
Oracle® Containers for J2EE
Resource Adapter Administrator’s Guide

10g (10.1.3.1.0)

B28956-01

September 2006

Oracle Containers for J2EE Resource Adapter Administrator’s Guide, 10g (10.1.3.1.0)

B28956-01

Copyright © 2004, 2006, Oracle. All rights reserved.

Primary Author: Joseph Ruzzi

Contributing Authors: Sheryl Maring, Brian Wright, Bonnie Vaughan

Contributors: Jyotsna Laxminarayanan, Anthony Lai, Lelia Yin, Raghav Srinivasan, Frances Zhao, Olivier
Caudron, Tug Grall, John Speidel, Vivek Maganty, Tom Beerbower, Tom Snyder

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software—Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documentation.. x
Conventions .. xii

1 What to Know About Connector Architecture

Introduction to the J2EE Connector Architecture .. 1-1
What Is an Enterprise Information System?... 1-2
Connecting to an EIS: What Is a Resource Adapter? .. 1-2

New Resource Adapter Support Features in This OC4J Release.. 1-3
New J2EE Connector Architecture Version 1.5 Features ... 1-3
Additional New OC4J Resource Adapter Features... 1-3

What Are the J2EE Connector Architecture System Contracts? .. 1-3
What Are the Scenarios for Communication Through Resource Adapters? 1-4

Outbound Versus Inbound Communication Through Resource Adapters 1-5
Message Provider Pluggability Using the J2EE Connector Architecture 1-6

What Are the Security Features of the J2EE Connector Architecture? ... 1-6
Summary of the Security Contract .. 1-7
Security Permissions.. 1-7

What Are the Interface Libraries of the J2EE Connector Architecture?... 1-8
What Are the Packaging and Deployment Features? .. 1-9

Deploying Resource Adapters .. 1-10
Importing Standalone Resource Adapters .. 1-11
Deploying Multiple Versions of a Standalone Resource Adapter ... 1-11

Resource Adapters Provided with Oracle Application Server ... 1-12
Introducing Oracle JMS Support and Generic JMS Resource Adapter................................... 1-12
Use of Third-Party Resource Adapters .. 1-13

Roles and Target Audiences .. 1-13
J2EE Connector Architecture Roles .. 1-13
Primary and Secondary Audiences and Topics of Interest... 1-14

2 Overview: Administering Resource Adapters

A Brief Overview of OC4J Administration ... 2-1
OC4J Deployment and Configuration Features .. 2-1

iv

OC4J and Oracle Application Server Administration Tools.. 2-2
Summary of Application Server Control Pages for Resource Adapters.. 2-3

How to Get to the Resource Adapter Home Page... 2-3
Contents of the Resource Adapter Home Page ... 2-4
Summary of Pages You Can Reach from the Resource Adapter Home Page........................... 2-6

General Resource Adapter Administration Features .. 2-7
Setting Properties of the Resource Adapter JavaBean.. 2-7
Configuring the Use of Resource Adapter Native Libraries ... 2-8

Summary of Resource Adapter MBeans and Administration... 2-9
General Overview of OC4J MBean Administration.. 2-9
Summary of OC4J Resource Adapter MBeans ... 2-10

Resource Adapter Lifecycle: Startup and Shutdown ... 2-11
Key APIs of the Lifecycle Management Model .. 2-11
Understanding the Resource Adapter Startup Process ... 2-12
Understanding the Resource Adapter Shutdown Process.. 2-13
Manually Shutting Down or Restarting a Resource Adapter in OC4J.................................... 2-14

3 Connection Management

Introduction to How EIS Connections Are Obtained ... 3-1
Binding and Configuring a Connection Factory: Basic Settings... 3-2

Create and Bind a Connection Factory ... 3-2
Edit the Configuration Properties of an Existing Connection Factory....................................... 3-4

Configuring Connection Pooling in OC4J .. 3-4
Enable Connection Pooling for a Connection Factory.. 3-5
Configure a Connection Pool ... 3-6
Pooling Scheme, Minimum and Maximum Connections, Initial Capacity 3-6
Checking for Expired or Invalid Connections ... 3-8
OC4J Support for Runtime Configuration of Connection Pools .. 3-10

Sharing Connection Pools ... 3-10
Create and Configure a Shared Connection Pool... 3-10
Edit and Reconfigure a Shared Connection Pool ... 3-11
Use a Shared Connection Pool .. 3-12

Configuring OC4J Logging for Connection Factories.. 3-12
Obtaining Resource Adapter Connections... 3-14
Summary of the Connection Management Contract .. 3-14
Metrics for Resource Adapter Connections ... 3-15

Viewing Resource Adapter Connection Pool Metrics ... 3-16
Descriptions of Connection Pool Configuration Metrics .. 3-17
Descriptions of Connection Factory Performance Metrics ... 3-17
Descriptions of Connection Pool Performance Metrics... 3-18
Troubleshooting with Resource Adapter Connection Pool Metrics.. 3-20

4 Transaction Management

Introduction to Transactions and Transaction Management ... 4-1
Transaction Characteristics and Scopes.. 4-2
Relationship with Enterprise JavaBeans Technology ... 4-2
Relationship with Java Transaction API Technology ... 4-2

v

Local Transaction Management ... 4-3
Global Transaction Management... 4-4
Resource Adapter Configuration for Level of Transaction Support .. 4-4

Overview of Key Interfaces Used in Transaction Management.. 4-5
Implemented by Resource Adapters: XAResource and LocalTransaction................................ 4-5
Implemented by Transaction Managers: UserTransaction and TransactionManager............. 4-6
Implemented by OC4J: ConnectionEventListener Interface.. 4-7

Transaction Support in the OC4J Connector Implementation .. 4-7
Highlights of Required Transaction Support... 4-7
Highlights of Optional Transaction Support ... 4-8

OC4J Support for Lazy Enlistment of Connections in a Transaction 4-8
OC4J Support for Last-Resource-Commit Optimization .. 4-9
Unsupported Transaction Scenarios ... 4-10
OC4J Checking for Illegal Transaction Demarcation.. 4-10

OC4J Configuration for Transaction Recovery... 4-10
OC4J Transaction Setup and Cleanup ... 4-11

Global Transaction Setup and Cleanup ... 4-11
Local Transaction Setup and Cleanup ... 4-12

Understanding Connection Sharing in OC4J .. 4-12
Conditions for Connection Sharing.. 4-13

General Conditions for Connection Sharing.. 4-13
Restriction on Connection Sharing for NoTransaction Support Level 4-14

Connection Sharing Scenario... 4-14
Understanding and Configuring Transaction Recovery.. 4-15

Understanding XA Recovery in OC4J.. 4-15
Configuring XA Recovery in OC4J... 4-16

Understanding J2CA Connection Wrapping.. 4-17
Connection Association.. 4-17
Transaction Enlistment... 4-18
J2CA Connection Handle Wrapping.. 4-18
Connection Association Scenarios .. 4-19

Scenario 1: Enlistment of a Connection Obtained Outside a Transaction 4-19
Scenario 2: Transactional Context Switch ... 4-19
Scenario 3: Handles for a Shared Connection in Different Transactional Contexts....... 4-20

5 Work Management

Overview of the Work Management Contract .. 5-1
Understanding the Need for the Work Management Contract .. 5-1
Introducing the Work Management Model and Key APIs.. 5-1

Using the OC4J Work Management Thread Pool .. 5-3
Overview of the Work Management Thread Pool .. 5-3
Configuring the Work Management Thread Pool .. 5-3
Using Metrics for the Work Management Thread Pool ... 5-4

6 Using RAs for Inbound Communication

Concepts: Using Resource Adapters for Inbound Communication ... 6-1

vi

Introduction to Using Resource Adapters for Inbound Communication.................................. 6-1
Background and Use Case for Resource Adapters as Message Listeners for MDBs 6-2

Overview of Related Contracts for Inbound Communication .. 6-2
Introduction to the Message Inflow Contract .. 6-2
Introduction to Imported Transactions and the Transaction Inflow Contract 6-3
Relationship Between Imported Transactions and the Work Management Contract 6-3

Configuration and Deployment to Use an RA as a Listener for an MDB..................................... 6-3
Understanding the Resource Adapter Configuration .. 6-4
Understanding the MDB Configuration for Deployment.. 6-6
Understanding Configuration for Use of Transactions in Message Delivery........................... 6-8
Configuring the MDB .. 6-9
Error Conditions for Deployment and Configuration... 6-10

Understanding the Message Listening Lifecycle .. 6-10
MDB Activation... 6-10
Message Delivery .. 6-11

Message Endpoint Proxy Objects .. 6-11
Message Delivery Semantics .. 6-12

MDB Deactivation... 6-14
Special Conditions in Message Delivery.. 6-14

Concurrent Message Delivery... 6-15
Exceptions from MDB Listener Methods .. 6-15
Failure During Transacted Message Delivery .. 6-16

Message Redelivery for Transactions Managed by OC4J .. 6-16
Message Redelivery for Imported Transactions.. 6-16

7 Managing Administered Objects

Introduction to Administered Objects ... 7-1
What Is an Administered Object? .. 7-1
Example: What Is an Interaction Spec? ... 7-2
Example: What Are JMS Topics and Queues? ... 7-2

Understanding Deployment Configuration of Administered Objects ... 7-3
Binding and Editing Administered Objects in OC4J.. 7-4

Create and Bind an Administered Object... 7-4
View or Edit an Administered Object ... 7-5

Looking Up Administered Objects... 7-6

A OC4J Resource Adapter Configuration Files

Overview of Resource Adapter Configuration Files .. A-1
Standard ra.xml Configuration File.. A-2
Oracle oc4j-ra.xml Configuration File .. A-3
Oracle oc4j-connectors.xml Configuration File... A-3

Hierarchy of oc4j-ra.xml... A-4
Elements and Attributes of oc4j-ra.xml... A-4

<config-property>... A-5
<connection-pool> .. A-5
<connection-pooling>... A-5
<connectionfactory-interface> .. A-6

vii

<connector-factory>.. A-7
<default-mapping>... A-7
<description>... A-7
<description>... A-8
<file> ... A-8
<impl-class>... A-8
<initiating-user>.. A-8
<jaas-application-name>.. A-9
<jaas-module> ... A-9
<log> ... A-10
<oc4j-connector-factories>... A-10
<password> ... A-11
<password-credential>... A-11
<principal-mapping-entries> .. A-12
<principal-mapping-entry>... A-12
<principal-mapping-interface>... A-12
<property> ... A-13
<property> ... A-13
<property> ... A-14
<res-password>... A-14
<res-password>... A-15
<res-user>... A-15
<res-user>... A-15
<security-config> .. A-16
<use-connection-pool>... A-16
<username> ... A-17
<xa-recovery-config>.. A-17

Sample oc4j-ra.xml .. A-17
Hierarchy of oc4j-connectors.xml... A-18
Elements and Attributes of oc4j-connectors.xml... A-19

<adminobject-class> ... A-19
<adminobject-config>... A-19
<config-property>... A-20
<config-property>... A-20
<connector> ... A-21
<native-library>... A-21
<oc4j-connectors>.. A-22
<security-permission>.. A-23
<security-permission-spec>... A-23
<start-order>.. A-23

Sample oc4j-connectors.xml .. A-24

B Third Party Licenses

ANTLR .. B-1
The ANTLR License.. B-1

Apache ... B-1
The Apache Software License ... B-2

viii

Apache SOAP ... B-6
Apache SOAP License .. B-7

Index

ix

Preface

This document is an administrator’s guide for Oracle Containers for J2EE (OC4J)
customers using Oracle J2CA, the OC4J implementation of the standard J2EE
Connector Architecture (J2CA). The standard governs the use of resource adapters for
connecting to and accessing backend Enterprise Information Systems.

Oracle J2CA in Oracle Application Server 10g Release 3 (10.1.3.1.0) adheres to the J2EE
Connector Architecture Specification, Version 1.5.

This preface contains the following sections:

■ Audience

■ Documentation Accessibility

■ Related Documentation

■ Conventions

Audience
Most information in this manual is for resource adapter configuration, so OC4J
administrators are the primary audience. Secondary audiences include J2EE
application component providers and resource adapter providers. See "Roles and
Target Audiences" on page 1-13 for related information.

You should be familiar with the current version of the J2EE Connector Architecture
Specification, produced by Sun Microsystems, although some of its concepts are
reviewed here. There is a link to that specification near the end of this preface. Readers
should also be familiar with concepts of Java Message Service (JMS) and
message-driven beans (MDB).

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

x

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documentation
For more information, see the following Oracle resources.

Additional OC4J documents:

■ Oracle Containers for J2EE Developer’s Guide

This document discusses items of general interest to developers writing an
application to run on OC4J—issues that are not specific to a particular container
such as the servlet, EJB, or JSP container. (An example is class loading.)

■ Oracle Containers for J2EE Deployment Guide

This document covers information and procedures for deploying an application to
an OC4J environment. This includes discussion of the deployment plan editor that
comes with Oracle Enterprise Manager 10g.

■ Oracle Containers for J2EE Configuration and Administration Guide

This document discusses how to configure and administer applications for OC4J,
including use of the Oracle Enterprise Manager 10g Application Server Control
Console, use of standards-compliant MBeans provided with OC4J, and, where
appropriate, direct use of OC4J-specific XML configuration files.

■ Oracle Containers for J2EE Servlet Developer’s Guide

This document provides information for servlet developers regarding use of
servlets and the servlet container in OC4J, including basic servlet development
and use of JDBC and EJBs.

■ Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

This document provides information about JavaServer Pages development and the
JSP implementation and container in OC4J. This includes discussion of Oracle
features such as the command-line translator and OC4J-specific configuration
parameters.

■ Oracle Containers for J2EE JSP Tag Libraries and Utilities Reference

This document provides conceptual information as well as detailed syntax and
usage information for tag libraries, JavaBeans, and other Java utilities provided
with OC4J. There is also a summary of tag libraries from other Oracle product
groups.

xi

■ Oracle Containers for J2EE Services Guide

This document provides information about standards-based Java services
supplied with OC4J, such as JTA, JNDI, JMS, JAAS, and the Oracle Application
Server Java Object Cache.

■ Oracle Containers for J2EE Security Guide

This document (not to be confused with the Oracle Application Server Security
Guide) describes security features and implementations particular to OC4J. This
includes information about using JAAS, the Java Authentication and
Authorization Service, as well as other Java security technologies.

■ Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

This document provides information about Enterprise JavaBeans development
and the EJB implementation and container in OC4J.

Oracle Application Server Web services documents:

■ Oracle Application Server Web Services Developer’s Guide

This document describes Web services development and configuration in OC4J
and Oracle Application Server.

■ Oracle Application Server Advanced Web Services Developer’s Guide

This document describes topics beyond basic Web service assembly. For example,
it describes how to diagnose common interoperability problems, how to enable
Web service management features (such as reliability, auditing, and logging), and
how to use custom serialization of Java value types.

This document also describes how to employ the Web Service Invocation
Framework (WSIF), the Web Service Provider API, message attachments, and
management features (reliability, logging, and auditing). It also describes
alternative Web service strategies, such as using JMS as a transport mechanism.

■ Oracle Application Server Web Services Security Guide

This document describes Web services security and configuration in OC4J and
Oracle Application Server.

Oracle TopLink documents:

■ Oracle TopLink Getting Started Guide

■ Oracle TopLink Developer’s Guide

Additional Oracle Application Server documents:

■ Oracle Application Server Administrator’s Guide

■ Oracle Application Server Security Guide

■ Oracle Application Server Performance Guide

Oracle Enterprise Manager 10g Application Server Control online help topics,
available through the Application Server Control Console:

■ Task and conceptual topics

■ Context-sensitive topics

Oracle JDeveloper documentation:

■ Oracle JDeveloper online help

■ Oracle JDeveloper documentation on the Oracle Technology Network:

xii

http://www.oracle.com/technology/products/jdev/index.html

Resources from Sun Microsystems:

■ Web site for the J2CA 1.5 specification:

http://java.sun.com/j2ee/connector/download.html

■ Web site for general J2EE 1.4 documentation:

http://java.sun.com/j2ee/1.4/docs/

■ Web site for J2EE 1.4 Javadoc:

http://java.sun.com/j2ee/1.4/docs/api/index.html

Conventions
The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

What to Know About Connector Architecture 1-1

1
What to Know About Connector Architecture

A typical enterprise application must access data on some sort of backend information
system. A problem encountered by businesses today, when they want to adapt their
applications to Web-based technology, is that their data is on older, legacy systems
that were not designed to be Web-accessible.

For enterprise application integration, application servers are a natural point of
integration between Web-based applications and legacy systems. J2EE Connector
Architecture (J2CA) offers a standard framework for accessing these legacy systems
through J2EE-compliant application servers such as Oracle Containers for J2EE (OC4J).
Oracle J2CA, the OC4J 10.1.3 implementation of J2CA, supports version 1.5 of the
connector architecture.

This chapter offers an overview of key J2CA concepts and issues, including the
following topics:

■ Introduction to the J2EE Connector Architecture

■ New Resource Adapter Support Features in This OC4J Release

■ What Are the J2EE Connector Architecture System Contracts?

■ What Are the Scenarios for Communication Through Resource Adapters?

■ What Are the Security Features of the J2EE Connector Architecture?

■ What Are the Interface Libraries of the J2EE Connector Architecture?

■ What Are the Packaging and Deployment Features?

■ Resource Adapters Provided with Oracle Application Server

■ Roles and Target Audiences

Introduction to the J2EE Connector Architecture
The J2EE Connector Architecture defines a standard architecture for bidirectional
connectivity between the J2EE platform and heterogeneous legacy systems, referred to
as enterprise information systems. This is accomplished through components known as
resource adapters. These terms are more fully defined shortly. The basic architecture is
shown in Figure 1–1.

Note: For further information about topics discussed here and
elsewhere in this manual, refer to the J2EE Connector Architecture
Specification. Version 1.5 is current as of the OC4J 10.1.3
implementation and is available at the following location:

http://java.sun.com/j2ee/1.4/docs/

Introduction to the J2EE Connector Architecture

1-2 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

The architecture supplies a mechanism for an enterprise information system vendor
(or third party) to provide a standard resource adapter to be used by J2EE applications
in accessing the information system, and for an application server vendor to provide
the support that allows a standard resource adapter to be plugged in to the application
server.

Figure 1–1 J2EE Connector Architecture

The rest of this section covers the following topics:

■ What Is an Enterprise Information System?

■ Connecting to an EIS: What Is a Resource Adapter?

What Is an Enterprise Information System?
An enterprise information system, or EIS, is a heterogeneous storage and retrieval system
for enterprise data. Examples include enterprise resource planning (ERP) systems,
customer relationship management (CRM) systems, mainframe transaction processing
(TP) systems, other databases, and legacy applications that are not written in the Java
programming language.

Legacy EISs have typically evolved over a significant amount of time through a
significant amount of effort. Replacing these systems is usually not viable, so a
mechanism is required to connect to them as is, preferably in a standard, reusable way.

Connecting to an EIS: What Is a Resource Adapter?
A resource adapter is a software driver that an application server or an application client
uses to connect to a specific EIS. An example of a resource adapter is a JDBC driver to
connect to a relational database. Similarly, an ERP system or CRM system might
include a resource adapter.

Initial solutions to the need for resource adapters involved technologies that were
proprietary and nonportable. Without the J2EE Connector Architecture, there would
have to be a custom resource adapter to connect each type of application server to each
type of EIS vendor.

With the J2EE Connector Architecture acting as a standard resource adapter
framework, each application server requires just a single implementation supporting
the connector architecture specification, and each EIS requires just a single resource
adapter that can plug in to any compliant application server.

In addition, the initial proprietary solutions did not necessarily support services such
as connection management and pooling, transaction management, and security. The
J2EE Connector Architecture supports all these services and more, using standard
mechanisms.

O
_1

03
5

J2EE Application
Component Enterprise

Information
Systems

System Contracts

(Quality of Service)

OC4J
Application

Contract
(Client API:

CCI, specific)

NetworkResource
Adapter

What Are the J2EE Connector Architecture System Contracts?

What to Know About Connector Architecture 1-3

Speaking in a little more detail now, we define a resource adapter as the aggregate of
classes and meta data necessary for communication between a particular EIS and a
compliant J2EE application server. A resource adapter plugs into an application
server, running within the application server address space.

New Resource Adapter Support Features in This OC4J Release
For those who are familiar with previous OC4J implementations of the connector
architecture, this section summarizes enhancements in version 1.5 of the architecture
and in the OC4J implementation.

New J2EE Connector Architecture Version 1.5 Features
Version 1.5 of the J2EE Connector Architecture represents a significant upgrade from
version 1.0, including the addition of features for inbound communication. (Only
outbound communication was supported in version 1.0.) Specifically, these new
features, supported by the OC4J 10.1.3 implementation, include the following:

■ Lifecycle management contract

■ Work management contract

■ Message inflow contract

■ Transaction inflow contract

■ Support for multiple implementation classes for managed connection factories

These and other contracts are summarized in "What Are the J2EE Connector
Architecture System Contracts?" on page 1-3.

Additional New OC4J Resource Adapter Features
In addition to supporting the new J2EE Connector Architecture version 1.5 features,
the OC4J 10.1.3 implementation provides the following enhancements:

■ Connection pooling enhancements

■ New connection-sharing features

■ Support for updates to the OC4J-specific configuration files without stopping the
server

■ Closer integration with the JAAS security implementation for runtime permissions
of resource adapters and for container-managed sign-on.

■ Two-phase commit for resource adapters

■ New metrics for connections and work management thread pools

■ Deployment of multiple versions of the same resource adapter, with each version
available as a shared library to all applications. An application can be configured
to import a specific version of the resource adapter and load all classes from the
resource adapter

■ Deployment, undeployment, or reployment of a resource adapter without
restarting the default application

What Are the J2EE Connector Architecture System Contracts?
In the J2EE Connector Architecture, J2EE components communicate with resource
adapters using system contracts that specify standard support in several key areas of

What Are the Scenarios for Communication Through Resource Adapters?

1-4 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

functionality. Each of these contracts is partly implemented by an application server
and partly implemented by a resource adapter so they can interact and collaborate in a
standard way. (These contracts are also referred to as quality of service contracts.)

Here is a summary of the contracts:

■ Connection management enables an application component to connect to an EIS and
enables an application server to use connection pooling for these connections. (Do
not confuse this with JDBC connection pooling, which is a separate mechanism.)
See Chapter 3, "Connection Management" for details.

■ Transaction management enables an application server to use a transaction manager
to handle transactions across multiple EISs or resource managers. (A resource
manager manages shared EIS resources). See Chapter 4, "Transaction
Management" for details.

■ Security management provides authentication, authorization, and secure
communication between an application server and an EIS. Also see "What Are the
Security Features of the J2EE Connector Architecture?" on page 1-6. For details
about OC4J security for EIS connections, see the Oracle Containers for J2EE Security
Guide.

■ Lifecycle management allows an application server to manage the startup and
shutdown of a resource adapter, including a mechanism for bootstrapping a
resource adapter when it is deployed or when the application server starts up, and
for notifying a resource adapter when it is undeployed or when the application
server shuts down. Also see "Resource Adapter Lifecycle: Startup and Shutdown"
on page 2-11 for related discussion.

■ Message inflow allows a resource adapter to deliver messages to endpoints (such as
message-driven beans) in an application server. Message delivery is
asynchronous. This support does not rely on any particular message provider and
has a wide range of uses, including with Java Message Service (JMS) or Java API
for XML Messaging (JAXM), for example. Also see "Introduction to the Message
Inflow Contract" on page 6-2.

■ Transaction inflow allows an imported transaction to be propagated to an
application server by a resource adapter. Also see "Introduction to Imported
Transactions and the Transaction Inflow Contract" on page 6-3.

■ Work management allows a resource adapter to perform tasks through the use of
units of work submitted to an application server and executed by a work manager.
Such tasks may include calling application components or monitoring network
endpoints, for example. The application server uses separate threads to execute
different work units, and the resource adapter is spared from having to manage
the threads itself. See Chapter 5, "Work Management" for additional information.

What Are the Scenarios for Communication Through Resource Adapters?
In the J2EE Connector Architecture, communication between an application
component and an EIS can originate from either party, and a resource adapter may
support either or both of the following:

■ Outbound communication—communication initiated by the application component

■ Inbound communication—communication initiated by the EIS

This section compares outbound and inbound communication and briefly discusses
messaging systems as they are relevant to inbound communication.

What Are the Scenarios for Communication Through Resource Adapters?

What to Know About Connector Architecture 1-5

Outbound Versus Inbound Communication Through Resource Adapters
In outbound communication, the resource adapter simply allows an application to
connect to the EIS and communicate with it through some API—perhaps using an
EIS-specific API, or perhaps through the standard Common Client Interface (CCI)
described later in this chapter. The resource adapter is a passive library in this case;
communication is synchronous and is initiated by the application. An application
component can use the API (EIS-specific or CCI) to synchronously execute an EIS
function or retrieve the results of one. (The resource adapter itself might use some
proprietary mechanism behind the scenes to make this possible.) The application
server enforces the transactional semantics associated with the connection.

In inbound communication, the resource adapter allows an entity or event outside the
application server to initiate activity. An EIS might accomplish this by writing a
message to a queue, for example. Communication is asynchronous and is initiated by
the EIS. A resource adapter supporting inbound communication will typically use the
work management contract and message inflow contract. A work unit associated with
the resource adapter coordinates receipt of incoming communication from the EIS,
delivery of this communication to an appropriate recipient (message endpoint) within
the J2EE container, and then delivery of a response with desired results to the EIS, as
appropriate. The application server creates and manages threads that are assigned to
the work units, assigns message endpoint instances to handle communication
delivery, and enforces the transactional semantics associated with delivery.

Most EISs use a messaging system for initiating communication with applications that
reside outside the EIS, such as an application running in OC4J. For this reason,
inbound resource adapters are typically associated with a messaging system, although
it is possible for an inbound adapter to use some proprietary mechanism such as a
simple socket connection to listen for communication initiated by an EIS.

There is more information about messaging systems, and message endpoints, in the
next section, "Message Provider Pluggability Using the J2EE Connector Architecture".

Figure 1–2 depicts the communication flow for outbound communication, also
indicating where the relevant system contracts govern.

Figure 1–2 Outbound Communication

Figure 1–3 depicts the communication flow for inbound communication, also showing
where the relevant system contracts govern.

OC4J

2

J2EE / EJB
Component

1 4

Resource Adapter
Instance

Lifecycle

EIS

3

· Connection Managment
· Transaction Management
· Security

What Are the Security Features of the J2EE Connector Architecture?

1-6 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Figure 1–3 Inbound Communication

Message Provider Pluggability Using the J2EE Connector Architecture
The J2EE 1.4 specification supports pluggability for a range of messaging systems,
including JMS, through J2CA. A resource adapter intended for use with messaging
typically supports one messaging system, or message provider, although there is no
restriction on the number.

An outbound resource adapter provides the capability to send and receive messages in
a synchronous manner using outbound communication. An inbound resource adapter
provides the capability to asynchronously deliver messages from the message
provider to a message endpoint, which is a message-driven bean (MDB) component in
the application server. A bidirectional resource adapter provides both functions.

Note that most resource adapters that support inbound communication are based on a
standard messaging system, such as a JMS implementation, so that the EIS can initiate
communication in a standard manner.

For a brief introduction to a generic JMS resource adapter provided by Oracle, see
"Introducing Oracle JMS Support and Generic JMS Resource Adapter" on page 1-12.

What Are the Security Features of the J2EE Connector Architecture?
There are two separate aspects of security in a J2EE application that uses resource
adapters:

■ The J2CA security contract controls access to an EIS.

■ Security permissions control access to application server resources, such as
classloaders, threads, and sockets. These permissions appropriately restrict the
behavior of an application running within OC4J.

The following sections summarize these topics:

■ Summary of the Security Contract

Note: Resource adapters are now the recommended vehicle for
plugging a messaging system into an application server.

OC4J

Work
Units

Work Management
Transaction Inflow

Message
Inflow

3
6

27

MDBJ2EE / EJB
Component

4

5

Lifecycle

InitResource Adapter
Instance

Queue

Message Provider

EIS 1

What Are the Security Features of the J2EE Connector Architecture?

What to Know About Connector Architecture 1-7

■ Security Permissions

Summary of the Security Contract
To ensure secure interactions between a J2EE application and an EIS, the J2EE
Connector Architecture allows application components to associate a security context
with connections established to the EIS. This is accomplished through the J2CA
security contract, between an application server and a resource adapter. This contract
extends the connection management contract with functionality relating to secure
connections. It also works in conjunction with the standard Java Authentication and
Authorization Service (JAAS), supporting standard JAAS interfaces.

The security contract includes features for the following:

■ Propagating a security context, or subject, directly from a J2EE component to a
resource adapter (for component-managed sign-on)

■ Propagating a security context, or subject, from an application server to a resource
adapter (for container-managed sign-on)

The security contract supports two particular authentication mechanisms:

■ The commonly used "basic password" mechanism relies on a user name /
password pair, contained together in a password credential object. The application
server passes this object to the resource adapter for authentication.

■ The Kerberos version 5 mechanism ("Kerbv5" for short) is an authentication
protocol distributed by the Massachusetts Institute of Technology. This
mechanism uses a "generic credential" object that encapsulates credential
information such as a Kerberos ticket. The application server passes this object to
the resource adapter for verification.

Sign-on from a J2EE application to an EIS can be managed either by the application
component or by the J2EE container (OC4J). Component-managed sign-on must be set
up programmatically and does not involve OC4J-specific configuration.
Container-managed sign-on can be set up either declaratively, through OC4J-specific
configuration without any programming requirements, or programmatically,
involving a combination of OC4J-specific configuration and programming
requirements. Programmatic container-managed sign-on can use either a "principal
mapping class" or a JAAS login module.

See the Oracle Containers for J2EE Security Guide for details about all these features.

Security Permissions
An application server, such as OC4J, must provide a set of security permissions for use
by a resource adapter executing in the managed runtime environment. The resource
adapter must have appropriate and explicit permission to perform any sensitive
operations, such as accessing resources that the application server controls (a
classloader, for example).

If a resource adapter will require specific permissions, they must be indicated through
<security-permission> elements in the ra.xml file. These permissions, however,
can be overridden in an OC4J environment through <security-permission>
elements in the oc4j-connectors.xml file. See "<security-permission>" on
page A-23.

See version 1.5 of the J2EE Connector Architecture Specification for additional
information.

What Are the Interface Libraries of the J2EE Connector Architecture?

1-8 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

What Are the Interface Libraries of the J2EE Connector Architecture?
The J2EE Connector Architecture includes the following interface libraries:

■ Common Client Interface (CCI)

This is a set of interfaces that can optionally be implemented by a resource adapter
to provide a standard client-facing interface to use in accessing the associated EIS
from J2EE components. If implemented, it is essentially a contract between a J2EE
application and a resource adapter. Its use is not mandated by the connector
architecture specification—a vendor-specific API can be implemented instead
(such as a JDBC API for access to a database). However, to simplify access to a
range of EISs from a range of J2EE components, support of the CCI by resource
adapters is recommended. Such support guarantees that a resource adapter can be
plugged into any J2EE-compliant development tool or enterprise application
integration framework.

■ Service Provider Interface (SPI)

This is a set of interfaces, partly implemented by an application server and partly
by a resource adapter, to provide the interface between the application server and
resource adapter to manage physical connections to the EIS and to support the
J2CA system contracts. The SPI interfaces are discussed throughout this book as
appropriate, in the course of discussing the contracts.

The CCI and SPI interface libraries are in the packages javax.resource.cci and
javax.resource.spi, respectively.

A resource adapter that implements the CCI provides a standard way for J2EE
components to access the associated EIS. This simplifies the task of accessing multiple
EISs from a single J2EE component.

The CCI can be used directly in a client application to access an EIS; however, it is
more typical for a tools vendor to expose the CCI in the form of software developer
kits (for runtime) or wizards (for design time) and for client applications to access an
EIS through the tool. A resource adapter that supports the CCI can be plugged in to
enterprise tools and other enterprise application integration frameworks in a standard
way.

Communication through the CCI entails creating and executing an interaction to
execute functions in the EIS. The sequence is to get a connection to the EIS, create an
interaction, then execute the interaction. An interaction is represented by a class,
provided with the resource adapter, that implements the CCI Interaction interface.
This interface specifies an overloaded execute() method for performing operations
on the EIS. An interaction object is obtained through an EIS connection and maintains
an association with that connection. There are three kinds of interactions:

■ SYNC_SEND_RECEIVE: Send a synchronous request to the EIS and receive an
associated synchronous response. This is a standard request/response mechanism.

■ SYNC_SEND: Send a synchronous request to the EIS, but without there being an
associated synchronous response.

■ SYNC_RECEIVE: Receive a synchronous response from the EIS, but without there
having been an associated synchronous request. One scenario would be to use a
SYNC_SEND interaction to start a long job, then use a SYNC_RECEIVE interaction
sometime later, by which time the results should be ready.

The CCI InteractionSpec interface provides the mechanism for holding properties
for interactions. (Also see "Example: What Is an Interaction Spec?" on page 7-2.)

What Are the Packaging and Deployment Features?

What to Know About Connector Architecture 1-9

What Are the Packaging and Deployment Features?
The classes, interfaces, descriptors, and other resources that compose a resource
adapter are packaged in a RAR file—a Java archive file with the .rar extension—for
deployment. A RAR file must include at least the following:

■ The ra.xml configuration file for the resource adapter

■ One or more JAR files containing the resource adapter implementation

It can be deployed in either of two ways:

■ Within an EAR file, in which case the resource adapter is available only to
applications within the EAR file

■ By itself, in which case the resource adapter is referred to as standalone and is
associated with the OC4J default application and available to all applications in
the server instance

(OC4J is installed with a default configuration that includes a default application,
also known as the global application. The default application is, by default, the
parent of all other J2EE applications in OC4J, except Application Server Control
Console.)

Each standalone resource adapter is represented as a shared library, which, by
default, is available to all applications. All code sources of a standalone resource
adapter are added to a dedicated, shared loader that will be imported by all
applications unless they are explicitly configured otherwise. When multiple
versions of a standalone resource adapter are deployed, an application can be
configured to import a specific resource adapter, so all resource adapter classes are
loaded from the same adapter.

In addition to an ra.xml file, there must be an oc4j-ra.xml configuration file for
each deployed resource adapter. This is an OC4J-specific file that you can include in
the RAR file, or OC4J will create it automatically during deployment. Finally, the
oc4j-connectors.xml file, also OC4J-specific, is an enumeration of all resource
adapters associated with an application, and may contain some additional
configuration as well. For resource adapters deployed in an EAR file, there is a single
oc4j-connectors.xml file to enumerate the resource adapters, and OC4J will
create it automatically if it is not found in the EAR file. For standalone resource
adapters, there is a single oc4j-connectors.xml file in the OC4J configuration
directory and associated with the OC4J default application to enumerate the
standalone resource adapters. OC4J will also create this file if it does not already exist.

Notes:

■ You can find out whether a resource adapter supports CCI by
examining the <connection-interface> element in the
standard ra.xml deployment descriptor and seeing if it has a
value of javax.resource.cci.Connection.

■ This document does not go into detail about the CCI because its
typical users, tools vendors, are not among our primary target
audiences; however, there is additional information about
interfaces related to connection management in "Summary of the
Connection Management Contract" on page 3-14. For more
information about the CCI and related ra.xml configuration,
refer to the J2EE Connector Architecture Specification.

What Are the Packaging and Deployment Features?

1-10 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

(See Appendix A, "OC4J Resource Adapter Configuration Files", for information about
the OC4J-specific configuration files.)

Here are the contents of a sample RAR file:

META-INF/ra.xml
META-INF/oc4j-ra.xml
howto.html
images/icon.jpg
ra.jar
cci.jar

For this example, assume the following:

■ The ra.jar file contains the resource adapter implementation.

■ The resource adapter exposes the CCI APIs, contained in cci.jar, for its client
interface.

Applications may need to access adapter-specific classes that are bundled in the RAR
file. In the case of standalone resource adapters, these classes are available to all
applications that are deployed within OC4J. In the case of resource adapters deployed
in an EAR file, the classes are available only to modules deployed in the same EAR
file.

Here are the contents of a sample EAR file (with only oc4j-connectors.xml and
myRar.rar being related to resource adapters):

META-INF/application.xml
META-INF/oc4j-connectors.xml
myRar.rar
myWar.war
myEjb.jar

Deploying Resource Adapters
You can use any JSR-88-compliant tool to deploy resource adapters, including
Application Server Control. (See "A Brief Overview of OC4J Administration" on
page 2-1 for additional information.) Use the Application Server Control Console
deployment plan editor to specify OC4J-specific parameter settings.

During deployment, OC4J decompresses the RAR file and takes the following actions
regarding OC4J-specific deployment descriptor files:

■ Creates a deployment directory for the resource adapter, of the following form:

j2ee/instance/application-deployments/app_name/ra_name

The OC4J instance, instance, is always home in a standalone environment and
home by default in an Oracle Application Server environment. For a standalone
resource adapter, the application name, app_name, is default and the resource
adapter name, ra_name, is what you specify during deployment. For a resource
adapter deployed in an EAR file, the application name is what you specify during
deployment, and the resource adapter name is the RAR file name without the
.rar extension.

A RAR name must be unique within an OC4J instance. If you attempt to deploy a
RAR that has the same file name as a RAR that was already deployed in an OC4J
instance, the exception NullPointerException occurs.

What Are the Packaging and Deployment Features?

What to Know About Connector Architecture 1-11

■ Generates an empty oc4j-ra.xml file if you did not provide one in the RAR file,
placing it in the resource adapter deployment directory (ra_name).

■ For a standalone resource adapter, adds a <connector> entry in the
oc4j-connectors.xml file that is associated with the OC4J default application,
creating the file if it does not already exist.

■ For a resource adapter deployed in an EAR file, if you did not provide an
oc4j-connectors.xml file in the EAR file, creates oc4j-connectors.xml in
the application deployment directory (app_name) and adds a <connector>
entry.

Each resource adapter must have a unique name when it is deployed:

Deploying, undeploying , or redeploying a resource adapter does not require a restart
of the default application.

■ The resource adapters within an application EAR file are deployed when the EAR
file is deployed. If no name is specified in the oc4j-connectors.xml file, then
the name is the same as the RAR archive name.

■ A unique name must be provided for each standalone resource adapter during
deployment.

See the Oracle Containers for J2EE Deployment Guide for further information.

Importing Standalone Resource Adapters
When an application is deployed, the application imports all standalone resource
adapters that were previously deployed, by default.

When a standalone resource adapter is deployed, all running applications that were
previously deployed, except the default application, are asked to import the
resource adapter. So, an application that is dependent on a standalone resource
adapter can be deployed before the resource adapter as long as the application does
not attempt to use the resource adapter prior to its deployment. Take special care
when you deploy a standalone resource adapter after a dependent application because
the application might have already loaded classes. Unexpected exceptions will occur if
importing the standalone resource adapter causes previously loaded classes to be
subsequently loaded by a different loader.

A resource adapter can look up and use another resource adapter. Because each
standalone resource adapter has it’s own classloader, it is necessary for standalone
resource adapters to import other deployed standalone resource adapters and shared
libraries. By default, a standalone resource adapter will import all previously
deployed standalone resource adapters and all shared libraries. A standalone resource
adapter must be deployed before any dependent standalone resource adapters.

Deploying Multiple Versions of a Standalone Resource Adapter
You can deploy multiple standalone resource adapters that contain classes of the same
name. Because all standalone resource adapters are available to all applications by
default, any application that uses a standalone resource adapter for which multiple
versions are deployed must explicitly specify which of the versions it will use. The
application must use only one version of a resource adapter for which there are
multiple versions.

An application specifies which standalone resource adapters it will use in the
configuration file orion-application.xml. For example, two standalone resource
adapters that contain some of the same classes are deployed with the names

Resource Adapters Provided with Oracle Application Server

1-12 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

adapterA and adapterB. The following connector elements are in J2EE_
HOME/config/oc4j-connectors.xml:

<connector name="adapterA" path="adapterAFileName.rar" >
<connector name="adapterB" path="adapterBFileName.rar" >

To configure an application to use only adapterA, you would add the following
elements to the application’s orion-application.xml file:

<imported-shared-libraries>
<remove-inherited name="adapterB"/>
</imported-shared-libraries>

Because both standalone resource adapters are imported by default, it is not necessary
to explicitly import adapterA.

An alternative configuration follows:

<imported-shared-libraries>
<import-shared-library name="adapterA">
 <remove-inherited name="*"/>
</imported-shared-libraries>

Deploying a resource adapter to the default application will prevent the resource
adapter from using any standalone resource adapter that is deployed as a shared
library. Resources deployed as shared libraries are not imported by the default
application.

Resource Adapters Provided with Oracle Application Server
Resource adapters provided with Oracle Application Server include an Oracle generic
JMS adapter and third-party adapters.

Introducing Oracle JMS Support and Generic JMS Resource Adapter
JMS specifies an enterprise messaging API that enables the use of portable,
message-based applications for communication in a J2EE environment. There are a
number of different JMS providers with a range of guarantees regarding reliability and
quality of service. OC4J currently includes a proprietary resource provider mechanism
for plugging in different JMS providers.

In Oracle Application Server 10g Release 3 (10.1.3.1.0), Oracle itself provides two JMS
implementations. One, Oracle JMS (OJMS), is the JMS interface to the Oracle Database
Streams Advanced Queueing (AQ) feature. The other, OracleAS JMS, is a native Java
implementation that provides file-based persistence and is tightly integrated with
OC4J.

Oracle also provides a J2CA 1.5-compliant JMS resource adapter that enables
OC4J-managed applications to have a unified mechanism to access any JMS provider,
regardless of whether their level of J2CA support is at version 1.5. This Oracle JMS
resource adapter, referred to as the "generic JMS resource adapter", does not use any
Oracle proprietary APIs. Supported JMS implementations include, for example, OJMS,

Note: While it is possible to version shared libraries using a version
number, it is currently not possible to do this with standalone
resource adapters. Each deployed resource adapter must have a
unique name.

Roles and Target Audiences

What to Know About Connector Architecture 1-13

OracleAS JMS, and third-party products such as IBM WebSphere MQ JMS, Tibco
Enterprise for JMS, and SonicMQ JMS.

The Oracle generic JMS resource adapter is the recommended path for JMS usage in
the OC4J 10.1.3 implementation. It is based on the J2CA 1.5 and JMS 1.1 and 1.02b
standards and includes minimal customization for OC4J, and none for individual JMS
providers. It is intended to seamlessly integrate any standard JMS implementation.
(Note that the generic JMS resource adapter cannot typically provide optimal access to
a particular JMS provider, given that many JMS providers support custom extensions.)
It also has a number of distinguishing features in the following areas:

■ JNDI mapping

■ MDB integration (including dynamic adjustment to changing message load)

■ Global transaction support (including standards-based support for transaction
recovery)

■ True generic JMS connection pooling

■ Deployment convenience (including order independence)

■ Lazy resolution of JMS operations (including start order independence, tolerance
of dynamic management such as starts and stops of JMS providers, and
connection retries in case of provider failure)

■ Performance

■ JSR-77 statistics

Typically, the Oracle generic JMS resource adapter is used in situations where the EIS
being connected to is a JMS resource provider. However, it can also be used in
situations where an EIS uses JMS messaging as a means of notifying J2EE application
components. In this case, the JMS resource adapter (along with a JMS resource
provider) can be used instead of the inbound communication features (if any) of the
EIS-specific resource adapter. This two-adapter solution, where the EIS-specific
adapter is used for outbound communication and the Oracle generic JMS resource
adapter is used for inbound communication, enables bidirectional communication
between the EIS and J2EE application where it may otherwise not be possible.

Refer to the Oracle Containers for J2EE Services Guide for details about the Oracle JMS
implementation and JMS resource adapter.

Use of Third-Party Resource Adapters
You can use J2CA 1.5-compliant or 1.0-compliant third-party resource adapters with
the OC4J 10.1.3 implementation, to connect to a variety of backend systems, such as
SAP, PeopleSoft, J.D. Edwards, and Siebel.

Oracle provides some third-party resource adapters as part of the full Oracle
Application Server suite of products.

Roles and Target Audiences
This section discusses engineering and technician roles that are addressed by the J2CA
specification, which of these roles represent target audiences for this book, and which
topics of this book are of interest to each target audience.

J2EE Connector Architecture Roles
The J2CA specification is addressed to the following roles:

Roles and Target Audiences

1-14 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

■ Resource adapter provider

This is an expert in the technology relating to a particular EIS.

■ J2EE application server provider and container provider

These roles are addressed separately in the connector architecture specification,
but Oracle fills both functions with Oracle Application Server, which includes the
OC4J containers and related services.

■ J2EE application component provider

This is for J2EE components that access one or more EISs. Ideally, the component
provider is programming against convenient Java interfaces produced by a
software development tools vendor, based on the CCI.

■ Enterprise tools vendor

Products from tools vendors may include data-mining and function-mining tools
to analyze the scope and structure of EIS data; analysis and design tools for design
based on EIS data and functions; code generation tools to produce Java classes to
access EIS data and functions; and deployment tools.

■ Application assembler

The assembler packages application components into deployable entities.

■ Application deployer

The deployer loads a deployable entity into a target environment, such as an OC4J
instance.

■ System administrator

The administrator manages and configures the environment of J2EE containers,
resource adapters, and EISs.

Primary and Secondary Audiences and Topics of Interest
Of the roles introduced in the preceding section, the primary audience for this
document is system administrators—individuals who will administer the OC4J
environment, including resource adapter configuration. Application component
providers and resource adapter providers are secondary audiences.

Topics in this book may be of interest to these audiences as indicated in Table 1–1.

Table 1–1 Audiences and Topics of Interest

Audience Topics

System administrators Chapter 2, "Overview: Administering Resource Adapters"

Chapter 3, "Connection Management"

Chapter 4, "Transaction Management"

Chapter 7, "Managing Administered Objects"

Appendix A, "OC4J Resource Adapter Configuration Files"

Application component providers Chapter 3, "Connection Management"

Chapter 4, "Transaction Management"

Chapter 6, "Using RAs for Inbound Communication"

Roles and Target Audiences

What to Know About Connector Architecture 1-15

Resource adapter providers Chapter 3, "Connection Management"

Chapter 4, "Transaction Management"

Chapter 6, "Using RAs for Inbound Communication"

Chapter 7, "Managing Administered Objects"

Table 1–1 (Cont.) Audiences and Topics of Interest

Audience Topics

Roles and Target Audiences

1-16 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Overview: Administering Resource Adapters 2-1

2
Overview: Administering Resource Adapters

This chapter provides a top-level discussion of how to administer your resource
adapters, covering the following topics:

■ A Brief Overview of OC4J Administration

■ Summary of Application Server Control Pages for Resource Adapters

■ General Resource Adapter Administration Features

■ Summary of Resource Adapter MBeans and Administration

■ Resource Adapter Lifecycle: Startup and Shutdown

A Brief Overview of OC4J Administration
Before discussing resource adapter administration, we summarize OC4J features in the
following areas:

■ OC4J Deployment and Configuration Features

■ OC4J and Oracle Application Server Administration Tools

OC4J Deployment and Configuration Features
OC4J supports the following standards for deploying and managing applications in a
J2EE environment:

■ Java Management Extensions (JMX) 1.2 specification allows standard interfaces to be
created for managing resources, such as services and applications, in a J2EE
environment. The OC4J implementation of JMX provides a user interface that you
can use to completely manage an OC4J server and applications running within it.

■ Java 2 Platform, Enterprise Edition Management Specification (JSR-77) allows objects
known as MBeans (managed beans) to be created for runtime management of
applications in a J2EE environment. In OC4J, you can directly access MBeans
through the System MBean Browser in Oracle Enterprise Manager 10g, but many
of their properties are exposed in a more user-friendly way through other features
of Enterprise Manager. These interfaces are summarized in "Summary of Resource
Adapter MBeans and Administration" on page 2-9.

■ Java 2 Enterprise Edition Deployment API Specification (JSR-88) defines a standard
API for configuring and deploying J2EE applications and modules into a
J2EE-compatible environment. The OC4J implementation includes the ability to
create or edit a deployment plan containing the OC4J-specific configuration data
needed to deploy a component into OC4J.

A Brief Overview of OC4J Administration

2-2 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

The OC4J deployment plan editor and System MBean Browser are exposed through
Oracle Enterprise Manager 10g Application Server Control, referred to as Application
Server Control. The user interface for this is the Application Server Control Console.
Additionally, for convenience, many parameters corresponding to MBeans properties,
including all key properties relating to resource adapters, are exposed through other
pages of the Application Server Control Console.

You should generally use the Application Server Control Console to configure and
deploy your OC4J applications (using the deployment plan editor), as well as for any
runtime administration or reconfiguration. Avoid direct manipulation of OC4J
MBeans or of OC4J-specific XML configuration files where possible. The XML files are
updated automatically by OC4J when you use the Application Server Control Console.
There may be deployment situations, however, where an oc4j-ra.xml or
oc4j-connectors.xml property is not exposed through the Application Server
Control Console. In these situations, directly creating the XML file for deployment
may be the only option.

For general information about OC4J deployment, configuration, and administration,
refer to the Oracle Containers for J2EE Deployment Guide and the Oracle Containers for
J2EE Configuration and Administration Guide. For more information about Application
Server Control, you can also refer to the introduction to administration tools in the
Oracle Application Server Administrator’s Guide.

OC4J and Oracle Application Server Administration Tools
In either an Oracle Application Server or standalone OC4J environment, you can
deploy and configure your J2EE applications and resource adapters in OC4J through
Application Server Control, introduced in "OC4J Deployment and Configuration
Features" on page 2-1. This is generally the preferred way to manage your
applications, and is therefore emphasized in this document. You can deploy an
application through the Application Server Control Console "Deploy" feature in the
Applications tab that is accessible from the OC4J Home page. Application Server
Control Console pages for resource adapter configuration are discussed throughout
this document.

In standalone OC4J, you also have the option of using the command-line OC4J
admin_client.jar tool to deploy and bind your J2EE applications.

Alternatively, if you use the Oracle JDeveloper tool to develop your application, you
can use it to deploy the application and any resource adapters as well.

Notes:

■ Due to the inherently ambiguous semantics involved in changing
certain configuration settings while a resource adapter is in use,
some updates through MBeans, including updates through the
Application Server Control Console, do not take effect until the
resource adapter is restarted. When you make such a change
through the Application Server Control Console, OC4J updates
the console and corresponding XML file immediately, even
though the new value might not take effect until after restart.

■ If you redeploy a resource adapter with active endpoints without
stopping it first, OC4J throws a DeployerException exception due
to the active endpoints. Stop the resource adapter before
redeploying it.

Summary of Application Server Control Pages for Resource Adapters

Overview: Administering Resource Adapters 2-3

Also, in some cases and particularly during development, it may be necessary to
configure aspects of an OC4J application through direct manipulation of OC4J-specific
XML files. For this reason, reference documentation for these files is included in the
OC4J documentation set. Elements and attributes of the oc4j-connectors.xml and
oc4j-ra.xml OC4J-specific resource adapter configuration files are documented in
Appendix A, "OC4J Resource Adapter Configuration Files".

See the Oracle Containers for J2EE Deployment Guide and Oracle Containers for J2EE
Configuration and Administration Guide for general information about using the
Application Server Control Console or admin_client.jar tool to deploy and
manage your applications. There is also extensive online help for the Application
Server Control Console.

Summary of Application Server Control Pages for Resource Adapters
The Application Server Control Console provides a Web-based user interface for
deploying, configuring, and monitoring applications, as well as managing the OC4J
instance and the Web services used by your applications. It is installed, preconfigured,
and started automatically when you install the OC4J software (either in a standalone
or Oracle Application Server environment), and is bound to whichever port the OC4J
instance is using. In an Oracle Application Server environment, the port is usually
7777. In a standalone environment, the port is typically 8888; use this port of the
appropriate host to access the console:

http://hostname:8888

See the online Help provided with Application Server Control Console for detailed
instructions on using this interface.

The console is organized into functional areas for applications, administration,
performance, and Web services. You can manage resource adapters through the
applications area.

Resource adapter configuration procedures in this document start from the Resource
Adapter Home page.

The rest of this section covers the following topics:

■ How to Get to the Resource Adapter Home Page

■ Contents of the Resource Adapter Home Page

■ Summary of Pages You Can Reach from the Resource Adapter Home Page

How to Get to the Resource Adapter Home Page
To get to the home page for a standalone resource adapter:

1. From the OC4J Home page, select the Applications tab.

2. View "Standalone Resource Adapters".

3. Select the resource adapter of interest.

To get to the home page for a resource adapter that was deployed with an application:

1. From the OC4J Home page, select the Applications tab.

2. View "Applications".

3. Select the desired application.

Summary of Application Server Control Pages for Resource Adapters

2-4 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

4. From the resulting Application Home page, under "Modules", select the resource
adapter module of interest.

Contents of the Resource Adapter Home Page
Table 2–1 summarizes the resource adapter general properties shown in the home
page, noting what XML entities they correspond to or are related to.

Table 2–2 summarizes the resource adapter service contract properties shown in the
home page, noting what XML entities they correspond to or are related to.

Table 2–1 General Properties Shown in the Resource Adapter Home Page

Application Server
Control Property

Corresponding or Related XML
Entity Description

Name name attribute of a <connector>
element in oc4j-connectors.xml

The name of the resource adapter,
as determined during deployment
for a standalone resource adapter
(such as through the Application
Server Control Console
deployment page), or according to
the RAR file name, without the
.rar extension, for a resource
adapter deployed within an EAR
file.

Status n/a Specifies whether the resource
adapter is currently up (running).
This is according to runtime
polling by OC4J.

Path path attribute of a <connector>
element in oc4j-connectors.xml

The directory path from which the
RAR file was deployed.

Description <description> subelement of the
applicable <connector> element in
ra.xml

An optional description of the
resource adapter.

Vendor Name <vendor-name> subelement of the
<connector> element in ra.xml

The vendor that supplies the
resource adapter.

EIS Type <eis-type> subelement of the
<connector> element in ra.xml

The EIS for which this resource
adapter is designed (for example,
OracleAS JMS).

Adapter Version <version> subelement of the
<connector> element in ra.xml

Version number of the resource
adapter, as specified by the vendor.

JCA Specification
Version

<resourceadapter-version>
subelement of the <connector>
element in ra.xml

J2EE specification level supported
by the resource adapter (either 1.0
or 1.5).

License Required <license-required> subelement
of the <license> element, which is a
subelement of the <connector>
element in ra.xml

A Boolean value specifying
whether a license is required for
this resource adapter. (There is
optionally a <description>
subelement of <license> to
describe the licensing terms.)

Summary of Application Server Control Pages for Resource Adapters

Overview: Administering Resource Adapters 2-5

Table 2–3 discusses the message listener types shown in the home page, noting the
corresponding XML entities. The elements mentioned are among the definitions under
a <messageadapter> subelement of an <inbound-resourceadapter> element in
the ra.xml file.

Table 2–2 Service Contract Properties Shown in the Resource Adapter Home Page

Application Server
Control Property

Corresponding or Related XML
Entity Description

Communication
with EIS

<inbound-resourceadapter> and
<outbound-resourceadapter>
subelements of the applicable
<resourceadapter> element in
ra.xml

Note: These are J2CA 1.5 subelements.

Indicates "inbound" if only
<inbound-resourceadapter>
subelements are found, "outbound"
if only
<outbound-resourceadapter>
subelements are found, or
"bidirectional" if both are found.

Note: For J2CA 1.0, only outbound
communication is possible.

Connection
Definitions

<connection-definition>
subelement of the applicable
<outbound-resourceadapter>
element in ra.xml

Note: These are J2CA 1.5 elements.

Indicates the number of connection
definitions (the number of
<connection-definition>
elements) there are for this resource
adapter.

Note: In J2CA 1.0, there can be only
one connection definition for each
resource adapter.

Transaction Support <transaction-support>
subelement of the applicable
<outbound-resourceadapter>
element in ra.xml

Note: In J2CA 1.0,
<transaction-support> is a
subelement of <resourceadapter>.

Indicates the level of transaction
supported by this resource adapter:
NoTransaction,
LocalTransaction, or
XATransaction (global
transaction). See "Resource Adapter
Configuration for Level of
Transaction Support" on page 4-4.

Authentication
Mechanisms

<authentication-mechanism>
subelement of the applicable
<outbound-resourceadapter>
element in ra.xml

Note: In J2CA 1.0,
<authentication-mechanism> is a
subelement of <resourceadapter>.

Indicates the type of authentication
mechanism supported by this
resource adapter, such as
BasicPassword. (The typical use
of a user name and password for
sign-on.)

Reauthentication
Support

<reauthentication-support>
subelement of the applicable
<outbound-resourceadapter>
element in ra.xml

Note: In J2CA 1.0,
<reauthentication-support> is a
subelement of <resourceadapter>.

A Boolean value specifying
whether the resource adapter
supports reauthentication of an
existing managed connection
instance.

Summary of Application Server Control Pages for Resource Adapters

2-6 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Summary of Pages You Can Reach from the Resource Adapter Home Page
Starting from the Resource Adapter Home page, you can reach the following:

■ Connection Factories tab: Edit, create, delete, or monitor a connection factory
(referring to a particular JNDI location); or edit, create, delete, or monitor a shared
connection pool.

– Create Connection Factory page: Choose the connection factory interface, then
specify the JNDI location, mode of connection pooling (if any), and
configuration property settings for a new connection factory.

– Edit Connection Factory page: Set configuration properties, connection
pooling, security, and other options for a connection factory.

* General tab: View configuration properties for connections from the
factory. For a connection factory with private connection pooling, you can
link from this tab to the Private Connection Pool page to edit parameters
such as minimum and maximum number of connections in the pool.

* Security tab: Set principal mapping entries for declarative
container-managed sign-on to the EIS.

* Options tab: Specify the desired path to a log file, or set the user and
password to sign on to the EIS for transaction recovery.

– Connection Factory Metrics page: Displays connection factory and connection
pool metrics to monitor connections.

– Create Shared Connection Pool page: Set connection pooling parameters (such
as minimum and maximum number of connections in the pool) for a new
connection pool.

– Shared Connection Pool page: Modify connection pooling parameters for an
existing connection pool.

■ Administered Objects tab: Create, edit, or delete an administered object.

– Create Administered Object page: Specify the JNDI location and set
configuration properties for a new administered object.

– Administered Object page: View configuration properties for an existing
administered object.

■ Administration tab: Set configuration properties for the resource adapter instance,
or view the deployment descriptor (ra.xml) or proprietary deployment
descriptor. Viewing the proprietary deployment descriptor displays the following:

– The oc4j-connectors.xml <connector> element for the resource adapter

– The oc4j-ra.xml file for the resource adapter

Table 2–3 Message Listener Types Shown in the Resource Adapter Home Page

Application Server
Control Property

Corresponding or Related XML
Entity Description

Message Listener
Type (an entry for
each message
listener supported
by the resource
adapter)

<messagelistener-type>
subelement of <messagelistener>
in ra.xml (one <messagelistener>
element for each supported message
listener)

The Java type of a supported
message listener (such as
javax.jms.MessageListener).

Note: Multiple message listener
types can be supported by a single
resource adapter.

General Resource Adapter Administration Features

Overview: Administering Resource Adapters 2-7

These pages, and what you can do from them, are discussed in more detail later in this
document. You can also find more information in the context-sensitive topics
"Resource Adapter Home Page", "Resource Adapter Connection Factories Page",
"Resource Adapter Administered Objects Page", and "Resource Adapter
Administration Page" in the Application Server Control online help.

General Resource Adapter Administration Features
This section highlights general configuration features for a resource adapter, covering
the following topics:

■ Setting Properties of the Resource Adapter JavaBean

■ Configuring the Use of Resource Adapter Native Libraries

Setting Properties of the Resource Adapter JavaBean
A resource adapter instance is a JavaBean, which has configurable properties
according to the setup in the ra.xml file. Consider the following example:

<connector ... >
 <resourceadapter>
 <resourceadapter-class>
 oracle.j2ee.ra.jms.generic.JMSResourceAdapter
 </resourceadapter-class>
 <config-property>
 <config-property-name>lookupMethod</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>resourceProvider</config-property-value>
 </config-property>
 <config-property>
 <config-property-name>resourceProviderName</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>MQSeries</config-property-value>
 </config-property>
 ...
 </resourceadapter>
</connector>

This indicates that lookupMethod and resourceProviderName are properties of
the resource adapter JavaBean.

You can specify new values for resource adapter configuration properties, using the
Application Server Control Console as follows:

1. From the appropriate Resource Adapter Home page, choose the Administration
tab.

2. From the Administration tab, go to the Configuration Properties task.

3. The resulting Configuration Properties page lists configuration properties for the
particular resource adapter. For each property, the assembled value from ra.xml
is listed, and the current deployed value from oc4j-connectors.xml is listed.
Given the preceding ra.xml example, lookupMethod and
resourceProviderName would be listed.

4. Specify new deployed values as desired. For example, assume
resourceProviderName is listed with an assembled value of MQSeries, as in

General Resource Adapter Administration Features

2-8 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

the preceding example, but you want to change it to MQSeries2. Simply specify
this in the "Deployed Value" field.

5. Apply the changes.

For more information about pages summarized in the preceding steps, see the
context-sensitive topics "Resource Adapter Administration Page" and "Resource
Adapter Configuration Properties Page" in the Application Server Control online help.

Any new (deployed) value is reflected in a <config-property> element in the
oc4j-connectors.xml file, with appropriate name and value attributes, as
summarized in Table 2–4. Note that <config-property> elements have different
uses. In this case, <config-property> is a subelement of the <connector>
element for the resource adapter, and that is a subelement of the top-level
<oc4j-connectors> element in oc4j-connectors.xml.

Configuring the Use of Resource Adapter Native Libraries
You can deploy a native library with a resource adapter and instruct OC4J where to
find it. A native library is typically a .dll file in a Windows environment or a .so file
in a Solaris environment, for example.

Native library locations are not configurable through Application Server Control
Console. Instead, use the <native-library> element of the
oc4j-connectors.xml file to specify a relative location for the library, where the
relative path is according to the path of the library in the deployment RAR file for the
resource adapter.

For the following RAR file, the path would be "./".

META-INF/ra.xml
META-INF/oc4j-ra.xml
howto.html
images/icon.jpg
ra.jar
cci.jar
mylib.dll

The configuration would therefore be:

Note: While Application Server Control enables you to edit
configuration properties, a resource adapter may not support dynamic
updates. If you try to edit a configuration property in this
circumstance, an exception is thrown.

Table 2–4 Resource Adapter JavaBean Configuration Properties

Application Server
Control Property Corresponding XML Entity Description

As applicable for the
resource adapter, and
as indicated by
configuration property
Name, Type,
Assembled Value, and
Deployed Value. (The
Name, Type, and
Assembled Value are
according to ra.xml.)

<config-property> name
and value attributes for
Name and Deployed Value

These attributes correspond to the name
and desired deployed value of a
resource adapter JavaBean property.

Summary of Resource Adapter MBeans and Administration

Overview: Administering Resource Adapters 2-9

<native-library path="./mylib.dll" />

Or, for this RAR file, the path would be "/mydir/":

META-INF/ra.xml
META-INF/oc4j-ra.xml
mydir/mylib.dll
howto.html
images/icon.jpg
ra.jar
cci.jar

And the configuration would be:

<native-library path="mydir/mylib.dll" />

The <native-library> element is also discussed in "<native-library>" on
page A-21.

Summary of Resource Adapter MBeans and Administration
Standards-compliant MBeans play a role in OC4J runtime configuration. The following
sections provide an overview:

■ General Overview of OC4J MBean Administration

■ Summary of OC4J Resource Adapter MBeans

General Overview of OC4J MBean Administration
OC4J support for the JMX specification allows standard interfaces to be created for
managing resources dynamically, including resources relating to resource adapters, in
a J2EE environment. The OC4J implementation of JMX provides a JMX client, the
System MBean Browser, that you can use to manage an OC4J instance through
MBeans that are provided with OC4J.

An MBean is a Java object that represents a JMX manageable resource. Each
manageable resource within OC4J, such as an application or a resource adapter, is
managed through an instance of the appropriate MBean. Each MBean provided with
OC4J exposes a management interface that is accessible through the System MBean
Browser in the Application Server Control Console. You can set MBean attributes,
execute operations to call methods on an MBean, subscribe to notifications of errors or
specific events, and display execution statistics.

To access the browser from the OC4J Home page, select the Administration tab and
then, under the list of tasks, go to the JMX task "System MBean Browser". From the
browser, you can do the following:

■ Select the MBean of interest in the left-hand frame.

Note: This information is provided for reference, but key resource
adapter configuration settings are exposed in a more user-friendly
manner through other features of the Application Server Control
Console. Procedures for particular tasks are described throughout this
document.

Summary of Resource Adapter MBeans and Administration

2-10 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

■ Use the Attributes tab in the right-hand frame to view or change attributes. A
settable attribute has a field where you can type in a new value. Then apply the
change.

■ Use the Operations tab in the right-hand frame to invoke methods on the MBean.
Select the operation of interest. In the Operation window, you can it with
specified parameter settings.

■ Use the Notifications tab (where applicable) in the right-hand frame to subscribe
to notifications. You can select each item for which you want notification, and then
apply the changes.

■ Use the Statistics tab (where applicable) in the right-hand frame to display
execution statistics.

Be aware that MBeans and their attributes vary regarding when changes take effect. In
the runtime model, changes take effect immediately. In the configuration model, some
changes take effect when the resource is restarted, others when the application is
restarted, and still others when OC4J is restarted. There is also variation in whether
changes are persisted.

See the Oracle Containers for J2EE Configuration and Administration Guide for details. The
System MBean Browser itself also provides information about the MBeans.

Summary of OC4J Resource Adapter MBeans
OC4J exports a set of MBeans for each resource adapter, to support administration
during application runtime. Some OC4J MBeans are required in order to support the
J2EE management specification, but may offer extended features. Other OC4J MBeans
are Oracle extensions to the model.

Table 2–5 summarizes the OC4J implementations of MBeans, relating to resource
adapters, that are required of an application server according to JSR-77. These
implementations are in the oracle.oc4j.admin.management.mbeans package.

Notes:

■ MBeans marked with a double-asterisk ("**") in the following
tables have properties whose changes will not take effect until the
resource adapter or OC4J (usually the resource adapter) is
restarted.

■ MBeans are self-documenting in the System MBean Browser,
providing some documentation of MBean attributes, operations,
and notifications (as applicable).

Table 2–5 Mandatory System MBeans for Resource Adapters

MBean Description

ResourceAdapterModule ** Identifies a resource adapter archive (RAR file) as a
whole, and allows configuration of properties across the
archive (possibly extending across multiple resource
adapters).

ResourceAdapter ** Identifies a single resource adapter across an archive.

JCAResource Identifies a single configured resource from a resource
adapter that is available to all components deployed
within OC4J.

Resource Adapter Lifecycle: Startup and Shutdown

Overview: Administering Resource Adapters 2-11

Table 2–6 summarizes OC4J MBeans, relating to resource adapters, that are Oracle
extensions. These MBean implementations are also in the
oracle.oc4j.admin.management.mbeans package.

Resource Adapter Lifecycle: Startup and Shutdown
When a resource adapter is deployed, or when an application server, such as OC4J, is
started, the application server requires a mechanism to "bootstrap" (load and initialize)
an instance of the resource adapter. When a resource adapter is undeployed or
otherwise stopped, or when an application server is stopped, the application server
requires a mechanism to notify the resource adapter to stop functioning prior to being
unloaded. These functional areas are covered by the J2CA lifecycle management
contract.

This section introduces key aspects of this contract, and also covers how to manually
stop a resource adapter. The following topics are covered:

■ Key APIs of the Lifecycle Management Model

■ Understanding the Resource Adapter Startup Process

■ Understanding the Resource Adapter Shutdown Process

■ Manually Shutting Down or Restarting a Resource Adapter in OC4J

Key APIs of the Lifecycle Management Model
A resource adapter is implemented by the resource adapter provider as a JavaBean
class implementing the following SPI interface:

JCAConnectionFactory ** Identifies a configured connection factory instance within
a resource.

JCAManagedConnectionFactory Identifies the managed connection factory associated
with a connection factory instance.

Table 2–6 Additional System MBeans for Resource Adapters

MBean Description

WorkManagerResource Identifies the work manager associated with a resource.

JCAEndpointActivation Identifies an endpoint that has been activated to use this
resource.

JCAMessageEndpointFactory Identifies the endpoint factory that is associated with an
endpoint activation.

JCAAdminObject Identifies an administered object supported by this
resource adapter.

JCAAdminObjectInstance ** Identifies a configured instance of one of the
administered objects supported by this resource adapter.

JCASharedConnectionPool Identifies one of the shared connection pools that is
defined for this resource adapter.

JCAConnectionPool Identifies one of the private connection pools that is
defined for this resource adapter.

JCAConnectionDefinition Identifies one of the connection definitions that is
packaged with this resource adapter.

Table 2–5 (Cont.) Mandatory System MBeans for Resource Adapters

MBean Description

Resource Adapter Lifecycle: Startup and Shutdown

2-12 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

■ javax.resource.spi.ResourceAdapter

The resource adapter provider deploys the JavaBean class as part of the overall
resource adapter deployment, and also specifies configuration for ResourceAdapter
instances in the standard ra.xml deployment descriptor.

The ResourceAdapter interface specifies the following methods that are called by
the application server for resource adapter startup and shutdown, respectively:

■ void start(javax.resource.spi.BootstrapContext ctx)

■ void stop()

The BootstrapContext interface is implemented by the application server, with
methods that give access to certain application server resources.

Understanding the Resource Adapter Startup Process
Resource adapter startup is initiated by OC4J and occurs in the following
circumstances:

■ When the resource adapter is deployed to OC4J

■ When OC4J is restarted after the resource adapter has been deployed

OC4J takes the following steps for resource adapter startup:

1. Instantiates the ResourceAdapter JavaBean for this resource adapter,
configuring its properties according to specifications in the ra.xml file.

2. Creates a BootstrapContext instance to pass to the ResourceAdapter
instance.

3. Calls the ResourceAdapter JavaBean start() method, passing in the
BootstrapContext instance.

4. Initializes and binds any connection factories. (See "Introduction to How EIS
Connections Are Obtained" on page 3-1 for a definition of "connection factory".)

5. Initializes and binds any administered objects. (See "What Is an Administered
Object?" on page 7-1 for a definition of "administered object".)

The start() method is the vehicle by which the resource adapter can execute
initialization procedures, establish communications with the EIS, and possibly start
the EIS service. Initialization procedures may include, for example, creating threads,
setting up network endpoints, or creating objects (such as administered objects)
specific to the resource adapter.

The BootstrapContext instance has methods giving access to application server
resources, such as by returning a java.util.Timer instance to schedule future
tasks, a javax.resource.spi.work.WorkManager instance to manage work
units, or a javax.resource.spi.XATerminator instance for transaction
completion or recovery. The start() method may use the work manager to submit
work units for execution, or the XA terminator to complete imported transactions. (For
information about work management and transaction inflow, see "Overview of the
Work Management Contract" on page 5-1 and "Overview of Related Contracts for
Inbound Communication" on page 6-2.)

Resource Adapter Lifecycle: Startup and Shutdown

Overview: Administering Resource Adapters 2-13

Understanding the Resource Adapter Shutdown Process
Resource adapter shutdown is initiated by OC4J and occurs in the following
circumstances:

■ When the resource adapter is undeployed

■ When OC4J is shut down

■ When you manually stop the resource adapter (described in the next section,
"Manually Shutting Down or Restarting a Resource Adapter in OC4J")

Resource adapter shutdown is a two-phase process:

1. In the first phase, OC4J must ensure that all applications and operations that
depend on the resource adapter are terminated before the resource adapter is shut
down. This includes the following:

■ Deactivate any message endpoints that receive messages through this resource
adapter.

■ Stop any applications that use this resource adapter.

The first phase guarantees that application threads no longer use the resource
adapter instance and that all application activities, including transactional
activities, are completed.

2. In the second phase, begun only after completion of the first phase, OC4J calls the
ResourceAdapter JavaBean stop() method to notify the resource adapter to
stop functioning. This allows it to be safely unloaded.

When the stop() method is called, the resource adapter performs any necessary
cleanup and then performs an orderly shutdown. This may include the following:

■ Close network endpoints.

■ Relinquish threads.

Notes:

■ The preceding discussion assumes a J2CA 1.5 environment. Only
the step involving connection factories is relevant in a J2CA 1.0
environment.

■ The <start-order> element in the oc4j-connectors.xml
file determines the order in which resource adapters are loaded
and started by OC4J within an application, or the order in which
standalone resource adapters are loaded and started, as
applicable. See "<start-order>" on page A-23.

■ If the start() method throws an exception, OC4J considers the
startup process to have failed and makes no further attempt to call
the start() method on the same ResourceAdapter instance.
Instead, it creates a new ResourceAdapter instance when it
tries to start the resource adapter again.

■ The OC4J ResourceAdapter MBean—which includes start(),
stop(), and restart() methods to start, stop, or restart a
resource adapter—uses the start and stop functionality of the
resource adapter JavaBean. (See "Summary of Resource Adapter
MBeans and Administration" on page 2-9 for information about
OC4J MBeans.)

Resource Adapter Lifecycle: Startup and Shutdown

2-14 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

■ Release active work units.

■ Allow any transactions in the commit phase to complete.

■ Flush any cached data to the EIS.

■ Unbind and clean up connection factories.

■ Unbind and clean up any administered objects.

Manually Shutting Down or Restarting a Resource Adapter in OC4J
You can manually shut down a resource adapter in OC4J. In the Application Server
Control Console, take the following steps from the appropriate Resource Adapter
Home page:

1. Choose the Stop function.

2. In the resulting Confirmation page, say Yes to confirm the action.

After shutting down a resource adapter, you can restart it as follows, also from the
Resource Adapter Home page:

1. Choose the Start function. (No further steps are necessary.) Status of the resource
adapter is displayed on the home page.

Notes:

■ The preceding discussion assumes a J2CA 1.5 environment. In a
J2CA 1.0 environment, all that is relevant is the unbinding and
cleaning up of connection factories.

■ After the shutdown steps, any application still holding handles to
cached connection factories or administered objects may see
unexpected behavior.

■ When stopping a resource adapter, OC4J does not always stop
dependent applications. Stop any applications that use a resource
adapter before you stop it, to make sure all application activity
completes.

■ If you redeploy a resource adapter with active endpoints without
stopping it first, OC4J throws a DeployerException exception due
to the active endpoints. Stop the resource adapter before
redeploying it.

■ OC4J treats the resource adapter as nonfunctional after the
stop() method is called. OC4J ignores exceptions from the
stop() method

■ To restart a resource adapter after it has been stopped, OC4J
creates a new ResourceAdapter instance, then calls the
start() method on that instance.

Connection Management 3-1

3
Connection Management

This chapter provides details of how OC4J administrators set up the configuration for
resource adapter connections, then summarizes the J2CA connection management
contract and discusses how an application component obtains a connection. This
includes the following topics:

■ Introduction to How EIS Connections Are Obtained

■ Binding and Configuring a Connection Factory: Basic Settings

■ Configuring Connection Pooling in OC4J

■ Sharing Connection Pools

■ Configuring OC4J Logging for Connection Factories

■ Obtaining Resource Adapter Connections

■ Summary of the Connection Management Contract

■ Metrics for Resource Adapter Connections

Introduction to How EIS Connections Are Obtained
To use the resources of an EIS, a J2EE application component obtains a connection
object, uses the underlying connection to conduct its business (reading or writing data
as desired), then closes the connection.

Connection objects are obtained through a connection factory, which is implemented by
the resource adapter provider. A connection factory object is registered in the JNDI
namespace, through configuration steps that you take, and has a method that returns a
connection object. The application component performs the JNDI lookup to retrieve
the factory, then makes a request through the factory to obtain a connection. The
factory delegates the request to OC4J. (See the Oracle Containers for J2EE Services Guide
for information about the OC4J JNDI implementation.)

For a resource adapter that implements the CCI, the factory will be an instance of a
class that implements the CCI (javax.resource.cci) ConnectionFactory
interface, which specifies a method getConnection() that returns an instance of a
class that implements the CCI Connection interface.

Note: See Summary of Application Server Control Pages for
Resource Adapters on page 2-3 for an overview of the Application
Server Control Console pages discussed here. Discussion in this
chapter starts from the point where you have reached the appropriate
Resource Adapter Home page.

Binding and Configuring a Connection Factory: Basic Settings

3-2 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

In the J2EE Connector Architecture, the functionality discussed here is specified in the
connection management contract, which is more fully summarized in "Summary of the
Connection Management Contract" on page 3-14. This contract specifies how to create
connections to an EIS and how to set up JNDI configuration for connection factories. It
also provides a general outline for how a J2EE container such as OC4J can support
connection pooling, which is critical for efficient use of EIS resources and scalability of
applications, and it specifies how to find matching physical connections in a
connection pool. See "Configuring Connection Pooling in OC4J" on page 3-4 for
information about how the administrator configures the OC4J implementation of
connection pooling.

The next section, "Binding and Configuring a Connection Factory: Basic Settings",
describes how the administrator sets up connection factories.

Binding and Configuring a Connection Factory: Basic Settings
Before an application component can use connections to an EIS, one or more
connection factories must be configured. This section shows the most basic steps in
configuring a resource adapter and binding it to JNDI. Further steps, such as
configuring connection pooling for a connection factory, are discussed later in this
chapter. Additional steps, such as configuring security, are discussed later in this
manual.

"Obtaining Resource Adapter Connections" on page 3-14 shows how to use a
connection factory in application code.

Create and Bind a Connection Factory
When you deploy a resource adapter, OC4J generates an oc4j-ra.xml file (unless
one is packaged in the RAR file), using corresponding entries in the packaged ra.xml
file as defaults.

For each connection type defined, OC4J generates a <connector-factory> element
in oc4j-ra.xml during deployment. (In version 1.5 of the J2EE Connector Architecture
Specification, a connection type corresponds to a <connection-definition>
element in the ra.xml file.) Furthermore, when you configure a resource adapter,
OC4J generates subelements under the <connector-factory> element for any
settings you specify through the Application Server Control Console that supplement
or override entries in ra.xml.

The unique identifier for a connection type in the ra.xml file is the connection factory
interface. One interface is specified as part of each ra.xml connection definition. In
oc4j-ra.xml, however, there can ultimately be multiple connection factories (that is,
multiple <connector-factory> elements) using the same connection factory
interface and therefore corresponding to the same ra.xml connection definition. The
point of this would be to configure each connection factory with different property
settings, as desired. For example, you can use different connection factories to connect
to different servers. (Note that the JNDI location you specify for each connection
factory must be unique to that connection factory.)

A key step in creating a connection factory is to bind it, where binding consists of
specifying a JNDI location. The simplest scenario for this is to use the default assembled
values for the configuration properties, meaning values that come from the ra.xml
file. (We will assume for this discussion that they are specified in ra.xml, which is
optional.) However, when you create a connection factory, you can specify new
deployment values for the configuration properties.

Binding and Configuring a Connection Factory: Basic Settings

Connection Management 3-3

You also specify whether you want connection pooling for the connection factory and,
if so, whether to use a private pool or shared pool.

In the Application Server Control Console, use the following steps.

1. In the Connection Factories tab accessed from the Resource Adapter Home page
for the appropriate resource adapter (the generic JMS resource adapter, for
example, if it is deployed), choose the "Create" feature to start the process of
binding a new connection factory.

2. In the Create Connection Factory: Select Interface page, choose the desired
connection factory interface. For a J2CA 1.5 adapter, each choice corresponds to
one and only one connection definition in the ra.xml file. For a version 1.0
adapter, there will be only one choice. (The generic JMS resource adapter, for
example, has the choices QueueConnectionFactory,
XAQueueConnectionFactory, TopicConnectionFactory, and
XATopicConnectionFactory.)

3. In the resulting Create Connection Factory page, you can do the following:

■ Specify a JNDI location (mandatory).

■ Specify whether you want the connection factory to use no connection pool
(the default), a private connection pool, or a shared connection pool. To use
shared pooling, at least one shared pool must already exist, and you must
choose which shared pool to use. See "Configuring Connection Pooling in
OC4J" on page 3-4 and "Sharing Connection Pools" on page 3-10 for
information about connection pools.

■ Optionally edit configuration properties of the connection factory.

4. Still in the Create Connection Factory page, choose the "Finish" feature to bind the
connection factory.

As a result of this configuration, OC4J generates a <connector-factory> element
in the oc4j-ra.xml file. Table 3–1 shows the properties that indicate the connection
factory interface and JNDI location.

Also see the context-sensitive topic "Create Connection Factory: Select Interface Page"
in the Application Server Control online help.

Table 3–1 Connection Factory Basic Properties

Application Server
Control Property Corresponding XML Entity Description

Connection Factory
Interface

<connectionfactory-interface>
subelement

Java interface to use for
the connection factory.

JNDI Location location attribute A JNDI location to which
the connection factory
object will be bound.

As applicable for the
resource adapter, and as
indicated by configuration
property Name and Value
attributes. Or, when you
are editing, as indicated by
Name, Assembled Value,
and Deployed Value.
(Name and Assembled
Value are according to
ra.xml.)

<config-property> Name and
Value attributes

These attributes
correspond to the name
and desired deployed
value of a connection
factory configuration
property.

Configuring Connection Pooling in OC4J

3-4 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Edit the Configuration Properties of an Existing Connection Factory
You can edit the settings of a connection factory that you previously created and
bound.

In the Application Server Control Console, do the following:

1. In the Connection Factories tab accessed from the Resource Adapter Home page
for the appropriate resource adapter, choose the JNDI location of a previously
configured connection factory. Note that the JNDI location serves as the identifier
of the connection factory and cannot be edited. The assembled values are from
ra.xml entries.

2. In the General tab accessed from the resulting Edit Connection Factory page, you
can specify new deployed values of any editable configuration properties. You can
also configure the connection pool from here, if the connection factory was created
with private or shared connection pooling enabled. See the next section,
"Configuring Connection Pooling in OC4J", for information.

3. In the same page, apply the changes.

When you edit a connection factory, OC4J adds or updates <config-property>
entries in oc4j-ra.xml to override previous settings in ra.xml or oc4j-ra.xml, as
applicable.

Also see the context-sensitive topic "Resource Adapter Connection Factories Page" in
the Application Server Control online help.

Configuring Connection Pooling in OC4J
For performance and scalability, the J2EE Connector Architecture supports the
implementation of connection pooling by any application server provider. This section
discusses how to configure connection pooling in OC4J, beginning with basic
configuration and then covering connection pooling enhancements added in the OC4J
10.1.3 implementation.

You determine whether to enable connection pooling when you create a connection
factory, and you can configure the applicable pool when you edit the connection
factory.

Note: Binding a connection factory takes effect immediately; no
restart of OC4J is necessary. (Note, however, that the binding of a
connection factory that is preconfigured in an oc4j-ra.xml file that
is packaged with the application occurs when the associated resource
adapter is initialized, which follows resource adapter deployment or
OC4J startup.)

Note: You must restart OC4J for these changes to take effect.

Configuring Connection Pooling in OC4J

Connection Management 3-5

The presence of a <connection-pooling> subelement under a
<connector-factory> element in the oc4j-ra.xml file implies that connection
pooling will be used for the corresponding connector factory (unless the
<connection-pooling> element has the attribute setting use="none"). When you
configure connection pooling through Application Server Control, OC4J generates the
<connection-pooling> element along with a <property> subelement for each
connection pooling property that you set.

If you do not configure connection pooling, OC4J exhibits the default behavior of
creating a new physical connection whenever an application requests a connection.
You can also explicitly specify no connection pooling for any given connector factory,
through the Application Server Control Console.

The rest of the discussion for configuring connection pools is organized as follows:

■ Enable Connection Pooling for a Connection Factory

■ Configure a Connection Pool

■ Pooling Scheme, Minimum and Maximum Connections, Initial Capacity

■ Checking for Expired or Invalid Connections

■ OC4J Support for Runtime Configuration of Connection Pools

Enable Connection Pooling for a Connection Factory
As noted in "Create and Bind a Connection Factory" on page 3-2, you choose whether
to use connection pooling for a connection factory when you create the connection
factory. During creation, you must specify whether you want the connection factory to
use no connection pool (the default), a private connection pool, or a shared connection
pool. For you to use shared pooling, at least one shared pool must already exist, and
you must choose which shared pool to use. (See "Sharing Connection Pools" on
page 3-10 for information about shared pools.)

Table 3–2 documents relevant properties in the Application Server Control Console
Create Connection Factory page.

Notes:

■ A connection pool is initialized during OC4J startup or when the
resource adapter is deployed.

■ A connection pool can be private to a single connection factory or
shareable between multiple connection factories, but the
configuration information discussed here generally applies in
either case. See "Sharing Connection Pools" on page 3-10 for
information about shareable pools.

Note: Because the J2EE Connector Architecture is general, rather
than specific to databases, the connector architecture connection
pooling interface differs significantly from the JDBC connection
pooling interface.

Configuring Connection Pooling in OC4J

3-6 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Configure a Connection Pool
You can change the configuration of a connection pool by editing the connection
factory that uses it, regardless of whether the pool is private or shared.

Use the Application Server Control Console, as follows:

1. From the Connection Factories tab, accessed from the Resource Adapter Home
page, choose the appropriate JNDI location to select the connection factory of
interest.

2. From the General tab of the resulting Edit Connection Factory page, select the
shared connection pool or select "Private", as applicable.

3. In the resulting Private Connection Pool page (or Shared Connection Pool page for
a shared pool), specify desired settings for the connection pool parameters. For
information about these parameters, see the next section, "Pooling Scheme,
Minimum and Maximum Connections, Initial Capacity", and see "Checking for
Expired or Invalid Connections" on page 3-8.

4. Apply your changes.

Also see the context-sensitive topics "Private Connection Pool Page" and "Shared
Connection Pool Page" in the Application Server Control online help.

Pooling Scheme, Minimum and Maximum Connections, Initial Capacity
Table 3–3 summarizes basic connection pooling settings supported since the OC4J
9.0.4 implementation. You can view or edit these in the Application Server Control
Console Private Connection Pool page (or the Shared Connection Pool page, for
shared pools). OC4J reflects each setting in a <property> subelement of the
applicable <connection-pooling> element in oc4j-ra.xml (or the applicable
<connection-pool> element for shared pools).

Table 3–2 Properties for Enabling or Disabling Connection Pooling

Application Server
Control Property Corresponding XML Entity Description

No Connection Pool <connection-pooling>
with use="none"

Disables connection pooling for the
connection factory you are
configuring.

Use Private
Connection Pool

<connection-pooling>
with use="private"

Specifies the use of a private
connection pool for the connection
factory you are configuring.

Use Shared
Connection Pool

<connection-pooling>
with use="shared"

Specifies the use of a shared
connection pool for the connection
factory you are configuring.

(Indicated name of
shared connection
pool)

<use-connection-pool> Names the shared connection pool to
use.

Note: If an OC4J 9.0.4 version of oc4j-ra.xml is deployed to an
OC4J 10.1.3 implementation server, any <connection-pooling>
element receives an attribute setting of use="private" by default.
This attribute was not in use in the OC4J 9.0.4 implementation. Other
supported settings are "none", for no connection pooling, or "shared"
for shared pools, as discussed later in this chapter.

Configuring Connection Pooling in OC4J

Connection Management 3-7

Here are descriptions of the three supported connection pooling schemes:

■ "Dynamic" to always create a new connection and return it to the application, even
if this violates the maximum limit. The next time a connection is closed, it is
destroyed instead of being returned to the pool if the pool is still over the
maximum limit. This is the default setting.

■ "Fixed" to raise an exception when the application requests a connection after the
maximum limit has been reached.

■ "Fixed Wait" to block the application until a connection becomes available and is
returned to the pool. If the "Fixed Wait Timeout" property is specified, then OC4J
throws an exception if no connection becomes available within the specified wait
timeout period.

The Initial Capacity parameter is useful if you anticipate that the demand for
connections will be particularly high at startup. For example, if you have a connection

Table 3–3 Basic Connection Pool Properties

Application Server
Control Property Corresponding XML Entity Description

Connection Pooling
Scheme

<property> with
name="scheme" and
value="dynamic", "fixed",
or "fixed_wait"

How OC4J handles connection requests
after the maximum number of
connections is reached. This attribute
supports a setting of "Dynamic",
"Fixed", or "Fixed Wait", as described
later in this table.

Maximum
Connections

<property> with
name="maxConnections"
and value as appropriate

Desired maximum number of
connections to maintain within a pool
during program execution. If no value
or a value of 0 is specified, then there is
no limit on the number of connections.

Minimum
Connections

<property> with
name="minConnections"
and value as appropriate

Desired minimum number of
connections to maintain within a pool
during program execution. The default
value is 0.

Initial Capacity <property> with
name="initial-capacity"
and value as appropriate

Desired number of connections for
OC4J to create during initialization of
the connection pool. If the specified
initial capacity is less than the specified
minimum number of connections, then
any additional connections, once
created, will not be removed from the
pool until the number of connections
exceeds the minimum.

Note: Initial capacity applies to private
connection pools only, not to shared
connection pools.

Note: It is possible that OC4J will be
unable to open the specified number of
connections due to lack of necessary
information at initialization time, such
as JNDI context.

Fixed Wait Timeout <property> with
name="waitTimeout" and
value as appropriate

Maximum number of seconds to wait
for an available connection if the
maximum number of connections is
exceeded and the Fixed Wait scheme is
in effect. (Otherwise, this property is
ignored.) The default is no timeout.

Configuring Connection Pooling in OC4J

3-8 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

pool with Minimum Connections set to 5 and Maximum Connections set to 50, with an
anticipated high demand at startup, you can set Initial Capacity to 25. Once the initial
demand has passed, you can use the Inactive Connection Timeout parameter
(described in the next section, "Checking for Expired or Invalid Connections") to allow
the pool to be scaled back toward the minimum number of connections until the next
peak usage period.

Checking for Expired or Invalid Connections
The OC4J 10.1.3 implementation adds support for removing connections that have
expired or been marked invalid in a connection pool. By checking unused connections
in a pool, OC4J can ensure that connections are valid when passed to J2EE
applications.

Connections can become invalid due to a network timeout or other internal error. To
enable OC4J to check for invalid connections, the resource adapter provider must
implement the optional ValidatingManagedConnectionFactory interface to
specify which connections are invalid. This interface, in the
ManagedConnectionFactory implementation class underlying the connection
factory, is part of the of the SPI (javax.resource.spi) package. See "Summary of
the Connection Management Contract" on page 3-14 for information about managed
connection factories and how they are used.)

You can enable the checking features as follows:

■ How often OC4J will check for invalid or expired connections is according to the
"Expired Connection Cleanup" parameter.

■ The timeout value for a connection to expire is according to the "Inactive
Connection Timeout" parameter. After a connection in the pool is unused for that
amount of time, it will be discarded.

These parameters, from the Application Server Control Console Private Connection
Pool page (or Shared Connection Pool page, for a shared pool) are summarized in
Table 3–4.

Depending on how you set these parameters, OC4J will do no checking, check only for
invalid connections (if connections are set to never expire), or check for both invalid
and expired connections (according to the specified timeout).

Each setting is reflected by OC4J in a <property> subelement of the applicable
<connection-pooling> element.

Note: For any oc4j-ra.xml file, if there is a
<connection-pooling> element with use="private" but no
connection pool properties specified, OC4J uses a default pool
configuration with the Dynamic connection pooling scheme and no
preset minimum or maximum number of connections. Also, no
connections are pre-created when the connection pool is initialized.

Configuring Connection Pooling in OC4J

Connection Management 3-9

Use "Expired Connection Cleanup" as follows:

■ "never" to never check for expired or invalid connections. This effectively
disables checking for both expired connections and invalid connections. If you
specify a large number for maximum connections to accommodate peak usage,
you can use "never" to trim the size of the connection pool to the in-use set of
connections. If inactivity almost never occurs in your connection pool because the
number of connections constantly in use is close to the number of maximum
connections, specifying "never" can help optimize server performance.

■ "periodic", the default value, to check after a set amount of time, repeatedly,
such as every 10 minutes. The period used for checking is according to the
granularity setting of the OC4J Task Manager (an interval in milliseconds).
This is configurable through the JMX Management Console in Application Server
Control and reflected in the value of the taskmanager-granularity attribute
of the <application-server> element in the OC4J server.xml file. Be aware
that any changes to this parameter will affect other OC4J tasks and OC4J
performance. See Oracle Containers for J2EE Configuration and Administration Guide
for information about Task Manager granularity.

■ "piggyback" (when a new connection is fetched) to check only whenever a new
connection is requested.

■ "all" (periodically and when a new connection is fetched) to combine periodic
checking with checking whenever a connection is requested.

When a connection is removed from a pool, the destroy() method is called.

Table 3–4 Settings to Check for Invalid or Expired Connections

Application Server
Control Property Corresponding XML Entity Description

Expired Connection
Cleanup

<property> with
name="inactivity-timeout-check"
and value="never", "periodic",
"piggyback", or "all"

When to check for expired or
inactive connections.
Supported values are
"never", "periodic",
"piggyback" (when a new
connection is fetched), and
"all" (periodically and when
a new connection is fetched), as
described in the following text.

Set the inactivity-
timeout-check property in
the oc4j-ra.xml file before
deploying the resource adapter.

Inactive Connection
Timeout

<property> with
name="inactivity-timeout" and
value as appropriate

The desired connection
timeout, in seconds, as a
positive integer, or 0 for
connections to never expire.
Negative values are
disallowed.

Note: If removal of invalid or expired connections brings the number
of connections in the pool below the desired minimum, OC4J will
create new connections as appropriate.

Sharing Connection Pools

3-10 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

OC4J Support for Runtime Configuration of Connection Pools
You can make changes to the parameters discussed in the preceding sections during
program execution (with the exception of initial capacity, which takes effect only at
OC4J startup). The changes are dynamic; they do not require a restart of OC4J. Here is
a list of parameters for which runtime changes are supported, with notes about related
OC4J behavior:

■ For "Connection Pooling Scheme", the new scheme applies with the next
connection request by an application. If the original scheme was "Fixed Wait", the
new scheme will also take effect for any pending connection requests; and if the
new scheme is "Fixed", this results in an exception for any connection request that
was waiting for an available connection. If the original scheme was "Dynamic",
and the number of connections is greater than the desired maximum at the time
you change the scheme to "Fixed" or "Fixed Wait", then OC4J attempts to observe
the maximum by closing and removing any unused connections from the pool.

■ For "Maximum Connections", if the new value is less than the existing number of
connections in the pool, OC4J will close any unused connections. If the number of
in-use connections is still greater than the new maximum value, then as
connections are closed by the application, they will not be returned to the pool
until the number of connections is below the new maximum.

■ For "Minimum Connections", if the new value is greater than the existing number
of connections in the pool, OC4J will create enough new connections to satisfy the
new minimum.

■ For "Wait Timeout", the new value applies with the next connection request,
assuming the scheme is "Fixed Wait".

■ For "Inactive Connection Timeout", the new value applies the next time OC4J
checks for expired connections. If the value was 0 and is now a positive integer,
OC4J will start checking for expired connections. In this case, if the value of
"Expired Connection Cleanup" is "never", it will be changed to "periodic".

■ For "Expired Connection Cleanup", if the old value was "periodic" or "all"
(periodically and when a new connection is fetched), the next periodic check may
still be carried out.

Sharing Connection Pools
Beginning with the OC4J 10.1.3 implementation, there is support for multiple
connection factories to share a single connection pool if all the factories are for the
same resource adapter and use the same managed connection factory implementation
class. This allows users to better manage the number of concurrent connections to the
same type of EIS, or to utilize the same connection pool for all connection factories
used with a single resource adapter.

This section documents shared connection pools, covering the following topics:

■ Create and Configure a Shared Connection Pool

■ Edit and Reconfigure a Shared Connection Pool

■ Use a Shared Connection Pool

Create and Configure a Shared Connection Pool
To create a shareable connection pool, take the following steps in the Application
Server Control Console:

Sharing Connection Pools

Connection Management 3-11

1. Go to the Connection Factories tab, accessible from the Resource Adapter Home
page.

2. Under "Shared Connection Pools", choose the "Create" function.

3. In the resulting Create Shared Connection Pool page, specify a desired name for
the pool, such as SharedPool1. This is how it will be referred to later, when you
want to use it for a connection factory. This property is summarized in Table 3–5.

4. Set parameters as desired. They are used in the same ways as for a private
connection pool, as described in "Pooling Scheme, Minimum and Maximum
Connections, Initial Capacity" on page 3-6 and "Checking for Expired or Invalid
Connections" on page 3-8.

5. Apply your changes.

For a shared connection pool, OC4J will generate a <connection-pool> element
directly under the root <oc4j-connector-factories> element in the
oc4j-ra.xml file, instead of generating a <connection-pooling> element under
a <connector-factory> element, as for a private pool associated with just one
connection factory.

The supported properties for a shared pool are the same as for a pool that is specific to
a particular connection factory. In the oc4j-ra.xml file, however, these would
appear in <property> subelements of a <connection-pool> element, instead of in
<property> subelements of a <connection-pooling> element (which is a
subelement of the <connector-factory> element).

Also see the context-sensitive topic "Create Shared Connection Pool Page" in the
Application Server Control online help.

Edit and Reconfigure a Shared Connection Pool
To edit an existing shared connection pool:

1. You can get to the Shared Connection Pool page in the Application Server Control
Console in either of two ways:

■ From the Connection Factories tab, accessible from the Resource Adapter
Home page, select the pool you want to edit from the list under "Shared
Connection Pools".

■ From the Connection Factories tab, select a connection factory that uses the
shared connection pool you want to edit.

2. In the resulting Edit Connection Factory page, select the shared connection pool.

3. In the resulting Shared Connection Pool page, set parameters as desired.

Table 3–5 Shared Connection Pool Name Property

Application Server
Control Property Corresponding XML Entity Description

Connection Pool Name
(applicable only for a
shared connection pool)

<connection-pool> name
attribute

Desired name of a connection pool, to
make it available for sharing between
connection factories.

Note: Runtime changes are supported for shared connection pools,
as they are for private connection pools. See "OC4J Support for
Runtime Configuration of Connection Pools" on page 3-10.

Configuring OC4J Logging for Connection Factories

3-12 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Parameters are used in the same ways as for a private connection pool, as
described in "Pooling Scheme, Minimum and Maximum Connections, Initial
Capacity" on page 3-6 and "Checking for Expired or Invalid Connections" on
page 3-8.

4. Apply your changes.

Also refer to the topic "Shared Connection Pool Page" in the Application Server
Control online help.

Use a Shared Connection Pool
As noted in "Enable Connection Pooling for a Connection Factory" on page 3-5, you
specify whether you want to use shared connection pooling (or private connection
pooling or no connection pooling) when you first create a connection factory, in the
Create Connection Factory page of the Application Server Control Console. If you
choose to use shared connection pooling, you must also specify which shared pool to
use.

When a connection factory is to use a shared connection pool, OC4J updates the
oc4j-ra.xml file, adding a <connection-pooling> element for the appropriate
connection factory (under the appropriate <connector-factory> element) with an
attribute setting of use="shared" and a <use-connection-pool> subelement
with a value that specifies the name of the shared pool. This name corresponds to the
name attribute of the <connection-pool> element that specifies the shareable pool
being used.

Configuring OC4J Logging for Connection Factories
The J2EE Connector Architecture includes optional features for system-level error
logging and tracing for a particular managed connection factory. Using these features,
an application server can detect error conditions in a resource adapter or its EIS and
use error information in debugging problems. The application server manages the
association between a log writer and a managed connection factory.

In OC4J, through Application Server Control, you can enable logging for a resource
adapter by specifying a log file for a corresponding connection factory. Accomplish
this through the following steps in the Application Server Control Console:

1. Go to the Connection Factories tab from the appropriate Resource Adapter Home
page.

Note: You cannot change the name of an existing shared connection
pool.

Notes:

■ If a <connection-pooling> element has a
<use-connection-pool> subelement, OC4J ignores any
<property> subelements that would relate to a private pool.

■ If a <connection-pooling> element has an attribute setting of
use="shared" but there is no <use-connection-pool>
subelement, OC4J will throw an exception.

■ After specifying that a connection factory use a shared connection
pool, you must restart OC4J for the change to take effect.

Configuring OC4J Logging for Connection Factories

Connection Management 3-13

2. Choose the connection factory for which you want to enable logging.

3. From the resulting Edit Connection Factory page, go to the Options tab.

4. Specify the desired absolute or relative path and file name for a log file.

5. Apply your changes.

This setting is reflected in the <log> subelement of a <connector-factory>
element in the oc4j-ra.xml file, as summarized in Table 3–6.

Also see the context-sensitive topic "Edit Connection Factory Options Page" in the
Application Server Control online help.

A relative path is relative to the resource adapter deployment directory. As noted in
"What Are the Packaging and Deployment Features?" on page 1-9, this is as follows,
where instance is the name of the OC4J instance (home by default in an Oracle
Application Server environment and always home in a standalone environment);
app_name is the deployed application name (or default for a standalone resource
adapter); and ra_name is the deployed resource adapter name (as specified during
deployment for a standalone resource adapter, or according to the RAR file name,
without the .rar extension, for a resource adapter deployed within an EAR file):

j2ee/instance/application-deployments/app_name/ra_name

Specifying either "mylog.log" or "./mylog.log", for example, results in the
following log file location:

j2ee/instance/application-deployments/app_name/ra_name/mylog.log

Or "mydir/mylog.log" results in the following:

j2ee/instance/application-deployments/app_name/ra_name/mydir/mylog.log

Table 3–6 Log File Properties

Application Server
Control Property Corresponding XML Entity Description

Log File path attribute of the <file>
subelement of the <log>
element

This specifies the absolute or relative
path and name of a log file where
OC4J will write logging and tracing
messages relating to the resource
adapter and its EIS.

Notes:

■ If the specified directory for the log file does not exist, or if OC4J
does not have permission to write to the specified directory, then
OC4J does not enable logging and outputs a warning message.

■ If the specified directory exists but the file does not exist, OC4J
creates the file and enables logging.

■ Messages written by OC4J to the log include those for error
conditions that occur during deployment of the resource adapter
or when OC4J attempts to start the resource adapter.

■ The log file location is also passed on to managed connections.

Obtaining Resource Adapter Connections

3-14 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Obtaining Resource Adapter Connections
This section shows a JNDI lookup of the connection factory that was configured in
"Create and Bind a Connection Factory" on page 3-2.

This example also depends on the associated JNDI configuration in the ejb-jar.xml
and orion-ejb-jar.xml files. Following is a corresponding sample ejb-jar.xml
entry. This file would be packaged in the application EAR file.

<resource-ref>
 <res-ref-name>eis/myEIS</res-ref-name>
 <res-type>javax.resource.cci.ConnectionFactory</res-type>
 <res-auth>Application</res-auth>
</resource-ref>

Use the Application Server Control Console to specify a resource reference mapping
entry to link the JNDI location previously bound, eis/ConnectionFactory, to the
JNDI name in the ejb-jar.xml file, eis/myEIS. This generates an entry in
orion-ejb-jar.xml such as the following:

<resource-ref-mapping name="eis/myEIS" location="eis/ConnectionFactory" />

See the Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide for information
about EJB configuration for resource references.

Here is the sample code to look up the connection factory:

try
{
 Context ic = new InitialContext();
 ConnectionFactory cf = (ConnectionFactory) ic.lookup("java:comp/env/eis/myEIS");
} catch (NamingException ex) {
 ex.printStackTrace();
}

For a connection factory that implements the CCI ConnectionFactory interface, use
the getConnection() method to create a connection to the EIS. This returns a
connection object that implements the CCI Connection interface.

Connection conn = cf.getConnection();

Summary of the Connection Management Contract
"Introduction to How EIS Connections Are Obtained" on page 3-1 provides a brief
overview of how a connection is obtained. Now that we have covered the necessary
configuration steps earlier in this chapter for connection factories and connection
pooling, this section goes into more detail about the specifications of the connection
management contract for obtaining a connection. We outline the steps as follows:

1. The application component performs a JNDI lookup to obtain a connection factory
object. The connection factory is implemented by the resource adapter provider. If
the resource adapter implements the CCI, this is through a class that implements
the CCI ConnectionFactory interface. The connection factory is registered in
JNDI by the OC4J administrator.

2. The application component calls a method of the connection factory to request a
connection to the EIS. If the resource adapter implements the CCI, this is through a
getConnection() call to a ConnectionFactory object. Additionally, in the
CCI, the application can optionally pass a connection spec object in the
getConnection() call, to pass in properties specific to the connection request. A
connection spec is an instance of a class, typically a JavaBean, that implements the

Metrics for Resource Adapter Connections

Connection Management 3-15

CCI ConnectionSpec interface. Connection spec properties must be defined
through the getter and setter method pattern.

3. The connection factory delegates the connection request to OC4J, which maintains
a connection pool. Specifically, the connection factory calls the
allocateConnection() method of the OC4J connection manager, an instance
of a class that implements the SPI ConnectionManager interface.

4. The OC4J connection manager obtains a connection, using the resource adapter
managed connection factory as appropriate, which implements the SPI
ManagedConnectionFactory interface. A physical connection to the EIS is
referred to as a managed connection, represented by an instance of a class that
implements the SPI ManagedConnection interface. OC4J attempts to obtain a
connection as follows:

a. First, a new logical connection can be created from a physical connection
already in use if it is being used within the same transaction scope and is not
marked as unshareable (by a <res-sharing-scope> subelement of a
<resource-ref> element in the standard ejb-jar.xml or web.xml file).

b. If the first scenario is not feasible, OC4J looks for an available managed
connection in the connection pool. The OC4J connection manager calls the
matchManagedConnection() method of the managed connection factory. If
a suitable ManagedConnection object is found in the pool, then OC4J will
use it to satisfy the connection request.

c. If neither of the first two scenarios is feasible, the OC4J connection manager
calls the createManagedConnection() method of the managed connection
factory. This method creates a new physical connection and returns a new
ManagedConnection object to OC4J to represent the physical connection.
OC4J places the new managed connection in the pool and will use it to satisfy
the connection request.

5. OC4J obtains an application-level connection handle from the managed
connection. The handle is an instance of a class implemented by the resource
adapter. If the resource adapter implements the CCI interface, then this class
implements the CCI Connection interface.

6. OC4J returns the connection handle to the application.

7. The application component uses the connection handle to access the EIS (then
closes the connection when through).

Additionally, OC4J registers a connection event listener—an instance of a class that
implements the SPI ConnectionEventListener interface—with the
ManagedConnection instance for the physical connection. OC4J accomplishes this
by calling the addConnectionEventListener() method of the managed
connection. The purpose of this is to allow OC4J to be notified of events related to the
managed connection, which is useful in managing the connection pool.

Metrics for Resource Adapter Connections
OC4J provides performance metrics for resource adapter connection factories and
connection pools, based on the Oracle Dynamic Monitoring Service (DMS) as well as
on industry standard metrics specified in the Java 2 Platform, Enterprise Edition
Management Specification (JSR-77). The following sections describe these metrics and
how to access them:

■ Viewing Resource Adapter Connection Pool Metrics

Metrics for Resource Adapter Connections

3-16 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

■ Descriptions of Connection Pool Configuration Metrics

■ Descriptions of Connection Factory Performance Metrics

■ Descriptions of Connection Pool Performance Metrics

■ Troubleshooting with Resource Adapter Connection Pool Metrics

(For more information about OC4J performance metrics, see the topic "Summary of the
OC4J Performance Metrics" in the Application Server Control online help.)

Viewing Resource Adapter Connection Pool Metrics
You can view metrics for resource adapter connection factories and pools by taking
the following steps in the Application Server Control Console:

1. From the appropriate Resource Adapter Home page, go to the Connection
Factories tab.

2. For the appropriate JNDI location, corresponding to the connection factory of
interest, choose the "Monitor" feature.

3. The resulting Connection Factory Metrics page displays statistics such as wait
time, time of use, connection acquisition rate, and connection release rate.

Metrics listed under "General" are for the particular connection factory that you chose,
corresponding to a single JNDI location. Metrics listed under "Connection Pool" are for
the connection pool as a whole, which can be either private, where it is used by a
single connection factory corresponding to a single JNDI location, or shared, where it
is used by multiple connection factories corresponding to multiple JNDI locations.

The following metrics are available under the "General" category. See "Descriptions of
Connection Factory Performance Metrics" on page 3-17 for information.

■ Connection Wait Time (seconds)

■ Connection Use Time (seconds)

■ Connection Acquisition Rate (per second)

■ Connection Release Rate (per second)

The following metrics are available under the "Connection Pool" category. See
"Descriptions of Connection Pool Performance Metrics" on page 3-18 for more
information.

■ Pool Type (private or shared)

■ Pool Name

■ Connection Wait Time (seconds)

Note: DMS adds performance-monitoring features to a number of
Oracle Application Server components, including OC4J. The goal of
DMS is to provide information about runtime behavior through
built-in performance measurements so that users can diagnose,
analyze, and debug any performance problems. DMS provides this
information in a package that can be used at any time, including
during live deployment. Data are published through HTTP and can be
viewed with a browser. For general information about how to use
DMS, the built-in DMS metrics that are available, and other OC4J
performance considerations, refer to the Oracle Application Server
Performance Guide.

Metrics for Resource Adapter Connections

Connection Management 3-17

■ Connection Use Time (seconds)

■ Connection Creation Rate (per second)

■ Connection Closure Rate (per second)

■ Connections in Use

■ Available Connections

■ Waiting Threads

■ Connection Error Rate (per second)

Also see the context-sensitive topic "Connection Factory Metrics Page" in the
Application Server Control online help.

Descriptions of Connection Pool Configuration Metrics
As listed in Table 3–7, there are DMS metrics that correspond to connection pool
configuration parameters that are described in "Configuring Connection Pooling in
OC4J" on page 3-4. XML entities in the table refer to subelements of the applicable
<connection-pooling> element in the oc4j-ra.xml file.

Descriptions of Connection Factory Performance Metrics
Table 3–8 lists and describes OC4J DMS metrics for a connection factory and notes the
corresponding metrics in the Application Server Control Connection Factory Metrics
page (under "General") and in the J2EE Management Specification, as applicable. A
connection factory corresponds to a single JNDI location.

These statistics are of interest regardless of whether connection pooling is used.

Table 3–7 OC4J Connection Pool Configuration Metrics

DMS Metric Name (and
Sensor Type)

Application Server
Control Property Corresponding XML Entity

maxPoolSize (State) Maximum Connections <property> with
name="maxConnections"

minPoolSize (State) Minimum Connections <property> with
name="minConnections"

scheme (State) Connection Pooling
Scheme

<property> with name="scheme"

waitTimeout (State) Fixed Wait Timeout <property> with
name="waitTimeout"

inactivityTimeout (State) Inactive Connection
Timeout

<property> with
name="inactivity-timeout"

inactivityTimeoutCheck
(State)

Expired Connection
Cleanup

<property> with
name="inactivity-timeout-check"

Metrics for Resource Adapter Connections

3-18 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Descriptions of Connection Pool Performance Metrics
Table 3–9 lists and describes OC4J DMS metrics for a connection pool, and notes the
corresponding metrics in the Application Server Control Connection Factory Metrics
page (under "Connection Pool") and in the J2EE Management Specification, as
applicable. A connection pool may be private, in which case it corresponds to a single
connection factory and JNDI location, or it may be shared, in which case it
corresponds to multiple connection factories and JNDI locations.

These statistics are of interest only when connection pooling is used.

Table 3–8 OC4J Connection Factory Performance Metrics

DMS Metric Name
(and Sensor Type)

Application Server
Control Metric

J2EE Management Specification /
JSR-77 Statistics (and Type) Description

waitTime
(PhaseEvent)

Connection Wait
Time

JCAConnectionStats.getWaitTime()
(TimeStatistics)

Average number of seconds
spent waiting for a
connection from this
connection factory.

useTime
(PhaseEvent)

Connection Use Time JCAConnectionStats.getUseTime()
(TimeStatistics)

Average number of seconds
spent using a connection.

createCount
(Event)

Connection
Acquisition Rate

JCAConnectionStats.getCreateCount()
(CountStatistics)

Number of connection
handles acquired (expressed
as per second in
Application Server Control).

closeCount (Event) Connection Release
Rate

JCAConnectionStats.getCloseCount()
(CountStatistics)

Number of connection
handles released (expressed
as per second in
Application Server Control).

Note: When you do not use a connection pool, acquiring a
connection is equivalent to creating a connection, and releasing a
connection is equivalent to closing a connection. When you do use a
connection pool, a single connection handle may be acquired and
released multiple times between creation and closure.

Metrics for Resource Adapter Connections

Connection Management 3-19

Table 3–9 OC4J Connection Pool Performance Metrics

DMS Metric Name
(and Sensor Type)

Application
Server Control
Metric

J2EE Management Specification / JSR-77
Statistics (and Type) Description

poolName (State) Pool Name n/a Name of the
connection pool.

waitTime
(PhaseEvent)

Connection
Wait Time

JCAConnectionPoolStats.getWaitTime()
(TimeStatistics)

Average number of
seconds spent waiting
for a connection from
this connection pool.
For a shared pool, this
is for all the
connection factories
in the pool.

useTime
(PhaseEvent)

Connection Use
Time

JCAConnectionPoolStats.getUseTime()
(TimeStatistics)

Average number of
seconds spent using a
connection. For a
shared pool, this is for
all the connection
factories in the pool.

createCount (Event) Connection
Creation Rate

JCAConnectionPoolStats.getCreateCount()
(CountStatistics)

Number of
connection handles
created (expressed as
per second in
Application Server
Control). For a shared
pool, this is for all the
connection factories
in the pool.

closeCount (Event) Connection
Closure Rate

JCAConnectionPoolStats.getCloseCount()
(CountStatistics)

Number of
connection handles
closed (expressed as
per second in
Application Server
Control). For a shared
pool, this is for all the
connection factories
in the pool.

freePoolSize (State) Available
Connections

JCAConnectionPoolStats.getFreePoolSize()
(BoundedRangeStatistics)

Number of available
connections in the
pool.

poolSize (State) None, but
equivalent to
Connections in
Use + Available
Connections

JCAConnectionPoolStats.getPoolSize()
(BoundedRangeStatistics)

Size of connection
pool—number of free
connections plus
number of
connections in use.

waitingThreadCount
(PhaseEvent)

Waiting
Threads

JCAConnectionPoolStats.getWaitingThreadCount(
) (BoundedRangeStatistics)

Number of threads
waiting for a
connection.

expiredCount (Event) n/a n/a Number of expired
connections removed
from the pool.

Metrics for Resource Adapter Connections

3-20 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Troubleshooting with Resource Adapter Connection Pool Metrics
OC4J connection metrics discussed in the preceding sections are for your use in
learning the tendencies of your resource adapters and application server environment.
There are no specific desired value ranges for these metrics. Over time, you will learn
what ranges are normal for your environment, and what ranges may indicate trouble.

Typically, you should pay particular attention to wait times, the number of waiting
threads, and the connection error rate.

invalidCount (Event) n/a n/a Number of
connections
determined by the
resource adapter to be
invalid.

requestTimeoutCoun
t (Event)

n/a n/a Number of
connection requests
that failed due to
timeout.

errorCount (Event) Connection
Error Rate

n/a Number of
connection error
events (expressed as
per second in
Application Server
Control).

Note: An additional tool for troubleshooting connections is the OC4J
system property jca.connection.debug, which you can use to
output diagnostic information for J2CA connections. See the Oracle
Containers for J2EE Configuration and Administration Guide for general
information about OC4J system properties.

Table 3–9 (Cont.) OC4J Connection Pool Performance Metrics

DMS Metric Name
(and Sensor Type)

Application
Server Control
Metric

J2EE Management Specification / JSR-77
Statistics (and Type) Description

Transaction Management 4-1

4
Transaction Management

This chapter covers key aspects of transactions and the J2CA transaction management
contract for outbound connections. This contract leverages the standard J2EE
programming model for transaction management, allowing access by an application to
multiple disparate EISs through standard interfaces in the context of a single,
coordinated transaction.

The following topics are covered here:

■ Introduction to Transactions and Transaction Management

■ Overview of Key Interfaces Used in Transaction Management

■ Transaction Support in the OC4J Connector Implementation

■ OC4J Transaction Setup and Cleanup

■ Understanding Connection Sharing in OC4J

■ Understanding and Configuring Transaction Recovery

■ Understanding J2CA Connection Wrapping

For additional information about OC4J transaction support, see the Java Transaction
API chapter of the Oracle Containers for J2EE Services Guide.

Introduction to Transactions and Transaction Management
The topic of transactions concerns how updates and manipulations of data are
managed in order to ensure the integrity of the data. A transaction may involve just a
single EIS or multiple EISs. Particularly in the latter case, strict rules must be followed
to coordinate the updates and ensure that data is not left in an inconsistent state in the
event of problems during the transaction. For example, if a transaction involves
transferring money from one account to another, you want to avoid a situation where
the balance is updated in only one account.

The following subsections provide a quick introduction or refresher for transactions
and transaction management:

■ Transaction Characteristics and Scopes

■ Relationship with Enterprise JavaBeans Technology

■ Relationship with Java Transaction API Technology

■ Local Transaction Management

■ Global Transaction Management

■ Resource Adapter Configuration for Level of Transaction Support

Introduction to Transactions and Transaction Management

4-2 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Transaction Characteristics and Scopes
A transaction is a unit of work, typically consisting of multiple operations, between an
application component and one or more EISs to update or manipulate data.
Transactions must have four basic characteristics: atomicity (ensuring that either all
operations of a transaction are completed or all are rolled back), consistency (of the
data), isolation (preventing one transaction from seeing any results of other
transactions until those transactions are complete), and durability (ensuring that
committed transactions are persisted even in the event of system failure after the
commit operation). It is a convention to refer to these collectively by the acronym
ACID.

A resource manager can support no transactions, local transactions, or global transactions
(also known as distributed transactions or XA transactions). A global transaction is
managed by an external transaction manager, such as through a Java Transaction API
(JTA) implementation. A local transaction is typically managed internally within a
single resource manager. (It can optionally can be managed by an external transaction
manager, but this probably results in needless overhead.) Executing a transaction to a
single resource manager, verifying the ACID properties, then committing the
transaction is known as a one-phase commit protocol. To ensure complete data
consistency and integrity, a transaction across multiple resource managers must use a
two-phase commit protocol, consisting of a "prepare" phase and a "commit" phase.
Updates are not committed to any resource manager unless all resource managers are
prepared for updates.

All data manipulations that are part of a single transaction share a transaction context.

Relationship with Enterprise JavaBeans Technology
Enterprise JavaBeans technology, designed for data integrity and security, plays a
large role in the overall transaction model of the J2EE platform. The J2EE Connector
Architecture is tied closely to the EJB architecture, which is designed to handle
transaction management for an application. A typical J2EE application executing
transactions with one or more EISs will do so through EJB components.

In EJB technology, the demarcation (essentially, the beginning and end) of a
transaction can be managed either by a bean, in a model known as bean-managed
transaction demarcation, or by the container, in a model known as container-managed
transaction demarcation. Entity beans, designed for data access, must use
container-managed transaction demarcation. Session beans can use either model.

Transactions associated with J2CA connections are intended to seamlessly extend EJB
transactions, regardless of which demarcation model is used. If an EJB method
executes in the scope of a transaction, all work done by an EIS on behalf of the EJB is
within the scope of the transaction, assuming the EIS supports global transactions.
(Also see "OC4J Support for Last-Resource-Commit Optimization" on page 4-9 for
information about how a single EIS that does not support global transactions can be
included in a global transaction.)

See the Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide for details about
EJBs in OC4J.

Relationship with Java Transaction API Technology
The Java Transaction API (JTA) is the transaction management vehicle of the J2EE
platform. Any typical J2EE application performing global transactions, usually
through EJBs and using resource adapters to access EISs, employs JTA. Use of the JTA
involves a transaction manager that is external to the resource managers and

Introduction to Transactions and Transaction Management

Transaction Management 4-3

coordinates the overall transaction. The JTA is a set of interfaces between a transaction
manager and the entities involved in a transaction—the application component,
application server, and resource manager.

Important features provided by the JTA include two-phase commit, introduced earlier,
which includes transaction recovery in the event that a resource manager fails during
a transaction.

Key JTA interfaces, implemented by OC4J, include the Transaction,
TransactionManager, and UserTransaction interfaces of the
javax.transaction package. A Transaction object represents a transaction and
has methods, such as commit() and rollback(), to allow an application to perform
operations in the transaction. A TransactionManager object has methods allowing
J2EE containers such as OC4J to manage the boundaries of a transaction, for
container-managed transaction demarcation. A UserTransaction object has
methods allowing an application to manage the boundaries of a transaction, for
bean-managed transaction demarcation. An application component would use JNDI to
look up a UserTransaction object. See "Implemented by Transaction Managers:
UserTransaction and TransactionManager" on page 4-6 for additional information.

The JTA javax.transaction.xa.XAResource interface is implemented by
resource adapter providers to represent resources, such as EISs, used in global
transactions controlled by an external transaction manager. The transaction manager
obtains an XAResource object for each EIS connection that is participating in the
transaction, and it can associate and disassociate each resource with the transaction.
See "Implemented by Resource Adapters: XAResource and LocalTransaction" on
page 4-5 for additional information.

Refer to Oracle Containers for J2EE Services Guide for additional information about the
Java Transaction API.

Local Transaction Management
A local transaction is one that is specific to a single resource manager, and is created
and committed against this resource manager. The transaction can be demarcated by
an application component or by the container.

Demarcation by an application component would involve EIS-specific APIs, such as,
for example, methods of the CCI LocalTransaction interface (for a resource
adapter that implements the CCI) or methods of the JDBC java.sql.Connection
interface, such as commit() and rollback() (for a JDBC driver).

Demarcation by a container would involve methods of the SPI LocalTransaction
interface.

Note: For container-managed transaction demarcation, where only
one resource manager is involved in a JTA transaction, a container has
two choices:

■ Use its transaction manager to manage the transaction, using
one-phase-commit optimization. This is what OC4J does. (See
"Highlights of Required Transaction Support" on page 4-7.)

■ Let the resource manager coordinate the transaction internally,
using a local transaction of the resource manager without
involving an external transaction manager.

Introduction to Transactions and Transaction Management

4-4 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Global Transaction Management
Global transactions typically use JTA XAResource objects, as noted earlier. This
interface is based on the industry standard X/Open transaction model. The OC4J
transaction manager coordinates all resource managers involved in the transaction.

For data integrity and consistency, XAResource objects support the
two-phase-commit protocol to ensure that a transaction is committed successfully
across all the resource managers, or is committed to none. In this protocol, the OC4J
transaction manager calls the XAResource prepare() method on each resource
manager to notify it of a pending commit. Only if each resource manager can be
reached, and agrees to the commit, will the transaction manager proceed by calling the
XAResource commit() method on each resource manager to commit the transaction.
If, during the prepare phase, any resource manager cannot be reached or vetoes the
commit, then the transaction manager aborts the transaction by calling the
XAResource rollback() method on each resource manager.

Resource Adapter Configuration for Level of Transaction Support
In the ra.xml file supplied by a resource adapter provider, the level of transaction
support of a resource adapter is indicated in the <transaction-support> element.
According to version 1.5 of the J2EE Connector Architecture Specification, this is a
subelement of an <outbound-resourceadapter> element and supports the values
NoTransaction, LocalTransaction, or XATransaction, as in the following
example for global transaction support:

<outbound-resourceadapter>
 ...
 <transaction-support>XATransaction</transaction-support>
 ...
</outbound-resourceadapter>

(In version 1.0 of the J2EE Connector Architecture Specification,
<transaction-support> is a subelement of the <resourceadapter> element.)

Support levels are as follows:

■ NoTransaction means the resource adapter supports no transactions at all,
neither global transactions nor local transactions. Data can be written or updated,
but no ACID properties are possible across multiple interactions with the EIS.

■ LocalTransaction means the resource adapter supports local transactions,
implementing the SPI LocalTransaction interface, but does not support global
transactions.

■ XATransaction means the resource adapter supports global transactions as well
as local transactions, implementing the SPI LocalTransaction interface and the
XAResource interface.

If the transaction support level of the resource adapter is XATransaction, then the
J2CA container will call the getXAResource() method on the
ManagedConnection instance when an XAResource object is needed to enlist the
connection with a global transaction. If the transaction support level of the resource
adapter is LocalTransaction, then the container will call the
getLocalTransaction() method to get a LocalTransaction object. If the local
transaction-level connection needs to be enlisted in a global transaction, then the
container will create an emulated XAResource. The emulated XAResource gets
enlisted and allows the local transaction-level connection to participate in a global
transaction through the LocalTransaction object (with restrictions).

Overview of Key Interfaces Used in Transaction Management

Transaction Management 4-5

Overview of Key Interfaces Used in Transaction Management
The following sections summarize key J2CA and Java Transaction API interfaces that
are used in transaction management:

■ Implemented by Resource Adapters: XAResource and LocalTransaction

■ Implemented by Transaction Managers: UserTransaction and TransactionManager

■ Implemented by OC4J: ConnectionEventListener Interface

Implemented by Resource Adapters: XAResource and LocalTransaction
Each of the following interfaces, implemented by resource adapter providers, plays an
important role in the transaction management contract:

■ javax.transaction.xa.XAResource

■ javax.resource.spi.LocalTransaction

XAResource or LocalTransaction instances can be obtained from a managed
connection, through methods specified in the SPI ManagedConnection interface.
OC4J always obtains a ManagedConnection object from the resource adapter,
through the resource adapter ManagedConnectionFactory object, when an
application component requests a connection. This is regardless of whether work will
be in the context of a transaction. The ManagedConnection object represents a
physical EIS connection and may be either newly created or obtained from a
connection pool. (The process of obtaining a managed connection is described in
"Summary of the Connection Management Contract" on page 3-14.) Classes
implementing ManagedConnectionFactory and ManagedConnection are
supplied by the resource adapter provider.

The ManagedConnection interface specifies the following methods:

■ XAResource getXAResource()

■ LocalTransaction getLocalTransaction()

If the application component requesting a connection is in a global transaction context,
and the resource adapter supports the XATransaction transaction support level,
then OC4J calls the getXAResource() method to obtain an XAResource object from
the managed connection. OC4J then enlists the XAResource object with the OC4J
transaction manager. (The transaction manager obtains an XAResource object for
each connection participating in a global transaction.) An XAResource object enables
the EIS to participate in transactions that are controlled by an external transaction
manager, such as the OC4J transaction manager. The transaction manager uses the
XAResource object to communicate information about the transaction—such as
association, completion, and recovery—to the EIS.

Key XAResource methods include the following:

■ void start(Xid, ...) to start the work of a transaction branch

■ void end(Xid, ...) to end the work of a transaction branch

■ void prepare(Xid, ...) to execute the "prepare" phase of a two-phase
commit

■ void commit(Xid, ...) to execute the "commit" phase of a two-phase commit

■ void rollback(Xid, ...) to roll back the transaction

Each of these takes a javax.transaction.xa.Xid instance to identify the
transaction.

Overview of Key Interfaces Used in Transaction Management

4-6 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

If the application component requesting a connection is in a local transaction context,
or the application component is in a global transaction context but the resource
adapter supports only the LocalTransaction transaction support level, then OC4J
calls the getLocalTransaction() method to obtain a LocalTransaction object
from the managed connection. A LocalTransaction object enables OC4J to manage
a local transaction with the EIS.

The SPI LocalTransaction interface specifies three methods:

■ void begin() to begin the local transaction

■ void commit() to commit the local transaction

■ void rollback() to roll back the local transaction

Implemented by Transaction Managers: UserTransaction and TransactionManager
The following interfaces are implemented by transaction managers, such as the OC4J
transaction manager:

■ javax.transaction.UserTransaction

■ javax.transaction.TransactionManager

The OC4J transaction manager allows global transactions to be supported across
multiple EISs. A global transaction can be started either by an application component
(typically an EJB) in a component-managed (bean-managed) scenario, or by OC4J in a
container-managed scenario. In the former case, the component would use a
UserTransaction object, which includes the following methods:

■ void begin() to create a transaction and associate it with the current thread

■ void commit() to commit the transaction associated with the current thread

■ void rollback() to roll back the transaction associated with the current thread

When a global transaction is started by OC4J in a container-managed scenario, OC4J
manages the transaction through a TransactionManager object, which includes the
following methods:

■ void begin() to create a transaction and associate it with the current thread

Note: Do not confuse the SPI LocalTransaction interface,
implemented by a resource adapter provider, with the CCI
LocalTransaction interface, optionally implemented for client-side
use. The CCI interface is for application-level local transaction
demarcation. The SPI interface is used by the J2EE container for local
transaction management. Both interfaces define the same methods,
however.

Note: In a global transaction scenario, where an application
component has called the begin() method of a UserTransaction
object (used for bean-managed transaction demarcation), OC4J enlists
a resource manager XAResource object with the OC4J transaction
manager whenever a connection handle for that resource manager is
returned to the application. And OC4J disassociates the XAResource
object from the transaction manager when the application component
releases or closes the connection.

Transaction Support in the OC4J Connector Implementation

Transaction Management 4-7

■ void commit() to commit the transaction associated with the current thread

■ void rollback() to roll back the transaction associated with the current thread

■ Transaction suspend() to suspend and return a transaction (Transaction
object) that was associated with the current thread, and disassociate the resource
from the transaction

■ void resume(Transaction) to resume the association of the current thread
with the transaction (represented by the Transaction object), and also
reassociate the resource with the transaction

Once the transaction begins, and an application component requests a connection, the
connection management mechanism is executed as described in "Summary of the
Connection Management Contract" on page 3-14.

Implemented by OC4J: ConnectionEventListener Interface
OC4J implements the SPI ConnectionEventListener interface, which allows
notifications from EISs regarding connection and transaction status, and registers each
listener instance with the appropriate managed connection factory.

OC4J relies on notification when a connection is closed, to accomplish connection
cleanup and any transaction cleanup required as a result of closing the connection. The
following ConnectionEventListener method is called by the resource adapter:

■ void connectionClosed(ConnectionEvent)

For local transactions, OC4J relies on notifications when a transaction is started,
committed, or rolled back. The following ConnectionEventListener methods are
called by the resource adapter:

■ void localTransactionStarted(ConnectionEvent)

■ void localTransactionCommitted(ConnectionEvent)

■ void localTransactionRolledback(ConnectionEvent)

Each of these methods takes an SPI ConnectionEvent object that represents the
event that OC4J is being notified of.

Transaction Support in the OC4J Connector Implementation
The following sections summarize highlights of the OC4J implementation of J2CA
transaction management:

■ Highlights of Required Transaction Support

■ Highlights of Optional Transaction Support

■ OC4J Configuration for Transaction Recovery

Highlights of Required Transaction Support
The following key OC4J features for resource adapters reflect requirements of the J2EE
Connector Architecture:

■ OC4J reads <transaction-support> elements of an ra.xml file to determine
the level of transactions supported by the declared resource adapters.

■ OC4J detects and prevents any occurrences of illegal transaction demarcation in an
application component, such as an attempt to begin a global transaction while a
local transaction is still in progress.

Transaction Support in the OC4J Connector Implementation

4-8 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

■ As described earlier, OC4J supports the local transactions contract based on the
SPI LocalTransaction interface, and supports global transactions that are
based on functionality of the XAResource interface. (See "Implemented by
Resource Adapters: XAResource and LocalTransaction" on page 4-5.)

■ OC4J can use the one-phase-commit protocol for transactions using a single
physical connection to a resource manager. One-phase-commit optimization,
supported by OC4J, is for the scenario of a global transaction context where all
logical connections in the transaction use the same physical connection to the same
EIS, which must support at least one-phase-commit protocol. (Multiple logical
connections may all point to the same physical connection due to connection
sharing, for example, assuming all connections use the same data source and user
name.) In this case, OC4J uses only the "commit" phase of the two-phase-commit
protocol. The "prepare" phase is skipped.

■ As noted earlier, OC4J implements the SPI ConnectionEventListener
interface, and relies on notifications from the listener for local transaction starts,
commits, and rollbacks. For a global transaction, OC4J relies on notifications for
connection-closed events. (See "Implemented by OC4J: ConnectionEventListener
Interface" on page 4-7.)

■ OC4J detects incomplete local transactions. For example, if a stateless session bean
starts a local transaction through a method invocation, but returns from the
method without completing the transaction, then OC4J terminates the session and
throws an exception.

■ If an application component terminates due to an exception during a method
invocation, OC4J resets all local transactions in progress and resets any
client-specific state.

■ OC4J supports connection sharing. See "Understanding Connection Sharing in
OC4J" on page 4-12.

Highlights of Optional Transaction Support
This section discusses OC4J support for features that are optional or beyond the scope
of the J2CA specification. The following topics are covered:

■ OC4J Support for Lazy Enlistment of Connections in a Transaction

■ OC4J Support for Last-Resource-Commit Optimization

■ Unsupported Transaction Scenarios

■ OC4J Checking for Illegal Transaction Demarcation

OC4J Support for Lazy Enlistment of Connections in a Transaction
Typically, when an application component requests a connection handle in the context
of a transaction, the connection is automatically, or "eagerly", enlisted in the
transaction. This is true even if the connection is ultimately unused, which results in
unnecessary overhead.

With "lazy" enlistment, a new connection is enlisted in the transaction only if it is
actually used in the transaction—in other words, only if data is transmitted through
the connection.

Both a resource adapter and an application server must support lazy enlistment for
this feature to be usable. The OC4J connection manager supports this feature through
its implementation of the SPI LazyEnlistableConnectionManager interface, so
you can use lazy enlistment with any resource adapter that implements the

Transaction Support in the OC4J Connector Implementation

Transaction Management 4-9

LazyEnlistableManagedConnection interface for its managed connections. A
managed connection calls the lazyEnlist() method on the connection manager,
which results in enlistment of the connection only if it is used.

Both the resource adapter and OC4J are capable of determining whether the other
implements the requisite interface. Neither attempts lazy enlistment if the other does
not support it.

OC4J Support for Last-Resource-Commit Optimization
The OC4J 10.1.3 implementations of the Java Transaction API and J2EE Connector
Architecture support last-resource-commit optimization for a situation where one (and
only one) resource adapter supporting LocalTransaction (one-phase commits) is
to be included in a global transaction with resource adapters supporting
XATransaction (two-phase commits). Essentially, last resource commit optimization
allows for a single non-XA-compliant resource to participate in an XA transaction, in
the root OC4J process. If more than one non-XA-compliant resource is enlisted in the
transaction, then an exception is thrown from the enlistment attempt.

For resource adapters, this optimization is accomplished by emulating an
XAResource object, using an instance of the type EmulatedXAResource to
represent the one-phase-commit resource adapter, with the resource adapter receiving
notifications through the emulated XA resource. If there is any attempt to include a
second resource adapter supporting only one-phase-commit protocol, the OC4J
transaction manager throws an exception.

The transaction manager takes the following steps when it receives a request to
commit a global transaction that includes one emulated XA resource:

1. It invokes a prepare() call on each of the two-phase-commit resources.

2. If all of the two-phase-commit resources are successfully prepared, then
commit() (one-phase) is called on the emulated XA resource.

3. If the one-phase commit on the emulated XA resource completes successfully, then
the transaction manager logs a decision to commit the global transaction and calls
commit() on each of the two-phase-commit resources.

Or else, if the one-phase commit on the emulated XA resource fails, then the
transaction manager logs a decision to roll back the global transaction and calls
rollback() on each of the two-phase-commit resources.

See "Last Resource Commit" under Oracle Containers for J2EE Services Guide for more
information.

Notes Regarding Last-Resource-Commit Optimization Be aware of the following
regarding last-resource-commit optimization:

■ An emulated XA resource also implements the SinglePhaseResource interface,
which is what signals its status as an emulated resource to OC4J.

■ Last-resource-commit optimization becomes problematic if a failure occurs after
commit() is called on the emulated XA resource but before the transaction
manager receives the result of that call. In such a case, it is not possible to assure
that the result of the global transaction will be atomic.

■ With emulated XA resources, transaction recovery is not applicable.

■ The transaction manager treats an emulated XA resource as a standard XA
resource if logging is disabled in the transaction manager (in which case there can
be no recovery).

Transaction Support in the OC4J Connector Implementation

4-10 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Unsupported Transaction Scenarios
OC4J, in accordance with the J2EE Connector Architecture, does not generally support
attempts to include multiple non-XA resource adapters within a single transaction.
(Note that the discussion in the preceding section, "OC4J Support for
Last-Resource-Commit Optimization", specifies a single non-XA resource adapter
only.)

Also, we do not recommend that you attempt a global transaction in which a resource
adapter is at XATransaction support level but supports only one-phase commit
(although a one-phase-commit resource can provide an XAResource object to
emulate global transactions). The lack of true support for two-phase commit would
not be known until it was time to commit the global transaction.

OC4J Checking for Illegal Transaction Demarcation
OC4J, through its implementation of the SPI ConnectionEventListener interface,
flags cases of illegal transaction demarcation.

As an example, assume an EJB using bean-managed demarcation begins a local
transaction (such as by using the CCI LocalTransaction interface, if that is
supported by the resource adapter). Further assume that the EJB, before completing
the local transaction, tries to begin a global transaction through a begin() call on a
UserTransaction object. The resource adapter will have sent a "local transaction
started" message to OC4J, but because OC4J will not yet have received a "local
transaction committed" or "local transaction rolled back" notification at the point when
the attempt is made to start a global transaction, OC4J will throw an exception on the
UserTransaction begin() call.

OC4J Configuration for Transaction Recovery
Little configuration is required in OC4J for the transaction management contract.
Functionality is largely behind the scenes. However, transaction recovery requires the
configuration of a special user name and password. If a failure occurs during
transaction processing, the OC4J recovery manager may need to contact an EIS, which
will usually require special credentials, to inquire about any transactions that are in
doubt. See "Understanding and Configuring Transaction Recovery" on page 4-15.

You can configure XA transaction recovery through the Application Server Control
Console:

1. In the Connection Factories tab accessed from the Resource Adapter Home page
for the appropriate resource adapter, choose the JNDI location of the connection
factory that you want to configure.

2. In the Options tab of the resulting Edit Connection Factory page, you can do any
of the following tasks:

■ Add a new user name.

■ Specify a password directly or indirectly, after specifying the user name.

 For a direct password, choose Password and type the password itself.

Note: There are exceptions. If logging is disabled in the transaction
manager, in which case recovery is not possible, then multiple
one-phase-commit resources are allowed to participate in a
transaction. Also, multiple emulated XA resources may be used in a
transaction in testing scenarios, such as for performance testing.

OC4J Transaction Setup and Cleanup

Transaction Management 4-11

For an indirect password, choose Indirect Password and type a key (which
might just be the user name, for example). OC4J uses the key to do a lookup in
the User Manager (specifically, in the jazn-data.xml file).

■ Change an existing user name or password.

OC4J Transaction Setup and Cleanup
The following sections describe how OC4J sets up before transactions and cleans up
afterward, for the possible transaction levels and resource adapter support levels:

■ Global Transaction Setup and Cleanup

■ Local Transaction Setup and Cleanup

Global Transaction Setup and Cleanup
This section covers OC4J transaction setup and cleanup for global transactions, either
where all involved resource adapters are at the XATransaction support level, or
where last-resource-commit optimization is used, as discussed in "OC4J Support for
Last-Resource-Commit Optimization" on page 4-9. (In the scenario of a global
transaction with a resource adapter supporting only NoTransaction, OC4J
completes connection setup as described in "Summary of the Connection Management
Contract" on page 3-14, but does not perform any steps for transaction setup.)

If a connection allocation request is invoked from a J2EE application component that is
within a global transaction context, and the resource adapter provides
XATransaction support level (or there is a last-resource-commit scenario, as will be
noted), OC4J performs the following steps to enlist the work done in the connection to
the transaction manager:

1. Obtains a managed connection from the resource adapter—either a newly created
managed connection or an existing one from the connection pool. See "Summary
of the Connection Management Contract" on page 3-14 for details.

2. Obtains an XAResource object from the managed connection. The OC4J
transaction manager will use the XAResource object to provide any transaction
notifications to the resource manager.

3. Enlists the XAResource object to the OC4J transaction manager.

4. Invokes the start() method of the XAResource object. For any work done
through the connection, the resource manager is instructed to associate the work
with a transaction branch.

5. Creates a connection handle from the managed connection and hands it back to
the application component.

When the application component closes the connection handle, the resource adapter
sends a ConnectionClosed event to OC4J. If there are no outstanding connection

Note: For the resource adapter supporting only
LocalTransaction in a last-resource-commit scenario, OC4J
obtains, or if necessary creates, an EmulatedXAResource object
associated with the managed connection, instead of obtaining an
XAResource object directly from the managed connection. In this
case, substitute EmulatedXAResource for XAResource in the steps
that follow.

Understanding Connection Sharing in OC4J

4-12 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

handles for the underlying managed connection, OC4J calls the end() method of the
XAResource object to inform the resource manager that any further operations on the
managed connection will not be associated with the global transaction (performed by
the OC4J transaction manager).

Local Transaction Setup and Cleanup
This section covers OC4J transaction setup and cleanup for local transactions, where
all involved resource adapters are at either the LocalTransaction or
XATransaction support level. (In the scenario of a local transaction with a resource
adapter supporting only NoTransaction, OC4J completes connection setup as
described in "Summary of the Connection Management Contract" on page 3-14, but
does not perform any steps for transaction setup or cleanup.)

A local transaction can be started by OC4J, similarly to what is described in "Global
Transaction Setup and Cleanup" on page 4-11. Alternatively, a J2EE application
component can explicitly begin and end a local transaction through the use of an
application-level transaction demarcation interface. The particular process used in
starting a local transaction depends on the connection interface being used. For
resource adapters that implement CCI as the client interface, an application
component can obtain a CCI LocalTransaction object from a CCI Connection
object, through the getLocalTransaction() method.

Regardless of the particulars of the client-side API, the following steps are executed
between the resource adapter and OC4J when a local transaction is started:

1. The resource adapter detects the request from the application component to start
the local transaction. For example, in CCI this is when the application component
invokes the begin() method of the CCI LocalTransaction object.

2. The resource adapter notifies OC4J that a local transaction is starting. OC4J relies
on this notification in order to provide appropriate services.

3. The resource adapter executes an EIS-specific process to start the local transaction.

Similarly, an application component can explicitly end a local transaction by using an
API provided by the resource adapter. As is the case when starting a local transaction,
which particular methods to use in ending a local transaction depends on the
connection interface being used.

Here is what happens between the resource adapter and OC4J when a local
transaction is ended:

1. The resource adapter detects the request from the application component to end
the local transaction. For example, in CCI this is when the application component
invokes the commit() or rollback() method of the CCI LocalTransaction
object.

2. The resource adapter notifies OC4J that a local transaction has ended. OC4J will
then update its internal states accordingly.

3. The resource adapter executes an EIS-specific process to commit or roll back the
local transaction on the EIS.

Understanding Connection Sharing in OC4J
Connection sharing, specified in the J2EE Connector Architecture, allows multiple
connection handles to be shared between multiple application components within a
single transaction. This allows better performance and more efficient use of resources,

Understanding Connection Sharing in OC4J

Transaction Management 4-13

and helps avoid resource manager lock contentions and read-isolation problems. The
following sections discuss this feature:

■ Conditions for Connection Sharing

■ Connection Sharing Scenario

Conditions for Connection Sharing
This section discusses conditions for connection sharing in OC4J:

■ General Conditions for Connection Sharing

■ Restriction on Connection Sharing for NoTransaction Support Level

General Conditions for Connection Sharing
When a new connection is requested by a J2EE application component, OC4J will
attempt to return a new connection handle from an existing physical connection in the
connection pool if the following conditions are satisfied:

■ The connection request is for the same resource manager as is accessed through
the existing physical connection, and uses the same data source.

■ The connection request has the same properties as the physical connection, such as
security attributes, isolation levels, character settings, and localization.

■ The application component requesting the connection is in the same transaction
scope as the application component currently using the physical connection.

■ The application component has a "shareable" scope so that physical connections
obtained from the resource manager can be shared between multiple logical
connections. This is true by default, or can be explicitly specified under the
applicable <resource-ref> element in the standard ejb-jar.xml or web.xml
configuration file. In the following example, the application component can look
up a connection factory from the JNDI location eis/myEIS, as specified in the
<res-ref-name> element, for creating logical connection handles to the EIS.
With the value of the <res-sharing-scope> element being declared as
shareable, multiple connection handles in the application component can share
a single physical connection, provided that the other conditions for connection
sharing are met.

<resource-ref>
 <res-ref-name>eis/myEIS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Application</res-auth>
 <res-sharing-scope>shareable</res-sharing-scope>
</resource-ref>

A setting of unshareable disables sharing. Note that it is permissible for one or
more components to declare connections from a resource to be shareable, while
one or more other components declare connections from the same resource to be
unshareable.

Understanding Connection Sharing in OC4J

4-14 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Restriction on Connection Sharing for NoTransaction Support Level
Connection sharing is not supported for a resource adapter with transaction support
level NoTransaction.

Connection Sharing Scenario
This section describes a sample scenario for connection sharing. Assume you have an
application with two EJB session beans: EJB1 and EJB2. Both use the same resource
adapter, capable of local transactions, to connect to the same EIS within a single local
transaction. The EIS is configured to be shareable, or is by default. Because a local
transaction is always associated with a single physical connection, EJB1 and EJB2 in
this scenario share the same physical connection under the local transaction scope.

Consider the following actions:

1. The client application calls a method on EJB1 with no transaction context. The
method implementation in EJB1 uses container-managed transaction demarcation
and requests a connection to the EIS.

2. The connection is obtained, at which point OC4J starts a local transaction. This
transaction is associated with the managed connection object from which the
connection handle was obtained, where the managed connection object represents
the physical connection. Work performed by EJB1 on the EIS through the
connection is included in the local transaction context.

3. EJB1 calls a method on EJB2, and the method implementation in EJB2 requests a
connection to the EIS.

4. OC4J returns a connection handle to EJB2 using the same managed connection
object as for the connection requested by EJB1. OC4J also maintains, across the
method call from EJB1 to EJB2, an association between this managed connection
object and the local transaction context. Work performed by EJB2 on the EIS
through the connection is included in the local transaction context. Note that
connection state, such as any open cursors, can therefore be maintained across
method calls between EJB1 and EJB2 in this scenario.

Note that if EJB2 calls the close() method on the connection handle before its
method called from EJB1 has completed, OC4J does not initiate any cleanup on the
physical connection at this time. This is because there is still an incomplete local
transaction associated with the physical connection.

When EJB1 regains control, it can still use the connection handle, assuming it had
not also called the close() method.

5. Now assume EJB1 eventually calls the close() method on its connection handle.
Because there is still an incomplete local transaction associated with the physical

Notes:

■ The use of a single shared connection, as opposed to multiple
physical connections, is transparent to the application.
Applications must not make assumptions about shared
connections being used.

■ Unless a resource manager is marked as unshareable, connections
to it must be used in a shareable way, avoiding such actions as
modifying security attributes, isolation levels, character settings,
and localization.

Understanding and Configuring Transaction Recovery

Transaction Management 4-15

connection, OC4J does not initiate any cleanup on the physical connection at this
time. It must still complete the local transaction process.

6. When the original method call from the client application completes, OC4J
commits the local transaction.

7. The managed connection object does a cleanup of its local transaction state.

8. OC4J returns the physical connection to the pool

Understanding and Configuring Transaction Recovery
This section discusses OC4J support for two-phase-commit recovery for resource
managers accessed through outbound connections.

The goal of transaction recovery is to maintain data integrity when data manipulation
with one EIS fails during a multiple-EIS (global) transaction. Transaction recovery is
therefore not applicable for local or one-phase-commit transactions.

The following topics are covered:

■ Understanding XA Recovery in OC4J

■ Configuring XA Recovery in OC4J

Understanding XA Recovery in OC4J
When OC4J halts unexpectedly or loses the connection to a resource manager during a
transaction, it enters a recovery mode (depending on the state of the transaction)
where it attempts steps to complete the transaction that was in progress at the time of
the failure. Responsibility for recovery is delegated to the OC4J recovery manager. The
application itself is not involved.

The first step in XA recovery is to determine the transaction state and then attempt to
acquire the necessary XAResource objects if the transaction state mandates recovery.
If recovery is necessary, OC4J then tries to reestablish connection to the EISs as soon as
possible. This requires sign-on information—user name and password for applicable
connection factories—in the following circumstances:

■ The application uses component-managed sign-on, where the application provides
sign-on information that is invisible to OC4J.

■ The EIS requires transaction recovery to be accomplished only through a special,
privileged user account that is different from the account that the J2EE application
uses.

If the application uses container-managed sign-on and the EIS has no special sign-on
requirements for recovery, then OC4J does not require recovery sign-on information.

Table 4–1 summarizes OC4J XA recovery scenarios.

Understanding and Configuring Transaction Recovery

4-16 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Once connection is reestablished, an XAResource object is obtained from the
connection and is used to complete recovery.

Configuring XA Recovery in OC4J
To configure the XA recovery sign-on parameters for a connection factory, take the
following steps in the Application Server Control Console:

1. In the Connection Factories tab accessed from the Resource Adapter Home page
for the appropriate resource adapter, choose the JNDI location of the connection
factory you want to configure.

2. In the Options tab of the resulting Edit Connection Factory page, you can do any
of the following:

■ Add a new user name. After specifying the user name, you can specify a
password directly or indirectly. For a direct password, choose "Password" and
type the password itself. For an indirect password, choose "Indirect Password"
and type a key (which might just be the user name, for example). OC4J uses
the key to do a lookup in the User Manager (specifically, in the
jazn-data.xml file).

■ Change an existing user name or password.

Table 4–1 OC4J XA Recovery Scenarios

Sign-on Mode for
Original Connection

Mode for Sign-on
Credentials XA Recovery Credentials

Component-managed
(application supplies
connection
credentials)

OC4J is not aware of, and
does not store, the user
name and password for
signing on to the EIS.

XA recovery credentials are according to
your configuration. (See the next section,
"Configuring XA Recovery in OC4J".) If
you do not provide XA recovery sign-on
configuration, OC4J attempts to connect
to the EIS without a user name or
password. If this fails, then transaction
recovery fails.

Container-managed OC4J determines the user
name and password for
connecting to the EIS. Based
on the user that is signed on
to the application (the OC4J
user), OC4J applies security
mapping to allow that user
to obtain the user name and
password for the EIS.

Again, XA recovery credentials are
according to your configuration. If you
do not provide XA recovery sign-on
information, OC4J retrieves OC4J user
information, uses the security mapping
mechanism to determine the user name
and password for the EIS, then connects
to the EIS.

Notes: Also be aware of the following:

■ For XA recovery sign-on, OC4J supports resource adapters that
accept password credentials. Resource adapters expecting other
types of credentials cannot participate in OC4J XA recovery.

■ After an OC4J instance fails, do not change any configuration for
container-managed sign-on before restarting. This includes any
changes that would be reflected in <security-config> settings
in the oc4j-ra.xml file. It also includes the logic of any
principal mapping modules used to support container-managed
sign-on.

■ Transaction recovery does not apply to emulated XA resources.

Understanding J2CA Connection Wrapping

Transaction Management 4-17

Table 4–2 documents the sign-on properties, noting equivalent XML elements in the
oc4j-ra.xml file. These are subelements of <password-credential>, which is a
subelement of <xa-recovery-config>, which is a subelement of
<connector-factory>.

Also see the context-sensitive topic "Edit Connection Factory Options Page" in the
Application Server Control online help.

Understanding J2CA Connection Wrapping
OC4J provides J2CA connection wrapping, a form of lazy enlistment of connections, to
ensure that connections are properly enlisted with transactions. Connection wrapping
supports connection association.

Connection Association
The J2EE Connector Architecture specifies an association of an application-level
connection handle with a ManagedConnection (physical connection) instance. For
each connection request, a connection handle is created from a ManagedConnection
instance. The connection handle maintains an association with the underlying
ManagedConnection instance.

When a J2EE component caches a connection handle across transaction boundaries,
the container may need to reassociate the handle with a different physical connection
to maintain transactional correctness. Without this re-association, it is possible that
work done in one transaction could be mixed up with work done in different
transaction.

The container uses connection association to ensure that the connection handle
remains associated with a physical connection that is appropriate for the current
transactional context and connection sharing scope. Through the
associateConnection method of the ManagedConnection interface, the
container can change the association of a connection handle with a managed
connection instance. The associateConnection method dissociates the given
connection handle from its associated ManagedConnection instance and reassociates
the connection handle with itself.

A connection handle can be switched from one ManagedConnection instance to
another. When a method is invoked on a connection handle, the container may need to
transparently switch the handle to point to an appropriate shared
ManagedConnection instance with the correct transaction scope. The J2EE
Connector specification does not specify how a container determines that a transaction
boundary has been crossed (when work is being done on a cached connection in a new
transaction context).

Table 4–2 XA Recovery Properties

Application Server
Control Property

Corresponding
XML Entity Description

User <username> Desired user name for XA recovery sign-on through
this connection factory.

Password <password> Password indicator for XA recovery sign-on through
this connection factory. Either the password itself for
a direct password, or a key for lookup in the User
Manager for an indirect password.

Understanding J2CA Connection Wrapping

4-18 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

The J2CA lazy connection association optimization enables the J2CA container to
reclaim hibernating ManagedConnection instances, which allows for a more optimal
use of connection resources. This is achieved by allowing the J2CA container to
dissociate a connection handle from its associated ManagedConnection instance,
leaving the handle in an inactive state and freeing the ManagedConnection instance
for reuse. The next time the connection handle is used, it needs to be reassociated with
an appropriate ManagedConnection instance. With lazy association, it is up to the
resource adapter to notify the J2CA container when a connection handle needs to be re
associated if the handle has been dissociated from its ManagedConnection instance.

Transaction Enlistment
In most cases the connection association mechanism will ensure that a connection
handle is associated with a ManagedConnection instance that is appropriate for the
current transaction context. However, in some cases where a connection handle is
used across a transaction boundary, connection reassociation is not appropriate, as in
unsharable connections. In these cases, the J2CA container still needs to ensure that the
currently associated ManagedConnection instance is enlisted in the current
transaction context. As with connection association, the problem for the container is
how to know that a transaction boundary has been crossed.

The J2CA lazy transaction enlistment optimization addresses this problem, since it is
up to the resource adapter to notify the container that a connection should be enlisted
in the transaction (if there is one). However, lazy transaction enlistment is optional.
OC4J provides J2CA connection wrapping to ensure that connections are properly
enlisted if a resource adapter does not support lazy enlistment.

J2CA Connection Handle Wrapping
When an application component obtains a connection through a J2CA resource
adapter, OC4J creates a wrapper object around the connection handle returned by the
connection factory. The wrapper object is what is actually returned to the application.
By wrapping connections supplied by the resource adapter, the container can
intervene to ensure that the connection handle is associated with a physical connection
that is appropriate for the current transactional context and connection sharing scope.

OC4J wraps all connection handles with connection-handle proxies to perform
connection association. You can cast a connection handle only to interfaces that the
connection handle implemented. An attempt to cast a connection handle to a concrete
class will cause a ClassCastException exception.

Note: In most cases, switching ManagedConnection instances for
connection handles used across transaction boundaries is required
only if the connections are shareable. An application can indicate that
the connections that it references are unshareable. A connection that is
marked as unshareable can be referenced only by a single connection
handle. This means that as long as connection handle for an
unsharable connection is open, it can remain associated with the same
ManagedConnection. This is true even if the connection handle is
cached across transaction boundaries.

Note: The lazy connection association is optional for the resource
adapter.

Understanding J2CA Connection Wrapping

Transaction Management 4-19

The connector connection wrapper classes implement the same interfaces as the
resource adapter’s connection handle. Each wrapper object is created with a reference
to the actual connection handle object returned by the resource adapter. Every method
call is intercepted in the wrapper before it is delegated to the underlying referenced
connection handle.

For example, a call to some method on a connector connection wrapper would
“intercept” and ensure that the connection handle was associated with a managed
connection that was properly enlisted with the current transaction context. This may
involve reassociating the connection handle to a new managed connection or simply
making sure that the currently associated managed connection is enlisted in the
current transaction context. The connector connection wrapper would then delegate
the method call to the underlying connection handle object.

Connection Association Scenarios
The scenarios in this section illustrate some issues with using connection associations:

■ Scenario 1: Enlistment of a Connection Obtained Outside a Transaction

■ Scenario 2: Transactional Context Switch

■ Scenario 3: Handles for a Shared Connection in Different Transactional Contexts

Scenario 1: Enlistment of a Connection Obtained Outside a Transaction
An application obtains a connection outside of a transaction and then use the
connection in the scope of a transaction.

1. An application obtains a connection from Oracle J2CA.

2. The application begins a transaction using UserTransaction.begin().

3. The application uses another resource in the transaction that gets enlisted.

4. The application uses the J2CA connection in the scope of the transaction.

The J2CA connection would not be associated with the transaction because it was
created outside of the scope of the transaction. This will result in a nonatomic
transaction outcome in which the work that is enlisted in the transaction might roll
back and the work done on the J2CA connection could commit, or vice versa.

Scenario 2: Transactional Context Switch
An application obtains an emulated J2CA connection in the scope of a transaction so
that the connection is enlisted and later used in another transactional context.

■ An application starts a global transaction.

■ The application calls a method on a stateful session bean with a required tx
attribute. Because a transaction is already associated with the thread, the EJB
container does not start a new transaction.

■ An emulated JC2A connection is obtained in this method and used to alter some
data. When created, the connection is enlisted with the transaction and cached by
the instance (not closed).

■ The method returns without committing the transaction because it was in place
prior to the method invocation.

■ The application calls a different method on the same stateful session bean with a
tx attribute of RequiresNew. This forces the EJB container to suspend the

Understanding J2CA Connection Wrapping

4-20 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

existing transaction association and start a new transaction for the method
invocation.

■ The bean uses the same connection handle that was used in the previous method
invocation.

At this point, because the connection handle is still using the same 1pc physical
connection as it was for the first method invocation, which was in a different
transactional scope, all work done in method invocation two on the emulated J2CA
connection is done on behalf of the original, suspended transaction and not the new
transaction used in method invocation two. The connection handle must recognize
that the transactional context has changes and swap out the physical connection being
used by the handle.

This scenario will lead to incorrect outcomes because the second transaction may
result in a rollback where the first may commit. In an attempt to prevent an
inconsistent outcome, Oracle J2CA currently throws an exception on suspension of the
transactional context in which an emulated connection is enlisted. This would prevent
OC4J users from performing the preceding legal scenario.

Scenario 3: Handles for a Shared Connection in Different Transactional Contexts
Two connection handles pointing to the same physical connection due to connection
sharing are later used in different transactional contexts. This scenario may use either
emulated or nonemulated connections.

1. An application calls a method on EJB A with a tx attribute of Required. The EJB
container starts a new transaction.

2. EJB A gets a connection to resource1 and uses the connection in the scope of the
transaction. The connection is therefore enlisted with the transaction. The
connection is cached for later use.

3. EJB A calls a method on EJB B, which has a tx attribute of Required. Because a
transaction is already associated with the thread, a new transaction is not created.

4. EJB B also gets a connection to resource1 and caches the connection. Because of
connection sharing, both EJB A’s connection handle and EJB B’s connection handle
will point to the same physical connection.

5. Both method invocations complete successfully and the transaction commits. At
this point the transaction has committed and both connection handles point to the
same physical connection.

6. Later, the application calls a different method on EJB A with a tx attribute of
Required. The EJB container starts a new transaction.

7. EJB A uses the previously cached connection in the scope of the newly created
transaction.

Note: This scenario is a problem only for emulated connections
because XA connections would send the begin and end calls to the XA
resource and the resource would associate or disassociate the
connection from a transaction. With an emulated connection, OC4J
cannot send these begin and end calls to the resource, so OC4J must
keep an association of physical connections to transactional contexts
and switch physical connections according to the transaction context
in place for any given invocation.

Understanding J2CA Connection Wrapping

Transaction Management 4-21

8. At the same time that EJB A is handling the preceding method invocation, another
application thread calls a method on EJB B with a tx attribute of Never. Because
of the tx attribute Never, the method will be invoked in a null transactional
context.

9. EJB B uses the previously cached connection while not participating in a
transaction.

At this point, EJB A and EJB B are using two distinct connection handles that point to
the same physical connection. The physical connection is enlisted in EJB A’s
transaction but is also being used by EJB B with no transactional association. Because
the connection is enlisted in EJB A’s transaction, all work done by EJB B on its
connection handle becomes part of EJB A’s transaction, which is obviously incorrect.

This case is different than Scenario 2 in that it is valid for both XA connections and
emulated connections. Also, the mechanism described in Scenario 3, where an
exception is thrown from an emulated connection when suspend occurs, will not work
in preventing an incorrect outcome in this case.

Note: Currently, the connection is not associated with the
transaction as in Scenario 1. This scenario is assuming that the
enlistment issue has been fixed and the connection is properly enlisted
in the transaction.

Understanding J2CA Connection Wrapping

4-22 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Work Management 5-1

5
Work Management

This chapter, organized as follows, provides an overview of the J2CA work
management contract and focuses on how to use the OC4J work management thread
pool implementation:

■ Overview of the Work Management Contract

■ Using the OC4J Work Management Thread Pool

Overview of the Work Management Contract
This section discusses the basic essentials of the J2CA work management contract,
covering the following topics:

■ Understanding the Need for the Work Management Contract

■ Introducing the Work Management Model and Key APIs

Understanding the Need for the Work Management Contract
While some resource adapters may be relatively simple, passively executing in the
context of a single application thread, a typical resource adapter is multitasking and
requires multiple threads to perform all its duties. These duties may include listening
to a network endpoint or communicating with a network peer, in addition to
performing internal work or calling application components.

It is possible for a resource adapter to create its own threads; however, because an
application server is designed to manage all system resources and knows the overall
state of the runtime environment, it is advantageous to allow the application server to
create and manage the threads instead. This is the best way to ensure optimal system
efficiency, manageability, and security. (For example, an application server may
maintain a pool of threads to be shared by all deployed resource adapters.) In fact, an
application server may prevent a resource manager from managing threads.

The purpose of the J2CA work management contract, between an application server
and a resource adapter, is to provide a mechanism for resource adapters to use threads
that are created and managed by the application server. Under the contract, a resource
adapter submits work units to an application server for execution, and the application
server work manager uses threads under its management to perform the work.

Introducing the Work Management Model and Key APIs
Interfaces and classes to implement the J2CA work management model are in the
javax.resource.spi.work package.

Overview of the Work Management Contract

5-2 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

A resource adapter implements the Work interface, instances of which represent units
of work that the resource adapter submits to the application server for processing. The
Work interface inherits a run() method, executed to perform the work, and specifies a
release() method, which the application server may use to indicate that work
should be completed as soon as possible.

An application server, such as OC4J, implements the WorkManager interface in order
to manage work units. This interface specifies methods to do work (blocking until the
work is completed), start work (blocking only until the work is started), and schedule
work (returning as soon as the work unit has been accepted for processing). Each of
these methods takes a Work instance as input. The doWork() method is for
synchronous work, while the scheduleWork() method is for asynchronous work.
The startWork() method guarantees first-in/first-out execution, and the work
manager can optionally keep track of elapsed time between the acceptance and
beginning of execution of a work unit.

A resource adapter obtains a WorkManager instance from the application server,
creates Work instances for the units of work to be accomplished, and passes the Work
instances to the WorkManager instance when it calls any of the methods to
accomplish work. Optionally, a resource adapter may also pass the following to any of
the WorkManager methods:

■ An ExecutionContext instance, which models a context in which to execute the
work unit, such as for transaction and security functionality.

■ A WorkListener instance, which provides a callback event listener that is
notified when work processing events occur. The notification mechanism includes
methods, called by the application server, to indicate that work has been accepted,
rejected, started, or completed.

The work manager may throw two types of work management exceptions:
WorkCompletedException, indicating that a submitted Work instance completed
but with an exception, or WorkRejectedException, indicating that a submitted
Work instance was rejected. These exceptions can also be passed by the work manager
to the resource adapter through the WorkListener mechanism, which is especially
useful with asynchronous work submissions. Each of the WorkListener methods
workAccepted(), workRejected(), workStarted(), and workCompleted()
takes a WorkEvent instance as input. When a WorkEvent instance is created, it takes
a Work instance and applicable work exception instance as input.
(WorkCompletedException and WorkRejectedException are subclasses of
WorkException, which is a subclass of javax.resource.ResourceException.)

The application server maintains a pool of threads to be used for work management.
When a Work instance is submitted, it is picked up by a free thread for execution. The
thread sets up an appropriate execution context and calls the run() method to
perform the work. When work is complete, the application server is free to reuse the
thread. Alternatively, depending on load circumstances, the application server may at
any time call a Work instance release() method, from a separate thread, to try to
reclaim the thread. This does not mandate any action by the resource adapter, but
hints that it should release the active thread executing the work. The resource adapter
should use threads carefully, monitor such hints, and perform any appropriate
cleanup.

Each application server provides its own thread pool implementation, although all
threads used in executing work units must be of the same priority level.

Using the OC4J Work Management Thread Pool

Work Management 5-3

Using the OC4J Work Management Thread Pool
OC4J provides a configurable global thread pool specifically for use by deployed
resource adapters. The following sections give an overview and discuss OC4J
configuration and metrics features:

■ Overview of the Work Management Thread Pool

■ Configuring the Work Management Thread Pool

■ Using Metrics for the Work Management Thread Pool

Overview of the Work Management Thread Pool
OC4J supports different types of thread pools, with one of them being specifically for
use by resource adapters for work management. The work management thread pool
operates independently of the others, but each pool supports the same basic set of
features, being configurable for the following:

■ Minimum number of threads that must exist in the pool

■ Maximum number of threads that can execute simultaneously in the pool

■ Maximum number of requests that can be in the queue waiting for a thread

■ Time (in milliseconds) to keep a thread alive waiting for a request to service, after
which the thread is destroyed

If the number of threads in the pool is under the minimum, OC4J will add a new
thread rather than put a request in the queue. Otherwise, OC4J will queue the request
rather than adding a new thread. OC4J generally attempts to keep the number of
threads at or near the minimum, unless the queue is full.

See the Oracle Containers for J2EE Configuration and Administration Guide for more
information about OC4J thread pools.

Configuring the Work Management Thread Pool
OC4J thread pools, including the thread pool for resource adapter work management,
are configured in the OC4J server.xml file, through subelements of the top-level
<application-server> element. You can configure the work management thread
pool through the <work-manager-thread-pool> subelement or through
Application Server Control.

In the Application Server Control Console, you can update attributes of the work
management MBean, which is accessible through the System MBean Browser:

1. From the OC4J Home page, select the Administration tab.

2. From the Administration tab, under JMX, go to the System MBean Browser task.

The System MBean Browser lists the system MBeans on the left and information
about the selected MBean on the right.

3. Under ThreadPool in the left frame, select the WorkManager MBean; for example,
WorkManager_0.

The Attributes tab lists the attributes of the work management thread pool, with
descriptions and values. You can edit the values of attributes that have RW
(read/write) access.

4. Apply any changes.

Using the OC4J Work Management Thread Pool

5-4 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Alternatively, you can use the <work-manager-thread-pool> subelement of
<application-server> to configure the work management thread pool. (Other
OC4J thread pools are configured through the <global-thread-pool> element.)
The <work-manager-thread-pool> attributes are documented in Table 5–1.

The following example enables the debug flag and declares a thread pool with a
minimum of 10 threads, a maximum of 100 executing threads, a queue size of 200
requests, and a keep-alive time of 60 seconds:

<application-server ... >
 ...
 <work-manager-thread-pool min="10" max="100" queue="200"
 keepAlive="60000" debug="true" />
 ...
</application-server>

See the Oracle Containers for J2EE Configuration and Administration Guide for more
information about configuring OC4J thread pools in the server.xml file.

Using Metrics for the Work Management Thread Pool
Dynamic Monitoring Service (DMS) metrics for the resource adapter work
management thread pool are under /oc4j/WorkManagementPool in the DMS

Notes:

■ The Apply Changes button will be visible only if the browser
page contains at least one attribute with a modifiable value.

■ If you make changes to properties of the work management
thread pool through the Application Server Control Console, the
changes will persist to the server.xml file only if a
<work-manager-thread-pool> subelement is defined.

Table 5–1 Configuration Attributes for Work Management Thread Pool

Parameter Description Default Value

min Minimum number of threads to exist in the pool 1

max Maximum number of threads to execute
simultaneously in the pool

Integer.MAX_VALUE
(essentially, no maximum)

queue Maximum number of requests (Work instances)
in the queue, waiting for a thread

0

keepAlive Number of milliseconds to keep a thread alive
while it waits for a request to service

600,000 (10 minutes)

debug Flag to enable output of diagnostic information
for the thread pool

false

Note: The WorkManager thread pool uses three Work Manager
threads for internal use. For example, if you specify max="16", then
only 13 work instance threads are available to service requests.
Similarly, if the max value is 20, then only 17 instances would be
available. So you need to set max to your required maximum size plus
3.

Using the OC4J Work Management Thread Pool

Work Management 5-5

hierarchy. There are two categories of metrics for the thread pool, one indicating
thread pool configuration values as shown in Table 5–2, and the other indicating
thread pool execution state as shown in Table 5–3.

The following example shows sample DMS output for the work management thread
pool:

Note: DMS adds performance-monitoring features to a number of
Oracle Application Server components, including OC4J. The goal of
DMS is to provide information about runtime behavior through
built-in performance measurements so that users can diagnose,
analyze, and debug any performance problems. DMS provides this
information in a package that can be used at any time, including
during live deployment. Data are published through HTTP and can be
viewed with a browser. For general information about how to use
DMS, the built-in DMS metrics that are available, and other OC4J
performance considerations, refer to the Oracle Application Server
Performance Guide.

Table 5–2 DMS Metrics for Work Management Thread Pool Configuration

Metric Description

minPoolSize Indicates the minimum number of threads to exist in the pool.
This corresponds to the wm-min configuration attribute.

maxPoolSize Indicates the maximum number of threads to execute
simultaneously in the pool. This corresponds to the wm-max
configuration attribute.

maxQueueSize Indicates the maximum number of requests (Work instances) in
the queue, waiting to be serviced by a thread. This corresponds
to the wm-queue configuration attribute.

keepAlive Indicates the number of milliseconds to keep a thread alive
while it waits for a request to service. This corresponds to the
wm-keepAlive configuration attribute.

Table 5–3 DMS Metrics for Work Management Thread Pool State

Metric Description

totalThreadCount Indicates the total number of threads in the pool.

idleThreadCount Indicates the number of threads in the pool that are waiting for a
request to service.

queueSize Indicates the number of requests (Work instances) waiting in the
queue for a thread to become available.

queueFullEvent Indicates the number of times that a request was rejected due to
a full queue.

workStartDuration Measures the duration between when a request is accepted and
when a thread is allocated to complete the work. (If a thread is
readily available, this would measure the processing overhead
of the thread pool in finding an available thread and setting up
the proper execution context for processing the work. If all
available threads are busy handling other requests, this time
would also include the queuing time.) Three separate values are
expressed for this metric—minimum duration, maximum
duration, and average duration.

Using the OC4J Work Management Thread Pool

5-6 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

<statistics>
 /oc4j [type=n/a]
 /oc4j/Work_Management_Pool [type=oc4j_workManagementPool]
 idleThreadCount.level: NOTIFICATION
 idleThreadCount.value: 4 threads
 keepAlive.level: NOTIFICATION
 keepAlive.value: 600000 milliseconds
 maxPoolSize.level: NOTIFICATION
 maxPoolSize.value: 20 threads
 maxQueueSize.level: NOTIFICATION
 maxQueueSize.value: 50 work_requests
 minPoolSize.level: NOTIFICATION
 minPoolSize.value: 5 threads
 queueFullEvent.count: 0 ops
 queueFullEvent.level: NOTIFICATION
 queueSize.level: NOTIFICATION
 queueSize.value: 0 work_requests
 totalThreadCount.level: NOTIFICATION
 totalThreadCount.value: 5 threads
 workStartDuration.avg: 6.900943396226415 msecs
 workStartDuration.completed: 424 ops
 workStartDuration.level: NOTIFICATION
 workStartDuration.maxTime: 34 msecs
 workStartDuration.minTime: 0 msecs
 workStartDuration.time: 2926 msecs
 </statistics>

Using RAs for Inbound Communication 6-1

6
Using RAs for Inbound Communication

This chapter describes concepts and configuration for using a resource adapter to
allow an EIS to initiate communication to a message endpoint in the application
server; specifically, to a message-driven bean (MDB). The following topics are covered:

■ Concepts: Using Resource Adapters for Inbound Communication

■ Overview of Related Contracts for Inbound Communication

■ Configuration and Deployment to Use an RA as a Listener for an MDB

■ Understanding the Message Listening Lifecycle

■ Special Conditions in Message Delivery

Concepts: Using Resource Adapters for Inbound Communication
The following sections cover initial concepts in using resource adapters for inbound
communication:

■ Introduction to Using Resource Adapters for Inbound Communication

■ Background and Use Case for Resource Adapters as Message Listeners for MDBs

Introduction to Using Resource Adapters for Inbound Communication
This chapter considers a situation where an EIS must initiate communication with a
J2EE application component to perform specific work. Such a scenario requires a
resource adapter as the communication vehicle for the EIS, the optional use of a
messaging system such as JMS (for example), and an MDB as the J2EE component that
will receive the communication message. The MDB, in turn, may invoke an entity bean
or session bean or use other resources to perform the work.

This type of scenario is possible through the J2CA inbound communication model,
introduced in "Outbound Versus Inbound Communication Through Resource
Adapters" on page 1-5. To support inbound communication, the J2CA message inflow
contract provides a mechanism for invoking MDBs from a resource adapter. This and
other related contracts are briefly introduced in "Overview of Related Contracts for
Inbound Communication" on page 6-2.

This chapter describes configuration and other relevant actions relating to the
following:

■ Required configuration of the resource adapter

■ Deploying and configuring the MDB and associating it with the resource adapter

Overview of Related Contracts for Inbound Communication

6-2 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

■ Message delivery lifecycle—activation of the MDB (the process where the MDB
informs the resource adapter that it wants to receive a certain type of message),
message delivery to the MDB, and deactivation of the MDB (the process where the
MDB informs the resource adapter that it no longer wants to receive messages)

■ Special conditions in message delivery—concurrent delivery, exceptions from
MDBs, and failure during delivery within a transaction

Background and Use Case for Resource Adapters as Message Listeners for MDBs
In the EJB 2.0 specification, only J2EE containers (such as OC4J) could act as message
listeners for MDBs, and MDBs were required to implement the
javax.jms.MessageListener interface. In the EJB 2.1 specification, it is possible
for a resource adapter to act as a message listener for MDBs, and an MDB can
implement any message listener interface.

A resource adapter can support any type of listener, and any MDB can be associated
with any resource adapter if they support the same type of listener. This relieves the
J2EE container of potentially having to support an unlimited number of message
listener types. In this way, the message listening capacity has become portable across
containers.

In Oracle Application Server 10g Release 3 (10.1.3.1.0), to support JMS messaging
implementations, Oracle supplies a generic JMS resource adapter that is the
recommended vehicle for plugging JMS providers into OC4J. This generic adapter
supports inbound communication (discussed in the next section, "Overview of Related
Contracts for Inbound Communication"), but works only with MDBs implementing
the MessageListener interface.

See "Introducing Oracle JMS Support and Generic JMS Resource Adapter" on
page 1-12 for additional information about the generic JMS adapter.

Overview of Related Contracts for Inbound Communication
This section briefly discusses some of the J2CA contracts that are relevant to using
resource adapters as message listeners for MDBs:

■ Message inflow contract

■ Transaction inflow contract

■ Work management contract

The message inflow and transaction inflow contracts are not discussed in any detail in
the current release of this manual, but OC4J simply implements the standard. The
work management contract and key APIs are discussed in "Overview of the Work
Management Contract" on page 5-1, but not in great detail. Refer to version 1.5 of the
J2EE Connector Architecture Specification for further information about these contracts.

Introduction to the Message Inflow Contract
The J2CA message inflow contract outlines a contract between a J2EE container and a
resource adapter to allow delivery of messages through the resource adapter to an
MDB, where both execute in the J2EE container. The MDB must be configured to
indicate what types of messages it wants to receive, and the resource adapter must be
configured to indicate that it can support (seek, find, and relay) those types of
messages.

Configuration and Deployment to Use an RA as a Listener for an MDB

Using RAs for Inbound Communication 6-3

Message delivery is typically asynchronous, but it is also possible for an MDB to send
and receive messages synchronously, through APIs specific to a particular message
system.

Introduction to Imported Transactions and the Transaction Inflow Contract
There are many circumstances where a message provider creates a transaction for
message delivery and sends messages to the resource adapter within that transaction.
In this situation, the resource adapter imports the transaction and attempts to relay the
messages to the MDB within the same transaction. The specific actions of the resource
adapter for this exchange are according to the J2CA transaction inflow contract.

This contract, between a J2EE container and a resource adapter, allows the resource
adapter to propagate the transaction to the J2EE container so that work can be
performed there as part of the imported transaction. The contract also allows a
resource adapter to accept transaction completion and recovery calls initiated by an
EIS, so that ACID properties of the transaction are maintained. (See "Transaction
Characteristics and Scopes" on page 4-2 regarding ACID properties.)

Note that when messages are delivered within the context of an imported transaction,
the application server must take that into account when handling transaction
demarcation.

Relationship Between Imported Transactions and the Work Management Contract
When a transaction, started by an external transaction manager, is imported by a
resource adapter, the resource adapter uses the J2CA work management contract to
introduce to the J2EE container an execution context object that includes identification
information for the transaction. The J2EE container must then set up a transaction
context internally that is visible to other components executing in the same thread of
control.

The purpose of the work management contract, between the J2EE container and the
resource adapter, is to provide a mechanism for a resource adapter to perform work
by submitting work units to the J2EE container for execution. The contract allows the
resource adapter to schedule work, such as message delivery to an MDB, to be
performed by container-managed threads.

Configuration and Deployment to Use an RA as a Listener for an MDB
Using a resource adapter as a message listener on behalf of an MDB requires the
following:

■ A J2EE-compliant application server that supports version 1.5 of the J2EE
Connector Architecture Specification, as is the case with OC4J

■ A resource adapter that is deployed on the application server, is capable of
message delivery in general, and supports the message types the MDB wants to
receive in particular

■ Deployment of the MDB to the application server

Configuration and Deployment to Use an RA as a Listener for an MDB

6-4 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

The rest of this section discusses the following topics:

■ Understanding the Resource Adapter Configuration

■ Understanding the MDB Configuration for Deployment

■ Understanding Configuration for Use of Transactions in Message Delivery

■ Configuring the MDB

■ Error Conditions for Deployment and Configuration

Understanding the Resource Adapter Configuration
To support an MDB for message listening, OC4J must have a deployed resource
adapter that supports the message system and message listener type that the MDB will
use. The resource adapter is often a standalone adapter previously deployed, but can
also be deployed with the same application as the MDB (in the same EAR file).

Resource adapter configuration to support MDBs is included in the standard ra.xml
file, which lists the message listener types that the resource adapter supports. Each
listener type is specified as a fully qualified Java type that indicates the message
listener interface that is implemented.

Because MDB support requires an inbound resource adapter, the resource adapter is
configured in an <inbound-resourceadapter> element. This involves a
<messageadapter> subelement, one or more <messagelistener> subelements of
<messageadapter> (one for each type of message listener supported by the resource
adapter), and the following subelements of <messagelistener>:

■ The <messagelistener-type> subelement indicates the type of message
listener to be used and must match a message listener type implemented by the
MDB, as specified in a <messaging-type> element of the ejb-jar.xml file
where the MDB is configured.

■ The <activationspec> subelement specifies information that OC4J must have
in order to activate the MDB at runtime, as follows:

– For each message listener type, the resource adapter provides a JavaBean class
that implements the SPI ActivationSpec interface, and the name of this
class is indicated in the <activationspec-class> subelement of
<activationspec>. An instance of this class contains activation information

Notes:

■ The resource adapter is typically provided by a third party to plug
in a particular kind of message system to the application server. It
is often standalone, and that situation is implied by some of the
discussion in this chapter, but it can alternatively be deployed in
the EAR file with the application that uses it.

■ More than one application, or more than one MDB within an
application, can use the same resource adapter as a message
listener.

■ An MDB can be undeployed and redeployed any number of times
during the lifecycle of a resource adapter; however, a resource
adapter cannot be undeployed until all MDBs activated against it
have been undeployed.

Configuration and Deployment to Use an RA as a Listener for an MDB

Using RAs for Inbound Communication 6-5

for a message endpoint (an MDB) and is passed to the resource adapter during
endpoint activation.

– Any bean properties of this class that must be set for activation are indicated
under the <required-config-property> subelement of
<activationspec>, with a <config-property-name> element for each.
Each <config-property-name> specification corresponds to a matching
<activation-config-property> name/value pair in the ejb-jar.xml
file.

The following example is for a resource adapter that supports a Java Message Service
(JMS) message system, using the javax.jms.MessageListener listener type. The
resource adapter activation spec implementation is the JavaBean
oracle.j2ee.ra.jms.generic.JMSActivationSpec, which has three
properties that must be set for activation: ConnectionFactoryJndiName,
DestinationName, and DestinationType.

<connector ... >
 ...
 <resourceadapter>
 ...
 <inbound-resourceadapter>
 <messageadapter>
 <messagelistener>
 <messagelistener-type>
 javax.jms.MessageListener
 </messagelistener-type>
 <activationspec>
 <activationspec-class>
 oracle.j2ee.ra.jms.generic.JMSActivationSpec
 </activationspec-class>
 <required-config-property>
 <config-property-name>
 ConnectionFactoryJndiName
 </config-property-name>
 <config-property-name>
 DestinationName
 </config-property-name>
 <config-property-name>
 DestinationType
 </config-property-name>
 </required-config-property>
 </activationspec>
 </messagelistener>
 ...
 </messageadapter>
 </inbound-resourceadapter>
 ...
 </resourceadapter>
 ...
</connector>

Configuration and Deployment to Use an RA as a Listener for an MDB

6-6 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Understanding the MDB Configuration for Deployment
The MDB developer or deployer configures the MDB in the ejb-jar.xml file,
through a <message-driven> element and the following subelements:

■ The <messaging-type> subelement specifies the message listener interface that
the MDB implements, and must match the message listener type specified in a
<messagelistener-type> element in the ra.xml file of the resource adapter
being used.

■ The <activation-config> subelement and its
<activation-config-property> subelements are for configuration
properties specific to the message system that will be used—specifically, for
customized property settings for the activation configuration JavaBean supplied
by the resource adapter. The configuration is expressed in terms of name/value
pairs specified in subelements of <activation-config-property>. The
property names here correspond to property names from
<config-property-name> elements in the ra.xml file and specify default
values for at least the properties that are specified in ra.xml as being required.
(What properties are recognized for a particular message system is beyond the
scope of the J2CA specification or EJB specification.)

For complete information about configuring an MDB, refer to the Oracle Containers for
J2EE Enterprise JavaBeans Developer’s Guide or to version 2.1 of the Enterprise JavaBeans
Specification.

The example that follows is for use of queues with a JMS message system. To
understand the property names and values in this example, you must have some
knowledge of JMS.

<ejb-jar>
 ...
 <enterprise-beans>
 ...
 <message-driven>
 <ejb-name>simpleMdb</ejb-name>
 <ejb-class>oracle.j2ee.ra.jms.mqjratest.simpleMdb</ejb-class>
 <messaging-type>javax.jms.MessageListener</messaging-type>
 <transaction-type>Container</transaction-type>
 <activation-config>
 <activation-config-property>
 <activation-config-property-name>

Notes:

■ A resource adapter can support multiple message listener types,
so there can be multiple <messagelistener> elements for each
<inbound-resourceadapter> element in the ra.xml file.
However, each <messagelistener> element must specify a
unique message listener type.

■ In the Application Server Control, the supported message listener
types for a resource adapter are indicated in the Resource Adapter
Home page.

■ For each <messagelistener> element, there is only one
<activationspec> element.

■ A resource adapter can support multiple activations for any given
message listener type.

Configuration and Deployment to Use an RA as a Listener for an MDB

Using RAs for Inbound Communication 6-7

 DestinationType
 </activation-config-property-name>
 <activation-config-property-value>
 javax.jms.Queue
 </activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>
 DestinationName
 </activation-config-property-name>
 <activation-config-property-value>
 java:comp/resource/MQSeries/MQQ
 </activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>
 MessageSelector
 </activation-config-property-name>
 <activation-config-property-value>
 RECIPIENT='MDB'
 </activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>
 ConnectionFactoryJndiName
 </activation-config-property-name>
 <activation-config-property-value>
 java:comp/resource/MQSeries/MQXAQCF
 </activation-config-property-value>
 </activation-config-property>
 </activation-config>
 ...
 <resource-ref>
 <description>connfactory for reply</description>
 <res-ref-name>jms/XAQCF</res-ref-name>
 <res-type>javax.jms.XAQueueConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>
 ...
 <resource-env-ref>
 <description>Queue to send reply to</description>
 <resource-env-ref-name>jms/QUEUE1</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
 </resource-env-ref>
 ...
 </message-driven>
 ...
 </enterprise-beans>
 ...
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>simpleMdb</ejb-name>
 <method-name>onMessage</method-name>
 <method-params>
 <method-param>javax.jms.Message</method-param>
 </method-params>
 </method>
 <trans-attribute>Required</trans-attribute>

Configuration and Deployment to Use an RA as a Listener for an MDB

6-8 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

 </container-transaction>
 ...
 </assembly-descriptor>
 ...
</ejb-jar>

Understanding Configuration for Use of Transactions in Message Delivery
In addition to what is discussed in the preceding section, configuration in the
ejb-jar.xml file specifies whether an MDB uses transactions, and therefore whether
message delivery will be transacted. Message delivery is transacted under the
following circumstances:

■ The <transaction-type> subelement of <message-driven> in
ejb-jar.xml has a value of Container, and the <trans-attribute>
subelement of <container-transaction> (under the
<assembly-descriptor> element) has a value of Required. This is shown in
the example in the preceding section, "Understanding the MDB Configuration for
Deployment".

In this circumstance, if there is an imported transaction, then message delivery
and related work are performed within that transaction. If there is no imported
transaction, OC4J creates a transaction, and message delivery and related work are
performed within that transaction.

■ The <transaction-type> subelement of <message-driven> in
ejb-jar.xml has a value of Bean.

In this circumstance, the MDB manages the transaction. If a transaction is
imported, OC4J will suspend it before the message delivery method call to the
MDB, in order to avoid conflict.

Message delivery is not transacted if the <transaction-type> subelement of
<message-driven> in ejb-jar.xml has a value of Container, but the
<trans-attribute> element has a value of NotSupported. If there is an imported
transaction in this circumstance, OC4J will suspend the transaction before the message
delivery method call to the MDB.

Details of how transactions are started and completed are described in "Message
Delivery Semantics" on page 6-12.

Notes:

■ This sample also shows additional elements that are relevant for a
messaging system example. The <resource-ref> and
<resource-ref-env> elements are for standard resource
reference and resource reference environment settings. The
<trans-attribute> element, under
<assembly-descriptor>, specifies whether transactions are
required. (This is discussed in the next section, "Understanding
Configuration for Use of Transactions in Message Delivery".)

■ See "Configuring the MDB" on page 6-9 for considerations in
associating a resource adapter with an MDB during deployment.

Configuration and Deployment to Use an RA as a Listener for an MDB

Using RAs for Inbound Communication 6-9

Configuring the MDB
After deployment, you can use Application Server Control to change the values of any
activation configuration JavaBean properties for an MDB. The new settings take effect
when the MDB application is restarted.

In the Application Server Control Console, do the following as appropriate:

1. In the Applications tab of the OC4J Home page, choose the desired application.

2. In the resulting Application Home page, choose the desired EJB module.

3. In the EJBs tab of the resulting EJB Module page, under Message Driven Beans,
choose the appropriate MDB.

4. In the resulting Message Driven Bean page, under Message Properties, view the
following:

■ Whether the MDB is currently associated with a resource adapter as a listener
(True or False)

■ The name of the resource adapter (if one is used as a listener)

■ A list of activation configuration properties

The list of activation configuration properties (relevant only when a resource
adapter is used as a listener) shows the assembled values, according to settings in
the ejb-jar.xml file during deployment, and any modified deployed values.

5. In the Message Driven Bean page, use the "Configure Message Listener Properties"
feature to access the Configure Message Listener Properties page and specify new
values for any of the activation configuration properties, as desired.

6. Apply any changes.

Any new activation configuration property values are shown in the Message Driven
Bean page and reflected in the orion-ejb-jar.xml file, as shown in Table 6–1. For
more information, see the context-sensitive topics "Message Driven Bean Page" and
"Configure Message Listener Properties Page" in the Application Server Control online
help.

Table 6–1 MDB Activation Configuration Properties

Application Server
Control Property Corresponding XML Entity Description

Resource Adapter
Name

resource-adapter attribute of
<message-driven-deployment>
element

The resource adapter to use as a
message listener for this MDB (read
only). It must support the same
message listener type.

Appropriate Name
and Deployed Value
entries in the list of
activation
configuration
properties

A <config-property> element
with <config-property-name>
and <config-property-value>
subelements

Under the appropriate
<message-driven-deployment>
element, there is a
<config-property> element for
each activation configuration
property you updated, with a
<config-property-name>
subelement that indicates the name
of the property, and a
<config-property-value>
subelement reflecting your new
setting.

Understanding the Message Listening Lifecycle

6-10 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Error Conditions for Deployment and Configuration
During resource adapter and MDB deployment and configuration, OC4J verifies
settings as follows and throws exceptions as necessary:

■ If a resource adapter supports multiple message listener types, OC4J checks that
each <messagelistener-type> setting in ra.xml is unique.

■ For each association between an MDB and a resource adapter, OC4J checks that
the resource adapter supports the message listener type that the MDB implements.

■ For message listener activation, OC4J checks that the activation configuration
JavaBean (as specified in the <activationspec-class> element) implements
the javax.resource.spi.ActivationSpec interface, is a JavaBean, and is
serializable. OC4J also checks that all configuration properties listed as required in
ra.xml (under <required-config-property> elements) are actually
supported by the activation configuration JavaBean .

Understanding the Message Listening Lifecycle
This section discusses the key phases and functionality of the lifecycle for
message-listening, covering the following topics:

■ MDB Activation

■ Message Delivery

■ MDB Deactivation

MDB Activation
To enable message delivery from a resource adapter to an MDB (message endpoint),
the MDB must be activated whenever it is deployed or started. When an MDB
application is deployed, OC4J handles the activation process, as well as automatic
reactivation after a system shutdown or failure.

Essentially, activation consists of telling the resource adapter what set of messages the
MDB should receive. Message delivery can begin once this information is provided.
How the set of messages is defined depends on the type of message listener, such as
definitions based on destination type and message selectors for JMS.

Specifically, the following occurs during activation:

■ OC4J instantiates the appropriate activation configuration JavaBean, and
associates the appropriate resource adapter with it. Property values for the
JavaBean are taken from configuration in ejb-jar.xml, or according to any
subsequent changes made through Application Server Control.

■ OC4J calls an activation method on the appropriate resource adapter (specifically,
on an instance of a class that implements the SPI ResourceAdapter interface) to
activate the MDB.

■ In the method call to activate the MDB, OC4J passes in the following:

– The activation configuration JavaBean instance

– A factory object to use in delivering messages to the MDB

The resource adapter, through the property values of the activation configuration
JavaBean, knows what type of messages are expected, where to get them, and how to
filter them.

Understanding the Message Listening Lifecycle

Using RAs for Inbound Communication 6-11

The factory object is an instance of a class that implements the
javax.resource.spi.endpoint.MessageEndpointFactory interface and is
provided by OC4J. See the next section, "Message Delivery", for how the message
endpoint factory object is used.

Message Delivery
This section discusses the following aspects of message delivery functionality:

■ Message Endpoint Proxy Objects

■ Message Delivery Semantics

Message Endpoint Proxy Objects
During message delivery, the resource adapter calls a method on the message
endpoint factory it received during MDB activation, to retrieve proxy objects that are
used to deliver messages. These proxy objects are instances of a class provided by
OC4J that implements the following:

■ The javax.resource.spi.endpoint.MessageEndpoint interface

■ The message listener interface that the MDB implements

Because proxy objects implement the same listener interface as the MDB, the resource
adapter can use custom methods of the listener interface to deliver messages.

As discussed in "Understanding Configuration for Use of Transactions in Message
Delivery" on page 6-8, message delivery can be either transacted (that is, messages are
delivered within transactions) or non-transacted. If delivery is transacted, and the
resource adapter passed an XAResource object when it retrieved the message
endpoint proxy object, then the resource adapter will receive transaction notifications
through the XAResource instance.

Use of the proxy objects between the resource adapter and the actual message
endpoint (MDB) is necessary in case OC4J has to intercept message delivery for any
reason, such as to inject a transaction or perform checks.

Note: OC4J, in conjunction with the resource adapter, uses a method
of the activation configuration JavaBean to check the validity of the
bean property settings. If any invalid settings were specified, either in
the ejb-jar.xml file during deployment or through the Application
Server Control Console during subsequent configuration, a failure
will result. Refer to the OC4J log files and set an appropriate new
value for the parameter in question.

Understanding the Message Listening Lifecycle

6-12 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Message Delivery Semantics
When a resource adapter calls a method for message delivery (the method being
specific to the message listener being used), the following must occur:

■ The message must be delivered to the actual MDB instance, with any response
being returned to the resource adapter.

■ Exceptions during message delivery must be handled by OC4J and propagated to
the resource adapter, as discussed in "Exceptions from MDB Listener Methods" on
page 6-15.

■ Transaction semantics must be enforced according to the J2EE Connector
Architecture Specification, as described in the text that follows.

The following scenarios are considered. (See "Understanding Configuration for Use of
Transactions in Message Delivery" on page 6-8 for related information about
transaction settings.)

■ Container-managed transaction (CMT) demarcation with a setting of Required in
the MDB configuration, without imported transactions

■ Container-managed transaction demarcation with a setting of NotSupported in
the MDB configuration, without imported transactions

■ Container-managed transaction demarcation with a setting of Required, with
imported transactions

■ Container-managed transaction demarcation with a setting of NotSupported,
with imported transactions

■ Bean-managed transaction (BMT) demarcation, without imported transactions

■ Bean-managed transaction demarcation, with imported transactions

Furthermore, a resource adapter has the option of exerting control over transaction
demarcation by using the beforeDelivery() and afterDelivery() methods
(specified in the MessageEndpoint interface) of the message endpoint proxy objects.
It can call beforeDelivery() before calling the message delivery method on the
MDB, and call afterDelivery() afterward. We will refer to this as the
"before/after" delivery option, and consider it for each of the preceding scenarios.

Independent of this, the resource adapter may choose to pass in an XAResource
object, to be used for transaction notifications, whenever it retrieves a message
endpoint proxy object.

Notes:

■ The message endpoint factory may choose to pool message
endpoint proxy objects.

■ The resource adapter calls a release method on a message
endpoint proxy object when the object is no longer needed,
restoring the proxy object into the pool if pooling is used.

■ The message endpoint factory provides a utility method,
isDeliveryTransacted(), for the resource adapter to use in
determining if message deliveries will be transacted or not. This
information helps the resource adapter to make runtime decisions
or perform optimizations.

Understanding the Message Listening Lifecycle

Using RAs for Inbound Communication 6-13

CMT with Required Setting, without Imported Transactions If the resource adapter
does not use the before/after delivery option:

■ OC4J starts a new transaction before each message delivery method call.

■ If the resource adapter provided an XAResource object, all transaction
notifications are sent to that object.

■ OC4J completes the transaction after each message delivery method call.

If the resource adapter uses the before/after delivery option:

■ OC4J starts the transaction when beforeDelivery() is called.

■ If the resource adapter provided an XAResource object, all transaction
notifications are sent to that object.

■ OC4J completes the transaction when afterDelivery() is called.

CMT with NotSupported Setting, without Imported Transactions Regardless of
whether the resource adapter uses the before/after delivery option:

■ OC4J makes no attempt to start a transaction before the message delivery method
call or when beforeDelivery() is called (as applicable).

■ If the resource adapter provided an XAResource object, it is ignored.

■ OC4J makes no attempt to complete any transaction after the message delivery
method call or when afterDelivery() is called (as applicable).

CMT with Required Setting, with Imported Transactions Regardless of whether the
resource adapter uses the before/after delivery option:

■ OC4J does nothing regarding transactions before each message delivery method
call or when beforeDelivery() is called (as applicable), because an imported
transaction already exists.

■ If the resource adapter provided an XAResource object, all transaction
notifications (from the beginning of message delivery or the beforeDelivery()
call, as applicable) are sent to that object.

■ All work done by the MDB is included in the imported transaction.

■ OC4J makes no attempt to complete the imported transaction after each message
delivery method call or when afterDelivery() is called (as applicable),
because completion is triggered by the external transaction manager through the
resource adapter. OC4J may, however, mark the transaction for rollback based on
exceptions that occurred during the call.

CMT with NotSupported Setting, with Imported Transactions If the resource adapter
does not use the before/after delivery option:

Notes:

■ For message delivery that is not transacted, the resource adapter
considers a successful return of the message delivery method call
to be confirmation of delivery. Any exception from the message
endpoint proxy object is interpreted to indicate delivery failure.

■ For message delivery that is transacted, a commit of the
transaction is interpreted as confirmation of delivery. A rollback is
interpreted to indicate delivery failure.

Special Conditions in Message Delivery

6-14 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

■ OC4J suspends the imported transaction before each message delivery method
call.

■ If the resource adapter provided an XAResource object, it is ignored.

■ OC4J resumes the imported transaction after each message delivery method call.

If the resource adapter uses the before/after delivery option:

■ OC4J suspends the imported transaction when beforeDelivery() is called.

■ If the resource adapter provided an XAResource object, it is ignored.

■ OC4J resumes the imported transaction when afterDelivery() is called.

BMT, without Imported Transactions Regardless of whether the resource adapter
uses the before/after delivery option:

■ OC4J makes no attempt to start, complete, suspend, or resume any transaction.

■ If the resource adapter provided an XAResource object, it is ignored.

BMT, with Imported Transactions If the resource adapter does not use the
before/after delivery option:

■ OC4J suspends the imported transaction before each message delivery method
call.

■ If the resource adapter provided an XAResource object, it is ignored.

■ OC4J resumes the transaction after each message delivery method call.

If the resource adapter uses the before/after delivery option:

■ OC4J suspends the imported transaction when beforeDelivery() is called.

■ If the resource adapter provided an XAResource object, it is ignored.

■ OC4J resumes the imported transaction when afterDelivery() is called.

MDB Deactivation
Endpoint deactivation is required whenever a resource adapter should stop delivering
messages to an MDB, such as when the MDB application that is associated with the
resource adapter is undeployed or stopped. Deactivation is handled by OC4J.

Specifically, OC4J calls a deactivation method on the appropriate resource adapter (an
instance of a class that implements the SPI ResourceAdapter interface) to deactivate
the MDB. In the deactivation method call, OC4J passes in the same activation
configuration JavaBean instance and message endpoint factory instance that were used
in activating the MDB.

Special Conditions in Message Delivery
"Message Delivery" on page 6-11 covered basic functionality. This section describes
special conditions, particularly error conditions, during message delivery:

■ Concurrent Message Delivery

■ Exceptions from MDB Listener Methods

■ Failure During Transacted Message Delivery

Special Conditions in Message Delivery

Using RAs for Inbound Communication 6-15

Concurrent Message Delivery
During message delivery, after a resource adapter has retrieved one or more message
endpoint proxy objects, the resource adapter has the option of using a single proxy
object to serially deliver messages, or multiple proxy objects to deliver messages using
different threads. This latter mode is known as concurrent delivery.

Note that the message delivery method call and the beforeDelivery() and
afterDelivery() calls (if applicable) are all considered to be part of a single unit of
message delivery and all must be called from a single thread.

OC4J supports concurrent delivery as long as a separate proxy object is used in each
thread; however, it may attempt to limit the number of message endpoint proxy
objects in simultaneous use by throwing UnavailableException errors during
endpoint proxy creation.

OC4J does not support any attempt to concurrently deliver messages using the same
endpoint proxy object in different threads. If work is started using a particular proxy
object in one thread, the work cannot be handed off to another thread. An attempt to
use the same proxy object in different threads results in an exception.

Exceptions from MDB Listener Methods
This section describes OC4J action in handling exceptions from the message listener
method of an MDB, considering the following scenarios:

■ Container-managed transaction demarcation with the MDB method running in a
transaction context (the case for an MDB Required setting)

■ Container-managed transaction demarcation with the MDB method running in an
unspecified transaction context (the case for an MDB NotSupported setting)

■ Bean-managed transaction demarcation

CMT with MDB Required Setting For an application exception (AppException),
OC4J generally attempts to commit the transaction and throw the exception to the
resource adapter. However, if the MDB has specified that the only possible outcome of
the transaction is a rollback (through the setRollbackOnly() method of a
UserTransaction object on OC4J), then the transaction is rolled back before the
exception is thrown to the resource adapter.

For a system exception, OC4J does the following:

■ Logs the error.

■ Rolls back the transaction.

■ Discards the MDB instance (meaning no further methods will be invoked on that
instance).

■ Throws the exception to the resource adapter after wrapping it in an EJB exception
(EJBException).

CMT with MDB NotSupported Setting For an application exception, OC4J throws the
exception to the resource adapter.

For a system exception, OC4J does the following:

Note: For concurrent message delivery, OC4J maintains a pool of
MDBs. Then min-instances and max-instances attributes in the
ejb-jar.xml configuration file control the size of the pool.

Special Conditions in Message Delivery

6-16 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

■ Logs the error.

■ Discards the MDB instance.

■ Throws the exception to the resource adapter after wrapping it in an EJB
exception.

BMT For an application exception, OC4J throws the exception to the resource
adapter.

For a system exception, OC4J does the following:

■ Logs the error.

■ Marks the transaction for rollback if it was started but not yet completed.

■ Discards the MDB instance.

■ Throws the exception to the resource adapter after wrapping it in an EJB
exception.

Failure During Transacted Message Delivery
This section describes recovery from failure during transacted message delivery, both
for transactions managed by OC4J and for imported transactions.

Message Redelivery for Transactions Managed by OC4J
In case of OC4J system failure during transacted message delivery, where the
transaction was started by OC4J, there is functionality to notify message providers
about the outcomes of all deliveries that were in progress during the failure and are in
doubt (prepared but not committed). Recovery is initiated by OC4J. It is left to the
message providers to decide if they should attempt redelivery.

Once OC4J is running again, it executes the following recovery steps:

■ Restarts the resource adapter instances that were running.

■ Obtains an array of XAResource objects from each resource adapter, with each
object representing a resource manager. In obtaining this array, OC4J passes an
array of activation configuration JavaBean instances to each resource adapter,
where each activation configuration JavaBean corresponds to an MDB application
that was running at the time of system failure.

■ Processes the array of XAResource objects to create a subset where each object
represents a unique resource manager. (Because multiple resource adapters may
use the same resource manager, the initial array of XAResource objects may have
multiple objects corresponding to the same resource manager.)

■ Calls methods on each XAResource object to query each resource manager for the
list of transactions that had been prepared but not yet committed, then completes
each such transaction with a commit or rollback call, as appropriate.

Message Redelivery for Imported Transactions
The J2CA specification considers the scenarios that follow for recovery processing
from failure during an imported transaction. Recovery is initiated by the EISs through
their resource adapters. Note that for imported transactions, OC4J can recover a
transaction; however, because it is not the transaction coordinator, it cannot complete
the transaction without instruction from the transaction initiator.

Special Conditions in Message Delivery

Using RAs for Inbound Communication 6-17

An EIS, through its resource adapter, uses the OC4J implementation of the SPI
XATerminator interface for transaction completion and recovery. This interface
includes the methods prepare(), commit(), rollback(), and recover().

For the following discussion, an "active" transaction is one that was not yet prepared,
and an "in doubt" transaction is one that was successfully prepared but not yet
committed.

If OC4J failure is discovered by the EIS while the transaction is active: The
transactional work is presumed aborted. The EIS makes no attempt to wait for OC4J or
to attempt recovery processing.

If OC4J failure is discovered by the EIS while the transaction is in doubt: The EIS
attempts to complete the transaction. To accomplish this, it attempts to reestablish
network connectivity with OC4J until it succeeds. When OC4J recovers, it determines
the state of the transaction and completes it as appropriate.

The following specific steps, in accordance with the J2CA specification, are executed in
this scenario:

■ When OC4J recovers, it restarts the resource adapter that imported the transaction.

■ The resource adapter obtains an XATerminator object from OC4J.

■ The resource adapter re-establishes communication with the EIS.

■ The EIS, acting as the transaction coordinator, instructs the resource adapter
regarding whether the transaction should be committed or rolled back, and
provides the transaction ID through a javax.transaction.xa.Xid instance.

■ The resource adapter notifies OC4J of the decision to commit or roll back the
transaction by calling the commit() or rollback() method of the
XATerminator object, passing in the transaction ID.

■ OC4J commits or rolls back, as appropriate, all work done on behalf of the
transaction.

If EIS failure is discovered by the resource adapter while the transaction is active:
The resource adapter aborts it.

If EIS failure is discovered by the resource adapter while the transaction is in
doubt: The resource adapter waits for the EIS to recover. When the EIS recovers, it
re-establishes network connectivity with the resource adapter and completes the
transaction.

The following specific steps, in accordance with the J2CA specification, are executed in
this scenario:

■ When the EIS recovers, OC4J re-establishes communication.

■ The EIS instructs the resource adapter to obtain a list of in-doubt transactions that
were imported from the EIS into OC4J.

■ The resource adapter obtains a list of transaction IDs (Xid instances) of in-doubt
transactions. It accomplishes this by calling the recover() method of an
XATerminator object previously obtained.

■ The resource adapter forwards the list of transaction IDs to the EIS.

■ The EIS, acting as the transaction coordinator, decides for each transaction
whether the transaction should be committed or rolled back, and informs the
resource adapter of this decision.

Special Conditions in Message Delivery

6-18 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

■ For each transaction, the resource adapter calls the XATerminator commit() or
rollback() method, as appropriate, passing the transaction ID.

■ OC4J commits or rolls back, as appropriate, all work performed on behalf of the
transaction.

Managing Administered Objects 7-1

7
Managing Administered Objects

This chapter discusses how to configure and manage resource adapter administered
objects, including the following topics:

■ Introduction to Administered Objects

■ Understanding Deployment Configuration of Administered Objects

■ Binding and Editing Administered Objects in OC4J

■ Looking Up Administered Objects

Introduction to Administered Objects
This section provides an overview of administered objects used with resource
adapters, covering the following:

■ What Is an Administered Object?

■ Example: What Is an Interaction Spec?

■ Example: What Are JMS Topics and Queues?

What Is an Administered Object?
An administered object is a utility Java object, provided with a resource adapter, for use
by an application component in conjunction with that resource adapter. A resource
adapter may or may not provide administered objects. Typically, an administered
object is used for messaging and is specific to a particular messaging style or message
provider. For example, a Java Message System (JMS) "queue" object may be required
to synchronously send and receive messages to Oracle Advanced Queueing through
the JMS API. An administered object in Oracle J2CA acts as a placeholder for an entity
defined elsewhere, such as for the queue object that is defined in the JMS environment.
(Administered objects are not necessary for asynchronous messaging, the setup of
which involves activation spec JavaBeans instead, as described in "Understanding the
Resource Adapter Configuration" on page 6-4.)

Classes for administered objects are supplied by resource adapter providers. Each
class must be a JavaBean class implementing some appropriate standard interface.
Configuration of an administered object includes the following:

■ Setting any properties, which is accomplished by the resource adapter provider
through the ra.xml file for deployment, or later by the OC4J administrator
through Application Server Control

■ Binding the object into JNDI for lookup by application components, which you
accomplish through Application Server Control

Introduction to Administered Objects

7-2 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

The next couple of sections discuss examples of two particular kinds of administered
object. Many more examples are possible.

Example: What Is an Interaction Spec?
The CCI InteractionSpec interface provides the mechanism for holding properties
for interactions. (See "What Are the Interface Libraries of the J2EE Connector
Architecture?" on page 1-8 for information about interactions and the CCI
Interaction interface.) An interaction spec implementation must support standard
properties that include an EIS function name and "interaction verb", which specifies
whether an interaction execution results in synchronously receiving a data record,
synchronously sending a data record, or both. There are also standard properties to
provide information to an interaction object about result set requirements (fetch size,
for example).

An interaction spec instance can optionally be registered as an administered object,
allowing application components to look it up in the JNDI namespace through a
standard resource environment reference that was specified during deployment.

See version 1.5 of the J2EE Connector Architecture Specification for additional
information.

Example: What Are JMS Topics and Queues?
JMS includes two modes of operation, known as "publish/subscribe" and
"point-to-point". The publish/subscribe mode uses "topic" objects defined in JMS, and
the point-to-point mode uses "queue" objects defined in JMS. In the J2EE Connector
Architecture, these messaging modes involve the use of administered objects to act as
placeholders for topics and queues, respectively. These administered objects, created
by an administrator for use by a JMS client, provide a convenient way to specify
configuration information for JMS.

Point-to-point messaging uses queues of messages, with a client sending messages to a
single queue and typically having all its messages delivered from a single queue. Most
queues are static resources created by an administrator. JMS defines how a client sends
messages to a queue and receives messages from a queue.

Publish/subscribe messaging uses message topics, where each topic represents a node
of a hierarchy of possible message subjects. The publish/subscribe model specifies
how JMS clients can publish messages to a topic or subscribe to messages from a topic.
In JMS, a topic object more specifically acts as a broker, gathering messages published
to it and distributing messages to subscribers as appropriate. Publishers and
subscribers remain independent of each other, and the topic entity adjusts
automatically as publishers and subscribers are added or dropped.

A topic is represented by an instance of a class that implements the
javax.jms.Topic interface. A queue is represented by an instance of a class that
implements the javax.jms.Queue interface. Each encapsulates a provider-specific
message destination address. More specifically, a Topic object encapsulates a
provider-specific topic name, while a Queue object encapsulates a provider-specific
queue name. As administered objects, topics and queues can contain provider-specific
configuration information as well.

The Topic and Queue interfaces do not depend on JNDI, but it is a JMS convention to
use JNDI to bind and look up Topic and Queue instances. Topics and queues are
used for examples later in this chapter.

Understanding Deployment Configuration of Administered Objects

Managing Administered Objects 7-3

Understanding Deployment Configuration of Administered Objects
Administered objects are configured for deployment in the ra.xml file, typically by
the resource adapter provider, as in the following example for JMS topics and queues.
The <adminobject> element is a subelement of the <resourceadapter> element.

<connector ... >
 ...
 <resourceadapter>
 ...
 <!-- Queue admin object -->
 <adminobject>
 <adminobject-interface>javax.jms.Queue</adminobject-interface>
 <adminobject-class>
 oracle.j2ee.ra.jms.generic.AdminObjectQueueImpl
 </adminobject-class>
 <config-property>
 <config-property-name>jndiName</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>MQQ</config-property-value>
 </config-property>
 <config-property>
 <config-property-name>resourceProviderName</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>MQSeries</config-property-value>
 </config-property>
 </adminobject>

 <!-- Topic admin object -->
 <adminobject>
 <adminobject-interface>javax.jms.Topic</adminobject-interface>
 <adminobject-class>
 oracle.j2ee.ra.jms.generic.AdminObjectTopicImpl
 </adminobject-class>
 <config-property>
 <config-property-name>jndiName</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>MQT</config-property-value>
 </config-property>
 <config-property>
 <config-property-name>resourceProviderName</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>MQSeries</config-property-value>
 </config-property>
 </adminobject>
 ...
 </resourceadapter>
 ...
</connector>

The <adminobject-class> element specifies the administered object class, and the
<adminobject-interface> element specifies the interface that this class
implements.

The <config-property> elements and their subelements specify the name, type,
and deployed value of properties of the administered objects.

Note: Topics and queues support concurrent use.

Binding and Editing Administered Objects in OC4J

7-4 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

For queues, in this example, the JMS Queue interface is implemented by the class
AdminObjectQueueImpl. This administered object has the following properties:

■ jndiName: type String, deployed value MQQ

■ resourceProviderName: type String, deployed value MQSeries

For topics, in this example, the JMS Topic interface is implemented by the class
AdminObjectTopicImpl. This administered object has the following properties:

■ jndiName: type String, deployed value MQT

■ resourceProviderName: type String, deployed value MQSeries

(You can change the deployed values later, through Application Server Control, as
described in the next section, "Binding and Editing Administered Objects in OC4J".)

Binding and Editing Administered Objects in OC4J
To use an administered object in OC4J, you must initially use the Application Server
Control "Create" function to bind it to a JNDI location. You can also edit property
values at this time, or at a later time. Changes take effect when the resource adapter is
restarted. The following sections describe the steps involved:

■ Create and Bind an Administered Object

■ View or Edit an Administered Object

OC4J binds each administered object into the JNDI namespace. For resources to be
directly visible from java:comp/env, there must be an appropriate resource
reference. You would accomplish this using a <resource-ref> element in either the
web.xml file (for Web modules) or the ejb-jar.xml file (for EJB modules). Even
without such a resource reference, though, you can do a lookup according to the JNDI
location that you specify when you bind the administered object.

Create and Bind an Administered Object
To use an administered object you must create it and bind it, using the following steps
in the Application Server Control Console:

1. Go to the Administered Objects tab from the appropriate Resource Adapter Home
page.

2. Choose the "Create" function.

3. In the resulting Create Administered Object page, choose an administered object
class. The list of available classes is according to the <adminobject-class>
elements in the ra.xml file.

4. In the next Create Administered Object page, specify a JNDI location.

5. Optionally specify any new values for the configuration properties. The list of
available configuration properties and their initial values is according to the
ra.xml configuration of the administered object class you select.

6. Apply the changes.

Note: OC4J instantiates each administered object during resource
adapter deployment, as well as at OC4J startup or restart, using the
configured property values.

Binding and Editing Administered Objects in OC4J

Managing Administered Objects 7-5

Also see the context-sensitive topics "Create Administered Object - Select Class Page"
and "Create Administered Object Page" in the Application Server Control online help.

When you create and bind an administered object, OC4J makes appropriate entries in
the oc4j-connectors.xml file. For each administered object, OC4J writes an
<adminobject-config> element, which is a subelement of the top-level
<connector> element. The <adminobject-config> element includes the
following:

■ location attribute for the JNDI location, such as:

<adminobject-config location="mqjms/MyQ" >

■ <adminobject-class> subelement for the name of the implementing class,
such as:

 <adminobject-class>
 oracle.j2ee.ra.jms.generic.AdminObjectQueueImpl
 </adminobject-class>

■ <config-property> subelement for each property of the administered object,
with name and value attributes, such as:

 <config-property name="jndiName" value="MQQ" />
 <config-property name="resourceProviderName" value="MQSeries" />

Table 7–1 summarizes the correlation between Application Server Control properties
and corresponding attributes and subelements of <adminobject-config> elements
in the oc4j-connectors.xml file.

View or Edit an Administered Object
You can edit the property values of an administered object you previously created.
Existing administered objects are identified by their JNDI locations (and you cannot
change a location).

Use the following steps in the Application Server Control Console:

1. Go to the Administered Objects tab of the appropriate Resource Adapter Home
page.

Table 7–1 Administered Object JNDI Location and Configuration Properties

Application Server
Control Property Corresponding XML Entity Description

Object Class <adminobject-class>
subelement

JavaBean class that represents an
administered object.

JNDI Location location attribute JNDI location of an administered
object instance.

Name (under
configuration properties)

name attribute of
<config-property>
subelement

Name of a configuration property
of an administered object.

Value (under
configuration properties)

value attribute of
<config-property>
subelement

Value of a configuration property
of an administered object.

Note: You can create and bind multiple administered objects for any
given administered object type that is defined in the ra.xml file.

Looking Up Administered Objects

7-6 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

2. Choose the JNDI location of the administered object you want to edit.

3. In the resulting Administered Object page, you can view the configuration
properties of the administered object. Additionally, you can specify new values for
any editable configuration properties as desired.

4. Apply the changes.

Also see the context-sensitive topic "Administered Object Page" in the Application
Server Control online help.

Looking Up Administered Objects
Once administered objects have been deployed and configured, as described
previously, they can be accessed by application components through JNDI lookups.

For this discussion, following up on earlier discussion of JMS topics and queues in this
chapter, assume administered objects for topics and queues have been deployed with
JNDI locations mqjms/MyT and mqjms/MyQ, respectively.

Further assume the topics and queues will be used in a servlet, with the following
resource environment reference mapping in the web.xml file:

<web-app ... >
 ...
 <resource-env-ref>
 <resource-env-ref-name>jms/TOPIC1</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Topic</resource-env-ref-type>
 </resource-env-ref>
 <resource-env-ref>
 <resource-env-ref-name>jms/QUEUE1</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
 </resource-env-ref>
 ...
</web-app>

And assume there has been Web module configuration, such as through Application
Server Control, that results in the following mapping, as reflected in the
orion-web.xml file:

<orion-web-app ...>
 ...
 <resource-env-ref-mapping name="jms/QUEUE1" location="mqjms/MyQ" />
 <resource-env-ref-mapping name="jms/TOPIC1" location="mqjms/MyT" />
 ...
</orion-web-app>

The preceding entries map actual JNDI locations (such as mqjms/MyQ) to logical JNDI
locations (such as jms/QUEUE1). These entries allow a servlet to look up a topic as
follows:

InitialContext ic = new InitialContext();
Topic ourT = (Topic)ic.lookup("java:comp/env/jms/TOPIC1");

And allow a servlet to look up a queue as follows:

InitialContext ic = new InitialContext();
Queue ourQ = (Queue)ic.lookup("java:comp/env/jms/QUEUE1");

OC4J Resource Adapter Configuration Files A-1

A
OC4J Resource Adapter Configuration Files

This appendix begins with an overview of resource adapter configuration files, then
provides detailed reference information about the OC4J-specific files. The following
topics are covered:

■ Overview of Resource Adapter Configuration Files

■ Hierarchy of oc4j-ra.xml

■ Elements and Attributes of oc4j-ra.xml

■ Sample oc4j-ra.xml

■ Hierarchy of oc4j-connectors.xml

■ Elements and Attributes of oc4j-connectors.xml

■ Sample oc4j-connectors.xml

Overview of Resource Adapter Configuration Files
This section provides an overview of the resource adapter configuration files: the
standard ra.xml file and the Oracle oc4j-ra.xml and oc4j-connectors.xml
files.

Figure A–1 shows the relationship between OC4J XML files and EAR and RAR files for
deployment, as follows:

■ An oc4j-ra.xml file is associated with each RAR file, whether for a standalone
or in-application resource adapter, to set configuration for the resource adapter
being deployed.

■ An oc4j-connectors.xml file is associated with each EAR file (for applications
using resource adapters), to reference the resource adapters being deployed with
the application as well as set additional configuration.

■ Also, an oc4j-connectors.xml file is associated with the OC4J default
application, to reference standalone resource adapters as well as set additional
configuration.

Overview of Resource Adapter Configuration Files

A-2 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Figure A–1 Deployment of OC4J-Specific XML Configuration Files for Oracle J2CA

Standard ra.xml Configuration File
An ra.xml file for a resource adapter is supplied by the resource adapter provider
and is included in the RAR file for deployment. When you subsequently configure a
resource adapter, as discussed throughout this manual, entries in ra.xml typically
serve as defaults, which you can override through Application Server Control. Any
configuration settings that override ra.xml entries are reflected in corresponding
oc4j-ra.xml entries generated by OC4J.

Here are portions of a sample J2CA 1.5 ra.xml file:

<outbound-resourceadapter>
 <connection-definition>
 <managedconnectionfactory-class>
 com.example.ManagedConnectionFactoryImpl
 </managedconnectionfactory-class>
 <connectionfactory-interface>
 javax.resource.cci.ConnectionFactory
 </connectionfactory-interface>
 <connectionfactory-impl-class>
 com.example.ConnectionFactoryWrapper
 </connectionfactory-impl-class>
 <connection-interface>javax.resource.cci.Connection</connection-interface>
 <connection-impl-class>
 com.example.ConnectionWrapper
 </connection-impl-class>
 <config-property>

oc4j-connectors.xml
- references RAR3

EAR2

RAR3
oc4j-ra.xml

OC4J

Default Application

Global application.xml
- references EAR1, EAR2

oc4j-connectors.xml
-references RAR1, RAR2

oc4j-connectors.xml
- references RAR4, RAR5

EAR1

RAR4
oc4j-ra.xml

RAR5
oc4j-ra.xml

RAR1
oc4j-ra.xml

RAR2
oc4j-ra.xml

Deploy

Deploy

Deploy

Deploy

Overview of Resource Adapter Configuration Files

OC4J Resource Adapter Configuration Files A-3

 <config-property-name>ServerName</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>www.example.com</config-property-value>
 </config-property>
 <config-property>
 <config-property-name>ConnectionUrl</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>
 jdbc:oracle:thin:@www.example.com:1521/myservice
 </config-property-value>
 </config-property>
 </connection-definition>
...
</outbound-resourceadapter>

Refer to the J2CA specification for detailed information about ra.xml and the
elements and attributes it supports.

Oracle oc4j-ra.xml Configuration File
The oc4j-ra.xml file contains OC4J-specific configuration for a resource adapter.
When you deploy a RAR file that does not contain an oc4j-ra.xml file, OC4J will
create one automatically, using settings from the ra.xml file as default values as
applicable. Then, whenever you use Application Server Control Console to create or
edit a connection factory, OC4J updates the oc4j-ra.xml file.

This file declares connection factories, with each <connector-factory> element
mapping to a <connection-definition> element in ra.xml. This is a
many-to-one relationship, as there can be multiple <connector-factory> elements
corresponding to a single <connection-definition> element. The
<connector-factory> elements are all under the root
<oc4j-connector-factories> element.

Subelements of <connector-factory> include <connection-pooling>, to set
up connection pooling for the factory, and <security-config>, to set up
container-managed sign-on. Each connector factory can have configuration for a
private connection pool, or can use a shared connection pool that is set up through a
<connection-pool> subelement of <oc4j-connector-factories>.

You can optionally package an oc4j-ra.xml file with the RAR file for deployment. It
is typical for a resource adapter provider to supply a number of configuration files
specific to particular application servers, in addition to their ra.xml file, and this may
include an oc4j-ra.xml file. When you deploy a RAR file that includes
oc4j-ra.xml, OC4J does not generate an oc4j-ra.xml file or alter your packaged
oc4j-ra.xml file during deployment. It simply accepts the settings in the packaged
file and exposes them as assembled values through Application Server Control, which
of course you can later edit if desired.

See "What Are the Packaging and Deployment Features?" on page 1-9 for related
information.

Oracle oc4j-connectors.xml Configuration File
For each EAR file deployed to OC4J, the oc4j-connectors.xml file lists the
resource adapters deployed with the application, using a <connector> element for
each adapter. Subelements of <connector>, for configuration relating to a particular
resource adapter, include <adminobject-config> to configure administered
objects, and <security-permission> to set up permissions.

Hierarchy of oc4j-ra.xml

A-4 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

An oc4j-connectors.xml file is also used to store the list of standalone resource
adapters in OC4J, indicating the number of resource adapters that were deployed
outside of EAR files and are to be globally available. This oc4j-connectors.xml
file is associated with the OC4J default application.

For each application, there is a <connectors> element in the
orion-application.xml file to indicate where the associated
oc4j-connectors.xml file is located. For standalone resource adapters,
oc4j-connectors.xml is located by default in the OC4J j2ee/instance/config
directory, as indicated in the <connectors> element in the global OC4J
application.xml file. In the directory name, instance is the name of an OC4J
instance (home by default in an Oracle Application Server environment and always
home in a standalone environment).

If you do not provide an oc4j-connectors.xml file in an EAR file, OC4J creates it
for you. The global oc4j-connectors.xml file for standalone resource adapters
already exists by default.

Hierarchy of oc4j-ra.xml
Here is an overview of the oc4j-ra.xml element hierarchy.

Elements and Attributes of oc4j-ra.xml
This section is an alphabetical dictionary of elements of the oc4j-ra.xml file. See the
preceding section, "Hierarchy of oc4j-ra.xml", if you are interested in the hierarchy.

<oc4j-connector-factories>
 <connection-pool>
 <property>
 <connector-factory>
 <description>
 <connectionfactory-interface>
 <config-property>
 <log>
 <file>
 <connection-pooling>
 <property>
 <use-connection-pool>
 <xa-recovery-config>
 <password-credential>
 <username>
 <password>
 <security-config>
 <principal-mapping-entries>
 <description>
 <principal-mapping-entry>
 <initiating-user>
 <res-user>
 <res-password>
 <default-mapping>
 <res-user>
 <res-password>
 <principal-mapping-interface>
 <impl-class>
 <property>
 <jaas-module>
 <jaas-application-name>

Elements and Attributes of oc4j-ra.xml

OC4J Resource Adapter Configuration Files A-5

<config-property>

Parent element: <connector-factory>

Child elements: None

Required? Optional; zero or more

Each <config-property> element specifies the name and value of a property
setting for the connection factory. These map to <config-property> elements in the
corresponding connection definition in the ra.xml file.

<connection-pool>

Parent element: <oc4j-connector-factories>

Child elements: <property>

Required? Optional; zero or more

This element specifies the name of a shared connection pool, and optionally specifies
property settings of the pool through <property> subelements.

<connection-pooling>

Parent element: <connector-factory>

Note: Where attributes are discussed, note that attribute values are
always set inside quotes: attribute="value"

Table A–1 <config-property> Attributes

Name Description

name Values: String

Default: n/a (required)

The name (from ra.xml) of the connection property being set.

value Values: String

Default: n/a (required)

The desired value of the connection property being set.

Note: Do not confuse the <connection-pool> element with the
<connection-pooling> element, which is a subelement of
<connector-factory>.

Table A–2 <connection-pool> Attributes

Name Description

name Values: String

Default: n/a (required)

The desired name of the shared connection pool.

Elements and Attributes of oc4j-ra.xml

A-6 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Child elements: <property>, <use-connection-pool>

Required? Optional; zero or one

This element specifies a connection pool for use by the connection factory defined
through the parent <connector-factory> element.

The <connection-pool> element either specifies a private connection pool with its
own settings, through <property> subelements, or uses a shared pool, through a
<use-connection-pool> subelement.

The absence of this element is equivalent to an attribute setting of use="none",
disabling connection pooling.

See "Configuring Connection Pooling in OC4J" on page 3-4 and "Sharing Connection
Pools" on page 3-10 for related information about connection pools.

<connectionfactory-interface>

Parent element: <connector-factory>

Child elements: None

Required? Optional; zero or one

The value of this element indicates the fully qualified name of the Java interface upon
which connection factories defined through the parent <connector-factory>
element are based:

<connectionfactory-interface>interfacename</connectionfactory-interface>

A connection factory object is an instance of a class that implements this interface. This
must be one of the interfaces specified for the corresponding connection definition in
the ra.xml file.

The <connectionfactory-interface> element has no attributes.

Note: Do not confuse the <connection-pooling> element with
the <connection-pool> element, which is a subelement of
<oc4j-connector-factories>.

Table A–3 <connection-pooling> Attributes

Name Description

use Values: shared|private|none

Default: No default

Use "shared" to use a shared connection pool, "private" to
specify a private connection pool, or "none" to disable
connection pooling for the connection factory.

Important: This element is not required according to the schema
definition, for backward compatibility reasons, but its omission will
result in an exception.

Elements and Attributes of oc4j-ra.xml

OC4J Resource Adapter Configuration Files A-7

<connector-factory>

Parent element: <oc4j-connector-factories>

Child elements: <config-property>, <connection-pooling>,
<connectionfactory-interface>, <description>, <log>, <security-config>,
<xa-recovery-config>

Required? Optional; zero or more

This element, through its attributes and subelements, specifies a connection factory for
the resource adapter.

<default-mapping>

Parent element: <principal-mapping-entries>

Child elements: <res-user>, <res-password>

Required? Optional; zero or one

This element, through its subelements, specifies a default resource principal. If an
initiating principal does not match any of those that are mapped to resource principals
through <principal-mapping-entry> elements, then the default resource
principal is used.

The <default-mapping> element has no attributes.

<description>

Parent element: <connector-factory>

Child elements: None

Required? Optional; zero or one

The value of this optional element describes the connection factory:

Table A–4 <connector-factory> Attributes

Name Description

connector-name Values: String

Default: n/a (required)

The name of the resource adapter instance. This name can be the
same as the connector name specified during deployment for a
standalone resource adapter (in the deploymentName property
of the deploy task or through the Application Server Control
Console deployment page) or the RAR file name, without the
.rar extension, for a resource adapter deployed within an EAR
file. The connector name or RAR file name (without the
extension) corresponds to the name attribute of the applicable
<connector> element in the oc4j-connectors.xml file.

location Values: String

Default: n/a (required)

A JNDI location to which the connection factory object will be
bound.

Elements and Attributes of oc4j-ra.xml

A-8 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

<description>Description of connection factory.</description>

The <description> element has no attributes.

<description>

Parent element: <principal-mapping-entries>

Child elements: None

Required? Optional; zero or one

The value of this optional element describes the principal mapping entries:

<description>Description of principal mapping entries.</description>

The <description> element has no attributes.

<file>

Parent element: <log>

Child elements: None

Required? Required within <log>; one only

This element, through its path attribute, specifies the absolute or relative path and
name of a log file where OC4J will write logging and tracing messages relating to the
resource adapter and EIS.

<impl-class>

Parent element: <principal-mapping-interface>

Child elements: None

Required? Required; one only

The value of this element indicates the fully qualified name of the principal mapping
class:

<impl-class>classname</impl-class>

The <impl-class> element has no attributes.

<initiating-user>

Parent element: <principal-mapping-entry>

Table A–5 <file> Attributes

Name Description

path Values: String

Default: No default

The absolute or relative path and name of the log file.

Elements and Attributes of oc4j-ra.xml

OC4J Resource Adapter Configuration Files A-9

Child elements: None

Required? Required within <principal-mapping-entry>; one only

The value of this element is the user name of an initiating principal, to be mapped to a
resource principal through an associated <res-user> (and <res-password>)
element:

<principal-mapping-entry>
 <initiating-user>name</initiating-user>
 <res-user>name</res-user>
 <res-password>pwd</res-password>
</principal-mapping-entry>

The <initiating-user> element has no attributes.

The OC4J property jaas.username.simple determines whether realm names are
prefixed in user names for returned principals. With the default "true" setting, realm
names are not prefixed. If you configure and use custom realms, you must explicitly
set this property to "false" to ensure that OracleAS JAAS Provider authentication
and authorization work properly.

To specify a "false" setting, use a <property> subelement of the <jazn> element
(in orion-application.xml for application level, or in the instance-level
jazn.xml file for OC4J instance level), as follows:

<jazn ... >
...
<property name="jaas.username.simple" value="false" />
...
</jazn>

See the Oracle Containers for J2EE Security Guide for more information about the
jaas.username.simple property.

<jaas-application-name>

Parent element: <jaas-module>

Child elements: None

Required? Required within <jaas-module>; one only

The value of this element indicates the name of the JAAS login module used for
container-managed sign-on:

<jaas-module>
 <jaas-application-name>modulename</jaas-application-name>
</jaas-module>

The <jaas-application-name> element has no attributes.

<jaas-module>

Parent element: <security-config>

Important: Always set jaas.username.simple to "false" when
multiple realms are configured.

Elements and Attributes of oc4j-ra.xml

A-10 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Child elements: <jaas-application-name>

Required? Optional; zero or one (but required if use="jaas-module" in the parent
<security-config>)

This element is for the "JAAS login module" mechanism for container-managed
sign-on. In this mechanism, a developer plugs in a JAAS login module (specified in the
<jaas-application-name> subelement) under the application to use a particular
authentication mechanism. A login module may, for example, simply implement a
user/password authentication mechanism, or may use more sophisticated technology
such as by connecting to a Smart Card.

Use of the <jaas-module> element must be combined with a setting of
use="jaas-module" in the parent <security-config> element (each requires the
other).

The <jaas-module> element has no attributes.

<log>

Parent element: <connector-factory>

Child elements: <file>

Required? Optional; zero or one

This specifies a log file, through its <file> subelement.

See "Configuring OC4J Logging for Connection Factories" on page 3-12 for related
information about log files and their configuration.

The <log> element has no attributes.

<oc4j-connector-factories>

Parent element: n/a (root)

Child elements: <connection-pool>, <connector-factory>

Required? Required; one only

This is the top-level element of the oc4j-ra.xml file, encompassing configuration of
connection factories and connection pools for a single resource adapter deployed to
OC4J.

Table A–6 <oc4j-connector-factories> Attributes

Name Description

schema-major-version Values: String

Default: No default

The major version number of the oc4j-ra.xml XSD. If you
create oc4j-ra.xml manually, set this attribute to 10 for use
with the OC4J 10.1.3 implementation.

Elements and Attributes of oc4j-ra.xml

OC4J Resource Adapter Configuration Files A-11

<password>

Parent element: <password-credential>

Child elements: None

Required? Optional; zero or one

The value of this element is for a password for the associated user name (through the
corresponding <username> element), for XA recovery sign-on through the
connection factory.

There is a corresponding <username> element for the associated user name.

Specify the password setting in one of the following ways:

■ Direct password: the value is the password itself

■ Indirect Password: the value is a right-arrow followed by a key that OC4J uses for
a lookup in the User Manager (such as through the jazn-data.xml file)

■ No password: empty content

For an indirect password, the key is often just the user name, as in the following
example:

...
<password-credential>
 <username>jmsuser</username>
 <password>->jmsuser</password>
</password-credential>
...

The <password> element has no attributes.

<password-credential>

Parent element: <xa-recovery-config>

Child elements: <username>, <password>

Required? Optional; zero or more

schema-minor-version Values: String

Default: No default

The minor version number of the oc4j-ra.xml XSD. If you
create oc4j-ra.xml manually, set this attribute to 0 for use
with the OC4J 10.1.3 implementation.

Note: These attributes do not appear directly in the XSD for
ocj4-ra.xml. They are according to the attributeGroup
specification in the top-level OC4J XSD.

Table A–6 (Cont.) <oc4j-connector-factories> Attributes

Name Description

Elements and Attributes of oc4j-ra.xml

A-12 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

This element, through its <username> and <password> subelements, specifies
sign-on information for XA recovery.

You can use multiple <password-credential> elements to specify multiple XA
recovery sign-on identities.

The <password-credential> element has no attributes.

<principal-mapping-entries>

Parent element: <security-config>

Child elements: <description>, <principal-mapping-entry>, <default-mapping>

Required? Optional; zero or one (but required if
use="principal-mapping-entries" in the parent <security-config>)

This element is for the "principal mapping entries" mechanism for container-managed
sign-on. In this mechanism, principal mappings are specified through OC4J-specific
configuration settings ("declaratively").

Use of the <principal-mapping-entries> element must be combined with a
setting of use="principal-mapping-entries" in the parent
<security-config> element (each requires the other).

The <principal-mapping-entries> element has no attributes.

<principal-mapping-entry>

Parent element: <principal-mapping-entries>

Child elements: <initiating-user>, <res-user>, <res-password>

Required? Optional; zero or more

For the "principal mapping entries" mechanism, there can be any number of
<principal-mapping-entry> elements. Each one specifies, through its
subelements, a mapping between an initiating principal and a resource principal for
the EIS connection.

The <principal-mapping-entry> element has no attributes.

<principal-mapping-interface>

Parent element: <security-config>

Child elements: <impl-class>, <property>

Required? Optional; zero or one (but required if
use="principal-mapping-interface" in the parent <security-config>)

This element is for the "principal mapping class" mechanism for container-managed
sign-on. In this mechanism, principal mappings are specified through a principal
mapping class ("programmatically"). A principal mapping class is one that implements
the oracle.j2ee.connector.PrincipalMapping interface, and its name is
specified in the <impl-class> subelement. A developer can implement the
PrincipalMapping interface directly, or can extend the

Elements and Attributes of oc4j-ra.xml

OC4J Resource Adapter Configuration Files A-13

oracle.j2ee.connector.AbstractPrincipalMapping class that is supplied by
Oracle for convenience.

Properties of a principal mapping class are specific to the particular implementation.
Property settings for a principal mapping instance are configured through
<property> subelements.

Use of the <principal-mapping-interface> element must be combined with a
setting of use="principal-mapping-interface" in the parent
<security-config> element (each requires the other).

The <principal-mapping-interface> element has no attributes.

<property>

Parent element: <connection-pool>

Child elements: None

Required? Optional; zero or more

Use a <property> element for each property you want to set for the shared
connection pool defined in the parent <connection-pool> element.

<property>

Parent element: <connection-pooling>

Child elements: None

Required? Optional; zero or more

Use a <property> element for each property you want to set for the private
connection pool defined in the parent <connection-pooling> element.

Note: This element has the same usage and attributes as the
<property> subelement of <connection-pooling>, except
initial-capacity is not supported.

Table A–7 <property> Attributes

Name Description

name Values: maxConnections | minConnections | scheme |
waitTimeout | inactivity-timeout | inactivity-timeout-check

Default: n/a (required)

The name of the property being set. See "Configuring
Connection Pooling in OC4J" on page 3-4 for descriptions of
these properties.

value Values: String

Default: n/a (required)

The desired value of the property being set. See "Configuring
Connection Pooling in OC4J" on page 3-4 for supported values
of these properties.

Elements and Attributes of oc4j-ra.xml

A-14 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

<property>

Parent element: <principal-mapping-interface>

Child elements: None

Required? Optional; zero or more

There can be any number of <property> elements to specify property settings for an
instance of the principal mapping class, depending on how many properties the class
itself has. For example, properties can specify a default user name and password, the
path of a principal mapping file, information for an LDAP connection, or a default
mapping.

<res-password>

Parent element: <default-mapping>

Child elements: None

Required? Required within <default-mapping>; one only

The value of this element specifies the password for the default resource principal of
the associated <res-user> element, either directly or indirectly. This uses the same
functionality as discussed for <password> on page A-11.

Note: This element has the same usage and attributes as the
<property> subelement of <connection-pool>, except this
element also supports the initial-capacity property.

Table A–8 <property> Attributes

Name Description

name Values: maxConnections | minConnections | initial-capacity|
scheme | waitTimeout | inactivity-timeout |
inactivity-timeout-check

Default: n/a (required)

The name of the property being set. See "Configuring
Connection Pooling in OC4J" on page 3-4 for descriptions of
these properties.

value Values: String

Default: n/a (required)

The desired value of the property being set. See "Configuring
Connection Pooling in OC4J" on page 3-4 for supported values
of these properties.

Table A–9 <property> Attributes

Name Description

name The name of the property being set (a property of the principal
mapping class).

value The desired value of the property.

Elements and Attributes of oc4j-ra.xml

OC4J Resource Adapter Configuration Files A-15

The <res-password> element has no attributes.

<res-password>

Parent element: <principal-mapping-entry>

Child elements: None

Required? Required within <principal-mapping-entry>; one only

The value of this element specifies the password for the resource principal of the
associated <res-user> element, either directly or indirectly. This uses the same
functionality as discussed for <password> on page A-11.

The <res-password> element has no attributes.

<res-user>

Parent element: <default-mapping>

Child elements: None

Required? Required within <default-mapping>; one only

The value of this element is the user name of the default resource principal for the
principal mapping entries mechanism. There is also an associated <res-password>
element:

<default-mapping>
 <res-user>name</res-user>
 <res-password>pwd</res-password>
</default-mapping>

The <res-user> element has no attributes.

<res-user>

Parent element: <principal-mapping-entry>

Child elements: None

Required? Required within <principal-mapping-entry>; one only

The value of this element is the user name of a resource principal, being mapped from
an initiating principal through an associated <initiating-user> element. Also use
an associated <res-password> element:

<principal-mapping-entry>
 <initiating-user>name</initiating-user>
 <res-user>name</res-user>
 <res-password>pwd</res-password>
</principal-mapping-entry>

The <res-user> element has no attributes.

Elements and Attributes of oc4j-ra.xml

A-16 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

<security-config>

Parent element: <connector-factory>

Child elements: <principal-mapping-entries>, <principal-mapping-interface>,
<jaas-module>

Required? Optional; zero or one

This element, through its use attribute and appropriate subelements, specifies
container-managed sign-on and any associated principal mapping. Principal mapping is
defined in the J2CA specification and refers to mapping from an initiating principal
(such as an OC4J user) to a resource principal (resource user, or EIS user). The
<security-config> element can specify any of the following:

■ Declarative container-managed sign-on through principal mapping entries

■ Programmatic container-managed sign-on through an implementation of the
principal mapping interface

■ Programmatic container-managed sign-on through a JAAS application module

■ Disabling of container-managed sign-on

See the Oracle Containers for J2EE Security Guide for information about
container-managed sign-on versus component-managed sign-on, and for additional
information and examples regarding <security-config> and its subelements.

<use-connection-pool>

Parent element: <connection-pooling>

Child elements: None

Required? Optional; zero or one (but required if use="shared" in parent element,
or OC4J will throw an exception)

When the parent <connection-pooling> element has the attribute setting
use="shared" to use a shared connection pool, the value of the
<use-connection-pool> subelement specifies the name of the shared connection
pool to use:

<use-connection-pool>connectionpoolname</use-connection-pool>

Table A–10 <security-config> Attributes

Name Description

use Values: none | principal-mapping-entries |
principal-mapping-interface | jaas-module

Default: No default

Use "none" to disable container-managed sign-on (such as for
component-managed sign-on), or use
"principal-mapping-entries",
"principal-mapping-interface", or "jaas-module" to
indicate the mode of container-managed sign-on. These values
for container-managed sign-on reflect the names of the
corresponding subelements of <security-config>.

Sample oc4j-ra.xml

OC4J Resource Adapter Configuration Files A-17

This corresponds to the name attribute of the <connection-pool> element that
specifies the shared pool.

The <use-connection-pool> element has no attributes.

<username>

Parent element: <password-credential>

Child elements: None

Required? Optional; zero or one

The value of this element indicates a user name for XA recovery sign-on through the
connection factory:

...
<password-credential>
 <username>name</username>
 <password>pwd</password>
</password-credential>
...

As shown, there is a corresponding <password> element for the associated password.

The <username> element has no attributes.

<xa-recovery-config>

Parent element: <connector-factory>

Child elements: <password-credential>

Required? Optional; zero or one

This element, through one or more <password-credential> subelements, specifies
sign-on information for XA recovery for the connection factory. See "Understanding
and Configuring Transaction Recovery" on page 4-15 for related information and
concepts.

The <xa-recovery-config> element has no attributes.

Sample oc4j-ra.xml
This section shows a sample oc4j-ra.xml file that configures connection factories
for a JMS resource adapter, including setup of connection pooling (both private and
shared) and container-managed sign-on.

<?xml version="1.0"?>

<oc4j-connector-factories xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Note: If no sign-on credentials are specified for XA recovery, the first
fallback is to use what is specified through the <security-config>
element. If there is no <security-config> element, the next
fallback is to sign on according to the OC4J user at the time of
recovery execution.

Hierarchy of oc4j-connectors.xml

A-18 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

 xsi:noNamespaceSchemaLocation=
 "http://xmlns.oracle.com/oracleas/schema/oc4j-connector-factories-10_0.xsd"
 schema-major-version="10" schema-minor-version="0" >
 <connector-factory location="OracleASjms/MyXAQCF" connector-name="OracleASjms">
 <config-property name="jndiLocation" value="jms/XAQueueConnectionFactory"/>
 <connection-pooling use="private">
 <property name="waitTimeout" value="300" />
 <property name="scheme" value="fixed_wait" />
 <property name="maxConnections" value="50" />
 <property name="minConnections" value="0" />
 </connection-pooling>
 <security-config use="principal-mapping-entries">
 <principal-mapping-entries>
 <default-mapping>
 <res-user>anonymous</res-user>
 <res-password></res-password>
 </default-mapping>
 <principal-mapping-entry>
 <initiating-user>servletuser</initiating-user>
 <res-user>jmsuser</res-user>
 <res-password>->jmsuser</res-password>
 </principal-mapping-entry>
 </principal-mapping-entries>
 </security-config>
 <connectionfactory-interface>
 javax.jms.XAQueueConnectionFactory
 </connectionfactory-interface>
 </connector-factory>
 <connector-factory location="OracleASjms/MyCF1" connector-name="OracleASjms">
 <config-property name="jndiLocation" value="jms/ConnectionFactory1"/>
 <connection-pooling use="shared">
 <use-connection-pool>commonPool</use-connection-pool>
 </connection-pooling>
 <connectionfactory-interface>
 javax.jms.ConnectionFactory
 </connectionfactory-interface>
 </connector-factory>
 <connector-factory location="OracleASjms/MyCF2" connector-name="OracleASjms">
 <config-property name="jndiLocation" value="jms/ConnectionFactory2"/>
 <connection-pooling use="shared">
 <use-connection-pool>commonPool</use-connection-pool>
 </connection-pooling>
 <connectionfactory-interface>
 javax.jms.ConnectionFactory
 </connectionfactory-interface>
 </connector-factory>
 <connection-pool name="commonPool">
 <property name="minConnections" value="0" />
 <property name="maxConnections" value="10" />
 <property name="waitTimeout" value="300" />
 <property name="scheme" value="fixed_wait" />
 </connection-pool>
</oc4j-connector-factories>

Hierarchy of oc4j-connectors.xml
Here is an overview of the oc4j-connectors.xml element hierarchy.

Elements and Attributes of oc4j-connectors.xml

OC4J Resource Adapter Configuration Files A-19

Elements and Attributes of oc4j-connectors.xml
This section is an alphabetical dictionary of elements of the oc4j-connectors.xml
file. See the preceding section, "Hierarchy of oc4j-connectors.xml", if you are interested
in the hierarchy.

<adminobject-class>

Parent element: <adminobject-config>

Child elements: None

Required? Required; one only

The value of this element indicates the fully qualified name of the JavaBean class for
the administered object:

<adminobject-config>
 <adminobject-class>classname</adminobject-class>
 ...
</adminobject-config>

The <adminobject-class> element has no attributes.

<adminobject-config>

Parent element: <connector>

Child elements: <adminobject-class>, <config-property>

Required? Optional; zero or more

Each <adminobject-config> element is for an administered object for the resource
adapter, specifying through its attribute and subelements the JNDI location,
administered object class, and any configuration property settings.

See Chapter 7, "Managing Administered Objects" for general information about
administered objects and additional information about configuring them.

<oc4j-connectors>
 <connector>
 <config-property>
 <security-permission>
 <security-permission-spec>
 <adminobject-config>
 <adminobject-class>
 <config-property>
 <oc4j-connectors>
 <start-order>

Elements and Attributes of oc4j-connectors.xml

A-20 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

<config-property>

Parent element: <adminobject-config>

Child elements: None

Required? Optional; zero or more

Each <config-property> subelement of an <adminobject-config> element
specifies the name and desired value of a property of the administered object
JavaBean.

<config-property>

Parent element: <connector>

Child elements: None

Required? Optional; zero or more

This element, when a subelement of a <connector> element, indicates the name and
deployed value of a property of the resource adapter JavaBean. Each
<config-property> subelement of a <connector> element corresponds to a
<config-property> subelement of a <resourceadapter> element in the ra.xml
file, where the ra.xml file specifies the name and assembled value of the property.

See "Setting Properties of the Resource Adapter JavaBean" on page 2-7 for related
information.

Table A–11 <adminobject-config> Attributes

Name Description

location Values: String

Default: n/a (required)

The JNDI location to which the administered object instance will
be bound.

Table A–12 <config-property> Attributes

Name Description

name Values: String

Default: n/a (required)

The name of a property of the administered object JavaBean.

value Values: String

Default: n/a (required)

The desired value of the administered object property.

Table A–13 <config-property> Attributes

Name Description

name Values: String

Default: n/a (required)

The name of a resource adapter property (from ra.xml)

Elements and Attributes of oc4j-connectors.xml

OC4J Resource Adapter Configuration Files A-21

<connector>

Parent element: <oc4j-connectors>

Child elements: <config-property>, <security-permission>, <adminobject-config>,
<native-library>, <start-order>

Required? Optional; zero or more

There is a <connector> element for each resource adapter deployed within the EAR
file (for resource adapters deployed with an application), or for each standalone
resource adapter (in the case of the oc4j-connectors.xml file associated with the
OC4J default application). This element indicates the name, path, and JNDI location of
the corresponding resource adapter, along with additional configuration through its
subelements.

<native-library>

Parent element: <connector>

Child elements: None

Required? Optional; zero or one

value Values: String

Default: n/a (required)

The desired deployed value of the property (can override the
assembled value from ra.xml).

Table A–14 <connector> Attributes

Name Description

name Values: String

Default: n/a (required)

The name of the applicable resource adapter, as determined
during deployment for a standalone resource adapter (such as
through the Application Server Control Console deployment
page), or according to the RAR file name, without the .rar
extension, for a resource adapter deployed within an EAR file.
This corresponds to the connector-name attribute of
applicable <connector-factory> elements in the
oc4j-ra.xml file.

path Values: String

Default: n/a (required)

The directory path from which the RAR file was deployed.

location Values: String

Default: Empty string

A JNDI location to which the resource adapter instance will be
bound. This is relevant only if the resource adapter supports
message inflow, and is generally for internal use only.

Table A–13 (Cont.) <config-property> Attributes

Name Description

Elements and Attributes of oc4j-connectors.xml

A-22 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

This element points to the location of a native library for use by the resource adapter
(and provided with the resource adapter). Also see "Configuring the Use of Resource
Adapter Native Libraries" on page 2-8.

<oc4j-connectors>

Parent element: n/a (root)

Child elements: <connector>

Required? Required; one only

This is the top-level element of the oc4j-connectors.xml file, encompassing the
enumeration of all resource adapters deployed within a single EAR file, or all
standalone resource adapters, as applicable.

Table A–15 <native-library> Attributes

Name Description

path Values: String

Default: No default

The relative path for a native library, according to its relative
location in the RAR file during deployment.

Note: You can use either the path attribute or the element value to
specify the path. Either of the following examples is valid:

<native-library path="lib/foo.so" />

<native-library>lib/foo.so</native-library>

Table A–16 <oc4j-connectors> Attributes

Name Description

schema-major-version Values: String

Default: No default

The major version number of the oc4j-connectors.xml XSD.
If you create oc4j-connectors.xml manually, set this
attribute to 10 for use with the OC4J 10.1.3 implementation.

schema-minor-version Values: String

Default: No default

The minor version number of the oc4j-connectors.xml
XSD. If you create oc4j-connectors.xml manually, set this
attribute to 0 for use with the OC4J 10.1.3 implementation.

Note: These attributes do not appear directly in the XSD for
ocj4-connectors.xml. They are according to the
attributeGroup specification in the top-level OC4J XSD.

Elements and Attributes of oc4j-connectors.xml

OC4J Resource Adapter Configuration Files A-23

<security-permission>

Parent element: <connector>

Child elements: <security-permission-spec>

Required? Optional; zero or more

Each <security-permission> element corresponds to a
<security-permission> element in the ra.xml file, and gives the deployer the
ability to grant or deny the list of permissions requested by the resource adapter. (See
"Security Permissions" on page 1-7 for related information.)

<security-permission-spec>

Parent element: <security-permission>

Child elements: None

Required? Required within <security-permission>; one only

The value of this element (which may contain multiple lines of instructions) specifies a
security permission based on security policy file syntax. Refer to the following URL for
the Sun Microsystems implementation of the security permission specification:

http://java.sun.com/j2se/1.4.2/docs/guide/security/PolicyFiles.html#FileSyntax

See version 1.5 of the J2EE Connector Architecture Specification for additional
information and examples.

The <security-permission-spec> element has no attributes.

<start-order>

Parent element: <connector>

Child elements: None

Required? Optional; zero or one

The values of any <start-order> elements in an oc4j-connectors.xml file
determine the order in which resource adapters are loaded and started by OC4J within
the application. In the case of the oc4j-connectors.xml file for the OC4J default
application, this is the order in which standalone resource adapters are loaded and
started.

<start-order>value</start-order>

Table A–17 <security-permission> Attributes

Name Description

enabled Values: Boolean

Default: false

Set this to "true" to enable the security specification indicated in
the <security-permission-spec> subelement.

Sample oc4j-connectors.xml

A-24 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

There can be one (optional) element, under the associated <connector> element, for
each resource adapter. The value must be a positive integer. Resource adapters with
lower values are loaded and started first. If no value is specified for a resource
adapter, or if the value specified is not a positive integer, OC4J is free to load the
resource adapter according to any sequence.

See "Understanding the Resource Adapter Startup Process" on page 2-12 for related
information.

The <start-order> element has no attributes.

Sample oc4j-connectors.xml
This section shows a sample oc4j-connectors.xml file that lists a data source
resource adapter and a JMS resource adapter, including configuration of administered
objects for topics and queues for the JMS adapter.

<?xml version="1.0" standalone='yes'?>

<oc4j-connectors xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://xmlns.oracle.com/oracleas/schema/oc4j-connectors-10_0.xsd"
 schema-major-version="10" schema-minor-version="0" >
 <connector name="datasources" path="datasources.rar" location="datasources" >
 </connector>
 <connector name="OracleASjms" path="OracleASjms.rar" location="OracleASjms" >
 <config-property name="lookupMethod" value="resourceProvider"/>
 <config-property name="resourceProviderName" value="oc4jjms"/>
 <adminobject-config location="OracleASjms/MyQueue1">
 <adminobject-class>
 oracle.j2ee.ra.jms.generic.AdminObjectQueueImpl
 </adminobject-class>
 <config-property name="jndiName" value="jms/demoQueue"/>
 <config-property name="resourceProviderName" value="oc4jjms"/>
 </adminobject-config>
 <adminobject-config location="OracleASjms/MyTopic1">
 <adminobject-class>
 oracle.j2ee.ra.jms.generic.AdminObjectTopicImpl
 </adminobject-class>
 <config-property name="jndiName" value="jms/demoTopic"/>
 <config-property name="resourceProviderName" value="oc4jjms"/>
 </adminobject-config>
 </connector>
</oc4j-connectors>

Third Party Licenses B-1

B
Third Party Licenses

This appendix includes the Third Party License for all the third party products
included with Oracle Application Server.

ANTLR
This program contains third-party code from ANTLR. Under the terms of the Apache
license, Oracle is required to provide the following notices. Note, however, that the
Oracle program license that accompanied this product determines your right to use
the Oracle program, including the ANTLR software, and the terms contained in the
following notices do not change those rights.

The ANTLR License
Software License

We reserve no legal rights to the ANTLR--it is fully in the public domain.
An individual or company may do whatever they wish with source code distributed
with ANTLR or the code generated by ANTLR, including the incorporation of
ANTLR, or its output, into commerical software.

We encourage users to develop software with ANTLR. However, we do ask that
credit is given to us for developing ANTLR. By "credit", we mean that if you
use ANTLR or incorporate any source code into one of your programs (commercial
product, research project, or otherwise) that you acknowledge this fact
somewhere in the documentation, research report, etc... If you like ANTLR and
have developed a nice tool with the output, please mention that you developed
it using ANTLR. In addition, we ask that the headers remain intact in our
source code. As long as these guidelines are kept, we expect to continue
enhancing this system and expect to make other tools available as they are
completed.

Apache
This program contains third-party code from the Apache Software Foundation
("Apache"). Under the terms of the Apache license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the Apache
software, and the terms contained in the following notices do not change those rights.

The Apache license agreements apply to the following included Apache components:

■ Apache HTTP Server

■ Apache JServ

Apache

B-2 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

■ mod_jserv

■ Regular Expression package version 1.3

■ Apache Expression Language packaged in commons-el.jar

■ mod_mm 1.1.3

■ Apache XML Signature and Apache XML Encryption v. 1.4 for Java and 1.0 for
C++

■ log4j 1.1.1

■ BCEL v. 5

■ XML-RPC v. 1.1

■ Batik v. 1.5.1

■ ANT 1.6.2 and 1.6.5

■ Crimson v. 1.1.3

■ ant.jar

■ bcel.jar

■ soap.jar

■ Jakarta CLI 1.0

■ jakarta-regexp-1.3.jar

■ JSP Standard Tag Library 1.0.6 and 1.1

■ Struts 1.1

■ Velocity 1.3

■ svnClientAdapter

■ commons-logging.jar

■ wsif.jar

■ commons-el.jar

■ standard.jar

■ jstl.jar

The Apache Software License

License for Apache Web Server 1.3.29
/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 2000-2002 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *

Apache

Third Party Licenses B-3

 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 * Portions of this software are based upon public domain software
 * originally written at the National Center for Supercomputing
Applications,
 * University of Illinois, Urbana-Champaign.

License for Apache Web Server 2.0
Copyright (c) 1999-2004, The Apache Software Foundation
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at ://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 CONDITIONS OF ANY KIND, either express or implied. See the License for the
 specific language governing permissions and limitations under the License.
Copyright (c) 1999-2004, The Apache Software Foundation
 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

Apache

B-4 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and

Apache

Third Party Licenses B-5

 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and

Apache SOAP

B-6 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

Apache SOAP
This program contains third-party code from the Apache Software Foundation
("Apache"). Under the terms of the Apache license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the Apache
software, and the terms contained in the following notices do not change those rights.

Apache SOAP

Third Party Licenses B-7

Notwithstanding anything to the contrary in the Oracle program license, the Apache
software is provided by Oracle "AS IS" and without warranty or support of any kind
from Oracle or Apache.

Apache SOAP License
Apache SOAP license 2.3.1

Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,

Apache SOAP

B-8 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and

Apache SOAP

Third Party Licenses B-9

 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

Apache SOAP

B-10 Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Index-1

Index

Symbols
<adminobject-class> element

(oc4j-connectors.xml), A-19
<adminobject-config> element

(oc4j-connectors.xml), A-19
<config-property> element (oc4j-ra.xml), A-5
<config-property> element, subelement of

<adminobject-config>
(oc4j-connectors.xml), A-20

<config-property> element, subelement of
<connector> (oc4j-connectors.xml), A-20

<connectionfactory-interface> element
(oc4j-ra.xml), A-6

<connection-pool> element (oc4j-ra.xml), A-5
<connection-pooling> element (oc4j-ra.xml), A-5
<connector> element (oc4j-connectors.xml), A-21
<connector-factory> element (oc4j-ra.xml), A-7
<default-mapping> element (oc4j-ra.xml), A-7
<file> element (oc4j-ra.xml), A-8
<impl-class> element (oc4j-ra.xml), A-8
<initiating-user> element (oc4j-ra.xml), A-8
<jaas-application-name> element (oc4j-ra.xml), A-9
<jaas-module> element (oc4j-ra.xml), A-9
<log> element (oc4j-ra.xml), A-10
<native-library> element

(oc4j-connectors.xml), A-21
<oc4j-connector-factories> element

(oc4j-ra.xml), A-10
<oc4j-connectors> element

(oc4j-connectors.xml), A-22
<password> element (oc4j-ra.xml), A-11
<password-credential> element (oc4j-ra.xml), A-11
<principal-mapping-entries> element

(oc4j-ra.xml), A-12
<principal-mapping-entry> element

(oc4j-ra.xml), A-12
<principal-mapping-interface> element

(oc4j-ra.xml), A-12
<property> element, subelement of

<connection-pool> (oc4j-ra.xml), A-13
<property> element, subelement of

<connection-pooling> (oc4j-ra.xml), A-13
<property> element, subelement of

<principal-mapping-interface>
(oc4j-ra.xml), A-14

<res-password> element, subelement of
<default-mapping> (oc4j-ra.xml), A-14

<res-password> element, subelement of
<principal-mapping-entry> (oc4j-ra.xml), A-15

<res-user> element, subelement of
<default-mapping> (oc4j-ra.xml), A-15

<res-user> element, subelement of
<principal-mapping-entry> (oc4j-ra.xml), A-15

<security-config> element (oc4j-ra.xml), A-16
<security-permission> element

(oc4j-connectors.xml), A-23
<security-permission-spec> element

(oc4j-connectors.xml), A-23
<start-order> element (oc4j-connectors.xml), A-23
<username> element (oc4j-ra.xml), A-17
<xa-recovery-config> element (oc4j-ra.xml), A-17

A
administered objects

creating and binding, 7-4
deployment configuration, 7-3
editing, 7-5
example--interaction spec, 7-2
example--JMS topics and queues, 7-2
introduction, 7-1
JNDI lookup, 7-6

administration
JSR-77 support, 2-1
MBean browser, 2-2
MBeans administration in OC4J, 2-9
MBeans, definition, 2-1
OC4J resource adapter MBeans, 2-10
overview, OC4J, 2-1

adminobject-class element
(oc4j-connectors.xml), A-19

adminobject-config element
(oc4j-connectors.xml), A-19

Application Server Control
console, introduction, 2-2
resource adapter pages, summary, 2-3

associateConnection method, 4-17
audiences for this document, 1-13

Index-2

B
bean-managed transaction demarcation, 4-2
binding

administered object, 7-4
connection factory, 3-2

bootstrap mechanism (startup), 2-11

C
CCI

interaction spec, 7-2
interactions, 1-8
introduction, 1-8

common client interface--see CCI
communication scenarios, inbound and

outbound, 1-4
config-property element (oc4j-ra.xml), A-5
config-property element, subelement of

<adminobject-config>
(oc4j-connectors.xml), A-20

config-property element, subelement of <connector>
(oc4j-connectors.xml), A-20

configuration files
introduction, 1-9
oc4j-connectors.xml elements and

attributes, A-19
oc4j-connectors.xml hierarchy, A-18
oc4j-connectors.xml overview, A-3
oc4j-connectors.xml sample, A-24
oc4j-ra.xml elements and attributes, A-4
oc4j-ra.xml hierarchy, A-4
oc4j-ra.xml overview, A-3
oc4j-ra.xml sample, A-17
overview, A-1
ra.xml overview, A-2

connection association, 4-17
connection association scenarios, 4-19

connection obtained outside a transaction, 4-19
shared handles in different contexts, 4-20
transactional context switch, 4-19

connection factories
binding, 3-2
defined, 3-1
editing properties, 3-4
JNDI lookup, 3-14
logging, 3-12
metrics for performance, 3-17

connection handle, 4-17
connection handle wrapping, 4-18
connection management

connection factories, 3-1
connection pools, configuration, 3-4
connection spec, 3-14
connections, obtaining, 3-14
contract, introduction, 1-4
contract, summary, 3-14
EIS connections, obtaining, 3-1
JNDI lookup, connection factory, 3-14
managed connections, managed connection

factories, 3-15

metrics for resource adapter connections, 3-15
shared connection pools, 3-10

connection pools
configuring the pool, 3-6
enabling, 3-5
expired/invalid connections, 3-8
initial capacity, 3-6
introduction, configuration, 3-4
metrics for configuration, 3-17
metrics for performance, 3-18
metrics, troubleshooting, 3-20
metrics, viewing, 3-16
minimum/maximum connections, 3-6
runtime configuration, 3-10
scheme, 3-6
shared pool, create and configure, 3-10
shared pool, edit and reconfigure, 3-11
shared pool, using, 3-12

connection sharing, 4-12
connection spec, 3-14
connection wrapper classes, 4-19
connection wrapping, 4-17
ConnectionEventListener interface, 4-7
connectionfactory-interface element

(oc4j-ra.xml), A-6
connection-pool element (oc4j-ra.xml), A-5
connection-pooling element (oc4j-ra.xml), A-5
connector element (oc4j-connectors.xml), A-21
connector-factory element (oc4j-ra.xml), A-7
container-managed transaction demarcation, 4-2
contracts, 1-3

D
debug flags

debug for work management thread pools, 5-4
jca.connection.debug, 3-20

default-mapping element (oc4j-ra.xml), A-7
deployment

deployment plan, 2-1
deployment plan editor, 2-2
JSR-88 support, 2-1
of administered objects, 7-3
of resource adapters, 1-9

E
EIS

connections, obtaining, 3-1
definition, 1-2

enterprise information system--see EIS

F
file element (oc4j-ra.xml), A-8

G
global transaction management

introduction, 4-4
setup and cleanup, transactions, 4-11

Index-3

I
impl-class element (oc4j-ra.xml), A-8
inbound communication

configuring RA as listener, 6-3
introduction, 1-4
through resource adapters, 6-1

initiating-user element (oc4j-ra.xml), A-8
interactions (through CCI)

interaction spec, 7-2
introduction, 1-8

interface libraries, CCI and SPI, 1-8

J
jaas-application-name element (oc4j-ra.xml), A-9
jaas-module element (oc4j-ra.xml), A-9
Java Message Service--see JMS
Java Transaction API--see JTA
JMS

Oracle generic JMS resource adapter, 1-12
Oracle JMS support, introduction, 1-12
topics and queues, 7-2

JSR-77 support, 2-1
JSR-88 support, 2-1
JTA, transaction management, relationship, 4-2

L
last-resource commit optimization (transaction

management), 4-9
lazy connection association optimization, 4-18
lazy enlistment of connections (transaction

management), 4-8
lazy transaction enlistment optimization, 4-18
libraries, native, configuration, 2-8
lifecycle management

contract, introduction, 1-4
key APIs, 2-11
resource adapter startup and shutdown, 2-11

listener, configuring resource adapter, 6-3
local transaction management

introduction, 4-3
setup and cleanup, transactions, 4-12

LocalTransaction interface, 4-5
LocalTransaction level, 4-4
log element (oc4j-ra.xml), A-10
logging, connection factories, 3-12

M
managed connections, managed connection

factories, 3-15
ManagedConnection interface, 4-17
MBeans

administration in OC4J, 2-9
definition, 2-1
MBean browser, 2-2
OC4J resource adapter MBeans, 2-10

MDB
activation, 6-10

configuring MDB, associating RA, 6-9
deactivation, 6-14
error conditions for deployment,

configuration, 6-10
exceptions from MDB listener methods, 6-15
using RA for EIS communication to MDB, 6-1

message inflow
contract, definition, 6-2
contract, introduction, 1-4

message-driven bean--see MDB
messaging

concurrent message delivery, 6-15
configuring RA as listener, 6-3
failure during transacted message delivery, 6-16
message delivery, 6-11
message inflow, 1-4
message provider pluggability, 1-6
message-listening lifecycle, 6-10
resource adapter as message listener, 6-2
transactions in message delivery, 6-8
using RA for EIS communication to MDB, 6-1

metrics
for resource adapter connections, 3-15
troubleshooting with connection pool

metrics, 3-20
work management thread pool, 5-4

N
native libraries, configuration, 2-8
native-library element (oc4j-connectors.xml), A-21
NoTransaction level, 4-4

O
oc4j-connector-factories element (oc4j-ra.xml), A-10
oc4j-connectors element (oc4j-connectors.xml), A-22
oc4j-connectors.xml file

element and attribute descriptions, A-19
hierarchy, A-18
overview, A-3
sample, A-24
viewing <connector> element in Application

Server Control, 2-6
oc4j-ra.xml file

element and attribute descriptions, A-4
hierarchy, A-4
overview, A-3
sample, A-17
viewing in Application Server Control, 2-6

Oracle generic JMS resource adapter, 1-12
Oracle resource adapters, 1-13
outbound communication, 1-4

P
packaging of resource adapters, 1-9
password element (oc4j-ra.xml), A-11
password-credential element (oc4j-ra.xml), A-11
principal-mapping-entries element

(oc4j-ra.xml), A-12

Index-4

principal-mapping-entry element (oc4j-ra.xml), A-12
principal-mapping-interface element

(oc4j-ra.xml), A-12
property element, subelement of <connection-pool>

(oc4j-ra.xml), A-13
property element, subelement of

<connection-pooling> (oc4j-ra.xml), A-13
property element, subelement of

<principal-mapping-interface>
(oc4j-ra.xml), A-14

property settings, RA JavaBean, 2-7

Q
queues (JMS), 7-2

R
ra.xml file

overview, A-2
viewing in Application Server Control, 2-6

resource adapter
communication scenarios, 1-4
configuration files, 1-9
definition, 1-2
deployment, 1-9
for inbound communication, 6-1
for message listener, 6-2
JavaBean properties, 2-7
native libraries, 2-8
Oracle generic JMS resource adapter, 1-12
Oracle resource adapters, 1-13
packaging, 1-9
startup and shutdown, 2-11
third-party resource adapters, 1-13

res-password element, subelement of
<default-mapping> (oc4j-ra.xml), A-14

res-password element, subelement of
<principal-mapping-entry> (oc4j-ral.xml), A-15

res-user element, subelement of <default-mapping>
(oc4j-ral.xml), A-15

res-user element, subelement of
<principal-mapping-entry> (oc4j-ral.xml), A-15

roles addressed in J2CA specification, 1-13

S
security management

contract, introduction, 1-4
contract, summary, 1-7
security features, 1-6
security permissions, 1-7

security-config element (oc4j-ra.xml), A-16
security-permission element

(oc4j-connectors.xml), A-23
security-permission-spec element

(oc4j-connectors.xml), A-23
service provider interface--see SPI
shutdown

manual shutdown, 2-14
shutdown process, resource adapters, 2-13

SPI, 1-8
start-order element (oc4j-connectors.xml), A-23
startup

manual restart, 2-14
startup process, resource adapters, 2-12

system contracts, 1-3

T
third-party resource adapters, 1-13
thread pool, work management

configuring, 5-3
metrics, 5-4
overview, 5-3

topics (JMS), 7-2
transaction enlistment, 4-18
transaction inflow

contract, definition, 6-3
contract, introduction, 1-4
relationship with work management, 6-3

transaction management
bean-managed demarcation, 4-2
connection sharing, 4-12
container-managed demarcation, 4-2
contract, introduction, 1-4
EJB technology, relationship, 4-2
global transaction management, 4-4
illegal transaction demarcation, 4-10
interfaces, key, 4-5
introduction to transactions, management, 4-1
JTA technology, relationship, 4-2
last-resource commit optimization, 4-9
lazy enlistment of connections, 4-8
level, configuration, 4-4
local transaction management, 4-3
LocalTransaction level, 4-4
NoTransaction level, 4-4
setup and cleanup, transactions, 4-11
transaction recovery, 4-15
transaction support, required, 4-7
transactions, characteristics and scopes, 4-2
transactions, definition, 4-2
unsupported transaction scenarios, 4-10
XA recovery, configuring, 4-16
XA recovery, introduction, 4-15
XATransaction level, 4-4

TransactionManager interface, 4-6
transactions in message delivery, 6-8
troubleshooting J2CA connections with metrics, 3-20

U
username element (oc4j-ra.xml), A-17
UserTransaction interface, 4-6

W
work management

APIs, key, 5-1
contract, introduction, 1-4
contract, overview, 5-1

Index-5

debug flag for thread pools, 5-4
model, 5-1
relationship with transaction inflow, 6-3
thread pool, configuring, 5-3
thread pool, metrics, 5-4
thread pool, overview, 5-3

wrapper object, 4-18

X
XA recovery

configuring, 4-16
introduction, 4-15

xa-recovery-config element (oc4j-ra.xml), A-17
XAResource interface, 4-5
XATransaction level, 4-4
XML configuration files--see configuration files

Index-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	1 What to Know About Connector Architecture
	Introduction to the J2EE Connector Architecture
	What Is an Enterprise Information System?
	Connecting to an EIS: What Is a Resource Adapter?

	New Resource Adapter Support Features in This OC4J Release
	New J2EE Connector Architecture Version 1.5 Features
	Additional New OC4J Resource Adapter Features

	What Are the J2EE Connector Architecture System Contracts?
	What Are the Scenarios for Communication Through Resource Adapters?
	Outbound Versus Inbound Communication Through Resource Adapters
	Message Provider Pluggability Using the J2EE Connector Architecture

	What Are the Security Features of the J2EE Connector Architecture?
	Summary of the Security Contract
	Security Permissions

	What Are the Interface Libraries of the J2EE Connector Architecture?
	What Are the Packaging and Deployment Features?
	Deploying Resource Adapters
	Importing Standalone Resource Adapters
	Deploying Multiple Versions of a Standalone Resource Adapter

	Resource Adapters Provided with Oracle Application Server
	Introducing Oracle JMS Support and Generic JMS Resource Adapter
	Use of Third-Party Resource Adapters

	Roles and Target Audiences
	J2EE Connector Architecture Roles
	Primary and Secondary Audiences and Topics of Interest

	2 Overview: Administering Resource Adapters
	A Brief Overview of OC4J Administration
	OC4J Deployment and Configuration Features
	OC4J and Oracle Application Server Administration Tools

	Summary of Application Server Control Pages for Resource Adapters
	How to Get to the Resource Adapter Home Page
	Contents of the Resource Adapter Home Page
	Summary of Pages You Can Reach from the Resource Adapter Home Page

	General Resource Adapter Administration Features
	Setting Properties of the Resource Adapter JavaBean
	Configuring the Use of Resource Adapter Native Libraries

	Summary of Resource Adapter MBeans and Administration
	General Overview of OC4J MBean Administration
	Summary of OC4J Resource Adapter MBeans

	Resource Adapter Lifecycle: Startup and Shutdown
	Key APIs of the Lifecycle Management Model
	Understanding the Resource Adapter Startup Process
	Understanding the Resource Adapter Shutdown Process
	Manually Shutting Down or Restarting a Resource Adapter in OC4J

	3 Connection Management
	Introduction to How EIS Connections Are Obtained
	Binding and Configuring a Connection Factory: Basic Settings
	Create and Bind a Connection Factory
	Edit the Configuration Properties of an Existing Connection Factory

	Configuring Connection Pooling in OC4J
	Enable Connection Pooling for a Connection Factory
	Configure a Connection Pool
	Pooling Scheme, Minimum and Maximum Connections, Initial Capacity
	Checking for Expired or Invalid Connections
	OC4J Support for Runtime Configuration of Connection Pools

	Sharing Connection Pools
	Create and Configure a Shared Connection Pool
	Edit and Reconfigure a Shared Connection Pool
	Use a Shared Connection Pool

	Configuring OC4J Logging for Connection Factories
	Obtaining Resource Adapter Connections
	Summary of the Connection Management Contract
	Metrics for Resource Adapter Connections
	Viewing Resource Adapter Connection Pool Metrics
	Descriptions of Connection Pool Configuration Metrics
	Descriptions of Connection Factory Performance Metrics
	Descriptions of Connection Pool Performance Metrics
	Troubleshooting with Resource Adapter Connection Pool Metrics

	4 Transaction Management
	Introduction to Transactions and Transaction Management
	Transaction Characteristics and Scopes
	Relationship with Enterprise JavaBeans Technology
	Relationship with Java Transaction API Technology
	Local Transaction Management
	Global Transaction Management
	Resource Adapter Configuration for Level of Transaction Support

	Overview of Key Interfaces Used in Transaction Management
	Implemented by Resource Adapters: XAResource and LocalTransaction
	Implemented by Transaction Managers: UserTransaction and TransactionManager
	Implemented by OC4J: ConnectionEventListener Interface

	Transaction Support in the OC4J Connector Implementation
	Highlights of Required Transaction Support
	Highlights of Optional Transaction Support
	OC4J Support for Lazy Enlistment of Connections in a Transaction
	OC4J Support for Last-Resource-Commit Optimization
	Unsupported Transaction Scenarios
	OC4J Checking for Illegal Transaction Demarcation

	OC4J Configuration for Transaction Recovery

	OC4J Transaction Setup and Cleanup
	Global Transaction Setup and Cleanup
	Local Transaction Setup and Cleanup

	Understanding Connection Sharing in OC4J
	Conditions for Connection Sharing
	General Conditions for Connection Sharing
	Restriction on Connection Sharing for NoTransaction Support Level

	Connection Sharing Scenario

	Understanding and Configuring Transaction Recovery
	Understanding XA Recovery in OC4J
	Configuring XA Recovery in OC4J

	Understanding J2CA Connection Wrapping
	Connection Association
	Transaction Enlistment
	J2CA Connection Handle Wrapping
	Connection Association Scenarios
	Scenario 1: Enlistment of a Connection Obtained Outside a Transaction
	Scenario 2: Transactional Context Switch
	Scenario 3: Handles for a Shared Connection in Different Transactional Contexts

	5 Work Management
	Overview of the Work Management Contract
	Understanding the Need for the Work Management Contract
	Introducing the Work Management Model and Key APIs

	Using the OC4J Work Management Thread Pool
	Overview of the Work Management Thread Pool
	Configuring the Work Management Thread Pool
	Using Metrics for the Work Management Thread Pool

	6 Using RAs for Inbound Communication
	Concepts: Using Resource Adapters for Inbound Communication
	Introduction to Using Resource Adapters for Inbound Communication
	Background and Use Case for Resource Adapters as Message Listeners for MDBs

	Overview of Related Contracts for Inbound Communication
	Introduction to the Message Inflow Contract
	Introduction to Imported Transactions and the Transaction Inflow Contract
	Relationship Between Imported Transactions and the Work Management Contract

	Configuration and Deployment to Use an RA as a Listener for an MDB
	Understanding the Resource Adapter Configuration
	Understanding the MDB Configuration for Deployment
	Understanding Configuration for Use of Transactions in Message Delivery
	Configuring the MDB
	Error Conditions for Deployment and Configuration

	Understanding the Message Listening Lifecycle
	MDB Activation
	Message Delivery
	Message Endpoint Proxy Objects
	Message Delivery Semantics

	MDB Deactivation

	Special Conditions in Message Delivery
	Concurrent Message Delivery
	Exceptions from MDB Listener Methods
	Failure During Transacted Message Delivery
	Message Redelivery for Transactions Managed by OC4J
	Message Redelivery for Imported Transactions

	7 Managing Administered Objects
	Introduction to Administered Objects
	What Is an Administered Object?
	Example: What Is an Interaction Spec?
	Example: What Are JMS Topics and Queues?

	Understanding Deployment Configuration of Administered Objects
	Binding and Editing Administered Objects in OC4J
	Create and Bind an Administered Object
	View or Edit an Administered Object

	Looking Up Administered Objects

	A OC4J Resource Adapter Configuration Files
	Overview of Resource Adapter Configuration Files
	Standard ra.xml Configuration File
	Oracle oc4j-ra.xml Configuration File
	Oracle oc4j-connectors.xml Configuration File

	Hierarchy of oc4j-ra.xml
	Elements and Attributes of oc4j-ra.xml
	<config-property>
	<connection-pool>
	<connection-pooling>
	<connectionfactory-interface>
	<connector-factory>
	<default-mapping>
	<description>
	<description>
	<file>
	<impl-class>
	<initiating-user>
	<jaas-application-name>
	<jaas-module>
	<log>
	<oc4j-connector-factories>
	<password>
	<password-credential>
	<principal-mapping-entries>
	<principal-mapping-entry>
	<principal-mapping-interface>
	<property>
	<property>
	<property>
	<res-password>
	<res-password>
	<res-user>
	<res-user>
	<security-config>
	<use-connection-pool>
	<username>
	<xa-recovery-config>

	Sample oc4j-ra.xml
	Hierarchy of oc4j-connectors.xml
	Elements and Attributes of oc4j-connectors.xml
	<adminobject-class>
	<adminobject-config>
	<config-property>
	<config-property>
	<connector>
	<native-library>
	<oc4j-connectors>
	<security-permission>
	<security-permission-spec>
	<start-order>

	Sample oc4j-connectors.xml

	B Third Party Licenses
	ANTLR
	The ANTLR License

	Apache
	The Apache Software License

	Apache SOAP
	Apache SOAP License

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X

