ORACLE

Oracle® Application Server
Globalization Guide

10g Release 3 (10.1.3.1.0)
B31263-01

July 2006

Oracle Application Server Globalization Guide, 10g Release 3 (10.1.3.1.0)
B31263-01

Copyright © 2002, 2006, Oracle. All rights reserved.

Primary Author: Caroline Johnston

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

Pl T AC E oottt ettt ettt ettt ettt Xi
N [0 [1= [T Xi
DocuMENtation ACCESSIDITITYciiiiieiiee et Xi
RN (Lo M B Te Yot U g 01T] £=1 A To) o USRI Xii
(OF0] 1VZ=T 011 To] o IR Xii

Overview of Globalization in Oracle Application Server

Internet Applications GIobaliZatioNccoiiiiii i 1-1
GlODAlTIZAION COMNCEPLS....ciiiiictiiiitet ettt bt b et b bbbttt 1-1
LLOCAIE ...ttt b h e E R R R R b et b e Rt b et eb b e bt e b 1-1
(O g U Tod 1= =1 AT 1-2
L8 1 oleTo (-SSRSO STUSUR PRSP 1-2
Designing a Global Internet APPLICALION...........ccooiiiiiiiie s 1-2
Monolingual Internet Application ArChiteCtUIE.........ocvivi i 1-2
Multilingual Internet Application ArchiteCtureccoocv oo 1-4
Overview of Developing Global Internet AppliCatioNnsS.........cocoiiiiiiieiin e 1-5

Developing Locale Awareness

Developing Locale Awareness in Global Internet Applications ..., 2-1
Locale Awareness in J2EE and Internet ApplicationsS..........ccoovveieiieiice e 2-3
Locale Awareness in Java APPHICALIONScccveiieiieiiii e 2-4
Locale Awareness in Perl and C/C++ APPlICAtIONS........ccceiiiriiiiiineccseseee e 2-5
Locale Awareness in SQL and PL/SQL ApPPliCatioNScccovvvieiieieni e 2-5
Locale Awareness in Oracle Application Server Component Applications...........c.ccccovniinnne. 2-7
Locale Awareness in Oracle Application Server Wireless ServiCes.........ccoocvvveveriviiniesivereennn 2-7
Locale Awareness in Oracle Application Server FOrms SErViCeS........ccovvvvveverveiesiesinreseenieennnes 2-7
Locale Awareness in Oracle REPOIMS.........cccciiiiiieic st ere s 2-9
Locale Awareness in Oracle Business Intelligence DiSCOVErErcouviiiineriinieneiinisenienens 2-11

Oracle Globalization Development Kit

Overview of the Oracle Globalization Development Kitccccccooviiiiiiinvinie e 3-1
L7) S © T U1 o] 2 - o (SR 3-3
Modifying the HelloWorld APPLICAtioNcccooiiiiii i 3-4

GDK Application Configuration FIle ..ot 3-10

oTot= 1 LoRt ol o P 7= ol = o 1O 3-11
PAGE-CRAISEL ...ttt bbb bbbt b st b etk eb bbbtk bbbt bt nre e 3-11
APPHCALION-TOCAIES. ..o et be e ste s be e ae st esre e e e nreens 3-12
10CAIE-AELEIMINE-TUIE.......ocieee ettt st se e enee e et s 3-12
oTot= 1 LoR o F= U= Vg =] (=T g = Vo 1= SRR 3-13

[0 [= TS ST Vo T= T o 10 L o | TSP 3-14
UFT-FEWIEITE-TUIE ...t bbbt ettt ettt et sne et e 3-15
GDK Application Framework fOr J2EE ..ot 3-17
Making the GDK Framework Available to J2EE Applicationsccocooevvinieniicncienniee 3-18
Integrating Locale Sources into the GDK Framework..........ccccvivviieiiiniienneieee e 3-19
Getting the User Locale From the GDK FrameworkK ... 3-20
Implementing Locale Awareness Using the GDK Localizercccocvvvveviii e, 3-22
Defining the Supported Application Locales in the GDK............ccccoeiniininncieneee e 3-23
Handling Non-ASCII Input and Output in the GDK Frameworkccccccvvevveivenieceinene, 3-24
Managing Localized Content in the GDK ... 3-25
Managing Localized Content in JSPs and Java ServIets..........cccocvviiiieincinccncicieee 3-26
Managing Localized Content in StatiC FilesS...........cccoov i 3-27

GDK JAVA AP ..ottt he bbb e bt et e bbbt b b et et b e nnesaes 3-28
Oracle Locale Information in the GDK ... e 3-28
Oracle Locale Mapping in the GDK ... 3-29
Oracle Character Set Conversion in the GDKcccooiiiiiiiiiiie e 3-29
Oracle Date, Number, and Monetary Formats in the GDKccccocevviveiencinsieinn e 3-30
Oracle Binary and Linguistic SOrts in the GDKc..cccoiiiiiiiiiccece e 3-31
Oracle Language and Character Set Detection in the GDKccccoveiviviie i 3-32
Oracle Translated Locale and Time Zone Names in the GDKcccocooiiiiiiiiiinc e 3-33
Using the GDK for E-mail ProgramiS.........cccviiieieiieiiiicsec st ste e aesse e e 3-34
GDK for Java Supplied Packages and ClaSSES.........ccviiiiiiiiieieieee e 3-35
OFACIEILBN.ICSA ... bbbt b et e bttt et bbb bbb e 3-35

Lo T - Tod [T TR o T o T TSRS 3-35
OFACIEILBN.SEIVIET ...ttt sttt bbbt ae e 3-35

oL Tod [T TR o T8 =)t TSRS 3-36
OFACIEILBN.ULIL ... bbb bt et b et bt aenn 3-36
GDK for PL/SQL SUupplied PacKagesccooviiiiiiciece st 3-36

Implementing HTML Features

Implementing HTML Features for Global Applicationsccccccvii i, 4-1
Formatting HTML Pages to Accommodate Text in Different Languagesccocooverviennenienen. 4-1
ENCOAING HTIML PAQES......ciicieie ettt sttt te ettt sbe st e s beate e s be et e beenbenbeenbesreaneenaeas 4-2
Choosing an HTML Page Encoding for Monolingual Applications..........cccceecvvvvvivevivcceciiecene, 4-2
Choosing an HTML Page Encoding for Multilingual Applications...........c.ccccoviinniinicinenen. 4-3
Specifying the Page Encoding for HTML Pages........cccccviuiiiiiieiiieiec e 4-3
Specifying the Encoding in the HTTP Header.........c.coviiiiiiiiiciecec e 4-3
Specifying the Encoding in the HTML Page Header............ccccccvveveiveivcce s 4-4
Specifying the Page Encoding in Java Serviets and Java Server Pages.......cccccoovvvvverenievevnnns 4-4
Specifying the Page Encoding in Oracle PL/SQL Server Pagescccccvevveieiieiiiieeseesee e 4-5
Specifying the Page Encoding in PL/SQL for Monolingual Environments...................... 4-5

Specifying the Page ENCOAING iN PEIToo.oiiiiiiii s 4-6
Specifying the Page Encoding in Oracle Application Server Mobile Services Applications.. 4-7

Specifying the Page Encoding in Oracle Web Cache Enabled Applications...........c.ccccceerueee. 4-7
Specifying the Page Encoding in Oracle Application Server Reports Services Applications. 4-8
Specifying the Page Encoding in JSP Reports for the Web ..., 4-8
Specifying the Page Encoding in HTML for Oracle Application Server Reports Services......

4-8
Specifying the Page Encoding in XML for Oracle REPOIS.......cccccoeveveie e v 4-8
ENCOOING URLS ..ottt bbb bbbt bbbt e 4-9
(S aTeto o [T Lo I U L nd IR T - 1V - F SR 4-9
ENCOdIiNg URLS IN PLZSQL ..ottt ettt a e naeanee e 4-10
ENCOAING URLS TN PEIT ...ttt 4-10
Handling HTML FOM INPULooiiccen et era et se et 4-11
Handling HTML FOrm INPUL N JAVAc.ooiiiiiicee e 4-11
Handling HTML Form INput in PLZSQLooviiiiie et 4-12
Handling HTML Form Input in PL/ZSQL for Monolingual Applications....................... 4-12
Handling HTML Form Input in PL/ZSQL for Multilingual Applications........................ 4-13
Handling HTML FOrm INPUL IN Perl.........ccoiiiiiiicne et 4-13
Handling Form Input in Oracle Application Server Mobile Services Applications 4-13
(D= Toto Lo [T 0o I oo I I I o 1= T [T TSRS 4-14
Decoding HTTP Headers from Oracle Single Sign-On ..o 4-14

Decoding String-type Mobile Context Information Headers in Oracle Application Server
Wireless Services 4-15

Organizing the Content of HTML Pages for Translationc.ccccccvvivi i 4-15
Translation Guidelines for HTML Page CONtENTcccooiiiiriiiiiiieece e 4-16
Organizing Static Files for Translation ..o iir i 4-16
Organizing Translatable Static Strings for Java Servlets and Java Server Pages................... 4-17
Organizing Translatable Static Strings in C/C++ and Perlccccoovveiiiiciiicic e, 4-19
Organizing Translatable Static Strings in Message Tables ... 4-20
Organizing Translatable Dynamic Content in Application Schema.........ccccccccceviiieveieenee, 4-21

Using a Centralized Database

Using a Centralized Database and Accessing the Database Serverc.ccocvienniiiencienns 5-1
Using JDBC t0 ACCESS the DaAtabaseccciuveiiiiciisie et ena e 5-2
Using PL/SQL to AcCeSS the Database ... e 5-3
Using Perl to Access the Databasecocoviiiiiiiicc e 5-3
Using C/C++ to AcCess the Database..........coviviiiiii e 5-4
Using the OCI API to Access the Databasecccciveiiiicieii e 5-5
Using the Unicode API Provided with OCI to Access the Database............cccccvevvievienieninennnn, 5-5
Using Unicode Bind and Define in Pro*C/C++ to Access the Database..........ccccooevveirenennn 5-6

Configuring Oracle Application Server for Global Deployment

Installing Oracle Application Server for Global Deployment............ccococvviiiiniinennieees 6-1
Configuring Oracle HTTP Server and OC4J for Global Deployment.........c.cccoocoveiviiieincieeenn, 6-2
About Manually Editing HTTP Server and OC4J Configuration Files...........cccocooevvivvviennennn. 6-3
Configuring the NLS_LANG Parameter ..ot 6-3

vi

Preconfigured NLS_LANG ValUesccccooiiiiiiiiiiii i 6-5

Configuring Transfer Mode for mod_plsgl RUNLIME ... 6-7
Configuring the Runtime Default LOCAIEcccoiiiiiiiiiec e 6-7
MOd_jSErv RUNTIME FOIr JAVA......c.cceo ittt 6-8

(@ 107 N I - A - L o) 0 TSP 6-8
mod_plsqgl Runtime for PL/SQL and Oracle PL/SQL Server Pages..........cccccevvevveveninenn. 6-8
mod_perl RUNLIME fOr Perl SCHIPTS.......oiiiie et 6-9

C/CH RUNTIME .ottt s ettt bbb e bbb e s b e et senana e nenen 6-9
Configuring Oracle Application Server Portal for Global Deployment...........ccccccoovviviviennnenn. 6-9
Configuring Oracle Application Server Wireless for Global Deployment............ccccooevnenne 6-10
Configuring Encoding for Outgoing E-mail MESSAQgESccccccveieiieiiiie e see e 6-10
Configuring Oracle Application Server Forms Services for Global Deployment 6-10
Configuring OracleAS Reports Services for Global Deploymentccccoc e, 6-11
Configuring Oracle Business Intelligence Discoverer for Global Deployment.............c........ 6-11
Configuring a Centralized Unicode-enabled Database to Support Global Deployment....... 6-12

A Multilingual Demonstration for Oracle Application Server

Description of the World-0f-Books DemONSLrationccccoeiiiiinniiieine e 7-1
Architecture and Design of the World-of-Books Demonstration............cccccccveveie e cieseesinn, 7-2
WOrld-0f-BOOKS AFCHITECIUIEocviiee ettt nn e enens 7-2
LTAV/o] g Lo Bto) = ToTe] X3 B 1-TS] o | o SRS 7-3
WOrld-of-BooKS SCHEmMa DESIGNccciiiieiie ettt sre et sne e 7-3
Installing the World-of-Books DemONStratioN............ccoiiiiiiiniineiieee s 7-5
Building, Deploying, and Running the World-of-Books Demonstration...............ccccceevvevinennne 7-5
How to Build the World-0f-Books DemONSTratioNccccoviieieiieiisie e 7-6
How to Deploy the World-of-Books Demonstration..........cccocccoveveiiciene s 7-7
How to Run the World-0f-Books DEMONSTIAtIONccceruerrieieiiesieseie e e se e 7-8
Locale Awareness of the World-of-Books DemONSLrationcccccoeveienniiin i 7-9
How World-of-Books Determines the User’s LOCAlE..........ccccoveievviviinieie s 7-9
How World-of-Books Uses Locale Information in LocalizationContext Methods................ 7-10
How World-of-Books SOrts QUENY RESUILS..........ccveiiiire e 7-11
How World-of-Books Searches the Contents of BOOKS..........ccccooiiiiiiiiiiiiiieec e, 7-12
Encoding HTML Pages for the World-of-Books Demonstration.............ccccceevviv e iceiciesecnnnnn, 7-13
Handling HTML Form Input for the World-of-Books Demonstrationccccccceeenennienen 7-13
Formatting HTML Pages in the World-of-Books Demonstration.............cccccoccvvv v ieeiiesviinnnn, 7-13
Encoding URLSs in the World-of-Books DemONStrationcccoeiveiiennenceeneneecse e 7-14
Accessing the Database in the World-of-Books Demonstration............cccccoeveve i ccc e, 7-15
Organizing the Content of HTML Pages in the World-of-Books Demonstration.................... 7-15
Static Files for World-0f-Books ONnling HElP..........ccoiviieie i 7-15
Using Resource Bundles for the Content of World-of-Books HTML Pages...........c.cccccvvuenee. 7-16

A Oracle Application Server Translated Languages
B GDK Error Messages

Glossary

Index

Vii

List of Examples

3-1 HelloOWOrId JSP Page COUE........ccoiiiiiiiieietse ettt st 3-3
3-2 HelloWorld Webh.XmI COde........ooi i e 3-4
3-3 The GDK-enabled Web. XMl File.........ooii e 3-5
3-4 GDK Configuration File gdKapp.XmMlcccoiiiiiiiiiiie s 3-6
3-5 Enabled HEITOWOKTA JSPcoiiiiieee bbb e 3-7
3-6 Constructing the Locale SEleCtion LiSt..........cccceiiniiieiiece e 3-10
3-7 GDK Application Configuration File ... 3-16
4-1 [[T 1 (0T [o] o 1=] o 1SRRI 4-7
4-2 HellOGIODEREPIY JSP ..ttt 4-14
4-3 Decoding a User’s DiSPlay NaMIE..........cociiiiiiiieieese et 4-15
6-1 Specifying the Database Character Set and the National Character Set.............c.cccove... 6-12

viii

List of Tables

1-1 Advantages and Disadvantages of Monolingual Internet Application Design 1-3
1-2 Advantages and Disadvantages of Multilingual Internet Application Design................ 1-5
2-1 Locale Representations in Different Programming Environmentsccoccevvvviie e, 2-2
3-1 Locale Parameters Used in the GDK FrameworK ..o 3-14
3-2 Locale Resources Provided by the GDK.........cccooiiieiiii et 3-19
3-3 Mapping Between Common ISO Locales and IANA Character Sets...........cccccceverivennns 3-25
4-1 Native Encodings for Commonly Used LOCAIES ..o 4-2
6-1 NLS_LANG Values for Commonly Used LOCAIEScccocvveriiirieiinieneesee e 6-6
7-1 Java Programs that Contain Globalization Features for the World-of-Books Application.....
7-3
7-2 Description of the CUSTOMErs TabIe ..o e 7-4
7-3 Description of the BOOKS TabIe.........ccooiiii i 7-4
-4 Description 0f the dOCS TADIE ..o e 7-4
7-5 World-of-BoOKS DireCtOry StIUCTUIEccveiieie ettt 7-5
7-6 Examples of Locale-Sensitive Methods of the Localizer Beanccccccovvvvieiecinenenn, 7-11
A-1 Translated Languages and ADDreviations ... A-1

Audience

Preface

Oracle Application Server Globalization Guide describes how to design, develop, and
deploy Internet applications for a global audience.

This preface contains the following topics:
« Audience

« Documentation Accessibility

« Related Documentation

« Conventions

Oracle Application Server Globalization Guide is intended for Internet application
developers and Webmasters who design, develop, and deploy Internet applications for
a global audience.

To use this document, you need to have some programming experience and be
familiar with Oracle databases.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

ht t p: // www. or acl e. com accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Xi

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documentation

For more information, see these Oracle resources:
« The Oracle Application Server documentation set

» Oracle Database Globalization Support Guide 10g Release 1 (10.1) in the Oracle
Database Documentation Library

Printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracl e. conf
To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http: // wwmv. or acl e. coni t echnol ogy/ menber shi p/
If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http:// wwmv. oracl e. com t echnol ogy/ docunent ati on/

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. The following table describes the conventions in this document to
help you more quickly identify special terms:

Convention Meaning Example
Ellipsis points indicate either:
« That we have omitted parts of the code CREATE TABLE ... AS subquery;
that are not directly related to the
example
« That you can repeat a portion of the SELECT CO', 1, col2, ..., coln FROM
enpl oyees;
code
[1 Brackets enclose one or more optional items. DECI MAL (digits [, precision])
Do not enter the brackets.
{} Braces enclose two or more items, one of {ENABLE | DI SABLE}

Xi

which is required. Do not enter the braces.

A vertical bar represents a choice of twoor { ENABLE | DI SABLE}

more options within brackets or braces. Enter COVP NOCOVP

one of the options. Do not enter the vertical [RESS | RESS]
bar.

Convention Meaning Example
Bold Bold typeface indicates: When you specify this clause, you create an
« Terms that are defined in the text index-organized table.
. Click OK to continue.
« Terms that appear in a glossary
A graphical user interface (GUI) element that
has an action associated with it.
Italics Italic typeface indicates book titles or Oracle Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
| ower case Lowercase monospace typeface indicates Enter sql pl us to open SQL*Plus.
nonospace executables, filenames, directory names, and . . .
(fixed-wi dth sample user-supplied elements. Such The password is specified in the or apwd file
font) elements include computer and database Back up the data files and control files in the
names, net service names, and connect / di sk1/ or acl e/ dbs directory.
identifiers, as well as user-supplied database .

: The depar t ment _i d, depar t nent _nane,
objects and structures, column names, and | ocation i dcolumns are in the
packages and classes, usernames and roles, -

- hr. depart ment s table.
program units, and parameter values.
Note: Some programmatic elements use a ;Sneittit:I?zg'E:EEYE rEamu let![e-ll:%?;lﬁBeL ED
mixture of UPPERCASE and lowercase. P)
Enter these elements as shown. Connect as oe user.
The JRepUti | class implements these
methods.
| ower case Lowercase monospace italic font represents You can specify the par al | el _cl ause.
??ingzg?\fmedt h Placeholders or variables. Run Uol d_r el ease. SQL where ol d_
font) italic r el ease refers to the release you installed

Other notation

UPPERCASE
nonospace
(fixed-width
font)

You must enter symbols other than brackets,
braces, vertical bars, and ellipsis points as
shown.

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, Oracle Recovery Manager
keywords, SQL keywords, SQL*Plus or

utility commands, packages and methods, as

well as system-supplied column names,
database objects and structures, usernames,
and roles. However, these terms are not case
sensitive, so you can enter them in
lowercase.

prior to upgrading.
NUMBER(11, 2) ;
CONSTANT NUMBER(4) : =

acct bal

acct

3;

You can specify this clause only for a NUMBER

column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER _

TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

xiii

Xiv

1

Overview of Globalization in Oracle
Application Server

This chapter contains the following topics:

« Internet Applications Globalization

« Globalization Concepts

« Designing a Global Internet Application

« Overview of Developing Global Internet Applications

Internet Applications Globalization

It is important for businesses to make their Internet applications available to users
around the world with appropriate locale characteristics, such as language and
currency formats. Oracle Application Server is fully internationalized to provide a
global platform for developing and deploying Internet applications.

Building an Internet application or Web site for Oracle Application Server requires
good globalization practices in development and deployment. This book describes
recommended globalization practices.

Globalization Concepts

Locale

You need to be familiar with the following concepts to understand globalization:
« Locale
« Character Set

« Unicode

Locale refers to a language, a character set, and the region (territory) in which the
language is spoken. Information about the region includes formats for dates and
currency. For example, the primary languages of the United States and Great Britain
are both forms of English, but the two territories have different currencies and
different conventions for date formats. Therefore, the United States and Great Britain
are different locales.

Overview of Globalization in Oracle Application Server 1-1

Designing a Global Internet Application

Character Set

A character set defines the binary values associated with the characters that make up a
language. For example, the 1SO-8859-1 character set can be used to encode most
Western European languages.

Unicode

Unicode is a universal character set that defines binary values for characters in almost
all languages. Unicode characters can be encoded as follows:

« In1to4 bytesinthe UTF-8 character set
« In2or4bytesinthe UTF-16 character set
= In 4 bytes in the UTF-32 character set

Designing a Global Internet Application

There are several approaches to designing global Internet applications. This book
discusses the following approaches:

« Monolingual

You can design a monolingual Internet application so it supports several instances.
Each instance supports a different locale. Users with different locale preferences
must invoke the instance that serves their locale.

« Multilingual

You can design a multilingual Internet application to support several locales with
one instance. All users, regardless of locale, can invoke the same instance.

Both designs include one centralized database that uses a Unicode character set.

Monolingual Internet Application Architecture
Figure 1-1 shows the design of a monolingual Internet application.

1-2 Oracle Application Server Globalization Guide

Designing a Global Internet Application

Figure 1-1 Monolingual Internet Application Architecture

Browsers Customer
Server A Database

150-8858-1 Monolingual WEBMSWIN1252

En'gﬁsh Locale '

i OracleAS .
';:_';%'a'?: Instance 1 .
OracleAS N

Instance 2 .

[:3 Shift-JIS Wanolingual JAIBSJIS '

Japanese Locale

Japanese

Locale Oracle
Server B Unicode
[:3 1SO-8859-8 Honolingual IWBMSWIN1255 :
Hebrew Locale
Hebrew OracleAS
Locale Instance 3
OracleAS
Instance 4
TIS-620 Monolingual | | yugTisasci

L

Thai Locale

Thai
Locale
HTTP —

Oracle Net ===~

The clients (in English, Japanese, Hebrew, and Thai locales) communicate with
separate instances of Oracle Application Server through HTTP connections. One
instance of the application runs in the same locale as one of the Oracle Application
Server instances. For example, the English application runs in the same locale as
Oracle Application Server Instance 1. The English and Japanese applications and their
Oracle Application Server instances are running on Server A, and the Hebrew and
Thai applications and their instances are running on Server B. Each Oracle Application
Server instance communicates with the Unicode database. The instances communicate
with the database through Oracle Net.

The client character set for the English locale, for example, is 1ISO-8859-1. The Oracle
Application Server instance that is associated with the English locale, Instance 1, uses
the Oracle character set WEBMSWIN1252 to communicate with the database. The
database character set is a Unicode character set.

See Also: Chapter 5, "Using a Centralized Database"

Table 1-1 shows the advantages and disadvantages of deploying monolingual Internet
applications. As the number of locales increases, the disadvantages outweigh the
advantages of the monolingual design. This type of application design is suitable for
customers who support only one or two locales.

Table 1-1 Advantages and Disadvantages of Monolingual Internet Application Design

Advantages Disadvantages
You can separate the support of different There are more Oracle Application Server
locales into different servers. This allows servers to administer.

locales to be supported in different time zones.
Work load can be distributed accordingly.

Overview of Globalization in Oracle Application Server 1-3

Designing a Global Internet Application

Table 1-1 (Cont.) Advantages and Disadvantages of Monolingual Internet Application

Advantages Disadvantages
Writing the code is simpler than for a The Internet application requires more testing
multilingual Internet application. resources to certify it on each Oracle

Application Server instance.

You must configure Oracle Application Server
for each instance of the application.

You must maintain a server instance for each
locale regardless of the amount of work that is
demanded of it. Load-balancing is possible
only among a group of Oracle Application
Server instances that support the same locale.

Supporting multilingual content is difficult.

Multilingual Internet Application Architecture

Figure 1-2 shows the design of a multilingual Internet application.

Figure 1-2 Multilingual Internet Application Architecture

Browsers

|S0-8858-1

English
Locale
[3 Shift-JIS
Server
Muiltilingual
Japanese Application with
Locale Dynamic Locale
Switching

UTF-8
OracleAS
Instance

Hebrew é

Locale

Thai é

Locale

Customer
Database

Unicode
Oracle

Unicode

HTTP —
Oracle Net ===

The clients (in English, Japanese, Hebrew, and Thai locales) communicate with one
Oracle Application Server instance through HTTP connections. Each client can use a

1-4 Oracle Application Server Globalization Guide

Overview of Developing Global Internet Applications

different character set because each application running on Oracle Application Server
is configured to support several locales simultaneously, regardless of the locale of the
Oracle Application Server instance. The Oracle Application Server instance and the
database communicate through Oracle Net. Both the application running on the Oracle
Application Server instance and the database use Unicode character sets.

See Also: Chapter 5, "Using a Centralized Database"
In order to support several locales in a single application instance, an application
should:
« Process character data in Unicode so that it can support data in any language

« Dynamically detect the user’s locale and adapt to the locale by constructing HTML
pages in the correct language and cultural conventions

« Dynamically determine the character set to use for HTML pages and convert
content to and from Unicode to the HTML page encoding

Table 1-2 shows the advantages and disadvantages of deploying multilingual Internet
applications.

Table 1-2 Advantages and Disadvantages of Multilingual Internet Application Design

Advantages Disadvantages

You can use one Oracle Application Server Multilingual applications are more complex to
configuration, which reduces maintenance code than monolingual applications. They
costs. must be able to detect locales dynamically and

use Unicode. This is costly if you only need to

Performance tuning and capacity planning do SUppOrt one or two languages.

not depend on the number of locales.

Supporting additional languages is relatively
easy. You do not need to add more machines
for the new locales.

You can test the application for several locales
in a single testing environment.

The application can support multilingual
content.

Overview of Developing Global Internet Applications

Building an Internet application for Oracle Application Server that supports different
locales requires good development practices. The application itself must be aware of
the user’s locale and be able to present locale-appropriate content to the user. Clients
must be able to communicate with the application server regardless of the client’s
locale, with minimal character set conversion. The application server must be able to
access the database server with data in many languages, again with minimal character
set conversion. Character set conversion decreases performance and increases the
chance of data loss because some characters may not be available in the target
character set.

See Also: Oracle Database Globalization Support Guide 10g Release 1
(10.1) in the Oracle Database Documentation Library for more
information about character set conversion

Note: In this book, encoding and page encoding refer to the
character set used in a particular programming environment.

Overview of Globalization in Oracle Application Server 1-5

Overview of Developing Global Internet Applications

Oracle Application Server also supports the development of global applications using
the following Oracle Application Server components:

Oracle Application Server Forms Services
Oracle Application Server Reports Services
Oracle Business Intelligence Discoverer
Oracle Web Cache

Oracle Application Server Wireless

Oracle Globalization Development Kit

This guide discusses global application development in terms of language and
development environments. It addresses the basic tasks associated with developing
and deploying global Internet applications, including developing locale awareness,
implementing HTML features, accessing a centralized database, and configuring
Oracle Application Server.

1-6 Oracle Application Server Globalization Guide

2

This chapter contains the following topics:

Developing Locale Awareness

« Developing Locale Awareness in Global Internet Applications

« Locale Awareness in J2EE and Internet Applications

« Locale Awareness in Oracle Application Server Component Applications

Developing Locale Awareness in Global Internet Applications

Global Internet applications need to be aware of the user’s locale.

Locale-sensitive functions, such as date formatting, are built into programming
environments such as C/C++, Java, and PL/SQL. Applications can use locale-sensitive
functions to format the HTML pages according to the cultural conventions of the

user’s locale.

Different programming environments represent locales in different ways. For example,
the French (Canada) locale is represented as follows:

Environment

Representation

Locale

Explanation

Various

ISO standard

fr-CA

f r is the language code
defined in the ISO 639
standard. CAis the
country code defined in
the 1SO 3166 standard.

Java

Java locale object

Java uses the ISO
language and country
code.

C/C++

POSIX locale name

fr_CAon Sun
Solaris

POSIX locale names
may include a character
set that overrides the
default character set.
For example, the
de.ISO8859-15 locale is
used to support the
Euro symbol.

PL/SQL and SQL

NLS_LANGUAGE and
NLS _TERRI TORY
parameters

NLS LANGUAGE=
" CANADI AN
FRENCH'

NLS_TERRI TORY=

See Also: "Configuring
the NLS_LANG
Parameter" in Chapter 6

Developing Locale Awareness 2-1

Developing Locale Awareness in Global Internet Applications

Table 2-1 shows how different programming environments represent some commonly
used locales.

Table 2-1 Locale Representations in Different Programming Environments

POSIX
Locale ISO Java Solaris NLS_LANGUAGE, NLS_TERRITORY
Arabic ar ar ar ARABIC, UNITED ARAB EMIRATES
(U.AEE)
Chinese zh-CN zh_CN zh_CN SIMPLIFIED CHINESE, CHINA
(PR.C)
Chinese zh-TW zh TW zh_ TW TRADITIONAL CHINESE, TAIWAN
(Taiwan)
English en en_US en_US AMERICAN, AMERICA
(US.A)
English en-GB en_GB en_UK ENGLISH, UNITED KINGDOM
(United
Kingdom)
French fr-CA fr_CA fr_CA CANADIAN FRENCH, CANADA
(Canada)
French fr fr_FR fr FRENCH, FRANCE
(France)
German de-DE de_DE de GERMAN, GERMANY
(Germany)
Greek el el el GREEK, GREECE
Hebrew he he he HEBREW, ISRAEL
Italian it it it ITALIAN, ITALY
(1taly)
Japanese ja-JP ja_JP ja_JP JAPANESE, JAPAN
Korean ko-KR ko KR ko KR KOREAN, KOREA
Portuguese | pt-BR pt_BR pt_ BR BRAZILIAN PORTUGUESE, BRAZIL
(Brazil)
Portuguese | pt pt pt PORTUGUESE, PORTUGAL
(Portugal)
Spanish es-ES es_ES es SPANISH, SPAIN
(Spain)
Thai th th th THAI, THAILAND
Turkish tr tr tr TURKISH, TURKEY

If you write applications for more than one programming environment, then locales
must be synchronized between environments. For example, Java applications that call
PL/SQL procedures should map the Java locales to the corresponding NLS L ANGUAGE
and NLS_TERRI TORY values and change the parameter values to match the user’s
locale before calling the PL/SQL procedures.

There are two things that affect an application’s overall locale awareness: the
development environment in which you create the application, and the target
architecture for which the application is built. This chapter addresses these topics with
respect to both monolingual and multilingual application architectures.

2-2 Oracle Application Server Globalization Guide

Locale Awareness in J2EE and Internet Applications

Determining a User’s Locale in Monolingual Internet Applications

A monolingual application, by definition, serves users with the same locale. A user’s
locale is fixed in a monolingual application and is the same as the default runtime
locale of the programming environment.

In most programming environments, almost all locale-sensitive functions implicitly
use the default runtime locale to perform their tasks. Monolingual applications can
rely on this behavior when calling these functions.

Determining a User’s Locale in Multilingual Internet Applications

In a multilingual application, the user’s locale may vary. Multilingual applications
should do the following:

« Dynamically detect the user’s locale
« Construct HTML content in the language of the locale
« Use the cultural conventions implied by the locale

Multilingual applications can determine a user’s locale dynamically in the following
ways:

« Based on the user profile information from an LDAP directory server such as
Oracle Internet Directory

The application can store the user profile in the Oracle Internet Directory server
provided by Oracle Application Server. The LDAP schema for the user profile
should include a preferred locale attribute. This method does not work if a user
has not logged on before.

« Based on the default ISO locale of the user’s browser

Every HTTP request sends the default ISO locale of the browser with the
Accept-Language HTTP header. If the Accept-Language header is NULL, then the
locale should default to English. The drawback of this approach is that the
Accept-Language header may not be a reliable source of information about the
user’s locale.

« Based on user input
Users can select a locale from a list or a group of icons such as flags.

You can use these methods of determining the user’s locale together or separately.
After the application determines the locale, the locale should be:

= Mapped to the locale representations that correspond to the programming
environments on which the application runs

« Used in locale-sensitive functions

See Also: Table 2-1 for common locale representations in
different programming environments

Locale Awareness in J2EE and Internet Applications

This section discusses locale awareness in terms of the particular programming
language and development environment in which an application is written.

Developing Locale Awareness 2-3

Locale Awareness in J2EE and Internet Applications

Locale Awareness in Java Applications

A Java locale object represents the corresponding user’s locale in Java. The Java
encoding used for the locale is required to properly convert Java strings to and from
byte data.

Consider the Java encoding for the locale when you make the Java code aware of a
user’s locale. There are two ways to make a Java method sensitive to the Java locale
and the Java encoding:

« Using the default Java locale and default Java encoding for the method

« Explicitly specifying the Java locale and Java encoding for the method

Locale Awareness in Monolingual Java Applications

Monolingual applications should run implicitly with the default Java locale and
default Java encoding so that the applications can be configured easily for a different
locale. For example, to create a date format using the default Java locale, use the
following method call:

Dat eFormat df = DateFornat. get Dat eTi nel nst ance(Dat eFor mat . FULL, Dat eFor mat. FULL);
dateString = df.format(date); /* Format a date */

Locale Awareness in Multilingual Java Applications

You should develop multilingual applications that are independent of fixed default
locales or encodings. Explicitly specify the Java locale and Java encoding that
correspond to the current user’s locale. For example, specify the Java locale object that
corresponds to the user’s locale, identified by user _| ocal e, in the

get Dat eTi nel nst ance() method:

Dat eFormat df = DateFormat. get Dat eTi nel nst ance(Dat eFor mat . FULL, Dat eFor mat. FULL, user _
| ocal e);
dateString = df.format(date); /* Format a date */

Note: The only difference between the example code for the
monolingual application and the multilingual application is the
inclusion of user _| ocal e.

Similarly, do not use encoding-sensitive methods that assume the default Java
encoding. For example, you should not use the St ri ng. get Byt es() method ina
multilingual application because it is encoding-sensitive. Instead, use the method that
accepts encoding as an argument, which is St ri ng. get Byt es(Stri ng

encodi ng) . Be sure to specify the encoding used for the user’s locale.

Do not use the Local e. set Def aul t () method to change the default locale for the
following reasons:

» Itchanges the Java default locale for all threads and makes your applications
unsafe to threads

« It does not affect the Java default encoding

The Oracle Globalization Development Kit for Java provides a set of Java classes to
ensure consistency on locale-sensitive behaviors with Oracle databases. It provides an
application framework that enables you to use the locale determination methods
declaratively.

See Also: Chapter 3, "Oracle Globalization Development Kit"

2-4 Oracle Application Server Globalization Guide

Locale Awareness in J2EE and Internet Applications

Locale Awareness in Perl and C/C++ Applications
Perl and C/C++ use the POSIX locale model for internationalized applications.

Locale Awareness in Monolingual Perl and C/C++ Applications

Monolingual applications should be sensitive to the default POSIX locale, which is
configured by changing the value of the LC_ALL environment variable or changing the
operating system locale from the Control Panel in Microsoft Windows.

See Also: Table 2-1 for a list of commonly used POSIX locales

To run on the default POSIX locale, the applications should call the set | ocal e()
function to set the default locale to the one defined by LC_ALL and use the POSIX
locale-sensitive functions such as st rf ti me() thereafter. Note that the

set | ocal e() function affects the current process and all threads associated with it,
so any multithread application should assume the same POSIX locale in each thread.
The following example gets the current time in the format specific to the default locale
in Perl:

use | ocal e;
use PCSI X qw (local e_h);

$ol d_l ocal e
$dat eString

setlocal e(LC_ALL, "");
POSI X::strftime("%", localtime());

Locale Awareness in Multilingual Perl and C/C++ Applications

Multilingual applications should be sensitive to dynamically determined locales. Call
the set | ocal e() function to initialize the locale before calling locale-sensitive
functions. For example, the following C code gets the local time in the format of the
user locale identified by user _| ocal e:

#i ncl ude <l ocal e. h>
#include <tinme. h>

const char *user locale = "fr";
tinme_t Itineg;

struct tm*thetineg;

unsi gned char dateString[100];

setlocal e(LC_ALL, user_locale);

time (& time);

thetine = gnime(&tine);

strftime((char *)dateString, 100, "%", (const struct tm*)thetine));

You must map user locales to POSIX locale names for applications to initialize the
correct locale dynamically in C/C++ and Perl. The POSIX locales depend on the
operating system.

Locale Awareness in SQL and PL/SQL Applications

PL/SQL procedures run in the context of a database session whose locale is initialized
by the NLS_LANGparameter in the database access descriptor (DAD). The NLS_LANG
parameter specifies top-level globalization parameters, NLS LANGUAGE and NLS _
TERRI TORY, for the database session. Other globalization parameters, such as NLS_
SORT and NLS_DATE_LANGUAGE, inherit their values from these top-level parameters.
These globalization parameters define the locale of a database session.

Developing Locale Awareness 2-5

Locale Awareness in J2EE and Internet Applications

There are two ways to make SQL and PL/SQL functions locale sensitive:
« Basing the locale on the globalization parameters of the current database session

« Explicitly specifying the globalization parameters

See Also:

« "Configuring the NLS_LANG Parameter" in Chapter 6

« Oracle Database Reference 10g Release 1 (10.1) in the Oracle Database
Documentation Library

« Oracle Database Globalization Support Guide 10g Release 1 (10.1) in the
Oracle Database Documentation Library

for more information about globalization parameters

Locale Awareness in Monolingual SQL and PL/SQL Applications

Generally speaking, the initial values of the globalization parameters inherited from
NLS_LANGare sufficient for monolingual PL/SQL procedures. For example, the
following PL/SQL code calls the TO_CHAR() function to get the formatted date,
which uses the current values of the NLS_DATE _FORMAT and NLS_DATE_LANGUAGE
parameters:

mydat e date;
dat eString varchar2(100);

sel ect sysdate into nydate fromdual;
dateString = TO CHAR(nydate);

If the initial values of the globalization parameters are not appropriate, then use an
ALTER SESSI ONstatement to overwrite them for the current database session. You
can use the ALTER SESSI ONstatement with the DBMS_SQL package. For example:

cur integer;
status integer;

cur := dbns_sql . open_cursor;

dbms_sql . parse(cur, 'alter session set nls_date_format = "Day Month, YYYY'',
dbns_sql . nati ve);

status := dbns_sql . execute(cur);

Locale Awareness in Multilingual SQL and PL/SQL Applications

Multilingual applications should use ALTER SESSI ON statements to change the locale
of the database session to the user’s locale before calling any locale-sensitive SQL or
PL/SQL functions. You can use the ALTER SESSI ON statement with the DBMS_SQL
package. For example:

cur integer;
status integer;

cur := dbns_sql . open_cursor;

dbrs_sql . parse(cur, 'alter session set nls_language = "NLS_LANGUAGE of _user _
locale"", dbms_sqgl.native);

dbms_sql . parse(cur, "alter session set nls_territory = "NLS_TERRI TORY_of _
user | ocale"", dbms_sql.native);

status := dbnms_sql . execute(cur);

Alternatively, applications can specify the globalization parameters in every SQL
function that accepts a globalization parameter as an argument. For example, the
following PL/SQL code gets a date string based on the language of the user’s locale:

2-6 Oracle Application Server Globalization Guide

Locale Awareness in Oracle Application Server Component Applications

nydate date;
dateString varchar2(100);

sel ect sysdate into nydate from dual;
dateString TO CHAR(nydate, ' DD MON-YYYY HH24: M : SSxFF',
" NLS_DATE_LANGUAGE=| anguage');

In the preceding code example, | anguage specifies the Oracle language name for the
user’s locale.

Locale Awareness in Oracle Application Server Component Applications

This section discusses locale awareness in terms of application development for
particular Oracle Application Server components.

Locale Awareness in Oracle Application Server Wireless Services

Oracle Application Server Wireless (OracleAS Wireless) sends all mobile context
information as HTTP headers when invoking a request. The user locale is sent using
the X- Or acl e- User. Local e header. The locale value contains the ISO language,
and an optional 1SO country code, separated by a hyphen. For example, "en-US",
"zh-CN", and "ja" are all valid locale values for this header. Mobile service applications
should use the user locale specified in this header to determine the language and
cultural conventions used in the user interface.

For example, JSP applications may retrieve the user locale as follows:

<%
String userLocal e = request. get Header (" X- Oracl e- User. Local e");
%

Locale Awareness in Oracle Application Server Forms Services

The Oracle Application Server Forms Services (OracleAS Forms Services) architecture
includes:

« Alavaclient (browser)
« OracleAS Forms Services (middle tier)
« The Oracle customer database (back end)

The Java client is dynamically downloaded from Oracle Application Server when a
user runs an OracleAS Forms Services session. The Java client provides the user
interface for the OracleAS Forms Services Runtime Engine. It also handles user
interaction and visual feedback for actions such as navigating between items or
checking a checkbox.

OracleAS Forms Services consists of the OracleAS Forms Services Runtime Engine and
the Forms Listener Servlet. The OracleAS Forms Services Runtime Engine is the
process that maintains a connection to the database on behalf of the Java client. The
Forms Listener Servlet acts as a broker, taking connection requests from the Java client
processes and initiating a OracleAS Forms Services runtime process on their behalf.

The NLS_LANG parameter for OracleAS Forms Services initializes the locale of
OracleAS Forms Services. The NLS_LANGUAGE parameter derives its value from NLS _
LANG and determines the language of OracleAS Forms Services messages. The NLS
TERRI TORY parameter also derives its value from NLS_LANGand determines
conventions such as date and currency formats.

Developing Locale Awareness 2-7

Locale Awareness in Oracle Application Server Component Applications

By default, the NLS_LANG parameter for OracleAS Forms Services initializes the Java
client locale. The locale of the Java client determines such things as button labels on
default messages and parts of strings in menus.

See Also: Oracle Application Server Forms Services Deployment
Guide

Locale Awareness in Monolingual OracleAS Forms Services Applications

A user’s locale is fixed in a monolingual OracleAS Forms Services application and is
usually the same as the default OracleAS Forms Services locale. When you develop a
monolingual OracleAS Forms Services application, you must develop it to conform to
the intended user’s locale. The database character set should be a superset of the
OracleAS Forms Services character set.

For example, a monolingual Forms Services application for a Japanese locale should
include Japanese text, Japanese button labels, and Japanese menus. The application
should also connect to a database whose character set is JA16SJIS, JAI6EUC, or UTFS8.

The NLS_LANG parameter in the def aul t . env file controls the Forms Services locale.
Additionally, in order to pass non-Latin-1 parameters to Forms Services, you can set
the def aul t char set parameter in f or msweb. cf g.

See Also: Oracle Application Server Forms Services Deployment
Guide

Locale Awareness in Multilingual OracleAS Forms Services Applications

In a multilingual environment, the application can dynamically determine the locale of
OracleAS Forms Services in two ways:

« Based on the user’s profile
« Based on the user’s input

When you develop an OracleAS Forms Services application you must choose one of
these methods.

You can configure multilingual OracleAS Forms Services applications by using
multiple environment configuration files (envFi |). For example, do the following to
create a form and translate it into different languages:

1. Create aform called f or m f nx.
2. Translate it into Japanese and into Arabic using Oracle Translator.

3. Savethemasd:\formja\formfnx (Japanese) andd:\form ar\form fnx
(Arabic).

4. Create two environment configurations files,j a. env and ar . env.

5. Specify the following settings in the appropriate environment file as follows:

Form Environment File NLS LANG FORMS_PATH
d:\formja\formfnx ja.env JAPANESE_JAPAN. JA16SJI S d:\formja
d:\formar\form fnx ar. env ARABI C_EGYPT. ARVBW N1256 d:\form ar

Also, you can configure OracleAS Forms Services to read the preferred language
settings of the browser. For example, if you have a human resources (HR) application
translated into 24 languages, then add an application entry in the f or mrsweb. cf g file
similar to the following:

2-8 Oracle Application Server Globalization Guide

Locale Awareness in Oracle Application Server Component Applications

[HR]
defaul t. env
[HR de]

de. env

[HR fr]
fr.env
[HRit]
it.env

When the Forms Servlet detects a language preference in the browser, it checks the
f or msweb. cf g file to see if there is a translated version of the application.

For example, suppose the request is

http:// nyserver. nydomai n/ fornms/frmnservl et ?2confi g=HRand the
preferred languages are set to German (de), Italian (i t), and French (f r), in this order,
then this is the order of priority. The Forms Servlet tries to read from the application
definitions in the following order:

HR. de
HR it
HR fr
HR

If the Forms Servlet cannot find any of those configurations, then it uses the HR
configuration (def aul t . env).

This means that you can configure Oracle Forms to support multiple languages with
one URL. Each application definition can have its own environment file that contains
the NLS language parameter definition. You can also specify separate working
directory information and path information for each application.

See Also: Chapter 6, "Configuring Oracle Application Server for
Global Deployment”

Additionally, Oracle Forms can display more than one language in a form if the Java
client machine has the Albany WT J font installed. You can obtain this font from the
utilities CD-ROM in your CD pack or from

http://metalink.oracle.com

The Albany WT J font should be copied to 90\ NDOAS9 Font s directory if the client is
using Jinitiator 1.3.1, or Y%d AVA_HOVE% | i b\ f ont s directory if the client is using
Java Plug-in 1.4.1.

Locale Awareness in Oracle Reports
The Oracle Reports (OracleAS Reports Services) architecture includes:

« Aclient tier (browser)
« A Reports Server (middle tier)
« An Oracle customer database (back end)

OracleAS Reports Services can run multiple reports simultaneously upon users’
requests. The Reports Server enters requests for reports into a job queue and
dispatches them to a dynamic, configurable number of pre-spawned runtime engines.

Developing Locale Awareness 2-9

Locale Awareness in Oracle Application Server Component Applications

The runtime engine connects to the database, retrieves data, and formats output for
the client.

The NLS_LANGssetting for the Reports Server initializes the locale of the runtime
engine. The NLS _LANGUAGE parameter derives its value from the NLS_LANG
parameter and determines the language of the Reports Server messages. The NLS_
TERRI TORY parameter derives its value from the NLS_LANG parameter and
determines the date and currency formats. For example, if NLS_LANG s set to
JAPANESE_JAPAN. JA16SJI S, then Reports Server messages are in Japanese and
reports use the Japanese date format and currency symbol.

The dynamic environment switching feature enables one instance of the Reports
Server to serve reports with any arbitrary environment setting, including NLS_LANG.
Using the environment element in the Reports Server configuration file, you can create
a language environment that can be referenced in two ways:

« Ona per-runtime engine basis through the engine element of the Reports Server
configuration file

« Ona per-job basis using the ENVI Dcommand line argument

See Also: Oracle Application Server Reports Services Publishing
Reports to the Web for more information about dynamic
environment switching

Report output is generated in the OracleAS Reports Services character set. The client
needs to be aware of the character set in which OracleAS Reports Services generated
the HTML or XML.

See Also: "Specifying the Page Encoding in Oracle Application
Server Reports Services Applications” in Chapter 4

Locale Awareness in Monolingual OracleAS Reports Services Applications

A user’s locale is fixed in a monolingual OracleAS Reports Services application and is
usually the same as the locale of the Reports Server. The database character set should
be a superset of the Reports Server character set.

Locale Awareness in a Multilingual OracleAS Reports Services Application

In a multilingual report, the application can dynamically determine the locale of the
Reports Server in two ways:

« Based on the user’s profile

« Based on the user’s input

When you develop a report you must choose one of these methods.

You can use the dynamic environment switching feature to support multiple
languages.

See Also:

« "Specifying the Page Encoding in HTML for Oracle Application Server
Reports Services" in Chapter 4 for more information about the
encoding of HTML, XML, and JSP report output

=« "Configuring OracleAS Reports Services for Global Deployment" in
Chapter 6 for more information about specifying NLS_LANG
parameters from the command line

« Oracle Application Server Reports Services Publishing Reports to the Web
for more information about dynamic environment switching

2-10 Oracle Application Server Globalization Guide

Locale Awareness in Oracle Application Server Component Applications

Locale Awareness in Oracle Business Intelligence Discoverer

Oracle Business Intelligence Discoverer (OracleBl Discoverer) can simultaneously
support users with different locales. Users may explicitly control the locale used for
the user interface, or they may allow OracleBl Discoverer to automatically determine
the default. The order of precedence for determining the language and locale is:

1. Language and locale settings included in the URL for OracleBI Discoverer.

2. Language and locale settings specified in the OracleBI Discoverer Connection. If
the locale is specified in the user’s browser, then the language settings in the user’s
browser is used.

3. Language and locale of Oracle Application Server.

For example, suppose a user’s browser’s language and locale are set to Ger man -
Ger many and the user goes to the URL to start OracleBl Discoverer. The HTML page
returned to the user is displayed in German. If the user clicks on the OracleBI
Discoverer Connection, which has the language and locale specified as Engl i sh -
US, the OracleBIl Discoverer user interface appears in English. This is because the
OracleBI Discoverer Connection settings take precedence over the browser’s settings.

Developing Locale Awareness 2-11

Locale Awareness in Oracle Application Server Component Applications

2-12 Oracle Application Server Globalization Guide

3

Oracle Globalization Development Kit

This chapter includes the following sections:

« Overview of the Oracle Globalization Development Kit
« GDK Quick Start

« GDK Application Configuration File

« GDK Application Framework for J2EE

« GDKJava API

« GDK for Java Supplied Packages and Classes

« GDK for PL/SQL Supplied Packages

Overview of the Oracle Globalization Development Kit

The Oracle Globalization Development Kit (GDK) simplifies the development process
and reduces the cost of developing Internet applications used to support a global
environment.

The GDK includes comprehensive programming APIs for both Java and PL/SQL, code
samples, and documentation that address many of the design, development, and
deployment issues encountered while creating global applications.

The GDK mainly consists of two parts: GDK for Java and GDK for PL/SQL. GDK for
Java provides globalization support to Java applications. GDK for PL/SQL provides
globalization support to the PL/SQL programming environment. The features offered
in GDK for Java and GDK for PL/SQL are not identical.

The GDK for Java provides a J2EE application framework and Java APlIs to develop
global Internet applications using the best globalization practices and features
designed by Oracle. It reduces the complexities and simplifies the code required to
develop global Java applications.

GDK for Java complements the existing globalization features in J2EE. Although the
J2EE platform already provides a strong foundation for building global applications,
its globalization functionalities and behaviors can be quite different from Oracle
functionalities. GDK for Java provides synchronization of locale-sensitive behaviors
between the middle-tier Java application and the database server.

GDK for PL/SQL contains a suite of PL/SQL packages that provide additional
globalization functionalities for applications written in PL/SQL.

Figure 3-1 shows the major components of the GDK and how they relate to each other.
User applications run on the J2EE container of Oracle Application Server in the middle
tier. GDK provides the application framework that the J2EE application uses to

Oracle Globalization Development Kit 3-1

Overview of the Oracle Globalization Development Kit

simplify coding to support globalization. Both the framework and the application call
the GDK Java API to perform locale-sensitive tasks. GDK for PL/SQL offers PL/SQL
packages that help to resolve globalization issues specific to the PL/SQL environment.

Figure 3-1 GDK Components

Client-Tier
Browser

]

Request

Middle-Tier Server-Tier
Application Database

— >

I%Response
—>

The

Oracle Application Server

Containers for J2EE
)

J2EE User
Application

-

GDK
Framework for J2EE

! ¢

GDK - Java API

!
<>

functionalities offered by GDK for Java can be divided into two categories:

The GDK application framework for J2EE provides the globalization framework
for building J2EE-based Internet application. The framework encapsulates the
complexity of globalization programming, such as determining user locale,
maintaining locale persistency, and processing locale information. It consists of a
set of Java classes through which applications can gain access to the framework.
These associated Java classes enable applications to code against the framework so
that globalization behaviors can be extended declaratively.

The GDK Java API offers development support in Java applications and provides
consistent globalization operations as provided in Oracle database servers. The
API is accessible and is independent of the GDK framework so that standalone
Java applications and J2EE applications not based on the GDK framework are able
to access the individual features offered by the Java API. The features provided in
the Java API include data and number formatting, sorting and character set
handling in the same way as the Oracle database.

Note: The GDK Java API is certified with JDK versions 1.3 and
later with the following exception: The character set conversion
classes depend on the j ava. ni 0. char set package, which is
available in JDK 1.4 and later.

3-2 Oracle Application Server Globalization Guide

GDK Quick Start

GDK for Java is contained in two files: or ai 18n. j ar and or ai 18n-1csd. j ar. The
files are shipped with Oracle Application Server. GDK is a pure Java library that runs
on every platform. The Oracle client parameters NLS_LANGand ORACLE_HOME are not
required.

GDK Quick Start

This section explains how to modify a monolingual application to be a global,
multilingual application using GDK. The subsequent sections in this chapter provide
detailed information on using GDK.

Figure 3-2 shows a monolingual Web application page.

Figure 3-2 Original HelloWorld Web Page

2 Hello World Demo - Microsoft Internet Explorer

© File Edit View Favorites Tools Help snf'
|

i Wed Feb 02 17.31:16 PST 2005
i

|

| T.

 Hello World!

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

i

&1 Done 8 Local intranet

The initial, non-GDK Helloworld Web application simply prints a "Hello World!"
message, along with the current date and time in the top right hand corner of the page.
The following code shows the original HelloWorld JSP source code for the preceding
image.

Example 3-1 HelloWorld JSP Page Code

<%@ page content Type="text/htn ; charset=wi ndows- 1252" %
<htm >
<head>
<neta http-equi v="Content-Type" content="text/htm ; charset=wi ndows-1252">
<title>Hello Wrld Deno</title>
</ head>
<body>
<div style="color: blue;" align="right">
<% new java.util.Date(SystemcurrentTineMIlis()) %
</ di v>
<hr/>
<hl>Hel o World! </ h1>
</ body>
</htm >

The following code example shows the corresponding Web application descriptor file
for the HelloWorld message.

Oracle Globalization Development Kit 3-3

GDK Quick Start

Example 3-2 HelloWorld web.xml Code

<?xm version = '1.0" encoding = 'w ndows-1252' ?>
<! DOCTYPE web-app PUBLIC "-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN'
“http://java. sun. com dt d/ web-app_2_3.dtd">
<web- app>
<description>web. xm file for the nonolingual Hello Wrld</description>
<sessi on-confi g>
<sessi on-ti neout >35</ sessi on-ti neout >
</ sessi on-confi g>
<ni me- nappi ng>
<ext ensi on>ht nl </ ext ensi on>
<m ne-type>text/htnl </ m me-type>
</ m me- mappi ng>
<ni me- nappi ng>
<ext ensi on>t xt </ ext ensi on>
<m nme-type>text/ pl ai n</ m me-type>
</ m me- mappi ng>
</ web- app>

The Helloworld JSP code in Example 3-1 is only for English-speaking users. Some of
the problems with this code are as follows:

« There is no locale determination based on user preference or browser setting.
« Thetitle and the heading are included in the code.

« The date and time value is not localized based on any locale preference.

« The character encoding is for Latin-1.

The GDK framework can be integrated into the HelloWorld code to make it a global,
multilingual application. The preceding code can be modified to include the following
features:

« Automatic locale negotiation to detect the user’s browser locale and serve the
client with localized HTML pages. The supported application locales are
configured in the GDK configuration file.

« Locale selection list to map the supported application locales. The list can have
application locale display names which are the name of the country representing
the locale. The list will be included on the Web page so users can select a different
locale.

« GDK framework and API for globalization support for the HellowWorld JSP. This
involves selecting display strings in a locale-sensitive manner and formatting the
date and time value.

Modifying the HelloWorld Application

This section explains how to modify the HelloWorld application to support
globalization. The application will be modified to support three locales, Simplified
Chinese (zh-CN), Swiss German (de-CH), and American English (en-US). The
following rules will be used for the languages:

« Ifthe client locale supports one of these languages, then that language will be used
for the application.

« Ifthe client locale does not support one of these languages, then American English
will be used for the application.

3-4 Oracle Application Server Globalization Guide

GDK Quick Start

In addition, the user will be able to change the language by selecting a supported
locales from the locale selection list. The following tasks describe how to modify the
application:

« Task 1: Enable the Hello World Application to use the GDK Framework
« Task 2: Configure the GDK Framework for Hello World

« Task 3: Enable the JSP or Java Servlet

« Task 4: Create the Locale Selection List

« Task 5: Build the Application

Task 1: Enable the Hello World Application to use the GDK Framework

In this task, the GDK filter and a listener are configured in the Web application
deployment descriptor file, web. xm . This allows the GDK framework to be used with
the HelloWorld application. Example 3-3 shows the GDK-enabled web. xmi file.

Example 3-3 The GDK-enabled web.xml File

<?xm version = '1.0" encoding = 'w ndows-1252' ?>
<! DOCTYPE web-app PUBLIC "-//Sun M crosystems, Inc.//DTD Vb Application 2.3//EN'
"http://java. sun. com dt d/ web-app_2_3.dtd">
<web- app>
<description>web. xm file for Hello Wrld</description>
<I'-- Enable the application to use the GDK Application Framework.-->
<filter>
<filter-name>CDKFilter</filter-name>
<filter-class>oracle.il8n.servlet.filter.ServletFilter</filter-class>
</filter>
<filter-mappi ng>
<filter-name>CKFilter</filter-name>
<url-pattern>*.jsp</url-pattern>
</filter-mppi ng>

<l'istener>
<listener-class>oracle.i18n.servlet.listener.ContextListener</listener-class>
</listener>

<sessi on-confi g>

<sessi on-ti meout >35</ sessi on-ti neout >
</ sessi on-config>
<mi nme- mappi ng>

<ext ensi on>ht m </ ext ensi on>

<m ne-type>text/htm </ m ne-type>
</ m ne- mappi ng>
<ni ne- mappi ng>

<ext ensi on>t xt </ ext ensi on>

<m nme-type>text/ pl ai n</ m me-type>
</ 'm ne- mappi ng>

</ web- app>

The following tags were added to the file:

-« <filter>

The filter name is GDKFilter, and the filter class is
oracle.il8n.servlet.filter.ServletFilter.

« <filter-mappi ng>

Oracle Globalization Development Kit 3-5

GDK Quick Start

The GDKFilter is specified in the tag, as well as the URL pattern.
«» <listener>

The listener classisoracl e. i 18n. servl et .| i stener. Cont ext Li stener.
The default GDK listener is configured to instantiate GDK ApplicationContext,
which controls application scope operations for the framework.

Task 2: Configure the GDK Framework for Hello World

The GDK application framework is configured with the application configuration file
gdkapp. xm . The configuration file is located in the same directory as the web. xm
file. Example 3-4 shows the gdkapp. xmi file.

Example 3-4 GDK Configuration File gdkapp.xml
<?xm version="1.0" encodi ng="UTF-8"?>

<gdkapp xm ns:xsi="http://ww.w8. org/ 2001/ XM_Schena- i nst ance"
xsi : noNamespaceSchemaLocat i on="gdkapp. xsd" >

<I-- The Hello Wrld GXK Configuration -->
<page-charset defaul t="yes">UTF- 8</ page- charset >

<!I-- The supported application locales for the Hello Wrld Application -->

<application-1local es>
<l ocal e>de- CH</ | ocal e>
<l ocal e defaul t="yes">en-US</| ocal e>
<l ocal e>zh- ON</| ocal e>

</ application-local es>

<l ocal e- det er mi ne-rul e>
<l ocal e-source>oracl e.i 18n. servl et. | ocal esour ce. User | nput </ | ocal e- sour ce>

<l ocal e-source>oracl e. i 18n. servl et. | ocal esour ce. H t pAccept Language</ | ocal e- sour ce>
</l ocal e-det ermi ne-rul e>

<message- bundl es>
<resour ce- bundl e name="def aul t">com oracl e. deno. Messages</ r esour ce- bundl e>
</ message- bundl es>
</ gdkapp>

The file must be configured for J2EE applications. The following tags are used in the
file:
« <page-charset >

The page encoding tag specifies the character set used for HTTP requests and
responses. The UTF-8 encoding is used as the default because many languages can
be represented by this encoding.

= <application-|ocal es>

Configuring the application locales in the gdkapp. xm file makes a central place
to define locales. This makes it easier to add and remove locales without changing
source code. The locale list can be retrieved using the GDK API call

Appl i cati onCont ext . get Support edLocal es.

« <local e-determ ne-rul e>

The language of the initial page is determined by the language setting of the
browser. The user can override this language by choosing from the list. The

3-6 Oracle Application Server Globalization Guide

GDK Quick Start

| ocal e- det erm ne-rul e is used by GDK to first try the Accept-Language
HTTP header as the source of the locale. If the user selects a locale from the list,
then the JSP posts a locale parameter value containing the selected locale. The
GDK then sends a response with the contents in the selected language.

« <nessage- bundl es>

The message resource bundles allow an application access to localized static
content that may be displayed on a Web page. The GDK framework configuration
file allows an application to define a default resource bundle for translated text for
various languages. In the HelloWorld example, the localized string messages are
stored in the Java ListResourceBundle bundle named Messages. The Messages
bundle consists of base resources for the application which are in the default
locale. Two more resource bundles provide the Chinese and German translations.
These resource bundles are named Messages_zh_CN. j ava and Messages_

de. j ava respectively. The HelloWorld application will select the right translation
for "Hello World!" from the resource bundle based on the locale determined by the
GDK framework. The <nessage- bundl es> tag is used to configure the resource
bundles that the application will use.

Task 3: Enable the JSP or Java Servlet

JSPs and Java servlets must be enabled to use the GDK API. Example 3-5 shows a JSP
that has been modified to use the GDK API and services. This JSP can accommodate
any language and locale.

Example 3-5 Enabled HelloWorld JSP

<htm >
<head>
<neta http-equi v="Content-Type" content="text/htm; charset=UTF-8">
<title><% | ocalizer.get Message("helloWorldTitle") %</title>
</ head>

<body>
<div style="color: blue;" align="right">
<% Date currDate= new Date(SystemcurrentTimeMIlis()); %
<%l ocal i zer. fornat Dat eTi me(currDate, O aDateFormat. LONG %
</ div>
<hr/>

<div align="left">
<fornp

<sel ect nanme="|ocal " size="1">

<% get Count r yDr opDown(request) %

</ sel ect >

<input type="submt" value="<% |ocalizer.getMessage("changelLocal e") %">
</i nput >
</form
</ di v>
<h1><% | ocal i zer. get Message(" hel | oWor | d") %</ hl>
</ body>

</htm >

Figure 3-3 shows the HelloWorld application that has been configured with the zh-CN
locale as the primary locale for the browser preference. The HelloWorld string and
page title are displayed in Simplified Chinese. In addition, the date is formatted in the
zh-CN locale convention. This example allows the user to override the locale from the
locale selection list.

Oracle Globalization Development Kit 3-7

GDK Quick Start

Figure 3-3 HelloWorld Localized for the zh-CN Locale

3 ﬂ#{ﬂ!ﬂﬂ'ﬂﬁ?ﬁ {GDK) - Microsoft Internet Explorer E]g]
B

. File Edit Wiew Favorites Tools Help

28 20052 H3H R 093425

[P [zh_CN]]
R

&) Done %4 Local intranst

When the locale changes or is initialized using the HTTP Request Accept-Language
header or the locale selection list, the GUI behaves appropriately for that locale. This
means the date and time value in the upper right corner is localized properly. In
addition, the strings are localized and displayed on the HelloWorld page.

The GDK Java Localizer class provides capabilities to localize the contents of a Web
page based on the automatic detection of the locale by the GDK framework.

The following code retrieves an instance of the localizer based on the current
HTTPServletRequest object. In addition, several imports are declared for use of the
GDK API within the JSP page. The localizer retrieves localized strings in a
locale-sensitive manner with fallback behavior, and formats the date and time.

<%@age content Type="text/htnl;charset=UTF- 8" %
<Y%@age inport="java.util.*, oracle.il8n.servliet.*" %
<Yage inport="oracle.i18n.util.*, oracle.il8n.text.*" %

<%
Local i zer localizer = ServletHel per.getLocalizerlnstance(request);
%

The following code retrieves the current date and time value stored in the currDate
variable. The value is formatted by the localizer formatDateTime method. The
OraDateFormat.LONG parameter in the formatDateTime method instructs the
localizer to format the date using the locale's long formatting style. If the locale of the
incoming request is changed to a different locale with the locale selection list, then the
date and time value will be formatted according to the conventions of the new locale.
No code changes need to be made to support newly-introduced locales.

div style="color: blue;" align="right">
<% Date currDate= new Date(SystemcurrentTimneMIlis()); %

<%l ocal i zer. f or mat Dat eTi me(curr Dat e, O aDat eFor mat . LONG) %
</ div>

The HelloWorld JSP can be reused for any locale because the HelloWorld string and

title are selected in a locale-sensitive manner. The translated strings are selected from a
resource bundle.

3-8 Oracle Application Server Globalization Guide

GDK Quick Start

The GDK uses the OraResourceBundle class for implementing the resource bundle
fallback behavior. The following code shows how the Localizer picks the Helloworld
message from the resource bundle.

The default application resource bundle Messages is declared in the gdkapp. xm file.
The localizer uses the message resource bundle to pick the message and apply the
locale-specific logic. For example, if the current locale for the incoming request is
“de-CH?”, then the message will first be looked for in the messages_de CH bundle. If it
does not exist, then it will look up in the Messages_de resource bundle.

<h1><% | ocal i zer. get Message("hel | oWorl d") %</ hl>

Task 4: Create the Locale Selection List

The locale selection list is used to override the selected locale based on the HTTP
Request Accept-Language header. The GDK framework checks the locale parameter
passed in as part of the HTTP POST request as a value for the new locale. A locale
selected with the locale selection list is posted as the locale parameter value. GDK uses
this value for the request locale. All this happens implicitly within the GDK code.

The following code sample displays the locale selection list as an HTML select tag with
the name locale. The submit tag causes the new value to be posted to the server. The
GDK framework retrieves the correct selection.

<fornmp
<sel ect name="l ocal e" size="1">
<% get Count r yDr opDown(r equest) %
</ sel ect >
<input type="subnit" val ue="<% | ocalizer.get Message("changeLocal e") %">
</input>
</fornm

The locale selection list is constructed from the HTML code generated by the
get Count r yDr opDown method. The method converts the configured application
locales into localized country names.

A call is made to the ServletHelper class to get the ApplicationContext object
associated with the current request. This object provides the globalization context for
an application, which includes information such as supported locales and
configuration information. The get Support edLocal es call retrieves the list of
locales in the gdkapp. xm file. The configured application locale list is displayed as
options of the HTML select. The Or aDi spl ayLocal el nf o class is responsible for
providing localization methods of locale-specific elements such as country and
language names.

An instance of this class is created by passing in the current locale automatically
determined by the GDK framework. GDK creates requests and response wrappers for
HTTP request and responses. The request.getLocale() method returns the GDK
determined locale based on the locale determination rules.

The Or abDsi pl ayLocal el nf 0. get Di spl ayCount ry method retrieves the localized
country names of the application locales. An HTML option list is created in the
ddOptBuffer string buffer. The get Count r yDr opDown call returns a string containing
the following HTML values:

<option value="en_US" sel ected>United States [en_US] </ option>
<option val ue="zh_CN'>Chi na [zh_CN </ option>
<option val ue="de_CH'>Swi t zerl and [de_CH] </ opti on>

Oracle Globalization Development Kit 3-9

GDK Application Configuration File

In the preceding values, the en-US locale is selected for the locale. Country names are
generated are based on the current locale.

Example 3-6 shows the code for constructing the locale selection list.

Example 3-6 Constructing the Locale Selection List
<%
public String get CountryDropDown(HtpServletRequest request)

{
StringBuffer ddOptBuffer=new StringBuffer();
ApplicationContext ctx =
Servl et Hel per. get Appl i cati onCont ext | nst ance(request);
Local e[] applLocal es = ctx. get SupportedLocal es();
Local e currentLocal e = request. getLocal e();

if (currentLocal e. get Country().equal s(""))

{
/1 Since the Country was not specified get the Default Locale
[l (with Country) fromthe GDK
Oralocal elnfo oli = OraLocal el nfo. getlnstance(currentLocal e);
currentLocal e = oli.getLocal e();

}

OraDi splayLocal el nfo odli =
OraDi spl ayLocal el nfo. get | nstance(currentLocal e);
for (int i=0;i<appLocales.length; i++)

{
ddOpt Buf f er. append("<option val ue=\"" + appLocales[i] + "\"" +
(appLocal es[i].get Language() . equal s(current Local e. get Language()) ? "
selected" : "") +
">" + odli.getDisplayCountry(appLocales[i]) +
" [" + appLocales[i] + "]</option>\n");
}

return ddOptBuffer.toString();

%

Task 5: Build the Application
In order to build the application, the following files must be specified in the classpath:

« orail8n.jar
=« regexp.jar

Theorai 18n. j ar file contains the GDK framework and the API. The r egexp. j ar
file contains the regular expression library. The GDK API also has locale determination
capabilities. The classes are supplied by the or al18n-1 csd. j ar file.

GDK Application Configuration File

The GDK application configuration file dictates the behavior and properties of the
GDK application framework and the application that is using it. It contains locale
mapping tables and parameters for the configuration of the application. One
configuration file is required for each application.

The gdkapp. xm application configuration file is an XML document. This file resides
in the . / V\EB- | NF directory of the J2EE environment of the application.

3-10 Oracle Application Server Globalization Guide

GDK Application Configuration File

The following sections describe the contents and the properties of the application
configuration file in detail:

« locale-charset-maps

« page-charset

« application-locales

« locale-determine-rule

« locale-parameter-name
« Mmessage-bundles

« url-rewrite-rule

locale-charset-maps

page-charset

This tag enables applications to override the mapping from language to default
character set provided by the GDK. This mapping is used when the page- char set is
set to AUTO- CHARSET.

For example, for the en locale, the default GDK character set is WINDOWS-1252.
However, if the application requires 1ISO-8859-1, this can be specified as follows:

<l ocal e- char set - maps>
<l ocal e- char set >
<l ocal e>en</| ocal e>
<char set > SO 8859- 1</ char set >
</l ocal e-charset >
</l ocal e- char set - maps>

The locale name is comprised of the language code and the country code, and they
should follow the ISO naming convention as defined in 1SO 639 and I1SO 3166,
respectively. The character set name follows the Internet Assigned Numbers Authority
(IANA) convention.

Optionally, the user-agent parameter can be specified in the mapping table to
distinguish different clients.

<| ocal e- char set >
<l ocal e>en, de</| ocal e>
<user-agent >*Mozi | | a/ 4. 0</ user - agent >
<char set >l SO 8859- 1</ char set >

</l ocal e-charset >

The preceding code shows that if the user - agent value in the HTTP header starts
with Mozi | | a/ 4. 0 (which indicates older version of Web clients) for English (en) and
German (de) locales, then the GDK sets the character set to 1ISO-8859-1.

Multiple locales can be specified in a comma-delimited list.

This tag defines the character set of the application pages. If this is explicitly set to a
given character set, then all pages use this character set. The character set name must
follow the IANA character set convention.

<page- char set >UTF- 8</ page- char set >

However, if the page- char set is set to AUTO- CHARSET, then the character set is
based on the default character set of the current user locale. The default character set is

Oracle Globalization Development Kit 3-11

GDK Application Configuration File

derived from the locale to character set mapping table specified in the application
configuration file.

If the character set mapping table in the application configuration file is not available,
then the character set is based on the default locale name to IANA character set
mapping table in the GDK. Default mappings are derived from Or aLocal el nf o
class.

See Also: "Handling Non-ASCII Input and Output in the GDK
Framework" on page 3-24

application-locales
This tag defines a list of the locales supported by the application.

<application-1ocal es>
<l ocal e defaul t="yes">en-US</| ocal e>
<l ocal e>de</| ocal e>
<l ocal e>zh- CN\</ | ocal e>

</ application-|ocal es>

If the language component is specified with the * country code, then all locale names
with this language code qualify. For example, if de- * (the language code for German)
is defined as one of the application locales, then this supports de- AT (Ger man-
Austria), de (German-Germany), de- LU (German-Luxembourg), de- CH
(German-Switzerland), and even irregular locale combination such as de- CN
(German-China). However, the application can be restricted to support a predefined
set of locales.

It is recommended to set one of the application locales as the default application locale
(by specifying def aul t ="yes") so that it can be used as a fall back locale for
customers who are connecting to the application with an unsupported locale.

locale-determine-rule

This tag defines the order in which the preferred user locale is determined. The locale
sources should be specified based on the scenario in the application. The following
scenarios describe how the locale-determine-rule is used with the GDK framework:

= Scenario 1: The GDK framework uses the accept language at all times.

<l ocal e-det erm ne-rul e>
<l ocal e- source>oracl e.i 18n. servl et. | ocal esour ce. HTTPAccept Language
</l ocal e-source>

</l ocal e-determ ne-rul e>

« Scenario 2: The GDK framework uses the accept language. After the user specifies
the locale, the locale is used for further operations.

<l ocal e-det erm ne-rul e>
<l ocal e- sour ce>oracl e.i 18n. servl et. | ocal esource. User | nput </ | ocal e- sour ce>
<l ocal e-source>oracl e.i 18n. servl et. | ocal esour ce. HTTPAccept Language
</l ocal e- sour ce>

</l ocal e-determ ne-rul e>

= Scenario 3: The GDK framework uses the accept language. After the user is
authenticated, the GDK framework uses the database locale source. The database
locale source is cached until the user logs out. After the user logs out, the accept
language is used again.

<l ocal e-det erm ne-rul e>

3-12 Oracle Application Server Globalization Guide

GDK Application Configuration File

<db- | ocal e-source
dat a- sour ce- nane="j dbc/ Or acl eCor eDS'
| ocal e- sour ce-t abl e="cust onmer"
user - col um="cust omer _emai | "
user - key="useri d"
| anguage- col um="nl s_| anguage"
territory-colum="nls_territory"
ti mezone-col um="ti nezone">
oracle.i18n. servlet. | ocal esource. DBLocal eSour ce</ db- | ocal e-source>
<l ocal e- source>oracl e.i 18n. servl et. | ocal esour ce. Ht t pAccept Language
</l ocal e-source>
</l ocal e-det erm ne-rul e>

Scenario 3 includes the predefined database locale source, DBLocal eSour ce. It
enables the user profile information to be specified in the configuration file
without writing a custom database locale source. In the example, cust onmer is the
user profile table. The table has the following columns:

« custoner_enail for the unique e-mail address

« nl s_I anguage for the preferred language

« nls_territory forthe Oracle name of the preferred territory
« timezone for the customer timezone

The user - key is a mandatory attribute that specifies the attribute name used to
pass the user ID from the application to the GDK framework.

« Scenario 4: The GDK framework uses the accept language in the first page. When
the user inputs a locale, it is cached and used until the user logs into the
application. After the user is authenticated, the GDK framework uses the database
locale source. The database locale source is cached until the user logs out. After the
user logs out, the accept language is used or the user input is used, if the user
inputs a locale.

<l ocal e-det erm ne-rul e>
<l ocal e- sour ce>denp. Dat abaseLocal eSour ce</ | ocal e- sour ce>
<l ocal e- sour ce>oracl e.i 18n. servl et. | ocal esour ce. User | nput </ | ocal e-sour ce>
<l ocal e- source>oracl e.i 18n. servl et. | ocal esour ce. Ht t pAccept Language
</l ocal e-source>
</l ocal e-det erm ne-rul e>

Scenario 4 uses the custom database locale source. If the user profile schema is
complex, such as user profile information separated into multiple tables, then the
custom locale source should be provided by the application. Examples of custom
locale sources can be found in the $ORACLE_HOVE/ nl s/ gdk/ deno directory.

locale-parameter-name

This tag defines the name of the locale parameters that are used in the user input so
that the current user locale can be passed between requests.

<l ocal e- par anet er - nane>
<tinmezone>ti</tinmezone>
<linguistic-sort>ls</linguistic-sort>
<dat e- f or mat >df </ dat e- f or mat >

</l ocal e- par anet er - nane>

Table 3—-1 shows the parameters used in the GDK framework.

Oracle Globalization Development Kit 3-13

GDK Application Configuration File

Table 3-1 Locale Parameters Used in the GDK Framework

Default Parameter Name Value
char set Character set. For example, WE8| SO8859P15.
conmand GDK c_ommand. For example, st or e for the update
operation.
currency-format Currency format. For example, L9G9G90D00.
dat e-f or mat Date format pattern mask. For example, DD_MON_RRRR.
date-time-format Date and time format pattern mask. For example,
DD- MON- RRRR HH24: M : SS.
i so-currency 1SO 4217 currency code. For example, EUR for the Euro.
| anguage Oracle language name. For example, AVERI CAN for

American English.

|'i ngui stic-sort Linguistic sort order name. For example, JAPANESE_Mfor
Japanese multilingual sort.

| ocal e I1SO locale where ISO 639 language code and ISO 3166
country code are connected with an underscore (_) or a
hyphen (-). For example, zh_CN for Simplified Chinese
used in China.

| ong- dat e- f or mat Long date format pattern mask. For example,
DAY- YYYY- MM DD.

| ong-date-tinme-formt Long date and time format pattern mask. For example, DAY
YYYY- MM DD HH12: M : SS AM

nunber - f or mat Number format. For example, 9G39G90D00.

territory Oracle territory name. For example, SPAI N.

time-format Time format pattern mask. For example, HH: M : SS.

ti mezone Timezone name. For example, Aner i can/ Los_Angel es.

writing-direction Writing direction string. LTRis used for left-to-right writing

direction. RTL is used for right-to-left writing direction.

The parameter names are used in either the parameter in the HTML form or in the
URL.

message-bundles

This tag defines the base class names of the resource bundles used in the application.
The mapping is used in the Local i zer . get Message method for locating translated
text in the resource bundles.

<message- bundl es>

<resour ce- bundl e>Messages</ r esour ce- bundl e>

<resour ce- bundl e name="new esour ce" >Newessages</ r esour ce- bund| e>
</ message- bundl es>

If the name attribute is not specified or if it is specified as nanme="def aul t " for the
<r esour ce- bundl e> tag, then the corresponding resource bundle is used as the
default message bundle. To support more than one resource bundle in an application,
resource bundle names must be assigned to the nondefault resource bundles. The
nondefault bundle names must be passed as a parameter of the get Message method.

For example:

3-14 Oracle Application Server Globalization Guide

GDK Application Configuration File

Local i zer loc = ServletHel per.getLocalizerlnstance(request);
String transl atedMessage = | oc. get Message("Hel | 0");
String transl atedMessage2 = | oc. get Message("World", "new esource");

url-rewrite-rule

This tag is used to control the behavior of the URL rewrite operations. The rewriting
rule is a regular expression.

<url-rewite-rule fallback="no">
<pattern>(.*)/(["]+)$</pattern>
<resul t >$1/ $L/ $2</resul t >

<furl-rewite-rul e>

If the localized content for the requested locale is not available, then it is possible for
the GDK framework to trigger the locale fallback mechanism by mapping it to the
closest translation locale. By default, the fallback option is turned off. This can be
turned on by specifying f al | back="yes" in the expression.

For example, suppose an application has f al | back="yes" and supports only the
following translations en, de, and j a, with en as the default locale of the application.
If the current application locale is de- US, then it falls back to de. If the user selects
zh- TWas its application locale, then it falls back to en.

A fallback mechanism is often necessary if the number of supported application
locales is greater than the number of the translation locales. This usually happens
when multiple locales share one translation. One example is Spanish. The application
may need to support multiple Spanish-speaking countries and not just Spain, with one
set of translation files.

Multiple URL rewrite rules can be specified by assigning the name attribute to
nondefault URL rewrite rules. To use the nondefault URL rewrite rules, the name must
be passed as a parameter of the rewrite URL method. For example:

<inmg src="<%ServletHel per.rewiteURL("i mages/ wel cone.gif", request) %">
<ing src="<%ServletHel per.rewiteURL("US. gif", "flag", request) %">

The first rule changes the " i mages/ wel cone. gi f * URL to the localized welcome
image file. The second rule named " f | ag" changes the " US. gi f " URL to the user’s
country flag image file. The rule definition should be as follows:

<url-rewite-rule fallback="yes">
<pattern>(.*)/ ([]+)$</pattern>
<resul t >$1/ $L/ $2</resul t >
<furl-rewite-rul e>
<url-rewite-rule nane="flag">
<pattern>US.gif</pattern>
<resul t>$C. gi f</resul t >
<furl-rewite-rul e>

See Also: "Managing Localized Content in the GDK" on page 3-25
Example 3-7 shows an application configuration file with the following application
properties:

« The application supports the following locales:
— Avrabic (ar)
— Greek(el)
— English (en)

Oracle Globalization Development Kit 3-15

GDK Application Configuration File

German (de)
French (fr)

Japanese (j a)
Simplified Chinese for China (zh- CN)

« English is the default application locale.
« The page character set for the j a locale is always UTF-8.

= The page character set for the en and de locales when using an Internet Explorer
clientis WINDOWS-1252.

« The page character set for the en, de, and f r locales on other Web browser clients
is 1SO-8859-1.

« The page character sets for all other locales are the default character set for the
locale.

« The user locale is determined in order by user input locale, then the
Accept - Language tag.

« The localized contents are stored in their appropriate language subfolders. The
folder names are derived from the ISO 639 language code. The folders are located
in the root directory of the application. For example, the Japanese file for
/ shop/ wel cone. j pgisstoredin/j a/ shop/ wel cone. j pg.

Example 3-7 GDK Application Configuration File

<?xm version="1.0" encodi ng="utf-8"?>
<gdkapp
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : noNanmespaceSchenmaLocat i on="gdkapp. xsd" >
<l'-- Language to Character set mapping -->
<l ocal e- char set - maps>
<l ocal e- char set >
<l ocal e>j a</| ocal e>
<char set >UTF- 8</ char set >
</l ocal e-charset >
<l ocal e- char set >
<l ocal e>en, de</| ocal e>
<user-agent >*Mbzilla\/[0-9\. [+ (conpatible; MSIE [”;]+; \)</user-agent>
<char set >W NDOW6- 1252</ char set >
</l ocal e-char set >
<l ocal e- char set >
<l ocal e>en, de, fr</local e>
<char set >| SO 8859- 1</ char set >
</l ocal e-charset >
</l ocal e- char set - maps>

<I'-- Application Configurations -->
<page- char set >AUTO- CHARSET</ page- char set >
<appl i cation-local es>
<l ocal e>ar </ | ocal e>
<l ocal e>de</ | ocal e>
<l ocal e>fr</| ocal e>
<l ocal e>j a</| ocal e>
<l ocal e>el </| ocal e>
<l ocal e>zh- C\</ | ocal e>
<l ocal e defaul t="yes">en</|ocal e>
</ application-I|ocal es>
<l ocal e-det erm ne-rul e>
<l ocal e- sour ce>oracl e. i 18n. servl et. | ocal esour ce. User | nput </ | ocal e- source>
<l ocal e- sour ce>oracl e. i 18n. servl et. | ocal esour ce. H t pAccept Language</ | ocal e- sour ce>
</l ocal e- det erm ne-rul e>

3-16 Oracle Application Server Globalization Guide

GDK Application Framework for J2EE

<l-- URL rewriting rule -->
<url-rewite-rule fallback="no">
<pattern>(.*)/(["]+)$</pattern>
<resul t >/ $L/ $1/ $2</resul t>
<lurl-rewite-rule>
</ gdkapp>

GDK Application Framework for J2EE

GDK for Java provides the globalization framework for middle-tier J2EE applications.
The framework encapsulates the complexity of globalization programming, such as
determining user locale, maintaining locale persistency, and processing locale
information. This framework minimizes the effort required to make Internet
applications global-ready. The GDK application framework is shown in Figure 3-4.

Figure 3-4 GDK Application Framework for J2EE

lRequest Response

GDK Framework for J2EE

—

GDK . z Ser vl et Request W apper Ser vl et ResponseW apper

Configuration | 5

File = c

—_— (e]

—_— o

f— %. Local i zer o

_— o ()
=] w
o :
2 o
2 J2EE User Application ®

¢ ¢ ¢

GDK Java API

The main Java classes composing the framework are as follows:

« ApplicationContext provides the globalization context of an application. The
context information includes the list of supported locales and the rule for
determining user-preferred locale. The context information is obtained from the
GDK application configuration file for the application.

« Thesetof Local eSour ce classes can be plugged into the framework. Each
Local eSour ce class implements the Local eSour ce interface to get the locale
from the corresponding source. Oracle bundles several Local eSour ce classes in
GDK. For example, the DBLocal eSour ce class obtains the locale information of
the current user from a database schema. You can also write a customized
Local eSour ce class by implementing the same Local eSour ce interface and
plugging it into the framework.

« Servl et Request W apper and Ser vl et ResponseW apper are the main
classes of the GDK Servlet filter that transforms HTTP requests and HTTP
responses. Ser vl et Request W apper instantiates a Local i zer object for each
HTTP request based on the information gathered from the

Oracle Globalization Development Kit 3-17

GDK Application Framework for J2EE

Appl i cati onCont ext and Local eSour ce objects and ensures that forms
parameters are handled properly. Ser vl et ResponseW apper controls how
HTTP response should be constructed.

« Locali zer is the object that exposes the important functions sensitive to the
current user locale and application context. It provides a centralized set of
methods for you to call and make your applications behave appropriately to the
current user locale and application context.

« The GDK Java API is always available for applications to enable finer control of
globalization behavior.

The GDK application framework simplifies the coding required for your applications
to support different locales. When you write a J2EE application according to the
application framework, the application code is independent of what locales the
application supports, and you control the globalization support in the application by
defining it in the GDK application configuration file. There is no code change required
when you add or remove a locale from the list of supported application locales.

The following list are some of the ways you can define globalization support in the
GDK application configuration file:

« Addand remove a locale from the list of supported locales.
» Change the way the user locale is determined.

« Change the HTML page encoding of your application.

= Specify how to locate the translated resources.

« Implement a new Local eSour ce object into the framework and use it to detect a
user locale.

Making the GDK Framework Available to J2EE Applications

The behavior of the GDK application framework for J2EE is controlled by the GDK
application configuration file, gdkapp. xm . The application configuration file allows
developers to specify the behaviors of global applications in one centralized place. One
application configuration file is required for each J2EE application using the GDK.

The gdkapp. xm file should be placed in the . / WEB- | NF directory of the J2EE
environment of the application. It contains locale mapping tables, character sets of
content files, and globalization parameters for the configuration of the application. The
application administrator can modify the application configuration file to change the
globalization behavior in the application, without changing the programs and
recompiling them.

For a J2EE application to use the GDK application framework defined by the
corresponding GDK application configuration file, the GDK Servlet filter and the GDK
context listener must be defined in the web. xml file of the application. The web. xni
file should be modified to include the following at the beginning of the file:

<web- app>
<l-- Add GDK filter that is called after the authentication -->

<filter>
<filter-name>gdkfilter</filter-name>
<filter-class>oracle.il8n.servlet.filter.ServletFilter</filter-class>
</filter>
<filter-mappi ng>
<filter-name>gdkfilter</filter-nanme>
<url-pattern>*.jsp</url-pattern>

3-18 Oracle Application Server Globalization Guide

GDK Application Framework for J2EE

</filter-mpping>

<I-- Include the @K context |istener -->

<l istener>
<listener-class>oracle.i18n.servlet.|istener.ContextListener</|istener-class>
</listener>

</ web- app>

Examples of the gdkapp. xm and web. xm files can be found in the $ORACLE _
HOVE/ nl s/ gdk/ deno directory.

The GDK application framework supports servlet container version 2.3 and later. It
uses the servlet filter facility for transparent globalization operations such as
determining the user locale and specifying the character set for content files. The
Cont ext Li st ener instantiates GDK application parameters described in the GDK
application configuration file. The Ser vl et Fi | t er overrides the request and
response objects with a GDK request (Ser vl et Request W apper) and response
(Ser vl et ResponseW apper) objects, respectively.

If other application filters are used in the application to override the same methods,
then the filter in the GDK framework may return incorrect results. For example, if

get Local e returns en_US, but the result is overridden by other filters, then the result
of the GDK locale detection mechanism is affected. Be aware of potential conflicts
when using other filters together with the GDK framework.

See Also:
« "GDK Application Configuration File" on page 3-10

« Oracle Globalization Development Kit Java API Reference for more
information about methods

Integrating Locale Sources into the GDK Framework

Determining the user’s preferred locale is the first step in making an application
global-ready. The locale detection offered by the J2EE application framework is
primitive. It lacks a method that transparently retrieves the most appropriate user
locale among locale sources. It provides locale detection by the HTTP language
preference only, and it cannot support a multilevel locale fallback mechanism. The
GDK application framework provides support for predefined locale sources to
complement J2EE. In a Web application, several locale sources are available. Table 3-2
summarizes locale sources provided by the GDK.

Table 3-2 Locale Resources Provided by the GDK

Locale Description

Application default locale A locale defined in the GDK application configuration file. This
locale is defined as the default locale for the application.
Typically, this is used as a fallback locale when the other locale
sources are not available.

HTTP language preference Locales included in the HTTP protocol as a value of

Accept - Language. This is set at the Web browser level. A
locale fallback operation is required if the browser locale is not
supported by the application.

User input locale Locale specified by the user from a menu or a parameter in the
HTTP protocol.

Oracle Globalization Development Kit 3-19

GDK Application Framework for J2EE

Table 3-2 (Cont.) Locale Resources Provided by the GDK

Locale Description
User profile locale Locale preference stored in the database as part of the user
preference from database profiles.

The GDK application framework provides seamless support for predefined locale
sources, such as user input locale, HTTP language preference, user profile locale
preference in the database, and the application default locale. You can incorporate the
locale sources to the framework by defining them under the

<l ocal e- det er mi ne-rul e> tag in the GDK application configuration file as
follows:

<l ocal e- det ermi ne-rul e>

<l ocal e- sour ce>oracl e. i 18n. servl et. | ocal esour ce. User | nput </ | ocal e- source>

<l ocal e-sour ce>oracl e. i 18n. servl et . | ocal esour ce. HTTPAccept Language</ | ocal e- sour ce>
</l ocal e-det erm ne-rul e>

The GDK framework uses the locale source declaration order and determines whether
a particular locale source is available. If it is available, then it is used as the source. If it
is not available, then it tries to find the next available locale source for the list. In the
preceding example, if the User | nput locale source is available, then it is used. If it is
not, then the HTTPAccept Language locale source will be used.

Custom locale sources, such as locale preference from an LDAP server, can be
implemented and integrated into the GDK framework. You need to implement the
Local eSour ce interface and specify the corresponding implementation class under
the | ocal e- det er mi ne- r ul e tag in the same way as the predefined locale sources.

The Local eSour ce implementation not only retrieves the locale information from the
corresponding source to the framework but also updates the locale information to the
corresponding source when the framework tells it to do so. Locale sources can be
read-only or read/write, and they can be cacheable or noncacheable. The GDK
framework initiates updates only to read/write locale sources and caches the locale
information from cacheable locale sources. Examples of custom locale sources can be
found in the $ORACLE_HOVE/ nl s/ gdk/ denp directory.

See Also:

« "GDK Application Configuration File" on page 3-10 for
information about the GDK multilevel locale fallback
mechanism

« Oracle Globalization Development Kit Java API Reference for more
information about implementing a Local eSour ce

Getting the User Locale From the GDK Framework

The GDK offers automatic locale detection to determine the current locale of the user.
For example, the following code retrieves the current user locale in Java. It uses a
Local e object explicitly.

Local e loc = request. getLocal e();
The get Local e() method returns the Local e that represents the current locale. This
is similar to invoking the Ht t pSer vl et Request . get Local e() method in JSP or

Java Servlet code. However, the logic in determining the user locale is different,
because multiple locale sources are being considered in the GDK framework.

3-20 Oracle Application Server Globalization Guide

GDK Application Framework for J2EE

Alternatively, you can get a Local i zer object that encapsulates the Local e object
determined by the GDK framework.

Local i zer localizer = ServletHel per.getLocalizerlnstance(request);
Local e loc = localizer.getLocal e();

See Also: "Implementing Locale Awareness Using the GDK
Localizer" on page 3-22 for information about the benefits of the
Local i zer object

The locale detection logic of the GDK framework depends on the locale sources
defined in the GDK application configuration file. The names of the locale sources are
registered in the application configuration file. The following example shows the
locale determination rule section of the application configuration file. It indicates that
the user-preferred locale can be determined from either the LDAP server or from the
HTTP Accept - Language header. The LDAPUser Schenma locale source class should
be provided by the application. Note that all of the locale source classes have to be
extended from the Local eSour ce abstract class.

<l ocal e- det erm ne-rul e>

<l ocal e- sour ce>LDAPUser Schema</ | ocal e- sour ce>

<l ocal e- sour ce>oracl e.i 18n. | ocal esour ce. HTTPAccept Language</ | ocal e- sour ce>
</l ocal e-determ ne-rul e>

For example, when the user is authenticated in the application and the user locale
preference is stored in an LDAP server, then the LDAPUser Schenm class connects to
the LDAP server to retrieve the user locale preference. When the user is anonymous,
the Ht t pAccept Language class returns the language preference of the Web browser.

The cache is maintained for the duration of a HTTP session. If the locale source is
obtained from the HTTP language preference, then the locale information is passed to
the application in the HTTP Accept - Language header and not cached. This enables
flexibility so that the locale preference can change between requests. The cache is
available in the HTTP session.

The GDK framework has a method for the application to overwrite the locale
preference information persistently stored in locale sources such as the LDAP server or
the user profile table in the database. This method also resets the current locale
information stored inside the cache for the current HTTP session. The following is an
example of overwriting the preferred locale using the st or e command.

<i nput type="hi dden"
name="<%appct x. get Par amet er Name(Local eSour ce. Par anet er . COVWWAND) %"
val ue="store">

To discard the current locale information stored inside the cache, the cl ean command
can be specified as the input parameter. The following table shows the commands
supported by the GDK:

Command Functionality

cl ean Discards the current locale information in the cache.

store Updates user locale preferences in the available locale sources
with the specified locale information. This command is ignored
by the read-only locale sources.

Oracle Globalization Development Kit 3-21

GDK Application Framework for J2EE

Note that the GDK parameter names can be customized in the application
configuration file to avoid name conflicts with other parameters used in the
application.

Implementing Locale Awareness Using the GDK Localizer

The Local i zer object obtained from the GDK application framework provides access
to functions that are commonly used in building locale awareness in your applications.
In addition, it provides functions to get information about the application context,
such as the list of supported locales. The Local i zer object simplifies and centralizes
the code required to build consistent locale awareness behavior in your applications.

Theoracl e.i 18n. servl et package contains the Local i zer class. You can get the
Localizer instance as follows:

Locali zer I ¢ = ServletHel per.getlLocalizerlnstance(request);

The Local i zer object encapsulates the most commonly used locale-sensitive
information determined by the GDK framework and exposes it as locale-sensitive
methods. This object includes the following functionalities pertaining to the user
locale:

» Format date in long and short formats

» Format numbers and currencies

« Getcollation key value of a string

« Get locale data such as language, country and currency names
« Get locale data to be used for constructing user interface

» Getatranslated message from resource bundles

« Get text formatting information such as writing direction

= Encode and decode URLs

» Get the common list of time zones and linguistic sorts

For example, when you want to display a date in your application, you may want to
call the Local i zer . format Dat e() or Local i zer. f or mat eDat eTi ne()
methods. When you want to determine the writing direction of the current locale, you
can call the Local i zer. get WitingDirection() and

Local i zer. get Ali gnment () to determine the value used in the <DI R> tag and
<ALI GN\> tag respectively.

The Local i zer object also exposes methods to enumerate the list of supported
locales and their corresponding languages and countries in your applications.

The Local i zer object actually makes use of the classes in the GDK Java API to
accomplish its tasks. These classes includes, but are not limited to, the following:

« OrabDat eFor nmat

=« OraNunmber For mat

« OaCollator

« OralLocal elnfo

« oracle.il8n.util.Local eMapper
« oracle.il8n.net.URLEncoder

= oracle.il8n.net. URLDecoder

3-22 Oracle Application Server Globalization Guide

GDK Application Framework for J2EE

The Local i zer object simplifies the code you need to write for locale awareness. It
maintains caches of the corresponding objects created from the GDK Java API so that
the calling application does not need to maintain these objects for subsequent calls to
the same objects. If you require more than the functionality the Local i zer object can
provide, then you can always call the corresponding methods in the GDK Java API
directly.

See Also: Oracle Globalization Development Kit Java APl Reference
for detailed information about the Local i zer object

Defining the Supported Application Locales in the GDK

The number of locales and the names of the locales that an application needs to
support are based on the business requirements of the application. The names of the
locales that are supported by the application are registered in the application
configuration file. The following example shows the application locales section of the
application configuration file. It indicates that the application supports German (de),
Japanese (j a), and English for the US (en- US), with English defined as the default
fallback application locale. Note the locale names are based on the IANA convention.

<application-local es>

<l ocal e>de</| ocal e>

<l ocal e>j a</| ocal e>

<l ocal e defaul t="yes">en-US</I| ocal e>
</ application-local es>

When the GDK framework detects the user locale, it verifies whether the locale that is
returned is one of the supported locales in the application configuration file. The
verification algorithm is as follows:

1. Retrieve the list of supported application locales from the application
configuration file.

2. Check whether the detected locale is included in the list. If it is included in the list,
then use this locale as the current client's locale.

3. Ifthere is a variant detected in the locale, then remove the variant and check
whether the resulting locale is in the list. For example, the Java locale de_DE _
EURO has a EUROvariant. Remove the variant so that the resulting locale is de_DE.

4. If the locale includes a country code, then remove the country code and check
whether the resulting locale is in the list. For example, the Java locale de_DE has a
country code of DE. Remove the country code so that the resulting locale is de.

5. If the detected locale does not match any of the locales in the list, then use the
default locale that is defined in the application configuration file as the client
locale.

By performing steps 3 and 4, the application can support users with the same language
requirements but with different locale settings than those defined in the application
configuration file. For example, the GDK can support de- AT (the Austrian variant of
German), de- CH (the Swiss variant of German), and de- LU (the Luxembourg variant
of German) locales.

The locale fallback detection in the GDK framework is similar to that of the Java
resource bundle, except that it is not affected by the default locale of the JVM. This
exception occurs because the application default locale can be used during the GDK
locale fallback operations.

Oracle Globalization Development Kit 3-23

GDK Application Framework for J2EE

If the application-locales section is omitted from the application configuration file,
then the GDK assumes that the common locales, which can be returned by the
OralLocal el nf 0. get ComonLocal es method, are supported by the application.

Handling Non-ASCII Input and Output in the GDK Framework

The character set or character encoding of an HTML page is important to a browser
and an Internet application. The browser needs to interpret the information so it can
use the correct fonts and character set mapping tables for displaying pages. The
Internet applications need to know so they can safely process input data from an
HTML form based on the specified encoding.

The page encoding can be translated as the character set used for the locale served by
an Internet application. In order to correctly specify the page encoding for HTML
pages without using the GDK framework, Internet applications must:

« Determine the desired page input data character set encoding for a given locale.

« Specify the corresponding encoding name for each HTTP request and HTTP
response.

Applications using the GDK framework can ignore these steps. No application code
change is required. The character set information is specified in the GDK application
configuration file. At runtime, the GDK automatically sets the character sets for the
request and response objects. The GDK framework does not support the scenario
where the incoming character set is different from that of the outgoing character set.

The GDK application framework supports the following scenarios for setting the
character sets of the HTML pages:

« Asingle local character set is dedicated to the whole application. This is
appropriate for a monolingual Internet application. Depending on the properties
of the character set, it may be able to support more than one language. For
example, most Western European languages can be served by 1SO-8859-1.

« Unicode UTF-8 is used for all contents regardless of the language. This is
appropriate for a multilingual application that uses Unicode for deployment.

= The native character set for each language is used. For example, English contents
are represented in 1ISO-8859-1, and Japanese contents are represented in Shift_JIS.
This is appropriate for a multilingual Internet application that uses a default
character set mapping for each locale. This is useful for applications that need to
support different character sets based on the user locales. For example, for mobile
applications that lack Unicode fonts or Internet browsers that cannot fully support
Unicode, the character sets must be determined for each request.

The character set information is specified in the GDK application configuration file.
The following is an example of setting UTF-8 as the character set for all the application
pages.

<page- char set >UTF- 8</ page- char set >

The page character set information is used by the Ser vl et Request W apper class,
which sets the proper character set for the request object. It is also used by the

Cont ent Type HTTP header specified in the Ser vl et ResponseW apper class for
output when instantiated. If page- char set is set to AUTO- CHARSET, then the
character set is assumed to be the default character set for the current user locale. Set
page- char set to AUTO- CHARSET as follows:

<page- char set >AUTO- CHARSET</ page- char set >

3-24 Oracle Application Server Globalization Guide

GDK Application Framework for J2EE

The default mappings are derived from the Local eMapper class, which provides the
default IANA character set for the locale name in the GDK Java API.

Table 3-3 lists the mappings between the common ISO locales and their IANA
character sets.

Table 3-3 Mapping Between Common ISO Locales and IANA Character Sets

ISO Locale | IANA Character Set NLS LANGUAGE Value | NLS_TERRITORY Value
ar-SA WINDOWS-1256 ARABIC SAUDI ARABIA
de-DE WINDOWS-1252 GERMAN GERMANY
el WINDOWS-1253 GREEK GREECE
en-GB WINDOWS-1252 ENGLISH UNITED KINGDOM
en-UsS WINDOWS-1252 AMERICAN AMERICA
es-ES WINDOWS-1252 SPANISH SPAIN
fr WINDOWS-1252 FRENCH FRANCE
fr-CA WINDOWS-1252 CANADIAN FRENCH CANADA
it WINDOWS-1252 ITALIAN ITALY
iw WINDOWS-1255 HEBREW ISRAEL
ja SHIFT_JIS JAPANESE JAPAN
ko EUC-KR KOREAN KOREA
nl WINDOWS-1252 DUTCH THE NETHERLANDS
pt WINDOWS-1252 PORTUGUESE PORTUGAL
pt-BR WINDOWS-1252 BRAZILIAN BRAZIL
PORTUGUESE
tr WINDOWS-1254 TURKISH TURKEY
zh GBK SIMPLIFIED CHINESE | CHINA
zh-TW BIG5 TRADITIONAL TAIWAN
CHINESE

The locale to character set mapping in the GDK is also customizable. To override the
default mapping defined in the GDK Java API, a locale-to-character-set mapping table
can be specified in the application configuration file.

<l ocal e- char set - maps>
<l ocal e- char set >
<l ocal e>j a</| ocal e><char set >EUC- JP</ char set >
</l ocal e-char set >
</l ocal e-char set - maps>

The preceding example shows that for locale Japanese (j a), the GDK changes the
default character set from SHIFT_JIS to EUC-JP.

See Also:

Managing Localized Content in the GDK

This section includes the following topics:

« Managing Localized Content in JSPs and Java Servlets

Oracle Globalization Development Kit

"Oracle Locale Information in the GDK" on page 3-28

3-25

GDK Application Framework for J2EE

» Managing Localized Content in Static Files

Managing Localized Content in JSPs and Java Servlets

Resource bundles enable access to localized contents at runtime in Java 2 Platform,
Standard Edition (J2SE). Translatable strings within Java servlets and Java Server
Pages (JSPs) are externalized into Java resource bundles so these resource bundles can
be translated independently into different languages. The translated resource bundles
carry the same base class names as the English bundles, using the Java locale name as
the suffix.

To retrieve translated data from the resource bundle, the get Bundl e() method must
be invoked for every request.

<% Local e user_| ocal e=request . get Local e();
Resour ceBundl e rb=ResourceBundl e. get Bundl e("resource", user_| ocal e); %
<% rhb.getString("Vel cone") %

The GDK framework simplifies the retrieval of text strings from the resource bundles.
Local i zer. get Message() is a wrapper to the resource bundle.

<% Local i zer. get Message ("¢l cone") %

Instead of specifying the base class name as get Bundl e() in the application, you can
specify the resource bundle in the application configuration file. The GDK will
automatically instantiate a Resour ceBundl e object when a translated text string is
requested.

<message- bundl es>
<resour ce-bundl e name="def aul t " >resour ce</resour ce- bundl e>
</ message- bundl es>

The preceding configuration file code declares a default resource bundle whose
translated contents reside in the resource Java bundle class. Multiple resource bundles
can be specified in the configuration file. To access a nondefault bundle, specify the
name parameter in the get Message method. The message bundle mechanism uses
the Or aResour ceBundl e GDK class for its implementation. This class provides the
special locale fallback behaviors on top of the Java behaviors. The rules are as follows:

= If the given locale exactly matches the locale in the available resource bundles,
then it will be used.

« If the resource bundle for Chinese in Singapore (zh_SG) is not found, then it will
fallback to the resource bundle for Chinese in China (zh_CN) for Simplified
Chinese translations.

= If the resource bundle for Chinese in Hong Kong (zh_HK) is not found, then it will
fallback to the resource bundle for Chinese in Taiwan (zh_TW for Traditional
Chinese translations.

« If the resource bundle for Chinese in Macau (zh_MO) is not found, then it will
fallback to the resource bundle for Chinese in Taiwan (zh_TW for Traditional
Chinese translations.

« If the resource bundles for any other Chinese locale (zh_ and zh) is not found,
then it will fallback to the resource bundle for Chinese in China (zh_CN) for
Simplified Chinese translations.

« The default locale, which can be obtained by the Local e. get Def aul t method,
will not be considered in the fallback operations.

3-26 Oracle Application Server Globalization Guide

GDK Application Framework for J2EE

The preceding rules provide the preferred languages for Hong Kong and Macau. The
JDK fallback locale is Simplified Chinese (zh), whereas the users prefer Traditional
Chinese (zh_TW).

For example, assume the default locale isj a_JP and the resource bundle for it is
available. When the resource bundle for es_MX s requested and neither resource
bundle for es or es_MXis provided, then the base resource bundle object that does not
have the local suffix is returned.

The usage of the Or aResour ceBundl e class is similar to the

java. util.ResourceBundl e class, but the Or aResour ceBundl e call does not
instantiate itself. Instead, the return value of the get Bundl e method is an instance of
the subclass of the j ava. ut i | . Resour ceBundl e class.

Managing Localized Content in Static Files

For an application that supports only one locale, the URL that has a suffix of
/i ndex. ht m typically takes the user to the starting page of the application.

In a global application, contents in different languages are usually stored separately,
and it is common for them to be staged in different directories or with different file
names based on the language or the country name. This information is then used to
construct the URLSs for localized content retrieval in the application.

The following code illustrates how to retrieve the French and Japanese versions of the
index page. Their suffixes are as follows:

[frlindex. htm
/jalindex. htm

By using therewri t eURL() method of the ServletHelper class, the GDK framework
handles the logic to locate the translated files from the corresponding language
directories. The Ser vl et Hel per.rew it eURL() method rewrites a URL based on
the rules specified in the application configuration file. This method is used to
determine the correct location where the localized content is staged.

The following is an example of the JSP code:

<inmg src="<9%"Servl et Hel per.rewiteURL("image/ wel core. j pg", request)%">
<a href="<%"Servl et Hel per.rewiteURL("htm /wel cone.htm ", request)%">

The URL rewrite definitions are defined in the GDK application configuration file:

<url-rewite-rule fallback="yes">
<pattern>(.*)/(a-zA-Z0-9_\]+.)$</pattern>
<resul t >$1/ $A $2</resul t>
<lurl-rewite-rule>

The pattern section defined in the rewrite rule follows the regular expression
conventions. The following special variables are for use with the <r esul t > tag:
« 3L represents the ISO 639 language code part of the current user locale

« $Crepresents the ISO 3166 country code

= $Arepresents the entire locale string, where the 1SO 639 language code and ISO
3166 country code are connected with an underscore character (_)

« 31 to $9 represent the matched substrings

For example, if the current user locale is | a, then the URL for the wel cone. j pg
image file is rewritten as i rage/ j a/ wel con®e. j pg, and wel cone. ht m is changed
tohtm /ja/wel cone. htm .

Oracle Globalization Development Kit 3-27

GDK Java API

Both Servl et Hel per.rewiteURL()and Local i zer. get Message() methods
perform consistent locale fallback operations in the case where the translation files for
the user locale are not available. For example, if the online help files are not available
for the es_MXlocale (Spanish for Mexico), but the es (Spanish for Spain) files are
available, then the methods will select the Spanish translated files as the substitute.

GDK Java API

Java globalization functionalities and behaviors are not the same as those offered in
the database. For example, J2SE supports a set of locales and character sets that are
different from Oracle locales and character sets. This inconsistency can be confusing
for users when their application contains data that is formatted based on 2 different
conventions. For example, dates that are retrieved from the database are formatted
using Oracle conventions, (such as number and date formatting and linguistic sort
ordering), but the static application data is formatted using Java locale conventions.
Java globalization functionalities can also be different depending on the version of the
JDK that the application runs on.

The GDK Java API extends Oracle Application Server database globalization features
to the middle tier. By enabling applications to perform globalization logic such as
Oracle date and number formatting and linguistic sorting in the middle tier, the GDK
Java API allows developers to eliminate expensive programming logic in the database,
hence improving the overall application performance by reducing the database load in
the database server and the unnecessary network traffic between the application tier
and the database server.

The GDK Java API also offers advance globalization functionalities, such as language
and character set detection, and the enumeration of common locale data for a territory
or a language (for example, all time zones supported in Canada). These globalization
features are not available in most programming platforms. Without the GDK Java API,
developers must write business logic to handle them inside an application.

The following are the key functionalities of the GDK Java API:

« Oracle Locale Information in the GDK

« Oracle Locale Mapping in the GDK

= Oracle Character Set Conversion in the GDK

= Oracle Date, Number, and Monetary Formats in the GDK

« Oracle Binary and Linguistic Sorts in the GDK

« Oracle Language and Character Set Detection in the GDK

« Oracle Translated Locale and Time Zone Names in the GDK

= Using the GDK for E-mail Programs

Oracle Locale Information in the GDK

Oracle locale definitions, which include languages, territories, linguistic sorts, and
character sets, are exposed in the GDK Java API. The naming convention Oracle uses
may also be different from other vendors. Although many of these names and
definitions follow industry standards, some are specific to Oracle, and tailored to meet
special customer requirements.

The Oracle locale class, Or aLocal el nf o, includes language, territory, and collator
objects. It provides a method for applications to retrieve a collection of locale-related
objects for a given locale. For example, a full list of the Oracle linguistic sorts available

3-28 Oracle Application Server Globalization Guide

GDK Java API

in the GDK, the local time zones defined for a given territory, or the common
languages used in a particular territory.

The following are examples using the Or aLocal el nf o class:
[l Al Territories supported by GDK

String[] avterr = Oralocal el nfo. getAvail abl eTerritories();

/'l Local TimeZones for a given Territory
OraLocal el nfo ol oc = Oralocal el nfo. get | nstance("English", "Canada");
Ti meZone[] | octz = ol oc. get Local Ti meZones();

Oracle Locale Mapping in the GDK

The GDK Java API provides the Local eMapper class. It maps equivalent locales and
character sets between Java, IANA, ISO, and Oracle. A Java application may receive
locale information from the client that is specified in the Oracle locale name or an
IANA character set name. The Java application must be able to map to an equivalent
Java locale or Java encoding before it can process the information correctly.

The following is an example of using the Local eMapper class.

/'l Mapping fromJava locale to Oracle |anguage and Oracle territory
Local e | ocal e = new Local e("it", "IT");

String oralLang = Local eMapper. get OraLanguage(l ocal e);

String oraTerr = Local eMapper.getOraTerritory(locale);

/1 From Oracl e I anguage and Oracle territory to Java Local e

| ocal e
| ocal e

Local eMapper . get JavaLocal e("AMERI CAN', " AMERI CA") ;
Local eMapper . get Javalocal e(" TRADI TONAL CHI NESE', "");

/] From|ANA & Java to Oracle Character set

String ocsl = Local eMapper . get Or aChar act er Set (

Local eMapper. | ANA, "I SO 8859-1");
Local eMapper. get OraChar act er Set (

Local eMapper. JAVA, "1S08859_1");

String ocs2

The Local eMapper class can also return the most commonly used e-mail character
set for a specific locale on both Microsoft Windows and UNIX platforms. This is useful
when developing Java applications that need to process e-mail messages.

See Also: "Using the GDK for E-mail Programs" on page 3-34

Oracle Character Set Conversion in the GDK

The GDK Java API contains a set of character set conversion class APIs that enable
users to perform Oracle character set conversions. Although Java JDK is already
equipped with classes that can perform conversions for many of the standard
character sets, they do not support Oracle-specific character sets and Oracle
user-defined character sets.

In JDK 1.4, J2SE introduced an interface for developers to extend Java character sets.
The GDK Java API provides implicit support for Oracle character sets by using this
plug-in feature. You can access the J2SE API to obtain behaviors specific for Oracle.

Figure 3-5 shows the GDK character set conversion tables are plugged into J2SE in the
same way as the Java character set tables. With this pluggable framework of J2SE, the

Oracle Globalization Development Kit 3-29

GDK Java API

Oracle character set conversions can be used in the same way as other Java character
set conversions.

Figure 3-5 Oracle Character Set Plug-in

J2SE
Runtime

Java character set GDK character set
conversion table conversion table

Thej ava. ni 0. char set Java package is not available in JDK versions prior to
version 1.4. You must install JDK 1.4 or later to use the Oracle character set plug-in
feature.

The GDK character conversion classes support all Oracle character sets including
user-defined characters sets. It can be used by Java applications to properly convert to
and from Java internal character set, UTF-16.

Oracle character set names are proprietary. To avoid potential conflicts with Java's own
character sets, all Oracle character set names have an X- ORACLE- prefix for all implicit
usage through Java API.

The following is an example of Oracle character set conversion:

/] Converts the Chinese character "three" fromUCS2 to JA16SJI S

String str = "\u4e09";
byte[] barr = str.getBytes("x-oracle-JA16SJIS");

Like other Java character sets, the character set facility in

j ava. ni 0. char set . Char set is also applicable to all of the Oracle character sets.
For example, to check whether the specified character set is a superset of another
character set, you can use the Char set . cont ai ns method as follows:

Charset csl = Charset.forName("x-oracle-US7TASC |");

Charset c¢s2 = Charset.forName("x-oracl e- \EBW NDOWG1252") ;

/1 true if WEBWNDOWS1252 is the superset of US7ASCII, otherw se false.
bool ean osc = cs2. contai ns(csl);

For a Java application that is using the JDBC driver to communicate with the database,
the JDBC driver provides the necessary character set conversion between the
application and the database. Calling the GDK character set conversion methods
explicitly within the application is not required. A Java application that interprets and
generates text files based on Oracle character set encoding format is an example of
using Oracle character set conversion classes.

Oracle Date, Number, and Monetary Formats in the GDK

The GDK Java API provides formatting classes that support date, number, and
monetary formats using Oracle conventions for Java applications in the
oracl e. i 18n. t ext package.

New locale formats introduced in Oracle Application Server, such as the short and
long date, number, and monetary formats, are also provided in these format classes.

3-30 Oracle Application Server Globalization Guide

GDK Java API

The following are examples of Oracle date, Oracle number, and Oracle monetary
formatting:

/1 Cbtain the current date and time in the default Oracle LONG format for
/1 the local e de_DE (German_Ger many)

Local e | ocal e = new Local e("de", "DE");
O aDat eFormat odf =
O aDat eFor mat . get Dat eTi nel nst ance(O aDat eFor mat. LONG, | ocal e) ;

/] Cbtain the nuneric val ue 1234567.89 using the default nunber fornat
Il for the Locale en_IN (English_India)

| ocal e = new Local e("en", "IN");
OraNunber Format onf = OraNunber For mat . get Nunber | nst ance(| ocal e) ;
String nm= onf.format(new Doubl e(1234567. 89));

[l Cbtain the monetary value 1234567.89 using the default currency
/I format for the Local e en_US (Anerican_Anerica)

| ocal e = new Local e("en", "US");
onf = OraNunber For mat . get Qurrencyl nstance(l ocal e) ;
nm = onf. format (new Doubl e(1234567. 89)) ;

Oracle Binary and Linguistic Sorts in the GDK

Oracle provides support for binary, monolingual, and multilingual linguistic sorts in
the database. In Oracle Application Server, these sorts have been expanded to provide
case-insensitive and accent-insensitive sorting and searching capabilities inside the
database. By using the Or aCol | at or class, the GDK Java API enables Java
applications to sort and search for information based on the latest Oracle binary and
linguistic sorting features, including case-insensitive and accent-insensitive options.

Normalization can be an important part of sorting. The composition and
decomposition of characters are based on the Unicode standard, so sorting also
depends on the Unicode standard. Because each version of the JDK may support a
different version of the Unicode Standard, the GDK provides an Or aNor nal i zer
class based on the Unicode 3.2 standard. It contains methods to perform composition.

The sorting order of a binary sort is based on the Oracle character set that is being
used. Except for the UTFE character set, the binary sorts of all Oracle character sets are
supported in the GDK Java API. The only linguistic sort that is not supported in the
GDK Java APl is JAPANESE, but a similar and more accurate sorting result can be
achieved by using JAPANESE_M.

The following are examples of string comparisons and string sorting:

/] conpares strings using XGERVAN

private static String sl = "abcSS";
private static String s2 = "abc\ uOODF";

String cname = " XGERVAN';
OraCol lator ocol = OraCol | ator. getlnstance(cnane);
int ¢ = ocol.conpare(sl, s2);

/1 sorts strings using GENERI C_M

private static String[] source =
new String[]

Oracle Globalization Development Kit 3-31

GDK Java API

{
"Hochgeschwi ndi gkei t sdrucker ™,

"Bi | dschi r nf u\ uOODF",

" Skj er mhengsel ",

"Dl MM de Mem uOOF3ria",

"M uO0F3dul o SDRAM com ECC',

b

cname = "GENERIC_M';
ocol = OraCol | at or. get I nst ance(cnane) ;
List result = getCol |l ationKeys(source, ocol);

private static List getCollationKeys(String[] source, OraCollator ocol)

{

List karr = new ArraylList(source.length);
for (int i =0; i < source.length; ++)

{
karr. add(ocol . get Col | ati onKey(source[i]));

}

Col I ections.sort(karr); // sorting operation
return karr;

Oracle Language and Character Set Detection in the GDK

The Oracle Language and Character Set Detection Java classes in the GDK Java API
provide a high performance, statistically based engine for determining the character
set and language for unspecified text. It can automatically identify language and
character set pairs from throughout the world. With each text, the language and
character set detection engine sets up a series of probabilities, each probability
corresponding to a language and character set pair. The most probable pair statistically
identifies the dominant language and character set.

The purity of the text submitted affects the accuracy of the language and character set
detection. Only plain text strings are accepted, so any tagging needs to be stripped
before hand. The ideal case is literary text with almost no foreign words or
grammatical errors. Text strings that contain a mix of languages or character sets, or
nonnatural language text like addresses, phone numbers, and programming language
code may Yyield poor results.

The LCSDet ect or class can detect the language and character set of a byte array, a
character array, a string, and an | nput St r eamclass. It can take the entire input for
sampling or only portions of the input for sampling, when the length or both the offset
and the length are supplied. For each input, up to three potential language and
character set pairs can be returned by the LCSDet ect or class. They are always ranked
in sequence, with the pair with the highest probability returned first.

The following are examples of using the LCSDet ect or class to enable language and
character set detection:

/1 This exanple detects the character set of a plain text file "foo.txt" and
/1 then appends the detected |1SO character set name to the nane of the text file

LCSDet ect or | csd = new LCSDetector();

File oldfile = new File("foo.txt");

Fi | el nput Stream in = new FilelnputStreanm(ol dfile);

| csd. detect (in);

String charset = Icsd.getResult().getl ANACharacterSet();

3-32 Oracle Application Server Globalization Guide

GDK Java API

File newfile = new File("foo."+charset+".txt");
ol dfile.renameTo(newfile);

/1 This exanple shows how to use the LCSDector class to detect the |anguage and
Il character set of a byte array

int of fset = 0;
LCSDet ect or I ed = new LCSDetector();
/* loop through the entire byte array */
while (true)
{
bytes_read = |ed. detect (byte_input, offset, 1024);
if (bytes_read ==-1)
break;
of fset += bytes_read;
}

LCSDResul t Set res = led. getResult();

[* print the detection results with close ratios */

Systemout. println("the best guess ");

Systemout. println("Language " + res.get OraLanguage());
Systemout. println("CharacterSet " + res.getOraCharacterSet());

int high_hit = res.getH HtPairs();
if (high_hit >=2)
{
Systemout.println("the second best guess ");
Systemout. println("Language " + res.get OraLanguage(2));
Systemout. println("CharacterSet " +res.getOaCharacterSet(2));
}
if (high_hit >=3)
{
Systemout.printin("the third best guess ");
Systemout. println("Language " + res.getOraLanguage(3));
Systemout. println("CharacterSet " +res.getOraCharacterSet(3));
}

Oracle Translated Locale and Time Zone Names in the GDK

All Oracle language names, territory names, character set names, linguistic sort names,
and time zone names have been translated into 27 languages including English. They
are readily available for inclusion in the user applications, and they provide
consistency for the display names across user applications in different languages.

Or aDi spl ayLocal el nf o is a utility class that provides the translations of locale and
attributes. The translated names are useful for presentation in user interface text and
for selection boxes. For example, a native French speaker prefers to select from a list of
time zones displayed in French than in English.

The following is an example of using Or aDi spl ayLocal el nf o to return a list of time
zones supported in Canada, using the French translation names:

OraLocal elnfo ol oc = OraLocal el nfo. get | nstance(" CANADI AN FRENCH', " CANADA");
OraDi spl ayLocal el nfo odl oc = Orabi spl ayLocal el nfo. get I nst ance(ol oc);
Ti meZone[] |octzs = ol oc. get Local eTi meZones();
String [] disptz = new string [loctzs.length];
for (int i=0; i<loctzs.length; ++)
{
disptz [i]= odl oc. get Di spl ayTi meZone(l octzs[i]);

Oracle Globalization Development Kit 3-33

GDK Java API

Using the GDK for E-mail Programs

You can use the GDK Local eMapper class to retrieve the most commonly used e-mail
character set. Call Local eMapper . get | ANAChar Set Fr onlLocal e, passing in the
locale object. The return value is an array of character set names. The first character set
returned is the most commonly used e-mail character set.

The following is an example of sending an e-mail message containing Simplified
Chinese data in GBK character set encoding:

inport oracle.il8n.util.Local eMapper;
inport java.util.Date;

inport java.util.Locale;

inport java.util.Properties;

inport javax.nmail.Message;

i nport javax.mail.Session;

inport javax.mail.Transport;

inport javax.mail.internet.InternetAddress;
inmport javax.nail.internet.M meMessage;
inport javax.nail.internet.MmeUility;

/**

* Emai| send operation sanple

*

* javac -classpath orail8n.jar:j2ee.jar Email Sanpl eText.java
* java -classpath .:orail8n.jar:j2ee.jar Enmail Sanpl eText

*/
public class Email Sanpl eText
{
public static void main(String[] args)
{
send("l ocal host", /1 smp host nane
"your . address@our - conpany. cont', /1 fromenail address
"You", [l fromdisplay email
"sonebody @ome- conpany. coni', [/ to email address
"Subj ect test zh CN', /'l subj ect
"Content «4E02 from Text email", // body
new Local e("zh", "CN') /'l user locale
);
}

public static void send(String snp, String fronEmail, String fronD spNane,
String toEmail, String subject, String content, Locale |ocale
)
{
Il get the list of common email character sets
final String[] charset = Local eMapper.get | ANAChar Set FrormLocal e(Local eMapper .
EMAI L_W NDOWS,
| ocal e
);
Il pick the first one for the email encoding
final String contentType = "text/plain; charset=" + charset[0];
try
{
Properties props = System getProperties();
props. put ("mail.sntp.host", sntp);
Il here, set usernane / password if necessary
Sessi on session = Session. get Defaul tInstance(props, null);
M meMessage nmi neMessage = new M neMessage(session);
m meMessage. set Fron{new | nt ernet Address(fronEnail, fronDi spNang,
charset[0]
)
);

3-34 Oracle Application Server Globalization Guide

GDK for Java Supplied Packages and Classes

}

m nmeMessage. set Reci pi ent s(Message. Reci pi ent Type. TO, toEmail);

m meMessage. set Subj ect (M meUtility. encodeText (subject, charset[0], "Q'));
/1 body

m meMessage. set Cont ent (content, contentType);

m neMessage. set Header (" Content - Type", content Type);

m meMessage. set Header (" Cont ent - Tr ansf er - Encodi ng", "8bit");

m meMessage. set Sent Dat e(new Date());

Transport . send(n meMessage) ;

}
catch (Exception e)

{
}

e.printStackTrace();

GDK for Java Supplied Packages and Classes

Oracle Globalization Services for Java contains the following packages:

oracle.il8n.lcsd

oracle.il8n.lcsd
oracle.il8n.net
oracle.il8n.servlet
oracle.il8n.text

oracle.il8n.util

See Also: Oracle Globalization Development Kit Java APl Reference

Package or acl e. i 18n. | csd provides classes to automatically detect and recognize
language and character set based on text input. Language is based on 1SO, and
encoding is based on IANA or Oracle character sets. It includes the following classes:

oracle.il8n.net

LCSDet ect or : This class contains methods to automatically detect and recognize
language and character set based on text input.

LCSDResul t Set : This class stores the result generated by LCSDet ect or .
Methods in this class can be used to retrieve specific information from the result.

Package or acl e. i 18n. net provides Internet-related data conversions for
globalization. It includes the following classes:

oracle.il8n.servlet

Char Enti t yRef er ence: A utility class to escape or unescape a string into
character reference or entity reference form.

Char Enti t yRef er ence. For m A form parameter class that specifies the
escaped form.

Package or acl e. i 18n. Ser vl et enables JSP and JavaServlet to have automatic
locale support and also returns the localized contents to the application. It includes the
following classes:

Oracle Globalization Development Kit 3-35

GDK for PL/SQL Supplied Packages

oracle.il8n.text

Appl i cati onCont ext : An application context class that governs application
scope operation in the framework.

Local i zer: An all-in-one object class that enables access to the most commonly
used globalization information.

Ser vl et Hel per: A delegate class that bridges between Java servlets and
globalization objects.

Package or acl e. i 18n. t ext provides general text data globalization support. It
includes the following classes:

oracle.i18n.util

OraCol | ati onKey: A class which represents a St ri ng under certain rules of a
specific Or aCol | at or object.

OraCol | at or: A class to perform locale-sensitive string comparison, including
linguistic collation and binary sorting.

Or aDat eFor mat : An abstract class to do formatting and parsing between
datetime and string locale. It supports Oracle datetime formatting behavior.

Or aDeci mal For mat : A concrete class to do formatting and parsing between
number and string locale. It supports Oracle number formatting behavior.

Or aDeci mal For mat Synbol : A class to maintain Oracle format symbols used by
Oracle number and currency formatting.

Or aNurber For mat : An abstract class to do formatting and parsing between
number and string locale. It supports Oracle number formatting behavior.

Or aSi npl eDat eFor mat : A concrete class to do formatting and parsing between
datetime and string locale. It supports Oracle datetime formatting behavior.

Package or acl e. i 18n. uti | provides general utilities for globalization support. It
includes the following classes:

Local eMapper : This class provides mappings between Oracle locale elements
and the equivalent locale elements of other vendors and standards.

Or abDi spl ayLocal el nf o: A translation utility class that provides the
translations of locale and attributes.

OraLocal el nf o: An Oracle locale class that includes the language, territory, and
collator objects.

OrasS@Q.Uti | : An Oracle SQL utility class that includes some useful methods of
dealing with SQL.

GDK for PL/SQL Supplied Packages

The GDK for PL/SQL includes the following PL/SQL packages:

UTL_I 18N
UTL_LMS

UTL_I 18Nis a set of PL/SQL services that help developers to build global
applications. The UTL_| 18NPL/SQL package provides the following functions:

3-36 Oracle Application Server Globalization Guide

GDK for PL/SQL Supplied Packages

« String conversion functions for various datatypes

« Escape and unescape sequences for predefined characters and multibyte
characters used by HTML and XML documents

» Functions that map between Oracle, IANA, ISO, and e-mail application character
sets, languages, and territories

« A function that returns the Oracle character set name from an Oracle language
name

UTL_L VS retrieves and formats error messages in different languages.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference

Oracle Globalization Development Kit 3-37

GDK for PL/SQL Supplied Packages

3-38 Oracle Application Server Globalization Guide

A

Implementing HTML Features

This chapter contains the following topics:

Implementing HTML Features for Global Applications

Formatting HTML Pages to Accommodate Text in Different Languages
Encoding HTML Pages

Encoding URLs

Handling HTML Form Input

Decoding HTTP Headers

Organizing the Content of HTML Pages for Translation

Implementing HTML Features for Global Applications

There are a variety of HTML features to enhance your global Internet applications. The
following sections discuss some of the most important HTML features to consider
when designing your global applications.

Formatting HTML Pages to Accommodate Text in Different Languages
Design the format of HTML pages according to the following guidelines:

Allow table cells to resize themselves as the enclosed text expands, instead of
hard-coding the widths of the cells. The following is an example of hard-coding
the width of a cell:

<TD W DTH="50">
If you must specify the widths of cells, then externalize the width values so that
translators can adjust them with the translated text.

It is good practice to provide a Cascading Style Sheets (CSS) for each locale or
group of locales and use them to control HTML page rendering. Using a CSS
isolates the locale-specific formatting information from HTML pages. Applications
should dynamically generate CSS references in HTML pages corresponding to the
user’s locale so that the pages can be rendered with the corresponding
locale-specific formats. Locale-specific information in the CSS file should include:

« Font names and sizes
= Alignments (for bidirectional language support only)

« Direction of text (for bidirectional language support only)

Implementing HTML Features 4-1

Encoding HTML Pages

« Do not specify fonts directly in the HTML pages because they may not contain
glyphs for all languages that the application supports. Instead, each element
should inherit fonts and font sizes from a class in a cascading style sheet (CSS).

« For bidirectional languages such as Arabic and Hebrew, the pages should have a
DI Rattribute in the <HTM_> tag to indicate that the direction of the language
displayed is from right to left. The <HTML DI R=" RTL" > tag causes all
components of an HTML page to follow the direction of the HTML tag. To make
direction settings seamless to developers, set the direction in the CSS file as
follows:

HTM.{ direction:rtl }

CSS level 2 introduced the direction property.

« Textalignment should be sensitive to the direction of the text. In HTML, LEFT and
RIGHT are absolute alignments. When the direction of the text is from left to right,
as in English, the alignment should be LEFT. When the direction of the text is from
right to left, as in Hebrew, the alignment should be RIGHT.

Encoding HTML Pages

The encoding of an HTML page is important information for a browser and an
Internet application. You can think of the page encoding as the character set used for
the locale that an Internet application is serving. The browser needs to know about the
page encoding so that it can use the correct fonts and character set mapping tables to
display pages. Internet applications need to know about the HTML page encoding so
they can process input data from an HTML form. To correctly specify the page
encoding for HTML pages, Internet applications must:

« Choose a page encoding
« Encode HTML content in the desired encoding
« Correctly specify the HTML pages with the encoding hame

Choosing an HTML Page Encoding for Monolingual Applications

The HTML page encoding is based on the user’s locale. If the application is
monolingual, it supports only one locale per instance. Therefore, you should encode
HTML pages in the native encoding for that locale. The encoding should be equivalent
to the Oracle character set specified by the NLS_LANG parameter in the Oracle HTTP
Server configuration file.

Table 4-1 lists the Oracle character set names for the native encodings of the most
commonly used locales, along with the corresponding Internet Assigned Numbers
Authority (IANA) encoding names and Java encoding names. Use these character sets
for monolingual applications.

Table 4-1 Native Encodings for Commonly Used Locales

Oracle Character Set IANA Encoding Java Encoding
Language Name Name Name
Avrabic AR8BMSWIN1256 1SO-8859-6 1SO8859_6
Baltic BLT8MSWIN1257 1SO-8859-4 1SO8859_4
Central European EEBMSWIN1250 1SO-8859-2 1SO8859_2
Cyrillic CL8MSWIN1251 1SO-8859-5 1SO8859_5

4-2 Oracle Application Server Globalization Guide

Encoding HTML Pages

Table 4-1 (Cont.) Native Encodings for Commonly Used Locales

Oracle Character Set IANA Encoding Java Encoding

Language Name Name Name
Greek EL8MSWIN1253 1SO-8859-7 1SO8859_7
Hebrew IW8MSWIN1255 I1SO-8859-8 1SO8859_8
Japanese JA16SJIS Shift_JIS MS932
Korean KO16MSWIN949 EUC-KR MS949
Simplified Chinese ZHS16GBK GB2312 GBK

Thai TH8TISASCII TIS-620 T1S620
Traditional Chinese ZHT16MSWIN950 Big5 MS950
Turkish TR8MSWIN1254 1SO-8859-9 1SO8859_9
Universal UTF8 UTF-8 UTF8
Western European WE8MSWIN1252 1SO-8859-1 1SO8859_1

See Also: "Setting NLS_LANG for a Monolingual Application
Architecture” in Chapter 6

Choosing an HTML Page Encoding for Multilingual Applications

Multilingual applications need to determine the encoding used for the current user’s
locale at runtime and map the locale to the encoding as shown in Table 4-1.

Instead of using different native encodings for different locales, you can use UTF-8 for
all page encodings. Using the UTF-8 encoding not only simplifies the coding for
multilingual applications but also supports multilingual content. In fact, if a
multilingual Internet application is written in Perl, the best choice for the HTML page
encoding is UTF-8 because these programming environments do not provide an
intuitive and efficient way to convert HTML content from UTF-8 to the native
encodings of various locales.

Specifying the Page Encoding for HTML Pages

The best practice for monolingual and multilingual applications is to specify the
encoding of HTML pages returned to the client browser. The encoding of HTML pages
can tell the browser to:

« Switch to the specified encoding

« Return user input in the specified encoding

The following sections explain how to specify the encoding of an HTML page:
« Specifying the Encoding in the HTTP Header

« Specifying the Encoding in the HTML Page Header

If you use both methods, then specifying the encoding in the HTTP header takes
precedence.

Specifying the Encoding in the HTTP Header

Include the Content-Type HTTP header in the HTTP specification. It specifies the
content type and character set. The most commonly used browsers, such as Netscape

Implementing HTML Features 4-3

Encoding HTML Pages

4.0 or later and Internet Explorer 4.0 or later, correctly interpret this header. The
Content-Type HTTP header has the following form:

Content-Type: text/plain; charset=iso-8859-4

The char set parameter specifies the encoding for the HTML page. The possible
values for the char set parameter are the IANA names for the character encodings
that the browser supports. Table 4-1 shows commonly used IANA names.

Specifying the Encoding in the HTML Page Header

Use this method primarily for static HTML pages. Specify the character encoding in
the HTML header as follows:

<nmeta http-equi v="=Content-Type" content="text/htm ;charset=utf-8">

The char set parameter specifies the encoding for the HTML page. The possible
values for the charset parameter are the IANA names for the character encodings that
the browser supports. Table 4-1 shows commonly used IANA names.

Specifying the Page Encoding in Java Servlets and Java Server Pages

For both monolingual and multilingual applications, you can specify the encoding of
an HTML page in the Content-Type HTTP header in a Java Server Page (JSP) using the
cont ent Type page directive. For example:

<%@ page content Type="text/htnm; charset=utf-8" %

This is the MIME type and character encoding that the JSP file uses for the response it
sends to the client. You can use any MIME type or IANA character set name that is
valid for the JSP container. The default MIME type ist ext / ht m , and the default
character set is ISO-8859-1. In the example, the character set is set to UTF-8. The
character set of the cont ent Type page directive directs the JSP engine to encode the
dynamic HTML page and set the HTTP Content-Type header with the specified
character set.

For Java Servlets, you can call the set Cont ent Type() method of the Servlet API to
specify a page encoding in the HTTP header. The following doGet () function shows
how you should call this method:

public void doGet (H tpServlet Request request, Ht tpServl et Response response)
throws ServletException, |CException

{

/'l generate the M ME type and character set header
response. set Cont ent Type("text/htn; charset=utf-8");

/'l generate the HTM. page
Printwiter out = response.getWiter();
out.println("<HTM.>");

out.println("</HTM>");
}

You should call the set Cont ent Type() method before the get Wit er () method
because the get Wi t er () method initializes an output stream writer that uses the
character set specified by the set Cont ent Type() method call. Any HTML content
written to the writer and eventually to a browser is encoded in the encoding specified
by the set Cont ent Type() call.

4-4 Oracle Application Server Globalization Guide

Encoding HTML Pages

See Also: "Handling Non-ASCII Input and Output in the GDK
Framework" in Chapter 3

Specifying the Page Encoding in Oracle PL/SQL Server Pages

You can specify page encoding for PL/SQL front-end applications and Oracle PL/SQL
Server Pages (PSP) in two ways:

« Specify the page encoding in the NLS_L ANG parameter in the corresponding
database access descriptor (DAD). Use this method for monolingual applications
so you can change the page encoding without changing the application code to
support a different locale.

« Specify the page encoding explicitly from within the PL/SQL procedures and PSP.
A page encoding that is specified explicitly overwrites the page encoding
inherited from the NLS_LANGcharacter set. Use this method for multilingual
applications so that they can use different page encodings for different locales at
runtime.

The specified page encoding tells the mod_pl sql module and the Web Toolkit to tag
the corresponding char set parameter in the Content-Type header of an HTML page
and to convert the page content to the corresponding character set.

See Also:

« "Configuring Transfer Mode for mod_plsgl Runtime" in Chapter 6 for
more information about configuring DADs

« PL/SQL User’s Guide and Reference available in the Oracle Database 10g
library on OTN at

http://wwmv. oracl e. conf t echnol ogy

Specifying the Page Encoding in PL/SQL for Monolingual Environments

In order for monolingual applications to take the page encoding from the NLS_LANG
parameter, the Content-Type HTTP header should not specify a page encoding. For
PL/SQL procedures, the call to ni ne_header () should be similar to the following:

owa_util.mme_header(’text/htm’, false);

For PSP, the content type directive should be similar to the following:
<%@ page content Type="text/htm "%

If the page encoding is not specified in the m me_header () function call or the
content type directive, then the Web Toolkit API uses the NLS_LANG character set as
the page encoding by default, and converts HTML content to the NLS_LANG character
set. Also, the Web Toolkit APl automatically adds the default page encoding to the
char set parameter of the Content-Type header.

Specifying the Page Encoding in PL/SQL for Multilingual Environments

You can specify page encoding in a PSP the same way that you specify it in a JSP page.
The following directive tells the PSP compiler to generate code to set the page
encoding in the HTTP Content-Type header for the page:

<%@ page content Type="text/htm; charset=utf-8" %

To specify the encoding in the Content-Type HTTP header for PL/SQL procedures, use
the Web Toolkit API in the PL/SQL procedures. The Web Toolkit API consists of the
OMA_UTL package, which allows you to specify the Content-Type header as follows:

Implementing HTML Features 4-5

Encoding HTML Pages

owa_util.mme_header('text/htm"', false, 'utf-8")

You should call the mi ne_header () function in the context of the HTTP header. It
generates the following Content-Type header in the HTTP response:

Content-Type: text/htn; charset=utf-8

After you specify a page encoding, the Web Toolkit API converts HTML content to the
specified page encoding.

Specifying the Page Encoding in Perl
For Perl scripts running in the nod_per | environment, specify the encoding for an
HTML page in the HTTP Content-Type header as follows:

$page_encoding = 'utf-8';

$r->content _type("text/htm; charset=$page_encoding");
$r->send_htt p_header;

return K if $r->header_only;

See Also: Oracle HTTP Server Administrator’s Guide

Specifying the Page Encoding in Perl for Monolingual Applications
For monolingual applications, the encoding of an HTML page should be equivalent to:

« The character set used for the POSIX locale on which a Perl script runs

« The Oracle character set specified by the NLS_LANG parameter if the Perl script
accesses the database

Specifying the Page Encoding in Perl for Multilingual Applications
For multilingual applications, Perl scripts should run in an environment where:

= Both the NLS_LANGcharacter set and the character set used for the POSIX locale
are equivalent to UTF-8

« The UTF8 Perl pragma is used

This pragma tells the Perl interpreter to encode identifiers and strings in the UTF-8
encoding.

See Also: Oracle HTTP Server Administrator’s Guide

This environment allows the scripts to process data in any language in UTF-8. The
page encoding of the dynamic HTML pages generated from the scripts, however,
could be different from UTF-8. If so, then use the UNI CODE: : MAPUTF8 Perl module to
convert data from UTF-8 to the page encoding.

See Also: http://wwv. cpan. or g to download the
UNI CODE: : MAPUTFS8 Perl module

The following example illustrates how to use the UNI CODE: : MAPUTF8 Perl module to
generate HTML pages in the Shift_JIS encoding:

use Uni code: : MapUTF8 gw(from utf8)

This shows how the UTF8 Perl pragma is specified
but is NOT required by the fromutf8 function.
use utf8;

4-6 Oracle Application Server Globalization Guide

Encoding HTML Pages

$page_encoding = ' Shift_JIS ;

$r->content _type("text/htn; charset=$page_encoding");
$r->send_htt p_header;

return K if $r->header_only;

#htm |ines contains HTM. content in UTF-8
print (fromutf8({ -string=>$htm _|ines, -charset=>$page_encoding}));

The from ut f 8() function converts dynamic HTML content from UTF-8 to the
character set specified in the char set argument.

Specifying the Page Encoding in Oracle Application Server Mobile Services
Applications

The page encoding for a mobile services application is specified in the application in
the same way as other Java or JSP Internet applications. The page encoding specifies
the encoding of the Mobile XML generated by the application, and it should be
consistently specified in the Mobile XML prolog and the HTTP Content-Type header.
The Hel | od obe. j sp application illustrates how the page encoding for the Mobile
XML prolog should be specified.

Example 4-1 HelloGlobe.jsp

<?xm version="1.0" encoding="UTF-8"?> (1)
<%@ page content Type="text/vnd. oracl e. nobi | exm ; charset=UTF-8"% (2)
<Si npl eResul t >
<Si npl eCont ai ner >
<SinpleFormtitle="Hello G obe"
target ="Hel | oG obeReply.jsp" nethod="POST">
<Si npl eFor nl tem nane="User Name" title="Your Nane:" />
</ Si npl eFor n»
</ Si npl eCont ai ner >
</ Si mpl eResul t >

In this example, line (1) sets the content encoding XML prolog, and line (2) sets the
content encoding in the HTTP Content-Type header.

Oracle Application Server Wireless converts the Mobile XML into the page encoding
supported by the target device from the encoding information specified in the XML
prolog and the HTTP Content-Type header. It then renders the content in the markup
language supported by the target device. If the encodings specified in the XML prolog
and the HTTP Content-Type header are inconsistent, then the Oracle Application
Server Wireless Mobile XML conversion will fail.

Specifying the Page Encoding in Oracle Web Cache Enabled Applications

When an edge side include (ESI) fragment is in a different page encoding from that of
the corresponding ESI template, Oracle Web Cache converts the fragment to the page
encoding of the template. This is to avoid cases where the content of a cached page is
constructed in multiple page encodings. The character set conversion in Oracle Web
Cache takes place only when both the template’s and fragment’s page encodings are
known. Otherwise Oracle Web Cache assumes they are in the same page encoding,
and therefore embeds the fragment into the template without converting the fragment.

Oracle Web Cache looks for the page encoding information only in the Content-Type
header of an HTTP response. It does not look for the page encoding information
within the content of the HTTP response.

Implementing HTML Features 4-7

Encoding HTML Pages

To avoid losing information during the character set conversion of ESI fragments to
ESI templates, applications should use a page encoding for ESI fragments that is a
subset of the ESI template page encoding. There are two basic best practices for
developers to consider:

« Use UTF-8 as the page encoding for ESI templates, since UTF-8 is a superset of all
other non-Unicode page encodings.

« Use the same page encoding for ESI fragments and ESI templates. Character set
conversion will not happen in this case.

Specifying the Page Encoding in Oracle Application Server Reports Services

Applications

The page encodings that you use for different types of Reports Services applications
depend on what type of report you are creating. This section discusses the page
encoding options for Reports Services.

Specifying the Page Encoding in JSP Reports for the Web

You can specify the page encoding in JSP or HTML with the Web Source Editor in
Reports Builder.

See Also: "Specifying the Encoding in the HTML Page Header"
and "Specifying the Page Encoding in Java Servlets and Java Server
Pages" for more information

Specifying the Page Encoding in HTML for Oracle Application Server Reports
Services

Specify the HTML page encoding in the page header. For example, to specify a
Japanese character set, include the following tag in the page header:

<META htt p-equi v="Cont ent - Type" content="text/html;charset=Shift JIS"'>

See Also: "Specifying the Encoding in the HTML Page Header"

Reports Builder puts this tag in your report using the Bef ore Report Val ue and
Bef ore For m Val ue properties. The default values for these properties are similar
to the following:

<ht m ><head><neta http-equi v="Cont ent- Type" content="text/htnl;charset=&Encodi ng"></ head>
The IANA locale name that is equivalent to the NLS_LANG setting for Oracle Reports is

assigned to &Encodi ng dynamically at runtime. Thus you do not need to modify your
report or Oracle Reports settings to include the proper locale.

See Also: Reports Builder online help for more information

Specifying the Page Encoding in XML for Oracle Reports
Generally, when using XML, you would specify the encoding for XML by including a
statement similar to the following as the prolog at the first line in the XML output file:

<?xm version="1.0" encodi ng="Shift_JIS"?>
To set this prolog in your report, you can specify the XML Pr ol og Val ue property of

your report in or use the SRW SET_XM._ PROLOG built-in. The default value for the
XM. Prol og Val ue property is:

4-8 Oracle Application Server Globalization Guide

Encoding URLs

<?xm version="1.0" encodi ng="&Encodi ng" ?>

In this case, Reports translates the value set as the NLS CHARACTERSET into what is
expected in the XML specification.

Note: You can overwrite the mapping by adding entries to your
REPORTS_NLS_XML_CHARSET. The syntax is:

ol d_nanmel=new nanel[; ol d_name2=new nane2][; ol d_nane3=new_
naned] ...

Example:

| SO- 8859- 8= SO- 8859- 8- 1; CSEUCKR=EUC- KR, W NDOW&- 949=EUC- KR, EUC- CN
=GBK; W NDOWE- 936=GBK

See Also: Reports Builder online help for more information

Encoding URLS

If HTML pages contain URLs with embedded query strings, you must escape any
non-ASCII bytes in the query strings in the XX format, where XX is the hexadecimal
representation of the binary value of the byte. For example, if an Internet application
embeds a URL that points to a UTF-8 JSP containing the German name "SchloB," then
the URL should be encoded as follows:

http://host. donai n/ acti onpage. j sp?nane=Schl 0% 3%0f

In the preceding URL, ¢3 and 9f represent the binary value in hexadecimal of the 3
character in the UTF-8 encoding.

To encode a URL, be sure to complete the following tasks:

1. Convert the URL into the encoding expected from the target object. This encoding
is usually the same as the page encoding used in your application.

2. Escape non-ASCII bytes of the URL into the %XX format.

Most programming environments provide APIs to encode and decode URLs. The
following sections describe URL encoding in various environments:

« Encoding URLs in Java
« Encoding URLs in PL/SQL
« Encoding URLs in Perl

Encoding URLs in Java

If you construct a URL in a JSP or Java Servlet, you must escape all 8-bit bytes using
their hexadecimal values prefixed by a percent sign. The

URLEncoder. encode(String s, String enc) function provided in JDK 1.4 and
later enables you to escape the URL in a given HTML page encoding. You need to
specify the proper Java encoding name that corresponds to the page encoding in the
second argument. See Table 4-1 for the Java encoding names of some commonly used
page encodings.

If you are using JDK 1.3, then only the URLEncoder . encode(Stri ng s) function is
available. It only encodes a URL in the Java default encoding. To make this function
work for URLs in any encoding, you must add code to escape any non-ASCII

Implementing HTML Features 4-9

Encoding URLs

characters in a URL into their hexadecimal representation, based on the encoding of
your choice.

The following code shows an example of how to encode a URL based on the UTF-8
encoding:

String unreserved = new String("/\\- _.1~*"()
ABCDEFGH JKLMNOPQRSTUVWKYZabcdef ghi j kI mopgr st uvwxyz 0123456789");
StringBuffer out = new StringBuffer(url.length());

for (int i =0; i <url.length(); i++)
{
int ¢ = (int) url.charAt(i);
if (unreserved.indexOi(c) !'=-1) {
if (c=="")c="4+;
out. append((char)c);
conti nue;
}
byte [] ba;
try {

ba = url.substring(i, i+1).getBytes("UTF8");
} catch (UnsupportedEncodi ngException e) {
ba = url.getBytes();

}
for (int j=0; j < ba.length; j++)
{
out.append("% + Long.toHexString((long)(ba[j]&xff)).toUpperCase());
}

}
String encodedUrl = out.toString();

Encoding URLs in PL/SQL

In Oracle Application Server, you can encode a URL in PL/SQL by calling the
ESCAPE() function in the UTL_URL package. You can call the ESCAPE() function as
follows:

encodedURL var char 2(100);
url varchar2(100);
charset varchar2(40);

encodedURL := UTL_URL. ESCAPE(url, FALSE, charset);

The ur| argument is the URL that you want to encode. The char set argument
specifies the character encoding used for the encoded URL. Use a valid Oracle
character set name for the char set argument. To encode a URL in the database
character set, always specify the char set argument as NULL.

See Also: Table 4-1 for a list of commonly used Oracle character
set names

Encoding URLs in Perl

You can encode a URL in Perl by using the escape_uri () function of the
Apache: : Uti| module as follows:

use Apache:: Uil gw escape_uri);

$escaped_ur| = escape_uri($url);

4-10 Oracle Application Server Globalization Guide

Handling HTML Form Input

The escape_uri () function takes the bytes from the $ur | input argument and
encodes them into the 9XX format. If you want to encode a URL in a different character
encoding, then you need to convert the URL to the target encoding before calling the
escape_uri () function. Perl provides some modules for character conversion.

See Also: http://ww. cpan. or g for Perl character conversion
modules

Handling HTML Form Input

Applications generate HTML forms to get user input. For Netscape and Microsoft
Internet Explorer browsers, the encoding of the input always corresponds to the
encoding of the forms for both POST and GET requests. If the encoding of a form is
UTF-8, then input text the browser returns is encoded in UTF-8. Internet applications
can control the encoding of the form input by specifying the corresponding encoding
in the HTML form that requests information.

How a browser passes input in a POST request is different from how it passes input in
a GET request:

« For POST requests, the browser passes input as part of the request body. 8-bit data
is allowed.

« For GET requests, the browser passes input as part of a URL as an embedded
guery string where every non-ASCII byte is encoded as %XX, where XX is the
hexadecimal representation for the binary value of the byte.

HTML standards allow named and numbered entities. These special codes allow users
to specify characters. For example, &el i g; and æ both refer to the character z.
Tables of these entities are available at

http:// ww. w3. org/ TR/ REC- ht Ml 40/ sgni /entities. htm

Some browsers generate numbered or named entities for any input character that
cannot be encoded in the encoding of an HTML form. For example, the Euro character
and the character a (Unicode values 8364 and 224 respectively) cannot be encoded in
Big5 encoding and are sent as € and &agr ave; when the HTML encoding is
Big5. However, the browser does not need to generate numbered or named entities if
the page encoding of the HTML form is UTF-8 because all characters can be encoded
in UTF-8. Internet applications that support page encoding other than UTF-8 need to
be able to handle numbered and named entities.

Handling HTML Form Input in Java

In most JSP and Servlet containers the Servilet APl implementation assumes that
incoming form input is in 1SO-8859-1 encoding. As a result, when the
HttpServietRequest.getParameter() APl is called, all embedded %XX data in the input
text is decoded, the decoded input is converted from ISO-8859-1 to Unicode, and
returned as a Java string. The Java string returned is incorrect if the encoding of the
HTML form is not ISO-8859-1. However, you can work around this problem by
converting the form input data. When a JSP or Java Servlet receives form input, it
converts it back to the original form in bytes, and then converts the original form to a
Java string based on the correct encoding.

The following code converts a Java string to the correct encoding. The Java string r eal
is initialized to store the correct characters from a UTF-8 form:

String original = request.getParaneter("nane");
try

Implementing HTML Features 4-11

Handling HTML Form Input

{
String real = new String(original.getBytes("8859_1"),"UTF8");
}
cat ch (UnsupportedEncodi ngException e)
{
String real = original;
}

In addition to Java encoding names, you can use IANA encoding names as aliases in
Java functions.

See Also: Table 4-1 for mapping between commonly used IANA
and Java encoding names

OC4J implements Servilet API 2.3, from which you can get the correct input by setting
the Char Encodi ng attribute of the HTTP request object before calling the
get Par anet er () function. Use the following code:

request . set Char act er Encodi ng(" UTF8") ;
String real = request. getParaneter("nanme");

See Also: "Handling Non-ASCII Input and Output in the GDK
Framework" in Chapter 3

Handling HTML Form Input in PL/SQL

The browser passes form input to PL/SQL procedures as PL/SQL procedure
arguments. When a browser issues a POST or a GET request, it first sends the form
input to the mod_pl sgl module in the encoding of the requesting HTML form. The
nmod_pl sql module then decodes all %XX escape sequences in the input to their actual
binary representations. It then passes the input to the PL/SQL procedure serving the
request.

You should construct PL/SQL arguments you use to accept form input with the
VARCHAR2 datatype. Data in VARCHARZ are always encoded in the database character
set. For example, the following PL/SQL procedure accepts two parameters in
VARCHARZ:

procedure test(name VARCHAR2, gender VARCHAR2)
begin

end;

By default, the nrod_pl sql module assumes that the arguments of a PL/SQL
procedure are in VARCHAR2 datatype when it binds them. Using VARCHARZ as the
argument datatype means that the module uses Oracle Character Set Conversion
facility provided in Oracle Callable Library to convert form input data properly from
the NLS_LANGcharacter set, which is also your page encoding, to the database
character set. The corresponding DAD specifies the NLS _LANG character set. As a

result, the arguments passed as VARCHAR2 should already be encoded in the database
character set and be ready to use within the PL/SQL procedures.

Handling HTML Form Input in PL/SQL for Monolingual Applications

For monolingual application deployment, the NLS_LANG character set specified in the
DAD is the same as the character set of the form input and the page encoding chosen
for the locale. As a result, form input passed as VARCHAR2 arguments should be
transparently converted to the database character set and ready for use.

4-12 Oracle Application Server Globalization Guide

Handling HTML Form Input

Handling HTML Form Input in PL/SQL for Multilingual Applications

For multilingual application deployment, form input can be encoded in different
character sets depending on the page encodings you choose for the corresponding
locales. You cannot use Oracle Character Set Conversion facility because the character
set of the form input is not always the same as the NLS_LANG character set. Relying on
this conversion corrupts the input. To resolve this problem, disable Oracle Character
Set Conversion facility by specifying the same NLS_LANGcharacter set in the
corresponding DAD as the database character set. Once you disable the conversion,
PL/SQL procedures receive form input as VARCHAR2 arguments. You must convert
the arguments from the form input encoding to the database character set before using
them. You can use the following code to convert the argument from 1SO-8859-1
character set to UTF-8:

procedure test(name VARCHAR2, gender VARCHAR2)
begin
nane := CONVERT(nane, ' AVERH CAN_AMERI CA. UTF8’,
AVERI CAN_AMER! CA. VEBMBW N1252")
gender := CONVERT(gender, ' AMERI CAN_AMERI CA. UTF8',
AVERI CAN_AMERI CA. WEBVBW N1252°)

end;
See Also: "Configuring the NLS_LANG Parameter" in Chapter 6

Handling HTML Form Input in Perl

In the Oracle HTTP Server nod_per | environment, GET requests pass input to a Perl
script differently than POST requests. It is good practice to handle both types of
requests in the script. The following code gets the input value of the nanme parameter
from an HTML form:

my $r = shift;
my %arams = $r->nethod eq ' POST' ? $r->content : $r->args ;
ny $name = $parans{' name'} ;

For multilingual Perl scripts, the page encoding of an HTML form may be different
from the UTF-8 encoding used in the Perl scripts. In this case, input data should be
converted from the page encoding to UTF-8 before being processed. The following
example illustrates how the Uni code: : MapUTF8 Perl module converts strings from
Shift_JIS to UTF-8:

use Uni code: : MapUTF8 gqw(to_utf8);

This is to show how the UTF8 Perl pragma is specified,
and is NOT required by the fromutf8 function.

use utf8;

ny $page_encoding = 'Shift_JIS;

my $r = shift;

nmy Y%arams = $r->nethod eq ' PCST' ? $r->content : $r->args ;

my $name = to_utf8({-string=>%paranms{' name'}, -charset=>$page_encoding});

The t o_ut f 8() function converts any input string from the specified encoding to
UTF-8.

Handling Form Input in Oracle Application Server Mobile Services Applications

When a mobile service is registered to Oracle Application Server Wireless using the
Wireless Tools administration tool, the Input Encoding parameter of the service must

Implementing HTML Features 4-13

Decoding HTTP Headers

be specified. Oracle Application Server Wireless encodes URL parameters using the
encoding specified in the Input Encoding parameter of the service. The mobile service
application should be written so that it uses the same encoding as the Input Encoding
parameter to interpret input from the target mobile devices. The

Hel | od obeRepl y. j sp example illustrates how to handle the response from the
service Hel | od obe. j sp, which is described in Example 4-1.

Example 4-2 HelloGlobeReply.jsp

<%m version="1.0" encodi ng="UTF-8"?>
<%@ page content Type="text/vnd. oracl e. mobi | exm ; charset=UTF- 8" %
<%
request . set Char act er Encodi ng(" UTF-8"); (1)
String nane = request. get Paraneter ("User Nane");
%
<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eText >
<Si npl eText | tenpHel | 0 <% name% ! </ Sinpl eText!tenp
</ Si npl eText >
</ Si npl eCont ai ner >
</ Si npl eResul t >

In this example, line (1) specifies that parameters are encoded using UTF-8.

This assumes that the Input Encoding parameter is specified as UTF-8 when the
Master Service of Hel | oG obe. j sp is created. The mobile service application should
specify the same encoding for all input parameters that are received from the target
device.

Decoding HTTP Headers

In all HTTP headers specific to Oracle Application Server, any value containing
non-ASCII characters is MIME encoded according to the RFC 2047 specification. The
encoded headers must be properly decoded before being used in an application.
Applications deployed on Oracle Application Server may receive these HTTP headers.

Decoding HTTP Headers from Oracle Single Sign-On

When applications are using Oracle Single Sign-On to authenticate a user, they need to
decode the headers that Oracle Single Sign-On sends. The headers whose values may
contain encoded non-ASCII characters include:

« REMOTE_USER

« Osso-User-Dn

= Osso-Subscri ber

« Osso-Subscri ber-Dn

For Java-based Web applications deployed on OC4J, the REMOTE_USER header is
already interpreted in the HTTPSer vl et Request . get Renot eUser () method, and
the REMOTE_USER header is removed from HTTP requests. For other types of Web
applications, the REMOTE_USER header is present and should be properly decoded
along with other headers.

To decode a header value, you may use thej avax. mai |l .internet. Mmeltility
package of the Java Mail API. See Example 4-3, "Decoding a User’s Display Name" for
an example of decoding.

4-14 Oracle Application Server Globalization Guide

Organizing the Content of HTML Pages for Translation

For PL/SQL applications, you need to write your own code to decode these header
values.

Decoding String-type Mobile Context Information Headers in Oracle Application Server
Wireless Services

String-type mobile context information, such as Login User Name

(X- Oracl e- User . nane), User Display Name (X- Or acl e- User . Di spl ayNane),
and Address Line of the Location (X- Oracl e. User . Locat i on. Addr essLi nel) are
MIME encoded in the HTTP headers. Applications must decode them after they are
retrieved from the HTTP request. Example 4-3 shows how an JSP application may
retrieve and decode the user’s display hame.

Example 4-3 Decoding a User’s Display Name

<@page inport="java.io.*" %

<@page inport="javax.mail.internet. Mnmeltility" %

<%
String rawD spl ayName = request. get Header (" X- Oracl e- User . Di spl ayNanme") ;
String di splayNane = nul | ;
try

{
di spl ayName = M neltility. decodeText (rawDi spl ayNane);

}
catch (Unsupport edEncodi ngException e)

[/ don't care
di spl ayNanme = rawDi spl ayNane;

}
%

Organizing the Content of HTML Pages for Translation

You should translate the user interface (Ul) and content presented in HTML pages.
Translatable sources for the content of an HTML page belong to the following
categories:

« Static files such as HTML, images, and cascading style sheets (CSS)
« Static Ul strings stored as Java resource bundles used by Java Servlets and JSPs

« Static Ul strings stored as POSIX message files used by C/C++ programs and Perl
scripts

« Static Ul strings stored as relational data in a database used by PL/SQL
procedures and PL/SQL Server Pages

« Dynamic content such as product information stored in the database

This section contains the following topics:

« Translation Guidelines for HTML Page Content

« Organizing Static Files for Translation

« Organizing Translatable Static Strings for Java Servlets and Java Server Pages
« Organizing Translatable Static Strings in C/C++ and Perl

« Organizing Translatable Static Strings in Message Tables

Implementing HTML Features 4-15

Organizing the Content of HTML Pages for Translation

» Organizing Translatable Dynamic Content in Application Schema

Translation Guidelines for HTML Page Content

When creating translatable content, developers should follow these translation
guidelines:

« Externalize to resource files all static and translatable Ul strings used in programs
such as Java Servlets, Java Server Pages, Perl scripts, PL/SQL procedures, and
PL/SQL Server Pages. These resource files can then be translated independent of
program code.

« All dynamic text in an HTML page must be able to expand by at least 30% without
overlapping adjacent objects to allow for text expansion that can result from
translation. The HTML page should look acceptable after expanding strings by
30%.

= Avoid concatenating strings to form sentences at runtime. The concatenated
translated strings might not have the same meaning as the original strings. Use the
string formatting functions provided by different programming languages to
substitute runtime values for placeholders.

« Avoid embedding text into images and graphics because they are often not easy to
translate.

« JavaScript code must not include any translatable strings. JavaScript is hard to
translate. Instead, applications should externalize translatable strings, if any, into
resource files or message tables. Applications should construct JavaScript code at
runtime and replace the dynamic text with text corresponding to the user’s locale.

« Because translations are often not available in the initial release of an application,
it is important to make the application work when the corresponding translation is
not available by putting a fallback mechanism in the application. The fallback
mechanism can be as simple as using English information or as complex as using
the closest language available. For example, the f r - CA locale is French Canadian.
The fallback for this language can be f r (French) or en (English). A simple way to
find the closest possible language is to remove the territory part of the ISO locale
name.The behavior of the fallback mechanism is up to the application.

Organizing Static Files for Translation

You should organize translatable HTML, images, and CSS files into different
directories from non-translatable static files so that you can zip files under the
locale-specific directory for translation. There are many possible ways to define the
directory structure to hold these files. For example:

/ docr oot/ i mages - Non-transl atabl e i mges

/ docr oot/ htni - HTM. pages common to all |anguages

/ docr oot/ css - Style sheets comon to all |anguages

/ docr oot/ | ang - Locale directory such as en, fr, ja, and so on.
/docroot/| ang/images - Images specific for lang

/ docr oot/ | ang/ ht m - HTM. pages specific for lang

/ docr oot/ ang/ css - Style sheets specific for lang

You can replace the <l ang> placeholder with the 1SO locale names. Based on the
preceding structure, you must write a utility function called get Local i zedURL ()to
take a URL as a parameter and look for the available language file from this structure.
Whenever you reference an HTML, image, or CSS file in an HTML page, the Internet
application should call this function to construct the path of the translated file

4-16 Oracle Application Server Globalization Guide

Organizing the Content of HTML Pages for Translation

corresponding to the current locale and fall back appropriately if the translation does
not exist. For example, if the path / docr oot/ ht m / wel conme. ht ml is passed to the
get Local i zedURL() function and the current locale is f r _CA, then the function
looks for the following files in the order shown:

[docroot/fr_CA htm /wel cone. htm
[docroot/fr/htm /wel corme. ht ni

/ docr oot/ en/ ht m / wel core. ht m

/ docr oot/ ht m / wel cone. ht

The function returns the first file that exists. This function always reverts to English
when the translated version corresponding to the current locale does not exist.

For Internet applications that use UTF-8 as the page encoding, the encoding of the
static HTML files should also be UTF-8. However, translators usually encode
translated HTML files in the native encoding of the target language. To convert the
translated HTML into UTF-8, you can use the JDK nat i ve2asci i utility shipped
with Oracle Application Server.

For example, the following steps describe how to convert a Japanese HTML file
encoded in Shift_JIS into UTF-8:

1. Replace the value of the char set parameter in the Content-Type HTML header in
the <met a> tag with UTF-8.

2. Usethenative2ascii utility to copy the Japanese HTML file to a new file called
j apanese. uni code:

native2ascii -encoding M5932 japanese. htm japanese. uni code

3. Usethenative2ascii utility to convert the new file to Unicode:

native2ascii -reverse -encoding UTF8 japanese. uni code japanese. htni

See Also: JDK documentationathttp://java. sun. comfor
more information about the nat i ve2ascii utility

Organizing Translatable Static Strings for Java Servlets and Java Server Pages

You should externalize translatable strings within Java Servlets and JSPs into Java
resource bundles so that these resource bundles can be translated independent of the
Java code. After translation, the resource bundles carry the same base class names as
the English bundles, but with the Java locale name as the suffix. You should place the
bundles in the same directory as the English resource bundles for the Java resource
bundle look-up mechanism to function properly.

See Also: JDK documentation athtt p: //j ava. sun. comfor
more information about Java resource bundles

Some people may hesitate about externalizing JSP strings to resource bundles because
it seems to defeat the purpose of using JSPs. There are two reasons for externalizing
JSPs strings:

« Translating JSPs is error-prone because they consist of Java code that is not familiar
to translators

« The translation process should be separated from the development process so that
translation can take place in parallel to development on JSPs. This eliminates the
huge effort of merging the translated JSPs with the most up-to-date JSPs that
contain bug fixes to the embedded Java code.

Implementing HTML Features 4-17

Organizing the Content of HTML Pages for Translation

You can use resource bundles in your Java programs by providing your own subclass
of the Resour ceBundl e class. Additionally, Java provides two subclasses of the
Resour ceBundl e abstract class: Li st Resour ceBundl e and

Propert yResour ceBundl e. It is good practice to provide your implementation of
the Resour ceBundl e class as a subclass of Li st Resour ceBundl| e. The main
reasons are:

« List resource bundles are essentially Java programs that must be compiled.
Translation errors can be caught at compile time. Property resource bundles are
text files read directly from Java. Translation errors can only be caught at runtime.

« Property resource bundles expose all string data in your Internet application to
users. There are potential security and support issues for your application.

The following is an example of a list resource bundle:

inmport java.util.ListResourceBundl e;
public class Resource extends ListResourceBundle {
public Cbject[][] getContents() {
return contents;

}
static final Object[][] contents =
{
{"hello", "Hello Wrld"},
¥

}

Translators usually translate list resource bundles in the native encoding of the target
language. Japanese list resource bundles encoded in Shift_JIS cannot be compiled on
an English system because the Java compiler expects source files that are encoded in
ISO-8859-1. In order to build translated list resource bundles in a
platform-independent manner, you need to run the JDK nat i ve2asci i utility to
escape all non-ASCII characters to Unicode escape sequences in the \ uXXXX format,
where XXXX is the Unicode value in hexadecimal. For example:

native2ascii -encoding M5932 resource_ja.java resource_ja.tnp

Java provides a default fallback mechanism for resource bundles when translated
resource bundles are not available. An application only needs to make sure that a base
resource bundle without any locale suffix always exists in the same directory. The base
resource bundle should contains strings in the fallback language. As an example, Java
looks for a resource bundle in the following order when the f r _CA Java locale is
specified to the get Bundl e() function:

resource_fr_CA

resource_fr

resource_en_US /* where en_US is the default Java locale */
resource_en

resource (base resource bundl e)

Retrieving Strings in Monolingual Applications

At runtime, monolingual applications can get strings from a resource bundle of the
default Java locale as follows:

Resour ceBundl e rb = ResourceBundl e. get Bundl e("resource");
String helloStr = rb.getString("hello");

4-18 Oracle Application Server Globalization Guide

Organizing the Content of HTML Pages for Translation

Retrieving Strings in Multilingual Applications

Because the user’s locale is not fixed in multilingual applications, they should call the
get Bundl e() method by explicitly specifying a Java locale object that corresponds to
the user’s locale. The Java locale object is called user _| ocal e in the following
example:

Resour ceBundl e rb = ResourceBundl e. get Bundl e("resource", user_|ocal e);
String helloStr = rb.getString("hello");

See Also: "Managing Localized Content in the GDK" in Chapter 3

Organizing Translatable Static Strings in C/C++ and Perl

For C/C++ programs and Perl scripts running on UNIX platforms, externalize static
strings in C/C++ or Perl scripts to POSIX message files. For programs running on
Microsoft Windows platforms, externalize static strings to message tables in a database
because Microsoft Windows does not support POSIX message files.

See Also: "Organizing Translatable Static Strings in Message
Tables"

Message files (with the . po file extension) associated with a POSIX locale are
identified by their domain names. You need to compile them into binary objects with
the . o file extension and place them into the directory corresponding to the POSIX
locale. The path name for the POSIX locale is implementation-specific. For example,
the Solaris msgf mt utility compiles a French Canadian message file, r esour ce. po,
and placesitintothe/usr/1i b/ 1 ocal e/ fr_CA/ LC_MESSAGES directory on Solaris.

See Also: Operating system documentation for get t ext
nsgf nt, and xget t ext

The following is an example of ar esour ce. po message file:

domai n "resource"
msgi d "hel | 0"
megstr "Hello World"

The encoding used for the message files must match the encoding used for the
corresponding POSIX locale.

Instead of putting binary message files into an implementation-specific directory, you
should put them into an application-specific directory and use the bi nddomai n()
function to associate a domain with a directory. The following piece of Perl script uses
the Local e: : gett ext Perl module to get a string from a POSIX message file:

use Local e: : gettext;
use POSIX;

setlocal e(LCALL, "fr_CA");

textdomai n("resource");

bi nddonai n("resource", "/usr/local/share");
print gettext("hello");

The domain name for the resource file is r esour ce, the ID of the string to be retrieved
is hel | o, the translation to be used is French Canadian (f r _ca), and the directory for
the bi nary. no filesis/ usr/| ocal / share/ fr _CA/ LC_MESSAGES.

Implementing HTML Features 4-19

Organizing the Content of HTML Pages for Translation

See Also: http://ww. cpan. or g to download the
Local e: get t ext Perl module

Organizing Translatable Static Strings in Message Tables

Message tables mainly store static translatable strings used by PL/SQL procedures
and PSPs. You can also use them for some C/C++ programs and Perl scripts. The
tables should have a language column to identify the language of static strings so that
accessing applications can retrieve messages based on the user’s locale. The table
structure should be similar to the following:

CREATE TABLE nessages

(msgid NUMBER(5)
langid VARCHAR2(10)

, message VARCHAR2(4000)

);

The primary key for this table consists of the nsgi d and | angi d columns. One good
choice for the values in these columns is the Oracle language abbreviations of

corresponding locales. Using the Oracle language abbreviation allows applications to
retrieve translated information transparently by issuing a query on the message table.

See Also: Oracle Database Globalization Support Guide 10g Release 1
(10.1) in the Oracle Database Documentation Library for a list of
Oracle language abbreviations

To provide a fallback mechanism when the translation of a message is not available,
create the following views on top of the message table defined in the previous
example:

- fallback | anguage is English which is abbreviated as 'US' .
CREATE Ml EW def aul t _message_vi ew AS
SELECT msgid, nessage
FROM nessages
WHERE langid = 'US ;
/
- create view for services, with fall-back mechani sm
CREATE Wl EW nessages_vi ew AS
SELECT d. nsgi d,
CASE WHEN t . nessage |'S NOT NULL
THEN t . message
ELSE d. message
END AS nessage
FROM defaul t _vi ew d,
translation t
WHERE t.nsgid (+) = d.nsgid AND
t.langid (+) = sys_context (' USERENV', 'LANG);

Messages should be retrieved from the nessages_vi ewview that provides the logic
for a fallback message in English by joining the def aul t _nmessage_vi ewview with
the messages table. The sys_cont ext () SQL function returns the Oracle language
abbreviation of the locale for the current database session. This locale should be
initialized to the user’s locale at the time when the session is created.

To retrieve a message, an application should use the following query:

SELECT message FROM message_vi ew WHERE nsgid = 'hello';

4-20 Oracle Application Server Globalization Guide

Organizing the Content of HTML Pages for Translation

The NLS_L ANGUAGE parameter of a database session defines the language of the
message that the query retrieves. Note that there is no language information needed
for the query with this message table schema.

In order to minimize the load to the database, you should set up all message tables
and their associated views on an Oracle Application Server instance as a front end to
the database where PL/SQL procedures and PSPs run.

See Also: "Managing Localized Content in the GDK" in Chapter 3

Organizing Translatable Dynamic Content in Application Schema

An application schema stores translatable dynamic information the application uses,
such as product names and product descriptions. The following shows an example of
a table that stores all the products of an Internet store. The translatable information for
the table is the product name and the product description.

CREATE TABLE product _i nf or mation

(product_id NUMVBER(6)

, product _name VARCHAR2(50)

, product _description VARCHAR2(2000)

, category_id NUMVBER(2)

, warranty_period | NTERVAL YEAR TO MONTH
, supplier_id NUVBER(6)

, product_status VARCHAR2(20)

, list_price NUMBER(8, 2)

)

To store product names and product descriptions in different languages, create the
following table so that the primary key consists of the pr oduct _i d and | anguage__
i d columns:

CREATE TABLE product _descri ptions

(product_id NUMBER(6)
, language_id VARCHAR2(3)
, transl ated_nane NVARCHAR2(50)

, transl ated_description NVARCHAR2(2000)
);

Create a view on top of the tables to provide fallback when information is not
available in the language that the user requests. For example:

CREATE VI EW product AS
SELECT i . product _id
, d. | anguage_i d
, CASE WHEN d. | anguage_id |'S NOT NULL
THEN d. transl at ed_nane
ELSE i. product _name
END AS product _name
, i.category_id
, CASE WHEN d. | anguage_id |'S NOT NULL
THEN d. transl at ed_description
ELSE i. product _description
END AS product _descri ption
, i.warranty_period
, i.supplier_id
, i .product _status
, i.list_price
FROM product i nformation i
, product _descriptions d
WHERE d.product_id (+) =i.product_id

Implementing HTML Features 4-21

Organizing the Content of HTML Pages for Translation

AND d.language_id (+) = sys_context (' USERENV' ,' LANG);

This view performs an outer join on the pr oduct _i nf or mat i on and pr oducti on_
descri pti on tables and selects the rows with the | anguage_i d equal to the Oracle
language abbreviation of the current database session.

To retrieve a product name and product description from the product view, an
application should use the following query:

SELECT product _nane, product_description FROM product
WHERE product _id = '1234";

This query retrieves the translated product name and production description
corresponding to the value of the NLS_L ANGUAGE session parameter. Note that you do
not need to specify any language information in the query because the query uses
sys_context (' USERENV' , ' LANG), which returns the session language.

4-22 Oracle Application Server Globalization Guide

D

Using a Centralized Database

This chapter contains the following topics:

« Using a Centralized Database and Accessing the Database Server
« Using JDBC to Access the Database

« Using PL/SQL to Access the Database

« Using Perl to Access the Database

« Using C/C++ to Access the Database

Using a Centralized Database and Accessing the Database Server

A centralized Unicode database is a feature of both the monolingual approach and the
multilingual approach to developing global Internet applications. Using a centralized
database has the following advantages:

« It provides a complete view of your data. For example, you can query for the
number of customers worldwide or the worldwide inventory level of a product.

« Itiseasier to manage a centralized database than several distributed databases.

The database character set should be Unicode. You can use Unicode to store and
manipulate data in several languages. Unicode is a universal character set that defines
characters in almost all languages in the world. Oracle databases can store Unicode
data in one of the following encoding forms:

« UTF-8: Each character is 1 to 4 bytes long.
« UTF-16: Each character is either 2 or 4 bytes long.
« UTF-32: Each character is 4 bytes long.

See Also:
« "Configuring Oracle HTTP Server and OC4J for Global Deployment"
in Chapter 6

« Oracle Globalization Support Guide in the Oracle Database
Documentation Library

There are several methods by which Internet applications can access the database
server through Oracle Application Server. Any Java-based Internet applications that
use technologies such as Java Servlets, JSPs, and EJBs can use the Oracle JDBC drivers
for database connectivity.

Using a Centralized Database 5-1

Using JDBC to Access the Database

Because Java strings are always Unicode-encoded, JDBC transparently converts text
data from the database character set to and from Unicode. Java Servlets and JSPs that
interact with an Oracle database should ensure the following:

« ThelJava strings returned from the database are converted to the encoding of the
HTML page being constructed

« Form inputs are converted from the encoding of the HTML form to Unicode
before being used in calling the JDBC driver

For non-Java Internet applications that use programming technologies such as Perl,
PL/SQL, and C/C++, text data retrieved from or inserted into a database are encoded
in the character set specified by the NLS_LANG parameter. The character set used for
the POSIX locale should match the NLS_LANG character set so that data from the
database can be directly processed with the POSIX locale-sensitive functions in the
applications.

For multilingual applications, the NLS_LANGcharacter set and the page encoding
should both be UTF-8 to avoid character set conversion and possible data loss.

See Also: Chapter 6, "Configuring Oracle Application Server for
Global Deployment"

Using JDBC to Access the Database

Use the Oracle JDBC drivers provided in Oracle Application Server for Oracle
database access when you use JSPs and Java Servlets. Oracle Application Server
provides two client-side JDBC drivers that you can deploy with middle-tier
applications:

« JDBC OCI driver, which requires the Oracle client library
« JDBC Thin driver, which is a pure Java driver

Oracle JDBC drivers transparently convert character data from the database character
set to Unicode for the SQL CHAR data types and the SQL NCHAR data types. As a result
of this transparent conversion, JSPs and Java Servlets calling Oracle JDBC drivers can
bind and define database columns with Java strings and fetch data into Java strings
from the result set of a SQL execution.

You can use a Java string to bind the NAME and ADDRESS columns of a customer
table. Define the columns as VARCHAR2 and NVARCHAR2 data types, respectively. For
example:

String cname = request.get Paraneter("cnanme")

String caddr = request.get Paraneter("caddress");

O acl ePreparedSt at enent pstnt = conn. prepareStatenent ("insert into" +
"CUSTOMERS (NAME, ADRESS) values (?, ?) ");

pstnt.setString(1l, cnane);

pstnt. set FornX Use(2, O acl ePreparedStatenent. FORM NCHAR) ;

pstnt.setString(2, caddr);

pstnt. execute();

To bind a Java string variable to the ADDRESS column defined as NVARCHAR2, you
should call the set For nOf Use() method before the set St ri ng() method.

The Oracle JDBC drivers set the values for the NLS_L ANGUAGE and NLS_TERRI TORY
session parameters to the values corresponding to the default Java locale when the
database session was initialized. For monolingual applications, the Java default locale
is configured to match the user’s locale. Hence the database connection is always
synchronized with the user’s locale.

5-2 Oracle Application Server Globalization Guide

Using Perl to Access the Database

See Also: Oracle Database JDBC Developer’s Guide and Reference in
the Oracle Database Documentation Library

Using PL/SQL to Access the Database

PL/SQL procedures and PSPs use SQL to access data in the local Oracle database.
They can also use SQL and database links to access data from a remote Oracle
database.

For example, you can call the following PL/SQL procedure from the nod_pl sql
module. It inserts a record into a customer table with the customer name column
defined as VARCHAR? and the customer address column defined as NVARCHARZ:

procedure addcustomer (cname varchar2 default NULL, caddress nvarchar2 defaul t
NULL) is
begi n
if (cname is not null) then
caddr :=TO NCHAR(address);
insert into custoners (name, address) values (cnanme, caddr);
commt;
end if;
end;

Note that Apache nod_pl sql does not support N\VARCHAR argument passing. As a
result, PL/SQL procedures have to use VARCHAR2 for arguments and convert them to
NVARCHAR explicitly before executing the | NSERT statement.

The example uses static SQL to access the customer table. You can also use the DBMS _
SQL PL/SQL package to access data in the database, using dynamic SQL.

See Also: PL/SQL Packages and Types Reference 10g Release 1 (10.1)
in the Oracle Database Documentation Library

Using Perl to Access the Database

Perl scripts access Oracle databases using the DBI/DBD driver for Oracle. The
DBI/DBD driver is part of Oracle Application Server. It calls Oracle Callable Interface
(OCI) to access the databases. The data retrieved from or inserted into the databases is
encoded in the NLS_LANGcharacter set. Perl scripts should do the following:

« Initialize a POSIX locale with the locale specified in the LC_ALL environment
variable

« Use acharacter set equivalent to the NLS _LANGcharacter set

This allows you to process data retrieved from the databases with POSIX string
manipulation functions.

The following code shows how to insert a row into a customer table in an Oracle
database through the DBI/DBD driver.

Use Apache:: DBl ;

Connect to the database
$constr = " host =dl sun1304. us. or acl e. com si d=i cachedb; port =1521"'

Susr = 'system ;

$pwd = ' manager' ;

$dbh = DBI - >connect ("dbi: Oracle: $constr”, $usr, $pwd, {AutoCommit=>1}) ||
$r->print("Failed to connect to Oracle: " . DBI->errstr);

Using a Centralized Database 5-3

Using C/C++ to Access the Database

prepare the statenent

$sql = 'insert into customers (nane, address) values (:n, :a)';
$sth = $dbh->prepare($sql);

$sth->bind_paran(':n' , $cname);

$st h- >bind_paran(':a', $caddress);

$st h->execute();

$st h->fini sh();

$dbh- >di sconnect () ;

If the target columns are of the SQL NCHAR data types, then you need to specify the
form of use flag for each bind variable. For example, if the address column is of
NVARCHAR2 datatype, then you need to add the $st h- >f unc() function call before
executing the SQL statement:

use DBD.:Oracle gw(:ora_forns);

$sql "insert into custoners (name, address) values (:n, :a)';
$sth = $dbh->prepare($sql);

$st h->bind_paran(':n', $cnane);

$st h- >bi nd_paran(':a', $caddress);

$sth->func({ ':a" => ORA NCHAR }, 'set forni);

$st h- >execute();

$st h->fini sh();

$dbh- >di sconnect () ;

To properly process UTF-8 data in a multilingual application, Perl scripts should do
the following:

=« Use a POSIX locale associated with the UTF-8 character set

« Use the UTF-8 Perl module to indicate that all strings in the Perl scripts are in
UTF-8

Using C/C++ to Access the Database

C/C++ applications access the Oracle databases with OCI or Pro*C/C++. You can call
OCI directly or use the Pro*C/C++ interface to retrieve and store Unicode data in a
UTF-8 database and in SQL NCHAR data types.

Generally, data retrieved from and inserted into the database is encoded in the NLS _
LANG character set. C/C++ programs should use the same character set for their
POSIX locale as the NLS_LANGcharacter set. Otherwise, the POSIX string functions
cannot be used on the character data retrieved from the database, and the character
data encoded in the POSIX locale may be corrupted when it is inserted into the
database.

For multilingual applications, you may want to use the Unicode API provided in the
OCl library instead of relying on the NLS_LANGcharacter set. This alternative is good
for applications written for platforms such as Microsoft Windows, which implement
the wchar _t datatype using UTF-16 Unicode. Using the Unicode API for those
platforms bypasses some unnecessary data conversions required when using the
regular OCI API.

This section includes the following topics:
» Using the OCI API to Access the Database
« Using the Unicode API Provided with OCI to Access the Database

» Using Unicode Bind and Define in Pro*C/C++ to Access the Database

5-4 Oracle Application Server Globalization Guide

Using C/C++ to Access the Database

Note: OCI libraries are part of Oracle Application Server. You do
not need to install the Oracle database client to use them.

Using the OCI API to Access the Database

The following example shows how to bind and define the VARCHAR2 and NVARCHAR2
columns of a customer table in C/C++. It uses OCI and is based on the NLS _LANG
character set. Note that the t ext datatype is a macro for unsi gned char.

text *sqlstnm= (text *)"SELECT nanme, address FROM custoners
WHERE id = :cusid";

text cname[100]; /* Custoner Name */

text caddr[200]; /* Customer Address */

text custid[10] = "9876"; /* Customer ID */

ub2 cform= SQCS_NCHAR, /* Formof Use for NCHAR types */

OCl Stnt Prepare (stnthp, errhp, sqglstnt,
(ub4)strlen ((char *)sqlstnt),
(ub4) OCl _NTV_SYNTAX, (ub4)QOCl _DEFAULT));
/* Bind the custid buffer */
OCl Bi ndByNane(st nthp, &bndlp, errhp, (text*)":custid",
(sh4)strlen((char *)":custid"),
(dvoid *) custid, sizeof(cust_id), SQT_STR,
(dvoid *) & nsname_ind, (ub2 *) 0, (ub2 *) O,
(ub4) 0, (ub4 *)0, OCl_DEFAULT);

/* Define the cname buffer for VARCHAR */

CCl Def i neByPos (stnthp, &dfnlp, errhp, (ub4)l, (dvoid *)cnarne,
(sh4)si zeof (cname), SQT_STR
(dvoid *)0, (ub2 *)0, (ub2 *)0, (ub4)OC _DEFAULT);

[* Define the caddr buffer for the address colum in NVARCHAR2 */
OCl Def i neByPos (stnthp, &dfn2p, errhp, (ub4)2, (dvoid *)caddr,
(sb4)si zeof (caddr), SQT_STR
(dvoid *)0, (ub2 *)0, (ub2 *)0, (ub4)OCl _DEFAULT);
OClAttrSet((void *) dfn2p, (ub4) OCI _HTYPE_DEFINE, (void *) &cform (ub4) O,
(ub4) OO _ATTR _CHARSET _FORM errhp);

Using the Unicode API Provided with OCI to Access the Database

You can use the Unicode API that the OCI library provides for multilingual
applications.

Turn on the Unicode API by specifying Unicode mode when you create an OCI
environment handle. Any handle inherited from the OCI environment handle is set to
Unicode mode automatically. By changing to Unicode mode, all text data arguments to
the OCI functions are assumed to be in the Unicode text (ut ext *) datatype and in
UTF-16 encoding. For binding and defining, the data buffers are assumed to be ut ext
buffers in UTF-16 encoding.

The program code for the Unicode API is similar to the code for the non-Unicode OCI
API, with the following exceptions:

« Alltext datatypes are changed to the ut ext datatype, which is a macro of the
unsigned short datatype

« All literal strings are changed to Unicode literal strings

Using a Centralized Database 5-5

Using C/C++ to Access the Database

« Allstrlen() functions are changed to wcsl en() functions to calculate the
string length in number of Unicode characters instead of bytes

The following Microsoft Windows program shows how to do these tasks:
« Create an OCI environment handle with Unicode mode turned on

« Bind and define the name column in VARCHAR2 and the address column in
NVARCHAR? of the cust onmer s table

utext *sqlstmt= (text *)L"SELECT name, address FROM custoners
VWHERE id = :cusid";

utext cname[100]; [* Qustomer Nane */

utext caddr[200]; [* Customer Address */

text custid[10] = "9876"; /* Customer ID */

ubl cform = SQLCS_NCHAR, /* Formof Use for NCHAR types */

/* Use Unicode OCl APl by specifying UTF-16 node */

status = OCl EnvCreate((OC Env **)&envhp, OCI _UTF16, (void *)0,
(void *(*) ()) 0, (void *(*) ()) 0, (void(*) ()) O,
(size_t) 0, (void **)0);

OCl Stnt Prepare (stnthp, errhp, sqlstnt,
(ub4)weslen ((char *)sqglstnt),
(ub4) OO _NTV_SYNTAX, (ub4)OCl _DEFAULT));

/* Bind the custid buffer */

OCl Bi ndByNane(stnthp, &bndlp, errhp, (constant text*) L":custid",
(sh4)wesl en(L": custid"),
(dvoid *) custid, sizeof(cust_id), SQT_STR
(dvoid *)& nsname_ind, (ub2 *) 0, (ub2 *) 0,
(ub4) 0, (ub4 *)0, OClI_DEFAULT);

/* Define the cname buffer for the name colum in VARCHAR2 */

CCl Defi neByPos (stnthp, &dfnlp, errhp, (ub4)l, (dvoid *)cnanme,
(sb4)sizeof (cname), SQT_STR
(dvoid *)0, (ub2 *)0, (ub2 *)0, (ub4)CCl _DEFAULT);

/* Define the caddr buffer for the address colum in NVARCHAR2 */
OCl Defi neByPos (stnthp, &dfn2p, errhp, (ub4)2, (dvoid *)caddr,
(sh4)sizeof (caddr), SQT_STR
(dvoid *)0, (ub2 *)0, (ub2 *)0, (ub4)QCl _DEFAULT);
OClAttrSet((void *) dfn2p, (ub4) OC _HTYPE DEFINE, (void *) &form (ub4) O,
(ub4) OCl _ATTR _CHARSET_FORM errhp);

Using Unicode Bind and Define in Pro*C/C++ to Access the Database
You can use Unicode bind and define in Pro*C/C++ for multilingual applications.

Pro*C/C++ lets you specify UTF-16 Unicode buffers for bind and define operations.
There are two ways to specify UTF-16 buffers in Pro*C/C++:

» Use the ut ext datatype, which is an alias for the unsigned short datatype in
C/C++

« Usethe uvar char datatype provided by Pro*C/C++. It will be preprocessed to a
st ruct with a length field and a ut ext buffer field.

struct uvarchar

{

ub2 |l en; /* length of arr */

5-6 Oracle Application Server Globalization Guide

Using C/C++ to Access the Database

utext arr[1] ; [* UTF-16 buffer */
b

typedef struct uvarchar uvarchar ;

In the following example, there are two host variables: cnane and caddr . The cnane
host variable is declared as a ut ext buffer containing 100 UTF-16 code units
(unsigned short) for the customer name column in the VARCHAR2 datatype. The
caddr host variable is declared as a uvar char buffer containing 50 UCS2 characters
for the customer address column in the NVARCHARZ datatype. The | en and ar r fields
are accessible as fields of a st ruct .

#i ncl ude <sql ca. h>
#incl ude <sqlucs2. h>

mai n()

{

/* Change to STRING dat at ype: *|

EXEC ORACLE OPTI ON (CHAR_MAP=STRING) ;

utext cnane[100] ; /* unsigned short type */
uvarchar caddr[200] ; I'* Pro*Cl/ C++ uvarchar type */

EXEC SQU SELECT nane, address |INTO :cnane, :caddr FROM custoners;

/* cname is NULL-termi nated */
wprintf(L"ENAME = %, ADDRESS = %*s\n", cname, caddr.len, caddr.arr);

Using a Centralized Database 5-7

Using C/C++ to Access the Database

5-8 Oracle Application Server Globalization Guide

6

Configuring Oracle Application Server for
Global Deployment

When developing and deploying global Internet applications with Oracle Application
Server, you need to consider the following tasks:

« Installing Oracle Application Server for Global Deployment

« Configuring Oracle HTTP Server and OC4J for Global Deployment

« Configuring Oracle Application Server Portal for Global Deployment

« Configuring Oracle Application Server Wireless for Global Deployment

« Configuring Oracle Application Server Forms Services for Global Deployment
« Configuring OracleAS Reports Services for Global Deployment

« Configuring Oracle Business Intelligence Discoverer for Global Deployment

« Configuring a Centralized Unicode-enabled Database to Support Global
Deployment

Installing Oracle Application Server for Global Deployment

In addition to the schemas of the infrastructure components, such as Oracle Internet
Directory and Distributed Configuration Management (DCM), the Oracle Application
Server Infrastructure database stores data pertaining to many Oracle Application
Server middle-tier components that are installed on top of it. These components
include the following:

« Oracle Application Server Portal (OracleAS Portal)

« Oracle Application Server Forms Services (OracleAS Forms Services)
» Oracle Reports (OracleAS Reports Services)

« Oracle Application Server Wireless (OracleAS Wireless)

» Oracle Business Intelligence Discoverer (OracleBl Discoverer)

It is important to choose the correct database character set for the infrastructure
database at installation time so all the dependent components are able to provide the
same level of global support.

During the installation of the Oracle Application Server infrastructure database, you
are prompted to choose the database character set you would like to use for the
database. The default character set is AL32UTF8. There are two basic scenarios that
will determine which choice is best for your environment:

Configuring Oracle Application Server for Global Deployment 6-1

Configuring Oracle HTTP Server and OC4J for Global Deployment

Configuring

« If your environment is intended to support multiple languages in a single global
instance of the Oracle Application Server infrastructure, similar to Figure 1-2, then
choose UTF-8 as the character set for the infrastructure database. Even if you only
support a single language, such as English, you may choose UTF-8 as the database
character set. The implications of choosing UTF-8 include, but are not limited to,
the following:

— Databases with UTF-8 as the database character set are slightly slower than
those with single-byte character sets. The performance impact is due to UTF-8
being a multibyte character set and the increase in the number of character set
conversions between the middle tier and the database.

— Web pages served through nod_pl sql must be encoded in UTF-8. However,
there are some browsers, such as those for mobile devices, that may have
problems supporting UTF-8. Products that deliver Web pages through nod_
pl sql include Oracle Single Sign-On and Oracle Application Server Portal.

« If your environment is intended to support a single language or a group of
languages that share the same native character set, then you can choose the
character set that is most commonly used for these languages as an alternative to
UTF-8. For example, you can choose WEBMSWIN1252 if you are only interested in
supporting Western European languages. You can choose JA16SJIS if you are
interested in supporting Japanese and English.

— If your environment will support Traditional Chinese, then select
ZHT16MSWIN950 or ZHT16BIG5 as the character set.

Note: The character set ZHT32EUC does not support Oracle
Application Server Portal.

During installation of any Oracle Application Server installation type, support for
user-selected languages is automatically installed and configured. It includes the
translation files and fonts being used in the product.

If the required fonts are not available after installation, then you can copy them from
the Utilities CD-ROM included in the Oracle Application Server CD pack, or from

http:// netalink.oracle.com

into the $ORACLE_HOVE/ j dk/ j re/ li b/ f ont s directory.

See Also: Oracle Application Server Portal Developer’s Guide for
information about creating multilingual portlets

Oracle HTTP Server and OC4J for Global Deployment

This section contains the following topics related to configuring Oracle HTTP Server
for multilingual support:

« About Manually Editing HTTP Server and OC4J Configuration Files
« Configuring the NLS_LANG Parameter
« Configuring Transfer Mode for mod_plsql Runtime

« Configuring the Runtime Default Locale

6-2 Oracle Application Server Globalization Guide

Configuring Oracle HTTP Server and OC4J for Global Deployment

About Manually Editing HTTP Server and OC4J Configuration Files

If you edit Oracle HTTP Server or OC4J configuration files manually, instead of using
Oracle Enterprise Manager 10g, then you must use the DCM command-line utility
dcntt| to notify the DCM repository of the changes. Otherwise, your changes will
not go into effect and will not be reflected in the Enterprise Manager consoles. The
commands are as follows:

« To notify the DCM repository of changes made to Oracle HTTP Server
configuration files:

CRACLE_HOWE/ dcn bi n/ denet | updat eConfi g ohs

« To notify the DCM repository of changes made to OC4J configuration files:
ORACLE_HOVE/ dcmi bi n/ denet | updat eConfi g océj

« To notify the DCM repository of changes made to both Oracle HTTP Server and
OC4J configuration files:

ORACLE_HOVE/ dcni bi n/ denet | updat eConfi g

Before you change configuration parameters, manually or using Oracle Enterprise
Manager 10g, you can save the current state of Oracle HTTP Server and OC4J
configuration files and installed J2EE applications with the following command:

ORACLE_HOME/ dcm bi n/ denct | savel nstance -dir directory_nane

You can then restore the state and back out of any subsequent changes that were made
using the following command:

CORACLE_HOME/ dcni bi n/ denet | restorel nstance -dir directory_nane

Configuring the NLS_LANG Parameter

The NLS_LANG parameter controls the language, territory, and character set used for
database connections in an Internet application. Specify the value of NLS_LANG n the
following format, including the punctuation as shown:

| anguage_territory. characterset

In the preceding syntax, | anguage,territory, andcharact er set must be valid
Oracle language, territory, and character set names. The specified language and
territory are used to initialize the locale that determines the default date and time
formats, number formats, and sorting sequence in a database session. The Oracle
database converts data to and from the specified character set when it is retrieved from
or inserted into the database.

See Also: Oracle Database Globalization Support Guide 10g Release 1
(10.1) in the Oracle Database Documentation Library for a list of
valid Oracle language, territory, and character set names

You can specify the NLS_LANG parameter in the Oracle HTTP Server and OC4J files.
The Oracle HTTP Server and OC4J files where NLS_LANG can be specified are as
follows:

« $ORACLE_HOVE/ Apache/ Apache/ conf/ htt pd. conf

This is the configuration of Oracle HTTP Server powered by Apache, and it
defines the environment variables that are passed to Apache modules. If you want

Configuring Oracle Application Server for Global Deployment 6-3

Configuring Oracle HTTP Server and OC4J for Global Deployment

to explicitly specify the NLS_LANG parameter for CGI scripts such as Perl and
server-side include (SSI) pages, then you can add the following line to this file:

Set Env NLS_LANG | anguage_territory. characterset

Oracle HTTP Server is already configured to use the NLS_LANGshell environment
variable in CGI scripts and SSI pages when NLS_LANGis not explicitly specified as
described earlier. It does so by putting the following line into the file:

PassEnv NLS_LANG

$ORACLE_HOVE/ Apache/ Apache/ bi n/ apachect |

This is the Oracle HTTP Server startup script used in UNIX. If you want to start
Oracle HTTP Server directly from apachect | , then you can specify the following
line in this script file to define an NLS_LANG value:

NLS LANG=I anguage_territory. characterset; export NLS_LANG

$ORACLE_HOVE/ opmm/ conf / opmm. xmi

Oracle Process Manager and Notification Server (OPMN) is used to manage
Oracle HTTP Server and OC4J instances. The opm. xm configuration file allows
you to specify the NLS_LANGenvironment variable for Oracle HTTP Server and
OC4J processes through the following XML construct:

<envi r onnent >
<prop name="NLS LANG' val ue="l anguage_territory_characterset" />
</ envi ronnment >

This construct can be specified at the Oracle Application Server instance level
where it applies to all Oracle HTTP Server and OC4J instances belonging to the
Oracle Application Server instance. It can also be specified for the individual
Oracle HTTP Server or OC4J instance where it only applies to the corresponding
instance.

$ORACLE_HOVE/ Apache/ modpl sql / conf/ dads. conf

This file defines database access descriptors (DADs) for nrod_pl sql to use when
creating a database connection. You can specify the NLS_LANG value for the
corresponding DAD. For example, you can specify the NLS_LANGvalue for the

/ pl s/ scott DAD as follows:

<Location /pls/scott>
Set Handl er pl s_handl er
Order deny, allow
Al'low fromall

Pl sql Dat abasePasswor d tiger
Pl sql Dat abaseUser nane scott
Pl sql Docunent Pat h docs
Pl sql Nl sLanguage NLS LANG val ue

</ Location>

Note that, when the transfer mode of a DAD is CHAR instead of RAW the NLS
LANG character set of the DAD should be the same as that of the database
character set for nod_pl sqgl to work properly.

$ORACLE_HOVE/ Apache/ Jserv/etc/jserv. properties

If JServ is needed in your environment, then you need to add or modify the
following line in this file to define the appropriate NLS_LANG value:

6-4 Oracle Application Server Globalization Guide

Configuring Oracle HTTP Server and OC4J for Global Deployment

wr apper. env=NLS_LANG=I anguage_territory. characterset

If you do not explicitly specify the NLS_LANGenvironment variable in these files as
described in the preceding, Oracle HTTP Server and OC4J will use the value set as
follows:

= On UNIX: The NLS_LANGshell environment variable when Oracle HTTP Server
and OC4J are invoked

« On Microsoft Windows: The NLS_LANGregistry key at\ \ HKEY_LOCAL _
MACHI NE\ SOFTWARE\ ORACLE\ HOVEN in the Win32 registry

Preconfigured NLS_LANG Values

The Oracle Application Server installation pre-configures NLS_LANG values in the
following Oracle HTTP Server and OC4J files for you based on the locale of the
runtime environment on which the product is installed.

« $ORACLE_HOWVE/ Apache/ Apache/ bi n/ apachect | (for UNIX platforms)
« $ORACLE_HOVE/ opm/ conf/opm. xm / opmct | (for UNIX platforms)

The pre-configured NLS_LANGvalues in the apachect| and opmrmct | scripts are
specified as follows:

NLS_LANG=${ NLS_LANG-l anguage_territory.characterset}; export NLS_LANG

The preceding line means the pre-configured NLS LANGvalues are used only when
the shell environments from which the scripts are invoked have not defined the NLS _
LANG environment variable. If you want to use an NLS_LANG value regardless of the
shell environment, then change the line to:

NLS_LANG=l anguage_territory.characterset; export NLS_LANG

The NLS_LANG parameter controls the locale of the runtime environment on which
OPMN runs. It should correspond to the default locale of the middle-tier runtime
environment, which is the default locale of the operating system. The same NLS_LANG
parameter is inherited by the OPMN managed processes, such as Oracle HTTP Server
and OC4J, unless it is explicitly specified with a different value in opm. xm .

For Microsoft Windows platforms, the pre-configured NLS _LANGis automatically
registered in the Win32 registry as the NLS_LANG registry key at\ \ HKEY_LOCAL_
MACHI NE\ SOFTWARE\ ORACLE\ HOVEN. The NLS_LANG value in this registry key
controls the locale of the runtime environment on which OPMN and its managed
processes run.

The pre-configured NLS_LANGvalues are the best values derived from the runtime
locale during product installation, and may not represent the appropriate value for
your Oracle HTTP Server and OC4J configurations. You may need to alter these values
according to your specific requirements and runtime environments.

Setting NLS_LANG for a Monolingual Application Architecture

Set the NLS_LANG parameter to specify the language, territory, and character set that
correspond to the locale that its middle-tier server is configured to serve. If most
clients are running on Microsoft Windows platforms, then it is a good practice to use
the NLS_LANGcharacter set that corresponds to the Microsoft Windows code page of
the locale. For example, when you configure the middle-tier server to serve Japanese
clients, then specify the following value for NLS_LANG.

JAPANESE_JAPAN. JA16SJI S

Configuring Oracle Application Server for Global Deployment 6-5

Configuring Oracle HTTP Server and OC4J for Global Deployment

JA16SIIS corresponds to code page 932 of the Japanese Microsoft Windows operating
system.

Table 6-1 lists the NLS_LANG values for the most commonly used locales.

Table 6-1 NLS_LANG Values for Commonly Used Locales

Locale NLS_LANG Value

Arabic (Egypt) ARABIC_EGYPT.AR8MSWIN1256

Arabic (U.AE.) ARABIC_UNITED ARAB EMIRATES.AR8MSWIN1256
Chinese (Taiwan) TRADITIONAL CHINESE_TAIWAN.ZHT16MSWIN950
Chinese (P.R.C.) SIMPLIFIED CHINESE_CHINA.ZHS16GBK

Czech CZECH_CZECH REPUBLIC.EEBMSWIN1250

Danish DANISH_DENMARK.WE8MSWIN1252

Dutch DUTCH_THE NETHERLANDS.WES8MSWIN1252
English (United Kingdom) | ENGLISH_UNITED KINGDOM.WESMSWIN1252
English (U.S.A)) AMERICAN_AMERICA WEBMSWIN1252

Finnish FINNISH_FINLAND.WE8MSWIN1252

French (Canada) CANADIAN FRENCH_CANADA . WE8MSWIN1252
French (France) FRENCH_FRANCE.WE8SMSWIN1252

German (Germany GERMAN_GERMANY.WE8MSWIN1252

Greek GREEK_GREECE.EL8MSWIN1253

Hebrew HEBREW_ISRAEL.IW8MSWIN1255

Hungarian HUNGARIAN_HUNGARY.EE8MSWIN1250

Italian (Italy) ITALIAN_ITALY.WE8MSWIN1252

Japanese JAPANESE_JAPAN.JA16SJIS

Korean KOREAN_KOREA.KO16MSWIN949

Norwegian NORWEGIAN_NORWAY.WE8SMSWIN1252

Polish POLISH_POLAND.EE8BMSWIN1250

Portuguese (Brazil) BRAZILIAN PORTUGUESE_BRAZIL.WE8BMSWIN1252
Portuguese (Portugal) PORTUGUESE_PORTUGAL.WE8MSWIN1252
Romanian ROMANIAN_ROMANIA.EE8MSWIN1250

Russian RUSSIAN_CIS.CL8MSWIN1251

Slovak SLOVAK_SLOVAKIA.EEBMSWIN1250

Spanish (Spain) SPANISH_SPAIN.WESMSWIN1252

Spanish (Latin American) | LATIN AMERICAN SPANISH_AMERICA.WE8SMSWIN1252
Swedish SWEDISH_SWEDEN.WE8SMSWIN1252

Thai THAI_THAILAND.TH8TISASCII

Turkish TURKISH_TURKEY.TR8MSWIN1254

Setting NLS_LANG for a Multilingual Application Architecture

The language and territory components of the NLS_LANG parameter are not as
important in the multilingual application architecture as they are in the monolingual

6-6 Oracle Application Server Globalization Guide

Configuring Oracle HTTP Server and OC4J for Global Deployment

application architecture. A multilingual application needs to handle different locales
dynamically and cannot rely on fixed settings. The application should always use the
UTF-8 character set so that Unicode data can be retrieved from and inserted into the
database. An example of an appropriate value for NLS_LANGin a multilingual
deployment is:

NLS_LANG=AMERI CAN_AMERI CA. UTF8

Configuring Transfer Mode for mod_plsqgl Runtime

The transfer mode of each database access descriptor (DAD) of the nod_pl sql
runtime enables PL/SQL to construct HTML content and process HTML form input in
different character sets. You must set the transfer mode with the appropriate value.

It is important to configure the transfer mode for the nod_pl sql module in the
$ORACLE_HOVE/ Apache/ modpl sql / conf/ dads. conf file where the DADs are
specified.

The nod_pl sql module supports two transfer modes that you can configure in a
DAD:

» CHARmode: This is a default mode where dynamic HTML content is sent as
VARCHAR2 data from the database to nod_pl sql . In this mode, the NLS_LANG
character set must be the same as that of the back-end database character set.

« RAWmMode: Dynamic HTML content is sent as RAWdata from the database to nod_
pl sql and is subject to character set conversion in the database server where the
PL/SQL procedures and Oracle PL/SQL Server Pages (PSP) run. Character set
conversion happens only when the HTML page encoding is specified, either by
the NLS_LANGcharacter set or by the char set parameter specified in the ON _
UTI L. M ME_HEADER() function call.

You should turn on the RAWtransfer mode in a DAD for both monolingual and
multilingual Internet applications as follows:

<Location /pls/scott>
Set Handl er pl s_handl er
O der deny, al | ow
Allow fromall

Pl sql Dat abasePasswor d tiger

Pl sql Dat abaseUser nane scott

Pl sql Dat abaseConnect Stri ng | ocal

Pl sql Docunent Pat h docs

Pl sgl N sLanguage AMERI CAN_AMER! CA. UTF8
Pl sql Tr ansf er Mode RAW

</ Locati on>

If the value of Pl sql Nl sLanguage has a space in it, then the value must be enclosed
in quotation marks. For example:

Pl sgl N sLanguage "SI MPLI FI ED CHI NESE_CHI NA. ZHS16GBK"

Configuring the Runtime Default Locale

This section describes how to initialize the runtime default locale for runtime
environments that Oracle Application Server supports:

« mod_jserv Runtime for Java

« 0OC4JJava Runtime

Configuring Oracle Application Server for Global Deployment 6-7

Configuring Oracle HTTP Server and OC4J for Global Deployment

« mod_plsql Runtime for PL/SQL and Oracle PL/SQL Server Pages
= mod_perl Runtime for Perl Scripts
« C/C++ Runtime

The default locale of a runtime environment controls the default locale-sensitive
behavior of the applications, such as the character set used in file I/O operations, the
language of the user interface, and the date format used. It needs to be properly set in
order for applications relying on the default runtime locale to run with the expected
locale-sensitive behavior. The default runtime locale is usually inherited from the
default locale of the operating system or the locale of the runtime process.

The default runtime locale should be used as the user’s preferred locale for
monolingual applications. For multilingual applications, the default runtime locale is
used for any server-side 1/0 operations, such as logging messages.

mod_jserv Runtime for Java
For UNIX platforms, the LANGor LC_ALL variable defines the following:

« The POSIX (also known as XPG4) locale used for a process
« HowJava VM initializes its default locale

To configure the Java VM for JServ, define the LANGor LC_ALL environment variable
with a POSIX locale name in thej serv. properti es file. For example, the following
lineinj serv. properti es defines Japanese (Japan) to be the default locale of Java
VM for JServ on UNIX:

wr apper . env=LANG=j a_JP
The values for the LANGand LC_ALL environment variables should refer to the same

POSIX locale available in your operating system. The LC_ALL environment variable
always overrides the LANGenvironment variable if they are different.

The regional settings of the Control Panel control the default locale of the Java VM for
JServ on Microsoft Windows platforms. Change the regional settings to the desired
locale from the Control Panel before starting Oracle HTTP Server.

0OC4J Java Runtime

Define the LANGor LC_ALL environment variable with a POSIX locale name in
$ORACLE_HOVE/ opmm/ conf / opm. xm . For example, the following line within the
<envi r onnent >tags in opm. xri defines Japanese (Japan) to be the default locale
of Java VM for OC4J on Solaris:

<envi ronment >
<prop nanme="LANG' val ue="ja_JP" />
</ envi ronnent >

The regional settings of the Control Panel control the default locale of the Java VM for
OC4J on Microsoft Windows platforms. Change the regional settings to the desired
locale from the Control Panel before starting Oracle HTTP Server.

mod_plsql Runtime for PL/SQL and Oracle PL/SQL Server Pages

PL/SQL and PSP run on an Oracle database in the context of a database session.
Therefore, the NLS_LANG parameter controls the runtime default locale. The NLS_

6-8 Oracle Application Server Globalization Guide

Configuring Oracle Application Server Portal for Global Deployment

LANG parameter should be configured as described in "Configuring the NLS_LANG
Parameter".

mod_perl Runtime for Perl Scripts

Perl scripts run on the Perl interpreter that the nod_per | module provides. The locale
support in Perl is based on the POSIX locale available in the operating system. It uses
the underlying POSIX C libraries as a foundation. To configure the Perl runtime
default locale, follow the procedure described for the C/C++ runtime.

See Also:

. "C/C++ Runtime"

. Oracle HTTP Server Administrator’s Guide for more information about
how Perl scripts use POSIX locales

C/C++ Runtime

The C/C++ runtime uses the POSIX locale system provided by the operating system.
You can configure the locale system by defining the LC_ALL or LANGenvironment
variable. Define LC_ALL with a valid locale value that the operating system provides.
These values are different on different operating systems.

See Also: Table 6-1 for a list of commonly used POSIX locales for
Solaris

For UNIX platforms, define LC_ALL as follows:

« Inthe $ORACLE_HOMWE/ Apache/ Apache/ conf/ htt pd. conf file, add the
following line:

PassEnv LC ALL

« Inthe SORACLE_HOVE/ Apache/ Apache/ bi n/ apachect| file, add the
following line:

LC_ALL=${LC_ALL=0sS_| ocal e}; export LC ALL

For Microsoft Windows platforms, the POSIX locale should inherit its value from the
regional settings of the Control Panel instead of being specified in the LC_ALL
environment variable. Change the regional settings to change the default runtime
POSIX locale.

Configuring Oracle Application Server Portal for Global Deployment

Oracle Application Server Portal (OracleAS Portal) is designed to allow application
development and deployment in different languages. OracleAS Portal is configured
with the languages that are selected in the Oracle Universal Installer during the Oracle
Application Server middle-tier installation. The selected languages that are configured
show up in the Set Language portlet.

To configure additional languages after installation, use the pt I | ang script. Once you
have installed a language, OracleAS Portal allows you to specify the preferred locale
and territory to be used for that language; for example, Australian English or
Canadian French.

See Also: Oracle Application Server Portal Configuration Guide for
information about the pt | | ang script

Configuring Oracle Application Server for Global Deployment 6-9

Configuring Oracle Application Server Wireless for Global Deployment

Configuring Oracle Application Server Wireless for Global Deployment

When users access wireless services from their mobile devices, Oracle Application
Server Wireless uses the user profile information from Oracle Internet Directory to
determine the user’s preferred language. Administrators can select the language when
creating a new user through the Oracle Application Server Wireless Tools. Users can
change their preferred language through the Wireless Customization Tool.

Configuring Encoding for Outgoing E-mail Messages

When users send e-mail messages from their mobile devices, Oracle Application
Server Wireless sends the messages in the encoding specified in the encoding
parameter of the PIM/Mail service.

You can change the default encoding for outgoing e-mail messages by modifying the
ORACLE_SERVI CES _PI M MAI L_MESSAGE_ENCODI NG parameter of the PIM/Mail
master service.

Configuring Oracle Application Server Forms Services for Global
Deployment

The NLS_LANG parameter controls the language, territory, and character set that an
Internet application uses for database connections. Specify the value of NLS_LANGin
the following format, including the punctuation as shown:

| anguage_territory.characterset

| anguage, territory,andcharacterset mustbe valid Oracle language,
territory, and character set names. The specified language and territory are used to
initialize the locale that determines the default date and time formats, number formats,
and sorting sequence in a database session. Oracle Net converts data to and from the
specified character set when it retrieves data from or inserts data into the database.

You can set the NLS_LANG parameter in the $ORACLE _
HOVE/ f or e/ server/ def aul t. env file. If you do not set the NLS_LANGparameter
in the def aul t . env file, then OracleAS Forms Services uses the value set as follows:

= OnUNIX: The NLS_LANGshell environment variable when OracleAS Forms
Services is invoked

= On Microsoft Windows: The NLS_LANG ssetting at the \ \ HKEY_LOCAL _
MACHI NE\ SOFTWARE\ ORACLE\ For nsSer ver Or acl e_HOVE in the Microsoft
Windows registry

You can have different NLS_LANG settings on the same Forms Server by specifying an
alternate environment file. Use the envFi | e parameter in the f or nsweb. cf g file. To
do this:

1. Create two environment configuration files under $ORACLE _
HOVE/ f or s/ ser ver. For example, an American environment configuration file
(en-us. env) should contain the following lines:

NLS_LANG=AMERI CAN_AMERI CA. US7ASCI |

FORMS_PATH=d: \ us
A Japanese environment configuration file (j a. env) should contain the following
lines:

NLS_LANG=JAPANESE_JAPAN. JA16SJI S
FORVS_PATH=d: \j a

6-10 Oracle Application Server Globalization Guide

Configuring Oracle Business Intelligence Discoverer for Global Deployment

3.

In the $ORACLE_HOVE/ f or ns/ server/ f or neweb. cf g file, set the envFi | e
parameter for the alternative setting. For example:

[ja]
envFi |l esj a. env

[en-us]
envFi | e=en- us. env
Specify the configuration name in the URL for your forms servlet as follows:

http://fornmsservermachi ne/ forns/ frnservl et ?config=ja
http://formsservernachi ne/formns/frmservl et ?config=en

See Also: Oracle Application Server Forms Services Deployment
Guide

Configuring OracleAS Reports Services for Global Deployment

The NLS_LANG parameter controls the language, territory, and character set used for
database connections in an OracleAS Reports Services application. Specify the value of
NLS_LANGin the following format, including the punctuation as shown:

| anguage_territory. characterset

| anguage, territory,andcharact er set must be valid Oracle language,
territory, and character set names. The specified language and territory are used to
initialize the locale that determines the default date and time formats, number formats,
and sorting sequence in a database session. Oracle Net converts data to and from the
specified character set when it retrieves data from or inserts data into the database.

OracleAS Reports Services uses the value of the NLS_LANG parameter set as follows:

On UNIX: The NLS_LANGshell environment variable when OracleAS Reports
Services is invoked. The default NLS_LANG value is set in $ORACLE
HOVE/ bi n/ reports. sh.

On Microsoft Windows: The value of NLS_LANGset at\ \ HKEY_LOCAL _
MACHI NE\ SOFTWARE\ ORACLE\ %Repor t sORACLE_HOVE%in the Microsoft
Windows registry

For dynamic environment switching: In the OracleAS Reports Services
configuration file through the environment element. On UNIX, the default NLS
LANGvalue in ther eport s. sh file needs to be commented out to enable this
feature.

See Also:

« Oracle Application Server Reports Services Publishing Reports to the Web
for more information about dynamic environment switching

« Oracle Database Globalization Support Guide 10g Release 1 (10.1) in the
Oracle Database Documentation Library for more information about
these parameters

Configuring Oracle Business Intelligence Discoverer for Global

Deployment

OracleBI Discoverer can simultaneously support users with different locales. Users
may explicitly control the locale used for the user interface, or they may allow

Configuring Oracle Application Server for Global Deployment 6-11

Configuring a Centralized Unicode-enabled Database to Support Global Deployment

OracleBIl Discoverer to automatically determine a default. The order of precedence for
determining the language and locale is:

1. Language and locale settings specified in the URL for OracleBI Discoverer.

2. Language and locale settings specified in the OracleBI Discoverer Connection. If
the Locale set in user’s browser option is specified, then the language settings in
the each user’s browser is used.

3. Language and locale of Oracle Application Server.

See Also: Oracle Business Intelligence Discoverer Configuration Guide
for more information on using URL parameters with OracleBI
Discoverer.

Configuring a Centralized Unicode-enabled Database to Support Global
Deployment

You can set up the centralized Oracle database to store Unicode data in the following
ways:

« AsUTF-8in the SQL CHAR data types (CHAR, VARCHAR2, and CLOB)
« AsUTF-16 in the SQL NCHAR data types (NCHAR, NVARCHAR2, and NCLOB)

It is good practice to specify the centralized Oracle database to support the following
data types:

« Specify AL32UTF8 for the database character set when you create the centralized
database for UTF-8 in the SQL CHAR data types

« Specify AL16UTF16 for the national character set when you create the centralized
database for UTF-16 in the SQL NCHAR data types

Example 6-1 shows part of a CREATE DATABASE statement that sets the
recommended database character set and national character set.

Example 6-1 Specifying the Database Character Set and the National Character Set

CREATE DATABASE ut f db
CONTROL FI LE REUSE
LOGFI LE '/ u01/ or acl e/ utfdb/ redo01.1 0g’ SI ZE 1M REUSE
"/ u01/ oracl e/ utfdb/redo02.10g’" SIZE 1M REUSE
DATAFI LE ' /u01/oracl e/ ut f db/ syst enD1. dbf’ SI ZE 10M REUSE
AUTCEXTENT ON
NEXT 10M MAXSI ZE 200M
CHARACTER SET AL32UTF8
NATI ONAL CHARACTER SET AL16UTF16

See Also:

« Oracle Database Globalization Support Guide 10g Release 1 (10.1) in the
Oracle Database Documentation Library

« Oracle Database SQL Reference in the Oracle Database Documentation
Library

6-12 Oracle Application Server Globalization Guide

v

A Multilingual Demonstration for Oracle
Application Server

This chapter describes the World-of-Books demonstration that is provided with Oracle
Application Server. The demonstration utilizes the Oracle Globalization Kit (GDK).

This chapter contains the following topics:

« Description of the World-of-Books Demonstration

« Architecture and Design of the World-of-Books Demonstration

« Installing the World-of-Books Demonstration

« Building, Deploying, and Running the World-of-Books Demonstration
= Locale Awareness of the World-of-Books Demonstration

« Encoding HTML Pages for the World-of-Books Demonstration

« Handling HTML Form Input for the World-of-Books Demonstration
» Formatting HTML Pages in the World-of-Books Demonstration

« Encoding URLs in the World-of-Books Demonstration

« Accessing the Database in the World-of-Books Demonstration

« Organizing the Content of HTML Pages in the World-of-Books Demonstration

Description of the World-of-Books Demonstration

The World-of-Books (WOB) demonstration illustrates how to write a multilingual Web
application and deploy it on the Oracle Application Server J2EE container. The
application consists of the following Web sites:

« An online store that sells books in different languages

= Anonline Chinese book supplier administration site that represents book
Supplier A

« Anonline global book supplier administration site that represents book Supplier B

The online bookstore is a multilingual Web application that interacts with customers. It
allows customers to view books, check prices, and place orders. The application uses
HTTP connections to send orders as XML documents to the suppliers. The online book
supplier administration sites are Web applications that the book suppliers use to get
orders from the bookstore, to send order status reports to the bookstore, and to notify
the bookstore about newly available books.

A Multilingual Demonstration for Oracle Application Server 7-1

Architecture and Design of the World-of-Books Demonstration

The online bookstore supports 60 locales. Customers in these locales can use the online
bookstore with their preferred language and cultural conventions. The online book
supplier administration sites are in English only.

Architecture and Design of the World-of-Books Demonstration

The WOB demonstration serves customers with different locale preferences. It is
mainly written in Java, using Java Servlets, Java beans, and Java Server Pages (JSPs). It
uses the Unicode capabilities available in Oracle GDK, XML, JDBC, and the Oracle
database to support multilingual data and a multilingual user interface.

This section contains the following topics:
= World-of-Books Architecture

« World-of-Books Design

« World-of-Books Schema Design

World-of-Books Architecture
Figure 7-1 shows the architecture of the WOB demonstration.

Figure 7-1 World-of-Books Architecture

UTF-8 Oracle Application Server
Online Bookstore

% Oracle
i HTTP
English e
Customer ML i |
UTE-8 |——| Chinese
JSP / Java Servlet —— | Book
— —— | Supplier
Internet XSQL Utility
—| JDBC XML in
I; — UTF-8_[——| Multilingual
— —— | Book
——| Supplier
Japanese pp
Customer
UTF-8 | UTF-16

UTF_8
Oracle
German

Customer

The application architecture can be summarized as follows:

« JSPs generate dynamic content in UTF-8 encoded HTML pages.

« Java Servlets and Java Beans implement the business logic.

« The Oracle database stores book and customer information.
— Oracle Text enables locale-sensitive, full-text searches on the contents of books.
— The SQL NVARCHAR2 datatype stores multilingual book information.

» The Oracle JDBC driver (either OCI or Thin driver) accesses Unicode data stored
in the Oracle database. The data can be encoded in UTF-8 if the target column is of

7-2 Oracle Application Server Globalization Guide

Architecture and Design of the World-of-Books Demonstration

SQL CHAR datatype, or the data can be encoded in UTF-16 if the target column is
of SQL NCHAR datatype.

« The document format for communications between the online bookstore and the
book suppliers is UTF-8 encoded XML.

Figure 7-1 shows the WOB application on Oracle Application Server. The processing
character set for the WOB application is UTF-16. The application uses XML messages
to communicate with the Chinese book supplier and the multilingual book supplier.
The XML messages are encoded in the UTF-8 character set. English, Japanese, and
German customers connect to the WOB application through the Internet. The
application serves all customers HTML pages encoded in the UTF-8 character set.

World-of-Books Design

Table 7-1 shows the Java programs that contain most of the globalization features for
the WOB application. The programs are located in the $WOB _
HOVE/ sr ¢/ or acl e/ deno/ wob2/ wob directory.

Table 7-1 Java Programs that Contain Globalization Features for the World-of-Books

Application
Java Program Purpose
b_eans/ Local i zat i onCont ext Con_tains locale-sensitive methods for a specific user
.java session
Appl i cationLocal es. java Provides convenient methods based on the application

locales configured in the Oracle GDK configuration file

The Local i zat i onCont ext bean uses the Oracle GDK to expose locale-sensitive
behavior to the WOB application. The Oracle GDK provides a framework to build
enabled multilingual Web applications. The Java Appl i cati onLocal es class
manages a set of locales for an application and provides services based on these
locales. This class provides convenience methods based on the application locales
configured in the Oracle GDK configuration file gdkapp. xni .

Most of the JSPs for the online bookstore include the header . j sp file, which uses the
Local i zati onCont ext Java bean to keep locale information for a session. JSPs call
the Local i zat i onCont ext Java bean to perform all locale-sensitive operations such
as formatting a date, encoding a URL, and converting HTML form parameters to Java
strings.

World-of-Books Schema Design
The database schema for the WOB demonstration consists of the following tables:
« custoner s: Stores the user profile for each WOB user.
= books: Stores the information about each book.

= docs: Stores the content of each book so that customers can search the content of
the books.

Table 7-2 describes the cust omer s table. When a registered user is logged in, the
online bookstore uses the locale preferences in the cust oner table in the
Local i zat i onCont ext bean.

A Multilingual Demonstration for Oracle Application Server 7-3

Architecture and Design of the World-of-Books Demonstration

Table 7-2 Description of the customers Table

Column Datatype Description

currencyl | VARCHAR2(10) I1SO locale whose default primary currency is used by the
user

currency2 | VARCHAR2(10) I1SO locale whose default dual currency is used by the
user

custid VARCHARZ2(50) User’s name (this is the primary key)

| ocal e VARCHAR2(10) User’s preferred locale, in I1SO locale format (for example,
en- US)

ti mezone VARCHAR2(50) User’s time zone (for example, Asia/Hong Kong)

Table 7-3 describes the books table. The NVARCHARZ datatype is used for the title,
author, short description, and publisher of the book. By storing this information as
Unicode in the NVARCHAR2 datatype, the WOB demonstration can support books in
languages from around the world. The nsort column is used for queries about books
so that the list is returned in an order appropriate for the locale.

Table 7-3 Description of the books Table

Column Datatype Description

aut hor NVARCHAR(300) Book author

booki d NUMBER (10) Unique identifier of the book (this is the primary key)

descpt NVARCHAR(2000) | Short description of the book

|l angi d NUMBER(3) Language of the book

nsort VARCHARZ2(30) Locale-sensitive sorting sequence used in the NLSSORT()
SQL function for the book

publ i sher | NVARCHAR(200) Name of the book publisher

title NVARCHAR(300) Book title

Table 7-4 describes the docs table. It stores the contents of the books.

Table 7-4 Description of the docs Table

Column Datatype Description

booki d NUVBER(10) Unique identifier of the book (this is the primary key)

cset VARCHAR2(30) Character set of the contents of the book

doc BLOB Contents of the book

f or mat VARCHAR2(10) Format of the contents of the book (TEXT or Bl NARY)

| angi d NUMBER(3) Language of the book

| anguage VARCHARZ2(30) Language of the contents of the book, using the Oracle
Globalization Support language naming convention

m netype VARCHARZ2(50) MIME type of the book

Indexes have been built for these

tables. The following SQL files are used to create

these tables and build the corresponding indexes. They are located in the $WOB

HOVE/ schema directory:

« custoners. sql

7-4 Oracle Application Server Globalization Guide

Building, Deploying, and Running the World-of-Books Demonstration

« books. sql
« docs. sql

Oracle Text requires the | anguage, f or mat , cset, and doc columns of the docs
table to build a full-text search index on the docs table. The ct xi dx. sgl and

ct xsys. sql scripts are used to set up the full-text search index. They are located in
$WOB_HOVE/ schena/ ct X.

See Also: Oracle Database Globalization Support Guide 10g Release 1
(10.1) in the Oracle Database Documentation Library for more
information about building a full-text search index

Installing the World-of-Books Demonstration

The World-of-Books (WOB) demonstration is available as a zip file you can download
from the Oracle Web site at

http://ww. oracl e. comtechnol ogy/tech/javal/ oc4j/denos/i ndex. htm

After you download the gl obal i zati on_wob_denv. zi p file, unzip the file as
follows:

1. Go tothe $ORACLE HOVE/ j 2ee/ hone/ deno directory, or create it if it does not
already exist.

2. Copy the file to the $ORACLE_HOME/ j 2ee/ hone/ deno directory.
3. Unzip the file.

Note: Environment variable references, such as $ORACLE _HOVE,
are shown in UNIX format. For Microsoft Windows environments,
use the %0ORACLE_HOVE%notation.

After unzipping the downloaded file, you should see the directory gl obal i zat i on
under SORACLE_HOWVE/ j 2ee/ hone/ denp. The directory, SORACLE _

HOVE/ | 2ee/ horre/ deno/ gl obal i zat i on, is the root directory of the WOB
demonstration. This root directory is referred to as $WOB_HOVE throughout this
chapter.

Building, Deploying, and Running the World-of-Books Demonstration

The source code and the build files of the WOB demonstration are in the WOB demo
home directory located in $W0OB_HOME. Table 7-5 shows the directory structure under
$WOB_HOME.

Note: Environment variable references, such as $ORACLE_HOVE,
are shown in UNIX format. For Microsoft Windows environments,
use the %O0RACLE_HOVE%6notation.

Table 7-5 World-of-Books Directory Structure

Directory/Files Description

buil d. xm Builds the WOB demonstration

A Multilingual Demonstration for Oracle Application Server 7-5

Building, Deploying, and Running the World-of-Books Demonstration

Table 7-5 (Cont.) World-of-Books Directory Structure

Directory/Files Description

docr oot Contains all static files such as HTML files, JSPs, and
images

docr oot / suppa Contains static files for the Chinese book supplier
administration application

docr oot / suppb Contains static files for the global book supplier
administration application

docr oot / wob Contains static files for the online bookstore Web
application

etc Contains the configuration files for the WOB

demonstration applications

j 2ee_config Contains J2EE deployment files for the WOB

demonstration

README. TXT Contains useful information for building and deploying

the WOB demonstration

schema Contains SQL files to create and populate the database

schema that the WOB demonstration uses

src/ oracl e/ deno/ wob2 Contains all Java programs

src/ oracl e/ denb/ wob2/ supp | Contains Java programs shared by the two online

supplier applications

src/ oracl e/ deno/ wob2/ wob | Contains Java programs for the online bookstore

application

This section contains the following topics:

How to Build the World-of-Books Demonstration
How to Deploy the World-of-Books Demonstration

How to Run the World-of-Books Demonstration

How to Build the World-of-Books Demonstration
To build the WOB demonstration:

1.
2.

Go to the $ORACLE_HOVE/ j 2ee/ hone/ denp/ gl obal i zat i on directory.

Update the suppa. properti es, suppb. properties, and wob. properties
files in the $WOB_HOME/ et ¢ directory.

« Replace <J2EE_HOVE> with the full path where OC4J is installed.
« Replace <HOSTNAME> with the host name of your machine.
= Replace <PORT> with the port number of your default Web site.

Set up the JAVA build environment by defining the JAVA_ HOVE and CLASSPATH
environment variables. Oracle Application Server bundles JDK under $ORACLE _
HOWE/ j dk so that you can use it for your JAVA HOVE.

You can also use your own JDK. For example:

% set env ORACLE_HOME your Oracl eHorre

% setenv JAVA HOME $ORACLE_HOW j dk

% set env J2EE_HOVE $ORACLE_HOMH j 2ee

% set env J2EE_HOVE $ORACLE_HOME | 2ee/ hone

7-6 Oracle Application Server Globalization Guide

Building, Deploying, and Running the World-of-Books Demonstration

% nkdi r $J2EE_HOWE/ appl i b

% copy $ORACLE HOME/ lib/xsul2.jar to $J2EE HOVE/ applib

% copy $ORACLE _HOVE/ rdbns/jlib/ xdb.jar to $J2EE HOVE applib
% copy $ORACLE_HOVE/jlib/regexp.jar to $J2EE HOVE applib

4. Make sure that $ORACLE_HOVE/ bi n and $ORACLE_HOME/ j dk/ bi n are in your
directory path. For example:
% set env PATH $ORACLE_HOVE bi n: $ORACLE_HOVE/ j dk/ bi n: $PATH

5. Ensure that an Oraclel0g database is available to load the schema and data for the
WOB demonstration by defining the TWO_TASK environment variable to point to
the database. For example, if you can access the database from SQL*Plus with the

connect string i asdb, then you can define appropriate environment variable to
point to the connect string.

« For UNIX, set the TWO _TASK environment variable as follows:
% setenv TWD TASK i asdb

« For Microsoft Windows, set the LOCAL environment variable as follows:
set LOCAL=j asdb
6. Build the demonstration schema by entering the ANT command from the $\OB
HOME directory.

% ant set upschenma

7. Build the demonstration EAR and WAR files by entering the following ant
command under the $J2EE_HOVE/ denp/ gl obal i zat i on directory:

% ant

The build process performs the following tasks:
« Compiles all Java programs
« Creates the WOB schema and populates it with the seed data that is provided

« Packages all static files and Java classes into an EAR file and a WAR file, which
are used for deployment

8. If you enabled Oracle Text in your database, then you can set up full text searches
on book content by building the full text search index using the following
command.

% ant set upct x

How to Deploy the World-of-Books Demonstration
To deploy the WOB demonstration on Oracle Application Server J2EE:

1. Update $WOB_HOVE/ j 2ee_confi g/ dat a- sour ces. xmi , which is used for
database connection.

« Replace HOSTNAME with the host name of the Oracle database server.
« Replace PORT with the port number of the Oracle database server.
« Replace ORACLE_SI D with the system identifier of the Oracle database server.

« Cutand paste the contents of the dat a- sour ces. xmi file into the $J2EE_
HOVE/ confi g/ dat a- sour ces. xm file.

A Multilingual Demonstration for Oracle Application Server 7-7

Building, Deploying, and Running the World-of-Books Demonstration

2. Update the configuration file using DCM as follows:

denct!| updat eConfi g

3. Deploy the application $WOB_HOME/ | i b/ gl | n. ear using Oracle Enterprise
Manager. Alternatively, you can deploy the application usingdcntt| as follows:

dentt| depl oyApplication -file $WOB HOVE/ lib/glln.ear
-application glln -conponent hone

How to Run the World-of-Books Demonstration
The online bookstore requires one of the following browsers:

« Internet Explorer 5.5 or later

« Mozilla1.5or later

« Netscape 7.0.1 or later

The book supplier administration applications require Internet Explorer 5.5 or later.
To run the WOB demonstration, start the browser and enter the following URL:

http://host_nanme: 7778/ glln/i map. ht m

You should see a screen similar to the following:

Select a link to start the desired application.

Image Link Target

World-of-Books image Online bookstore application

Supplier A image Chinese book supplier administration application

Supplier B image Global book supplier administration application

You can navigate the online bookstore as a registered customer or as a visitor.

If you click the Supplier B image, the following screen appears:

7-8 Oracle Application Server Globalization Guide

Locale Awareness of the World-of-Books Demonstration

3 Supplier B Administration Site - Microsoft Internet Explorer = |EI|1|
J File Edit View Favorites Tools Help |-
| - - i il It -
| J =Eack -~ = -) at | iQhsearch (G Favorites £ #History | B 5 D
| JLinks = JAddress I@ http: fidlsuna12:85588/ sgtdemofsuppBhtmliframe. html j @Go |J Y_’ »

IZ@ Update Catalog Order Table Cleanup XML dir Home

Supplier B —
Multilingual Books Supplier

=
The links on the Supplier B administration site are as follows:
Link Description
Update Catalog Allows the supplier to send new book information to the online

bookstore to update the bookstore catalog. It sends an XML file to
the online bookstore.

Order Table Allows the supplier to check for customer orders sent from the
online bookstore and can update the order status.

Clean up Restores the data to the initial state. All previous orders and newly
added books are deleted.

XML dir Lists the XML documents that have been sent to and from the
online bookstore.

Home Returns to the WOB home page.

Locale Awareness of the World-of-Books Demonstration

The World-of-Books online bookstore is fully aware of the user’s locale. The
application determines the user’s locale and uses this locale to format dynamic HTML
pages according to the user’s language and cultural conventions.

This section contains the following topics:

= How World-of-Books Determines the User’s Locale

= How World-of-Books Uses Locale Information in LocalizationContext Methods
« How World-of-Books Sorts Query Results

« How World-of-Books Searches the Contents of Books

How World-of-Books Determines the User’s Locale

The online bookstore determines the user’s locale using three methods in the
following order:

1. If acustomer has logged into the bookstore, it examines the locale associated with
the customer’s user profile and uses it as the preferred locale.

A Multilingual Demonstration for Oracle Application Server 7-9

Locale Awareness of the World-of-Books Demonstration

2. Allows the user to enter the locale from the bookstore’s user interface.
3. Examines the Accept-Language HTTP header sent from the browser.

The World-of-Books application determines the client’s user interface language using
the GDK application framework support for locale determination capabilities. This
support is provided by the use of predefined <l ocal e- sour ces> XML tag
declarations in the GDK configuration file gdkapp. xnl . The file resides in the $WOB_
HOVE/ docr oot / VEEB_| NF directory.

The <l ocal e- det erm ne-rul e> XML tag in the gdkapp. xni file allows the
developer to configure various sources of the locale for the Web application user
interface language. The WOB gdkapp. xm configuration file syntax for configuring
locale source looks like the following:

<l ocal e-det er ni ne-rul e>
<db- | ocal e- source data source-nanme="j dbc/ WbWbDat aSour ce"
| ocal e-source-tabl e="cust oners"
user - key="useri nfo" user-colum="custid" |ocal e-col um="1ocal e"
ti mezone-col um="ti nezone" >
oracle.i18n.servlet.| ocal esource. DBLocal eSour ce
</ db- | ocal e- sour ce>
<l ocal e- sour ce>oracl e.i 18n. servl et. | ocal esour ce. User | nput </| ocal e- sour ce>
<l ocal e- sour ce>oracl ei 18n. servl et. | ocal esour ce. H t pAccept Language
</l ocal e-sour ce>
</l ocal e- det er m ne-rul e>

The locale determination model for the WOB is evaluated as follows:

« Ifthe user is logged in, then the <db- | ocal e- sour ce> XML element attribute
| ocal e- col unm determines the user interface language, such as locale. In the
WOB case, the | ocal e column in the customer table determines the user’s locale
preference. This scenario is run once the user is authenticated and logged into the
WOB application.

« If the user is not logged in, then the user interface language is determined by any
locale specified by the user through a menu or as a parameter in the HTTP
protocol, such as an HTTP query string parameter. This is the case when a user
clicks a flag for a particular country on the WOB welcome page. If the user is not
logged in and does not explicitly input locale information, then the user interface
language is determined by the HTTP protocol Accept - Language header value.

« Thelocalizati onCont ext bean composes the GDK functionality to provide
services that help with localization of the user interface for a multilingual user. The
Local i zat i onCont ext bean contains a reference to the GDK Local i zer object
for the current HTTP request, and uses it for retrieving localized messages and
getting access to the predetermined locale. It uses the other GDK API for
formatting dates, currencies, displaying timezones, getting other localized display
names and retrieving other locale-specific attributes.

How World-of-Books Uses Locale Information in LocalizationContext Methods

After the Local i zer is initialized with the user’s locale, all methods of the
Local i zat i onCont ext are sensitive to the locale. Table 7-6 shows examples of
locale-sensitive methods defined in the Local i zat i onCont ext .

7-10 Oracle Application Server Globalization Guide

Locale Awareness of the World-of-Books Demonstration

Table 7-6 Examples of Locale-Sensitive Methods of the Localizer Bean

Method

Example of Use

String fornatDate()

The following JSPs use the f or mat Dat e() method:

« wel cone. j sp formats the system date that the welcome
page displays.

« History.jsp formats the date of the order history.

« Setting.]jsp formats the date to be displayed when a
registered user updates the user profile.

String
get Currency()

Changeprofi |l el. j sp gets the primary currency symbol to be
displayed for the user profile modification screen.

String
get Direction()

set ting.j sp displays the direction that text is written, based on
the current user.

String
get Dual Currency()

Changepr ofi | el. j sp gets the alternate or dual currency
symbol to be displayed for the user profile modification screen.

String get Message()

Most of the JSPs use this method to get the translated message
that corresponds to the current locale from a resource bundle.

String
get NLSLanguage()

sear ch. j sp gets the Oracle language name used for the current
locale and for submitting a language-sensitive search.

String
get Ti neZone()

myaccount . j sp displays the time zone of the current user.

Other locale-sensitive functions are described in the following sections.

How World-of-Books Sorts Query Results

The order in which books are listed in the results of a query is sensitive to the current
user’s locale. The search template is as follows:

SELECT books. booki d,

| angmap. | anguage,

books. title,
books. aut hor,

substr(books. descpt, 1, 50)

FROM books, |angnmap

WHERE specific search criteria
books. | angid = | angmap. | angi d AND

nl ssort(books.title, 'NLS_SORT = "'||
| angor d(books. | angi d, ' Oracl e_NLS | anguage'),

CORDER BY

books. nsort) 1S NOT NULL

nl ssort(books.title, 'NLS_SORT='||books. nsort);

The | angnap table maps language IDs to Oracle Globalization Support language
names and Oracle sort names used in the NLSSORT SQL function. The $WOB_
HOME/ schenma/ | angmap. sql file creates the | angnap table.

The SELECT statement orders the books with the ORDER BY clause as follows:

1. It groups the books by their languages, using the first sort key that the | angor d
PL/SQL function returns. The | angor d function returns the smallest key value
when the Oracle Globalization Support language that corresponds to the current
user’s locale matches the language of the book. Thus the books are grouped so that
the first group consists of books whose language corresponds to the user’s locale.

2. Within each language group, it orders the books by the sort key that the NLSSORT
SQL function returns. The NLSSORT function generates sort keys based on the
linguistic order specified by the NLS_SORT parameter. The value of the NLS_SORT

A Multilingual Demonstration for Oracle Application Server 7-11

Locale Awareness of the World-of-Books Demonstration

parameter is stored in the nsor t column of the books table. Thus the books in the
sorted group are ordered by the Oracle sort sequence name stored in the nsor t
column.

The application also orders lists in the user interface using locale information. For
example, it uses the di spl ayLanguageOpt i ons() method of the

Local i zat i onCont ext bean to construct a list of languages so users can select a
language. The di spl ayLanguageOpt i ons() method collates the languages in the
list based on the current locale as determined by the GDK Localizer. A sample of the
di spl ayLanguageOpti ons() code is as follows:

public String displayLanugageOptions()
{
Set set = applLocal es. get Support edLanguagesByStyl e(l ocal e,
ApplicationLocal es. LANGUAGE DI SPLAY I TEM :
StringBuffer optionBuffer = new StringBuffer();
Iterator iter = set.iterator();
OraDi splayLocal el nfo odli = OraDispl ayLocal el nf o. get | nstance(l ocal e);

while (iter.hasNext())
{

OalLocal el nfo oli = (OaLocal elnfo) iter.next();
String olilLang = oligetLocal e().getLanguage();
option. Buf fer. append("<option value=\"" + olilang + "\"" +
(local e. get Laguage() . equal s(oliLang) ? " selected" : "")
+ ">" + odli.getD splayLangauge(oli.getDi spl ayLanguage(oli.getLocal e()) +
" [" + oliLang + "]</option>\n");
}

return optionBuffer.toString();

}

The Appl i cat i onLocal es Java class provides a different locale view subset on the
application locales that are declared in the gdkapp. xm configuration file. In the
preceding code sample, the get Support edLanguagesBy St yl e() method returns a
set of Or aLocal el nf o objects representing the supported languages of the WOB.
Additionally, the items in the set are sorted by the language display name using the
GDK OraCol | at or class. The collated Or aLocal el nf o objects are then used to
generate HTML code for the language select list.

The other methods that collate lists are di spl ayCountryQpti ons(),
di spl ayCurrencyOptions(),anddi spl ayScri pt CountryVars().

How World-of-Books Searches the Contents of Books

7-12

The online bookstore allows users to search the contents of books in a locale-sensitive
manner. The following query searches the contents of the books from the docs table:

SELECT books. booki d,
| angmap. | anguage,
books.title,
books. aut hor,
substr (books. descpt, 1, 50)

FROM books, |angmap, docs

WHERE cont ai ns(docs. doc, 'search_key’, 0) > 0 AND
books. | angi d = | angmap. | angi d AND
nl ssort (books.title, "NLS_SORT = '|| books.nsort) IS NOT NULL

ORDER BY | angord(books. | angid, ’'Oacle NS |anguage’),
nl ssort(books.title, 'NLS_SORT='||books.nsort);

Oracle Application Server Globalization Guide

Formatting HTML Pages in the World-of-Books Demonstration

The query (docs. doc, ' search_key’ , 0) function in the WHERE clause returns a
positive value when the search key is found in the contents of a document stored in
the doc column of the docs table. The rest of the query is similar to the query used for
the book search.

Oracle Text by default uses the language of the search key as defined by the NLS
LANGUAGE session parameter. To conduct the search in a language-sensitive manner,
sear ch. j spissues an ALTER SESSI ONstatement to change the value of the NLS _
LANGUAGE parameter to the value that the user specifies before submitting the content
search query. The ALTER SESSI ON statement is as follows:

ALTER SESSI ON SET NLS_LANGUAGE=I anguage;
Calling the get Par anmet er (" v_I| anguage") method of the HTTPSer vl et Request

object obtains the language value, where v_| anguage is a form input parameter from
the advanced search screen.

Encoding HTML Pages for the World-of-Books Demonstration

In the online bookstore, an attribute of the Local i zat i onCont ext bean stores the
encoding used for HTML pages. The <page- char set > XML tag in the GDK
configuration file is used to specify supported encoding. Currently only one (UTF-8) is
defined and set as the default. By default, the online bookstore uses UTF-8 as the
HTML page encoding to provide support for multilingual content.

<page- charset defaul t ="yes">UTF- 8</ page- char set >
By declaring the preceding XML code, the Oracle GDK automatically sets the character

set for the HTTP request and response objects to this value at runtime, which in this
case is UTF-8.

Handling HTML Form Input for the World-of-Books Demonstration

The online bookstore accepts multilingual text as HTML form input. The input can be
a search key when the user wants to search for a book, or it can be a user name at
login. The browser sends form input as a sequence of bytes in the same encoding as
the HTML form. Page encoding is required to convert the input fro Unicode-encoded
Java strings. The page encoding is automatically recognized and converted by the
GDK classes at runtime so the correct conversion occurs for the input.

Formatting HTML Pages in the World-of-Books Demonstration

The online bookstore uses the following locale-sensitive text formatting elements for
HTML pages:

« Font family
= Writing direction
« Textalignment

To support multiple locales simultaneously, the online bookstore externalizes these
elements to locale-specific cascading style sheet (CSS) files instead of hard-coding
them in the JSPs. The CSS file structure is the same as the static HTML file structure for
the WOB online help.

The CSS files are as follows:
« $WOB HOVE/ docr oot / wob/ css/ st yl e. css (the default CSS)

A Multilingual Demonstration for Oracle Application Server 7-13

Encoding URLs in the World-of-Books Demonstration

« $WOB HOMVE/ docr oot/ wob/ css/ ar/ styl e. css
« $WOB HOVE/ docr oot/ wob/ css/ hel/ styl e. css
« $WOB HOVE/ docr oot/ wob/ css/iw styl e.css
« $WOB HOVE/ docr oot/ wob/ css/jal styl e.css
« $WOB HOMVE/ docr oot/ wob/ css/ zh/ styl e. css

In $WOB_HOMVE/ docr oot / wob/ j sp/ header. j sp, the get Local i zedURL()
method of the Local i zati onCont ext bean gets the full path of the CSS that
corresponds to the current locale. If there is no CSS that is specific to the locale, then
the application uses the default CSS.

The following is a sample from the CSS for Arabic text:

htm { direction: rtl }

h3 { font-size: 100%
text-align: end;
font-weight: bold;
color: #FFFFFF }

The Arabic CSS defines the writing direction of the HTML page as right to left (RTL).
The text is always aligned to the end of the writing direction.

The following is a sample from the CSS for Japanese text:

htm { direction: Itr }

h3 { font-size: 100%
text-align: end;
font-famly: "Ms Cothic", "M5 Mncho", "Times New Roman"...
font-weight: bold;
col or: #FFFFFF }

tr { font-fanmly: "Ms Cothic", "M5 Mncho", "Times New Ronan", ...
font-size: 12pt; }

p{ font-famly: "Ms Gothic", "M5s Mncho" "Tinmes New Roman", ...
font-size: 12pt}

The Japanese CSS defines the writing direction as left to right (LTR). The text is aligned
to the end of the writing direction. The font families that are used for displaying
Japanese text are MS Gothic and MS Mincho. These are Japanese Microsoft Windows
fonts. If you do not specify the font family in the CSS, then the application uses the
default font of the browser.

Encoding URLSs in the World-of-Books Demonstration

All URLs that are embedded in an HTML page must be encoded. They must use the
same encoding as the HTML page. The Local i zat i onCont ext bean is the best
place to encapsulate the encodeURL() method. This method encodes a URL
according to the encoding attribute of the Local i zat i onCont ext bean.

The following JSPs call the encodeURL() method:
« ltemjsp

« Oderltemjsp

« Search.jsp

All embedded URLs for the online bookstore are encoded in ASCII and do not need
additional encoding. The encodeURL() method is called to illustrate the concept of
encoding URLs.

7-14 Oracle Application Server Globalization Guide

Organizing the Content of HTML Pages in the World-of-Books Demonstration

Accessing the Database in the World-of-Books Demonstration

The WOB demonstration uses the Oracle JDBC driver to access an Oracle database.
The JDBC driver transparently converts the data stored in the database to and from
Java strings. No special handling is necessary to access Unicode data stored in the
database in most cases.

Note: Special handling is required for a Java string bound to a
column of the N\VARCHAR datatype in an | NSERT or UPDATE SQL
statement. Use the set For nOf Use() method of the

Or acl ePr epar edSt at enent class to indicate to JDBC that the
target column is of the NVARCHAR datatype.

The set For nf Use() method is called in $W0B
HOVE/ sr ¢/ or acl e/ deno/ wob2/ supp/ beans/insertltem java
when a new book is inserted into the books table.

Organizing the Content of HTML Pages in the World-of-Books
Demonstration

The online bookstore consists of the following translatable content:

« Online help as static HTML and image files

« Strings or messages stored for use in composing an HTML page

« Dynamic book information such as the book name and author

This section contains the following topics:

« Static Files for World-of-Books Online Help

« Using Resource Bundles for the Content of World-of-Books HTML Pages

Static Files for World-of-Books Online Help

The static HTML files for the WOB online help are located in $\WOB

HOVE/ docr oot / wob/ hel p. The English version of the online help is stored at the top
level of the hel p directory. The translated help for each locale is stored in the
corresponding hel p/ | ocal e_nane directory. For example, the Japanese online help
is stored in the hel p/j a_JP directory.

The current user’s locale determines which help subdirectory the application uses. The
Local i zat i onCont ext bean stores the user’s current locale. The

get Local i zedURL() method returns the correct path of an HTML file that
corresponds to the user’s locale. For example, given the relative help path of

.. I hel p/ i ndex. ht M and the current locale of j a_JP, this method checks for
existence of the following files in the order they are listed and returns the first one it
finds:

« $WOB HOVE/ docr oot / wob/ hel p/ja_JP/index. htm
« $WOB HOVE/ docr oot / wob/ hel p/j a/ i ndex. htm
« $WOB HOVE/ docr oot / wob/ hel p/ i ndex. ht m

The header . j sp file calls this method to get the correct path for every translated
HTML file and uses the result to construct the HREF tag to reference the appropriate
online help.

A Multilingual Demonstration for Oracle Application Server 7-15

Organizing the Content of HTML Pages in the World-of-Books Demonstration

Using Resource Bundles for the Content of World-of-Books HTML Pages

A list resource bundle stores all translatable messages that comprise the online
bookstore user interface. The resource bundle is located in

$WOB_HOVE/ sr ¢/ or acl e/ deno/ wob2/ wob

/ resour ce/ MessageBundl e. j ava. This resource bundle is translated into 27
languages, and the translated resource bundle names have suffixes that correspond to
the Java locale name.

The get Message() method of the Local i zat i onCont ext bean gets a translated
message from the resource bundle that corresponds to the current locale. Most JSPs
call this method. This method is really a wrapper which ends up calling the GDK
Localizer class to actually retrieve the message.

The GDK provides a way for an application to configure the resource bundles it may
need. One of the resource bundles can be set to be a default resource bundle for the
application. The WOB defines its default resource bundle as follows:

oracl e. demo. wob2. wob. r esour ce. MessageBundl e

<nessage- bundl es>

<resource-bundl e name =

"def aul t ">oracl e. denp. wob2. wob. r esour ce. MessageBundl e</r esour ce- bundl| e>
</ message- bundl es?

After the configuration in the preceding example, calling the get Message() method
of the Local i zat i onCont ext bean will retrieve all messages from the default
resource bundle or acl e. deno. wob2. wob. r esour ce. MessageBundl e.

7-16 Oracle Application Server Globalization Guide

A

Oracle Application Server Translated

Languages

The following languages are translated for use with Oracle Application Server. Oracle
Application Server provides runtime support for more languages than those into
which Oracle Application Server itself is translated. For a list of all supported
languages, see the Oracle Database Globalization Support Guide 10g Release 1 (10.1) in the
Oracle Database Documentation Library.

Table A-1 Translated Languages and Abbreviations

Language Oracle Language Abbreviation
ARABIC ar
BRAZILIAN PORTUGUESE ptb
CANADIAN FRENCH frc
CZECH cs
DANISH dk
DUTCH nl
FINNISH sf
FRENCH f
GERMAN d
GREEK el
HEBREW iw
HUNGARIAN hu
ITALIAN i
JAPANESE ja
KOREAN ko
LATIN AMERICAN SPANISH esa
NORWEGIAN n
POLISH pl
PORTUGUESE pt
ROMANIAN ro
RUSSIAN ru
SIMPLIFIED CHINESE zhs

Oracle Application Server Translated Languages A-1

Table A-1 (Cont.) Translated Languages and Abbreviations

Language Oracle Language Abbreviation
SLOVAK sk

SPANISH e

SWEDISH S

THAI th

TRADITIONAL CHINESE zht

TURKISH tr

A-2 Oracle Application Server Globalization Guide

B

GDK Error Messages

The appendix lists the error messages for the Globalization Developer Kit (GDK).
GDK-03001 Invalid or unsupported sorting rule
Cause: An invalid or unsupported sorting rule name was specified.

Action: Choose a valid sorting rule name and check the globalization guide for
the list of sorting rule names.

GDK-03002 The functional-driven sort is not supported.
Cause: A functional-driven sorting rule name was specified.

Action: Choose a valid sorting rule name and check the globalization guide for
the list of sorting rule names.

GDK-03003 The linguistic data file is missing.

Cause: A valid sorting rule was specified, but the associated data file was not
found.

Action: Make sure the GDK jar files are correctly installed in the Java application.

GDK-03005 Binary sort is not available for the specified character set .
Cause: Binary sorting for the specified character set is not supported.

Action: Check the globalization guide for a character set that supports binary sort.

GDK-03006 The comparison strength level setting is invalid.
Cause: An invalid comparison strength level was specified.

Action: Choose a valid comparison strength level from the list. The levels are
PRIMARY, SECONDARY or TERTIARY.

GDK-03007 The composition level setting is invalid.
Cause: An invalid composition level setting was specified.

Action: Choose a valid composition level from the list. The levels are NO_
COMPOSITION or CANONICAL_COMPOSITION.

GDK-04001 Cannot map Oracle character to Unicode.

Cause: The program attempted to use a character in the Oracle character set that
cannot be mapped to Unicode.

Action: Write a separate exception handler for the invalid character, or call the
withReplacement method so that the invalid character can be replaced with a valid
replacement character.

GDK-04002 Cannot map Unicode to Oracle character.

GDK Error Messages B-1

Cause: The program attempted to use an Unicode character that cannot be
mapped to a character in the Oracle character set.

Action: Write a separate exception handler for the invalid character, or call the
withReplacement method so that the invalid character can be replaced with a valid
replacement character.

GDK-05000 A literal in the date format is too large.
Cause: The specified string literal in the date format was too long.

Action:; Use a shorter string literal in the date format.

GDK-05001 The date format is too long for internal buffer..
Cause: The date format pattern was too long.

Action:; Use a shorter date format pattern.

GDK-05002 The Julian date is out of range.
Cause: An illegal date range was specified.

Action: Make sure that date is in the specified range 0 - 3439760.

GDK-05003 Failure in retrieving date/time.
Cause: This is an internal error.

Action: Contact Oracle Support Services.

GDK-05010 Duplicate format code found.
Cause: The same format code was used more than once in the format pattern.

Action: Remove the redundant format code.

GDK-05011 The Julian date precludes the use of the day of the year.
Cause: Both the Julian date and the day of the year were specified.

Action: Remove either the Julian date or the day of the year.

GDK-05012 The year may only be specified once.
Cause: The year format code appeared more than once.

Action: Remove the redundant year format code.

GDK-05013 The hour may only be specified once.
Cause: The hour format code appeared more than once.

Action: Remove the redundant hour format code.

GDK-05014 The AM/PM conflicts with the use of A.M./P.M.
Cause: AM/PM was specified along with A.M./P.M.

Action: Use either AM/PM or A.M./P.M, but do not use both.

GDK-05015 The BC/AD conflicts with the use of B.C./A.D.
Cause: BC/AD was specified along with B.C.ZA.D.

Action: Use either BC/AD or B.C.Z/A.D., but do not use both.

GDK-05016 Duplicate month found.
Cause: The month format code appeared more than once.

Action: Remove the redundant month format code.

GDK-05017 The day of the week may only be specified once.

B-2 Oracle Application Server Globalization Guide

Cause: The day of the week format code appeared more than once.
Action: Remove the redundant day of the week format code.

GDK-05018 The HH24 precludes the use of meridian indicator.
Cause: HH24 was specified along with the meridian indicator.

Action: Use either the HH?24, or the HH12 with the meridian indicator.

GDK-05019 The signed year precludes the use of BC/AD.
Cause: The signed year was specified along with BC/AD.

Action:; Use either the signed year, or the unsigned year with BC/AD.

GDK-05020 A format code cannot appear in a date input format.
Cause: A format code appeared in a date input format.

Action: Remove the format code.

GDK-05021 Date format not recognized.
Cause: An unsupported format code was specified.

Action: Correct the format code.

GDK-05022 The era format code is not valid with this calendar.
Cause: An invalid era format code was specified for the calendar.

Action: Remove the era format code or use anther calendar that supports the era.

GDK-05030 The date format pattern ends before converting entire input string.
Cause: An incomplete date format pattern was specified.

Action: Rewrite the format pattern to cover the entire input string.

GDK-05031 The year conflicts with the Julian date.
Cause: An incompatible year was specified for the Julian date.

Action: Make sure that the Julian date and the year are not in conflict.

GDK-05032 The day of the year conflicts with the Julian date.
Cause: An incompatible day of year was specified for the Julian date.

Action: Make sure that the Julian date and the day of the year are not in conflict.

GDK-05033 The month conflicts with the Julian date.
Cause: An incompatible month was specified for the Julian date.

Action: Make sure that the Julian date and the month are not in conflict.

GDK-05034 The day of the month conflicts with the Julian date.
Cause: An incompatible day of the month was specified for the Julian date.
Action: Make sure that the Julian date and the day of the month are not in
conflict.

GDK-05035 The day of the week conflicts with the Julian date.
Cause: An incompatible day of the week was specified for the Julian date.

Action: Make sure that the Julian date and the day of week are not in conflict.

GDK-05036 The hour conflicts with the seconds in the day.
Cause: The specified hour and the seconds in the day were not compatible.

Action: Make sure the hour and the seconds in the day are not in conflict.

GDK Error Messages B-3

GDK-05037 The minutes of the hour conflicts with the seconds in the day.

Cause: The specified minutes of the hour and the seconds in the day were not
compatible.

Action: Make sure the minutes of the hour and the seconds in the day are not in
conflict.

GDK-05038 The seconds of the minute conflicts with the seconds in the day.

Cause: The specified seconds of the minute and the seconds in the day were not
compatible.

Action: Make sure the seconds of the minute and the seconds in the day are not in
conflict.

GDK-05039 Date not valid for the month specified.
Cause: An illegal date for the month was specified.

Action: Check the date range for the month.

GDK-05040 Input value not long enough for the date format.
Cause: Too many format codes were specified.

Action: Remove unused format codes or specify a longer value.

GDK-05041 A full year must be between -4713 and +9999, and not be 0.
Cause: An illegal year was specified.

Action: Specify the year in the specified range.

GDK-05042 A quarter must be between 1 and 4.
Cause: Cause: An illegal quarter was specified.

Action: Action: Make sure that the quarter is in the specified range.

GDK-05043 Not a valid month.
Cause: An illegal month was specified.

Action: Make sure that the month is between 1 and 12 or has a valid month name.

GDK-05044 The week of the year must be between 1 and 52.
Cause: An illegal week of the year was specified.

Action: Make sure that the week of the year is in the specified range.

GDK-05045 The week of the month must be between 1 and 5.
Cause: An illegal week of the month was specified.

Action: Make sure that the week of the month is in the specified range.

GDK-05046 Not a valid day of the week.
Cause: An illegal day of the week was specified.
Action: Make sure that the day of the week is between 1 and 7 or has a valid day
name.

GDK-05047 A day of the month must be between 1 and the last day of the month.
Cause: An illegal day of the month was specified.

Action: Make sure that the day of the month is in the specified range.

GDK-05048 A day of year must be between 1 and 365 (366 for leap year).
Cause: An illegal day of the year was specified.

B-4 Oracle Application Server Globalization Guide

Action: Make sure that the day of the year is in the specified range.

GDK-05049 An hour must be between 1 and 12.
Cause: An illegal hour was specified.

Action: Make sure that the hour is in the specified range.

GDK-05050 An hour must be between 0 and 23.
Cause: An illegal hour was specified.

Action: Make sure that the hour is in the specified range.

GDK-05051 A minute must be between 0 and 59.
Cause: Cause: An illegal minute was specified.

Action: Action: Make sure the minute is in the specified range.

GDK-05052 A second must be between 0 and 59.
Cause: An illegal second was specified.

Action: Make sure the second is in the specified range.

GDK-05053 A second in the day must be between 0 and 86399.
Cause: An illegal second in the day was specified.

Action: Make sure second in the day is in the specified range.

GDK-05054 The Julian date must be between 1 and 5373484.
Cause: An illegal Julian date was specified.

Action: Make sure that the Julian date is in the specified range.

GDK-05055 Missing AM/A.M. or PM/P.M.
Cause: Neither AM/A.M. nor PM/P.M. was specified in the format pattern.

Action: Specify either AM/A.M. or PM/P.M.

GDK-05056 Missing BC/B.C. or AD/A.D.
Cause: Neither BC/B.C. nor AD/A.D. was specified in the format pattern.

Action: Specify either BC/B.C. or AD/A.D.

GDK-05057 Not a valid time zone.
Cause: An illegal time zone was specified.

Action: Specify a valid time zone.

GDK-05058 Non-numeric character found.

Cause: A non-numeric character was found where a numeric character was
expected.

Action: Make sure that the character is a numeric character.

GDK-05059 Non-alphabetic character found.
Cause: A non-alphabetic character was found where an alphabetic was expected.

Action: Make sure that the character is an alphabetic character.

GDK-05060 The week of the year must be between 1 and 53.
Cause: An illegal week of the year was specified.

Action: Make sure that the week of the year is in the specified range.

GDK Error Messages B-5

GDK-05061 The literal does not match the format string.

Cause: The string literals in the input were not the same length as the literals in
the format pattern (with the exception of the leading whitespace).

Action: Correct the format pattern to match the literal. If the "FX" modifier has
been toggled on, the literal must match exactly, with no extra whitespace.

GDK-05062 The numeric value does not match the length of the format item.
Cause: The numeric value did not match the length of the format item.

Action: Correct the input date or turn off the FX or FM format modifier. When the
FX and FM format codes are specified for an input date, then the number of digits
must be exactly the number specified by the format code. For example, 9 will not
match the format code DD but 09 will match.

GDK-05063 The year is not supported for the current calendar.
Cause: An unsupported year for the current calendar was specified.

Action: Refer to the globalization guide to find out what years are supported for
the current calendar.

GDK-05064 The date is out of range for the calendar.
Cause: The specified date was out of range for the calendar.

Action: Specify a date that is legal for the calendar.

GDK-05065 Invalid era.
Cause: An illegal era was specified.

Action: Make sure that the era is valid.

GDK-05066 The datetime class is invalid.
Cause: This is an internal error.

Action: Contact Oracle Support Services.

GDK-05067 The interval is invalid.
Cause: An invalid interval was specified.

Action: Specify a valid interval.

GDK-05068 The leading precision of the interval is too small.

Cause: The specified leading precision of the interval was too small to store the
interval.

Action: Increase the leading precision of the interval or specify an interval with a
smaller leading precision.

GDK-05069 Reserved for future use.
Cause: Reserved.

Action: Reserved.

GDK-05070 The specified intervals and datetimes were not mutually comparable.
Cause: The specified intervals and date times were not mutually comparable.

Action: Specify a pair of intervals or date times that are mutually comparable.

GDK-05071 The number of seconds must be less than 60.
Cause: The specified number of seconds was greater than 59.

Action: Specify a value for the seconds to 59 or smaller.

B-6 Oracle Application Server Globalization Guide

GDK-05072 Reserved for future use.
Cause: Reserved.

Action: Reserved.

GDK-05073 The leading precision of the interval was too small.

Cause: The specified leading precision of the interval was too small to store the
interval.

Action: Increase the leading precision of the interval or specify an interval with a
smaller leading precision.

GDK-05074 An invalid time zone hour was specified.
Cause: The hour in the time zone must be between -12 and 13.

Action:; Specify a time zone hour between -12 and 13.

GDK-05075 An invalid time zone minute was specified.
Cause: The minute in the time zone must be between 0 and 59.

Action: Specify a time zone minute between 0 and 59.

GDK-05076 An invalid year was specified.
Cause: A year must be at least -4713.

Action: Specify a year that is greater than or equal to -4713.

GDK-05077 The string is too long for the internal buffer.
Cause: This is an internal error.

Action: Contact Oracle Support Services.

GDK-05078 The specified field was not found in the datetime or interval.
Cause: The specified field was not found in the date time or interval.

Action;: Make sure that the specified field is in the date time or interval.

GDK-05079 An invalid hh25 field was specified.
Cause: The hh25 field must be between 0 and 24.

Action: Specify an hh25 field between 0 and 24.

GDK-05080 An invalid fractional second was specified.
Cause: The fractional second must be between 0 and 999999999.

Action: Specify a value for fractional second between 0 and 999999999.

GDK-05081 An invalid time zone region ID was specified.
Cause: The time zone region ID specified was invalid.

Action: Contact Oracle Support Services.

GDK-05082 Time zone region name not found.
Cause: The specified region name cannot be found.

Action: Contact Oracle Support Services.

GDK-05083 Reserved for future use.
Cause: Reserved.

Action: Reserved.

GDK-05084 Internal formatting error.

GDK Error Messages B-7

Cause: This is an internal error.
Action: Contact Oracle Support Services.

GDK-05085 Invalid object type.
Cause: An illegal object type was specified.

Action: Use a supported object type.

GDK-05086 Invalid date format style.
Cause: An illegal format style was specified.

Action: Choose a valid format style.

GDK-05087 A null format pattern was specified.
Cause: The format pattern cannot be null.

Action: Provide a valid format pattern.

GDK-05088 Invalid number format model.
Cause: An illegal number format code was specified.

Action: Correct the number format code.

GDK-05089 Invalid number.
Cause: An invalid number was specified.

Action: Correct the input.

GDK-05090 Reserved for future use.
Cause: Reserved.

Action: Reserved.

GDK-0509 Datetime/interval internal error.
Cause: This is an internal error.

Action: Contact Oracle Support Services.

GDK-05098 Too many precision specifiers.

Cause: Extra data was found in the date format pattern while the program
attempted to truncate or round dates.

Action: Check the syntax of the date format pattern.

GDK-05099 Bad precision specifier.
Cause: An illegal precision specifier was specified.

Action: Use a valid precision specifier.

GDK-05200 Missing WE8ISO8859P1 data file.
Cause: The character set data file for WE8ISO8859P1 was not installed.

Action: Make sure the GDK jar files are installed properly in the Java application.

GDK-05201 Failed to convert to a hexadecimal value.
Cause: An invalid hexadecimal string was included in the HTML/XML data.

Action: Make sure the string includes the hexadecimal character in the form of
&X[0-9A-Fa-f]+;.

GDK-05202 Failed to convert to a decimal value.
Cause: An invalid decimal string was found in the HTML/XML data.

B-8 Oracle Application Server Globalization Guide

Action: Make sure the string includes the decimal character in the form of
&[0-9]+;.

GDK-05203 Unregistered character entity.
Cause: An invalid character entity was found in the HTML/XML data.

Action: Use a valid character entity value in HTML/XML data. See HTML/XML
standards for the registered character entities.

GDK-05204 Invalid Quoted-Printable value.
Cause: An invalid Quoted-Printable data was found in the data.

Action: Make sure the input data has been encoded in the proper
Quoted-Printable form.

GDK-05205 Invalid MIME header format.
Cause: An invalid MIME header format was specified.

Action: Check RFC 2047 for the MIME header format. Make sure the input data
conforms to the format.

GDK-05206 Invalid numeric string.
Cause: An invalid character in the form of %FF was found when a URL was being
decoded.

Action: Make sure the input URL string is valid and has been encoded correctly;
%FF needs to be a valid hex number.

GDK-05207 Invalid class of the object, key, in the user-defined locale to charset
mapping.”
Cause: The class of key object in the user-defined locale to character set mapping
table was not java.util.Locale.

Action: When you construct the Map object for the user-defined locale to
character set mapping table, specify java.util.Locale for the key object.

GDK-05208 Invalid class of the object, value, in the user-defined locale to charset
mapping.
Cause: The class of value object in the user-defined locale to character set
mapping table was not java.lang.String.

Action: When you construct the Map object for the user-defined locale to
character set mapping table, specify java.lang.String for the value object.

GDK-05209 Invalid rewrite rule.
Cause: An invalid regular expression was specified for the match pattern in the
rewrite rule.

Action: Make sure the match pattern for the rewriting rule uses a valid regular
expression.

GDK-05210 Invalid character set.
Cause: An invalid character set name was specified.

Action: Specify a valid character set name.

GDK-0521 Default locale not defined as a supported locale.

Cause: The default application locale was not included in the supported locale
list.

GDK Error Messages B-9

Action: Include the default application locale in the supported locale list or
change the default locale to the one that is in the list of the supported locales.

GDK-05212 The rewriting rule must be a String array with three elements.
Cause: The rewriting rule parameter was not a String array with three elements.
Action: Make sure the rewriting rule parameter is a String array with three
elements. The first element represents the match pattern in the regular expression,
the second element represents the result pattern in the form specified in the
JavaDoc of ServletHelper.rewriteURL, and the third element represents the
Boolean value "True" or "False" that specifies whether the locale fallback operation
is performed or not.

GDK-05213 Invalid type for the class of the object, key, in the user-defined
parameter name mapping.
Cause: The class of key object in the user-defined parameter name mapping table
was not java.lang.String.

Action: When you construct the Map object for the user-defined parameter name
mapping table, specify java.lang.String for the key object.

GDK-05214 The class of the object, value, in the user-defined parameter name
mapping, must be of type \"java.lang.String\.."

Cause: The class of value object in the user-defined parameter name mapping
table was not java.lang.String.

Action: When you construct the Map object for the user-defined parameter name
mapping table, specify java.lang.String for the value object.

GDK-05215 Parameter name must be in the form [a-z][a-z0-9]*.
Cause: An invalid character was included in the parameter name.

Action: Make sure the parameter name is in the form of [a-z][a-z0-9]*.

GDK-05216 The attribute \"var\" must be specified if the attribute \"scope\" is set.

Cause: Despite the attribute "scope" being set in the tag, the attribute "var" was
not specified.

Action: Specify the attribute "var" for the name of variable.

GDK-05217 The \"param\" tag must be nested inside a \"message\" tag.
Cause: The "param" tag was not nested inside a "message"” tag.

Action: Make sure the tag "param" is inside the tag "message".

GDK-05218 Invalid \"scope\" attribute is specified.
Cause: An invalid "scope" value was specified.

Action: Specify a valid scope as either "application,” "session," "request," or

"page”.
GDK-05219 Invalid date format style.
Cause: The specified date format style was invalid.
Action: Specify a valid date format style as either "default,” "short," or "long"

GDK-05220 No corresponding Oracle character set exists for the IANA character set.
Cause: An unsupported IANA character set name was specified.

Action: Specify the IANA character set that has a corresponding Oracle character
set.

B-10 Oracle Application Server Globalization Guide

GDK-05221 Invalid parameter name.
Cause: An invalid parameter name was specified in the user-defined parameter
mapping table.

Action: Make sure the specified parameter name is supported. To get the list of
supported parameter names, call LocaleSource.Parameter.toArray.

GDK-05222 Invalid type for the class of the object, key, in the user-defined message
bundle mapping.
Cause: The class of key object in the user-defined message bundle mapping table
was hot "java.lang.String."
Action: When you construct the Map object for the user-defined message bundle
mapping table, specify java.lang.String for the key object.

GDK-05223 Invalid type for the class of the object, value, in the user-defined
message bundle mapping.

Cause: The class of value object in the user-defined message bundle mapping
table was not "java.lang.String."

Action: When you construct the Map object for the user-defined message bundle
mapping table, specify java.lang.String for the value object.

GDK-05224 Invalid locale string.
Cause: An invalid character was included in the specified ISO locale names in the
GDK application configuration file.
Action; Make sure the ISO locale names include only valid characters. A typical
name format is an ISO 639 language followed by an ISO 3166 country connected
by a dash character; for example, "en-US" is used to specify the locale for
American English in the United States.

GDK-06001 LCSDetector profile not available.
Cause: The specified profile was not found.

Action: Make sure the GDK jar files are installed properly in the Java application.

GDK-06002 Invalid IANA character set name or no corresponding Oracle name
found.
Cause: The IANA character set specified was either invalid or did not have a
corresponding Oracle character set.
Action: Check that the IANA character is valid and make sure that it has a
corresponding Oracle character set.

GDK-06003 Invalid ISO language name or no corresponding Oracle name found.
Cause: The ISO language specified was either invalid or did not have a
corresponding Oracle language.

Action: Check to see that the ISO language specified is either invalid or does not
have a corresponding Oracle language.

GDK-06004 A character set filter and a language filter cannot be set at the same
time.
Cause: A character set filter and a language filter were set at the same time in a
LCSDetector object.

Action: Set only one of the two -- character set or language.

GDK-06005 Reset is necessary before LCSDetector can work with a different data
source.

GDK Error Messages B-11

Cause: The reset method was not invoked before a different type of data source
was used for a LCSDetector object.

Action: Call LCSDetector.reset to reset the detector before switching to detect
other types of data source.

ORA-17154 Cannot map Oracle character to Unicode.
Cause: The Oracle character was either invalid or incomplete and could not be
mapped to an Unicode value.
Action: Write a separate exception handler for the invalid character, or call the
withReplacement method so that the invalid character can be replaced with a valid
replacement character.

ORA-17155 Cannot map Unicode to Oracle character.
Cause: The Unicode character did not have a counterpart in the Oracle character
set.
Action: Write a separate exception handler for the invalid character, or call the
withReplacement method so that the invalid character can be replaced with a valid
replacement character.

B-12 Oracle Application Server Globalization Guide

Glossary

CSS
Cascading style sheet.

character set

Defines the binary values that are associated with the characters that make up a
language. For example, you can use the 1SO-8859-1 character set to encode most
Western European languages.

database access descriptor (DAD)

Describes the connect string and Oracle parameters of a target database to which an
Oracle HTTP Server nod_pl sgl module connects.

encoding

The character set used in a particular programming environment for the locale to
which an Internet application is serving. See page encoding, character set.

JSP

JavaServer Page. An extension to servlet functionality that provides a simple
programmatic interface to Web pages. JSPs are HTML pages with special tags and
embedded Java code that is executed on the Web or application server. JSPs provide
dynamic functionality to HTML pages. They are actually compiled into servlets when
first requested and run in the servlet container.

locale

Refers to a language and the region (territory) in which the language is spoken.
Information about the region includes formats for dates and currency.

MIME

Multipurpose Internet Mail Extensions. A mail type that defines the message structure
for different 8-bit character sets and multi-part messages.

monolingual Internet application

Each instance in the application supports a different locale. Users invoke the instance
that serves their locale.

multilingual Internet application

One instance supports several locales. All users invoke the same instance regardless of
locale.

Glossary-1

page encoding

The character set an HTML page uses for the locale to which an Internet application is
serving.

PSP
PL/SQL Server Pages

Unicode

A universal character set that defines binary values for characters in almost all
languages. Unicode characters can be encoded in 1 to 4 bytes in the UTF-8 character
set, in 2 to 4 bytes in the UTF-16 character set, and in 4 bytes in the UTF-32 character
set.

Glossary-2

A

accessing the database server, 5-1
Albany WT] font, 2-9
ALTER SESSION statement

in monolingual applications, 2-6

in multilingual applications, 2-6
Apache::Util module, 4-10
application design, 1-2
application-locales, 3-12
architecture

monolingual, 1-2

multilingual, 1-2

B

bidirectional languages
formatting HTML pages, 4-2

C

cascading style sheets, 4-2
C/C++
database access, 5-4
database access in multilingual applications, 5-4
translatable strings, 4-19
C/C++ runtime, configuring, 6-9
CHAR datatypes, 6-12
character set
definition, 1-2
detecting with Oracle Globalization Development
Kit, 3-32
character set encoding, 4-2
CharEncoding attribute, 4-12
charset argument, 4-10
charset parameter, 4-4
configuration files
editing manually, 6-3
opmn.xml, 6-4
configuring NLS_LANG
in Oracle HTTP Server files, 6-3
on Windows platforms, 6-5
configuring Oracle HTTP Server for multilingual
support, 6-2
configuring OracleAS Portal for multilingual
support, 6-9

Index

configuring the NLS_LANG environment
variable, 6-3

configuring transfer mode for mod_plsqgl, 6-7

Content-Type HTTP header, 4-4

CREATE DATABASE statement, 6-12

D

database
centralized, 5-1
configuring, 5-1

database access

C/C++, 54
Java, 5-1
JDBC, 5-2

multilingual non-Java applications, 5-2

OCI API, 5-5

Perl, 5-3

PL/SQL, 5-3

Unicode API, 5-5

Unicode bind and define in Pro*C/C++, 5-6

World-of-Books demo, 7-15
database character set

setting in the CREATE DATABASE

statement, 6-12

database server

accessing, 5-1
decoding HTTP headers, 4-14

in OracleAS Single Sign-On, 4-14
decoding string-type mobile context information

headers, 4-15

demonstration

installing, 7-5

See World-of-Books demonstration, 7-1
detecting language and character sets

Globalization Development Kit, 3-32
determining user locale

monolingual applications, 2-3

multilingual applications, 2-3
developing locale awareness, 2-1
development environments, 1-5
Discoverer

configuring Java Plus for multilingual

support, 6-11

locale awareness, 2-11

doGet() function, 4-4

Index-1

dynamic environment switching, 6-11

E

editing configuration files, 6-3
embedded URLs, 7-14

encoding
UTF-16, 5-1
UTF-32, 5-1
UTF-8, 5-1

encoding HTML pages, 4-2
encoding URLs, 4-9

Java, 4-9

Perl, 4-10

PL/SQL, 4-10

World-of-Books demonstration, 7-14
entities

named and numbered, 4-11
environment switching, 6-11
ESCAPE() function, 4-10
escape_uri() function, 4-10

F

fonts
specifying in HTML pages, 4-2
Forms Services
configuring for multilingual support, 6-10
locale awareness, 2-7
locale awareness in a monolingual
application, 2-8
locale awareness in a multilingual
application, 2-8
Forms servlet, 2-9
formsweb.cfg file, 2-8
from_utf8() function, 4-7

G

GDK application configuration file, 3-10, 3-18
example, 3-16
GDK application framework for J2EE, 3-17
GDK components, 3-1
GDK error messages, B-1
GDK Java API, 3-28
GDK Java supplied packages and classes, 3-35
GDK Localizer object, 3-22
gdkapp.xml application configuration file, 3-10, 3-18
GET requests, 4-11
getDateTimelnstance() method, 2-4
getParameter() function, 4-12
getWriter() method, 4-4
Globalization Development Kit, 3-1
application configuration file, 3-10
character set conversion, 3-29
components, 3-1
defining supported application locales, 3-23
e-mail programs, 3-34
error messages, B-1
framework, 3-17
integrating locale sources, 3-19

Index-2

Java API, 3-28
Java supplied packages and classes, 3-35
locale detection, 3-20
Localizer object, 3-22
managing localized content in static files, 3-27
managing strings in JSPs and Java servlets, 3-26
non_ASCII input and output in an HTML
page, 3-24
Oracle binary and linguistic sorts, 3-31
Oracle date, number, and monetary formats, 3-30
Oracle language and character set detection, 3-32
Oracle locale information, 3-28
Oracle locale mapping, 3-29
Oracle translated locale and time zone
names, 3-33
supported locale resources, 3-19

H

HTML form input
encoding, 4-11

Java, 4-11
named and numbered entities, 4-11
Perl, 4-13

Perl in multilingual applications, 4-13

PL/SQL, 4-12

PL/SQL monolingual applications, 4-12

PL/SQL multilingual applications, 4-13

World-of-Books demonstration, 7-13

HTML page encoding

choosing for monolingual applications, 4-2

choosing for multilingual applications, 4-3

in PL/SQL and PSPs, monolingual
environments, 4-5

in PL/SQL and PSPs, multilingual
environments, 4-5

named and numbered entities, 4-11

specifying, 4-3
specifying in Java servlets and Java Server
Pages, 4-4

specifying in OracleAS Mobile Services, 4-7

specifying in OracleAS Web Cache enabled
applications, 4-7

specifying in Perl, 4-6

specifying in Perl for monolingual
applications, 4-6

specifying in Perl for multilingual
applications, 4-6

specifying in PL/SQL and PL/SQL Server
Pages, 4-5

specifying in the HTML page header, 4-4

specifying in the HTTP header, 4-3

World-of-Books demo, 7-13

HTML pages

concatenating strings, 4-16

embedding text into images, 4-16

fallback mechanism for translation, 4-16

formatting for bidirectional languages, 4-2

formatting in World-of-Books
demonstration, 7-13

formatting to accommodate text in different
languages, 4-1
JavaScript code, 4-16
organizing content for translation, 4-15
organizing static files for translation, 4-16
space for dynamic text, 4-16
specifying fonts, 4-2
translatable C/C++ and Perl strings, 4-19
translatable dynamic content in application
schema, 4-21
translatable strings in message tables, 4-20
translation guidelines, 4-16
user interface strings, 4-16
HTTP Content-Type header, 4-6
HTTP headers
decoding, 4-14
decoding in OracleAS Single Sign-On, 4-14
HttpServletRequest.getParameter() API, 4-11

IANA character sets

mapping with ISO locales, 3-25

native encodings, 4-2
installing the World-of-Books demo, 7-5
I1SO locales

mapping with IANA character sets, 3-25

J

Java

accessing the database, 5-1

encoding URLs, 4-9

HTML form input, 4-11

organizing translatable static strings, 4-17
Java Server Pages

specifying HTML page encoding, 4-4
Java servlets

specifying HTML page encoding, 4-4
JDBC

database access, 5-2

L
LANG environment variable, 6-8, 6-9
language
detecting with Globalization Development
Kit, 3-32
languages

OracleAS translated languages, A-1
LC_ALL environment variable, 2-5, 6-8, 6-9
locale

as ISO standard, 2-1

as Java locale object, 2-1

as NLS_LANGUAGE and NLS_TERRITORY

parameters, 2-1
as POSIX locale name, 2-1
based on the default ISO locale of the user’s
browser, 2-3
changing operating system locale, 2-5
definition, 1-1

determined by user input, 2-3
using user profile information from an LDAP
directory server, 2-3
locale awareness
C++ applications, 2-5
developing, 2-1
in multilingual Perl and C/C++ applications, 4-2
in OracleAS Business Intelligence Discoverer
applications, 2-11
Java applications, 2-4
OracleAS Forms Services, 2-7
OracleAS Reports Services, 2-9
OracleAS Wireless Services, 2-7
Perl applications, 2-5
PL/SQL applications, 2-5
SQL applications, 2-5
World-of-Books demo
LocalizationContext methods, 7-10
World-of-Books demonstration, 7-9
determining locale, 7-9
locale detection
Globalization Development Kit, 3-20
locale-charset-map, 3-11
locale-determine-rule, 3-12
LocaleMapper class, 3-34
locale-parameter-name, 3-13
Locale.setDefault() method, 2-4
LocalizationContext methods, World-of-Books
demo, 7-10

M

manually editing configuration files, 6-3
message tables

translatable strings, 4-20
message-bundles, 3-14
Mobile Services

specifying HTML page encoding, 4-7
mod_jserv runtime for Java, configuring, 6-8
mod_perl environment, 4-6
mod_perl runtime for Perl scripts, configuring, 6-9
mod_plsql

configuring transfer mode, 6-7
mod_plsgl module

datatypes, 4-12

HTML form input in monolingual

applications, 4-12
mod_plsql runtime for PL/SQL and PL/SQL Server
Pages, configuring, 6-8

monolingual applications

advantages, 1-3

architecture, 1-2

determining user locale, 2-3

disadvantages, 1-3
multilingual applications

advantages, 1-5

architecture, 1-4

database access with C/C++, 5-4

database access with Perl, 5-4

database access with Unicode API, 5-5

Index-3

database access with Unicode bind and define in
Pro*C/C++, 5-6
determining user locale, 2-3
based on ISO locale, 2-3
based on user input, 2-3
based on user profile, 2-3
disadvantages, 1-5
HTML form input in Perl, 4-13

N

native2ascii utility, 4-17

NCHAR datatypes, 6-12

NLS_LANG parameter, 2-5
configuring, 6-3
configuring in Oracle HTTP Server files, 6-3
configuring on Windows platforms, 6-5
setting in a multilingual application

architecture, 6-6

values for commonly used locales, 6-6

O

OC4] Java runtime, configuring, 6-8
OCI API
database access, 5-5
Unicode API, 5-5
opmn.xml, 6-4
Oracle Language and Character Set Detection Java
classes, 3-32
OracleAS Business Intelligence Discoverer
configuring Java Plus for multilingual
support, 6-11
locale awareness, 2-11
OracleAS Forms Services
configuring for multilingual support, 6-10
locale awareness, 2-7
OracleAS Infrastructure
and global deployment, 6-1
OracleAS Mobile Services
specifying HTML page encoding, 4-7
OracleAS Portal
configuring for multilingual support, 6-9
OracleAS Reports Services
locale awareness, 2-9
OracleAS Web Cache
specifying HTML page encoding in Web Cache
enabled applications, 4-7
OracleAS Wireless
configuring encoding for outgoing
messages, 6-10
configuring for multilingual support, 6-10
oracle.il8n.lcsd package, 3-35
oracle.il8n.net package, 3-35
oracle.il8n.Servlet package, 3-35
oracle.il8n.text package, 3-36
oracle.il8n.util package, 3-36

P

packages

Index-4

DBMS_SQL, 2-6
oracle.il8n.lcsd, 3-35
oracle.il8n.net, 3-35
oracle.il8n.Servlet, 3-35
oracle.il8n.text, 3-36
oracle.il8n.util, 3-36
page-charset, 3-11
Perl
database access, 5-3
database access in multilingual applications, 5-4
encoding URLs, 4-10
HTML form input, 4-13
HTML form input in multilingual
applications, 4-13
specifying HTML page encoding, 4-6
specifying HTML page encoding for monolingual
applications, 4-6
specifying HTML page encoding for multilingual
applications, 4-6
translatable strings, 4-19
PL/SQL
database access, 5-3
encoding URLs, 4-10
HTML form input, 4-12
HTML form input in monolingual
applications, 4-12
HTML form input in multilingual
applications, 4-13
PL/SQL and Oracle PL/SQL Server Pages
specifying HTML page encoding, 4-5
Portal
configuring for multilingual support, 6-9
POSIX locale names, 6-8
POST requests, 4-11
Pro*C/C++
database access, 5-6
programming languages
supported, 1-5

R

Reports Server

configuring for multilingual support, 6-11
Reports Services

locale awareness, 2-9

locale awareness in a multilingual

application, 2-10

page encoding in HTML output, 4-8

page encoding in XML output, 4-8

specifying the page encoding, 4-8
runtime default locale, configuring in a monolingual

application architecture, 6-7

S

schema

translatable content, 4-21
Servlet API, 4-11
setContentType() method, 4-4
setlocale() function

monolingual applications, 2-5

multilingual applications, 2-5
setting NLS_LANG

monolingual applications, 6-5
setting NLS_LANG parameter

in a multilingual application architecture, 6-6

String.getBytes() method, 2-4

String.getBytes(String encoding) method, 2-4

string-type mobile context information headers
decoding, 4-15

strlen() function, 5-6

switching environments, 6-11

T

text datatypes, 5-5
to_utf8() function, 4-13
transfer mode
configuring for mod_plsql, 6-7
translated languages, A-1
translation
organizing HTML page content, 4-15

U

Unicode
definition, 1-2
Unicode API
database access, 5-5
Unicode bind and define
database access, 5-6
Unicode data
storing in the database, 6-12
UNICODE::MAPUTF8 Perl module, 4-6
url argument, 4-10
url-rewrite-rule, 3-15
URLs
encoding, 4-9
encoding inJava, 4-9
encoding in Perl, 4-10
encoding in PL/SQL, 4-10
encoding in World-of-Books demonstration,
with embedded query strings, 4-9
utext datatype, 5-5, 5-6
UTF-16 encoding, 5-1
UTF-32 encoding, 5-1
UTF-8 encoding, 4-13,5-1
for HTML pages, 4-3
UTL_I18N PL/SQL package, 3-36
UTL_LMS PL/SQL package, 3-37
UTL_URL package, 4-10
uvarchar datatype, 5-6

W

weslen() function, 5-6
Web Toolkit API, 4-5
Wireless
configuring encoding for outgoing
messages, 6-10
configuring for multilingual support, 6-10

World-of-Books demo
architecture, 7-2
building, 7-6
database access, 7-15
deploying, 7-7
design, 7-3
directory structure, 7-5
HTML page encoding, 7-13
installing, 7-5
locale awareness
LocalizationContext methods, 7-10
online help, 7-15
organizing HTML content, 7-15
organizing static files, 7-15
resource bundles, 7-16
running, 7-8
schema design, 7-3
books table, 7-4
customers table, 7-3
docs table (book content), 7-4
searching book contents, 7-12
sorting query results, 7-11
source file location, 7-5
World-of-Books demonstration
encoding URLs, 7-14
formatting HTML pages, 7-13
HTML form input, 7-13
locale awareness, 7-9
determining locale, 7-9
overview, 7-1

Index-5

Index-6

	Contents
	List of Examples
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	1 Overview of Globalization in Oracle Application Server
	Internet Applications Globalization
	Globalization Concepts
	Locale
	Character Set
	Unicode

	Designing a Global Internet Application
	Monolingual Internet Application Architecture
	Multilingual Internet Application Architecture

	Overview of Developing Global Internet Applications

	2 Developing Locale Awareness
	Developing Locale Awareness in Global Internet Applications
	Locale Awareness in J2EE and Internet Applications
	Locale Awareness in Java Applications
	Locale Awareness in Perl and C/C++ Applications
	Locale Awareness in SQL and PL/SQL Applications

	Locale Awareness in Oracle Application Server Component Applications
	Locale Awareness in Oracle Application Server Wireless Services
	Locale Awareness in Oracle Application Server Forms Services
	Locale Awareness in Oracle Reports
	Locale Awareness in Oracle Business Intelligence Discoverer

	3 Oracle Globalization Development Kit
	Overview of the Oracle Globalization Development Kit
	GDK Quick Start
	Modifying the HelloWorld Application

	GDK Application Configuration File
	locale-charset-maps
	page-charset
	application-locales
	locale-determine-rule
	locale-parameter-name
	message-bundles
	url-rewrite-rule

	GDK Application Framework for J2EE
	Making the GDK Framework Available to J2EE Applications
	Integrating Locale Sources into the GDK Framework
	Getting the User Locale From the GDK Framework
	Implementing Locale Awareness Using the GDK Localizer
	Defining the Supported Application Locales in the GDK
	Handling Non-ASCII Input and Output in the GDK Framework
	Managing Localized Content in the GDK
	Managing Localized Content in JSPs and Java Servlets
	Managing Localized Content in Static Files

	GDK Java API
	Oracle Locale Information in the GDK
	Oracle Locale Mapping in the GDK
	Oracle Character Set Conversion in the GDK
	Oracle Date, Number, and Monetary Formats in the GDK
	Oracle Binary and Linguistic Sorts in the GDK
	Oracle Language and Character Set Detection in the GDK
	Oracle Translated Locale and Time Zone Names in the GDK
	Using the GDK for E-mail Programs

	GDK for Java Supplied Packages and Classes
	oracle.i18n.lcsd
	oracle.i18n.net
	oracle.i18n.servlet
	oracle.i18n.text
	oracle.i18n.util

	GDK for PL/SQL Supplied Packages

	4 Implementing HTML Features
	Implementing HTML Features for Global Applications
	Formatting HTML Pages to Accommodate Text in Different Languages
	Encoding HTML Pages
	Choosing an HTML Page Encoding for Monolingual Applications
	Choosing an HTML Page Encoding for Multilingual Applications
	Specifying the Page Encoding for HTML Pages
	Specifying the Encoding in the HTTP Header
	Specifying the Encoding in the HTML Page Header

	Specifying the Page Encoding in Java Servlets and Java Server Pages
	Specifying the Page Encoding in Oracle PL/SQL Server Pages
	Specifying the Page Encoding in PL/SQL for Monolingual Environments

	Specifying the Page Encoding in Perl
	Specifying the Page Encoding in Oracle Application Server Mobile Services Applications
	Specifying the Page Encoding in Oracle Web Cache Enabled Applications
	Specifying the Page Encoding in Oracle Application Server Reports Services Applications
	Specifying the Page Encoding in JSP Reports for the Web
	Specifying the Page Encoding in HTML for Oracle Application Server Reports Services
	Specifying the Page Encoding in XML for Oracle Reports

	Encoding URLs
	Encoding URLs in Java
	Encoding URLs in PL/SQL
	Encoding URLs in Perl

	Handling HTML Form Input
	Handling HTML Form Input in Java
	Handling HTML Form Input in PL/SQL
	Handling HTML Form Input in PL/SQL for Monolingual Applications
	Handling HTML Form Input in PL/SQL for Multilingual Applications

	Handling HTML Form Input in Perl
	Handling Form Input in Oracle Application Server Mobile Services Applications

	Decoding HTTP Headers
	Decoding HTTP Headers from Oracle Single Sign-On
	Decoding String-type Mobile Context Information Headers in Oracle Application Server Wireless Services

	Organizing the Content of HTML Pages for Translation
	Translation Guidelines for HTML Page Content
	Organizing Static Files for Translation
	Organizing Translatable Static Strings for Java Servlets and Java Server Pages
	Organizing Translatable Static Strings in C/C++ and Perl
	Organizing Translatable Static Strings in Message Tables
	Organizing Translatable Dynamic Content in Application Schema

	5 Using a Centralized Database
	Using a Centralized Database and Accessing the Database Server
	Using JDBC to Access the Database
	Using PL/SQL to Access the Database
	Using Perl to Access the Database
	Using C/C++ to Access the Database
	Using the OCI API to Access the Database
	Using the Unicode API Provided with OCI to Access the Database
	Using Unicode Bind and Define in Pro*C/C++ to Access the Database

	6 Configuring Oracle Application Server for Global Deployment
	Installing Oracle Application Server for Global Deployment
	Configuring Oracle HTTP Server and OC4J for Global Deployment
	About Manually Editing HTTP Server and OC4J Configuration Files
	Configuring the NLS_LANG Parameter
	Preconfigured NLS_LANG Values

	Configuring Transfer Mode for mod_plsql Runtime
	Configuring the Runtime Default Locale
	mod_jserv Runtime for Java
	OC4J Java Runtime
	mod_plsql Runtime for PL/SQL and Oracle PL/SQL Server Pages
	mod_perl Runtime for Perl Scripts
	C/C++ Runtime

	Configuring Oracle Application Server Portal for Global Deployment
	Configuring Oracle Application Server Wireless for Global Deployment
	Configuring Encoding for Outgoing E-mail Messages

	Configuring Oracle Application Server Forms Services for Global Deployment
	Configuring OracleAS Reports Services for Global Deployment
	Configuring Oracle Business Intelligence Discoverer for Global Deployment
	Configuring a Centralized Unicode-enabled Database to Support Global Deployment

	7 A Multilingual Demonstration for Oracle Application Server
	Description of the World-of-Books Demonstration
	Architecture and Design of the World-of-Books Demonstration
	World-of-Books Architecture
	World-of-Books Design
	World-of-Books Schema Design

	Installing the World-of-Books Demonstration
	Building, Deploying, and Running the World-of-Books Demonstration
	How to Build the World-of-Books Demonstration
	How to Deploy the World-of-Books Demonstration
	How to Run the World-of-Books Demonstration

	Locale Awareness of the World-of-Books Demonstration
	How World-of-Books Determines the User’s Locale
	How World-of-Books Uses Locale Information in LocalizationContext Methods
	How World-of-Books Sorts Query Results
	How World-of-Books Searches the Contents of Books

	Encoding HTML Pages for the World-of-Books Demonstration
	Handling HTML Form Input for the World-of-Books Demonstration
	Formatting HTML Pages in the World-of-Books Demonstration
	Encoding URLs in the World-of-Books Demonstration
	Accessing the Database in the World-of-Books Demonstration
	Organizing the Content of HTML Pages in the World-of-Books Demonstration
	Static Files for World-of-Books Online Help
	Using Resource Bundles for the Content of World-of-Books HTML Pages

	A Oracle Application Server Translated Languages
	B GDK Error Messages
	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

