
Oracle® Containers for J2EE
Orion CMP Developer’s Guide

10g Release 3 (10.1.3.1)

B28220-01

September 2006

Oracle Containers for J2EE Orion CMP Developer’s Guide, 10g Release 3 (10.1.3.1)

B28220-01

Copyright © 2002, 2006, Oracle. All rights reserved.

Primary Author: Liza Rekadze

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility ... viii
Related Documents ... viii
Conventions ... ix

1 Understanding Entity Beans With Container-Managed Persistence

What is an Entity Bean?... 1-1
Entity Beans With Container-Managed Persistence ... 1-1

Container-Managed Persistent Fields.. 1-2
Container-Managed Relationships... 1-3
Callback Methods ... 1-4

Querying for an Entity Bean... 1-6
Understanding EJB QL... 1-6
Understanding Query Syntax ... 1-7
Understanding Finder Methods ... 1-8
Understanding Select Methods... 1-8

Avoiding Database Resource Contention... 1-8
Entity Bean Database Isolation Levels and Resource Contention 1-9
Entity Bean Concurrency Modes and Resource Contention .. 1-9
Combining Entity Bean Database Isolation Level and Concurrency Mode....................... 1-9
Entity Bean Concurrency Modes and Clustering.. 1-10

When to Use an Entity Bean With Container-Managed Persistence? ... 1-10

2 Understanding Orion CMP Application Development

Developing, Packaging and Deploying EJB Applications... 2-1
Understanding the EJB Application Directory Structure... 2-2
Using EJB Development Tools ... 2-3

Using JDeveloper .. 2-4
Packaging and Deploying EJB CMP Applications.. 2-5

Understanding EJB Deployment Descriptor Files ... 2-7
Deploying the CMP EJB Application to OC4J .. 2-8

3 Understanding Orion CMP Support in OC4J

EJB 2.0 Support ... 3-1

iv

Persistence Manager .. 3-2
Orion Persistence Manager... 3-2
TopLink Persistence Manager .. 3-2
Migrating to the TopLink Persistence Manager .. 3-3

Key Features of the TopLink Migration Tool ... 3-4
Using the TopLink Migration Tool From the Command Line... 3-7
Post-Migration Changes .. 3-9
Troubleshooting Your Migration... 3-10

4 Implementing an EJB 2.0 Entity Bean With Container-Managed Persistence

Implementing an EJB 2.0 Entity Bean With Container-Managed Persistence 4-1
Implementing the Entity Bean Home Interface ... 4-2

Declaring the Home Interface in the Deployment Descriptor ... 4-3
Implementing the Entity Bean Component Interface ... 4-3

Declaring the Component Interface in the Deployment Descriptor 4-4
Implementing the Entity Bean Class ... 4-4

Defining the Entity Bean Class in the Deployment Descriptor.. 4-6

5 Configuring an EJB 2.0 Entity Bean With Container-Managed Persistence

Configuring Primary Key ... 5-1
Configuring Primary Key Field ... 5-2
Configuring Primary Key Class ... 5-3

Configuring Foreign Key in a Composite Primary Key.. 5-4
Configuring Automatic Primary Key Generation... 5-9

Configuring Container-Managed Persistent Fields.. 5-10
Configuring Default Mapping of Persistent Fields to the Database.. 5-11
Configuring Explicit Mapping of Persistent Fields to the Database 5-12

Configuring Container-Managed Relationship Fields .. 5-14
Configuring Default Mapping of Relationship Fields to the Database................................... 5-14

Conversion of CMP Types to Database Types .. 5-16
Configuring Explicit Mapping of Relationship Fields to the Database 5-18

Configuring orion-ejb-jar.xml to Map Bean Relationships to Database Tables 5-19
Explicit One-to-One Relationship Mapping .. 5-20
Explicit One-to-Many Relationship Mapping ... 5-22

Configuring Database Isolation Levels .. 5-24
Configuring Concurrency Modes .. 5-25
Configuring Exclusive Write Access to the Database... 5-26
Configuring Callback Methods for EJB 2.0 Entity Beans With Container-Managed Persistence....
5-26

6 Implementing Query Methods for an Entity Bean With Container-Managed
Persistence

Implementing EJB QL Finder Methods ... 6-1
Specifying Finder Methods Using EJB QL Syntax .. 6-2

Defining Finder Methods in the Home Interface ... 6-2
Using the Deployment Descriptor to Provide the Finder Methods Definition 6-2

v

Specifying Finder Methods Using OC4J-specific Syntax ... 6-3
Adding Finder Methods to the Home Interface ... 6-3
Using the OC4J-specific Deployment Descriptor to Define Finder Methods 6-3

Implementing EJB QL Select Methods .. 6-6
Defining the Return Type for the Select Method... 6-8

OC4J-specific Deployment Descriptor for EJB.. A-2
Enterprise Beans Section .. A-2

Entity Bean Section .. A-3
AC4J Active EJB Section.. A-7
Method Definition.. A-8

Assembly Descriptor Section... A-9
Element Description ... A-9

Index

vi

vii

Preface

This guide gets you started building EJB 2.0 entity beans with container-managed
persistence for Oracle Containers for J2EE (OC4J), Release 2 (10.1.2) or earlier, using
the Orion persistence manager. It includes code examples to help you develop
your application.

The Orion persistence manager is deprecated. Oracle recommends that you use OC4J
and the TopLink persistence manager for new development (see Oracle Containers for
J2EE Enterprise JavaBeans Developer’s Guide). Using the migration tool (see "Migrating to
the TopLink Persistence Manager" on page 3-3), you can easily migrate an existing
OC4J application that uses EJB 2.0 entity beans with the Orion persistence manager to
use EJB 2.0 entity beans with the TopLink persistence manager.

If you have questions about OC4J, you can consult the OC4J user’s forum at
http://forums.oracle.com/forums/category.jspa?categoryID=13.

If you have questions or feedback about this documentation, you can consult the
documentation feedback forum at
http://forums.oracle.com/forums/forum.jspa?forumID=165.

Audience
Anyone developing EJB 2.0 entity beans with container-managed persistence for the
Release 2 (10.1.2) or earlier of OC4J using the Orion persistence manager will benefit
from reading this guide. Written especially for programmers, it will also be of value to
architects, systems analysts, project managers, and others interested in EJB
applications deployed to OC4J.

This guide assumes that you already have a working knowledge of J2EE and the EJB
2.0 specification.

Note: In this guide, the term entity bean(s) with container-managed
persistence refers to the Orion entity bean(s) with container-managed
persistence, assuming that all of the following conditions apply:

■ You use entity beans with container-managed persistence with the
Release 2 (10.1.2) or earlier of OC4J.

■ Your CMP object-relational mapping is defined in
orion-ejb-jar.xml deployment descriptor.

viii

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see the following documents in the Oracle Containers for J2EE
10g Release 3 (10.1.3.1) documentation set:

■ Oracle Application Server Release Notes

■ Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ Oracle Containers for J2EE Configuration and Administration Guide

■ Oracle Containers for J2EE Resource Adapter Administrator’s Guide

■ Oracle Containers for J2EE Developer’s Guide

■ Oracle Containers for J2EE Services Guide

■ Oracle Containers for J2EE Security Guide

■ Oracle Containers for J2EE Deployment Guide

■ Oracle Containers for J2EE Job Scheduler Developer’s Guide

■ Oracle TopLink Developer’s Guide

■ EJB specifications: http://java.sun.com/products/ejb/docs.html.

■ EJB API documentation: http://www.javasoft.com.

■ EJB tutorials: http://java.sun.com/developer/onlineTraining/.

ix

■ EJB design patterns: http://java.sun.com/blueprints/patterns/.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

x

Understanding Entity Beans With Container-Managed Persistence 1-1

1
Understanding Entity Beans With

Container-Managed Persistence

This chapter introduces the concept of an entity bean in general, and entity bean with
container-managed persistence in particular.

This chapter includes information on the following topics:

■ What is an Entity Bean?

■ When to Use an Entity Bean With Container-Managed Persistence?

What is an Entity Bean?
Within a J2EE SDK environment, an entity bean represents a business object in a
relational database. Usually, an entity bean has an underlying table in a relational
database, and every instance of the bean corresponds to a row in that database.

Entity beans possess the following characteristics:

■ They are persistent

■ They allow shared access

■ They have primary keys

■ They may participate in relationships with other entity beans

For more information about entity beans, see the following:

■ The J2EE Tutorial at http://java.sun.com/j2ee/tutorial/1_
3-fcs/doc/EJBConcepts4.html#62950

■ EJB 2.0 specification at http://java.sun.com/products/ejb/docs.html

This section elaborates on the following topics specific to entity beans with
container-managed persistence:

■ Entity Beans With Container-Managed Persistence

■ Querying for an Entity Bean

■ Avoiding Database Resource Contention

Entity Beans With Container-Managed Persistence
Terminologically, container-managed persistence is the process of the EJB container
handling the database access required by an entity bean. That is, the bean’s code does
not contain SQL calls. This makes the bean’s code oblivious to the underlying
database. You do not have to implement some of the callback methods (see "Callback

What is an Entity Bean?

1-2 Oracle Containers for J2EE Orion CMP Developer’s Guide

Methods" on page 1-4) to manage persistence for your bean's data, because the
container stores and reloads your persistent data to and from the database. In addition,
you do not have to provide management for the primary key as the container provides
this key for your bean (see "Configuring Primary Key" on page 5-1).

In Orion entity beans with container-managed persistence, the Orion persistence
manager is used by the EJB container to persist data to the database from the entity
beans. See "Preface" for details on the terminology.

For more information about persistence managers, see the following:

■ "Persistence Manager" on page 3-2

■ "Orion Persistence Manager" on page 3-2

An entity bean’s deployment descriptor contains an abstract schema that defines the
bean’s persistent fields (see "Container-Managed Persistent Fields" on page 1-2) and
relationships (see "Container-Managed Relationships" on page 1-3).

This section describes the following:

■ Container-Managed Persistent Fields

■ Container-Managed Relationships

■ Callback Methods

Container-Managed Persistent Fields
Persistent fields of an entity bean define the state of the bean. These fields are stored in
the underlying database. The container performs an automatic synchronization of the
bean’s state with the database at run time. At deployment time, the container usually
maps the entity bean to a database table with the persistent fields mapped to the
table’s columns.

Persistent fields are virtual in container-managed persistence. This means that you
declare them in the abstract schema, but do not make them instance variables in your
entity bean class. However, you provide getters and setters for the persistent fields in
your code, similar to the following:

public abstract String getEmployeeName() throws RemoteException

public abstract String getAddress() throws RemoteException

public abstract void setAddress(String newAddress) throws RemoteException

The container provides the implementation of these methods.

In the preceding example, the corresponding persistence fields are employeeName
and address.

The EJB deployment descriptor in a form of an ejb-jar.xml file declares these fields
as persistent. Each field name must be defined in a <cmp-field><field-name>
element of the deployment descriptor, similar to the following:

Note: Do not confuse the terms abstract schema and physical
schema: in a relational database, a physical schema consists of tables
and columns, whereas an abstract schema is a provider of the
information required by the container in order to produce the data
access calls.

What is an Entity Bean?

Understanding Entity Beans With Container-Managed Persistence 1-3

<entity>
...
<cmp-field><field-name>employeeName</cmp-field></field-name>
<cmp-field><field-name>address</cmp-field></field-name>
...

</entity>

For more information on how to configure persistence fields, see "Configuring
Container-Managed Persistent Fields" on page 5-10.

For more information on how to implement entity beans, see "Implementing an EJB 2.0
Entity Bean With Container-Managed Persistence" on page 4-1.

Container-Managed Relationships
An entity bean may be related to other entity beans. This behavior of entity beans is
similar to the behavior of tables in a relational database.

The EJB container is responsible for relationships in entity beans with
container-managed persistence.

OC4J supports the following types of container-managed relationships (CMR):

■ One-to-one: an instance of an entity bean is related to an instance of another entity
bean. For example, in a hypothetical model of a racing track with each car
containing one driver, CarEJB and DriverEJB are in a one-to-one relationship.

■ One-to-many: an instance of an entity bean may be related to more than one
instance of another entity bean. Reusing the racing track example from the
previous item, the racing track accommodates multiple competing cars, making
RacingTrackEJB have a one-to-many relationships with CarEJB.

■ Many-to-one: multiple instances of an entity bean may be related to one instance
of another entity bean. For example, reversing the one-to-many racing track
scenario, many cars compete in a single racing track, therefore CarEJB has a
many-to-one relationship with RacingTrackEJB.

■ Many-to-many: instances of an entity bean may be related to multiple instances of
each other. For example, on a racing track, each car can be served by multiple
mechanics, and every mechanic serves more than one car. This makes CarEJB and
MechanicEJB have a many-to-many relationship.

An entity bean represents a "one" side of a relationship by the local bean object,
whereas the "many" side is represented using a Java Collection.

It is the responsibility of the EJB container to maintain the referential integrity of these
entity bean relationships.

For more information, see the following:

■ Configuring Default Mapping of Relationship Fields to the Database

■ Configuring Explicit Mapping of Relationship Fields to the Database

Direction in CMR

There is a notion of direction in CMR: a relationship may be either bidirectional or
unidirectional. In a bidirectional relationship, each entity bean has a relationship field
that refers to the other bean. Through the relationship field (see "Relationship Fields"
on page 1-4), an entity bean's code can access its related object. In a unidirectional
relationship, only one entity bean has a relationship field that refers to the other.

What is an Entity Bean?

1-4 Oracle Containers for J2EE Orion CMP Developer’s Guide

EJB QL queries (see "Understanding EJB QL" on page 1-6) have an ability to navigate
across relationships. The direction of a relationship determines whether or not a query
can navigate from one bean to another.

Relationship Fields

A relationship field identifies a related bean. A relationship field behaves similar to a
foreign key in a database table.

Like persistent fields (see "Container-Managed Persistent Fields" on page 1-2),
relationship fields are virtual and are defined in the enterprise bean class with access
methods. But to the contrary to persistent fields, relationship field do not represent the
bean's state.

For more information about relationship fields, see "Configuring Container-Managed
Relationship Fields" on page 5-14.

Callback Methods
There are a number of so-called callback methods that you must implement to enable
the life cycle of your entity bean with container-managed persistence. Some of these
methods are defined in the javax.ejb.EntityBean interface, whereas the
implementation of others (ejbCreate and ejbPostCreate) is mandated by the EJB
2.0 specification.

The container invokes the callback methods at the designated times; you may or may
not add logic to these methods.

The following table provides each method’s details, as well as lists the implementation
requirements for the callback methods of the entity bean class:

Callback Method Details and Implementation Requirements

setEntityContext This method associates the bean instance with context
information. The container calls this method after the bean
creation. The enterprise bean can store the reference to the context
object in an instance variable for use in transaction management.
Beans that manage their own transactions can use the session
context to get the transaction context.

You can also allocate any resources that will exist for the lifetime
of the bean within this method. You should release these resources
in the unsetEntityContext method.

unsetEntityContext This method unsets the associated entity context and releases any
resources allocated in the setEntityContext method.

ejbCreate An entity bean can contain one or more ejbCreate methods.

Typically, this method performs the following:

■ Inserts the entity state into the database.

■ Initializes the instance variables.

■ Returns the primary key.

When writing this method, you must insure the following:

■ The access control modifier is public.

■ The return type is the primary key.

■ The arguments are legal types for the Java RMI API.

■ The method modifier is neither final or static.

What is an Entity Bean?

Understanding Entity Beans With Container-Managed Persistence 1-5

ejbPostCreate You must write an ejbPostCreate method for each ejbCreate
method in your entity bean class. The container invokes
ejbPostCreate method immediately after it calls ejbCreate
method. In most cases, leave your ejbPostCreate method
empty.

When writing this method, you must insure the following:

■ The number and types of arguments match a corresponding
ejbCreate method.

■ The access control modifier is public.

■ The method modifier is neither final or static.

■ The return type is void.

ejbActivate This method gives the entity bean instance a chance to acquire
additional resources that it needs while it is in the ready state.

You must at least provide an empty implementation of this
callback method.

ejbPassivate This method gives the entity bean instance the chance to release
any resources that should not be held while the instance is in the
pool (typically, these resources had been allocated during the
execution of the ejbActivate method).

You must at least provide an empty implementation of this
callback method. You also may choose to add logic for performing
any cleanup functionality.

ejbRemove This method deletes the entity state from the database. The
container calls this method after a client has deleted an entity bean
(by invoking the remove method).

You must at least provide an empty implementation of this
callback method. You also may choose to add logic for performing
any cleanup functionality.

Note that an entity bean may also be removed directly by a
database deletion. For example, if a SQL script deletes a row that
contains an entity bean state, then that entity bean is removed.

ejbLoad This method refreshes the instance variables from the database.

If the EJB container needs to synchronize the instance variables of
an entity bean with the corresponding values stored in a database,
it invokes the ejbLoad and ejbStore methods.

Note that the client may not call ejbLoad and ejbStore
methods.

No functionality is required for restoring persistent data within
this method. The persistence manager restores all persistent data
for you. However, you must provide at least an empty
implementation.

ejbStore This method writes the variables to the database.

If the EJB container needs to synchronize the instance variables of
an entity bean with the corresponding values stored in a database,
it invokes the ejbLoad and ejbStore methods.

Note that the client may not call ejbStore method.

No functionality is required for saving persistent data within this
method. The persistent manager saves all persistent data to the
database for you. However, you must provide at least an empty
implementation.

Callback Method Details and Implementation Requirements

What is an Entity Bean?

1-6 Oracle Containers for J2EE Orion CMP Developer’s Guide

Querying for an Entity Bean
You query for an instance of an entity bean using entity bean finder (see
"Understanding Finder Methods" on page 1-8) or select (see "Understanding Select
Methods" on page 1-8) methods.

You express your selection criteria using an appropriate query syntax (see
"Understanding Query Syntax" on page 1-7).

This section describes the following:

■ Understanding EJB QL

■ Understanding Query Syntax

■ Understanding Finder Methods

■ Understanding Select Methods

Understanding EJB QL
EJB Query Language (EJB QL) is a specification language used to define semantics of
finder and select methods in a portable and optimizable format. The Orion persistence
manager can perform an automatic compilation of EJB QL. Your responsibility is to
define EJB QL queries in the deployment descriptor of the entity bean.

Using EJB QL offers the following advantages:

■ You do not need to know the database structure (such as tables and fields).

■ You can construct queries using the attributes of the entity beans instead of using
database tables and fields.

■ You can use relationships in a query to provide navigation from attribute to
attribute.

■ EJB QL queries are portable because they are database-independent.

■ You can specify the reference class in the SELECT clause.

The disadvantage of EJB QL queries is that it is difficult to use when you construct
complex queries.

EJB QL has the following restrictions:

■ Comments are not allowed.

ejbFindByPrimaryKey As its name implies, this method accepts as an argument the
primary key, which it uses to locate an entity bean.

When writing this method, you must insure the following:

■ The access control modifier is public.

■ The method modifier is neither final or static.

■ The return type is a primary key or a collection of primary
keys.

No functionality is required for returning the primary key to the
container. The container manages the primary key after it is
initialized by the ejbCreate method. You still must provide an
empty implementation for this method.

Callback Method Details and Implementation Requirements

What is an Entity Bean?

Understanding Entity Beans With Container-Managed Persistence 1-7

■ Date and time values are in milliseconds and use a Java long. A date or time
literal should be an integer literal. To generate a millisecond value, you may use
the java.util.Calendar class.

■ In EJB 2.0 container-managed persistence does not support inheritance. For this
reason, two entity beans of different types cannot be compared.

Understanding Query Syntax
You can express an entity bean query using EJB QL (see "Understanding EJB QL" on
page 1-6) or SQL native to your underlying relational database.

EJB QL is preferred for it is portable and optimizable.

An EJB QL query has three clauses: SELECT, FROM, and WHERE. The SELECT and FROM
clauses are required, but the WHERE clause is optional. The following is the high-level
syntax of an EJB QL query:

EJB QL ::= select_clause from_clause [where_clause]

The SELECT clause defines the types of the objects or values returned by the query. A
return type is either a local interface, a remote interface, or a persistent field.

The FROM clause defines the scope of the query by declaring one or more identification
variables, which may be referenced in the SELECT and WHERE clauses. An
identification variable represents one of the following elements:

■ The abstract schema name of an entity bean.

■ A member of a collection that is the multiple side of a one-to-many relationship.

The WHERE clause is a conditional expression that restricts the objects or values
retrieved by the query. Although optional, most queries have a WHERE clause.

For more information about EJB QL syntax, consult EJB 2.0 specification at
http://java.sun.com/products/ejb/docs.html.

The EJB QL query syntax is demonstrated by the following example: suppose, you
declare the findByZipCode method in your entity bean’s home interface to obtain all
the Employee beans with a certain zip code:

public Collection findByZipCode(String zipCode) throws RemoteException,
CreateException

That would be expressed by using the following EJB QL statement in the deployment
descriptor:

FROM contactInfo WHERE contactInfo.zip = ?1

This EJB QL statement says "select all the Employee beans that have a zip code equal
to the zipCode argument." The SELECT clause, which indicates what to select, is not
needed in the EJB QL statements for find methods. That is because the finder methods
will always select the remote references of its own bean type.

Native SQL is appropriate for taking advantage of advanced query features of your
underlying relational database that EJB QL does not support.

You can use EJB QL in finder (see "Understanding Finder Methods" on page 1-8) and
select (see "Understanding Select Methods" on page 1-8) methods. To use native SQL,
you must use straight JDBC calls.

What is an Entity Bean?

1-8 Oracle Containers for J2EE Orion CMP Developer’s Guide

Understanding Finder Methods
An EJB finder is a query, as defined by the EJB 2.0 specification. An EJB finder retrieves
(and returns) entity bean references, whereas a query returns Java objects.

Finders contain finder methods (ejbFind) that define search criteria.

The findByPrimaryKey finder method is always defined in both home interfaces
(local and remote) to retrieve the entity reference for this bean using a primary key.
You can define other finder methods in either or both the home interfaces to retrieve
one or several entity bean references.

For information on how to define and implement finder methods, see "Implementing
EJB QL Finder Methods" on page 6-1.

Understanding Select Methods
Select methods (ejbSelect) are used primarily to return values of
container-managed persistent (see "Container-Managed Persistent Fields" on page 1-2)
or relationship (see "Relationship Fields" on page 1-4) fields. All values are returned in
their own object type; any primitive types are wrapped in objects that have similar
functions (for example, a primitive int type is wrapped in an Integer object). An
ejbSelect method is a query method intended for internal use within an entity bean
instance. Specified in the abstract bean itself, the ejbSelect method is not directly
exposed to the client in the home or component interface. Defined as abstract, each
bean can include zero or more such methods.

Select methods have the following characteristics:

■ The method name must have ejbSelect as its prefix.

■ It must be declared as public.

■ It must be declared as abstract.

■ The throws clause must specify the javax.ejb.FinderException, although it
may also specify application-specific exceptions as well.

■ Under EJB 2.0, the result-type-mapping tag in the ejb-jar.xml file
determines the return type for ejbSelect methods. Set the flag to Remote to
return EJBObject; set it to Local to return EJBLocalObject.

For more information about select methods, see "Implementing EJB QL Select
Methods" on page 6-6.

Avoiding Database Resource Contention
Entity beans concurrency and database isolation levels let you avoid the resource
contention and prevent the users from overwriting each others changes to database
while allowing concurrent execution.

This section discusses the following topics:

■ Entity Bean Database Isolation Levels and Resource Contention

■ Entity Bean Concurrency Modes and Resource Contention

■ Combining Entity Bean Database Isolation Level and Concurrency Mode

■ Entity Bean Concurrency Modes and Clustering

Note: Finder methods are exposed to the client.

What is an Entity Bean?

Understanding Entity Beans With Container-Managed Persistence 1-9

Entity Bean Database Isolation Levels and Resource Contention
The java.sql.Connection object represents a connection to a specific database.
The Connection provides four database isolation levels to define protection against
resource contention: when two or more users try to update the same resource, a lost
update can occur. That is, one user can overwrite the other user's data without
realizing it.

Oracle supports the following isolation levels:

■ transaction_read_committed: Dirty reads are prevented; nonrepeatable
reads and phantom reads can occur. This level only prohibits a transaction from
reading a row with uncommitted changes in it.

■ transaction_serializable: Dirty reads, nonrepeatable reads and phantom
reads are prevented. This level includes the prohibitions in transaction_
repeatable_read and further prohibits the occurrence of the following
hypothetical situation: one transaction reads all rows that satisfy a WHERE
condition; a second transaction inserts a row that satisfies that WHERE condition;
the first transaction rereads for the same condition, retrieving the additional
"phantom" row in the second read.

For more information about database isolation levels, see "Configuring Database
Isolation Levels" on page 5-24.

Entity Bean Concurrency Modes and Resource Contention
OC4J also provides concurrency modes for handling resource contention and parallel
execution within entity beans with container-managed persistence. The concurrency
modes determine when to block to manage resource contention, or when to execute in
parallel.

The following is the list of the available concurrency modes:

■ pessimistic: Manages resource contention and does not permit parallel execution.
Only one user can execute the entity bean at a given time.

■ optimistic: Does not monitor resource contention. Thus, the database isolation
levels manage the concurrency. Multiple users can execute the entity bean in
parallel.

■ read-only: The container does not permit any updates to the bean's state. Multiple
users can execute the entity bean in parallel.

For more information about concurrency modes, see "Configuring Concurrency
Modes" on page 5-25.

You can specify both entity bean concurrency modes and database isolation levels, if
the combination affects the outcome of your resource contention. See "Combining
Entity Bean Database Isolation Level and Concurrency Mode" on page 1-9 for more
information.

Combining Entity Bean Database Isolation Level and Concurrency Mode
The setting of the database isolation level has no bearing on the pessimistic and
read-only concurrency modes. The isolation levels only matter if an external source
is modifying the database.

If you choose optimistic concurrency mode with committed database isolation
level, you may lose an update. If you choose optimistic concurrency mode with
serializable isolation level, you will never lose an update resulting in the constant

When to Use an Entity Bean With Container-Managed Persistence?

1-10 Oracle Containers for J2EE Orion CMP Developer’s Guide

consistency of your data. However, you can receive an ORA-8177 exception as a
resource contention error.

Differences Between Pessimistic, Optimistic and Serializable Settings

An entity bean with the pessimistic concurrency mode does not permit the
execution by multiple clients (either on the same or on different instances of the same
primary key). Only one client at a time can execute the instance.

An entity bean with the optimistic concurrency mode allows multiple instances of
the bean to execute in parallel. This might result in lost updates (and conflicts),
because two different transactions may update the same row simultaneously.

Setting the transaction isolation level to serializable enables the detection of
conflicts when they occur. Currently, if an update from one of the transactions raises a
SQLException, that transaction is rolled back.

Optionally, you may set the tx-retries attribute of the <entity-deployment>
element to a value greater than 1, which would result in the retry of the transaction.
See Table A–1, " Attributes of the <entity-deployment> Element" on page A-4 for more
information about the <entity-deployment> element and its attributes.

Entity Bean Concurrency Modes and Clustering
All concurrency modes behave in a similar manner whether they are used within an
independent or a clustered environment. This is because the concurrency modes are
locked at the database level. Thus, even if a pessimistic bean instance is clustered
across nodes, when one instance tries to execute the database locks out all other
instances.

For more information, see the following:

■ "Clustering Overview" in the Oracle Containers for J2EE Configuration and
Administration Guide

■ "Application Clustering in OC4J" in the Oracle Containers for J2EE Configuration
and Administration Guide

■ "Oracle Application Server Cluster (OC4J) in Active-Active Topologies" in the
Oracle Application Server High Availability Guide

When to Use an Entity Bean With Container-Managed Persistence?
You should consider using an entity bean with container-managed persistence under
the following conditions:

■ The bean represents a business entity, not a procedure.

■ The bean's state is persistent: if the bean instance terminates or if the J2EE server
shuts down, the bean's state still exists in a database.

■ The EJB container that you use delegates the persisting services to the Orion
persistent manager.

Note: Oracle recommends migrating your application to the TopLink
persistence manager using the Oracle migration tool. See "Migrating
to the TopLink Persistence Manager" on page 3-3 for more
information.

Understanding Orion CMP Application Development 2-1

2
Understanding Orion CMP Application

Development

This chapter describes how you should approach the Orion CMP application
development.

This chapter contains information on the following topics:

■ Developing, Packaging and Deploying EJB Applications

Developing, Packaging and Deploying EJB Applications
Typically, the EJB application development includes the following steps:

■ Setting up the application directory structure. See "Understanding the EJB
Application Directory Structure" on page 2-2 for more information.

■ Implementing the component interface. See "Implementing the Entity Bean
Component Interface" on page 4-3 for more information.

■ Implementing the bean class. See "Implementing the Entity Bean Class" on
page 4-4 for more information.

■ Implementing the home interface. See "Implementing the Entity Bean Home
Interface" on page 4-2 for more information.

■ Writing the EJB deployment descriptor. For more information, see the following:

– "Declaring the Component Interface in the Deployment Descriptor" on
page 4-4.

– "Defining the Entity Bean Class in the Deployment Descriptor" on page 4-6.

– "Declaring the Home Interface in the Deployment Descriptor" on page 4-3.

– Chapter 5, "Configuring an EJB 2.0 Entity Bean With Container-Managed
Persistence" on page 5-1.

■ Creating the front end.

■ Writing the front-end-specific deployment descriptor (for example, Web).

■ Writing the J2EE application definition (deployment descriptor) that combines the
EJB module and the front end module into a J2EE application. This deployment
descriptor defines all the modules of the application and the way they should be
deployed. See "Packaging and Deploying EJB CMP Applications" on page 2-5 for
more information.

■ Compiling.

Developing, Packaging and Deploying EJB Applications

2-2 Oracle Containers for J2EE Orion CMP Developer’s Guide

■ Creating the following archive files:

– JAR file–contains the EJB part of the application.

– WAR file–Web part of the application.

– EAR file– contains a complete deployable J2EE application.

For more information, see the following:

– "Understanding the EJB Application Directory Structure" on page 2-2

– "Packaging and Deploying EJB CMP Applications" on page 2-5

As a part of your application’s deployment, you would have to install your
application, bind the front end and start OC4J.

Understanding the EJB Application Directory Structure
Even though you can develop your application in any way you like, you are advised
to use consistent naming in order to easily locate your application. One approach
would be to implement your EJB application under a single parent directory structure,
segregating each module of the application into its own subdirectory.

The directory structure contains all the application files, including manually coded, as
well as generated files.

Example 2–1 shows the addressbook directory. You should create the directory
somewhere in your home directory (for example, in
/home/jane.doe/projects/addressbook/).

Example 2–1 Application Directory Structure

addressbook
addressbook/etc
addressbook/src
addressbook/src/java
addressbook/src/java/addressbook
addressbook/src/java/addressbook/ejb
addressbook/src/jsp
addressbook/src/web

All .java source files are placed under addressbook/src/java. The client files
(JSP, in this case) are placed under src/jsp, and any .html, .gif, .jpg and .css
files are put in addressbook/src/web directory.

The directory addressbook/etc contains all the necessary .xml configuration files.

Note: You can use an Ant build file to compile all the .java files
and create the .jar, .war and .ear files.

Developing, Packaging and Deploying EJB Applications

Understanding Orion CMP Application Development 2-3

The generated files are in the lib and build directories. Note that these directories
are not included in the directory structure shown in Example 2–1 as they are typically
created by the build script.

The archives, when created, are placed under addressbook/build/.

Using EJB Development Tools
Typically, the EJB development tools include the following:

■ The J2EE perspective: All of the EJB tools are accessible from the J2EE perspective.
This perspective provides a layout in which the most commonly used actions,
views, and wizards for J2EE and EJB development are easily accessible.

■ Tools for importing existing EJB JAR files.

■ Tools for creating enterprise beans and access beans: The EJB tools help you create
enterprise beans (either with or without inheritance), including entity beans with
container-managed persistence. The EJB deployment descriptor editor helps you
set deployment descriptor and assembly properties for your enterprise beans.

You can also accomplish complementary enterprise bean development activities,
such as writing and editing business logic, importing or exporting enterprise
beans, and maintaining both your enterprise bean source code and generated code
using the built-in Java development tools, along with the team and versioning
capabilities.

You can also create access beans and add other attributes such as relationships.
Access beans are Java bean wrappers for enterprise beans, which are typically
used by client programs.

■ Tools for building data persistence into enterprise beans: The EJB mapping tools
help you map entity enterprise beans to back-end data stores, such as relational
databases. There is support for top-down, bottom-up, and meet-in-the-middle
mapping development. You can also create schemas and maps from existing EJB
JAR files.

■ Tools for generating deployment code: The EJB tools generate the deployment
classes that allow your beans to run on an EJB server. You can launch wizards from
the selected EJB projects or modules. These wizards provide lists of the enterprise
beans that you can deploy (one or more at a time). These tools mask the
complexities normally associated with creating deployment classes, such as
generating RMI/IIOP stubs and EJB container-specific deployment code.

Note: To create the directory structure, you can use either shell (.sh)
(for UNIX and Linux systems) or batch (.bat) (for Windows and OS/2
systems) files similar to the following:

mkdir addressbook
mkdir addressbook\etc
mkdir addressbook\src
mkdir addressbook\src\java
mkdir addressbook\src\java\addressbook
mkdir addressbook\src\java\addressbook\ejb
mkdir addressbook\src\jsp
mkdir addressbook\src\web

Run your directory-making file in the directory where you plan to
create the directory.

Developing, Packaging and Deploying EJB Applications

2-4 Oracle Containers for J2EE Orion CMP Developer’s Guide

Support for entity beans with container-managed persistence is included in tools.
The tools also let you create relational database tables for entity beans with
container-managed persistence. After the deployment code is generated, you can
export your enterprise beans to a JAR or EAR file for installation on an EJB server.

■ Tools for validating your enterprise beans for specification compliance: The EJB
tools validate that your enterprise bean code is consistent and that it conforms to
the rules defined by the EJB specification.

The EJB tools also automatically validate that access beans are constructed
correctly and that they are consistent with their associated enterprise beans. Code
validation usually occurs whenever you create or edit access beans.

Using JDeveloper
JDeveloper 9.0.3's features cover all aspects of EJB 2.0 development from conception to
implementation.

JDeveloper is a versatile tool with many capabilities. With regards to EJB development,
JDeveloper enables you to do the following:

■ Develop EJB 2.0 entity beans with container-managed persistence using wizards.

■ Reverse-engineer database tables as EJB 2.0 entity beans with container-managed
persistence.

■ Reverse engineer foreign key relationships in the database as EJB 2.0 entity beans
with container-managed persistence.

■ Use the EJB Module Editor (see Figure 2–2) to edit all the EJB in the ejb-jar.xml
deployment descriptor.

■ Employ the EJB Verifier to validate ejb-jar.xml deployment descriptor against
DTD and to verify EJB classes for inconsistencies.

■ Develop EJB visually in a UML class diagram with synchronization between UML,
code and deployment descriptor (see Figure 2–1).

■ Test EJB locally in the IDE using the built-in OC4J.

■ Generate standard EJB deployment archives.

■ Deploy easily to OC4J.

■ Pass command-line options in deployment profiles.

■ Add and assemble application deployment descriptors (see "Packaging and
Deploying EJB CMP Applications" on page 2-5 and "Deploying the CMP EJB
Application to OC4J" on page 2-8 for more information).

■ Use the Deployment Descriptor Editor for orion-web.xml and
application-client.xml.

■ Import existing EAR files (see "Developing, Packaging and Deploying EJB
Applications" on page 2-1) as workspaces in JDeveloper using EAR Import Wizard
for OC4J.

Figure 2–1 shows a UML representation with CMR reverse-engineered from the
database using JDeveloper’s extensive EJB modeling capabilities.

Developing, Packaging and Deploying EJB Applications

Understanding Orion CMP Application Development 2-5

Figure 2–1 JDeveloper-generated UML Diagram with CMR

Figure 2–2 illustrates the EJB Module Editor that provides a common user interface for
editing all the EJB in the ejb-jar.xml deployment descriptor. The Relationships
panel in the editor lets you add, edit and delete the container-managed relationships
between entity beans in an intuitive way.

Figure 2–2 JDeveloper’s EJB Module Editor

Packaging and Deploying EJB CMP Applications
The following are the general steps for packaging and deploying an EJB application:

1. Create the deployment descriptor.

After implementing and compiling your classes, you must create the standard EJB
deployment descriptor for all entity beans with container-managed persistence in
the module. The XML deployment descriptor defined in the ejb-jar.xml file
(see "ejb-jar.xml File" on page 2-7) describes the EJB module of the application. It
describes the types of beans, their names and attributes. The structure for this file

Developing, Packaging and Deploying EJB Applications

2-6 Oracle Containers for J2EE Orion CMP Developer’s Guide

is mandated in the DTD file (you can access this file at
http://java.sun.com/dtd/ejb-jar_2_0.dtd).

Any OC4J services that you want to configure are also designated in the
deployment descriptor. See Oracle Containers for J2EE Services Guide for information
about the following container services:

– Data sources

– JTA

– JNDI

– JMS

– RMI and RMI/IIOP

– JCA

– Java Object Cache

– HTTPS

See Oracle Containers for J2EE Security Guide for information about the following
container services:.

– Security

– CSv2

See Oracle Application Server Web Services Developer’s Guide for information about
Web services.

After creation, place the deployment descriptors for the EJB application in the
META-INF directory that is located in the same directory as the EJB classes, as
Example 2–2 shows:

Example 2–2 META-INF Directory Containing the Application Deployment Descriptor

META-INF/
META-INF/application.xml

2. Archive the EJB application.

After you have finalized your implementation and created the deployment
descriptors, archive your EJB application into a JAR file. The JAR file should
include all EJB application files and the deployment descriptor.

For example, to archive your compiled EJB class files and XML files for the
Addressbook example (see Example 2–1) into a JAR file, perform the following in
the .../addressbook/ejb directory:

% jar cvf addressbook-ejb.jar

This archives all files contained in the ejb subdirectory within the JAR file:

META-INF/
META-INF/ejb-jar.xml
addressbook/
addressbook/ejb/AddressEntry.class
addressbook/ejb/AddressBook.class
addressbook/ejb/AddressEntryBean.class

3. Prepare the EJB application for assembly.

To prepare the application for deployment, do the following:

Developing, Packaging and Deploying EJB Applications

Understanding Orion CMP Application Development 2-7

a. Modify the application.xml file with the modules of the enterprise Java
application.

The application.xml file acts as the manifest file for the application and
contains a list of the modules that are included within your enterprise
application. Use the <module> element defined in the application.xml
file to designate what comprises your enterprise application, as Table 2–1
shows:

As Example 2–2 demonstrates, the application.xml file is located under a
META-INF directory under the parent directory for the application. The JAR,
WAR, and client JAR files should be contained within this directory, as
follows:

META-INF/
META-INF/application.xml
addressbook-ejb.jar
addressbook-web.war

Because of the proximity, the application.xml file refers to the JAR and
WAR files only by name and relative path–not by full directory path. If these
files were located in subdirectories under the parent directory, then these
subdirectories must be specified in addition to the file name.

b. Archive all elements of the application into an EAR file.

Create the EAR file that contains the JAR, WAR, and XML files for the
application. Note that the application.xml file serves as the EAR manifest
file.

To create the addressbook.ear file, execute the following in the
addressbook directory shown in Example 2–1:

% jar cvf addressbook.ear

This step archives the application.xml, the addressbook-ejb.jar, the
addressbook-web.war, and the addressbook-client.jar files into the
addressbook.ear file.

Understanding EJB Deployment Descriptor Files
The following are the EJB deployment descriptor files that you use in CMP EJB
applications deployed to OC4J:

ejb-jar.xml File The ejb-jar.xml file is an EJB deployment descriptor file, and, when
used, it describes the following:

■ mandatory structural information about all included enterprise beans

■ a descriptor for container-managed relationships, if any

■ an optional name of an ejb-client-jar.xml file for the ejb-jar.xml

Table 2–1 Module Elements in the application.xml File

Element Contents

<ejb> EJB JAR file name.

<web> WAR file name in the <web-uri> subelement, and its context in the
<context> subelement.

<java> Client JAR file name, if any.

Developing, Packaging and Deploying EJB Applications

2-8 Oracle Containers for J2EE Orion CMP Developer’s Guide

■ an optional application assembly descriptor

When it is required, the ejb-jar.xml file describes EJB information applicable to any
J2EE application server. This information may be augmented by application
server-specific EJB deployment descriptor files (see "orion-ejb-jar.xml File" on
page 2-8).

orion-ejb-jar.xml File The orion-ejb-jar.xml file is an EJB deployment descriptor file
that contains all OC4J-proprietary options. This file extends the configuration that you
specify in the ejb-jar.xml file (see "ejb-jar.xml File" on page 2-7).

For more information about orion-ejb-jar.xml deployment descriptor, see the
following:

■ Chapter 5, "Configuring an EJB 2.0 Entity Bean With Container-Managed
Persistence" on page 5-1

■ Appendix A, "XML Reference for orion-ejb-jar.xml Elements" on page A-1

Deploying the CMP EJB Application to OC4J
After archiving your application into an EAR file, deploy the application to OC4J. See
Oracle Application Server Containers for J2EE User’s Guide for information on how to
deploy your application.

Understanding Orion CMP Support in OC4J 3-1

3
Understanding Orion CMP Support in OC4J

This chapter describes the two varieties of persistence managers that OC4J can use,
and provides detailed instructions for migrating from one persistent manager (Orion)
to another (TopLink).

This chapter includes information on the following topics:

■ EJB 2.0 Support

■ Persistence Manager

EJB 2.0 Support
The OC4J EJB container provides complete support for EJB 2.0, which includes the full
support of the following:

■ session beans

■ entity beans

■ message-driven beans

■ BMP

■ CMP

■ object-relational mapping

OC4J provides CMP implementation for entity beans supporting object-relational
mapping. OC4J supports one-to-one, one-to-many, many-to-one and many-to-many
object-relational mappings (see "Container-Managed Relationships" on page 1-3),
including simple object-relational mapping for simple, primitive, and serializable
objects, as well as complex object-relational mapping for compound objects, entity
references, and collections.

You can use OC4J to persist EJB 2.0 entity beans using the Orion persistence manager
(see "Orion Persistence Manager" on page 3-2).

Note: The key difference between the Orion persistence manager
(see "Orion Persistence Manager" on page 3-2) and the TopLink
persistence manager (see "TopLink Persistence Manager" on page 3-2)
is that the former is limited to the support of EJB 2.0 entity beans,
whereas the latter supports EJB 2.1 entity beans and EJB 3.0 entities.

Persistence Manager

3-2 Oracle Containers for J2EE Orion CMP Developer’s Guide

Persistence Manager
An EJB container uses the services of a persistent manager to persist data from entity
beans to a database. The following is the list of responsibilities of the persistence
manager:

■ handle the process of persisting an entity bean with container-managed
persistence automatically at run time;

■ map an entity bean to the database based on a contract (abstract schema) between
the bean and the persistence manager;

■ implement and execute finder and select methods using EJB QL.

This section elaborates on the following topics:

■ Orion Persistence Manager

■ TopLink Persistence Manager

■ Migrating to the TopLink Persistence Manager

Orion Persistence Manager
The main difference between the Orion persistence manager and the TopLink
persistence manager (see "TopLink Persistence Manager" on page 3-2) is that the
former only supports EJB 2.0 entity beans, whereas the latter supports EJB 2.1 entity
beans, as well as EJB 3.0 entities.

The Orion persistence manager is deprecated and will not be supported in future
releases. Oracle recommends that you use OC4J and the TopLink persistence manager
for new development. Using the migration tool (see "Migrating to the TopLink
Persistence Manager" on page 3-3), you can easily migrate an existing OC4J
application that uses EJB 2.0 entity beans with the Orion persistence manager to use
EJB 2.0 entity beans with the TopLink persistence manager (see "TopLink Persistence
Manager" on page 3-2).

TopLink Persistence Manager
Oracle TopLink is an advanced, object-persistence and object-transformation
framework. TopLink provides development tools and run-time capabilities that reduce
development and maintenance efforts, as well as increase enterprise application
functionality.

TopLink lets you build high-performance applications that store persistent
object-oriented data in a relational database. It successfully transforms object-oriented
data into either relational data or XML elements. Using TopLink, you can integrate
persistence and object-transformation into your application, while staying focused on
your primary domain problem by taking advantage of an efficient, flexible, and
field-proven solution. The extensive suite of development tools that TopLink provides,
including Oracle TopLink Workbench, lets you quickly capture and define
object-to-data source and object-to-data representation mappings in a flexible, efficient
metadata format. The TopLink runtime lets your application exploit this mapping
metadata with a simple session facade that provides in-depth support for data access,
queries, transactions, and caching.

The following are some of the key features of TopLink:

■ Nonintrusive, flexible, metadata-based architecture

■ Comprehensive visual TopLink Workbench

Persistence Manager

Understanding Orion CMP Support in OC4J 3-3

■ Advanced mapping support and flexibility (relational, object-relational, EIS, and
XML)

■ Object caching support

■ Query flexibility

■ Just-in-time reading

■ Caching

■ Object-level transaction support and integration

■ Locking

■ Multiple performance tuning options

■ Architectural flexibility

For additional information about TopLink, see the TopLink page on Oracle Technology
Network at
http://www.oracle.com/technology/products/ias/toplink/index.html

The following are some of the advantages of using OC4J with the TopLink persistence
manager:

■ They permit concurrent access to database tables and enable the avoidance of the
database resource contention (see "Avoiding Database Resource Contention" on
page 1-8).

■ You can express selection criteria for an EJB 3.0 query or EJB 2.1 finder or select
method using the TopLink query and expressions framework.

■ You can take advantage of predefined and default finder and select methods.

■ The TopLink persistence manager takes the query syntax you specify
("Understanding Query Syntax" on page 1-7) and generates SQL native to your
underlying relational database.

Migrating to the TopLink Persistence Manager
Using the TopLink migration tool, you can easily migrate an existing OC4J application
that uses EJB 2.0 entity beans with the Orion persistence manager to use EJB 2.0 entity
beans with the TopLink persistence manager.

You can configure OC4J to use TopLink as the default persistence manager. In 10g
Release 3 (10.1.3.1), OC4J is shipped configured to use TopLink as its default
persistence manager.

TopLink provides automated support for migrating an existing J2EE application to use
TopLink as the persistence manager. In 10.1.3 release, Oracle provides a TopLink
migration tool that you can use to automate this migration for Release 2 (9.0.4) or later
OC4J installations. If you upgrade your OC4J to this new release, you must migrate

Note: Currently, TopLink persistence manager is the default
persistence manager for OC4J. It has support for EJB 2.1 and EJB 3.0
Persistence API.

Note: You can only use one persistence manager for all the CMP EJB
in a JAR file.

Persistence Manager

3-4 Oracle Containers for J2EE Orion CMP Developer’s Guide

persistence configuration from your original orion-ejb-jar.xml file to the
toplink-ejb-jar.xml file.

After using the TopLink migration tool, you may need to make some additional
changes as described in "Post-Migration Changes" on page 3-9.

If you encounter problems during migration, see "Troubleshooting Your Migration" on
page 3-10.

This section explains how to use the TopLink migration tool, including the following:

■ Key Features of the TopLink Migration Tool

■ Using the TopLink Migration Tool From the Command Line

■ Post-Migration Changes

■ Troubleshooting Your Migration

Key Features of the TopLink Migration Tool
Before using the TopLink migration tool, review this section to understand how the
TopLink migration tool works and to determine what OC4J persistence manager
metadata is, and is not, migrated.

Input and Output
The TopLink migration tool takes the following files as input:

■ ejb-jar.xml

■ orion-ejb-jar.xml

It migrates as much OC4J-specific persistence configuration as possible to a new
toplink-ejb-jar.xml file and creates the following new files in a target directory
you specify:

■ orion-ejb-jar.xml

■ toplink-ejb-jar.xml

■ TopLink Workbench project file TLCmpProject.mwp

The ejb-jar.xml and orion-ejb-jar.xml files may be in an EAR, JAR, or just
standalone XML files. If you migrate from standalone XML files (rather than an EAR
or JAR file), ensure that the domain classes are accessible and included in your
classpath.

The TopLink migration tool creates a new orion-ejb-jar.xml and
toplink-ejb-jar.xml file to the target directory you specify in the same format as
it reads the original files. For example, if you specify an EAR file as input, then the
TopLink migration tool stages and creates a new EAR file that contains both the new
orion-ejb-jar.xml and the new toplink-ejb-jar.xml file, but is otherwise
identical to the original.

The TopLink Workbench project file is always created as a separate file.

Note: Oracle recommends that you make a backup copy of
your orion-ejb-jar.xml file before using the TopLink
migration tool.

Persistence Manager

Understanding Orion CMP Support in OC4J 3-5

Migration
As it operates, the TopLink migration tool logs all errors and diagnostic output to a log
file named oc4j_migration.log in the output directory.

The TopLink migration tool processes descriptor, mapping, and query information
from the input files as follows:

■ It builds a TopLink descriptor object for each entity bean and migrates native
persistence metadata like mapped tables, primary keys, and mappings for
container-managed persistent and relationship fields.

■ It builds a TopLink mapping object for every container-managed persistent and
relationship field of an entity bean and migrates native persistence metadata, such
as foreign key references.

■ It builds a TopLink query object for each ejbFind or ejbSelect of an entity
bean and migrates persistence metadata, such as customized query statements.

Table 3–1 lists OC4J <entity-deployment> attributes and subelements from the
orion-ejb-jar.xml file and for each indicates whether or not the TopLink
migration tool does the following:

■ Retains it in the new orion-ejb-jar.xml file

■ Migrates it to the new toplink-ejb-jar.xml file

In Table 3–1, elements are identified with angle brackets See Table A–1, " Attributes of
the <entity-deployment> Element" on page A-4 for more information.

Table 3–1 OC4J orion-ejb-jar.xml Feature Migration

orion-ejb-jar.xml Feature
Retained in New
orion-ejb-jar.xml

Migrated to New
toplink-ejb-jar.xml

<entity-deployment>

clustering-schema

copy-by-value

data-source

location

max-instances

min-instances

max-tx-retries

disable-wrapper-cache

name

pool-cache-timeout

wrapper

local-wrapper

call-timeout

exclusive-write-access

true

false

do-select-before-insert

true

Persistence Manager

3-6 Oracle Containers for J2EE Orion CMP Developer’s Guide

Table 3–2 lists OC4J features and their TopLink equivalents configured by the TopLink
migration tool.

false

isolation

locking-mode

pessimistic

optimistic

read-only

old_pessimistic

update-changed-fields-only

true

false

table

force-update

true

false

data-synchronization-option

ejbCreate

ejbPostCreate

batch-size

Any value greater than 1

<ior-security-config>

<env-entry-mapping>

<resource-ref-mapping>

<resource-env-ref-mapping>

<primkey-mapping>

<cmp-field-mapping>

one-to-one-join

inner

outer1

shared

<finder-method>

<persistence-type>2

1 TopLink supports both outer and inner joins at run time.You can manually configure EJB
descriptors with these options.

2 The persistence-type attribute’s table column size, if present, is discarded. For more
information, see "Recovering persistence-type Table Column Size" on page 3-9.

Table 3–1 (Cont.) OC4J orion-ejb-jar.xml Feature Migration

orion-ejb-jar.xml Feature
Retained in New
orion-ejb-jar.xml

Migrated to New
toplink-ejb-jar.xml

Persistence Manager

Understanding Orion CMP Support in OC4J 3-7

Using the TopLink Migration Tool From the Command Line
To use the TopLink migration tool from the command line, you must perform the
following steps:

1. Ensure that the following is in your classpath:

■ <TOPLINK_HOME>/jlib/antlr.jar

Table 3–2 OC4J and TopLink Feature Comparison

Feature orion-ejb-jar.xml toplink-ejb-jar.xml

CMP field mapping Direct

Serialized object

Direct-to-field

Serialized object

CMR field mapping One-to-one

One-to-many

Many-to-many

One-to-one

One-to-many

Many-to-many

Partial query Full SQL statement SQL Call

Finder Oracle-specific syntax SQL Call or EJB-QL

Lazy loading (fetch
group)

Lazy loading of primary key
and CMP fields

Not supported.

Alternatively, you can manually
configure the TopLink
equivalent, if appropriate.

SQL statement caching Cache static SQL Not supported at the bean level.

TopLink supports parameterized
SQL and statement caching at
the session and query level.

Locking Optimistic: database-level

Pessimistic: bean
instance-level

Optimistic: object-level

Pessimistic: query lock at
database-level

Read-only Attempt to change throws
Exception

Attempt to change throws
Exception

Validity timeout Read-only bean validity
timeout before reloaded.

Cache timeout

Isolation level Committed

Serializable

Committed

Serializable

Not Committed

Not Repeatable

Delay update until
commit

Supported Supported

Exclusive write access on
bean

Default value is false Assume true

Insert without existence
check

Supported Supported

Update changed fields
only

Supported Supported

Force update Invoke bean life cycle
ejbStore method even
though persistent fields have
not changed

Supported

Persistence Manager

3-8 Oracle Containers for J2EE Orion CMP Developer’s Guide

■ <TOPLINK_HOME>/jlib/ejb.jar

■ <TOPLINK_HOME>/jlib/toplink.jar

■ <TOPLINK_HOME>/jlib/cmpmigrator.jar

■ <TOPLINK_HOME>/jlib/toplinkmw.jar

■ <TOPLINK_HOME>/jlib/tlmwcore.jar

■ <TOPLINK_HOME>/config

■ <ORACLE_HOME>/lib/xmlparserv2.jar

2. If you intend to migrate from plain XML files (rather than an EAR or JAR file),
ensure that the domain classes are accessible and included in your classpath.

3. Make a backup copy of your original XML files.

4. Execute the TopLink migration tool, as Example 3–1 illustrates, using the
appropriate arguments listed in Table 3–3.

The usage information for the TopLink migration tool is as follows:

java -Dtoplink.ejbjar.schemavalidation=<true|false>
-Dtoplink.migrationtool.generateWorkbenchProject=<true|false>
-Dhttp.proxyHost=<proxyHost> -Dhttp.proxyPort=<proxyPort>
oracle.toplink.tools.migration.TopLinkCMPMigrator -s<nativePM> -i<inputDir>
-a<ear>|<jar> -x -o<outputDir> -v

To identify the input files, you must specify one of -a or -x.

For troubleshooting information, see "Troubleshooting Your Migration" on
page 3-10.

Example 3–1 Using the TopLink Migration Tool from the Command Line

java -Dhttp.proxyHost=www-proxy.us.oracle.com -Dhttp.proxyPort=80
oracle.toplink.tools.migration.TopLinkCMPMigrator -sOc4j-native -iC:/mywork/in
-aEmployee.ear -oC:/mywork/out -v

Note: Depending on your specific installation, the ejb.jar file
could be located in <ORACLE_HOME>/j2ee/home/lib/ directory
instead.

Table 3–3 TopLink Migration Tool Arguments

Argument Description

toplink.ejbjar.schemavalidation The system property used to turn on schema validation if
ejb-jar.xml uses XML Schema (XSD) instead of DTD.

The default value is false.

toplink.migrationtool.generateWorkbenchProject The system property used enable generation of the TopLink
Workbench project.

The default value is true.

<proxyHost> The address of your local HTTP proxy host.

<proxyHost> The port number on which your local HTTP proxy host receives
HTTP requests.

-s <source> The name of the native persistence manager from which you are
migrating.

For OC4J, use the name oc4j-native.

Persistence Manager

Understanding Orion CMP Support in OC4J 3-9

Post-Migration Changes
After you migrate the orion-ejb-jar.xml file persistence configuration to your
toplink-ejb-jar.xml file, consider the following post-migration changes:

■ Recovering persistence-type Table Column Size

■ Updating the Unknown Primary Key Class Mapping Sequence Table

■ Project Customization

Recovering persistence-type Table Column Size
In the orion-ejb-jar.xml file, you can specify this mapping,
cmp-field-mapping, with a persistence-type attribute that provides both the
type and column size as shown in Example 3–2.

Example 3–2 A cmp-field-mapping with persistence-type Specifying a Column Size

<cmp-field-mapping ejb-reference-home="MyOtherEntity" name="myField"
persistence-name="myField" persistence-type="VARCHAR2(30)">

The TopLink migration tool migrates the persistence type, but not the column size,
because a TopLink project does not normally contain this size information.

To recover the persistence-type column size, do the following:

1. Perform the migration as described in "Using the TopLink Migration Tool From
the Command Line" on page 3-7.

2. Launch the generated TopLink Workbench project file TLCmpProject.mwp.

3. Log in to your database.

Updating the Unknown Primary Key Class Mapping Sequence Table
TopLink supports the use of an unknown primary key class. Naturally, the TopLink
migration tool also supports this feature.

-i <input-directory> Fully qualified path to the input directory that contains both the
OC4J ejb-jar.xml and orion-ejb-jar.xml files to
migrate.

Current working directory is the default.

-a <EAR-or-JAR> Fully qualified path to the archive file (either an EAR or JAR)
that contains both the OC4J ejb-jar.xml and
orion-ejb-jar.xml files to migrate.

-x Tells the TopLink migration tool that the OC4J files in the input
directory to migrate from are plain XML files (not in an archive
file).

If you use this option, ensure that the domain classes are
accessible and included in your classpath.

-o <output-directory <targetDir> is the path to the directory into which the
TopLink migration tool writes the new orion-ejb-jar.xml,
toplink-ejb-jar.xml, and log files. The path may be
absolute or relative to the current working directory. You must
specify this argument value.

Ensure that permissions are set on this directory to allow the
TopLink migration tool to create files and subdirectories.

-v Verbose mode. Tells the TopLink migration tool to log errors and
diagnostic information to the console.

Table 3–3 (Cont.) TopLink Migration Tool Arguments

Argument Description

Persistence Manager

3-10 Oracle Containers for J2EE Orion CMP Developer’s Guide

OC4J uses a native run-time key generator to generate unique keys for auto-id key
fields. In contrast, TopLink uses a sequencing table.

If your OC4J persistence configuration includes the use of an unknown primary key
class, then the TopLink migration tool will create a sequencing table for this purpose.

Before deploying your application after migration, you must do the following:

1. Determine the largest key value generated prior to migration.

2. Manually update the counter of the TopLink migration tool-generated sequence
table to a number that must be one larger than the largest key value generated
prior to migration.

Project Customization
You can customize the following components of your project:

■ Persistence Manager Property

■ Session Event Listener

Persistence Manager Property After migrating your application, you may wish to
customize the persistence manager properties in the orion-ejb-jar.xml file. These
properties are used to configure the TopLink session that the TopLink runtime uses
internally for CMP projects.

Session Event Listener After you applied the default settings to your project at
deployment time, you may wish to customize the TopLink session by configuring the
session event listener. The prelogin event that the session raises is particularly useful.
It lets you define the custom (nondefault) specifics for the session just before the
session initializes and acquires connections.

Troubleshooting Your Migration
This section describes solutions for problems you may encounter during migration,
including the following:

■ Log Messages

■ Unexpected Relational Multiplicity

Log Messages
As it operates, the TopLink migration tool logs all errors and diagnostic output to a log
file named oc4j_migration.log in the output directory.

In addition to these warnings, the TopLink migration tool logs an error if it encounters
a problem that prevents it from completing the migration. Table 3–4 lists these
problems and suggests possible solutions.

Table 3–4 TopLink Migration Tool Error Messages

Error Message Description

There is no ejb-jar.xml
in the input file. You must
provide the ejb-jar.xml
in order for the migration
process to work.

The ejb-jar.xml file is missing. The TopLink migration tool
stops and copies the original input files into the target directory.

Verify that the ejb-jar.xml file is present in the specified EAR,
JAR, or as a plain XML file. Empty the target directory and execute
the TopLink migration tool again.

Persistence Manager

Understanding Orion CMP Support in OC4J 3-11

Unexpected Relational Multiplicity
The TopLink migration tool retrieves relationship multiplicity from the
orion-ejb-jar.xml file and not from the OC4J ejb-jar.xml file.

Thus, even though the OC4J ejb-jar.xml file defines a relationship to be
one-to-many, if the orion-ejb-jar.xml file defines the same relationship as
many-to-many, then the TopLink migration tool will migrate the relationship as
many-to-many.

There is no
orion-ejb-jar.xml
with native persistent
metadata defined, no
migration needed.

The orion-ejb-jar.xml file is missing. The TopLink migration
tool stops and copies the original input files into the target
directory.

Verify that the orion-ejb-jar.xml file is present in the
specified EAR, JAR, or as a plain XML file. Empty the target
directory and execute the TopLink migration tool again.

toplink-ejb-jar.xml
is already defined in the
archive, no migration
needed.

A toplink-ejb-jar.xml file is already present in the target
directory. The TopLink migration tool stops and copies the original
input files into the target directory.

Remove the toplink-ejb-jar.xml file from the target
directory. Empty the target directory and execute the TopLink
migration tool again.

Table 3–4 (Cont.) TopLink Migration Tool Error Messages

Error Message Description

Persistence Manager

3-12 Oracle Containers for J2EE Orion CMP Developer’s Guide

Implementing an EJB 2.0 Entity Bean With Container-Managed Persistence 4-1

4
Implementing an EJB 2.0 Entity Bean With

Container-Managed Persistence

This chapter describes the ways to implement EJB 2.0 entity beans with
container-managed persistence.

This chapter includes information on the following topics:

■ Implementing an EJB 2.0 Entity Bean With Container-Managed Persistence

For more information, see:

■ "What is an Entity Bean?" on page 1-1

■ "Configuring an EJB 2.0 Entity Bean With Container-Managed Persistence" on
page 5-1

Implementing an EJB 2.0 Entity Bean With Container-Managed
Persistence

The process of implementing an EJB 2.0 entity bean with container-managed
persistence consists of the following steps:

1. Create the bean’s home interface. The home interface defines the methods that
allow a client to create, find, or remove an entity bean. See "Implementing the
Entity Bean Home Interface" on page 4-2 for more information.

2. Create the component (remote) interfaces for the bean. The component interfaces
declare the methods that a client can invoke. See "Implementing the Entity Bean
Component Interface" on page 4-3 for more information.

3. Define the primary key for the bean. The primary key identifies each entity bean
instance and is a serializable class. See "Configuring Primary Key" on page 5-1 for
more information.

4. Implement the bean. See "Implementing the Entity Bean Class" on page 4-4 for
more information.

5. Create the bean deployment descriptor–a file that specifies properties for the bean
using XML elements. It is your responsibility to identify the data within the bean
that the container will manage (see "Configuring Container-Managed Persistent
Fields" on page 5-10 for more information on persistence fields). If these fields
describe relationships to other objects, see "Configuring Container-Managed
Relationship Fields" on page 5-14.

Any EJB container services that you might want to configure are also designated in
the deployment descriptor. For information about data sources and JTA, see Oracle

Implementing an EJB 2.0 Entity Bean With Container-Managed Persistence

4-2 Oracle Containers for J2EE Orion CMP Developer’s Guide

Containers for J2EE Services Guide. For information about security, see Oracle
Containers for J2EE Security Guide.

If the persistent data is saved to or restored from a database, and you are not using
the defaults provided by the container, then you must ensure that the correct
tables exist for the bean. In the default scenario, the container creates the table and
columns for your data based on deployment descriptor and data source
information.

6. Create an EJB JAR file containing the bean, component interface, home interface,
and the deployment descriptors. Once created, configure the application.xml
file, create an EAR file, and deploy your entity bean to OC4J. See Chapter 2,
"Understanding Orion CMP Application Development" on page 2-1 for more
information.

For information on how to configure EJB 2.0 entity beans with container-managed
persistence, see "Configuring an EJB 2.0 Entity Bean With Container-Managed
Persistence" on page 5-1.

Implementing the Entity Bean Home Interface
The home interface is primarily used for retrieving the bean reference, on which the
client can request business methods. The following are the types of the home interface:

■ The remote home interface, which extends javax.ejb.EJBHome. This type of the
home interface is provided by beans that provide a remote client view.

■ The local home interface, which extends javax.ejb.EJBLocalHome. This type
of the home interface is provided by beans that provide a local client view.

A client can locate the bean’s home interface through the standard JNDI API.

The home interface must contain a create method, which the client invokes to create
the bean instance. The entity bean can have zero or more create methods, each with
its own defined parameters.

Entity beans must define one or more finder methods, where at least one is a
findByPrimaryKey method. Optionally, you can define other finder methods
(named find<NAME>) for the bean.

In addition to creation and retrieval methods, you can provide business methods
within the home interface. These methods cannot access data of a particular entity
object. The purpose of these methods is to provide a way to retrieve information that is
not related to a single entity bean instance. When the client invokes any home interface
business method, an entity bean is removed from the pool to service the request. Thus,
this method can be used to perform operations on general information related to the
bean.

Example 4–1 Implementing the Entity Bean Home Interface

The home interface must extend javax.ejb.EJBHome interface, as well as define the
create and findByPrimaryKey methods.

Example 4–1 demonstrates an implementation of a local home interface that provides a
method to create the remote interface. It also provides two finder methods: one to find
a specific employee by an employee number, and one that finds all employees. The

Note: If an entity bean is the target of a container-managed
relationship, then it must have local interfaces.

Implementing an EJB 2.0 Entity Bean With Container-Managed Persistence

Implementing an EJB 2.0 Entity Bean With Container-Managed Persistence 4-3

calculateSalary method is a home interface business method that calculates the
sum of all employee salaries. It does not access the information of a particular
employee, but performs a SQL inquiry against the database for all employees.

package employee;

import javax.ejb.*;
import java.rmi.*;

public interface EmployeeLocalHome extends EJBLocalHome {

public EmployeeLocal create(Integer empNumber) throws CreateException;

// Find an existing employee
public EmployeeLocal findByPrimaryKey (Integer empNumber)
throws FinderException;

// Find all employees
public Collection findAll() throws FinderException;

// Calculate the salaries of all employees
public float calculateSalary() throws Exception;

}

It is the responsibility of the EJB container to create an implementation for this
interface.

Declaring the Home Interface in the Deployment Descriptor
The following is the declaration of the home interface in the deployment descriptor:

<local-home>employee.EmployeeLocalHome</local-home>

Implementing the Entity Bean Component Interface
An EJB object is accessible through the bean’s component interface. The component
interface (also often referred to as remote interface) defines the business methods that
a client may call. The business methods are implemented in the entity bean code. The
following are the types of the component interface:

■ The component interface that extends javax.ejb.EJBObject. The EJBObject
interface defines the operations that let the client access the EJB object’s identity
and create a persistent handle for this object.

■ The component interface that extends javax.ejb.EJBLocalObject. The
EJBLocalObject interface defines the operations that let the client to access this
object’s identity.

Example 4–2 Implementing the Entity Bean Component Interface

The employee entity bean example exposes the local component interface, which
contains methods for retrieving and updating employee information.

package employee;

import javax.ejb.*;

public interface EmployeeLocal extends EJBLocalObject {

public Integer getEmpNumber();
public void setEmpNumber(Integer empNumber);

Implementing an EJB 2.0 Entity Bean With Container-Managed Persistence

4-4 Oracle Containers for J2EE Orion CMP Developer’s Guide

public String getEmpName();
public void setEmpName(String empName);

public Float getSalary();
public void setSalary(Float salary);

}

It is the responsibility of the EJB container to create an implementation for the
component interface.

Declaring the Component Interface in the Deployment Descriptor
The following is the declaration of the component interface in the deployment
descriptor:

<local>employee.EmployeeLocal</local>

Implementing the Entity Bean Class
An entity bean class must meet the following criteria:

■ The class must implement, directly or indirectly, the javax.ejb.EntityBean
interface.

■ The class must be defined as public and must be abstract.

■ The class must define a public constructor that takes no arguments.

■ The class must not define the finalize() method.

The class may, but is not required to, implement the entity bean’s component interface
(see "Implementing the Entity Bean Component Interface" on page 4-3).

The entity bean class implements the following methods:

■ The target methods for the methods that are declared in the home interface (see
"Implementing the Entity Bean Home Interface" on page 4-2), which include the
following:

– The ejbCreate and ejbPostCreate methods with parameters matching
the associated create method defined in the home interface.

– Finder methods, other than ejbFindByPrimaryKey and ejbFindAll, that
are defined in the home interface. The container generates the
ejbFindByPrimaryKey and ejbFindAll method implementations.

– Any home interface business methods, which have an ejbHome prefix in the
bean implementation. For example, the calculateSalary method is
implemented in the ejbHomeCalculateSalary method.

■ The business logic methods that are declared in the component interface.

■ The methods that are inherited from the javax.ejb.EntityBean interface
(such as ejbActivate, ejbPassivate, and so forth).

It is the responsibility of the container to manage most of the target methods and the
data objects. For information about the entity bean’s callback methods, see "Callback
Methods" on page 1-4.

Example 4–3 Implementing the Entity Bean Class

Example 4–3 demonstrates the implementation of the entity bean class.

Implementing an EJB 2.0 Entity Bean With Container-Managed Persistence

Implementing an EJB 2.0 Entity Bean With Container-Managed Persistence 4-5

package employee;

import javax.ejb.*;
import java.rmi.*;

public abstract class EmployeeBean implements EntityBean {

private EntityContext ctx;

// Each persistent field has a getter and a setter
public abstract Integer getEmpNumber();
public abstract void setEmpNumber(Integer empNumber);

public abstract String getEmpName();
public abstract void setEmpName(String empName);

public abstract Float getSalary();
public abstract void setSalary(Float salary);

public void EmployeeBean() {
// Constructor. Do not initialize anything in this method.
// All initialization should be performed in the ejbCreate method.
// The passivate() method may destroy these attributes when pooling

}

public float ejbHomeCalculateSalary() throws Exception {
Collection c = null;
try {
c = ((EmployeeLocalHome)this.ctx.getEJBLocalHome()).findAll();
Iterator i = c.iterator();
float totalSalary = 0;
while (i.hasNext()) {
EmployeeLocal e = (EmployeeLocal)i.next();
totalSalary = totalSalary + e.getSalary().floatValue();

}
catch (FinderException e) {
System.out.println("Got finder Exception " + e.getMessage());
throw new Exception(e.getMessage());

}
}

public EmployeePK ejbCreate(Integer empNumber, String empName, Float salary)
throws CreateException {
setEmpNumber(empNumber);
setEmpName(empName);
setSalary(salary);
return new EmployeePK(empNumber);

}

public void ejbPostCreate(Integer empNumber, String empName, Float salary)
throws CreateException {
// Called just after bean created; container takes care of implementation

}

public void ejbStore() {
// Called when bean persisted; container takes care of implementation

}

public void ejbLoad() {
// Called when bean loaded; container takes care of implementation

Implementing an EJB 2.0 Entity Bean With Container-Managed Persistence

4-6 Oracle Containers for J2EE Orion CMP Developer’s Guide

}

public void ejbRemove() throws RemoveException {
// Called when bean removed; container takes care of implementation

}

public void ejbActivate() {
// Called when bean activated; container takes care of implementation.
// If you need resources, retrieve them here

}

public void ejbPassivate() {
// Called when bean deactivated; container takes care of implementation.
// If you set resources in ejbActivate, remove them here

}

public void setEntityContext(EntityContext ctx) {
this.ctx = ctx;

}

public void unsetEntityContext() {
this.ctx = null;

}

}

Defining the Entity Bean Class in the Deployment Descriptor
You define the entity bean class in the deployment descriptor with the following line:

<ejb-class>employee.EmployeeBean</ejb-class>

The following is the sample deployment descriptor for the entity bean:

<enterprise-beans>
<entity>

<display-name>Employee</display-name>
<ejb-name>EmployeeBean</ejb-name>
<local-home>employee.EmployeeLocalHome</local-home>
<local>employee.EmployeeLocal</local>
<ejb-class>employee.EmployeeBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Integer</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>Employee</abstract-schema-name>
<cmp-field><field-name>empNumber</field-name></cmp-field>
<cmp-field><field-name>empName</field-name></cmp-field>
<cmp-field><field-name>salary</field-name></cmp-field>
<primkey-field>empNumber</primkey-field>

</entity>
...
</enterprise-beans>

Configuring an EJB 2.0 Entity Bean With Container-Managed Persistence 5-1

5
Configuring an EJB 2.0 Entity Bean With

Container-Managed Persistence

This chapter describes the various options that you must configure in order to use an
EJB 2.0 entity bean with container-managed persistence.

Table 5–1 lists these options and indicates which are basic (applicable to most
applications) and which are advanced (applicable to more specialized applications).

For more information, see the following:

■ "What is an Entity Bean?" on page 1-1

■ "Implementing an EJB 2.0 Entity Bean With Container-Managed Persistence" on
page 4-1

Configuring Primary Key
Each entity bean instance has a primary key that uniquely identifies it from other
instances. You must declare the primary key (or the fields contained within a complex
primary key) as a container-managed persistent field in the deployment descriptor.

Table 5–1 Configurable Options for an EJB 2.0 Entity Bean With Container-Managed
Persistence

Options Type

"Configuring Primary Key" Basic

"Configuring Container-Managed Persistent Fields" Basic

Configuring Container-Managed Relationship Fields Basic

Configuring Database Isolation Levels Advanced

"Configuring Concurrency Modes" Advanced

"Configuring Exclusive Write Access to the Database" Advanced

"Configuring Callback Methods for EJB 2.0 Entity Beans With Container-Managed
Persistence"

Advanced

Note: Oracle suggests that you use JDeveloper IDE for configuring
your entity beans with container-managed persistence. The reason is
that JDeveloper is capable of managing complex mappings between
the entity beans and the database tables. See "Configuring
Container-Managed Relationship Fields" on page 5-14 and "Using
JDeveloper" on page 2-4 for more information.

Configuring Primary Key

5-2 Oracle Containers for J2EE Orion CMP Developer’s Guide

This section describes the following aspects of the primary key configurations:

■ Configuring Primary Key Field

■ Configuring Primary Key Class

■ Configuring Automatic Primary Key Generation

Configuring Primary Key Field
All fields within the primary key are restricted to either primitive, serializable, or types
that can be mapped to SQL types. You can define your primary key in one of the
following ways:

■ Define the type of the primary key to be a well-known type. The type is defined in
the <prim-key-class> element in the deployment descriptor. The data field
that is identified as the persistent primary key is identified in the
<primkey-field> element in the deployment descriptor. The primary key
variable that is declared within the bean class must be declared as public.

The advanced option of defining the primary key is to define its type as a
serializable object within a serializable <NAME>PK class. This class is declared in
the <prim-key-class> element in the deployment descriptor. See "Configuring
Primary Key Class" on page 5-3 for more information.

■ Specify an automatically generated primary key: if you specify a
java.lang.Object as the primary key class type in <prim-key-class>, but
do not specify the primary key name in <primkey-field>, then the primary key
is automatically generated by the container. See "Configuring Automatic Primary
Key Generation" on page 5-9 for more information.

Example 5–1 Defining a Primary Key of a Well-Known Type Within the Deployment
Descriptor

For a simple CMP, you can define your primary key to be a well-known type by
defining the data type of the primary key within the deployment descriptor.
Example 5–1 shows how to define the primary key (employee number) as a
java.lang.Integer:

<enterprise-beans>
<entity>

<display-name>Employee</display-name>
<ejb-name>EmployeeBean</ejb-name>
<local-home>employee.EmployeeLocalHome</local-home>
<local>employee.EmployeeLocal</local>
<ejb-class>employee.EmployeeBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Integer</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>Employee</abstract-schema-name>
<cmp-field><field-name>empNumber</field-name></cmp-field>
<cmp-field><field-name>empName</field-name></cmp-field>
<cmp-field><field-name>salary</field-name></cmp-field>
<primkey-field>empNumber</primkey-field>

</entity>
...
</enterprise-beans>

Once defined, the container creates a column in the entity bean table for the primary
key and maps the primary key defined in the deployment descriptor to this column.

Configuring Primary Key

Configuring an EJB 2.0 Entity Bean With Container-Managed Persistence 5-3

Within the orion-ejb-jar.xml file, the primary key is mapped to the underlying
database persistence storage by mapping the container-managed persistent field or
primary key field defined in the ejb-jar.xml file to the database column name. In
the following orion-ejb-jar.xml fragment, the EmpBean persistence storage is
defined as the EMP table in the database that is defined in the jdbc/OracleDS data
source. Following the <entity-deployment> element definition (see Table A–1,
" Attributes of the <entity-deployment> Element" on page A-4), the primary key,
empNumber, is mapped to the EMPNUMBER column in the EMP table, and the empName
and salary persistent fields are mapped to EMPNAME and SALARY columns
respectively in the EMP table:

<entity-deployment name="EmpBean" ...table="EMP" data-source="jdbc/OracleDS"...>
<primkey-mapping>

<cmp-field-mapping name="empNumber" persistence-name="EMPNUMBER" />
</primkey-mapping>
<cmp-field-mapping name="empName" persistence-name="EMPNAME" />
<cmp-field-mapping name="salary" persistence-name="SALARY" />

...

Configuring Primary Key Class
If your primary key is more complex than a simple data type, your primary key must
be a class that is serializable of the name <NAME>PK. You define the primary key class
within the <prim-key-class> element in the deployment descriptor.

The primary key variables must adhere to the following:

■ Be defined within a <cmp-field><field-name> element in the deployment
descriptor. This enables the container to manage the primary key fields.

■ Be declared within the bean class as public and restricted to be either primitive,
serializable, or types that can be mapped to SQL types.

■ The names of the variables that make up the primary key must be the same in both
the <cmp-field><field-name> elements and in the primary key class.

Within the primary key class, you implement a constructor for creating a primary key
instance. Once the primary key class is defined in this manner, the container manages
the class.

Example 5–2 Defining the Primary Key Class

Example 5–2 places the employee number within a primary key class.

package employee;

public class EmployeePK implements java.io.Serializable {

public Integer empNumber;

public EmployeePK() {
this.empNumber = null;

}

public EmployeePK(Integer newEmpNumber) {
this.empNumber = newEmpNumber;

}

}

Configuring Primary Key

5-4 Oracle Containers for J2EE Orion CMP Developer’s Guide

Example 5–3 Declaring the Primary Key Class in the Deployment Descriptor

The primary key class is declared in the deployment descriptor within the
<prim-key-class> element, and each of its variables are declared within a
<cmp-field><field-name> element, as Example 5–3 shows:

<enterprise-beans>
<entity>

<description>no description</description>
<display-name>EmployeeBean</display-name>
<ejb-name>EmployeeBean</ejb-name>
<local-home>employee.EmployeeLocalHome</local-home>
<local>employee.EmployeeLocal</local>
<ejb-class>employee.EmployeeBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>employee.EmployeePK</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>Employee</abstract-schema-name>
<cmp-field><field-name>empNumber</field-name></cmp-field>
<cmp-field><field-name>empName</field-name></cmp-field>
<cmp-field><field-name>salary</field-name></cmp-field>

</entity>
...
</enterprise-beans>

Once you define the primary key, the container creates a column in the entity bean
table for the primary key and maps the primary key class declared in the deployment
descriptor to this column.

The persistent fields are mapped in the orion-ejb-jar.xml in the same manner as
described in the "Configuring Primary Key" section. With a complex primary key, the
mapping contains more than a single field; thus, the <cmp-field-mapping> element
of the <primkey-mapping> element contains another <fields> subelement. Every
field of the primary key is defined in a separate <cmp-field-mapping> element
within the <fields> element, similar to the following:

<primkey-mapping>
<cmp-field-mapping>

<fields>
<cmp-field-mapping name="empNumber" persistence-name="EMPNUMBER" />

</fields>
</cmp-field-mapping>

</primkey-mapping>

Configuring Foreign Key in a Composite Primary Key
In the EJB 2.0 specification, the primary key for an entity bean must be initialized
within the ejbCreate method. However, in this method you cannot set any
relationship that this bean has to another bean. The earliest when you can set this
relationship in a foreign key is in the ejbPostCreate method.

That said, if you have a foreign key within a composite primary key, you face the
following problem: you must set all fields within the composite primary key in the
ejbCreate method, but you cannot set the foreign key in this method.

Note: If you have a complex primary key that contains a foreign key,
you need to apply a special mapping. See "Configuring Foreign Key in
a Composite Primary Key" on page 5-4 for more information.

Configuring Primary Key

Configuring an EJB 2.0 Entity Bean With Container-Managed Persistence 5-5

The following hypothetical scenario models the way around this problem: an order
can contain one or more items; the order bean has many items in it; each item belongs
to an order. The primary key for the item is a composite primary key consisting of the
item identifier and the order identifier. The order identifier is a foreign key that points
to the order.

You would have to modify the deployment descriptors and bean implementation to
add a placeholder persistent field that mimics the actual foreign key field. This field is
set during the ejbCreate method. However, both the placeholder persistent field
and the foreign key point to the same database column. The actual foreign key is
updated during the ejbPostCreate method.

Example 5–4 Modifying the Deployment Descriptor and the Bean Code to Accommodate
a Foreign Key Within a Primary Key

Example 5–4 demonstrates how to modify both deployment descriptors and the bean
implementation.

In the order scenario, each order contains one or more items. The OrderBean
represents the order, and the OrderItemBean represents the items in the order. Each
item has a primary key that consists of the item number and the order number to
which it belongs. Thus, the primary key for the item contains a foreign key that points
to an order bean.

To adjust for a composite primary key, modify the ejb-jar.xml file in the following
way:

1. Define a persistent field in the primary key as a placeholder for the foreign key.
This placeholder should be used in the composite primary key class definition.

In the Example 5–4, an orderId persistent field is defined in a <cmp-field>
element. The orderId and itemId persistent fields are used to identify the
composite primary key in the OrderItemPK.java.

2. Define the foreign key outside the primary key definition in its own
<cmr-field> element in the <relationships> section.

In the Example 5–4, the belongToOrder foreign key is defined in a
<cmr-field> element for the OrderItemBean, defining the relationship from
the item to the order.

<entity>
<ejb-name>OrderItemBean</ejb-name>
<local-home>OrderItemLocalHome</local-home>
<local>OrderItemLocal</local>
<ejb-class>OrderItemBean</ejb-class>
...
<cmp-field><field-name>itemId</field-name></cmp-field>
<cmp-field><field-name>orderId</field-name></cmp-field>
<cmp-field><field-name>price</field-name></cmp-field>
<prim-key-class>OrderItemPK</prim-key-class>
...

Note: Modify the ejb-jar.xml file with the placeholder persistent
field and the foreign key. Deploy the application with
<autocreate-tables> element in the orion-application.xml
file set to false to automatically generate the orion-ejb-jar.xml
file, without creating any tables. Then modify the
orion-ejb-jar.xml file to point to the correct database columns,
set <autocreate-tables> element to true, and redeploy.

Configuring Primary Key

5-6 Oracle Containers for J2EE Orion CMP Developer’s Guide

</entity>
<relationships>

<ejb-relation>
<ejb-relation-name>Order-OrderItem</ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>
Order-Has-OrderItems

</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>OrderBean</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>items</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>
</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>
OrderItems-from-Order

</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<cascade-delete/>
<relationship-role-source>

<ejb-name>OrderItemBean</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>belongToOrder</cmr-field-name>
</cmr-field>

</ejb-relationship-role>
...

The OrderItemPK.java class defines the contents of the complex primary key, as
follows:

public class OrderItemPK implements java.io.Serializable {

public Integer itemID;
public Integer orderID;

public OrderItemPK() {
this.itemId = null;
this.orderId = null;

}

public OrderItemPK(Integer newItemId, Integer newOrderId) {
this.itemId = newItemId;
this.orderId = newOrderId;

}

public boolean equals(Object o) {
if (o instanceof OrderItemPK) {

OrderItemPK pk = (OrderItemPK) o;
if (pk.itemId.intValue() == itemId.intValue() &&

pk.orderId.intValue() == orderId.intValue()) {
return true;

}
}
return false;

}

Configuring Primary Key

Configuring an EJB 2.0 Entity Bean With Container-Managed Persistence 5-7

public int hashCode() {
return itemId.hashCode() * orderId.hashCode();

}
}

If you consider the automatically created database tables sufficient, you do not need to
modify the orion-ejb-jar.xml file. However, if you need to map to existing
database tables, then you modify the orion-ejb-jar.xml file to point to these
tables (see "Configuring Explicit Mapping of Relationship Fields to the Database" on
page 5-18 for more information).

After the automatic generation of the orion-ejb-jar.xml file, copy it into your
development directory. The database column names are defined in the
persistence-name attributes in each of the persistent and relationship field name
mappings. Ensure that the persistence-name attributes for both the placeholder
persistent field and foreign key are the same.

The following is the orion-ejb-jar.xml file for the Order/OrderItem example:

<entity-deployment name="OrderItemBean" table="ORDER_ITEM">
<primkey-mapping>

<cmp-field-mapping name="itemId" persistence-name="Item_ID" />
<cmp-field-mapping name="orderId" persistence-name="Order_ID" />

</primkey-mapping>
<cmp-field-mapping name="price" persistence-name="Price" />
<cmp-field-mapping name="belongToOrder">

<entity-ref home="OrderBean">
<cmp-field-mapping name="belongToOrder" persistence-name="Order_ID" />

</entity-ref>
</cmp-field-mapping>

</entity-deployment>

<entity-deployment name="OrderBean" table="ORDER">
<primkey-mapping>

<cmp-field-mapping name="orderId" persistence-name="Order_ID" />
</primkey-mapping>
<cmp-field-mapping name="orderDesc" persistence-name="Order_Description" />
<cmp-field-mapping name="items">

<collection-mapping table="ORDER_ITEM">
<primkey-mapping>

<cmp-field-mapping name="OrderBean_orderId">
<entity-ref home="OrderBean">

<cmp-field-mapping name="OrderBean_orderId">
</entity-ref>

</cmp-field-mapping>
</primkey-mapping>
<value-mapping type="OrderItemLocal">

<cmp-field-mapping name="OrderItemBean_itemId">
<entity-ref home="OrderItemBean">

<cmp-field-mapping name="OrderItemBean_itemId">
<cmp-field-mapping name="OrderItemBean_itemId">

</fields>
</cmp-field-mapping>

</entity-ref>
</cmp-field-mapping>

</value-mapping>
</collection-mapping>

</cmp-field-mapping>
</entity-deployment>

Configuring Primary Key

5-8 Oracle Containers for J2EE Orion CMP Developer’s Guide

The following takes place in the <entity-deployment> (see Table A–1, " Attributes
of the <entity-deployment> Element" on page A-4) section for the OrderItemBean of
the orion-ejb-jar.xml file for the Order/OrderItem example:

■ The table is defined in the table attribute, which is ORDER_ITEM in this example.

■ The column name for the itemId is defined in the persistence-name attribute
as Item_ID.

■ The column name for the placeholder persistent field, orderId, is defined in the
persistence-name attribute as Order_ID.

■ The foreign key, belongToOrder, is mapped to the database column, Order_ID,
which is the same column as the placeholder persistent field, orderId.

Both the foreign key (belongToOrder), and the placeholder persistent field
(orderId) must point to the same database column.

Finally, you must update the bean implementation to work with both the placeholder
persistent field and the foreign key, as follows:

1. In the ejbCreate method, do the following:

– Create the placeholder persistent field that takes the place of the foreign key
field.

– Set a value in the placeholder persistent field in the ejbCreate method. This
value is written out to the foreign key field in the database table.

2. In the ejbPostCreate method, set the foreign key to the value in the duplicate
persistent field.

In the Order/OrderItem example, the orderId persistent field is set in the
ejbCreate method, whereas the belongToOrder relationship field is set in the
ejbPostCreate method, as follows:

public OrderItemPK ejbCreate(OrderItem orderItem) throws CreateException {
setItemId(orderItem.getItemId());
setOrderId(orderItem.getOrderId());
setPrice(orderItem.getPrice());
return new OrderItemPK(orderItem.getItemId(),orderItem.getOrderId());

}

public void ejbPostCreate(OrderItem orderItem) throws CreateException {
// right after the bean has been created
try {

Context ctx = new InitialContext();
OrderLocalHome orderHome =

(OrderLocalHome)ctx.lookup("java:comp/env/OrderBean");
OrderLocal order = orderHome.findByPrimaryKey(orderItem.getOrderId());
setBelongToOrder(order);

}
catch(Exception e) {

e.printStackTrace();
throw new EJBException(e);

}
}

Note: Since the foreign key is a part of a primary key, you can only
set it once.

Configuring Primary Key

Configuring an EJB 2.0 Entity Bean With Container-Managed Persistence 5-9

The following is the code for the OrderItem object that is passed into the ejbCreate
and ejbPostCreate methods:

public class OrderItem implements java.io.Serializable {

private Integer itemId;
private Integer orderId;
private Double price;

public OrderItem(Integer itemId, Integer orderId, Double price) {
this.itemId = itemId;
this.orderId = orderId;
this.price = price;

}

public Integer getItemId() {
return itemId;

}

public void setItemId(Integer itemId) {
this.itemId = itemId;

}

public Integer getOrderId() {
return orderId;

}

public void setOrderId(Integer orderId) {
this.orderId = orderId;

}

public Double getPrice() {
return price;

}

public void setPrice(Double price) {
this.price = price;

}

public boolean equals(Object other) {
if (other instanceof OrderItem) {

OrderItem orderItem = (OrderItem)other;
if (itemId.equals(orderItem.getItemId()) &&

orderId.equals(orderItem.getOrderId()) &&
price.equals(orderItem.getPrice())) {
return true;

}
}
return false;

}
}

Configuring Automatic Primary Key Generation
If you specify a java.lang.Object as the primary key class type in
<prim-key-class> element of your deployment descriptor, but do not specify the
primary key name in <primkey-field> element, then the primary key is
automatically generated by the container, as follows:

Configuring Container-Managed Persistent Fields

5-10 Oracle Containers for J2EE Orion CMP Developer’s Guide

<enterprise-beans>
<entity>

<display-name>Employee</display-name>
<ejb-name>EmployeeBean</ejb-name>
<local-home>employee.EmployeeLocalHome</local-home>
<local>employee.EmployeeLocal</local>
<ejb-class>employee.EmployeeBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Object</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>Employee</abstract-schema-name>
<cmp-field><field-name>empNumber</field-name></cmp-field>
<cmp-field><field-name>empName</field-name></cmp-field>
<cmp-field><field-name>salary</field-name></cmp-field>

</entity>
...
</enterprise-beans>

Once defined, the container creates a column called autoid in the entity bean table for
the primary key of type LONG. The container uses random numbers for the primary
key values. This is generated in the orion-ejb-jar.xml for the bean, as follows:

<primkey-mapping>
<cmp-field-mapping name="auto_id" persistence-name="autoid"/>

</primkey-mapping>

Configuring Container-Managed Persistent Fields
Container-managed persistent fields represent simple data types that are persisted to
database tables. These fields define the state of an entity bean. These fields are direct
attributes of a bean. For more information about persistent fields, see
"Container-Managed Persistent Fields" on page 1-2.

In entity beans with container-managed persistence, you define the persistent data
both in the bean instance and in the deployment descriptor using the following:

■ Accessor methods (getter and setter) in the bean instance: For each persistent field,
both a getter and a setter method is created. The data type of the parameter
returned from the getter and passed into the setter defines the simple data type of
the field. The name of the field is designated by the name of the getter and setter
methods.

The following code shows a getter and a setter for the employee name persistent
field. A String that is returned from the getter and passed into the setter is a simple
data type of the field. If you remove the "get" and "set" from the method names,
and then lower the case of the first letter, you have the persistent field name. In the
following example, empName is the persistent field name:

public abstract String getEmpName() throws RemoteException;

public abstract void setEmpName(String empName) throws RemoteException;

■ The deployment descriptor declares these fields as persistent. Each field name
must be defined in a <cmp-field><field-name> element in the deployment
descriptor. In the preceding example, three persistent fields are defined in the data
accessor methods: empNumber, empName, and salary.

Configuring Container-Managed Persistent Fields

Configuring an EJB 2.0 Entity Bean With Container-Managed Persistence 5-11

These fields are defined as persistent fields in the ejb-jar.xml deployment
descriptor within the <cmp-field><field-name> element, as follows:

<enterprise-beans>
<entity>

<display-name>Employee</display-name>
<ejb-name>EmployeeBean</ejb-name>
<local-home>employee.EmployeeLocalHome</local-home>
<local>employee.EmployeeLocal</local>
<ejb-class>employee.EmployeeBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Integer</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>Employee</abstract-schema-name>
<cmp-field><field-name>empNumber</field-name></cmp-field>
<cmp-field><field-name>empName</field-name></cmp-field>
<cmp-field><field-name>salary</field-name></cmp-field>
<primkey-field>empNumber</primkey-field>

</entity>
...
</enterprise-beans>

Map these fields to the database as follows:

■ Accept the defaults for these fields and avoid more deployment descriptor
configuration. See "Configuring Default Mapping of Persistent Fields to the
Database" on page 5-11 for more information.

■ Map the persistent data fields to columns in a table that exists in a designated
database. The persistent data mapping is configured within the
orion-ejb-jar.xml file. See "Configuring Explicit Mapping of Persistent Fields
to the Database" on page 5-12 for more information.

Configuring Default Mapping of Persistent Fields to the Database
If you simply define the persistent fields in the ejb-jar.xml file, then OC4J provides
the following mappings of these fields to the database:

■ Database: The default database as set up in your OC4J instance configuration. For
the JNDI name, use the <location> element for emulated data sources, and
<ejb-location> element for nonemulated data sources.

Upon installation, the default database is a locally installed Oracle database that
must be listening on port 1521 with a SID of ORCL. To customize the default
database, change the first configured database to point to your database.

■ Table: The container automatically creates a default table where the name of the
table is guaranteed to be unique. For all future redeployments, copy the generated
orion-ejb-jar.xml file with this table name into the same directory as your
ejb-jar.xml file. Thus, all future redeployments have the same table names as
first generated. If you do not copy this file over, different table names may be
generated.

The table name is constructed with the following names, where each name is
separated by an underscore character (_):

– EJB name defined in <ejb-name> in the deployment descriptor.

– JAR file name, including the .jar extension. However, all dash characters (-)
and periods (.) are converted to underscore characters (_) to follow SQL

Configuring Container-Managed Persistent Fields

5-12 Oracle Containers for J2EE Orion CMP Developer’s Guide

conventions. For example, if the name of your JAR file is employee.jar,
then employee_jar is appended to the name.

– Application name that you define during deployment.

If the constructed name is greater than thirty characters, the name is truncated at
twenty-four characters. Then six characters made up of an alphanumeric hash
code are appended to the name.

For example, if the EJB name is EmpBean, the JAR file is empl.jar, and the
application name is employee, then the default table name is EmpBean_empl_
jar_employee.

■ Column names: The columns in the entity bean table each have the same name as
the <cmp-field> elements in the designated database. The data types for the
database, translating Java data types to database data types, are defined in the
specific database XML file, such as oracle.xml.

Configuring Explicit Mapping of Persistent Fields to the Database
As "Configuring Default Mapping of Persistent Fields to the Database" discusses, your
persistent data can be automatically mapped to a database table by the container.
However, if the data represented by your bean is more complex or you do not want to
accept the defaults that OC4J provides for you, then you can map the persistent data to
an existing database table and its columns within the orion-ejb-jar.xml file. Once
the fields are mapped, the container provides the persistence storage of the persistent
data to the indicated table and rows.

To explicitly map persistent fields to the database, do the following:

1. Deploy your application with only the ejb-jar.xml elements configured.

OC4J creates an orion-ejb-jar.xml file for you with the default mappings in
them. It is easier to modify than to create these fields.

2. Modify the <entity-deployment> element (see Table A–1, " Attributes of the
<entity-deployment> Element" on page A-4) in the orion-ejb-jar.xml file to
use the database table and columns you specify.

Once you define container-managed persistent fields, each within its own
<cmp-field> element, you can map each to a specific database table and column.
Thus, you can map these persistent fields to existing database tables. The mapping
occurs with the orion-ejb-jar.xml file (the OC4J-specific deployment descriptor).

The explicit mapping of persistent fields is completed within an
<entity-deployment> element t (see Table A–1, " Attributes of the
<entity-deployment> Element" on page A-4). This element contains all mapping for an
entity bean. The following are the attributes and elements that are specific to persistent
field mapping:

<entity-deployment name="..." location="..." table="..." data-source="...">
<primkey-mapping>

<cmp-field-mapping name="..." persistence-name="..." />
</primkey-mapping>
<cmp-field-mapping name="..." persistence-name="..." />

...
</entity-deployment>

Configuring Container-Managed Persistent Fields

Configuring an EJB 2.0 Entity Bean With Container-Managed Persistence 5-13

You can configure the following within the orion-ejb-jar.xml file:

1. Configure the <entity-deployment> element for every entity bean that
contains container-managed persistent fields that you will map within it.

2. Configure a <cmp-field-mapping> element for every field within the bean that
you are mapping. Each <cmp-field-mapping> element must contain the name
of the field to be persisted, as follows:

a. Configure the primary key in the <primkey-mapping> element contained
within its own <cmp-field-mapping> element.

b. Configure simple data types (such as a primitive, simple object, or serializable
object) that are mapped to a single field within a single
<cmp-field-mapping> element. The name and database field are fully
defined within the element attributes.

Example 5–5 Mapping Persistent Fields to a Specific Database Table

Example 5–5 demonstrates how to map persistent fields in your bean instance to
database tables and columns by mapping the employee persistence fields to the Oracle
database table EMP:

<entity-deployment name="EmpBean"
location="emp/EmpBean" wrapper="EmpHome_EntityHomeWrapper2"
max-tx-retries="3" table="emp" data-source="jdbc/OracleDS">

<primkey-mapping>
<cmp-field-mapping name="empNumber" persistence-name="empnumber" />

</primkey-mapping>
<cmp-field-mapping name="empName" persistence-name="ename" />
<cmp-field-mapping name="salary" persistence-name="sal" />

...
</entity-deployment>

After deployment, OC4J maps the element values, as Table 5–3 shows:

Table 5–2 Deployment Descriptor’s Elements for Mapping Persistent Fields to a Specific
Database Table

Element or Attribute Name Description

name Bean name, which is defined in the ejb-jar.xml file in the
<ejb-name> element.

location JNDI location.

table Database table name.

data-source Data source for the database where the table resides.

primkey-mapping Definition of how the primary key is mapped to the table.

cmp-field-mapping The name attribute specifies the <cmp-field> in the
deployment descriptor, which is mapped to a table column in
the persistence-name attribute.

Table 5–3 Mapping of the Deployment Descriptor’s Element Values by the Container

Bean Database

emp/EmpBean EMP table, located in jdbc/OracleDS in the
data-sources.xml file

empNumber EMPNUMBER column as primary key

Configuring Container-Managed Relationship Fields

5-14 Oracle Containers for J2EE Orion CMP Developer’s Guide

Configuring Container-Managed Relationship Fields
A relationship field identifies a related bean. A relationship field behaves similar to a
foreign key in a database table. For more information, see "Relationship Fields" on
page 1-4.

Relationship fields are virtual. You provide getters and setters for these fields in the
code of your bean class, similar to the following:

public abstract void setContractInfo(ContractInfo contractInfo) throws
RemoteException

public abstract ContractInfo getContractInfo() throws RemoteException

The container provides the implementation of these methods.

In the preceding example, the corresponding relationship field is contractInfo.

In a deployment descriptor, this field is defined in a
<cmr-field><cmr-field-name> element, as follows:

<ejb-ralation>
...
<cmr-field>

<cmr-field-name>contractInfo</cmr-field-name>
<cmr-field-type>contractInfo</cmr-field-type>

</cmr-field>
...

</ejb-ralation>

For more information about container-managed relationships, see
"Container-Managed Relationships" on page 1-3.

As each entity bean maps to a table in a database, each of its persistent and
relationship fields are saved within a database table in columns. You can map these
fields to the database by performing one of the following:

■ Accept the defaults for these fields. Do not configure the deployment descriptor.
The tables are automatically created for the bean based on the information in the
ejb-jar.xml file. See "Configuring Default Mapping of Relationship Fields to
the Database" on page 5-14 for more information.

■ Map these fields to columns in a table that already exists in a designated database.
The persistent data mapping is configured within the orion-ejb-jar.xml file.
See "Configuring Explicit Mapping of Relationship Fields to the Database" on
page 5-18 for more information.

Configuring Default Mapping of Relationship Fields to the Database
When you declare relationship fields in the ejb-jar.xml file, OC4J provides default
mapping of these fields to the database at the time of the automatic generation of the
orion-ejb-jar.xml file. The default mapping for relationship fields is the same as
for the persistent fields (see "Configuring Default Mapping of Persistent Fields to the
Database" on page 5-11).

empName EMPNAME column

salary SALARY column

Table 5–3 (Cont.) Mapping of the Deployment Descriptor’s Element Values by the

Bean Database

Configuring Container-Managed Relationship Fields

Configuring an EJB 2.0 Entity Bean With Container-Managed Persistence 5-15

In summary, the default mappings include the following:

■ Database–The default database as set up in your OC4J instance configuration.

■ Default table–Each entity bean in the relationship represents data in its own
underlying database table. The name of the entity bean’s underlying table is
supposed to be unique, so it is constructed with the following names, where each
entry is separated by an underscore character (_):

– EJB name defined in a <ejb-name> element in the deployment descriptor;

– JAR file name, including the.jar extension. However, all dash characters (-)
and periods (.) are converted to underscore characters (_) to follow SQL
conventions. For example, if the name of your JAR file is address.jar, then
address_jar is appended to the name;

– Application name as defined by you during the deployment.

If the constructed name is greater than 30 (thirty) characters, the name is truncated
at 24 (twenty-four) characters. An underscore character (_), and then 5 (five)
characters made up of an alpha-numeric hash code are appended to the name for
uniqueness.

For example, if the EJB name is AddressEntry, the JAR file name is addr.jar
and the application name is address, then the default table name would be
AddressEntry_addr_jar_address.

■ Column names in each table–The container generates columns in each table based
on the <cmp-field> and <cmr-field> elements defined in the deployment
descriptor. A column is created for each <cmp-field> element that relates to the
entity bean data. In addition, a column is created for each <cmr-field> element
that represents a relationship. In a unidirectional relationship (see "Direction in
CMR" on page 1-3), only a single entity in the relationship defines a
<cmr-field> in the deployment descriptor. In bidirectional relationship (see
"Direction in CMR" on page 1-3), both entities in the relationship define a
<cmr-field>.

For each <cmr-field> element, the container creates a foreign key that points to
the primary key of the relevant object, as follows:

– In the default one-to-one relationship, the foreign key is created in the
database table for the source entity bean, and is directed to the primary key of
the target database table. For example, if one employee has one address, then
the foreign key is created within the employee table that points to the primary
key of the address table.

– The default for one-to-many relationship uses a foreign key.

– The default for many-to-many relationships creates an association table (a
third table). This association table contains two foreign keys, where each key
points to the primary key of one of the entity tables.

Since the <cmp-field> and <cmr-field> elements represent Java data types,
they may not convert to database types in the manner you believe they should.

Note: For all future redeployments, copy the automatically
generated orion-ejb-jar.xml file with the indicated table name
into the same directory as your ejb-jar.xml file from the J2EE_
Home/application-deployments directory. If you fail to do so,
different table names may be generated at each redeployment.

Configuring Container-Managed Relationship Fields

5-16 Oracle Containers for J2EE Orion CMP Developer’s Guide

There is a set of rules for converting CMP types to database types that you must
follow (see "Conversion of CMP Types to Database Types" on page 5-16). Note that
you can modify the translation rules of converting Java data types to database data
types in special database XML files that are located in J2EE_
HOME/config/database-schemas directory. This directory includes all
database files. The Oracle Database conversion file is named oracle.xml.

■ Primary keys–Entity beans’ underlying tables contain primary keys (see
"Configuring Primary Key" on page 5-1). The following are the types of primary
keys:

– Defined primary key: The primary key is generated as designated in the
<primkey-field> element as a simple data type or class. Thus, the column
name is the same as the name in the <primkey-field> element.

– Composite primary key: The primary key is defined within a class, and is
composed of several fields. Each field within the composite primary key is
represented by a column in the database table, where each field is considered
part of the primary key in the table.

– Automatically generated primary key: If you specify a java.lang.Object
as the primary key class type in <prim-key-class> element, but do not
specify the primary key name in <primkey-field> element, then the
primary key is automatically generated the the container. The column is
named AUTOID.

Conversion of CMP Types to Database Types
In defining the container-managed persistent fields in the <cmp-field> and the
primary key types, you can define simple data types and Java classes that are
serializable.

This section contains information on the following:

■ Simple Data Types

■ Serializable Classes

■ Other Entity Beans or Collections

Simple Data Types Table 5–4 provides a list of the supported simple data types, which
you can provide in the persistence-type attribute, with the mapping of these
types to SQL types and to Oracle database types. Note that none of these mappings are
guaranteed to work on non-Oracle databases.

Table 5–4 Simple Data Types

Known Type (native) SQL Type Oracle Type

java.lang.String VARCHAR(255) VARCHAR(255)

java.lang.Integer[] INTEGER NUMBER(20,0)

java.lang.Long[] INTEGER NUMBER(20,0)

java.lang.Short[] INTEGER NUMBER(10,0)

java.lang.Double[] DOUBLE PRECISION NUMBER(30,0)

java.lang.Float[] FLOAT NUMBER(20,5)

java.lang.Byte[] SMALLINT NUMBER(10,0)

java.lang.Character[] CHAR CHAR(1

Configuring Container-Managed Relationship Fields

Configuring an EJB 2.0 Entity Bean With Container-Managed Persistence 5-17

The Date and Time map to DATE in the database, because the DATE contains the time.
The Timestamp, however, maps to TIMESTAMP in the database, which gives the time
in nanoseconds.

Mapping java.sql.CLOB and java.sql.BLOB directly is not currently supported
because these objects are not serializable. However you can map a String or char[]
and byte[] to database column type CLOB and BLOB respectively. Mapping a
char[] to a CLOB or a byte[] to a BLOB can only be done with an Oracle database.
The Oracle JDBC API was modified to handle this operation.

There is a 4 KB limit when mapping a serialized object to a BLOB type over the JDBC
Thin driver.

When String and char[] variables map to a VARCHAR2 in the database, it can only
hold up to 2K. However, you can map String object or char[] larger than 2K to a
CLOB by doing the following:

1. The bean implementation uses the String or char[] objects.

2. The persistence-type attribute of the <cmp-field-mapping> element
defines the object as a CLOB, as follows:

<cmp-field-mapping name="stringdata" persistence-name="stringdata"
persistence-type="CLOB" />

Similarly, you can map a byte[] in the bean implementation to a BLOB, as follows:

<cmp-field-mapping name="bytedata" persistence-name="bytedata"
persistence-type="BLOB" />

Serializable Classes In addition to simple data types, you can define user classes that
implement java.io.Serializable interface. These classes are stored in a BLOB in
the database.

Other Entity Beans or Collections You should not define other entity beans or
Collection objects as a CMP type–these are relationships and should be defined
within a relationship field, as follows:

java.lang.Boolean[] BIT NUMBER(1,0)

java.util.Date DATETIME DATE

java.sql.Date DATE DATE

java.uti.Time DATE DATE

java.sql.Timestamp TIMESTAMP TIMESTAMP

java.lang.String CLOB CLOB

char[] CLOB CLOB

byte[] BLOB BLOB

java.io.Serializable (4KB limit) LONGVARBINARY BLOB

Note: You can modify the mapping of these data types in the
config/database-schema/<db>.xml configuration files.

Table 5–4 (Cont.) Simple Data Types

Known Type (native) SQL Type Oracle Type

Configuring Container-Managed Relationship Fields

5-18 Oracle Containers for J2EE Orion CMP Developer’s Guide

■ A relationship to another entity bean is always defined in a <cmr-field>
relationship.

■ Collection objects promote a "many" side of a relationship and should be
configured within a <cmr-field> relationship.

Configuring Explicit Mapping of Relationship Fields to the Database
As "Configuring Default Mapping of Persistent Fields to the Database" on page 5-11
discusses, the container can automatically map your relationship fields to the database
tables. If you do not want to accept the defaults that OC4J provides for you, or if you
need to map the fields to an existing database table, then you can manually map the
relationships between entity beans to an existing database table and its columns in the
orion-ejb-jar.xml file.

To manually match an existing database to the entity bean’s mappings, modify the
orion-ejb-jar.xml file by following this procedure:

1. Deploy your entity bean with container-managed persistence with the
<autocreate-tables> element set to false in the
orion-application.xml file.

2. Copy the orion-ejb-jar.xml file from the application-deployments/
directory to your development directory.

3. Modify the <data-source> element to point to the correct data source. Note that
all beans that are associated with each other must use the same data source.

4. Modify the table attribute to point to the correct table. Make sure that it is the
correct table for the bean that is defined in the <entity-deployments> element.

5. Modify the persistence-name attributes to point to the correct column for each
bean’s persistence type, whether a persistent or relationship field.

6. Set the <autocreate-tables> element in orion-application.xml file to
true.

7. Rearchive and redeploy your application.

To manually modify mapping elements if there is no existing database to match to
your entity bean’s mappings, follow this procedure:

Note: You should not use subinterfaces of Collection (such as
List, for example). Use the Collection instead.

Note: You need to modify elements and attributes of the
<entity-deployment> element t (see Table A–1, " Attributes of the
<entity-deployment> Element" on page A-4) in the
orion-ejb-jar.xml file to explicitly map relationship fields.
JDeveloper IDE is capable of managing complex mappings between
the entity beans and the database tables. Thus, JDeveloper validates
the deployment descriptors and prevents inconsistencies. You can
modify the orion-ejb-jar.xml file on your own; however, Oracle
suggests that you use JDeveloper for modifying container-managed
relationships. For more information about JDeveloper, see "Using
JDeveloper" on page 2-4.

Configuring Container-Managed Relationship Fields

Configuring an EJB 2.0 Entity Bean With Container-Managed Persistence 5-19

1. Deploy your bean with the <autocreate-tables> element set to false in the
orion-application.xml file and the ejb-jar.xml elements configured.

OC4J creates an orion-ejb-jar.xml file with the default mappings in it. It is
easier to modify these fields than to create them.

2. Copy the container-created orion-ejb-jar.xml file from the J2EE_
HOME/application-deployments directory to your development
environment.

3. Modify the <entity-deployment> element (see Table A–1, " Attributes of the
<entity-deployment> Element" on page A-4) in the orion-ejb-jar.xml file to
use the database table and columns that you specify based on the relationship
type. For more information, see"Configuring orion-ejb-jar.xml to Map Bean
Relationships to Database Tables" on page 5-19.

4. Set the <autocreate-tables> element in orion-application.xml file to
true.

5. Rearchive and redeploy your application.

Configuring orion-ejb-jar.xml to Map Bean Relationships to Database Tables
The relationship between the entity beans is defined in the <relationships>
element in the ejb-jar.xml file. The mapping between the entity bean and the
database table and columns is specified in the <entity-deployment> element in the
orion-ejb-jar.xml file.

The orion-ejb-jar.xml file maps the bean relationships to database table and
columns within a <cmp-field-mapping> element. The following is the XML
structure of the <entity-deployment> and <cmp-field-mapping> elements for
a simple one-to-one relationship:

<entity-deployment name="SourceBeanName" location="JNDIlocation"
table="TableName" data-source="DataSourceJNDIName">

...
<cmp-field-mapping name="CMRfield_name">

<entity-ref home="targetBeanName">
<cmp-field-mapping name="CMRfield_name"
persistence-name="targetBean_PKcolumn" />

</entity-ref>
</cmp-field-mapping>

...

Within the <cmp-field-mapping> element, you can define the bean’s name (the
source of the relationship that indicates the direction), the JNDI location, the database
table to which the information is persisted, and map each of the persistent and
relationship fields defined in the ejb-jar.xml file to the underlying database.

The attributes of the <entity-deployment> element (see Table A–1, " Attributes of
the <entity-deployment> Element" on page A-4) define the following for the bean:

■ The name attribute identifies the EJB name of the bean, which was defined in the
<ejb-name> element in the ejb-jar.xml file. This name attribute connects the
ejb-jar.xml file definition for the bean to its mapping to the database.

Note: If you deploy your application without setting
<autocreate-tables> to false, then OC4J automatically creates
the default tables. You must delete all these tables before redeploying
the application. You must also delete an association table, if any.

Configuring Container-Managed Relationship Fields

5-20 Oracle Containers for J2EE Orion CMP Developer’s Guide

■ The location attribute identities the JNDI name of the bean.

■ The table attribute identifies the database table to which this entity bean is
mapped.

■ The data-source attribute identifies the database in which the table resides. The
data source must be the same for all beans that interact with each other or are
associated with each other. This includes beans that are in the same application,
part of the same transaction, or beans that are in a parent-child relationship.

The <cmp-field-mapping> element in the orion-ejb-jar.xml file maps the
following fields to database columns:

■ The <cmp-field> element in the ejb-jar.xml file defines a persistent field.

■ The <cmr-field> element in the ejb-jar.xml file defines a relationship field.

Example 5–6 ejb-jar.xml and orion-ejb-jar.xml Mapping for a One-To-One Relationship

Example 5–6 demonstrates how the <cmr-field> element in the ejb-jar.xml file
maps to the <cmp-field-mapping> element in the orion-ejb-jar.xml file. The
name attribute in the <cmp-field-mapping> provides the link between the two
XML files. You must not modify any name attributes.

EJB-JAR.XML

<relationship-role-source>
<ejb-name>EmpBean</ejb-name>

</relationship-role-source>
<cmr-field>

<cmr-field-name>address</cmr-field-name>
</cmr-field>

ORION-EJB-JAR.XML

<cmp-field-mapping name="address">
<entity-ref home="AddressBean">

<cmp-field-mapping name="address" persistence-name="addressPK" />
</entity-ref>

</cmp-field-mapping>

To fully identify and map relationship fields, nested <cmp-field-mapping>
elements are used. The format of the nesting depends on the type of relationship. The
database column that is the primary key of the target bean is defined in the
persistence-name attribute of the internal <cmp-field-mapping> element. If
you have an existing database, you would be modifying the persistence-name
attributes for each <cmp-field-mapping> element to match your column names.

Explicit One-to-One Relationship Mapping
In a hypothetical model, there is a one-to-one unidirectional relationship (see
"Direction in CMR" on page 1-3) between a single employee (represented by EmpBean)
and his/her address (represented by AddressBean). The EmpBean points to the
AddressBean using the relationship field address. These two beans will map to the
EMP and ADDRESS database tables. The EMP table has a foreign key named address,
which points to the primary key of the ADDRESS table named AddressPK.

Example 5–7 Explicit One-to-One Unidirectional Relationship Mapping

The beans and their relationships are specified in both the ejb-jar.xml and the
orion-ejb-jar.xml deployment descriptors. As Example 5–7 shows, in the
ejb-jar.xml file, the one-to-one relationship between the EmpBean and

Configuring Container-Managed Relationship Fields

Configuring an EJB 2.0 Entity Bean With Container-Managed Persistence 5-21

AddressBean is defined within a <relationships> element. The direction (see
"Direction in CMR" on page 1-3) is designated by one or two <cmr-field> elements.

The mapping of the beans to their database persistent storage is defined in the
orion-ejb-jar.xml file. The one-to-one relationship is mapped on both sides with
an <entity-ref> element inside a <cmp-field-mapping> element. The
<entity-ref> describes the target entity bean of the relationship.

EJB-JAR.XML

<relationships>
...

<ejb-relation>
...
<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>EmpBean</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>address</cmr-field-name>
</cmr-field>
...
</ejb-relation>
<ejb-relation>
...

<relationship-role-source>
<ejb-name>AddressBean</ejb-name>

</relationship-role-source>
...

</ejb-relation>
...

ORION-EJB-JAR.XML

<entity-deployment name="EmpBean"...

<cmp-field-mapping name="address">
<entity-ref home="AddressBean">

<cmp-field-mapping name="address" persistentce-name="addressPK" />
</entity-ref>

</cmp-field-mapping>
...

</entity-deployment>
<entity-deployment name="AddressBean"...

...
<cmp-field-mapping name="empNumber">

<entity-ref home="EmpBean">
<cmp-field-mapping name="empNumber" persistentce-name="empnumber" />

</entity-ref>
</cmp-field-mapping>
...

</entity-deployment>

To map your bean fields to an existing database, you need to understand the fields
within the <cmp-field-mapping> element in the orion-ejb-jar.xml file. This
element has the following structure:

<cmp-field-mapping name="CMRField_name">
<entity-ref home="targetBeanName">

<cmp-field-mapping name="CMRfield_name"
persistence-name="targetBean_PKcolumn" />

</entity-ref>

Configuring Container-Managed Relationship Fields

5-22 Oracle Containers for J2EE Orion CMP Developer’s Guide

</cmp-field-mapping>

In the preceding structure example, the following occurs:

■ The name attribute of the <cmp-field-mapping> element is the same as the
<cmp-field> element in the ejb-jar.xml file. Do not modify the name
attribute in the <cmp-field-mapping> element.

■ The target bean name is specified in the home attribute of the <entity-ref>
element.

■ The database column that is the primary key of the target bean is defined in the
persistence-name attribute of the internal <cmp-field-mapping> element.
If you have an existing database, modify the persistence-name attributes for
each <cmp-field-mapping> element to match your column names.

Explicit One-to-Many Relationship Mapping
In a hypothetical model, each employee (represented by EmpBean) belongs to only one
department (represented by DeptBean), and each department can contain multiple
employees. The department table has a primary key. The employee table has a primary
key to identify each employee and a foreign key to point back to the employee's
department. If you want to find the department for a single employee, a simple SQL
statement retrieves the department information from the foreign key. To find all
employees in a department, the container executes a JOIN statement on both the
department and employee tables and retrieves all employees with the designated
department number.

This is the default behavior. If you need to change the mappings to other database
tables, then use either JDeveloper, or manually modify the orion-ejb-jar.xml file
to manipulate the <collection-mapping> or <set-mapping> element.

Example 5–8 Explicit One-to-Many Bidirectional Relationship Mapping Using Foreign
Key

Example 5–8 shows the mapping for the bidirectional relationship of one department
with many employees. The "one" side of the relationship is the department; the "many"
side of the relationship is the employee. Example 5–8 demonstrates how to manually
modify the orion-ejb-jar.xml file for this relationship to use a foreign key.

EJB-JAR.XML

<relationships>
<ejb-relation>

<ejb-relation-name>Dept-Emps</ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>Dept-has-Emps</ejb-relationship-role-name>

Note: Modify elements and attributes of the
<entity-deployment> element (see Table A–1, " Attributes of the
<entity-deployment> Element" on page A-4) in the
orion-ejb-jar.xml file to explicitly map relationship fields.
JDeveloper is capable of managing the complex mapping between the
entity beans and the database tables. JDeveloper validates the
deployment descriptors and prevents inconsistencies. Even though
you can modify the orion-ejb-jar.xml file on your own, Oracle
suggests you to use JDeveloper for modifying container-managed
relationships. For more information about JDeveloper, see "Using
JDeveloper" on page 2-4.

Configuring Container-Managed Relationship Fields

Configuring an EJB 2.0 Entity Bean With Container-Managed Persistence 5-23

<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>DeptBean</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>employees</cmr-field-name>
<cmr-field-type>java.util.Set</cmr-field-type>

</cmr-field>
</ejb-relationship-role>

<ejb-relationship-role-name>Emps-have-Dept</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<cascade-delete/>
<relationship-role-source>

<ejb-name>EmpBean</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>dept</cmr-field-name>
</cmr-field>

</ejb-relationship-role>
</ejb-relation>

</relationships>

ORION-EJB-JAR.XML

<enterprise-beans>
<entity-deployment name="DeptBean" data-source="jdbc/scottDS" table="DEPT">

<primkey-mapping>
<cmp-field-mapping name="deptno" persistence-name="DEPTNO" /> /*PK*/

</primkey-mapping>
<cmp-field-mapping name="dname" persistence-name="DNAME" />
<cmp-field-mapping name="employees">
/*points from DEPTNO column in EMP to DEPTNO in DEPT*/

1. <collection-mapping table="EMP"> /*table with FK*/
<primkey-mapping>

<cmp-field-mapping name="DeptBean_deptno"> /*CMR field name*/
<entity-ref home="DeptBean"> /*points to DeptBean*/

2. <cmp-field-mapping name="DeptBean_deptno"
persistence-name="EDEPTNO"/>

</entity-ref>
</cmp-field-mapping>

</primkey-mapping>
<value-mapping type="mypackage1.EmpLocal">

<cmp-field-mapping name="EmpBean_empnumber">
<entity-ref home="EmpBean">

<cmp-field-mapping name="EmpBean_empnumber"
persistence-name="EMPNUMBER"/>

</entity-ref>
</cmp-field-mapping>

</value-mapping>
</collection-mapping>
</cmp-field-mapping>

</entity-deployment>
<entity-deployment name="EmpBean" data-source="jdbc/scottDS" table="EMP">

<primkey-mapping>
<cmp-field-mapping name="empNumber" persistence-name="EMPNUMBER"/>

</primkey-mapping>
<cmp-field-mapping name="empName" persistence-name="ENAME" />
<cmp-field-mapping name="salary" persistence-name="SAL" />
<cmp-field-mapping name="dept"> /*foreign key*/

<entity-ref home="DeptBean">
2. <cmp-field-mapping name="dept" persistence-name="EDEPTNO" />

Configuring Database Isolation Levels

5-24 Oracle Containers for J2EE Orion CMP Developer’s Guide

</entity-ref>
</cmp-field-mapping>

</entity-deployment>
</enterprise-beans>

In the preceding orion-ejb-jar.xml example, if the table identified in the
<collection-mapping> or <set-mapping> element of the "one" relationship (the
department) is the name of the target bean's table (the employee bean table), then the
one-to-many relationship is defined with a foreign key. For example, the table
attribute in the department definition is EMP.

The foreign key is defined in the database table of the "many" relationship. In the
preceding example, the EDEPTNO foreign key column exists in the EMP database table.
This is defined in a persistence-name attribute of the <cmp-field-mapping>
element in the EmpBean configuration.

Thus, to manipulate the <collection-mapping> or <set-mapping> element in
the orion-ejb-jar.xml file, modify the <entity-deployment> element (see
Table A–1, " Attributes of the <entity-deployment> Element" on page A-4) for the
"one" entity bean (which contains the Collection), as follows:

1. Modify the table in the <collection-mapping> or <set-mapping> table
attribute in the "one" relationship to be the database table of the "many"
relationship. In this example, you would modify this attribute to be the EMP table.

2. Modify the foreign key that points to the "one" relationship within the "many"
relationship configuration. In this example, modify the <cmp-field-mapping>
element to specify the EDEPTNO foreign key in the persistence-name attribute.

Configuring Database Isolation Levels
You can configure one of the database isolation levels (see "Entity Bean Database
Isolation Levels and Resource Contention" on page 1-9) for a specific bean. That is, you
can specify that when the bean starts a transaction, the database isolation level for this
bean be what is specified in the OC4J-specific deployment descriptor (on parallel
execution or data consistency).

You can set the isolation level for each entity bean in the isolation attribute of the
<entity-deployment> element (see Table A–1, " Attributes of the
<entity-deployment> Element" on page A-4). You can use committed or
serializable value with committed being the default. To change this default
value to serializable, configure the following in the orion-ejb-jar.xml for the
intended bean:

<entity-deployment ... isolation="serializable"
 ...
</entity-deployment>

The serializable isolation level provides data consistency; the committed
isolation level enables the parallel execution.

Note: Once set, the isolation level for the bean is valid for the entire
transaction.

Configuring Concurrency Modes

Configuring an EJB 2.0 Entity Bean With Container-Managed Persistence 5-25

If you do not define an isolation level, you receive the level that is configured in the
database. Setting the isolation level within the OC4J-specific deployment descriptor
temporarily overrides the database configured isolation level for the life of the global
transaction for this bean. That is, if you define the bean to use the serializable
level, then OC4J will force the database to be serializable for this bean only until
the end of the transaction.

You can specify both the entity bean concurrency mode and database isolation level, if
the combination affects the outcome of your resource contention. See "Combining
Entity Bean Database Isolation Level and Concurrency Mode" on page 1-9 for more
information.

For more information about resource contention, see "Avoiding Database Resource
Contention" on page 1-8.

Configuring Concurrency Modes
The concurrency modes determine when to block to manage resource contention, or
when to execute in parallel. For more information, see "Entity Bean Concurrency
Modes and Resource Contention" on page 1-9.

To set the entity bean with container-managed persistence’s concurrency mode, add
the appropriate concurrency value of pessimistic, optimistic, or read-only to
the locking-mode attribute of the <entity-deployment> element (see Table A–1,
" Attributes of the <entity-deployment> Element" on page A-4) in the OC4J-specific
deployment descriptor (orion-ejb-jar.xml file). The default concurrency mode is
optimistic. To change the concurrency mode to pessimistic, perform the
following modifications:

<entity-deployment ... locking-mode="pessimistic"
 ...
</entity-deployment>

The concurrency modes are defined on a per-bean basis and the effects of locking
apply on the transaction boundaries.

Parallel execution requires the correct setting of the pool size for wrapper and bean
instances.

For more information, see the following:

WARNING: Do not set the isolation level to serializable if you
are using a nonemulated data source. If you do use this setting, the
nonemulated data source will not work.

WARNING: There is a danger of lost updates with the
serializable level if the <max-tx-retries> element value in
the OC4J-specific deployment descriptor is greater than 0 (with 0
being the default). If this element is set to greater than 0, then the
container retries the update if a second blocked client receives an
ORA-8177 exception. The retry would find the row unlocked and
the update would occur. Thus, the second client’s update succeeds
and overwrites the first client’s update. If you use serializable
isolation level, consider leaving the <max-tx-retries> element as
0 for data consistency.

Configuring Exclusive Write Access to the Database

5-26 Oracle Containers for J2EE Orion CMP Developer’s Guide

■ "Avoiding Database Resource Contention" on page 1-8.

■ "Combining Entity Bean Database Isolation Level and Concurrency Mode" on
page 1-9.

Configuring Exclusive Write Access to the Database
The exclusive-write-access attribute of the <entity-deployment> element
(see Table A–1, " Attributes of the <entity-deployment> Element" on page A-4) states
that this is the only entity bean that accesses its table in the database and that no
external methods are used to update the resource. It informs the OC4J instance that
any cache maintained for this bean will only be dirtied by this bean. Essentially, if you
set this attribute to true, you are assuring the container that this is the only bean that
will update the tables used within this bean. Thus, any cache maintained for the bean
does not need to constantly update from the back-end database.

This flag does not prevent you from updating the table; that is, it does not actually lock
the table. However, if you update the table manually or from another bean, the results
are not automatically updated within this bean.

The default value of the exclusive-write-access attribute is false. Because of
the effects of the entity bean concurrency modes (see "Configuring Concurrency
Modes" on page 5-25), you can only set this element to true for a read-only entity
bean. OC4J always resets this attribute to false for pessimistic and optimistic
concurrency modes.

For more information, see the following:

■ "Configuring Concurrency Modes" on page 5-25.

■ "Configuring Database Isolation Levels" on page 5-24.

■ "Avoiding Database Resource Contention" on page 1-8.

Configuring Callback Methods for EJB 2.0 Entity Beans With
Container-Managed Persistence

In your entity bean class (see "Implementing the Entity Bean Class" on page 4-4), you
have to provide the following configurations of the entity bean’s callback methods (see
"Callback Methods" on page 1-4):

■ Provide the ejbCreate method with parameters matching the associated
create method defined in the home interface (see "Implementing the Entity Bean
Home Interface" on page 4-2). See the implementation of this method in the
Example 4–3, "Implementing the Entity Bean Class" on page 4-4.

■ Set the primary key (see "Configuring Primary Key" on page 5-1) in the
ejbCreate method. See the implementation of this method in the Example 4–3,
"Implementing the Entity Bean Class" on page 4-4

■ Define the primary key relationships, if any, in the ejbCreate method. See the
implementation of this method in the Example 4–3, "Implementing the Entity Bean
Class" on page 4-4.

■ Define the javax.ejb.EntityContext for your bean in the
setEntityContext method (see the implementation of this method in the
Example 4–3, "Implementing the Entity Bean Class" on page 4-4). You can also
allocate any other resources that will exist for the lifetime of the bean within this
method.

Configuring Callback Methods for EJB 2.0 Entity Beans With Container-Managed Persistence

Configuring an EJB 2.0 Entity Bean With Container-Managed Persistence 5-27

■ Unset (set to null) the bean’s associated entity context in the
setEntityContext method. Release other resources, if any, in the
setEntityContext method. See the implementation of this method in the
Example 4–3, "Implementing the Entity Bean Class" on page 4-4).

The rest of the callback methods only require an empty implementation in the entity
bean class–the container provides the full implementation for these methods.
However, depending on the logic of your entity bean implementation, you may take
actions similar to the following:

■ Define the foreign key (see "Configuring Foreign Key in a Composite Primary
Key" on page 5-4) in the ejbPostCreate method.

■ Retrieve resources in the ejbActivate method and release them in the
ejbPassivate method.

Configuring Callback Methods for EJB 2.0 Entity Beans With Container-Managed Persistence

5-28 Oracle Containers for J2EE Orion CMP Developer’s Guide

Implementing Query Methods for an Entity Bean With Container-Managed Persistence 6-1

6
Implementing Query Methods for an Entity
Bean With Container-Managed Persistence

You can express your entity bean queries using finder or select methods. This chapter
provides details on implementing Orion EJB 2.0 EJB QL finder and select methods.

This chapter includes information on the following topics:

■ Implementing EJB QL Finder Methods

■ Implementing EJB QL Select Methods

For more information, see the following:

■ "Querying for an Entity Bean" on page 1-6

■ "Implementing an EJB 2.0 Entity Bean With Container-Managed Persistence" on
page 4-1

Implementing EJB QL Finder Methods
This section describes the following:

■ Specifying Finder Methods Using EJB QL Syntax

■ Specifying Finder Methods Using OC4J-specific Syntax

Finder methods (ejbFind) define search criteria that let you query for an entity bean
(see "Understanding Finder Methods" on page 1-8 for more information).

To define finder methods, follow this procedure:

1. Define the find<NAME> method in the desired home interface. You can specify
different finder methods in the remote or the local home interface. If you define
the same finder method in both home interfaces, it maps to the same entity bean
class definition. The container returns the appropriate home interface type.

2. Define the full query or just the conditional statement (the WHERE clause) for the
finder method in the deployment descriptor.

You can define the query using either EJB QL syntax or OC4J-specific syntax. You
can specify either a full query or only the conditional part of the query (the WHERE
clause):

– EJB QL syntax is defined within the ejb-jar.xml file. An EJB QL statement
is created for each finder method in its own <query> element. The container
uses this statement to translate the condition on how to retrieve the entity
bean references into the relevant SQL statements.

Implementing EJB QL Finder Methods

6-2 Oracle Containers for J2EE Orion CMP Developer’s Guide

See "Specifying Finder Methods Using EJB QL Syntax" on page 6-2 for more
information.

– OC4J-specific syntax is defined within the orion-ejb-jar.xml file. When
you deploy your application, OC4J translates the EJB QL syntax into the
OC4J-specific syntax, which is specified in the query attribute of the
<finder-method> element. You can modify the statement in the query
attribute for a more complex query using the OC4J syntax. The OC4J-specific
query statement in the orion-ejb-jar.xml file takes precedence over the
corresponding EJB QL statement in the ejb-jar.xml file.

See "Specifying Finder Methods Using OC4J-specific Syntax" on page 6-3 for
more information.

If you retrieve only a single entity bean reference, the container returns the same type
as returned in the find<NAME> method. If you request multiple entity bean
references, you must define the return type of the find<NAME> method to return a
Collection. If you want to ensure that no duplicates are returned, specify the
DISTINCT keyword in the EJB QL statement. An empty Collection is returned if no
matches are found.

Specifying Finder Methods Using EJB QL Syntax
There are two steps in creating a finder method using EJB QL syntax:

1. Defining Finder Methods in the Home Interface

2. Using the Deployment Descriptor to Provide the Finder Methods Definition

Defining Finder Methods in the Home Interface
You must add the finder method to the home interface. For example, if you want to
retrieve all employees, define the findAll method in the home interface (local home
interface for this example), as follows:

public Collection findAll() throws FinderException

To retrieve data for a single employee, define the findByEmployeeNumber method
in the home interface, as follows:

public EmployeeLocal findByEmployeeNumber(Integer empNumber) throws
FinderException;

In the preceding example, the returned bean interface is the local interface,
EmployeeLocal. The input parameter is an employee number, empNumber, which is
substituted in the EJB QL ?1 parameter.

Using the Deployment Descriptor to Provide the Finder Methods Definition
Each finder method is defined in the deployment descriptor in a <query> element.
The following example shows the deployment descriptor for the
findByEmployeeNumber method:

Note: In EJB 2.0, EJB QL has limited support for GROUP BY and
ORDER BY functions, such as AVERAGE and SUM.

Note: Finder methods must throw FinderException.

Implementing EJB QL Finder Methods

Implementing Query Methods for an Entity Bean With Container-Managed Persistence 6-3

<query>
<description></description>
<query-method>
<method-name>findByEmployeeNumber</method-name>
<method-params>
<method-param>java.lang.Integer</method-param>

</method-params>
</query-method>
<ejb-ql>SELECT OBJECT(e) FROM Employee emp WHERE emp.empNumber = ?1</ejb-ql>

</query>

The EJB QL statement for the findByEmployeeNumber method selects the
Employee object where the employee number is substituted in the EJB QL ?1
parameter. The ? symbol denotes a placeholder for the method parameters. Thus, the
findByEmployeeNumber method is required to supply at least one parameter. The
empNumber passed in on the findByEmployeeNumber method is substituted in the
?1 position here. The variable, emp, identifies the Employee object in the WHERE
condition.

Specifying Finder Methods Using OC4J-specific Syntax
There are two steps in creating a finder method using OC4J-specific syntax:

1. Adding Finder Methods to the Home Interface

2. Using the OC4J-specific Deployment Descriptor to Define Finder Methods

Adding Finder Methods to the Home Interface
You must first add the finder method to the home interface. For example, with the
Employee entity bean, to retrieve all employees, you would define the findAll
method within the home interface, as follows:

public Collection findAll() throws FinderException, RemoteException;

Using the OC4J-specific Deployment Descriptor to Define Finder Methods
After specifying the finder method in the home interface, modify the
orion-ejb-jar.xml file by adding the finder method query.

The <finder-method> element defines all finder methods, except the
findByPrimaryKey method. The simplest finder method to define is the findAll
method. The query attribute in the <finder-method> element can specify a full
query or just the WHERE clause for the query. If you want all rows retrieved, then
specify an empty query (query="") as it returns all records.

OC4J-specific finder methods are configured in the orion-ejb-jar.xml file in a
<finder-method> element. Each <finder-method> element specifies a partial or
full SQL statement in its query attribute, as follows:

/*the empty WHERE clause finds all*/
<finder-method query="">

OR

/*finds all records where employee equals the first input parameter*/
<finder-method query="$empName=$1">

If you have a <finder-method> element with a query attribute, it takes precedence
over any EJB QL modifications to the same method in the ejb-jar.xml file.

To define a complex finder method, follow this procedure:

Implementing EJB QL Finder Methods

6-4 Oracle Containers for J2EE Orion CMP Developer’s Guide

1. In the ejb-jar.xml file, define a simple query using EJB QL.

2. Deploy the application. When you deploy, OC4J translates the EJB QL statement to
the OC4J-specific equivalent. The full underlying SQL statement to be executed is
displayed in a comment (see Example 6–1, "OC4J-specific Syntax for findAll
Method" on page 6-4).

3. Modify the query attribute of the <finder-method> element in the
orion-ejb-jar.xml file to achieve the desired level of complexity. When you
redeploy, OC4J translates the new query and outputs a new comment with the
SQL statement to be executed. Check the comment to verify that you have the
right syntax.

If you want to use the EJB QL syntax and you have an existing definition in
orion-ejb-jar.xml file, then do the following:

1. Erase the query attribute of the <finder-method> element in the
orion-ejb-jar.xml file.

2. Redeploy the application. OC4J notices that the query attribute of the
<finder-method> element is not present and uses the EJB QL methodology
from the ejb-jar.xml file instead.

Example 6–1 OC4J-specific Syntax for findAll Method

Example 6–1 demonstrates the retrieval of all records from the EmployeeBean. The
finder method name is findAll. This method requires no parameters because it
returns a Collection of all employees.

<finder-method query="">
<!-- Generated SQL: "select EmployeeBean.empNumber,

 EmployeeBean.empName, EmployeeBean.salary from EmployeeBean" -->
<method>

<ejb-name>EmployeeBean</ejb-name>
<method-name>findAll</method-name>

<method-params></method-params>
</method>

</finder-method>

WARNING: There are limitations in the way OC4J generates SQL
statements based on the partial finder query when executing
complex queries that involve CMR. For example, there is no
notation to dereference across a CMR join. You have to set the
partial attribute of the <finder-method> element to false and
use raw SQL when dealing with columns for container-managed
relationships. For more information on partial queries, see "Element
Description" on page A-9 and Example 6–3 on page 6-5.

Note that this limitation is partially caused by the EJB 2.0
specification not supporting the LIKE clause.

Note: If you wish to add specifics to your query, you can modify the
query attribute with the appropriate WHERE clause. This clause refers
to passed-in parameters using the dollar ($) symbol: the first
parameter is denoted by $1, the second by $2, and so forth. All
<cmp-field> elements that are used within the WHERE clause are
denoted by $<cmp-field> name.

Implementing EJB QL Finder Methods

Implementing Query Methods for an Entity Bean With Container-Managed Persistence 6-5

Example 6–2 OC4J-specific Syntax for findByName Method

Example 6–2 demonstrates the specification of a findByName method (which should
be defined in the home interface). The name of the employee is given as in the method
parameter, which is substituted for the $1. It is matched to the CMP name, empName.
Thus, the query attribute is modified to contain $empName=$1 for the WHERE clause.

<finder-method query="$empName=$1">
<method>

<ejb-name>EmployeeBean</ejb-name>
<method-name>findByName</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</method>
</finder-method>

Example 6–3 OC4J-specific Syntax for the Full Query

Example 6–3 shows how to specify a full query instead of just the section after the
WHERE clause. In this case, you would have to set the partial attribute to false, and
then define the full query in the query attribute. The default value for the partial
attribute is true (that is the reason it is not specified in the Example 6–2).

<finder-method partial="false" query="select * from emp where $empName=$1">
<!-- Generated SQL: "select * from emp where emp.empName=?" -->
<method>

<ejb-name>EmployeeBean</ejb-name>
<method-name>findByName</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</method>
</finder-method>

Example 6–4 OC4J-specific Syntax for Enabling Lazy Loading

For entity bean finder methods, lazy loading can cause the select method (see
"Understanding Select Methods" on page 1-8) to be invoked more than once. By
default, lazy loading is turned off. If you are retrieving large numbers of objects, and
you are accessing only a few of them, you should turn on lazy loading by setting the
lazy-loading property to true, as Example 6–4 shows:

Note: If you have more than one method parameter, define each
parameter type in successive <method-param> elements and refer to
it in the query statement by successive $n, where n represents the
number.

Note: You can specify a SQL JOIN in the query attribute.

Note: When using a generated SQL statement as the basis for a
partial finder query, you need to ensure the following:

■ SQL-specific ? placeholders are translated to $n positional
parameters.

■ certain XML characters, such as >, <, >=, are escaped.

Implementing EJB QL Select Methods

6-6 Oracle Containers for J2EE Orion CMP Developer’s Guide

<finder-method partial="false" query="select * from emp where $empName=$1"
lazy-loading=true>

<!-- Generated SQL: "select * from emp where emp.empName=?" -->
<method>

<ejb-name>EmployeeBean</ejb-name>
<method-name>findByName</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</method>
</finder-method>

Example 6–5 OC4J-specific Syntax for Setting the Fetch Size

You can define how many rows at a time the JDBC driver fetches by setting the
prefetch-size attribute, as Example 6–5 shows:

<finder-method partial="false" query="select * from emp where $empName=$1"
prefetch-size="15">

<!-- Generated SQL: "select * from emp where emp.empName=?" -->
<method>

<ejb-name>EmployeeBean</ejb-name>
<method-name>findByName</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</method>
</finder-method>

Oracle JDBC drivers include extensions that let you set the number of rows to prefetch
into the client while a result set is being populated during a query. This reduces round
trips to the database by fetching multiple rows of data each time data is fetched (the
extra data is stored in client-side buffers for later access by the client). The number of
rows to prefetch can be set as desired. The default number of rows to prefetch to the
client is 10. This number is passed to the JDBC driver.

Implementing EJB QL Select Methods
Select methods (ejbSelect) are used to retrieve entity bean references or values of
container-managed persistent or relationship fields (see "Understanding Select
Methods" on page 1-8).

The format for an ejbSelect method definition is as follows:

public abstract type ejbSelect<METHOD>(...);

Although the select method is not based on the identity of the entity bean instance on
which it is invoked, it can use the primary key of an entity bean as an argument. This
creates a query that is logically scoped to a particular entity bean instance. For
information on how to define the select method return type, see "Defining the Return
Type for the Select Method" on page 6-8.

To define a select method, follow this procedure:

1. Define an ejbSelect<NAME> method in the bean class for each select method.
Each method is defined as public abstract. The SQL that is necessary for this
method is not included in the implementation.

2. Define the full query or the conditional statement alone (the WHERE clause) for the
select method in the deployment descriptor. An EJB QL statement is created for

Implementing EJB QL Select Methods

Implementing Query Methods for an Entity Bean With Container-Managed Persistence 6-7

each select method in its own <query> element. The container uses this statement
to translate the condition into the relevant SQL statements.

Example 6–6 Defining the Select Method in the Bean Class

Example 6–6 demonstrates the definition of a select method to retrieve all employees
whose salary falls within a specified range:

public abstract Collection ejbSelectBySalaryRange(Float s1, Float s2)
throws FinderException;

Because the preceding select method retrieves multiple employees, a Collection is
returned. The low and high ends of the salary range are input parameters, which are
substituted in the EJB QL for?1 and ?2 parameters. The first input parameter is
returned in?1; the second input parameter is returned in ?2. The order of the all
declared method parameters is the same as the order of the ?1, ?2, ... ?n EJB QL
parameters.

Example 6–7 Providing the Select Method Definition in the Deployment Descriptor

Each select method is defined in the deployment descriptor in a <query> element.
Example 6–7 shows the deployment descriptor for the ejbSelectBySalaryRange
method defined in the bean class in Example 6–6:

<query>
<description></description>
<query-method>

<method-name>ejbSelectBySalaryRange</method-name>
<method-params>

<method-param>java.lang.Float</method-param>
<method-param>java.lang.Float</method-param>

</method-params>
</query-method>
<ejb-ql>SELECT DISTINCT OBJECT(emp) From Employee emp

WHERE emp.salary BETWEEN ?1 AND ?2</ejb-ql>
</query>

The ejbSelectBySalaryRange method has two input parameters of type float. The
types of these expected input parameters are defined in the <method-param>
elements.

The EJB QL is defined in the <ejb-ql> element. The ejbSelectBySalaryRange
method evaluates the persistent field of salary within the EJB QL statement by the
emp.salary. The emp represents the Employee object; the salary represents the
persistent field within that object. The separating period between them indicates the
relationship between the entity bean and its persistent field.

The two input parameters designate the low and high salary ranges and are
substituted in the ?1 and ?2 positions respectively.

The ejbSelectBySalaryRange method returns objects, where the DISTINCT
keyword ensures that no duplicate records are returned.

Note: You cannot modify the query statement for an ejbSelect
method in the orion-ejb-jar.xml file, as you can for finder
methods.

Note: Select methods must throw FinderException.

Implementing EJB QL Select Methods

6-8 Oracle Containers for J2EE Orion CMP Developer’s Guide

Defining the Return Type for the Select Method
The following is the list of conditions that you must consider when defining return
types for your select methods:

■ If the select method does not find any objects, a FinderException is raised.

■ If you want your select method to find a single object, the container returns the
same type as returned in the ejbSelect<NAME> method. If multiple objects are
returned, a FinderException is raised.

■ If you want your select method to find multiple objects, you must define the
return type of the ejbSelect<NAME> method as either a Set or Collection. A
Set eliminates duplicates. A Collection may include duplicates. For example,
if you want to retrieve all zip codes of all customers, use a Set to eliminate
duplicates. To retrieve all customer names, use a Collection to retrieve the full
list. An empty Collection or Set is returned if no matches are found.

– If your select method returns a bean interface, the default interface type
returned within the Set or Collection is the local bean interface. You can
change this to the remote bean interface in the <result-type-mapping>
element, as follows:

<result-type-mapping>Remote</result-type-mapping>

– If your select method returns a Set or Collection of CMP values, the
container determines the object type from the EJB QL select statement.

XML Reference for orion-ejb-jar.xml Elements A-1

A
XML Reference for orion-ejb-jar.xml

Elements

This appendix describes the elements contained within the orion-ejb-jar.dtd–
the OC4J-specific EJB deployment descriptor. This appendix covers the structure and
briefly describes the elements in this DTD; however, most of these elements are fully
described in other sections of this book.

The DTD is located at
http://xmlns.oracle.com/ias/dtds/orion-ejb-jar.dtd.

The description of this deployment descriptor has been divided into the following
sections:

■ Overall description of each element section–Each section of elements of this XML
file is described in "OC4J-specific Deployment Descriptor for EJB" on page A-2.

■ Element description–An alphabetical listing and description for each element is
discussed in "Element Description" on page A-9.

Whenever you deploy an application, OC4J automatically generates the OC4J-specific
XML file with the default elements. If you want to change these defaults, you must
copy the orion-ejb-jar.xml file to where your original ejb-jar.xml file is
located and change it in this location. If you change the XML file within the deployed
location, OC4J overwrites these changes when the application is deployed again. The
changes only stay constant when changed in the development directories.

You should add your OC4J-specific XML files within the recommended development
structure, similar to the one that Figure A–1 shows:

OC4J-specific Deployment Descriptor for EJB

A-2 Oracle Containers for J2EE Orion CMP Developer’s Guide

Figure A–1 Development Application Directory Structure

OC4J-specific Deployment Descriptor for EJB
The OC4J-specific deployment descriptor contains extended deployment information
for entity beans and the security for these beans. The major element structure of
interest within this deployment descriptor is as follows:

<orion-ejb-jar deployment-time=... deployment-version=...>
<enterprise-beans>

<entity-deployment ...></entity-deployment>
</enterprise-beans>
<assembly-descriptor>

<security-role-mapping ...></security-role-mapping>
<default-method-access></default-method-access>

</assembly-descriptor>
</orion-ejb-jar>

Each section under the <orion-ejb-jar> main tag has its own purpose. These are
described in the following sections:

■ Enterprise Beans Section

■ Assembly Descriptor Section

Enterprise Beans Section
The <enterprise-beans> section defines additional deployment information for all
EJB. There is a section for each type of EJB.

The following sections describe the elements of interest (entity beans with
container-managed persistence) within the <enterprise-beans> element:

■ Entity Bean Section

■ Method Definition

OC4J-specific Deployment Descriptor for EJB

XML Reference for orion-ejb-jar.xml Elements A-3

Entity Bean Section
The <entity-deployment> section provides additional deployment information for
an entity bean deployed within this JAR file. The <entity-deployment> section
contains the following structure:

<entity-deployment call-timeout=... clustering-schema=...
copy-by-value=... data-source=... exclusive-write-access=...
do-select-before-insert=... isolation=...
location=... locking-mode=... max-instances=... min-instances=...
max-tx-retries=... tx-retry-wait=... update-changed-fields-only=...
name=... pool-cache-timeout=...
table=... validity-timeout=... force-update=...
wrapper=... local-wrapper=... delay-updates-until-commit=...
findByPrimaryKey-lazy-loading=... >

<ior-security-config>
<transport-config>

<integrity></integrity>
<confidentiality></confidentiality>
<establish-trust-in-target></establish-trust-in-target>
<establish-trust-in-client></establish-trust-in-client>

</transport-config>
<as-context>

<auth-method></auth-method>
<realm></realm>
<required></required>

</as-context>
<sas-context>

<caller-propagation></caller-propagation>
</sas-context>

</ior-security-config>
<primkey-mapping>

<cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
persistence-type=...></cmp-field-mapping>

</primkey-mapping>
<cmp-field-mapping ejb-reference-home=... name=... persistence-name=...

persistence-type=...> </cmp-field-mapping>
<finder-method partial=... query=... lazy-loading=... prefetch-size=... >

<method></method>
</finder-method>
<env-entry-mapping name=...></env-entry-mapping>
<ejb-ref-mapping location=... name=... />
<resource-ref-mapping location=... name=... >

<lookup-context location=...>
<context-attribute name=... value=... />

</lookup-context>
</resource-ref-mapping>
<resource-env-ref-mapping location=... name=... />

</entity-deployment>

Each of the element groups are discussed in the following sections of the OC4J
documentation set:

■ Entity bean examples, which include the <entity-deployment> element, are
described in Chapter 1, "Understanding Entity Beans With Container-Managed
Persistence", Chapter 3, "Understanding Orion CMP Support in OC4J" and
Chapter 5, "Configuring an EJB 2.0 Entity Bean With Container-Managed
Persistence" of this book.

OC4J-specific Deployment Descriptor for EJB

A-4 Oracle Containers for J2EE Orion CMP Developer’s Guide

■ The <io-security-config> element configures CSIv2 security policies for
interoperability, which is discussed fully in the Interoperability chapter in the
Oracle Containers for J2EE Services Guide.

■ The <primkey-mapping> element maps the primary key to the
container-managed persistent field it represents. See "Configuring Explicit
Mapping of Persistent Fields to the Database" on page 5-12 for more information.

■ The <cmp-field-mapping> element maps each <cmp-field> element to its
database row. See "Configuring Explicit Mapping of Persistent Fields to the
Database" on page 5-12 for more information.

■ The <finder-method> element is used to create finder methods for EJB 1.1
entity beans. To create EJB 2.0 finder methods, see "Implementing EJB QL Finder
Methods" on page 6-1.

■ The <env-entry-mapping> element maps environment variables to JNDI
names.

■ The <ejb-ref-mapping> element maps any EJB references to JNDI names.

■ The <resource-ref-mapping> element maps any EJB references to JNDI
names.

■ The <resource-env-ref-mapping> element is used to map an administered
object for a resource.

Table A–1 lists the attributes for the <entity-deployment> element:

Table A–1 Attributes of the <entity-deployment> Element

Attribute Description

call-timeout Specifies the maximum time to wait for any resource to
make a business/life cycle method invocation. This is not
a timeout of how long a business method invocation can
take.

If the timeout is reached, a TimeOutException is
thrown. This excludes database connections.

The default value is 90000 milliseconds. Set to 0 if you
want the timeout to be forever. See the EJB section in the
Oracle Application Server Performance Guide for more
information.

clustering-schema Do not use. Not applicable.

copy-by-value Indicates whether or not to copy (clone) all the incoming
and outgoing parameters in EJB calls. Set to false if you
are certain that your application does not assume
copy-by-value semantics for a speed-up.

The default value is true.

data-source Specifies the name of the data source used.

OC4J-specific Deployment Descriptor for EJB

XML Reference for orion-ejb-jar.xml Elements A-5

exclusive-write-access Defines whether or not the EJB server has exclusive write
(update) access to the database back-end. This can be
used only for entity beans that use a read-only locking
mode (see "Configuring Concurrency Modes" on
page 5-25). In this case, it increases the performance for
common bean operations and enables better caching.

This parameter corresponds to which commit option is
used (A, B or C, as defined in the EJB 2.0 specification).
When exclusive-write-access=true, this is
commit option A.

The default value is false for beans with
locking-mode=optimistic or pessimistic, and
true for locking-mode=read-only.

The exclusive-write-access is forced to false if
locking is pessimistic or optimistic, and is not
used with EJB clustering (see "Entity Bean Concurrency
Modes and Clustering" on page 1-10). The
exclusive-write-access can be false with
read-only locking, but read-only will not have any
performance impact if
exclusive-write-access=false, since ejbStore
methods are already skipped when no fields have been
changed. To see a performance advantage and avoid the
execution of ejbLoad methods for read-only beans,
you must also set exclusive-write-access=true.

See "Configuring Exclusive Write Access to the Database"
on page 5-26 for more information.

do-select-before-insert Specifies whether or not to avoid executing a select before
an insert. Set it to false if you choose to avoid executing
a select before an insert. The extra select normally checks
to see if the entity already exists before doing the insert to
avoid duplicates.

If a unique key constraint is defined for the entity, then
you should set this to false. If there is no unique key
constraint, setting this to false leads to not detecting a
duplicate insert. To prevent duplicate inserts in this case,
leave it set to true.

For performance, Oracle recommends setting this to
false to avoid the extra select before insert.

The default value is true.

location Specifies the JNDI name to which this bean will be bound.

isolation Specifies the isolation level (see "Configuring Database
Isolation Levels" on page 5-24) for database actions. The
valid values for Oracle databases are serializable and
committed, with committed being the default.
Non-Oracle databases can be the following: none,
committed, serializable, uncommitted, and
repeatable_read.

For more information, see "Entity Bean Database Isolation
Levels and Resource Contention" on page 1-9,
"Configuring Database Isolation Levels" on page 5-24 and
Oracle Application Server Performance Guide.

locking-mode Specifies the concurrency mode (see "Configuring
Concurrency Modes" on page 5-25 and Oracle Application
Server Performance Guide). The concurrency modes are as
follows: pessimistic, optimistic, read-only.

Table A–1 (Cont.) Attributes of the <entity-deployment> Element

Attribute Description

OC4J-specific Deployment Descriptor for EJB

A-6 Oracle Containers for J2EE Orion CMP Developer’s Guide

max-instances Specifies the number of maximum bean implementation
instances to be kept instantiated or pooled.

The default value is 0, which means infinite.

min-instances Specifies the number of minimum bean implementation
instances to be kept instantiated or pooled.

The default value is 0.

max-tx-retries Specifies the number of times to retry a transaction that
was rolled back due to system-level failures.

Generally, you should add retries only where errors are
seen that could be resolved through retries. For example,
if you are using serializable isolation and you want to
retry the transaction automatically if there is a conflict,
you might want to use retries. However, if the bean wants
to be notified when there is a conflict, then you should
leave max-tx-retries=0.

The default value is 0. See the EJB section in the Oracle
Application Server Performance Guide for more information.

tx-retry-wait Specifies the time to wait in seconds between retrying the
transaction.

The default value is 60.

update-changed-fields-only Specifies whether the container updates only modified
fields or all fields to persistence storage for entity beans
with container-managed persistence when ejbStore
method is invoked.

The default value is true, which specifies to only update
modified fields.

name Specifies the name of the bean, which matches the name
of a bean in the assembly section of the EJB deployment
descriptor.

pool-cache-timeout Specifies the amount of time in seconds that the bean
implementation instances are to be kept in the pooled
(unassigned) state. Specifying never retains the instances
until they are garbage collected.

The default value is 60.

table Specifies the name of the table in the database.

Table A–1 (Cont.) Attributes of the <entity-deployment> Element

Attribute Description

OC4J-specific Deployment Descriptor for EJB

XML Reference for orion-ejb-jar.xml Elements A-7

AC4J Active EJB Section
The <jem-server-extension> section defines the JNDI name of the database,
where the AC4J Databus is installed. The <jem-server-extension> contains the
following structure:

<jem-server-extension data-source-location=... scheduling-threads=...>
<description></description>
<data-bus data-bus-name=... url=.../>

</jem-server-extension>

For more information on this element, see the Oracle Containers for J2EE Services Guide.

The <jem-deployment> section provides additional deployment information for an
active bean deployed within this JAR file. The <jem-deployment> section contains
the following structure:

validity-timeout The maximum amount of time in milliseconds that an
entity is valid in the cache (before being reloaded). Useful
for loosely coupled environments where rare updates
from legacy systems occur. This attribute is only valid for
entity beans with concurrency mode of read-only and
when exclusive-write-access=true (default).

If the data is never being modified externally (and,
therefore, you have set
exclusive-write-access=true), you should set this
to 0 or -1 to disable this option, since the data in the cache
will always be valid for read-only beans that are never
modified externally.

If the bean is generally not modified externally, so you are
using exclusive-write-access=true, yet
occasionally the table is updated so you need to update
the cache sometimes, then set this to a value
corresponding to the interval you think the data may be
changing externally.

force-update If OC4J does not believe that any of the persistence data
has changed, the force-update attribute set to true
means that OC4J will still execute the bean’s life cycle by
invoking the ejbStore method. This manages data in
transient fields and sets appropriate persistent fields
during the ejbStore method. For example, an image
might be kept in one format in memory, but stored in a
different format in the database.

The default value is false.

wrapper Specifies the name of the OC4J remote home wrapper
class for this bean. This is an internal server value and
should not be edited.

local-wrapper Specifies the name of the OC4J local home wrapper class
for this bean. This is an internal server value and should
not be edited.

delay-updates-until-commit Specifies whether or not to defer the flushing of
transactional data until commit time.

The default value is true.

Set this value to false to update persistence data after
completion of every EJB method invocation, except
ejbRemove method and the finder methods.

Table A–1 (Cont.) Attributes of the <entity-deployment> Element

Attribute Description

OC4J-specific Deployment Descriptor for EJB

A-8 Oracle Containers for J2EE Orion CMP Developer’s Guide

<jem-deployment jem-name=... ejb-name=...>
<description></description>
<data-bus data-bus-name=... url=.../>
<called-by>

<caller caller-identity=.../>
</called-by>
<security-identity>
<description></description>
<use-caller-identity></use-caller-identity>
</security-identity>

</jem-deployment>

The <called-by> element lets you control or restrict the usage of the asynchronous
methods defined on the AC4J bean at deployment time. In the following example
CLIUSER, SVRUSER and XTRAUSER can invoke all methods defined on AC4JBeanA,
which corresponds to the EJB with name="ABean". If USER1 or USER2 invoke this
AC4JBeanA, then the container throws SecurityException:

<jem-deployment jem-name="AC4JBeanA" ejb-name="ABean">
<called-by>

<caller caller-identity="CLIUSER"/>
<caller caller-identity="SVRUSER"/>
<caller caller-identity="XTRAUSER"/>

</called-by>
</jem-deployment>

 If the application deployer defines a security role for the ABean EJB with
role="USER1", then USER1 can invoke all the methods on the ABean EJB
synchronously. However, USER1 can not invoke the same asynchronous methods in
AC4JBeanA unless the <called-by> element is defined for USER1.

For more information on this element, see the Oracle Containers for J2EE Services Guide.

Method Definition
The following structure is used to specify the methods (and, possibly, parameters of
that method) of the bean:

<method>
<description></description>
<ejb-name></ejb-name>
<method-intf></method-intf>
<method-name></method-name>
<method-params>

<method-param></method-param>
</method-params>

</method>

You can use one of the following styles:

1. When referring to all the methods of the specified bean's home and remote
interfaces, specify the methods as follows:

<method>
<ejb-name>EJBNAME</ejb-name>
<method-name>*</method-name>

</method>

2. When referring to multiple methods with the same overloaded name, specify the
methods as follows:

<method>

Element Description

XML Reference for orion-ejb-jar.xml Elements A-9

<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>

</method>>

3. When referring to a single method within a set of methods with an overloaded
name, you can specify each parameter within the method as follows:

<method>
<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>
<method-params>

<method-param>PARAM-1</method-param>
<method-param>PARAM-2</method-param>
...
<method-param>PARAM-n</method-param>

</method-params>
</method>

The <method> element is used within the security and MDB sections.

Assembly Descriptor Section
In addition to specifying deployment information for individual beans, you can also
specify addition deployment mapping information for security in the
<assembly-descriptor> section. The <assembly-descriptor> section contains
the following structure:

<assembly-descriptor>
<security-role-mapping impliesAll=... name=...>

<group name=... />
<user name=... />

</security-role-mapping>
<default-method-access>

<security-role-mapping impliesAll=... name=...>
<group name=... />
<user name=... />

</security-role-mapping>
</default-method-access>

</assembly-descriptor>

Element Description
<assembly-descriptor>
The mapping of the assembly descriptor elements.

<called-by>
Enables the application deployer to control or restrict the usage of the asynchronous
methods defined on the AC4J bean. You specify the user identity that is allowed to
execute all methods of the bean in this element. The identities that can execute the
AC4J beans are identified in one or more <caller> elements.

<caller>
Each caller identity that is allowed to execute methods on the AC4J bean is defined in
a single <caller> element.

Attributes:

Element Description

A-10 Oracle Containers for J2EE Orion CMP Developer’s Guide

■ caller-identity–The security role that is allowed to execute the AC4J bean
methods.

<cmp-field-mapping>
Deployment information for a persistent field. If no subtags are used to define
different behavior, the field is persisted through serialization or native handling of
"recognized" primitive types.

Attributes:

■ ejb-reference-home–The JNDI location of the field’s remote EJB home, if the
field is an entity EJBObject or an EJBHome.

■ name–The name of the field.

■ persistence-name–The name of the field in the database table.

■ persistence-type–The database type of the field. Valid values vary from
database to database.

<collection-mapping>
A relational mapping of a Collection type. A Collection consists of n unordered
items (order is not specified and not relevant). The field containing the mapping must
be of type java.util.Collection.

Attributes:

■ table–The name of the table in the database.

<context-attribute>
An attribute that is sent to the context. The only mandatory attribute in JNDI is the
java.naming.factory.initial, which is the class name of the context factory
implementation.

Attributes:

■ name–The name of the attribute.

■ value–The value of the attribute.

<data-bus>
The name and URL of a specific Databus for an OC4J object.

Attributes:

■ data-bus-name–The user-defined name of the Databus.

■ url–The URL of the Databus, which is similar to a JDBC URL.

<default-method-access>
The default method access policy for methods not tied to a method-permission.

<description>
A short description.

<ejb-name>
An enterprise bean's name. This name is assigned by the ejb-jar.xml file producer
to name the enterprise bean in deployment descriptor. The name must be unique
among the names of the enterprise beans in the same ejb-jar.xml file. The
enterprise bean code does not depend on the name; therefore the name can be changed
during the application assembly process without breaking the enterprise bean's
function. There is no architected relationship between the <ejb-name> element in the

Element Description

XML Reference for orion-ejb-jar.xml Elements A-11

deployment descriptor and the JNDI name that the deployer will assign to the
enterprise bean's home. The name must conform to the lexical rules for an NMTOKEN.

<ejb-ref-mapping>
Declares a reference to another enterprise bean's home. This element ties this to a JNDI
location at deployment time.

Attributes:

■ location–The JNDI location, in which to search for the EJB home.

■ name–The ejb-ref's name. Matches the name of an ejb-ref in ejb-jar.xml file.

<enterprise-beans>
Lists the beans contained in this EJB JAR file.

<entity-deployment>
Contains the deployment information for an entity bean. See Table A–1 for list and
description of attributes of this element.

<entity-ref>
Specifies the configuration for persisting an entity reference using its primary key. The
subtag of this tag is the specification of how to persist the primary key.

Attributes:

■ home–The JNDI location of the EJBHome, in which to search for the bean.

<env-entry-mapping>
Overrides the value of an <env-entry> element in the assembly descriptor. It is used
to keep the EAR clean from deployment-specific values. The body of the element
represents the value.

Attribute:

■ name–The name of the context parameter.

<fields>
Specifies the configuration of a field-based (java class field) mapping persistence for
this field. The fields that are to be persisted have to be public, non-static,
non-final, and the type of the containing object has to have a zero-argument
constructor.

<finder-method>
The definition of a container-managed finder method. This defines the selection
criteria in a findBy<CRITERION> method in the bean's home.

Attributes:

■ partial–Specifies whether or not the query is a partial one. A partial query is the
WHERE clause or the ORDER (if it starts with order) clause of the SQL query.
Queries are partial by default. If partial="false" is specified, then the full
query is to be entered as value for the query attribute and you need to make sure
that the query produces a result set containing all of the persistent fields. This is
useful when performing advanced queries involving table joins.

■ query–Defines the query part of a SQL statement. This is the section following the
WHERE keyword in the statement. Special tokens are $number, which denotes a
method argument number, and $name, which denotes a persistent field name. For
instance, the query for findByAge(int age) would be "$1 = $age"
(assuming the persistent field is named age).

Element Description

A-12 Oracle Containers for J2EE Orion CMP Developer’s Guide

■ lazy-loading–For entity bean finder methods, lazy loading can cause the select
method to be invoked more than once. To turn on lazy loading and enforce only a
single execution of this finder method, set this property to true. The default value
is false.

■ prefetch-size–Oracle JDBC drivers include extensions that let you set the
number of rows to prefetch into the client, while a result set is being populated
during a query. This reduces round trips to the database by fetching multiple rows
of data each time data is fetched–the extra data is stored in client-side buffers for
later access by the client. You can set any number of rows to prefetch. The default
number of rows to prefetch to the client is 10. The number set here is passed to the
JDBC driver. See the Oracle Database JDBC Developer's Guide and Reference for more
information on using prefetch with a JDBC driver.

<group>
A group that this <security-role-mapping> implies. That is, all members of the
specified group are included in this role.

Attributes:

■ name–The name of the group.

<ior-security-config>
The <ior-security-config> element configures CSIv2 security policies for
interoperability, which is discussed fully in the Interoperability chapter in the Oracle
Containers for J2EE Services Guide.

<jem-deployment>
Specifies an active enterprise bean for deployment into the AC4J container.

Attributes:

■ jem-name–The AC4J name that is used to identify the enterprise bean within the
AC4J calls.

■ ejb-name–The name of the enterprise bean defined in the ejb-jar.xml file as
an active bean.

<jem-server-extension>
Describes the database server where the Databus is installed

Attributes:

■ data-source-location–Provides the JNDI data source definition of the
database where the Databus exists. The data source is configured in the
data-sources.xml file.

■ scheduling-threads–If greater than 1, then multiple OC4J threads can act in
parallel. 1 is the default value.

<lookup-context>
The specification of an optional javax.naming.Context implementation used for
retrieving the resource. This is useful when using third party modules, such as a third
party JMS server. Either use the Context implementation supplied by the resource
vendor or, if none exists, write an implementation that negotiates with the vendor
software.

Attribute:

■ location–The name looked for in the foreign context when retrieving the
resource.

Element Description

XML Reference for orion-ejb-jar.xml Elements A-13

<map-key-mapping>
Specifies a mapping of the map key. Map keys are always immutable.

Attributes:

■ type–The fully qualified class name of the type of the value. For example,
com.acme.Product, java.lang.String, and so on.

<method>
Specifies the methods (and, possibly, parameters of that method) of the bean.

<method-intf>
Allows a method element to differentiate between the methods with the same name
and signature that are defined in both the remote and home interfaces. This element
must be either home or remote.

<method-name>
Contains a name of an enterprise bean method, or the asterisk (*) character. The
asterisk is used when the element denotes all the methods of an enterprise bean's
remote and home interfaces.

<method-param>
Contains the fully qualified Java type name of a method parameter.

<method-params>
Contains a list of the fully qualified Java type names of the method parameters.

<orion-ejb-jar>
An orion-ejb-jar.xml file contains the OC4J-specific deployment information for
a bean. It is used to specify initial deployment properties. After each deployment, the
deployment descriptor file is reformatted and altered by the server for additional
information.

Attributes:

■ deployment-time–The time (long milliseconds in decimal) of the last
deployment, if not matching the last editing date the JAR will be redeployed. This
is an internal server value, do not edit it.

■ deployment-version–The version of OC4J with which this JAR was deployed.
If it is not matching the current version, then it will be redeployed. This is an
internal server value, do not edit it.

<primkey-mapping>
Designates how the primary key is mapped.

<properties>
Specifies the configuration of a property-based (bean properties) mapping persistence
for this field. The properties have to adhere to the EJB 2.0 specification, and the type of
the containing object has to have an empty constructor. This is also designated within
the EJB 2.0 specification.

<resource-ref-mapping>
Declares a reference to an external resource, such as a data source. This element ties the
data source to a JNDI location at deployment time.

Attributes:

■ location–The JNDI location from which to search the resource factory.

■ name–The <resource-ref> element name in ejb-jar.xml file.

Element Description

A-14 Oracle Containers for J2EE Orion CMP Developer’s Guide

<resource-env-ref-mapping>
Maps an administered object for a resource. These objects are retrieved at the same
time from JNDI. This element maps the destination object.

Attributes:

■ location–The JNDI location from which to search the administered resource.

■ name–The <resource-env-ref> element name in ejb-jar.xml file.

<role-name>
The security role under which the AC4J EJB methods are run when using the
<run-as-specified-identity> element.

<run-as-specified-identity>
Specifies that all methods of an AC4J EJB execute under a specific identity. That is, the
container does not check different roles for permission to run specific methods;
instead, the container executes all of the AC4J EJB methods under the specified
security identity.

<security-identity>
Describes if the AC4J Databus should use the caller or run-as identity for the AC4J
bean security.

<security-role-mapping>
The run-time mapping of a role to groups and users. Maps to a security role of the
same name in the assembly descriptor.

Attributes:

■ impliesAll–Indicates whether or not this mapping implies all users. The default
value is false.

■ name–The name of the role.

<set-mapping>
Specifies a relational mapping of a Set type. A Set consists of n unique unordered
items (order is not specified and not relevant). The field containing the mapping must
be of type java.util.Set.

Attributes:

■ table–The name of the table in the database.

<use-caller-identity>
Specifies that all methods of an AC4J bean execute under the caller's identity.

<user>
A user that this <security-role-mapping> element implies.

Attributes:

■ name–The name of the user.

<value-mapping>
Specifies a mapping of the primary key part of a set of fields.

Attributes:

■ immutable–Identifies whether or not the value can be trusted to be immutable,
once added to the Collection. Setting this to true will optimize database
operations extensively. The default value is true for <set-mapping> element,
and false for <collection-mapping> element

Element Description

XML Reference for orion-ejb-jar.xml Elements A-15

■ type–The fully qualified class name of the type of the value. For example,
com.acme.OrderEntry, java.lang.String, and so on.

Element Description

A-16 Oracle Containers for J2EE Orion CMP Developer’s Guide

Index-1

Index

A
<assembly-descriptor> element, A-9

C
<called-by> element, A-9
<caller> element, A-9
caller-identity attribute, A-10
clustering services

concurrency mode effect, 1-10
<cmp-field-mapping> element, A-4, A-10
<collection-mapping> element, A-10
concurrency modes

clustering, 1-10
<context-attribute> element, A-10

D
<data-bus> element, A-10
data-source-location attribute, A-12
<default-method-access> element, A-10
<description> element, A-10

E
<ejb> element, 2-7
EJB 2.0

CMP entity bean, configuration, 5-1
ejbCreate method, 1-4
ejbFindByPrimaryKey method, 1-6
ejbLoad method, 1-5
<ejb-name> element, A-10
ejb-name attribute, A-12
ejbPostCreate method, 1-5
ejb-reference-home attribute, A-10
<ejb-ref-mapping> element, A-11
ejbRemove method, 1-5
ejbStore method, 1-5
<enterprise-beans> element, A-11
entity bean

EJB 2.0 CMP, configuration, 5-1
EntityBean interface, 1-5

ejbCreate method, 1-4
ejbFindByPrimaryKey method, 1-6
ejbLoad method, 1-5
ejbRemove method, 1-5

ejbStore method, 1-5
setEntityContext method, 1-4

<entity-deployment> element, 5-24, A-11
<entity-ref> element, A-11
<env-entry-mapping> element, A-11
errors

migration, 3-10

F
<fields> element, A-11
<finder-method> element, A-4, A-11

G
<group> element, A-12

I
immutable attribute, A-14
impliesAll attribute, A-14
<ior-security-config> element, A-12
isolation attribute, 5-24

J
<java> element, 2-7
<jem-deployment> element, A-12
jem-name attribute, A-12
<jem-server-extension> element, A-12

L
lazy-loading attribute, A-12
location attribute, A-12, A-13, A-14
locking-mode attribute, 5-25
<lookup-context> element, A-12

M
<map-key-mapping> element, A-13
<method> element, A-13
<method-intf> element, A-13
<method-name> element, A-13
<method-param> element, A-13
<method-params> element, A-13
migrating

Index-2

error messages, 3-10
troubleshooting, 3-10

multiplicity in relationships, resolving, 3-11

N
name attribute, A-14

O
<orion-ejb-jar> element, A-2, A-13

P
partial attribute, A-11
persistence manager

default, 3-2
migration, 3-3
TopLink, about, 3-2

persistence-name attribute, A-10
persistence-type attribute, A-10
prefetch-size attribute, A-12
<primkey-mapping> element, A-4, A-13
<properties> element, A-13

Q
query attribute, A-11

R
relationships

unexpected multiplicity, 3-11
<resource-env-ref-mapping> element, A-14
<resource-ref-mapping> element, A-13
<result-type-mapping> element, 6-8
<run-as-specified-identity> element, A-14

S
scheduling-threads attribute, A-12
<security-identity> element, A-14
<security-role-mapping> element, A-14
setEntityContext method, 1-4
<set-mapping> element, A-14

T
transaction_read_committed, 1-9
TRANSACTION_SERIALIZABLE, 1-9
troubleshooting

migration from OC4J persistence, 3-10
type attribute, A-13, A-15

U
unexpected relationship multiplicity, 3-11
unsetEntityContext method, 1-4
<user> element, A-14

V
<value-mapping> element, A-14

W
<web> element, 2-7

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Understanding Entity Beans With Container-Managed Persistence
	What is an Entity Bean?
	Entity Beans With Container-Managed Persistence
	Container-Managed Persistent Fields
	Container-Managed Relationships
	Direction in CMR
	Relationship Fields

	Callback Methods

	Querying for an Entity Bean
	Understanding EJB QL
	Understanding Query Syntax
	Understanding Finder Methods
	Understanding Select Methods

	Avoiding Database Resource Contention
	Entity Bean Database Isolation Levels and Resource Contention
	Entity Bean Concurrency Modes and Resource Contention
	Combining Entity Bean Database Isolation Level and Concurrency Mode
	Differences Between Pessimistic, Optimistic and Serializable Settings

	Entity Bean Concurrency Modes and Clustering

	When to Use an Entity Bean With Container-Managed Persistence?

	2 Understanding Orion CMP Application Development
	Developing, Packaging and Deploying EJB Applications
	Understanding the EJB Application Directory Structure
	Using EJB Development Tools
	Using JDeveloper

	Packaging and Deploying EJB CMP Applications
	Understanding EJB Deployment Descriptor Files
	ejb-jar.xml File
	orion-ejb-jar.xml File

	Deploying the CMP EJB Application to OC4J

	3 Understanding Orion CMP Support in OC4J
	EJB 2.0 Support
	Persistence Manager
	Orion Persistence Manager
	TopLink Persistence Manager
	Migrating to the TopLink Persistence Manager
	Key Features of the TopLink Migration Tool
	Using the TopLink Migration Tool From the Command Line
	Post-Migration Changes
	Troubleshooting Your Migration

	4 Implementing an EJB 2.0 Entity Bean With Container-Managed Persistence
	Implementing an EJB 2.0 Entity Bean With Container-Managed Persistence
	Implementing the Entity Bean Home Interface
	Declaring the Home Interface in the Deployment Descriptor

	Implementing the Entity Bean Component Interface
	Declaring the Component Interface in the Deployment Descriptor

	Implementing the Entity Bean Class
	Defining the Entity Bean Class in the Deployment Descriptor

	5 Configuring an EJB 2.0 Entity Bean With Container-Managed Persistence
	Configuring Primary Key
	Configuring Primary Key Field
	Configuring Primary Key Class
	Configuring Foreign Key in a Composite Primary Key

	Configuring Automatic Primary Key Generation

	Configuring Container-Managed Persistent Fields
	Configuring Default Mapping of Persistent Fields to the Database
	Configuring Explicit Mapping of Persistent Fields to the Database

	Configuring Container-Managed Relationship Fields
	Configuring Default Mapping of Relationship Fields to the Database
	Conversion of CMP Types to Database Types
	Simple Data Types
	Serializable Classes
	Other Entity Beans or Collections

	Configuring Explicit Mapping of Relationship Fields to the Database
	Configuring orion-ejb-jar.xml to Map Bean Relationships to Database Tables
	Explicit One-to-One Relationship Mapping
	Explicit One-to-Many Relationship Mapping

	Configuring Database Isolation Levels
	Configuring Concurrency Modes
	Configuring Exclusive Write Access to the Database
	Configuring Callback Methods for EJB 2.0 Entity Beans With Container-Managed Persistence

	6 Implementing Query Methods for an Entity Bean With Container-Managed Persistence
	Implementing EJB QL Finder Methods
	Specifying Finder Methods Using EJB QL Syntax
	Defining Finder Methods in the Home Interface
	Using the Deployment Descriptor to Provide the Finder Methods Definition

	Specifying Finder Methods Using OC4J-specific Syntax
	Adding Finder Methods to the Home Interface
	Using the OC4J-specific Deployment Descriptor to Define Finder Methods

	Implementing EJB QL Select Methods
	Defining the Return Type for the Select Method

	OC4J-specific Deployment Descriptor for EJB
	Enterprise Beans Section
	Entity Bean Section
	AC4J Active EJB Section
	Method Definition

	Assembly Descriptor Section

	Element Description

	Index
	A
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

