps(int ControlID, string ApplicationName, 
         int LocaleID, string Text, string Xml, object Target, 
         Microsoft.Office.Interop.SmartTag.ISmartDocProperties Props, 
         Microsoft.Office.Interop.SmartTag.ISmartDocProperties ActiveXPropBag) 
      {
         // do nothing
      }
 
      public void PopulateImage(int ControlID, string ApplicationName, int 
LocaleID, 
         string Text, string Xml, object Target, 
         Microsoft.Office.Interop.SmartTag.ISmartDocProperties Props, 
         ref string ImageSrc) 
      {
         // do nothing
      }
 
      public void ImageClick(int ControlID, string ApplicationName, object Target,
         string Text, string Xml, int LocaleID, int XCoordinate, int YCoordinate) 
      {
         // do nothing
      }
 
      public void PopulateRadioGroup(int ControlID, string ApplicationName, 
         int LocaleID, string Text, string Xml, object Target, 
         Microsoft.Office.Interop.SmartTag.ISmartDocProperties Props, 
         ref System.Array List, ref int Count, ref int InitialSelected) 
      {
         // do nothing
      }
 
      public void OnRadioGroupSelectChange(int ControlID, object Target, int 
Selected, string Value) 
      {
         // do nothing
      }
 
      public void OnPaneUpdateComplete(object Document) 
      {
         // do nothing
      }
 
      public void PopulateOther(int ControlID, string ApplicationName, 
         int LocaleID, string Text, string Xml, object Target, 
         Microsoft.Office.Interop.SmartTag.ISmartDocProperties Props) 
      {
         // do nothing
      }
   }
}

A.7 Contents of the UsernameTokenDialog.cs File
Example A–7 shows the contents of UsernameTokenDialog.cs. See 
Section 6.3.5.1.1, "Securing the Client Side" for more details.



Contents of the UsernameTokenDialog.cs File

Code Examples A-15

Example A–7 UsernameTokenDialog.cs

using System;
using System.Windows.Forms;
namespace SecureSmartDocument
{
   
   /// <summary>
   /// Dialog.
   /// </summary>
   class UsernameTokenDialog : System.Windows.Forms.Form
   {
      private String uname;
      private System.Windows.Forms.TextBox textBox1;
      private System.Windows.Forms.TextBox textBox2;
      private System.Windows.Forms.Button button1;
      private System.Windows.Forms.Button button2;
      private System.Windows.Forms.Label label1;
      private System.Windows.Forms.Label label2;
      private System.Windows.Forms.Label label3;
      private String pwd;
      public UsernameTokenDialog():base() 
      {
         InitializeComponent();
      }
      private void InitializeComponent()
      {
         this.textBox1 = new System.Windows.Forms.TextBox();
         this.textBox2 = new System.Windows.Forms.TextBox();
         this.button1 = new System.Windows.Forms.Button();
         this.button2 = new System.Windows.Forms.Button();
         this.label1 = new System.Windows.Forms.Label();
         this.label2 = new System.Windows.Forms.Label();
         this.label3 = new System.Windows.Forms.Label();
         this.SuspendLayout();
         // 
         // textBox1
         // 
         this.textBox1.Location = new System.Drawing.Point(120, 104);
         this.textBox1.Name = "textBox1";
         this.textBox1.TabIndex = 0;
         this.textBox1.Text = "";
         this.textBox1.TextChanged += new System.EventHandler(this.textBox1_
TextChanged);
         // 
         // textBox2
         // 
         this.textBox2.Location = new System.Drawing.Point(408, 104);
         this.textBox2.Name = "textBox2";
         this.textBox2.PasswordChar = '*';
         this.textBox2.TabIndex = 1;
         this.textBox2.Text = "";
         this.textBox2.TextChanged += new System.EventHandler(this.textBox2_
TextChanged);
         // 
         // button1

Note: For information on how to locate the example files, see 
Accessing the Demonstration Support Files in the Preface.



Contents of the UsernameTokenDialog.cs File

A-16 Oracle Application Server Developer's Guide for Microsoft Office Interoperability

         // 
         this.button1.Location = new System.Drawing.Point(96, 192);
         this.button1.Name = "button1";
         this.button1.Size = new System.Drawing.Size(88, 32);
         this.button1.TabIndex = 2;
         this.button1.Text = "Ok";
         this.button1.Click += new System.EventHandler(this.button1_Click);
         // 
         // button2
         // 
         this.button2.Location = new System.Drawing.Point(320, 192);
         this.button2.Name = "button2";
         this.button2.TabIndex = 3;
         this.button2.Text = "Cancel";
         this.button2.Click += new System.EventHandler(this.button2_Click);
         // 
         // label1
         // 
         this.label1.Font = new System.Drawing.Font("Microsoft Sans Serif",
                       14.25F, 
               ((System.Drawing.FontStyle)((System.Drawing.FontStyle.Bold |
                                            System.Drawing.FontStyle.Underline))),
               System.Drawing.GraphicsUnit.Point, ((System.Byte)(0)));
         this.label1.Location = new System.Drawing.Point(176, 24);
         this.label1.Name = "label1";
         this.label1.Size = new System.Drawing.Size(216, 48);
         this.label1.TabIndex = 4;
         this.label1.Text = "User Credentials";
         // 
         // label2
         // 
         this.label2.Font = new System.Drawing.Font("Microsoft Sans Serif", 8.25F,
                                      System.Drawing.FontStyle.Bold,
                                      System.Drawing.GraphicsUnit.Point,
                                      ((System.Byte)(0)));
         this.label2.Location = new System.Drawing.Point(16, 104);
         this.label2.Name = "label2";
         this.label2.Size = new System.Drawing.Size(80, 16);
         this.label2.TabIndex = 5;
         this.label2.Text = "Username : ";
         // 
         // label3
         // 
         this.label3.Font = new System.Drawing.Font("Microsoft Sans Serif", 8.25F,
                                      System.Drawing.FontStyle.Bold,
                                      System.Drawing.GraphicsUnit.Point,
                                      ((System.Byte)(0)));
         this.label3.Location = new System.Drawing.Point(296, 104);
         this.label3.Name = "label3";
         this.label3.Size = new System.Drawing.Size(88, 32);
         this.label3.TabIndex = 6;
         this.label3.Text = "Password :";
         // 
         // UsernameTokenDialog
         // 
         this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
         this.ClientSize = new System.Drawing.Size(576, 266);
         this.Controls.Add(this.label3);
         this.Controls.Add(this.label2);
         this.Controls.Add(this.label1);



Contents of the UsernameTokenDialog.cs File

Code Examples A-17

         this.Controls.Add(this.button2);
         this.Controls.Add(this.button1);
         this.Controls.Add(this.textBox2);
         this.Controls.Add(this.textBox1);
         this.Name = "UsernameTokenDialog";
         this.ResumeLayout(false);
      }

      private void button1_Click(object sender, System.EventArgs e)
      {
         Console.WriteLine(" Ok button clicked ");
         uname = textBox1.Text;
         pwd = textBox2.Text;
         Console.WriteLine(" Username : "+ uname + " pwd : " + pwd);

         this.Close();
         this.DialogResult = DialogResult.OK;
      }
 
      private void button2_Click(object sender, System.EventArgs e)
      {
         uname = null;
         pwd = null;
         this.DialogResult = DialogResult.Cancel;
      }
      private void textBox1_TextChanged(object sender, System.EventArgs e)
      {

      }
      private void textBox2_TextChanged(object sender, System.EventArgs e)
      {

      }

      public void setDefaultUsername (String uname) 
      {
         textBox1.Text = uname;
      }
      public String getUsername() 
      {
         return uname;
      }
      public String getPassword() 
      {
         return pwd;
      }
   }
}



Contents of the UsernameTokenDialog.cs File

A-18 Oracle Application Server Developer's Guide for Microsoft Office Interoperability



Index-1

Index

A
action handler, 2-9
Active Directory Connector, 10-3
ad-hoc query, 3-6
alerts

creating alert rules, 7-6
definition, 7-1
sending with links, 7-2

Alerts, sending, 3-4
API, smart tag, 2-10
AssemblyKeyFile attribute, 6-7

B
benefits

Microsoft InfoPath 2003, 2-6
Microsoft Office 2003 Web Services Toolkit, 2-12
Microsoft Office Research and Reference 

Service, 2-12
network deployment of documents, 2-14
smart documents, 2-8
smart tags, 2-9
working with XML schemas, 2-6
XML file formats, 2-3

BPEL process
compiling, 10-14
configuring, 10-12
deploying, 10-14

BPEL process workflow, 4-3
business processes, streamlining and 

automating, 1-4

C
central content repository, 3-4
configuring

BPEL process, 10-12
Microsoft Active Directory synchronization 

profiles, 10-7
organization alerts, 10-10

Create Java Web Service wizard, 3-5
creating synchronizing profiles, 10-7
custom-defined XML schema, 2-5
Custom-defined XML schemas, 2-4
custom-defined XML schemas, 2-6

custom-defined XML structure, 2-6

D
data validation and Web services, 2-5
deployment of the BPEL process, 4-5
difference

smart documents and smart tags, 2-10
smart tags and smart documents, 2-10

dipassistant
configuring Microsoft Active Directory 

profile, 10-7
configuring Oracle Directory Integration and 

Provisioning profile, 10-16
enabling profiles for synchronization, 10-8

directory synchronization, 10-3
documents

publishing via WebDAV, 12-2
WSDL, 5-7, 5-22

E
EJB Web services

developing in JDeveloper, 5-3
enabling profiles for synchronization, 10-8
EXCHGSYNC schema, 10-12
express configuration

about, 10-7
creating synchronization profiles, 10-7

F
fields

adding to templates, 5-10
files

publishing via WebDAV, 12-2
forms

adding fields, 5-10
automatically loading data, 5-16
completing using templates, 5-1
developing in Microsoft InfoPath, 5-17

Forms Builder, 3-3
FormTemplate, 2-3



Index-2

G
getAddress operation, 5-5
GetEmployeeInfo module, 5-12

code for REST services, 5-13

H
hyperlinks

launching enterprise portals, 11-3

I
identitymanagement demonstration folder, 10-4
IdentityNotification, 10-14
implementation, smart tags, 2-9
InfoPath designer, 2-3
InfoPath solution developer, 2-3
interoperability benefits, 1-3
invoking Web services

proxy class, 5-11
VBA code, 5-11

.IQY, 3-6

.IQY format, 8-7
items in WebDAV

publishing, 12-2

J
JAX-RPC Web services

developing in JDeveloper, 5-4
JDeveloper

developing a JAX-RPC Web service, 5-4
EJB Web services, 5-3
embedded OC4J, 5-2
PL/SQL Web services, 5-3

K
knowledge workers, 1-1

L
launching enterprise portals, 11-6
loanApplication element, 4-9

M
manifest

enabling security check, 6-6
signing, 6-7

messaging protocols, 3-4
Metadata Repository, mapping as a Web Folder, 3-4
.MHT files

sending via e-mail, 7-10
Microsoft ActiveX controls, 2-2
Microsoft Excel

viewing OracleBI Discoverer worksheets, 8-4
Web Query format, 8-7

Microsoft Excel 2003 XML format, 2-2
Microsoft Excel lists, 2-5

Microsoft Excel Web Query, 3-6
Microsoft Infopath

developing forms, 5-17
Microsoft InfoPath 2003, 2-3

benefits, 2-6
Microsoft Office

adding portal content, 12-11
components, 1-5
getting started with, 1-4
meeting the need for, 1-3
need for using in an enterprise architecture, 1-1
prerequisites for using, 1-4
Research and Reference Services, 2-11
task panes, 2-11
versions and editions, 1-5

Microsoft Office 2003
enchancements, 2-1

Microsoft Office 2003 .NET Framework software 
development kit, 1-6

Microsoft Office 2003 VBA language references, 1-7
Microsoft Office 2003 Web Services Toolkit, 1-7, 2-12

generating a proxy class, 5-11
Microsoft Office 2003 XML reference schemas, 1-7
Microsoft Office interoperability with Oracle 

Application Server, 3-1
Microsoft Office Schema Tag Lists, 1-8
Microsoft Office WordprocessingML Transform 

Inference Tool, 1-8
Microsoft Office XSLT Inference Tool, 1-8
Microsoft PKI Utilities, 1-8
Microsoft Visual Basic for Applications, 1-8
Microsoft Visual Studio, 1-9

developing applications, 5-2
Microsoft Word

adding form fields, 5-10
creating templates, 5-9

Microsoft Word 2003 task pane, 2-4
Microsoft Word 2003 XML format, 2-2
Microsoft Word template creation, 4-14
Microsoft.Office.Interop.SmartTag.ISmartDocument 

interface, 4-12
MOSTL, 11-7
Multiple Schemas, mapping, 2-5

N
namespaces, 2-5
needs

knowledge workers, 1-2
transaction workers, 1-2

network deployment of documents, 2-13
ns_emails.xml file, 4-4

O
OC4J

in JDeveloper, 5-2
oc4j-ra.xml, 10-12
Office 2003 Update

Redistributable Primary Interop Assemblies, 1-8



Index-3

OLAP, 3-5
Online Analytical Processing, 3-5
Oracle Application Server Forms Services, 3-3
Oracle Application Server Integration B2B, 3-3
Oracle Application Server Integration Business 

Activity Monitoring, 3-4
Oracle Application Server Single Sign-On, 10-2
Oracle Application Server Web Services, 3-4
Oracle Application Server Wireless, 3-5
Oracle BPEL Process Manager, 3-6, 3-8, 4-1, 10-11
Oracle Business Activity Monitoring

creating alert rules, 7-6
creating reports, 7-3
definition, 7-1
Media Sales sample data object, 7-2
sending alerts with links, 7-2
sending reports, 7-10

Oracle Business Intelligence
definition, 8-1
delivering information to Microsoft Excel, 8-1
downloading samples, 8-3

Oracle Business Intelligence Beans, 3-5
Oracle Business Intelligence Discoverer, 3-6
Oracle Calendar, 3-7

access rights, 9-3
meetings, 9-2
real-time conflict checking, 9-2
resource coordination, 9-2
standalone deployment capabilities, 9-3

Oracle Calendar Sync, 9-3
Oracle Collaboration Suite, 3-6
Oracle Collaboration Suite 10g, 3-9
Oracle Collaboration Suite 10g Mobile Access, 3-9
Oracle Collaboration Suite 10g Mobile Data 

Sync, 3-9
Oracle Collaboration Suite 10g Mobile Device 

Management, 3-9
Oracle Collaboration Suite 10g Mobile Push 

Mail, 3-9
Oracle Connector for Outlook, 3-7

AutoPick feature, 9-2
Group View feature, 9-2

Oracle Content Services, 3-7
Oracle Developer Suite, 3-5
Oracle Directory Integration and Provisioning, 10-2
Oracle Drive, 3-4, 3-7, 9-4

WebDAV and, 12-4, 12-8
Oracle Files and WebDAV, 12-2
Oracle Identity Management, 3-8
Oracle Internet Directory, 3-8, 10-2
Oracle JDeveloper, 3-8
Oracle JDeveloper, creating enterprise Web 

services, 3-4
Oracle Mobile Collaboration, 3-9
Oracle Real-Time Collaboration products

Oracle Messenger, 9-4
Oracle Real-Time Collaboration Add-in for 

Microsoft Office, 9-4
Oracle Web Conferencing, 9-3

Oracle Reports, 3-9

Oracle Secure Enterprise Search, 3-9
Oracle Xellerate, 3-10
Oracle XML Publisher, 3-10
OracleAS Forms Services, 3-3
OracleAS Integration B2B user interface tool, 3-3
OracleAS Integration Business Activity Monitoring 

architecture, 3-4
OracleAS Metadata Repository, 12-2
OracleAS Wireless, 3-5
OracleBI Beans, 3-5
OracleBI Beans application, 3-5
OracleBI Discoverer

definition, 8-1
e-mailing worksheets, 8-2
exporting crosstabs, 8-2
exporting in Microsoft Excel Web Query 

format, 8-7
exporting to Microsoft Excel, 8-2, 8-4
sending worksheets via e-mail, 8-7

OracleBI Discoverer workbook, 3-6
OracleBI Spreadsheet Add-In

adding Microsoft Excel charts, 8-14
benefits, 8-9
creating queries in Microsoft Excel, 8-2
definition, 8-1
downloading, 8-3
using Microsoft Excel calculations, 8-14
using Microsoft Excel formatting, 8-13

oradav.conf file, 12-3, 12-4
ORG_ALERTS table, 10-12
overview

creating organization alerts, 10-1
provisioning identity information, 10-1
smart documents, 4-1, 6-1

P
PKI, 6-10
PL/SQL Web services

developing in JDeveloper, 5-3
portal schema, 3-4
portal schema, mapping as a drive, 3-4
portals

launching from buttons, 11-4
launching from smart document, 11-2
launching from static hyperlink, 11-3
launching using smart tags, 11-6
launching using VBA script, 11-4

prerequisites
creating organization alerts, 10-4
for securing smart documents, 6-1
for securing Web services, 6-1
provisioning identity information, 10-4

Primary Interop Assemblies, 2-13
profiles

creating, 10-7
enabling for synchronization, 10-8

proxy class
generating with Microsoft Office 2003 Web 

Services Toolkit, 5-11



Index-4

Public Key Infrastructure
See PKI

R
Real Time Collaboration Add-in for Outlook, 3-7
recognizer, 2-9
reports

creating in Oracle Business Activity 
Monitoring, 7-3

.MHT format, 7-10
sending via e-mail, 7-10

Representational State Transfer Web services 
architecture, 3-4

REST, 3-4
REST services

enabling, 5-7
GetEmployeeInfo module, 5-13
SetEmployeeInfo module, 5-13

REST Web services, uses XML documents, 3-5

S
schema library, 2-4
seamless interoperability capabilities, 3-1
SecureDoc.dll file, 6-8
setAddress operation, 5-5
SetEmployeeInfo module, 5-13

code for REST services, 5-13
signcode utility, 6-7
smart clients, 2-10

connectivity, 2-10
local resources, 2-10
offline capabilities, 2-10

smart document DLL, 6-3
smart document form, 4-6
smart document solutions, 2-8
smart documents, 1-5, 2-1, 2-6

automatically loading data, 5-16
definition, 5-1
developing, 5-3
embedding static hyperlinks, 11-3
features, 2-6
function, 2-7
inserting buttons, 11-4
launching portals, 11-2
overview, 4-1, 6-1
using smart tags, 11-6
writing VBA code, 11-4

smart documents and smart tags, difference, 2-10
smart documents benefits, 2-8
smart documents development techniques

Information Bridge Framework, 2-7
ISmartDocument Interface, 2-7
Visual Studio Tools for Microsoft Office, 2-7

smart documents, developing, 2-7
smart tag application programming interface, 2-10
smart tag recognizer, 2-10
smart tag technology, 2-9
smart tags, 1-5, 2-1, 2-8, 11-6

action handler, 2-9
benefits, 2-9
definition, 11-6
developing, 11-7
enabling, 11-8
limitations in forms, 11-10
recognizer, 2-9
security level, 11-10
using, 11-9

smart tags and smart documents, difference, 2-10
smart tags technologies

COM DLLs, 2-9
MOSTL, 2-9
Primary Interop Assemblies, 2-9
XML files with Microsoft Office Smart Tag 

Lists, 2-9
smart tags, implementing, 2-9
smart technology, 2-6
sn utility, 6-7
sn.exe file, 6-7
solutions, smart document, 2-8
SpreadsheetML, 2-2, 2-5
synchronizing identity information, 10-5

T
technologies, smart tags

COM DLLs, 2-9
templates

adding form fields, 5-10
automatically loading data, 5-16
completing forms, 5-1
creating in Microsoft Word, 5-9
editing in Microsoft Word, 5-23, 11-10
mapping fields to Web service parameters, 5-14

transaction workers, 1-1

U
URLs

WebDAV and, 12-3
user experience, simplifying and improving, 1-3
user information, synchronizing with enterprise 

information, 1-4

V
VBA code

launching enterprise portals, 11-4
Visual Basic Editor

gnerating proxy class, 5-11
Visual data mapping tool, 2-5

W
W3C-compliant XML schema, 2-5
Web architecture, 3-4
Web Folders

adding portal content, 12-8
Web service proxy

generating, 6-4



Index-5

securing, using Username token, 6-8
securing, using X.509 token, 6-10

Web services
completing forms, 5-1
creating and deploying, 6-3
developing for Microsoft InfoPath, 5-17
developing in JDeveloper, 5-4
securing communication, 6-8

Web Services Enhancements, 1-7, 6-4
WebDAV

clients
Microsoft Office 2000, 12-11
Oracle Drive, 12-4
Web Folders, 12-8

configuring, 12-3
configuring client, 12-3
multiple logins and, 12-4
Oracle Files and, 12-2
oradav.conf file, 12-3, 12-4
URL for accessing portal, 12-3

WebDAV tools, 3-4
WebUtil, 3-3
WordprocessingML, 2-2, 2-4
workers

knowledge, 1-1
transaction, 1-1

WSDL document, 5-7
endpoint, 5-22

X
X.509 Certificate, 6-11
X.509 Certificate Tool, 6-15
X.509 token, 6-10
XML elements for e-mail server configuration, 4-4
XML Expansion Pack, 6-6
XML expansion pack, 2-7
XML reference schemas, 2-2
XML Schema, 6-5
XML schema

custom-defined, 2-5
XML Schema Definition file, 6-2
XML schema, custom-defined, 2-5, 2-6
XML Schemas, 2-2
XML structure

custom-defined, 2-6
XML transform, 2-3
XMLSign.exe file, 6-7
.xsf file, 2-3
XSLT, 2-3
XSLT files, 2-5



Index-6


	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions
	Accessing the Demonstration Support Files

	Part I Overview
	1 Microsoft Office in the Enterprise Architecture
	1.1 Understanding the Need for Using Microsoft Office in an Enterprise Architecture
	1.2 Meeting the Need for Using Microsoft Office in an Enterprise Environment
	1.2.1 Simplifying and Improving the User Experience
	1.2.2 Streamlining and Automating Enterprise Business Processes
	1.2.3 Synchronizing User Information with Enterprise Information

	1.3 Getting Started with Microsoft Office
	1.3.1 Microsoft Office Versions and Editions
	1.3.2 Microsoft Office Components
	1.3.3 Microsoft Software Development Kits, Utilities, and References
	1.3.4 Coding Languages Supported in Microsoft Office 2003


	2 Understanding Microsoft Office 2003 Extensibility Technologies
	2.1 XML Schemas
	2.1.1 XML Reference Schemas
	2.1.2 Custom-Defined XML Schemas

	2.2 Smart Technology
	2.2.1 Smart Documents
	2.2.2 Smart Tags
	2.2.3 Difference Between Smart Documents and Smart Tags
	2.2.4 Smart Clients

	2.3 Task Panes
	2.4 Research and Reference Services
	2.5 Microsoft Office 2003 Web Services Toolkit
	2.6 Primary Interop Assemblies
	2.7 Network Deployment of Documents

	3 Understanding Oracle Application Server Interoperability with Microsoft Office
	3.1 Overview of Microsoft Office Interoperability with Oracle Application Server
	3.2 Oracle Application Server Component Support for Microsoft Office Interoperability
	3.2.1 Oracle Application Server Forms Services
	3.2.2 Oracle Application Server Integration B2B
	3.2.3 Oracle Application Server Integration Business Activity Monitoring
	3.2.4 Oracle Application Server Portal
	3.2.5 Oracle Application Server Web Services
	3.2.6 Oracle Application Server Wireless
	3.2.7 Oracle Business Intelligence Beans
	3.2.8 Oracle Business Intelligence Discoverer
	3.2.9 Oracle BPEL Process Manager
	3.2.10 Oracle Collaboration Suite
	3.2.10.1 Oracle Calendar
	3.2.10.2 Oracle Connector for Outlook
	3.2.10.3 Oracle Drive
	3.2.10.4 Real Time Collaboration Add-in for Outlook

	3.2.11 Oracle Identity Management
	3.2.12 Oracle Internet Directory
	3.2.13 Oracle JDeveloper
	3.2.14 Oracle Mobile Collaboration
	3.2.15 Oracle Reports
	3.2.16 Oracle Secure Enterprise Search
	3.2.17 Oracle Xellerate
	3.2.18 Oracle XML Publisher



	Part II Building Microsoft Office Interoperability Solutions
	4 Creating Smart Documents That Interact with Self-Service Business Processes
	4.1 Overview
	4.2 Prerequisites
	4.3 Step-by-Step Procedures
	4.3.1 Configuring the E-Mail Server
	4.3.2 Deploying the BPEL Process
	4.3.3 Creating a Smart Document Form
	4.3.4 Creating the Microsoft Word Template for the Loan Result Notification
	4.3.5 Validating the Solution

	4.4 Related Documentation

	5 Completing Forms and Entering Data Using Microsoft Office
	5.1 Overview
	5.2 Prerequisites
	5.3 Step-by-Step Procedures
	5.3.1 Developing a Smart Document to Retrieve and Update Enterprise Information
	5.3.1.1 Developing a Web Service in Oracle JDeveloper
	5.3.1.2 Defining a Template Document in Microsoft Word
	5.3.1.3 Generating a Proxy Class with Microsoft Office 2003 Web Services Toolkit
	5.3.1.4 Mapping Template Fields to Web Service Parameters
	5.3.1.5 Automatically Loading and Saving Web Service Data

	5.3.2 Developing a Microsoft InfoPath Form
	5.3.2.1 Developing the Web Service in Oracle JDeveloper
	5.3.2.2 Defining a Form in Microsoft InfoPath


	5.4 Troubleshooting
	5.5 Related Documentation

	6 Securing Smart Documents and Web Services
	6.1 Overview
	6.2 Prerequisites
	6.3 Step-by-Step Procedures
	6.3.1 Copying the Demonstration Files
	6.3.2 Creating and Deploying the Web Service
	6.3.3 Creating the Smart Document DLL
	6.3.4 Attaching the XML Schema and the Expansion Pack to the Smart Document
	6.3.4.1 Attaching the XML Expansion Pack
	6.3.4.2 Enabling Manifest Security Check
	6.3.4.3 Signing the Manifest Using XMLSign.exe

	6.3.5 Securing Communication Between the Smart Document and the Web Service
	6.3.5.1 Securing the Web Service Proxy and the Web Service Using Username Token
	6.3.5.1.1 Securing the Client Side
	6.3.5.1.2 Securing the Web Service on the Server Side

	6.3.5.2 Securing the Web Service Proxy and the Web Service Using X.509 Token
	6.3.5.2.1 Generating and Deploying Public and Private Keys
	6.3.5.2.2 Securing the Client Side
	6.3.5.2.3 Securing the Web Service on the Server Side

	6.3.5.3 Securing the Web Service using OWSM Gateway
	6.3.5.4 Integrating with Oracle Identity Management

	6.3.6 Testing the Smart Document Configuration

	6.4 Related Documentation

	7 Delivering Business Activity Monitoring Alerts and Reports to Microsoft Outlook
	7.1 Overview
	7.2 Prerequisites
	7.3 Step-by-Step Procedures
	7.3.1 Sending E-Mail Alerts with Links
	7.3.1.1 Creating a Report
	7.3.1.2 Creating an Alert Rule
	7.3.1.3 Verifying That the Alert Is Working

	7.3.2 Sending Reports as E-Mail Attachments
	7.3.2.1 E-Mailing the Report
	7.3.2.2 Verifying That the Report Was Sent


	7.4 Related Documentation

	8 Delivering Business Intelligence Information to Microsoft Excel
	8.1 Overview
	8.2 Prerequisites
	8.3 Step-by-Step Procedures
	8.3.1 Pushing Business Intelligence Information to Microsoft Excel
	8.3.1.1 Saving an OracleBI Discoverer Worksheet as a Microsoft Excel Worksheet
	8.3.1.2 Saving an OracleBI Discoverer Workbook as a Microsoft Excel Web Query
	8.3.1.3 Sending a Worksheet as an E-Mail Attachment

	8.3.2 Pulling Live Data into Microsoft Excel

	8.4 Related Documentation

	9 Managing Tasks and Collaborating in Microsoft Outlook
	9.1 Overview
	9.1.1 Oracle Collaboration Suite 10g Calendar
	9.1.2 Oracle Connector for Outlook
	9.1.3 Oracle Collaboration Suite 10g Real-Time Collaboration
	9.1.4 Oracle Drive

	9.2 Prerequisites
	9.3 Step-by-Step Procedures
	9.3.1 Creating Tasks
	9.3.2 Scheduling Meetings
	9.3.3 Viewing Contact Information
	9.3.4 Chatting with Other Users
	9.3.5 Starting an Instant Conference
	9.3.6 Viewing Conference Archives

	9.4 Related Documentation

	10 Provisioning User Identity Information and Alerting Microsoft Outlook Contacts
	10.1 Overview
	10.2 Prerequisites
	10.3 Step-by-Step Procedures
	10.3.1 Procedure 1: Synchronizing Enterprise Identity Information
	10.3.1.1 Configuring Microsoft Active Directory Synchronization Profiles for Microsoft Exchange
	10.3.1.2 Enabling the Profiles for Synchronization
	10.3.1.3 Verifying the Synchronization

	10.3.2 Procedure 2: Configuring BPEL-Based Organization Alerts
	10.3.2.1 Configuring the BPEL Process
	10.3.2.2 Configuring Oracle Directory Integration Platform Profile
	10.3.2.3 Testing the Identity Alerting Configuration


	10.4 Troubleshooting
	10.5 Related Documentation

	11 Accessing in-Context Web Information and Invoking an Enterprise Portal
	11.1 Overview
	11.2 Prerequisites
	11.3 Step-by-Step Procedures
	11.3.1 Embedding a Static Hyperlink to Invoke an Enterprise Portal
	11.3.2 Using VBA Code to Invoke an Enterprise Portal
	11.3.3 Using Smart Tags to Invoke an Enterprise Portal

	11.4 Troubleshooting
	11.5 Related Documentation

	12 Saving Microsoft Office Documents to the OracleAS Portal Content Repository
	12.1 Overview
	12.2 Prerequisites
	12.3 Step-by-Step Procedures
	12.3.1 Setting Up OracleAS Portal for WebDAV
	12.3.2 Setting Up Your WebDAV Client
	12.3.3 Using Oracle Drive as a WebDAV Client
	12.3.4 Using Web Folders as a WebDAV Client
	12.3.5 Using Microsoft Office as a WebDAV Client

	12.4 Troubleshooting
	12.5 Related Documentation

	13 Delivering Enterprise Reports to Microsoft Office with Oracle Reports
	13.1 Overview
	13.2 Prerequisites
	13.3 Step-by-Step Procedures
	13.3.1 Creating a Report
	13.3.2 Displaying Report Output in Microsoft Excel
	13.3.3 Displaying Report Output in Microsoft Word
	13.3.4 Sending Report Output to E-Mail Recipients

	13.4 Troubleshooting
	13.5 Related Documentation


	Part III Appendixes
	A Code Examples
	A.1 Contents of the AutoLoanSmartDocument.cs File
	A.2 Contents of the ManagedManifest.xml File for Chapter 4
	A.3 Contents of the ManagedManifest.xml File for Chapter 6
	A.4 Contents of the AutoLoanTypes.xsd File
	A.5 Contents of the SecureDocument.xsd File
	A.6 Contents of the SecureSmartDocument.cs File
	A.7 Contents of the UsernameTokenDialog.cs File


	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X


