
Oracle® Containers for J2EE
Security Guide

10g (10.1.3.1.0)

B28957-01

October 2006

Oracle Containers for J2EE Security Guide, 10g (10.1.3.1.0)

B28957-01

Copyright © 2003, 2006, Oracle. All rights reserved.

Primary Author: Brian Wright

Contributing Author: Elizabeth Hanes Perry

Contributor: Ganesh Kirti, Raymond Ng, Rachel Chan, Nithya Muralidharan, Kumar Valendhar,
Moushmi Banerjee, Dheeraj Goswami, Sam Zhou, Srikant Tirumalai, Sirish Vepa, Vineet Garg, Bill Bathurst,
Debu Panda, Steve Button, Tom Snyder, Jeff Trent, Bob Nettleton, Vinay Shukla, Alex Kosowski, Rajbir
Chahal, Michael Hwa, Jayanthi Kulkarni, Kavita Tippana, Helen Zhao, Sandeep Bangera, Cania Lee Chung,
Deepika Damojipurapu, Lakshmi Thiyagarajan, Soumya Aithal, Serouj Ourishian, Phil Varner, Chaya
Ramanujam, Xiaopeng Wu, Jyotsna Laxminarayanan, Lelia Yin, Raghav Srinivisan, Sam Chou, Bhupindra
Singh, Ashish Kolli, Frank Nimphius, Dan Hynes, Steve Button, Viresh Garg, Alfred Franci, Peter LaQuerre

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xxiii

Audience... xxiii
Documentation Accessibility ... xxiii
Related Documentation.. xxiv
Conventions ... xxvi

What’s New ... xxvii

Changes in Release 10.1.3.1... xxvii
Changes in Release 10.1.3.0.0... xxviii

1 Basic Security Concepts

Application-Level Security... 1-1
About Authentication.. 1-1
About Authorization ... 1-2

Access Control Lists and the Capability Model of Access Control 1-2
Role-Based Access Control .. 1-3

Transport-Level Security ... 1-3
Secure Sockets Layer and HTTPS .. 1-4
SSL Authentication .. 1-4
X.509 Certificates .. 1-4
Key Encryption and Exchange ... 1-5

2 Java Platform Security

J2EE Security Model .. 2-1
Web Application Authentication and Authorization ... 2-1

Web Application Standard Authentication Methods.. 2-2
Web Application URL-Based Authorization .. 2-2
Run-As Mode and Propagated Identities in Web Applications .. 2-3
Related Web Application APIs ... 2-4

Enterprise JavaBeans Authentication and Authorization.. 2-4
EJB Authentication.. 2-5
EJB Method-Based Authorization .. 2-5
Run-As Mode and Propagated Identities in EJB Applications .. 2-6
Related EJB APIs ... 2-6

Identity Propagation.. 2-7

iv

Java 2 Security Model .. 2-7
Code-Based Security .. 2-8
Security Permissions.. 2-9
Protection Domains.. 2-9
Java 2 Authorization: Java 2 Security Policies .. 2-10
Java 2 Authorization: Security Managers and Access Controllers .. 2-11

Java Authentication and Authorization Service.. 2-12
Principals and Subjects... 2-12
JAAS Authentication: Login Modules ... 2-13

About Login Modules ... 2-13
Stacking Login Modules ... 2-14

JAAS Authorization: JAAS Security Policies .. 2-15
JAAS Authorization: Subject Methods doAs() and doAsPrivileged() 2-15

Security Considerations during Development.. 2-17
Summary: Comparing Security Models for J2EE, Java 2, and JAAS 2-17
Steps to Develop a Secure J2EE Application... 2-18

3 Overview of OC4J Security

Introducing the OracleAS JAAS Provider and Security Providers .. 3-1
Overview of the OracleAS JAAS Provider ... 3-2
Summary of JAAS Framework Features... 3-2
Security Realms in the OracleAS JAAS Provider .. 3-3
Supported Security Providers .. 3-3

Introducing Authentication Features in the OC4J Environment .. 3-5
Supported Web Application Authentication Methods... 3-5
Overview of OC4J Login Modules .. 3-6
Overview of Oracle Application Server Single Sign-On Alternatives 3-6
JAZNUserManager Delegation (File-Based Provider) ... 3-7

Introducing Authorization Features in the OC4J Environment.. 3-7
Overview of Security Role Mapping.. 3-8
Overview of General-Use Identity Management Frameworks and APIs 3-8

4 Overview of Security Administration

General OC4J Deployment and Configuration Features ... 4-1
Tools for Oracle Application Server and OracleAS JAAS Provider... 4-2

Overview of Oracle Enterprise Manager 10g Application Server Control 4-2
Overview of the OracleAS JAAS Provider Admintool... 4-3
Overview of Oracle Identity Management and Oracle Internet Directory Tools..................... 4-4

Overview of Delegated Administration Services... 4-4
Overview of Oracle Directory Manager .. 4-4

JMX and MBeans Administration... 4-5
Overview of Configuration Files and Key Elements .. 4-5

The orion-application.xml File (<jazn> and <jazn-web-app> Elements) 4-6
The system-application.xml File .. 4-7
The system-jazn-data.xml File.. 4-7
Application-Specific jazn-data.xml File (Optional)... 4-8
The jazn.xml File .. 4-9

v

OC4J System Application .. 4-10
Summary of OC4J Accounts.. 4-11

Predefined Accounts... 4-11
Activation of the oc4jadmin Account (Standalone OC4J) ... 4-12
Creating and Configuring a New Administrator Account... 4-13

Creating a New Administrator Account .. 4-13
Configuring a New Administrator Account for the System Application 4-15

Configuring an Anonymous User .. 4-15
Summary of Configuration Repositories and Security Management Tools.............................. 4-15

5 Authorization in OC4J

Java 2 Security and Code-Based Policy Management ... 5-1
Specifying a Java 2 Security Manager and Policy File .. 5-1
Using PrintingSecurityManager to Determine Required Java 2 Permissions........................... 5-3
Creating or Updating a Java 2 Policy File... 5-3

Authorization APIs, JAAS Mode, and JACC in the OC4J Environment....................................... 5-4
JAAS Authorization and OracleAS JAAS Provider JAAS Mode .. 5-4

Introduction to JAAS Mode... 5-5
OracleAS JAAS Provider Realm and Policy APIs .. 5-6
OracleAS JAAS Provider APIs for Granting or Revoking Permissions.............................. 5-7
APIs for Checking Permissions... 5-9

Implementation of Java Authorization Contract for Containers ... 5-11
OracleAS JAAS Provider Policy Management .. 5-12

Granting Permissions through the OracleAS JAAS Provider Admintool 5-12
Using OracleAS JAAS Provider Policy Management APIs .. 5-13
OracleAS JAAS Provider Policy Configuration.. 5-14

Policy Repository Setting in jazn.xml ... 5-14
Policy Configuration in system-jazn-data.xml .. 5-15
Policy Configuration in Oracle Internet Directory.. 5-15

Specification of the Oracle Policy Provider ... 5-16
Authorization Coding and Configuration.. 5-16

Using J2EE Authorization APIs .. 5-16
Obtaining a Subject ... 5-17
Using the checkPermission() Method .. 5-17
Configuring and Using JAAS Mode... 5-18
Enabling the Java Authorization Contract for Containers.. 5-19

System Property to Enable JACC Features .. 5-19
System Properties to Specify the JACC Provider .. 5-20

Authorization Strategies .. 5-20
Considering J2EE Security ... 5-20
Considering Java 2 Security... 5-21
Considering JAAS Security.. 5-22

6 General Tasks for OC4J Security

Tasks for Password Management.. 6-1
Using Password Indirection ... 6-1

vi

Specifying a Password Manager in system-application.xml ... 6-2
Password Obfuscation in OC4J Configuration Files... 6-3

Using Security Realms in OC4J... 6-3
Default Realm with the File-Based Provider or Oracle Identity Management 6-4
Evaluation of Default Realm for File-Based Provider, Oracle Identity Management.............. 6-4
Using the Default Realm ... 6-5
Using a Nondefault Realm ... 6-5
Using Multiple Realms.. 6-6
Omitting the Realm Name When Retrieving an Authenticated Principal 6-6

Deployment Tasks for Security ... 6-7
Overview of Deployment Considerations.. 6-7
Deploying an Application... 6-8

Deploying an Application through Application Server Control ... 6-8
Specifying a Security Provider ... 6-9

Considering the File-Based Provider Versus Oracle Identity Management 6-9
Specifying the Security Provider through Application Server Control 6-9

Mapping Security Roles ... 6-10
Application Role Definitions and References .. 6-10
Specifying Security Role Mapping through Application Server Control........................ 6-11
Mapping J2EE Roles to Deployment Roles in OC4J Configuration Files 6-12
Using the OC4J PUBLIC Role to Allow General Access by Authenticated Users 6-12

Post-Deployment Tasks for Security ... 6-13
Navigating to the Security Provider Page for Your Application ... 6-13

Tasks to Share a Library ... 6-14
Loading the Library as an OC4J Shared Library .. 6-14
Importing the Library into Your Application ... 6-15

7 File-Based Security Provider

Tools for File-Based Provider Policy and Realm Management ... 7-2
Configuring the File-Based Provider in Application Server Control .. 7-2

Configuring the File-Based Provider during Application Deployment 7-3
Changing to the File-Based Provider after Deployment .. 7-3
Managing Application Realms through Application Server Control .. 7-4

Search for a Realm .. 7-4
Create a Realm... 7-4
Delete a Realm... 7-5

Managing Application Users through Application Server Control ... 7-5
Search for a User ... 7-5
Create a User.. 7-5
Delete a User.. 7-6
Edit a User.. 7-6

Managing Roles through Application Server Control.. 7-7
Search for a Role.. 7-7
Create a Role .. 7-7
Delete a Role .. 7-8
Edit a Role .. 7-8

Administering Instance-Level Security through Application Server Control 7-8

vii

File-Based Provider Settings in OC4J Configuration Files .. 7-9
Settings in the <jazn> Element for the File-Based Provider .. 7-9

Scenarios for <jazn> Settings in orion-application.xml.. 7-10
Configuration to Automatically Create an Application-Specific jazn-data.xml File 7-11
Supplying an Application-Specific jazn-data.xml File ... 7-11

Realm Configuration in the Repository File.. 7-11
Policy Configuration in the Repository File.. 7-12
Predefined OC4J Accounts in system-jazn-data.xml ... 7-12

OracleAS JAAS Provider Migration Tool ... 7-13
Overview of the Migration Tool ... 7-13
Migration Tool Command Syntax .. 7-14
Migration Tool APIs ... 7-15

Migrating Principals from the principals.xml File ... 7-16
Using the File-Based Provider Across an OC4J Group .. 7-17

OC4J Basic Group Features.. 7-17
Cluster MBean Browser Features and the J2EEServerGroup MBean...................................... 7-18

8 Oracle Identity Management

Initial Considerations for OC4J Support of Oracle Identity Management 8-1
Overview of Oracle Identity Management Key Components... 8-2

Overview of Oracle Internet Directory ... 8-2
About Distinguished Names .. 8-3
Overview of Oracle Single Sign-On .. 8-3
SSO-Enabled J2EE Environment: Typical Scenario... 8-4

Prerequisite: Oracle Application Server Infrastructure.. 8-5
Steps to Use the Oracle Identity Management Security Provider .. 8-5

Associate Oracle Internet Directory with OC4J ... 8-5
Associating Oracle Internet Directory with OC4J .. 8-6
Changing the Oracle Internet Directory Association .. 8-7
Required Accounts Created in Oracle Internet Directory... 8-7
Oracle Internet Directory Association in jazn.xml... 8-8
Considering Multiple OC4J Instances when Associating Oracle Internet Directory........ 8-9

Configure SSO (Optional) ... 8-9
Run the SSO Registration Tool... 8-10
Transfer the osso.conf File to the OC4J Instance ... 8-11
Run the osso1013 Script .. 8-11
Synchronization of OracleAS JAAS Provider User Context with Servlet Sessions........ 8-11
Restart the Oracle HTTP Server and OC4J Instances ... 8-12

Configure Oracle Identity Management as the Security Provider .. 8-12
Specifying Oracle Identity Management during Deployment.. 8-12
Changing to Oracle Identity Management after Deployment .. 8-13

Settings for Authentication Method with Oracle Identity Management................................... 8-14
OC4J Configuration for Oracle Single Sign-On Authentication... 8-14
Using Digest Authentication with Oracle Internet Directory... 8-15

Realm Management for the LDAP-Based Provider.. 8-15
Overview of OracleAS JAAS Provider Realms for Oracle Identity Management................. 8-16

Realm Hierarchy for the OracleAS JAAS Provider... 8-16

viii

Relation of JAAS Provider Realms to Oracle Internet Directory Realms 8-17
Access Control Lists and OracleAS JAAS Provider Directory Entries............................. 8-18

Realm Management for Oracle Identity Management .. 8-18
Managing Realms in Oracle Internet Directory... 8-18
Changing Your Default Realm... 8-18
Using Multiple Realms and Oracle Single Sign-On with OC4J .. 8-19

LDAP-Based Provider Settings in OC4J Configuration Files .. 8-20
Configuring LDAP User and SSL Properties .. 8-20
Configuring LDAP Connection Properties ... 8-21
Configuring LDAP Caching Properties ... 8-22

Tips and Troubleshooting for the LDAP-Based Provider ... 8-24
Checking Configuration (JAZN-LDAP) .. 8-24
Using ldapsearch to Retrieve Realm Names from Oracle Internet Directory........................ 8-25
Avoiding OC4J Restart for Oracle Internet Directory Changes to Take Effect 8-25
Accessing the Oracle Single Sign-On Administration Pages.. 8-25

9 Login Modules

Initial Login Module Considerations... 9-1
Specification of the Oracle Login Configuration Provider .. 9-1
Login Module Notes and Tips.. 9-2

Login Modules Supplied with OC4J .. 9-3
RealmLoginModule ... 9-4
DBTableOraDataSourceLoginModule .. 9-5

DBTableOraDataSourceLoginModule Options.. 9-6
Configuring DBTableOraDataSourceLoginModule in Application Server Control......... 9-8
Configuring DBTableOraDataSourceLoginModule in the Admintool............................... 9-8
Sample DBTableOraDataSourceLoginModule Settings in system-jazn-data.xml 9-8
Principals for DBTableOraDataSourceLoginModule .. 9-9
Implementing DBLoginModuleEncodingInterface for Password Encryption............... 9-10
Previous Functionality: DataSourceUserManager (Deprecated)...................................... 9-11

Introducing Custom JAAS Login Modules.. 9-12
Summary of Choices for Packaging Login Modules.. 9-13

Packaging Login Modules within the J2EE Application ... 9-14
Providing Login Modules as Optional Packages ... 9-14
Providing Login Modules as OC4J Shared Libraries... 9-15

Configuring the Custom Security Provider in Application Server Control 9-15
Specifying and Configuring a Custom Security Provider during Deployment 9-15

Editing a Custom Login Module Configuration during Deployment 9-16
Adding a Custom Login Module during Deployment .. 9-17

Changing to a Custom Security Provider after Deployment.. 9-18
Adding a Login Module to the Custom Security Provider... 9-18
Updating a Login Module in the Custom Security Provider ... 9-19
Deleting a Login Module in the Custom Security Provider ... 9-19

Using Admintool to Configure Login Modules and Grant RMI Permission 9-19
Configuring Login Modules through the Admintool.. 9-20
Granting RMI Permission through the Admintool .. 9-20

Summary of Login Module Configuration in OC4J Configuration Files 9-21

ix

Login Module Settings in system-jazn-data.xml .. 9-21
Login Modules Settings in orion-application.xml.. 9-22

Settings in <jazn-loginconfig> in orion-application.xml.. 9-22
Settings in <jazn> for Login Modules... 9-23
Settings in <namespace-access> for Access to JNDI Context.. 9-23

Login Module Settings in oc4j-ra.xml (J2EE Connector Architecture).................................... 9-24
Step by Step: Integrating a Custom Login Module with OC4J.. 9-24

Develop the Login Module .. 9-24
Configure and Package the Login Module.. 9-25

Configuration to Enable Login Module Usage.. 9-26
Configuration of the Login Module .. 9-26

Configure Namespace Access and Role Mappings (as applicable)... 9-26
Deploy the Login Module.. 9-27
Grant RMI Permission (as applicable) ... 9-27
Set JNDI Properties (as applicable)... 9-27

Custom Login Module Example... 9-28
SampleLoginModule Code.. 9-28
SamplePrincipal Code .. 9-33

10 External LDAP Security Providers

Overview of External LDAP Provider Configuration and Administration............................... 10-2
Configuring External LDAP Providers in Application Server Control 10-3

Specifying and Configuring an External LDAP Provider during Deployment..................... 10-3
Changing to an External LDAP Provider after Deployment.. 10-5

External LDAP Provider Settings in system-jazn-data.xml .. 10-6
Creating Necessary Accounts and Granting Necessary Permissions.. 10-8

Creating the Administrative User and Roles and Granting RMI Permission........................ 10-9
Granting RMI Permission to an LDAP Principal ... 10-9
Granting Additional Permissions to External LDAP Principals .. 10-10
Using JAAS Mode with External LDAP Providers .. 10-10

Sample Configuration for Sun Java System Directory Server ... 10-10
Sample LDIF Description... 10-11
Sample Entries in OC4J Configuration Files ... 10-11

Settings in system-jazn-data.xml for Sun Java System Directory Server....................... 10-11
Settings in orion-application.xml for an External LDAP Server..................................... 10-12

Using SSL with External LDAP Providers ... 10-12
Initial SSL Considerations for External LDAP Providers.. 10-13
Configuring OC4J to Use SSL with an External LDAP Provider... 10-13
Configuring the External LDAP Provider for SSL ... 10-13

11 Oracle Access Manager

Getting Started with Oracle Access Manager .. 11-2
Overview of Oracle Access Manager ... 11-2
Oracle Access Manager Prerequisites .. 11-4
Oracle Access Manager Architecture ... 11-5
Top-Level Summary of Configuration Stages for Oracle Access Manager 11-5

x

Running the Policy Manager... 11-6
Oracle Access Manager Concepts... 11-6

About Oracle Access Manager Resource Types ... 11-6
About Oracle Access Manager Authentication .. 11-6
About the Oracle Access Manager Single Sign-On Cookie .. 11-7
About Using HTTP Header Variables for Authentication.. 11-7

Configuring Oracle Access Manager... 11-8
Configure Oracle Access Manager Form-Based Authentication ... 11-8

Create a Login Form .. 11-8
Define Form-Based Authentication in Policy Manager ... 11-9
Configure the credential_mapping Plug-In for Form-Based Authentication 11-10
Configure the validate_password Plug-In for Form-Based Authentication 11-10

Configure Oracle Access Manager Basic Authentication.. 11-10
Define Basic Authentication in Policy Manager.. 11-11
Configure the credential_mapping Plug-In for Basic Authentication 11-11

Configure the Resource Type .. 11-12
Configure the Name and Operation of the Resource Type ... 11-12
Configure and Protect the URL of the Configured Resource Type................................ 11-12
Configure the Return Action Attributes... 11-13

Protect the Action URL... 11-13
Configuring OC4J with the Access Manager SDK ... 11-14

Create OC4J Instances as Needed... 11-14
Configure the Access Manager SDK to Each OC4J Instance .. 11-14
Configure the Access Manager SDK Library Path for Each OC4J Instance 11-15

Configuring opmn.xml for Oracle Access Manager ... 11-15
Creating Required Accounts in the LDAP Server .. 11-16
Configuring the Application... 11-17

Protect the Application URLs in web.xml ... 11-17
Settings for Application Deployment .. 11-17
Configure Oracle Access Manager SSO in orion-application.xml ... 11-17
Protect the Application URLs in Oracle Access Manager... 11-18
Configure the Oracle Access Manager Login Module... 11-18
Test the Application.. 11-21

Granting Permissions to Oracle Access Manager Principals.. 11-21
Granting RMI Permission to an Oracle Access Manager Principal 11-22
Granting Required Permissions to Additional Oracle Access Manager Principals 11-22
Confirming Configured Realm Names for Oracle Access Manager Principals................... 11-24

Considerations for Oracle Application Server SOA Applications.. 11-24
Configure Logout for Oracle Application Server SOA Applications.................................... 11-25
Troubleshooting Login to Oracle Application Server SOA Applications............................. 11-25

Oracle Access Manager Examples for J2EE Applications.. 11-25
Web Application Using HTTP Header Variables through Oracle Access Manager........... 11-26

Configure Name and Password in Policy Manager ... 11-26
Configure HTTP Header Variables for the Oracle Access Manager Login Module.... 11-26
Secure the Web Application That Uses HTTP Headers ... 11-27

Web Application Using the Oracle Access Manager ObSSOCookie..................................... 11-27
Configure User Name and Password for the Oracle Access Manager Login Module 11-27

xi

Secure the Web Application That Uses ObSSOCookie .. 11-27
EJB Application Using Oracle Access Manager.. 11-28

Oracle Access Manager Support and Examples for Web Services... 11-29
Web Service with Username Token Authentication for Oracle Access Manager 11-29
Web Service with X.509 Token Authentication for Oracle Access Manager........................ 11-31
Web Service with SAML Token Authentication for Oracle Access Manager 11-32

Troubleshooting the Oracle Access Manager Setup... 11-33

12 User and Role API Framework

Overview of User and Role (Identity Management) API Framework .. 12-1
User and Role API Features to Replace UserManager, User, Group ... 12-2
User and Role API Framework and Providers... 12-2
Summary of User and Role Interfaces and Classes .. 12-3

User and Role Interface Descriptions... 12-3
User and Role Class Descriptions ... 12-4

User and Role API Usage Models .. 12-4
Step by Step: Basic Usage Model .. 12-4
Step by Step: OC4J Integration Usage Model ... 12-6
Permission Requirements for the OC4J Integration Feature .. 12-7
User and Role Properties File .. 12-8

Example: Basic User and Role API Framework... 12-8
Example: OC4J Integration with User and Role API Framework.. 12-9

13 Pluggable Identity Management Framework

Overview of OracleAS JAAS Provider Identity Management Framework 13-1
Need for a Pluggable Identity Management Framework ... 13-2
How the Identity Management Framework Works... 13-2
Overview of Identity Management Framework Programmatic Implementation................. 13-4
Overview of Identity Management Framework Configuration... 13-4
Use of the Identity Management Framework by OC4J Java Single Sign-On 13-5

Identity Management Framework Programmatic Interfaces.. 13-5
Identity Token Interface and Oracle Implementations.. 13-6
Token Collector Interface and Oracle Implementation ... 13-6
Token Asserter Interface .. 13-8
Identity Callback Handler Interface ... 13-9
Oracle Callback Implementations... 13-10

Identity Callback .. 13-10
HTTP Request Callback .. 13-11

Login Module Requirements... 13-11
Subject Asserter Interface... 13-12
Packaging Your Identity Management Framework Implementation Classes 13-12

Identity Management Framework Configuration .. 13-13
Configuring Identity Management Framework Properties.. 13-13
Configuring the Identity Management Framework Login Module 13-14
Configuring an Application to Use the Identity Management Framework......................... 13-15
Considerations for Multiple OC4J Instances... 13-16

xii

Summary of How to Use the Identity Management Framework... 13-16
Sample Use Case: Using a Header-Based Identity Token ... 13-17

Sample Token Collector: CollectorImpl.java... 13-17
Sample Token Asserter: TokenAsserterImpl.java .. 13-18
Sample Configuration: jazn.xml ... 13-19

14 OC4J Java Single Sign-On

Overview of OC4J Java SSO ... 14-1
Need for an OC4J Container-Level Java Single Sign-On Solution... 14-2
How Java SSO Works ... 14-2

Single Sign-On Interaction and Logical Flow .. 14-3
Java SSO Runtime Operations ... 14-4
Java SSO Implementation of the Identity Management Framework 14-5

Java SSO Deployment Scenarios ... 14-5
Summary of Java SSO Configuration... 14-6
About the Java SSO Login Page and Error Page .. 14-7

Localization Support for the Java SSO Login Page and Error Pages................................ 14-7
Customizing the Login Page or Error Page ... 14-7

Java SSO Setup and Configuration ... 14-7
Configuring Java SSO through Application Server Control... 14-8

Start the javasso Application.. 14-8
Set Java SSO Properties and Generate the Symmetric Key.. 14-8
Configure the Security Provider for the javasso Application.. 14-10
Configure the Security Provider for Partner Applications .. 14-11
Enable Partner Applications to Use Java SSO ... 14-11

Java SSO Configuration Properties... 14-12
Java SSO Configuration Property Descriptions... 14-12
Default Java SSO Property Settings for Single-Instance OC4J Installations.................. 14-14

Configuration for Enabling Partner Applications for Java SSO... 14-14
Configuration for Special Scenarios ... 14-15

Considerations with the File-Based Provider and Two OC4J Instances........................ 14-15
General Considerations for Multiple OC4J Instances... 14-16
Considerations When Using the 10.1.3.1 Patch over 10.1.3.0.0 14-17

Java SSO APIs .. 14-17
Java SSO Logout API .. 14-17

Summary of How to Use Java SSO .. 14-18
Troubleshooting Java SSO... 14-18

15 SSL Communication with OC4J

Integrating the Security Provider with SSL-Enabled Applications .. 15-2
Using Keys and Certificates with OC4J and Oracle HTTP Server .. 15-2
Using SSL with Standalone OC4J.. 15-5
Using SSL in OPMN-Managed OC4J without Oracle HTTP Server .. 15-9

Configure OC4J with SSL (Scenario without Oracle HTTP Server) .. 15-9
Configure OPMN to Support HTTPS (Scenario without Oracle HTTP Server) 15-10

Using SSL in OPMN-Managed OC4J with Oracle HTTP Server .. 15-11
Configure OC4J with SSL (Scenario with Oracle HTTP Server) .. 15-11

xiii

Configure AJP over SSL ... 15-12
Configure AJPS between OC4J and Oracle HTTP Server .. 15-12
Configure OPMN to Support AJPS (Scenario with Oracle HTTP Server)..................... 15-13

Sample Configuration Files for SSL.. 15-14
Requesting Client Authentication ... 15-15

Overview of OC4J Client Authentication Mode... 15-15
Client Authentication to OC4J... 15-16
Oracle HTTP Server Authentication to OC4J in Oracle Application Server 15-17
Client Authentication to Oracle HTTP Server .. 15-17

Troubleshooting and Debugging SSL... 15-17
Common SSL Errors and Solutions .. 15-17
General SSL Debugging: javax.net.debug Property... 15-18

Enabling ORMIS for OC4J .. 15-18
Configuring ORMIS for Standalone OC4J... 15-19

Configure server.xml for the RMI Configuration File Location 15-19
Configure rmi.xml for ORMIS ... 15-19
Disable ORMI with ORMIS Enabled (Optional) ... 15-20

Configuring ORMIS for OC4J in an Oracle Application Server Environment 15-21
Configuring ORMIS Access Restrictions ... 15-21
Configuring Clients to Use ORMIS .. 15-22

Specify the Appropriate Java Naming Provider URL .. 15-22
Specify the Keystore and Password .. 15-23

Enabling ORMI Tunneling through HTTPS ... 15-23

16 Oracle HTTPS for Client Connections

HTTPS and Clients ... 16-2
Overview of Client-Side HTTPS Features ... 16-2

Supported Keystore Formats... 16-3
Accessing Information for Established SSL Connections.. 16-3
Support for java.net.URL Framework.. 16-3
SSL Cipher Suites .. 16-4

Supported Default System Properties... 16-5
Property javax.net.ssl.keyStore ... 16-5
Property javax.net.ssl.keyStorePassword.. 16-5
Property javax.net.ssl.keyStoreType .. 16-6
Property javax.net.ssl.trustStore ... 16-6
Property javax.net.ssl.trustStorePassword .. 16-6
Property javax.net.ssl.trustStoreType .. 16-6

Using HTTPClient with JSSE ... 16-6
Prerequisites for using JSSE... 16-6
Configuring HTTPClient to Use JSSE .. 16-7

HTTPClient Support for SSL Host Name Verification.. 16-8
Enabling Host Name Verification through System Property Setting...................................... 16-9
Enabling Host Name Verification Programmatically.. 16-9
Using the Oracle Standard Host Name Verifier ... 16-10
Verifying Additional Connection Information... 16-10

Migrating from Oracle Java SSL to JSSE .. 16-11

xiv

Code Samples for Migration to JSSE .. 16-11
Additional Changes Relevant for Migration to JSSE ... 16-12

Features for Oracle Java SSL (Deprecated)... 16-13
Specifying Oracle Java SSL as the SSL Implementation for HTTPClient 16-13
OracleSSLCredential Class for Oracle Java SSL ... 16-14
Security-Aware Applications Support in Oracle Java SSL.. 16-14
Using HTTPClient with Oracle Java SSL... 16-14

Sample Code (Oracle Java SSL) ... 16-14
Initializing SSL Credentials in Oracle Java SSL... 16-16

System Property Features with Oracle Java SSL .. 16-16
Specifying Cipher Suites for Oracle Java SSL ... 16-17

Property Oracle.ssl.defaultCipherSuites .. 16-17
Method setSSLEnabledCipherSuites() .. 16-17

SSL Cipher Suites Supported by Oracle Java SSL .. 16-17

17 Web Application Security Configuration

Specifying the Authentication Method (auth-method) ... 17-1
Specifying auth-method in web.xml .. 17-1
Specifying auth-method in orion-application.xml ... 17-2
Using Basic Authentication Fallback in Digest Authentication Mode.................................... 17-3
Using Form-Based Authentication ... 17-4

Setting Standard Configuration for Form-Based Authentication..................................... 17-4
Setting the OC4J Flag for Client-Side Redirects .. 17-4

Using Client-Cert Authentication... 17-5
Configuring OC4J for Client-Cert Authentication .. 17-5
Client-Cert Execution Flow in OC4J ... 17-6

Web Application Security Role and Constraint Configuration ... 17-6
Configuring J2EE Roles and Security Constraints ... 17-7
Linking Application Roles to J2EE Roles... 17-7
Definition of Deployment Roles and Users... 17-8
Specifying a Run-As Security Identity for a Web Application... 17-8
OC4J Mapping of J2EE Roles to Deployment Roles... 17-9

18 EJB Security Configuration

Authenticating and Authorizing EJB Applications.. 18-1
Specifying J2EE Roles and Method Permissions in the EJB Deployment Descriptor 18-3
Specifying Unchecked Security for EJB Methods... 18-6
Specifying a Run-As or Caller Security Identity for an EJB.. 18-6
Mapping J2EE Roles to Deployment Users and Roles... 18-6
Configuring Namespace Access ... 18-8
Specifying a Default Role Mapping for Unidentified Methods ... 18-8

Specifying Credentials in EJB Clients .. 18-9
Credentials in JNDI Properties.. 18-9
Credentials in the InitialContext... 18-10

Permitting EJB RMI Client Access .. 18-10
Granting Permissions in the Browser ... 18-11
Configuring Anonymous EJB Lookup .. 18-11

xv

Enabling and Configuring Subject Propagation for ORMI.. 18-12
Overview of Subject Propagation in OC4J .. 18-13
Enabling Subject Propagation for ORMI ... 18-14

Set the Subject Propagation System Property.. 18-14
Enable JAAS Mode .. 18-14
Grant RMI Permission for Subject Propagation .. 18-14

Sharing Principal Classes for Subject Propagation .. 18-15
Removing and Configuring Subject Propagation Restrictions... 18-15

19 Common Secure Interoperability Protocol

CSIv2 Security Properties in internal-settings.xml (EJB Server) ... 19-1
CSIv2 Security Properties in ejb_sec.properties (EJB Client)... 19-3
CSIv2 Security Properties in orion-ejb-jar.xml ... 19-5

The <transport-config> element .. 19-5
The <as-context> element ... 19-6
The <sas-context> element ... 19-6
Example: <ior-security-config>... 19-6

20 Security Support for Resource Adapters

Overview of Security and Authentication Setup for EIS Connections 20-1
Summary of J2EE Connector Architecture Security Contract .. 20-1
Summary of Component-Managed Versus Container-Managed Sign-On 20-2
Summary of Security-Related Resource Adapter Configuration Elements 20-4

The oc4j-ra.xml File <security-config> Element.. 20-4
The oc4j-connectors.xml File <security-permission> Element.. 20-5

Understanding Component-Managed Sign-On.. 20-6
Understanding Container-Managed Sign-On ... 20-7
Authentication in Container-Managed Sign-On .. 20-9
Using Declarative Container-Managed Sign-On .. 20-9
Using Programmatic Container-Managed Sign-On ... 20-12

Using a Principal Mapping Class ... 20-12
Understanding the PrincipalMapping Interface APIs.. 20-12
Extending the AbstractPrincipalMapping Class ... 20-13
Configuring a Principal Mapping Class ... 20-15

Using a JAAS Login Module for an EIS Connection.. 20-16
The InitiatingPrincipal and InitiatingGroup Classes.. 20-16
JAAS and the <connector-factory> Element .. 20-17

A Tips and Troubleshooting for OC4J Security

Best Practices for OC4J Security ... A-1
JAAS Best Practices ... A-1
HTTPS Best Practices .. A-2

General OC4J Security Tips and Troubleshooting ... A-3
File jazn.xml Not Found... A-4
Authentication Issues ... A-4
Failure to Specify OracleAS JAAS Provider as the JAAS Provider ... A-4

xvi

Realm Issues... A-4
Realm Names Omitted from User Names.. A-4
Specifying Default Realm to Solve Authentication Failure ... A-5

Logging.. A-5
Using Oracle Diagnostic Logging with the OracleAS JAAS Provider A-5
Using Standard JDK Logging with the OracleAS JAAS Provider Admintool......................... A-6

B OracleAS JAAS Provider Samples

Security Configuration for Sample Servlet.. B-1
Configuration in system-jazn-data.xml ... B-1
Configuration in web.xml.. B-2
Configuration in orion-application.xml... B-3

Sample Servlet: Invoking J2EE Security APIs ... B-3
Sample Servlet: Granting Permissions ... B-4
Sample Servlet: Checking Permissions .. B-5

JAAS Mode Configuration in orion-application.xml... B-5
Servlet Code for Authorization... B-5

C OracleAS JAAS Provider Admintool Reference

Getting Started with the Admintool.. C-1
Running the Admintool ... C-2
User Repository Location for the Admintool.. C-2
Authentication for the Admintool .. C-2
Using Custom Principals and Permissions with the Admintool ... C-3

Summary of Admintool Command-Line Syntax and Options .. C-4
Admintool Shell .. C-6

Shell Support for Admintool Command-Line Options... C-6
Admintool Shell Directory Structure ... C-7
Summary of Admintool Special Shell Commands... C-8

add, mkdir, and mk: Creating Provider Data ... C-8
cd: Navigating Provider Data .. C-9
clear: Clearing the Screen.. C-9
exit: Exiting the Admintool Shell... C-9
help: Listing Admintool Shell Commands... C-9
ls: Listing Data.. C-9
man: Viewing Admintool man Pages ... C-9
pwd: Displaying the Working Directory.. C-9
rm: Removing Provider Data ... C-10
set: Updating Values.. C-10

Admintool Administrative Functions ... C-10
Adding and Removing Login Modules ... C-10
Adding and Removing Realms (File-Based Provider Only)... C-11
Adding and Removing Roles (File-Based Provider Only) .. C-12
Adding and Removing Users (File-Based Provider Only).. C-12
Setting Passwords (File-Based Provider Only) ... C-13
Checking Passwords (File-Based Provider Only) .. C-13
Administrative Operations .. C-13

xvii

Granting and Revoking Permissions.. C-14
Granting and Revoking Roles ... C-14
Listing Login Modules ... C-15
Listing Permissions ... C-15
Listing Realms ... C-16
Listing Roles... C-16
Listing Users .. C-16
Converting from the principals.xml File to JAAS .. C-17

D OracleAS JAAS Provider Configuration Files

Hierarchy of jazn.xml ... D-1
Elements and Attributes of jazn.xml ... D-1

<jazn>.. D-2
<property> ... D-4

Hierarchy of system-jazn-data.xml .. D-4
Elements and Attributes of system-jazn-data.xml .. D-6

<actions> .. D-6
<application>... D-6
<class> .. D-7
<codesource>... D-7
<control-flag> .. D-7
<credentials>.. D-8
<description>... D-9
<display-name>... D-9
<grant> ... D-9
<grantee>.. D-9
<guid>... D-10
<jacc-repository>... D-10
<jazn-data> .. D-10
<jazn-loginconfig> .. D-11
<jazn-permission-classes> ... D-12
<jazn-policy> ... D-12
<jazn-principal-classes> ... D-14
<jazn-realm> .. D-14
<login-module>... D-15
<login-modules> ... D-15
<member> .. D-16
<members> .. D-16
<name> ... D-16
<name> ... D-17
<option> ... D-17
<options>.. D-18
<permission> ... D-18
<permissions> ... D-18
<principal>... D-18
<principals> ... D-19
<realm>... D-19

xviii

<realm-name>.. D-19
<role> .. D-20
<roles> .. D-20
<type> ... D-20
<type> ... D-21
<url>.. D-21
<user> ... D-21
<users>.. D-22
<value> ... D-22

E Third Party Licenses

Apache ... E-1
The Apache Software License ... E-2

Apache SOAP ... E-6
Apache SOAP License .. E-6

mod_mm and mod_ssl.. E-9
OpenSSL ... E-10

OpenSSL License ... E-10
Perl.. E-12

Perl Kit Readme... E-12
mod_perl 1.29 License .. E-13
mod_perl 1.99_16 License .. E-13
Perl Artistic License .. E-17

Preamble.. E-17
Definitions... E-17

Index

xix

xx

List of Examples

9–1 Example jazn-loginconfig element .. 9-21
10–1 Sample LDIF Defining a User and Role ... 10-11
10–2 JAAS Login Module Configuration Corresponding to Example 10–1........................... 10-11
15–1 HTTPS Communication with Client Authentication.. 15-9
16–1 Using JSSE with HTTPClient ... 16-7
20–1 Extending AbstractPrincipalMapping .. 20-14

xxi

List of Figures

1–1 Access Control Approach Versus Capability Approach... 1-2
1–2 Role-Based Access Control .. 1-3
2–1 Protection Domains ... 2-10
2–2 Login Modules.. 2-14
2–3 Code Stack for doAs() and doAsPrivileged() Methods.. 2-16
3–1 OC4J Security Architecture.. 3-5
7–1 Operation: Invoke .. 7-19
7–2 Search and Select: MBean ... 7-19
8–1 Oracle Single Sign-On and J2EE Environments ... 8-4
8–2 Global JAZNContext Subtree... 8-16
8–3 Identity Management Realm JAZNContext Subtree .. 8-17
8–4 Simplified Directory Information Tree for the Identity Management Realm................. 8-17
11–1 Oracle Access Manager Architecture.. 11-5
12–1 User and Role API Framework Model.. 12-3
13–1 Identity Management Framework Data Flow ... 13-3
14–1 Java SSO Internal Logic Flow... 14-4
14–2 Java SSO Runtime Operations ... 14-5
15–1 Oracle Component Integration in SSL-Enabled J2EE Environments 15-2
18–1 End-to-End Security Role Configuration ... 18-2
18–2 Security Role References ... 18-3
18–3 Subject Propagation ... 18-13
20–1 Flow Chart of Choices for OC4J Container-Managed Sign-On .. 20-4
20–2 Component-Managed Sign-On.. 20-6
20–3 Container-Managed Sign-On ... 20-8
C–1 Admintool Shell Directory Structure .. C-7
C–2 Sample Shell Directory Structure .. C-8

xxii

List of Tables

2–1 Java Permission Instance Characteristics ... 2-9
3–1 JAAS Framework Features ... 3-3
4–1 Configuration Repositories and Preferred Management Tools 4-15
5–1 OracleAS JAAS Provider Permission Classes.. 5-8
5–2 System Properties for the JACC Provider ... 5-20
7–1 OracleAS JAAS Provider Migration Tool Options... 7-14
7–2 JAZNMigrationTool Constants... 7-15
8–1 Key ssoreg Options... 8-10
8–2 LDAP SSL Properties and Related Properties .. 8-21
8–3 LDAP Connection Properties.. 8-22
8–4 LDAP JNDI Connection Pool Properties... 8-22
8–5 LDAP Cache Properties ... 8-23
9–1 Login Modules Supplied with OC4J ... 9-3
9–2 RealmLoginModule Options.. 9-4
9–3 DBTableOraDataSourceLoginModule Options... 9-6
9–4 DataSourceUserManager Properties.. 9-11
9–5 Login Module Control Flags ... 9-17
10–1 Application Server Control External LDAP Provider Options.. 10-4
10–2 Application Server Control External LDAP Connection Pool Options 10-4
10–3 Application Server Control External LDAP User Options ... 10-5
10–4 Application Server Control External LDAP Role and Member Options........................ 10-5
10–5 External LDAP Provider Options... 10-7
10–6 External LDAP User Options .. 10-7
10–7 External LDAP Role and Member Options... 10-7
11–1 Oracle Access Manager Login Module Options... 11-19
11–2 Oracle Access Manager Troubleshooting.. 11-33
13–1 Identity Management Framework Properties .. 13-13
14–1 Java SSO Properties .. 14-12
16–1 Cipher Suites Supported by Oracle Java SSL.. 16-18
17–1 Values for auth-method in web.xml... 17-2
19–1 EJB Server Security Properties .. 19-1
19–2 EJB Client Security Properties ... 19-4
20–1 Properties for Declarative Container-Managed Sign-On.. 20-11
20–2 Method Descriptions for PrincipalMapping Interface .. 20-13
20–3 Method Descriptions for AbstractPrincipalMapping Class ... 20-14
D–1 <jazn> Attributes .. D-2
D–2 <property> Attributes .. D-4
D–3 <credentials> Attributes .. D-8
D–4 <jazn-data> Attributes ... D-11
D–5 <user> Attributes .. D-21

xxiii

Preface

This manual discusses Oracle Containers for J2EE (OC4J) security features.

This preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documentation

■ Conventions

Audience
This manual is intended for experienced Java developers, deployers, and application
managers who want to understand the security features of OC4J. It discusses the
Oracle Application Server Java Authentication and Authorization Service (JAAS)
Provider in detail, as well as discussing security implications of individual J2EE
features, including Web applications, Enterprise JavaBeans (EJBs), the J2EE Connector
Architecture, Secure Sockets Layer, and the Common Secure Interoperability Version 2
protocol (CSIv2).

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

xxiv

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documentation
For more information, see the following Oracle resources.

Additional OC4J documents:

■ Oracle Containers for J2EE Developer’s Guide

This discusses items of general interest to developers writing an application to run
on OC4J—issues that are not specific to a particular container such as the servlet,
EJB, or JSP container. (An example is class loading.)

■ Oracle Containers for J2EE Deployment Guide

This covers information and procedures for deploying an application to an OC4J
environment. This includes discussion of the deployment plan editor that comes
with Oracle Enterprise Manager 10g.

■ Oracle Containers for J2EE Configuration and Administration Guide

This discusses how to configure and administer applications for OC4J, including
use of the Oracle Enterprise Manager 10g Application Server Control Console, use
of standards-compliant MBeans provided with OC4J, and, where appropriate,
direct use of OC4J-specific XML configuration files.

■ Oracle Containers for J2EE Services Guide

This provides information about standards-based Java services supplied with
OC4J, such as JTA, JNDI, JMS, the Oracle Application Server Java Object Cache,
and the XML Query Service.

■ Oracle Containers for J2EE Resource Adapter Administrator’s Guide

This provides information about resource adapters and the J2EE Connector
Architecture.

■ Oracle Containers for J2EE Servlet Developer’s Guide

This provides information for servlet developers regarding use of servlets and the
servlet container in OC4J, including basic servlet development and use of JDBC
and EJBs.

■ Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

This provides information about JavaServer Pages development and the JSP
implementation and container in OC4J. This includes discussion of Oracle features
such as the command-line translator and OC4J-specific configuration parameters.

■ Oracle Containers for J2EE JSP Tag Libraries and Utilities Reference

This provides conceptual information as well as detailed syntax and usage
information for tag libraries and JavaBeans provided with OC4J.

xxv

■ Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

This provides information about Enterprise JavaBeans development and the EJB
implementation and container in OC4J.

■ Oracle Application Server Web Services Developer’s Guide

This describes Web services development and configuration in OC4J and Oracle
Application Server.

■ Oracle Application Server Advanced Web Services Developer’s Guide

This book describes topics beyond basic Web service assembly. For example, it
describes how to diagnose common interoperability problems, how to enable Web
service management features (such as reliability, auditing, and logging), and how
to use custom serialization of Java value types.

■ Oracle Application Server Web Services Security Guide

This describes Web services security and configuration in OC4J and Oracle
Application Server.

Related Javadoc sets:

■ Oracle Containers for J2EE Security Java API Reference

Documents APIs of the OracleAS JAAS Provider, identity management
framework, and Java SSO.

■ Oracle Containers for J2EE User and Role Java API Reference

Documents APIs for accessing user and role information from identity
management repositories.

■ Oracle Application Server HTTPClient Java API Reference

Documents APIs of the Oracle HTTPClient packages.

From the Oracle Application Server core documentation group:

■ Oracle Application Server Administrator’s Guide

■ Oracle Application Server Enterprise Deployment Guide

■ Oracle HTTP Server Administrator’s Guide

■ Oracle Process Manager and Notification Server Administrator’s Guide

■ Oracle Application Server Certificate Authority Administrator’s Guide

■ Oracle Application Server Best Practices

For Oracle Identity Management, Oracle Internet Directory, and Oracle Single
Sign-On:

■ Oracle Identity Management Infrastructure Administrator’s Guide

■ Oracle Identity Management Integration Guide

■ Oracle Identity Management Guide to Delegated Administration

■ Oracle Identity Management Application Developer’s Guide

■ Oracle Internet Directory Administrator’s Guide

■ Oracle Internet Directory API Reference

■ Oracle Application Server Single Sign-On Administrator’s Guide

For Oracle Access Manager:

xxvi

■ Oracle Access Manager Introduction

■ Oracle Access Manager Installation Guide

■ Oracle Access Manager System Administration Guide

■ Oracle Access Manager Identity and Common Administration Guide

■ Oracle Access Manager Developer Guide

■ Oracle Access Manager Deployment Guide

For additional information, see:

■ Top-level link for Oracle documentation from the Oracle Technology Network:

http://www.oracle.com/technology/documentation/index.html

■ The following Web site for OC4J "how-to" examples:

http://www.oracle.com/technology/tech/java/oc4j/1013/how_
to/index.html

■ The Sun Java and J2EE Web pages, especially the Java Authentication and
Authorization Service (JAAS) Web site at :

http://java.sun.com/products/jaas/overview.html

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action.

italic Italic type indicates book titles, emphasis, terms defined in text, or
placeholder variables for which you supply particular values.

monospace Monospace type within a paragraph indicates commands, URLs, Java
class names and method names, file and directory names, text that
appears on the screen, or text that you enter.

xxvii

What’s New

This section describes new features since the 10.1.2.0.2 release:

■ Changes in Release 10.1.3.1

■ Changes in Release 10.1.3.0.0

Changes in Release 10.1.3.1
This section notes changes and updated deprecation notices for the OC4J 10.1.3.1
implementation. Also review the section that follows, "Changes in Release 10.1.3.0.0".

Noteworthy Changes and Additions
Note the following key additions in the OC4J 10.1.3.1 implementation:

■ Identity management framework to support heterogeneous third-party identity
management systems

■ Java SSO, an alternative single sign-on solution packaged with OC4J that does not
require additional infrastructure (such as Oracle Single Sign-On and Oracle Access
Manager single sign-on do) and decouples OC4J from any identity management
system that you use

■ DBTableOraDataSourceLoginModule to replace DataSourceUserManager
functionality

■ A new user and role API framework, particularly for use with supported LDAP
servers. This includes replacement functionality for the deprecated UserManager,
User, and Group classes

In addition, note the following changes:

■ The JDK-default JSSE implementation is now the default SSL implementation for
HTTPClient. (This is a step toward deprecating OracleSSL, the previous default
SSL implementation, for use with HTTPClient.)

Updated Deprecation Notices
Note the following deprecations in the OC4J 10.1.3.1 implementation:

■ The com.evermind.security package and its classes are deprecated. They will
no longer be supported in the 11g release.

– UserManager class: Use JAAS custom login modules instead of custom
com.evermind.security.UserManager implementations.

– User class: Use standard JAAS APIs instead.

xxviii

– Group class: Use standard JAAS APIs instead.

■ The XMLUserManager class and its data store, principals.xml, are
deprecated. They will no longer be supported in the 11g release. For instructions
on migration, see "Migrating Principals from the principals.xml File" on page 7-16.

Changes in Release 10.1.3.0.0
The following security features and enhancements were added for the OC4J 10.1.3.0.0
implementation:

■ Support for the COREid Access (now Oracle Access Manager) security provider

■ Support for the LDAP-based provider in standalone OC4J

■ Digest authentication support, and client certification authentication and
authorization support

■ Implementation of the Java Authorization Contract for Containers (JSR-115)

■ JAAS integration with EJBs

■ ORMI enhancements for SSL (ORMIS)

■ Support for subject propagation (with ORMI or ORMIS)

■ JMX and MBeans support (JSR-77) for security configuration

■ New OC4J user and role accounts (see below)

■ Enhanced Java 2 security support

■ Web services security (described in another document)

In addition, note the following changes since the OC4J 10.1.2 implementation:

■ There is a new consolidated "JAAS mode" for authorization, for both servlets and
EJBs. This replaces previous runas-mode and dosasprivileged-mode
functionality for servlets, and USE_JAAS functionality (introduced in preliminary
10.1.3 releases) for EJBs. The previous functionality is supported but deprecated in
OC4J 10.1.3.x implementations.

■ The instance-level jazn-data.xml configuration file used in previous releases to
store user and role configuration (for the file-based provider), policy configuration
(for the file-based, external LDAP, or custom security provider), and login module
configuration (for all security providers) has been renamed
system-jazn-data.xml. However, an application can optionally use an
application-specific jazn-data.xml repository file to store user and role
configuration for the file-based provider.

■ The XMLUserManager class and its data store, principals.xml, are deprecated
and will no longer be supported at a future release. We strongly encourage you to
migrate your existing applications. For instructions, see "Migrating Principals
from the principals.xml File" on page 7-16.

■ Custom UserManager classes are still supported at this release, but will be
deprecated at a future release. We recommend that you use JAAS custom login
modules instead of custom com.evermind.security.UserManager
implementations.

■ For the Oracle Identity Management security provider, the application realm and
external realm are deprecated.

■ The external.synchronization property is no longer supported.

xxix

■ The default setting of the jaas.username.simple property is now "true"; in
the 10.1.2 implementation, the default setting was "false". This now means that
by default, realm names are omitted from the names of authenticated principals
returned by such methods as getUserPrincipal() and getRemoteUser() for
servlets, and getCallerPrincipal() for EJBs.

■ There have been some OC4J account name changes: the admin account is now
oc4jadmin; the administrators role is now oc4j-administrators; the
jmx-users role is now oc4j-app-administrators. For the file-based
provider in standalone OC4J, oc4jadmin is initially deactivated. See "Predefined
Accounts" on page 4-11.

■ Required OC4J accounts are created automatically in Oracle Internet Directory
when you associate an OC4J instance with an OID instance. See "Required
Accounts Created in Oracle Internet Directory" on page 8-7.

■ Setting LD_LIBRARY_PATH is no longer necessary in 10.1.3.x implementations.

■ The jazn.debug.log.enable flag is no longer supported for logging. Use
regular OC4J logging features. See "Logging" on page A-5.

xxx

Basic Security Concepts 1-1

1
Basic Security Concepts

This chapter provides an overview of security concepts, focusing on the following
areas:

■ Application-Level Security

■ Transport-Level Security

These are two basic categories of security that can be independently configured but are
often interrelated. The former mostly determines who can access data and what tasks
they are allowed to perform; the latter mostly determines the security of data as it is
transmitted.

Note that application-level configuration can include transport-level specifications,
such as having an application-level constraint requiring Secure Sockets Layer (which is
a transport-level feature, discussed later). And transport-level security can also involve
authentication (limiting data access to appropriate users), such as when client
certification is requested as part of the transport-level functionality.

Application-Level Security
Application-level security determines who can access an application or its data, and
what tasks they can perform. The following topics discuss key areas of functionality:

■ About Authentication

■ About Authorization

About Authentication
Authentication deals with the question "Who is trying to access services?" In any system
and application it is paramount to ensure that the identity of the entity or caller trying
to access your application is identified in a secure manner. In a multitier application,
the entity or caller can be a human user, a business application, a host, or one entity
acting on behalf of (or impersonating) another entity.

Authentication information, such as user names and passwords, is stored in a user
repository, such as an XML file, database, or directory service. When a subject attempts
to access a J2EE application, such as by logging in, it is the role of a security provider to
look up the subject in the user repository and verify the subject’s identity. A security
provider is a module that provides an implementation of a specific security service
such as authentication or authorization. The Oracle Internet Directory is an example of
a user repository.

Although each J2EE application determines which user can access it, it is the security
provider that authenticates the user’s identity through the user repository.

Application-Level Security

1-2 Oracle Containers for J2EE Security Guide

About Authorization
Authorization regards the question "Who can perform tasks on which resources offered
by which components?" In a J2EE application, resources are typically expressed in
terms of URL patterns for Web applications, and method permissions for EJBs.
Authorization is on a per-role basis, with appropriate permissions being assigned to
each defined role in an application.

The following sections discuss types of authorization, or access control, and related
topics:

■ Access Control Lists and the Capability Model of Access Control

■ Role-Based Access Control

The capability and role-based models are complementary and often used together.

Access Control Lists and the Capability Model of Access Control
The capability model is a method for organizing authorization information. The Java 2
Security Model uses the capability model to control access permissions. With this
model, access control information is associated with a resource, and authorization is
associated with an entity (referred to as a "principal", defined in "Principals and
Subjects" on page 2-12), such as a user named Amy.

An access control list (ACL) is associated with a protected target resource, such as a
directory or file, and contains information about which access rights each user has for
the particular resource. Each file in a file system may have an ACL, for example. And
the capabilities (privileges) specified in an ACL are associated with particular users,
specifying which users have what privileges for the file with which the ACL is
associated.

When a user Amy logs in and is successfully authenticated, her permissions are
retrieved and granted so that she is free to execute the actions permitted by these
permissions—for example, to read from a File1 and write to a File2.

The capability model and access control look at the same information from different
perspectives. While a capability is associated with a user attempting to access a
resource, an access control list is associated with the resource that the user is trying to
access.

Figure 1–1 shows the user Amy having permission to read File1 and write to File2,
while a user Brian has permission to execute File1 and read File2. An access
control list would come from the perspective of File1 and File2, specifying for each
file what users have access and what their specific permissions are. The capability
model comes from the perspective of Amy and Brian, specifying for each user what
files they can access and what they have permission to do with respect to each file.

Figure 1–1 Access Control Approach Versus Capability Approach

Capability
Approach

Amy

Brian

Read

ReadExecute

Write

File 1 File 2

Access Control
Approach

Transport-Level Security

Basic Security Concepts 1-3

Role-Based Access Control
A role is essentially a job function or title that defines an authority level. A role can
have multiple users and multiple permissions. Roles are the identities that each
application uses to indicate access rights to its different objects and functions. A user
assumes a role to gain access to an appropriate set of these resources.

Role-based access control is a JAAS feature that simplifies the management problems
created by direct assignment of permissions to users. Assigning permissions directly to
multiple users is potentially a major management task. If multiple users no longer
require access to a specific permission, you must individually remove that permission
from each user.

Instead of directly assigning permissions to users, permissions are assigned to a role,
and users are granted their permissions by being made members of that role. Multiple
roles can be granted to a user. Figure 1–2 provides an example of role-based access
control.

Figure 1–2 Role-Based Access Control

When a user's responsibilities change (for example, through a promotion), the user's
authorization information is easily updated by assigning a different role to the user,
instead of by updating all access control lists containing entries for that individual
user.

For example, if multiple users no longer require write permissions on a file named
salaries in the /home/user directory, those privileges are removed from the HR
role. All members of the HR role then have their permissions and privileges
automatically updated.

A role can also be granted to another role, thus forming a role hierarchy that provides
administrators with a tool to model enterprise security policies.

Transport-Level Security
Independent of the previously discussed features for authentication and authorization
are features for making data secure as it is transmitted. This section provides an
overview of features intended to ensure that data transmitted over a network or the
Internet cannot be intercepted and read or altered by a third party. OC4J supports
secure communications using the HTTP protocol over the Secure Sockets Layer.

The following related topics are discussed here:

■ Secure Sockets Layer and HTTPS

■ SSL Authentication

■ X.509 Certificates

See Also:

■ "Overview of Security Role Mapping" on page 3-8

Transport-Level Security

1-4 Oracle Containers for J2EE Security Guide

■ Key Encryption and Exchange

Secure Sockets Layer and HTTPS
The Secure Sockets Layer (SSL) is the industry-standard point-to-point protocol which
provides confidentiality through encryption, authentication, and data integrity.
Although SSL is used by many protocols, it is most important for OC4J when used
with the HTTP browser protocol and in the Apache JServ Protocol link between the
Oracle HTTP Server and OC4J processes.

For convenience, this book uses "HTTPS" as shorthand when discussing HTTP
running over SSL. Although there is an "https:" URL prefix, there is no HTTPS
protocol as such.

Note that whether the server configures SSL communication is independent of
whether the client configures SSL communication. In this document, Chapter 15, "SSL
Communication with OC4J", covers information about enabling SSL at the OC4J end,
and about SSL communication between Oracle HTTP Server and OC4J in an Oracle
Application Server environment. Chapter 16, "Oracle HTTPS for Client Connections",
covers information about the OC4J implementation of HTTPS that provides SSL
functionality to client HTTP connections.

SSL Authentication
With SSL communication, any of the following authentication scenarios are possible:

■ No SSL authentication (or null authentication): The server does not send a
certificate and does not request a certificate from the client. From an SSL
perspective, the server does not know who the remote client is, or accepts any
certificate that may be presented by the client.

■ One-way SSL authentication: Either the server or the client, but not both, requires
certificates. "Server authentication", for example, is one-way authentication where
the server sends its certificate to the client but does not request a certificate from
the client. Alternatively, the server may require a certificate, but does not send one
and the client does not require one.

■ Two-way SSL authentication: This is "client and server authentication", where the
server sends a certificate, required by the client, and also requires the client to send
a certificate.

Configuring SSL authentication in the server is independent of configuring SSL
authentication in the client.

X.509 Certificates
Applications need to transmit authentication and authorization information over the
network. A digital certificate, as specified by the X.509 v3 standard, contains data
establishing a principal’s authentication and authorization information. A certificate
contains:

■ A public key, which is used in public key infrastructure (PKI) operations

■ Identity information (for example, name, company, and country)

■ Optional digital rights, which grant privileges to the owner of the certificate

Each certificate is digitally signed by a trust point. The trust point signing the certificate
can be a certificate authority (CA) such as VeriSign, a corporation, or an individual.

Transport-Level Security

Basic Security Concepts 1-5

Key Encryption and Exchange
In SSL communication between two entities, such as companies or individuals, the
server has a public key and an associated private key. Each key is a number, with the
private key of an entity being kept secret by that entity, and the public key of an entity
being publicized to any other parties with which secure communication might be
necessary. The security of the data exchanged is guaranteed by keeping the private key
secret, and by the complex encryption algorithm. This system is known as asymmetric
encryption, because the key used to encrypt data is not the same as the key used to
decrypt data.

Asymmetric encryption has a performance cost due to its complexity. A much faster
system is symmetric encryption, where the same key is used to encrypt and decrypt
data. But the weakness of symmetric encryption is that the same key has to be known
by both parties, and if anyone intercepts the exchange of the key, then the
communication becomes insecure.

SSL typically uses a combination of asymmetric (public/private key) and symmetric
key encryption to secure communications. The exchange of public keys is used for
mutual authentication of the parties involved in the communication. This also allows
the parties to securely cooperate in the creation of symmetric keys that will be used in
further encryption and decryption of data in the session. The following is a basic
example of the creation of an SSL session between a client and a server:

1. The client sends cipher suites, compression methods, highest protocol versions,
and random bytes to the server. The server chooses the connection parameters
from the choices offered by the client.

2. The public keys (X.509 certificates) are exchanged.

a. The server sends the client its public key, and the client sends the server its
public key.

b. The keys are used for mutual authentication where each verifies the certificate
of the other.

3. The symmetric keys are exchanged. Communications are secured in this step
using the exchanged public keys.

a. A master secret is generated cooperatively between the server and client.

b. Session keys (bulk encryption keys) are then generated based on the master
secret, such as a 128-bit RC4 key.

c. The client and server each sends a message that it will use the session key for
further communication.

4. SSL traffic uses symmetric keys for encryption and decryption.

In SSL the public key of the server is sent to the client in a data structure known as an
X.509 certificate. This certificate, created by a certificate authority, contains a public
key, information concerning the owner of the certificate, and optionally some digital
rights of the owner. Certificates are digitally signed by the CA which created them
using that CA's digital certificate public key.

In SSL, the CA's signature is checked by the receiving process to ensure that it is on the
approved list of CA signatures. This check is sometimes performed by analysis of
certificate chains. This occurs if the receiving process does not have the signing CA's
public key on the approved list. In that case the receiving process checks to see if the
signer of the CA's certificate is on the approved list, or if the signer of the signer is on
the approved list, and so on. This chain of certificate, signer of certificate, signer of

Transport-Level Security

1-6 Oracle Containers for J2EE Security Guide

signer of certificate, and so on, is a certificate chain. The highest certificate in the chain
(the original signer) is called the root certificate of the certificate chain.

The root certificate is often on the approved list of the receiving process. Certificates in
the approved list are considered to be trusted certificates. A root certificate can be
signed by a CA or can be self-signed, meaning that the digital signature that verifies the
root certificate is encrypted through the private key that corresponds with the public
key that the certificate contains, rather than through the private key of a higher CA.
(Note that certificates of the CAs themselves are always self-signed.)

Functionally, a certificate acts as a container for public keys and associated signatures.
A single certificate file can contain one or multiple chained certificates, up to an entire
chain. Private keys are normally kept separately to prevent them from being
inadvertently revealed, although they can be included in a separate section of the
certificate file for convenient portability between applications.

A keystore is used to store certificates, including the certificates of all trusted parties, for
use by a program. Through its keystore, an entity such as OC4J can authenticate other
parties as well as authenticate itself to other parties. The keystore password is
obfuscated. Oracle HTTP Server has what is called a wallet for the same purpose. Sun's
SSL implementation introduces the notion of a truststore, which is a keystore file that
includes the trusted certificate authorities that a client will implicitly accept during an
SSL handshake.

In Java, a keystore is a java.security.KeyStore instance that you can create and
manipulate using the keytool utility that is provided with the Sun Microsystems
JDK. The underlying physical manifestation of this object is a file.

Java Platform Security 2-1

2
Java Platform Security

This chapter provides an overview of standard security models that can be used with
Java and J2EE applications, covering the following topics:

■ J2EE Security Model

■ Java 2 Security Model

■ Java Authentication and Authorization Service

■ Security Considerations during Development

J2EE Security Model
J2EE defines a declarative authorization model for container-managed security that
decouples applications from the underlying security infrastructure. Authorization
policy (an association between resources and users or roles) is expressed statically in
the application deployment descriptors, rather than in application code. Authorization
is role-based and is granted at access-level, typically protecting resources such as a
Web URL or an EJB method.

This section discusses the following J2EE security features:

■ Web Application Authentication and Authorization

■ Enterprise JavaBeans Authentication and Authorization

■ Identity Propagation

Web Application Authentication and Authorization
This section discusses topics for Web application security, primarily involving
declarative security configuration. There is also discussion of APIs for more advanced
programmatic features, where security functionality can be determined at runtime.

The following topics are covered:

Note: The J2EE, Java 2, and JAAS security models are somewhat
independent of each other and can be used separately or in
combinations. Strategies are discussed in "Authorization Strategies"
on page 5-20.

See Also:

■ Oracle Application Server Best Practices (available post-release) for
information about best practices for security

J2EE Security Model

2-2 Oracle Containers for J2EE Security Guide

■ Web Application Standard Authentication Methods

■ Web Application URL-Based Authorization

■ Run-As Mode and Propagated Identities in Web Applications

■ Related Web Application APIs

Web Application Standard Authentication Methods
Several standard methods of authentication can be used to access a J2EE Web
application:

■ Basic

With basic authentication, the user is prompted directly for a user name and
password, without going through a single sign-on implementation.

■ Digest

With the digest authentication mechanism, the password that a client presents to
authenticate itself is encrypted through the use of an MD5 digest. This is
transmitted in the request message. From a user perspective, digest authentication
behaves in the same way as basic authentication. (In OC4J, the digest method is
not supported for an external LDAP provider or custom provider.)

■ Form

When the user attempts to access a protected resource through form-based
authentication, OC4J displays an application-specific login screen, prompting for
user name and password. (In OC4J, the form method is not supported for a
custom provider.)

■ Client-cert

This method, used in conjunction with the Secure Sockets Layer (SSL),
authenticates the client through HTTPS. The user must possess a public key
certificate.

Web Application URL-Based Authorization
In the J2EE security model, Web resources to be secured are identified by their URL
patterns. This is specified in the web.xml file of the Web application. For example, the
following excerpt is from the configuration to protect resources under the URL pattern
"/resource" of an application.

 <web-resource-collection>

Notes:

■ OC4J also supports several Oracle-specific single sign-on
authentication methods, as summarized in "Overview of Oracle
Application Server Single Sign-On Alternatives" on page 3-6.

■ For either the file-based provider or Oracle Identity Management,
if you are not using single sign-on, we recommend digest
authentication as a more secure solution than basic authentication.

See Also:

■ "Specifying the Authentication Method (auth-method)" on
page 17-1

J2EE Security Model

Java Platform Security 2-3

 <web-resource-name>resource access</web-resource-name>
 <url-pattern>/resource</url-pattern>
 </web-resource-collection>

This is part of a security constraint in web.xml that also specifies the J2EE logical role
that is allowed to access the resource. J2EE logical roles, discussed in the J2EE
specification, include developers (application component providers), assemblers,
deployers, and system administrators.

For example, assume the J2EE role sr_developers is declared in the web.xml file.
The security constraint to allow this role to access the resource would look like this:

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>resource access</web-resource-name>
 <url-pattern>/resource</url-pattern>
 </web-resource-collection>
 <!-- authorization -->
 <auth-constraint>
 <role-name>sr_developers</role-name>
 </auth-constraint>
 </security-constraint>

The sr_developers role can then be mapped to the appropriate deployment role (a
role defined in the security provider) in a later OC4J-specific configuration step.

Run-As Mode and Propagated Identities in Web Applications
For calls from a Web application to an EJB, the default mode is for the Web client’s
security identity to be propagated to the EJB container.

There are also situations where a Web container must allow Web clients that are
unknown to the Web container or EJB container to make calls. This includes the
scenario of supporting Web clients that have not authenticated themselves to the
container, such as to allow access of resources from the Internet.

For situations such as these, the web.xml file of a Web application may specify a
"run-as" identity through the <run-as> subelement of the <servlet> element:

<run-as>
 <role-name>sr_developers</role-name>
</run-as>

The Web container propagates the security identity for any call from a servlet to the
EJB layer, in terms of the role specified in the <run-as> element, which must be a role
previously declared through a <security-role> element. The run-as identity hides
the propagated identity.

See Also:

■ "Overview of Security Role Mapping" on page 3-8

■ For details, "Web Application Security Role and Constraint
Configuration" on page 17-6

See Also:

■ "Identity Propagation" on page 2-7

■ "Specifying a Run-As Security Identity for a Web Application" on
page 17-8

J2EE Security Model

2-4 Oracle Containers for J2EE Security Guide

Related Web Application APIs
For more advanced uses, there are standard J2EE programmatic features that allow
Web applications to retrieve information about a user. You can use these methods in
determining if a user should be allowed to access a resource.

A Web application can use the following methods in a
javax.servlet.http.HttpServletRequest instance:

■ Principal getUserPrincipal()

Returns a principal object containing the name of the authenticated user making
the request (or null if the user has not been authenticated).

Where identity propagation is used between a servlet and an EJB, the principal
name returned by the getUserPrincipal() method of the calling servlet would
be the same as that returned by the getCallerPrincipal() method of the EJB.

■ String getRemoteUser()

Returns the login name of the authenticated user making the request (or null if
the user is not authenticated).

■ boolean isUserInRole(String rolename)

Determines whether the authenticated user making the request is a member of the
specified role.

Enterprise JavaBeans Authentication and Authorization
This section discusses topics for EJB security, primarily involving declarative security
configuration. There is also discussion of APIs for more advanced programmatic
features, where security functionality can be determined at runtime.

The following topics are covered:

■ EJB Authentication

■ EJB Method-Based Authorization

■ Run-As Mode and Propagated Identities in EJB Applications

■ Related EJB APIs

Notes:

■ APIs documented here can be used with either the file-based
provider or Oracle Internet Directory as the user repository.

■ The com.evermind.security.User and Group classes from
previous releases are deprecated. (They will not be supported in
the 11g release.) Use standard JAAS APIs and signatures instead,
such as for getUserPrincipal(), utilizing populated subjects
as appropriate.

See Also:

■ "Principals and Subjects" on page 2-12 for a general discussion of
principals

■ Oracle Containers for J2EE Security Java API Reference (Javadoc)

J2EE Security Model

Java Platform Security 2-5

EJB Authentication
An EJB being accessed in a remote container requires authentication of the client that is
accessing it:

■ A standalone Java client can pass credentials through user and password settings
in the jndi.properties file.

■ An EJB or Web client can pass credentials through a
javax.naming.InitialContext instance, which is created to look up the
remote EJB.

In addition, where ORMIS is used (ORMI in conjunction with the Secure Sockets
Layer), you can use client-cert authentication with EJBs.

EJB Method-Based Authorization
In the J2EE security model, EJB resources to be secured are identified by their method
names or name masks within the particular EJB. This is specified in the ejb-jar.xml
file of the EJB. For example, the following excerpt is from the configuration to protect
all methods of a PurchaseOrder bean:

 <method>
 <ejb-name>PurchaseOrder</ejb-name>
 <method-name>*</method-name>
 </method>

This is part of a method permission in ejb-jar.xml that also specifies the J2EE
logical role that is allowed to access the resource. J2EE logical roles, discussed in the
J2EE specification, include developers (application component providers), assemblers,
deployers, and system administrators.

The following excerpt allows the role myMgr to access any method in the
PurchaseOrder EJB:

 <method-permission>
 <role-name>myMgr</role-name>
 <method>
 <ejb-name>PurchaseOrder</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>

The myMgr role can then be mapped to the appropriate deployment role (a role
defined in the security provider) in a later OC4J-specific configuration step.

See Also:

■ "Specifying Credentials in EJB Clients" on page 18-9

■ Chapter 15, "SSL Communication with OC4J" (particularly
"Requesting Client Authentication" on page 15-15 and "Enabling
ORMIS for OC4J" on page 15-18)

See Also:

■ "Overview of Security Role Mapping" on page 3-8

■ For details, "Specifying J2EE Roles and Method Permissions in the
EJB Deployment Descriptor" on page 18-3

J2EE Security Model

2-6 Oracle Containers for J2EE Security Guide

Run-As Mode and Propagated Identities in EJB Applications
The ejb-jar.xml deployment descriptor can include specification of a "run-as"
identify for an EJB, which can be used in conjunction with identity propagation when
one EJB calls a second EJB. The run-as identity hides the propagated identity, and
applies to the called EJB as a whole and is used as the identity in executing its
methods. The identity would be a J2EE logical role previously declared through a
<security-role> element.

Use the <run-as> subelement of the <security-identity> element for this
purpose:

<run-as>
 <role-name>admin</role-name>
</run-as>

Related EJB APIs
For more advanced uses, there are standard J2EE programmatic features that allow
EJBs to retrieve information about a caller. You can use these methods in determining
if a caller should be allowed to access a resource.

An EJB application can use the following methods in a javax.ejb.EJBContext
instance:

■ Principal getCallerPrincipal()

Returns a principal object that identifies the caller.

Where identity propagation is used between a servlet and an EJB, the principal
name returned by the getUserPrincipal() method of the calling servlet would
be the same as that returned by the getCallerPrincipal() method of the EJB.

Where identity propagation is used between EJBs, the client identity is propagated
to all EJBs downstream in the call chain, and the principal name returned by
getCallerPrincipal() would be the same for all EJBs in the call chain. This
assumes, however, that subject.propagation permission (discussed in "Grant
RMI Permission for Subject Propagation" on page 18-14) is granted to all
authenticating users in the sequence.

■ boolean isCallerInRole(String rolename)

Determines whether the caller is a member of the specified role.

See Also:

■ "Identity Propagation" on page 2-7

■ "Specifying a Run-As or Caller Security Identity for an EJB" on
page 18-6

Notes:

■ APIs documented here can be used with either the file-based
provider or Oracle Internet Directory as the user repository.

■ The com.evermind.security.User class from previous
releases is deprecated. (It will not be supported in the 11g release.)
Use standard JAAS APIs instead, utilizing populated subjects as
appropriate.

Java 2 Security Model

Java Platform Security 2-7

Identity Propagation
Identity propagation in J2EE refers to the forwarding of a security identity from a Web
module or EJB to an EJB that the original Web module or EJB invokes:

1. An initiating application client or Web client uses a security identity to access an
intermediate EJB or Web module.

2. The intermediate EJB or Web module invokes a target EJB by forwarding, or
propagating, a security identity to access the target EJB.

There are typically two models for propagation:

■ If the target container trusts the intermediate container, the caller identity of the
intermediate EJB or Web module can be propagated to the target EJB.

■ If the target container expects access by a particular identity, that identity can be
propagated to the target EJB.

In general, the target container must trust the intermediate container, because no data
is made available for the target container to use in authenticating the propagated
identity. Because the propagated identity will presumably be used for authorization
checks, such as isCallerInRole(), it is critical for the propagated identity to be
authentic.

In OC4J, identity propagation is referred to as subject propagation.

Java 2 Security Model
The Java 2 Security Model is supported as part of Oracle Application Server security.
Note, however, that it is not implemented in OC4J itself, but rather in the underlying
JDK.

This security model provides developers and administrators with increased control
over many aspects of enterprise component, servlet, and application security. The Java
2 Security Model is capability-based and enables you to establish protection domains
and to set security policies (discussed in "Java 2 Authorization: Java 2 Security
Policies" on page 2-10) for these domains.

The Java 2 Security Model by itself, however, has certain limitations. It is based on
application code, as opposed to being declarative in deployment descriptors. It also
has no policy management API, and uses a file-based implementation that does not
scale well.

The following sections discuss characteristics and features of the Java 2 Security
Model:

■ Code-Based Security

See Also:

■ "Principals and Subjects" on page 2-12 for a general discussion of
principals

See Also:

■ "Enabling and Configuring Subject Propagation for ORMI" on
page 18-12

■ The following tutorial for additional information:

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Securit
y11.html

Java 2 Security Model

2-8 Oracle Containers for J2EE Security Guide

■ Security Permissions

■ Protection Domains

■ Java 2 Authorization: Java 2 Security Policies

■ Java 2 Authorization: Security Managers and Access Controllers

Code-Based Security
Code-based security restricts the operations that applications can perform, by applying
sets of permissions to executing code. This protects against the actions of untrusted or
possibly malicious code, and could be to accomplish any of the following, for example:

■ Restrict database access to only trusted applications

■ Disallow the execution of code downloaded from the Internet

■ Limit operations that can be performed by third-party code

Code-based security differs from role-based security in that it is not based on users or
user roles. Permissions are granted based on code characteristics, such as where the
code is coming from and whether it is digitally signed (and by whom).

A codebase is a URL indicating code location, such as the following examples:

■ file: (any file on the local file system)

■ http://*.oracle.com (any file on any host at oracle.com)

■ file:${j2ee.home}/lib/oc4j-internal.jar

A codesource expands this concept to optionally include an array of certificates (stored
in a Java keystore) to verify signed code originating from the location. A codesource is
represented by a java.security.CodeSource instance, which is constructed by
specifying a java.net.URL instance and an array of
java.security.cert.Certificate instances.

The standard CodeSource class includes the following methods:

■ Certificate[] getCertificates()

Returns an array of the certificates associated with this codesource.

■ URL getLocation()

Returns the URL location associated with this codesource.

■ boolean equals(Object)

Compares the specified object (presumably a codesource object) with this
codesource object for equality. Two codesources are considered equal if their
locations are identical and they have the same set of certificates (though it is not
necessary for the certificates to be in the same order).

■ boolean implies(CodeSource)

See Also:

■ For a tutorial on Java 2 Security:

http://java.sun.com/docs/books/tutorial/security/index
.html

■ For full information on Java 2 Security:

http://java.sun.com/javase/technologies/security.jsp

Java 2 Security Model

Java Platform Security 2-9

Performs a series of comparisons to see if this codesource "implies" the specified
codesource. For example, codesources with the following locations, and null
certificates, all imply the codesource with location
http://java.sun.com/classes/foo.jar and null certificates:

http:
http://*.sun.com/classes/*
http://java.sun.com/classes/-
http://java.sun.com/classes/foo.jar

Security Permissions
Permissions are the basis of the Java 2 Security Model. All Java classes (whether run
locally or downloaded remotely) are subject to a configured security policy that
defines the set of permissions available for those classes. Each permission represents a
specific access to a particular resource.

The java.security.Permission class is an abstract class that represents access to
a given resource, and optionally a specified action on that resource. A key method of
this class is implies(Permission permission), which checks whether the
actions of the specified permission are implied by the actions of the permission
instance upon which the method is called.

Here are common types of permissions and the classes that represent them (all
extending Permission, either directly or indirectly):

■ java.security.AllPermission

■ java.lang.RuntimePermission (includes only a resource target)

■ java.io.FilePermission (includes a resource and actions)

Table 2–1 identifies characteristics of a Java permission instance.

Protection Domains
A protection domain associates permissions with codesources (defined in "Code-Based
Security" on page 2-8). The policy currently in effect is what determines protection
domains. In the default implementation of the Policy class, a protection domain is
one grant entry in the file.

See Also:

■ For information about the CodeSource class (and other standard
classes):

http://java.sun.com/j2se/1.4.2/docs/api/

Important: AllPermission should be used with caution, and only
when necessary.

Table 2–1 Java Permission Instance Characteristics

Element Description Example

Class name Permission class java.io.FilePermission

Target Target name (resource) to which this
permission applies

Directory /home/*

Actions Actions associated with this target Read, write, and execute permissions
on directory/home/*

Java 2 Security Model

2-10 Oracle Containers for J2EE Security Guide

Each Java class is associated with a protection domain when it is loaded. Specifically,
each class being loaded is associated with a java.security.ProtectionDomain
instance. The permissions granted to this protection domain may be statically bound
or dynamically determined when an access control check is performed. Each
protection domain is assigned a set of permissions based on a configured security
policy when the JVM is started.

A ProtectionDomain instance contains one or more codesources. It may also
contain a Principal array describing who is executing the code, a classloader
reference, and a permission set (java.security.PermissionCollection
instance) representing a collection of Permission objects.

Figure 2–1 shows an example of the relationship between code, protection domains,
and permission sets. In this example:

■ Protection Domain 1 associates the codesources e.jar, c.class, r.class, and
i.jar with Permission Set 1.

■ Protection Domain 2 associates the codesources s.class, u.jar, t.class, and
y.class with Permission Set 2.

■ The System Domain associates all JAR files in the classpath with Special
Permissions.

Figure 2–1 Protection Domains

Java 2 Authorization: Java 2 Security Policies
In Java 2, a policy is a mapping between running code and resource access permissions
granted to the code. Elements of a policy include codesources, permissions, and
protection domains, all described in preceding sections.

In the J2SE implementation, a policy is represented by a java.security.Policy
instance. Note that this class, and the Java 2 Security Model in general, is implemented
in the underlying JDK, not in OC4J itself.

Java 2 policies, for code-based permissions, are declared in .policy files, such as
java.policy or java2.policy (typical examples). A policy contains a collection of
permission grants to codebases, and may contain a reference to a keystore (described
in "Key Encryption and Exchange" on page 1-5). The following are typical locations for
Java 2 policy files:

■ JAVA_HOME/lib/security/java.policy

■ USER_HOME/java.policy

See Also:

■ "Principals and Subjects" on page 2-12 for a general discussion of
principals

Java 2 Security Model

Java Platform Security 2-11

■ ORACLE_HOME/j2ee/home/config/java2.policy

(When you start OC4J with a security manager, the file in this location contains the
relevant permissions.)

Java 2 Authorization: Security Managers and Access Controllers
A security manager (java.lang.SecurityManager instance) allows an application
to implement Java 2 security policies. For any given operation that is attempted, the
security manager allows the application to determine what the operation is and
whether it should be allowed. The SecurityManager class has a number of
checkXxx() methods, each of which checks whether the operation Xxx is allowed,
and throws an exception if it is not. This includes the instance method
checkPermission(Permission), which throws an exception if a requested access,
specified by the given permission, is not permitted by the security policy currently in
effect.

An access controller (java.security.AccessController instance) is also involved
in access-control operations and decisions. The default implementation of the
SecurityManager method checkPermission(Permission) actually calls the
AccessController static method checkPermission(Permission). Note,
however, that the AccessController.checkPermission(Permission) method
does not require a security manager.

Basically, an access controller is used to do the following:

■ Decide whether access to a system resource should be allowed or denied, based on
the security policy currently in effect.

■ Mark code as being privileged, thus affecting subsequent access determinations.

■ Obtain a snapshot of the current calling context so access-control decisions from a
different context can be made with respect to the saved context.

Any application that controls access to system resources should invoke
AccessController methods if it is to use the specific security model and access
control algorithm utilized by these methods. If, on the other hand, the application
wishes to defer the security model to that of the SecurityManager installed at
runtime, then it should instead invoke corresponding methods in the
SecurityManager instance.

In comparison, SecurityManager represents the concept of a central point of access
control, while AccessController implements a particular access control algorithm,
with special features such as the doPrivileged() method, which performs a
specified privileged action (an action requiring specific privileges) with privileges
enabled.

There is also the concept of an access control context (a
java.security.AccessControlContext instance), which you can use to restrict
access to resources based on a particular security context. For example, you can
construct an access control context from a particular array of protection domain
instances. The AccessControlContext class also defines a
checkPermission(Permission) method, which in this case makes access
decisions based on the AccessControlContext instance from which it is called,
rather than on the context of the current execution thread. So the usefulness of an

See Also:

■ "Specifying a Java 2 Security Manager and Policy File" on page 5-1

■ "Creating or Updating a Java 2 Policy File" on page 5-3

Java Authentication and Authorization Service

2-12 Oracle Containers for J2EE Security Guide

AccessControlContext instance is for a situation where a security check that
should be performed with respect to a particular context must be performed from a
different context.

Java Authentication and Authorization Service
The Java Authentication and Authorization Service (JAAS) is a Java package that
enables applications to authenticate and enforce access controls upon users. It is
designed to complement Java 2 security, basing authorization on who is running code
(subject-based security) in addition to what code is running (the code-based security of
Java 2).

JAAS also implements a Java version of the standard Pluggable Authentication
Module (PAM) framework. This enables an application to remain independent from
the authentication service, and supports the use of custom authentication modules.

JAAS extends the access control architecture of the Java 2 Security Model to support
subject-based authorization. It also supports declarative security settings, in
deployment descriptors, instead of being limited to code-based security settings.

OC4J includes a scalable JAAS provider and uses JAAS as a standard mechanism for
fine-grained authorization, as opposed to using a proprietary mechanism. OC4J
supports JAAS authorization for both Web-based and EJB-based applications.

The following sections discuss JAAS characteristics and features:

■ Principals and Subjects

■ JAAS Authentication: Login Modules

■ JAAS Authorization: Subject Methods doAs() and doAsPrivileged()

Principals and Subjects
A principal is a specific identity, such as a user named frank or a role named hr. A
principal is represented by an instance of a class that implements the
java.security.Principal interface. A principal class must define a namespace
that contains a unique name for each instance of the class.

Important: In order to use Java 2 policies, you must specifically
enable a security manager, as discussed in "Specifying a Java 2
Security Manager and Policy File" on page 5-1. This allows the JDK
and the Subject methods doAs() and doAsPrivileged()
(discussed later in this chapter) to check permissions of executing
code.

See Also:

■ For more information about security management and
comparison between security managers and access controllers:

http://java.sun.com/j2se/1.5.0/docs/guide/security/spe
c/security-spec.doc6.html

See Also:

■ JAAS documentation at the following Web site for more specific
discussions of key JAAS features:

http://java.sun.com/products/jaas/

Java Authentication and Authorization Service

Java Platform Security 2-13

A subject represents a grouping of related information for a single user of a computing
service, such as a person, computer, or process. This related information includes the
subject's identity and roles, and other security-related attributes such as passwords,
cryptographic keys, or other credentials. A subject is represented by an instance of the
javax.security.auth.Subject class.

After authentication of a user, a Subject instance represents the authenticated user,
and then appropriate Principal instances are added to the Subject instance. The
Principal instances are used in authorizing the authenticated user to perform
specific privileged actions.

JAAS Authentication: Login Modules
Within the JAAS pluggable authentication framework, an application server and any
underlying authentication services remain independent from each other.
Authentication services can be plugged in through JAAS login modules without
requiring modifications to the application server or application code. A login module
is primarily responsible for authenticating a user based on supplied credentials (such
as a password), and adding the proper principals (such as roles) to a subject. Possible
types of JAAS login modules include a principal-mapping module, a
credential-mapping module, or a Kerberos module.

About Login Modules
A login module is an instance of a class that implements the
javax.security.auth.spi.LoginModule interface, and is plugged in under an
application to provide a particular type of authentication.

Within this framework, the javax.security.auth.login.LoginContext class
provides the basic methods used to authenticate subjects such as users, roles, or
computing services (when a user tries to log in to the application, for example). An
application instantiates this class with a name and a callback handler (described
shortly). When the login() method of a LoginContext instance is invoked by an
application that a subject is trying to access, the LoginContext instance consults
configuration settings, using a mechanism that employs the name that was passed in,
to determine the appropriate login module to invoke for the application. Figure 2–2
summarizes this, and shows functions of the login module.

See Also:

■ Chapter 9, "Login Modules"

Java Authentication and Authorization Service

2-14 Oracle Containers for J2EE Security Guide

Figure 2–2 Login Modules

A callback handler is a javax.security.auth.callback.CallbackHandler
instance that allows a login module to interact with a user to obtain login information.
The only method specified by CallbackHandler is the handle(Callback[])
method, which takes an array of callbacks, which are instances of a class that
implements the java.security.auth.callback.Callback interface. Callbacks
do not retrieve or display requested information from the underlying security service,
but simply provide the functionality to pass the requests to an application and, as
applicable, to return the requested information back to the security service. Callback
implementations in the javax.security.auth.callback package include: a
name callback handler (NameCallback) to handle a user name, a password callback
handler (PasswordCallback) to handle a password, and a text input callback
handler (TextInputCallback) to handle any field in a login form other than a user
name or password field.

Different login modules can be configured with different applications, and a single
application can use multiple login modules. The JAAS framework defines a two-phase
authentication process to coordinate the login modules configured for an application.

Custom or external (third-party) login modules may be used with any given
application. Oracle provides the login modules RealmLoginModule (for the
file-based and LDAP-based providers), LDAPLoginModule (for external LDAP
providers), CoreIDLoginModule (for the Oracle Access Manager), and
DBTableOraDataSourceLoginModule (to use a database identity store).

Stacking Login Modules
The JAAS PAM architecture allows an enterprise application to customize its
authentication mechanism by defining a stack of login modules, each of which is
independent and communicates to its own user repository.

The javax.security.auth.login.Configuration class is an abstract class to
represent the configuration of login modules under an application. A
Configuration instance specifies which login modules should be used for a

Note: An application that uses declarative J2EE authentication with
OC4J and the OracleAS JAAS Provider does not have to create a
LoginContext instance; it is created by OC4J implicitly.

Java Authentication and Authorization Service

Java Platform Security 2-15

particular application, and in what order the login modules should be invoked. The
Configuration class is extended to provide an appropriate implementation.

For each login module, a control flag setting in the login module configuration
determines whether that login module is "required", "requisite", "sufficient", or
"optional", with the meanings of these settings being according to standard
functionality of the Configuration class, as discussed in Table 9–5, " Login Module
Control Flags" on page 9-17.

A login configuration contains an ordered list of login modules specified by fully
qualified class names, along with control flag settings and any option settings
particular to each login module. Authentication proceeds down the module list in
order. (In OC4J, the order is determined by the order in which the login modules are
configured in the system-jazn-data.xml file.)

Overall authentication is governed by the individual login modules and their control
flag settings.

JAAS Authorization: JAAS Security Policies
In JAAS, a policy is an association between resources and users or roles. With the
integration of JAAS into Java 2 security, the Policy API handles queries based on
principals, and the default policy implementation supports grant entries based on
principals. In extending the Java 2 security model, access control is based not only on
the code that is executing, but also on who is executing it. More specifically, a policy is
a repository of authorization rules, containing information that answers the question:
Given a grantee, what are the granted permissions of the grantee?

In OC4J 10.1.3.x implementations, a policy is represented by a
javax.security.auth.Policy instance. This class is deprecated as of JDK 1.4, but
still fully supported in OC4J 10.1.3.x implementations and the Sun Microsystems JDK
and J2SE.

In OC4J, JAAS policies are declared within the <jazn-policy> element of the
system-jazn-data.xml file, or in Oracle Internet Directory if you are using the
Oracle Identity Management security provider. (This functionality is comparable to
that of a .policy file in the Java 2 Security Model.) These declarations grant
permissions to users and roles, and are updated automatically when you use the
OracleAS JAAS Provider Admintool to grant or revoke permissions.

JAAS Authorization: Subject Methods doAs() and doAsPrivileged()
The Subject class includes the following standard methods for authorization in the
JAAS model:

■ Object doAs(Subject, PrivilegedAction)

Performs the specified privileged action (a computation to be performed with
privileges enabled) as the specified subject. This method associates the subject
with the access control context (AccessControlContext instance) of the current
thread (of the executing codesource), appending the subject’s permissions to the
permissions of that access control context and creating a new access control
context with the combined permissions. Then the
AccessController.doPrivileged() method is called with the specified
action and the new access control context.

The returned object is what is returned by the run() method of the privileged
action. There is also a variation that takes
java.security.PrivilegedExceptionAction instead of

Java Authentication and Authorization Service

2-16 Oracle Containers for J2EE Security Guide

java.security.PrivilegedAction, for computations that can throw checked
exceptions.

■ Object doAsPrivileged(Subject, PrivilegedAction,
AccessControlContext)

This method has the same functionality as the doAs() method, but within the
specified access control context instead of using the access control context of the
thread, appending the subject’s permissions to the permissions of the specified
context. Typical usage is actually to specify a null access control context, if you
prefer that the codesource not be required to have access privileges.

Figure 2–3 shows a sample code stack for the doAs() and doAsPrivileged()
methods, in this case for modifying a password file. In the doAsPrivileged() case,
if we assume that a null access control context is passed, then the subject must have
sufficient privileges to access the password file.

Figure 2–3 Code Stack for doAs() and doAsPrivileged() Methods

Necessary Permissions for Principals for Subject doAs() Method
When you use the subject doAs() method with a privileged action, you must grant
the necessary permissions for principals associated with the subject. You can use the
OracleAS JAAS Provider Admintool to accomplish this; the resulting configuration
appears under the <jazn-policy> element in the system-jazn-data.xml file.

The following example grants runtime permission "setContextClassLoader" to a
PrincipalImpl principal named myapp:

% java -jar jazn.jar -grantperm sun.security.acl.PrincipalImpl \
 myapp java.lang.RuntimePermission setContextClassLoader

This results in the following configuration in system-jazn-data.xml:

 <grant>
 <grantee>
 <principals>
 <principal>
 <class>sun.security.acl.PrincipalImpl</class>
 <name>myapp</name>
 </principal>
 </principals>
 </grantee>

Security Considerations during Development

Java Platform Security 2-17

 <permissions>
 <permission>
 <class>java.lang.RuntimePermission</class>
 <name>setContextClassLoader</name>
 </permission>
 </permissions>
 </grant>

Security Considerations during Development
This section discusses what you should consider during the development cycle for
security. This includes a summary comparison between security models, and specific
steps you should take in developing your application to ensure security.

Summary: Comparing Security Models for J2EE, Java 2, and JAAS
To summarize highlights of the J2EE, Java 2, and JAAS security models described in
this chapter:

■ In the J2EE authorization model, resources to be secured are identified by their
URL patterns (for Web applications) or method names or name masks (for EJBs).
Authorization is enforced by the container based on declarative role-based
security defined in deployment configuration, with no implementation in your
code. Once access is granted, any functionality of the resource is available. This
model is relatively coarse-grained, but suffices for many purposes. It is also static, in
that the developer or deployer must know about the user population beforehand.

In the J2EE model, authentication is managed by the container.

■ The Java 2 authorization model is code-based, restricting operations that
applications can perform by applying sets of permissions (established in a Java 2
policy file that you define) that determine what code from any given codesource is
allowed to do. (A codesource consists of a URL location of the code in question,
and optionally an array of certificates.) Authorization checks are implemented in
code, and performed by a security manager or access controller object. There is no
static configuration for this model, other than the predefined policy files. This is an
authorization model that is more dynamic and relatively fine-grained, where
authorization is according to an adaptable security policy.

As in the J2EE model, authentication is managed by the container.

■ The JAAS authorization model extends Java 2 security, with policy objects able to
handle queries based on principals, and the default policy implementation
supporting grant entries based on principals. As with Java 2 security,
authorization is enforced within application code. With the JAAS extensions,
access control is based not only on the code that is executing, but also on who is
executing it. A policy object is able to retrieve permissions granted to principals
associated with a specified codesource. As with the Java 2 model, there is no static
configuration involved, aside from policy files. The JAAS model is more
customizable and extensible than the J2EE model, with features such as custom

See Also:

■ For the Admintool: "Granting and Revoking Permissions" on
page C-14

■ For the system-jazn-data.xml file: "The system-jazn-data.xml
File" on page 4-7 and "Policy Configuration in
system-jazn-data.xml" on page 5-15

Security Considerations during Development

2-18 Oracle Containers for J2EE Security Guide

permission types, and is also more fine-grained than the Java 2 model, given the
ability to authorize according to principals. For example, while J2EE security is
sufficient for general protection of a Web URL or EJB method, JAAS security
would be required to control who may access a file in the file system, or who may
access security policy, create a user, or change a password.

JAAS is also the only one of these models that supports customized
authentication, through custom login modules. In addition, you can authenticate
against multiple user repositories.

As appropriate and necessary, you can use any model or a combination of the models
within an application. All three models are fully supported in OC4J. It is advisable to
limit yourself to the J2EE authorization model whenever it meets your needs, given
that it is the least complicated to deploy and administer. You can extend your
application to use Java 2 or JAAS security depending on your needs for finer-grained
code-based or subject-based security.

Steps to Develop a Secure J2EE Application
J2EE software development is based on a develop-deploy-manage cycle. The Oracle
Application Server security implementation plays an important part in the
deploy-manage part of the cycle. Developers can use the more convenient declarative
security model instead of having to integrate security programmatically.

The following list summarizes the J2EE development cycle, with an emphasis on the
tasks specific to developing secure applications.

1. The developer creates Web components, enterprise beans, servlets, and application
clients as desired.

The Oracle Application Server security implementation offers programmatic
interfaces, but the developer can create components without having to use those
interfaces.

2. The developer defines J2EE logical roles and assigns them privileges through
security constraints, all through configuration in standard J2EE deployment
descriptors.

3. The assembler takes these components and combines them into an Enterprise
Archive (EAR) file.

As part of this process, the application assembler specifies options appropriate to
the environment.

4. The assembler defines application-level security constraints and resolves potential
conflicts between module-level configurations.

5. The deployer installs the EAR into an instance of OC4J.

As part of the deployment process, the deployer may map J2EE roles to
deployment users and roles, as discussed in "Specifying Security Role Mapping
through Application Server Control" on page 6-11.

6. The system administrator maintains and manages the deployed application.

This task includes creating and managing roles and users in the deployment
environment as required by the application customers.

See Also:

■ "Authorization Strategies" on page 5-20 for details on application
security strategies

Security Considerations during Development

Java Platform Security 2-19

For finer-grained code-based or subject-based access control using Java 2 or JAAS
features, there are also the following considerations:

1. The developer identifies any resources that may be accessed and must be
protected as appropriate.

2. The developer defines permissions to protect these resources. (J2SE has predefined
permissions that you can use where appropriate and sufficient.)

3. The developer implements code for runtime authorization checks.

4. The deployer, in consultation with the developer, defines the appropriate JAAS
mode configuration for the application.

5. The system administrator maintains any necessary policy configuration to enforce
the desired permissions. Policy provisioning (such as permission grants through
the OracleAS JAAS Provider Admintool) should be completed prior to runtime.

See Also:

■ Oracle Application Server Best Practices (available post-release) for
information about best practices for security

Security Considerations during Development

2-20 Oracle Containers for J2EE Security Guide

Overview of OC4J Security 3-1

3
Overview of OC4J Security

This chapter introduces the Oracle Containers for J2EE (OC4J) security
implementation. This implementation allows developers to integrate authentication,
authorization, and delegation services with their applications.

The key component of this implementation is the Oracle Application Server Java
Authentication and Authorization Service (JAAS) Provider, which supports the JAAS
specification.

This chapter covers the following:

■ Introducing the OracleAS JAAS Provider and Security Providers

■ Introducing Authentication Features in the OC4J Environment

■ Introducing Authorization Features in the OC4J Environment

■ Overview of Security Role Mapping

■ Overview of General-Use Identity Management Frameworks and APIs

Introducing the OracleAS JAAS Provider and Security Providers
OC4J supplies a JAAS implementation, the Oracle Application Server Java
Authentication and Authorization Service (JAAS) Provider. The OracleAS JAAS
Provider is easily integrated with J2SE and J2EE applications that use the Java 2
Security model, and implements user authentication, authorization, and delegation
services that developers can integrate into their application environments. Instead of
devoting resources to developing these services, application developers can focus on
the presentation and business logic of their applications.

In addition to the OracleAS JAAS Provider, the other key aspect of the security
framework for OC4J applications is support for several particular security providers:
file-based, Oracle Identity Management (LDAP directory-based), external LDAP
directory, Oracle Access Manager, and custom (using custom login modules).

See Also:

■ Oracle Application Server Best Practices (available post-release) for
information about best practices for security

■ For Oracle Application Server general security information and
infrastructure, the 10.1.2 version of the Oracle Application Server
Security Guide, a document that is not part of the 10.1.3.x
documentation set but is available at the following location:

http://www.oracle.com/technology/documentation/appserv
er1012.html

Introducing the OracleAS JAAS Provider and Security Providers

3-2 Oracle Containers for J2EE Security Guide

The rest of this section covers the following topics:

■ Overview of the OracleAS JAAS Provider

■ Summary of JAAS Framework Features

■ Security Realms in the OracleAS JAAS Provider

■ Supported Security Providers

Overview of the OracleAS JAAS Provider
The OracleAS JAAS Provider implements the JAAS Login Configuration Provider
interface and the JAAS Policy Provider interface:

■ The Login Configuration Provider implementation is involved in retrieving login
module configuration information and ensuring that the appropriate login module
is invoked for authentication. An XML file is used to store JAAS login module
configurations.

■ The Policy Provider implementation supports either of two repositories to store
policies for authorization: an XML file or directory service. (This is as opposed to
the Sun Microsystems Policy Provider implementation, for example, which uses
the file JAVA_HOME/jre/lib/security/java.policy as a policy repository.)
Policies contain the rules, referred to as the permissions or privileges, that
authorize a user to access and use resources, such as reading from or writing to a
file.

Using OracleAS JAAS Provider, applications can enforce fine-grained access control
upon resource users. The three key steps when a security-aware application is running
in OC4J are the following:

1. Set up and invoke the login module, which involves the OracleAS JAAS Provider.
OC4J supplies login modules for the security providers it supports, or you can use
custom login modules.

2. Authenticate the user attempting to log in, which is the role of the security
provider.

3. Authorize the user by checking permissions for whatever the user is attempting to
accomplish, which involves the OracleAS JAAS Provider.

By default, OracleAS JAAS Provider is configured as part of the OC4J product.

Summary of JAAS Framework Features
Table 3–1 summarizes JAAS framework features implemented by the OracleAS JAAS
Provider.

Note: In earlier releases, the term "JAZN" was used to refer to the
OracleAS JAAS Provider. This term is no longer used in general, but
still appears in code (such as class and package names) and the
Admintool shell prompt.

Introducing the OracleAS JAAS Provider and Security Providers

Overview of OC4J Security 3-3

Security Realms in the OracleAS JAAS Provider
The JAAS framework does not explicitly define user communities. However, J2EE has
the concept of user communities called realms.

A realm is a collection of users and roles that are controlled by the same authentication
policy. In other words, a realm is a security domain that defines a set of permissions
for authenticated users.

Each realm includes a set of configured users and roles. (In OC4J configuration, users
and roles can all be configured within a realm definition.)

Supported Security Providers
Oracle Application Server supports the following security providers. Each security
provider is associated with an appropriate login module (RealmLoginModule for the
file-based and LDAP-based providers), which is effectively part of the security
provider. In addition, each security provider uses a repository for secure and
centralized storage, retrieval, and administration of data that consists of realm
information (users and roles) and JAAS policy information (permissions).

■ File-based (XML-based) provider

Table 3–1 JAAS Framework Features

Feature Description See Also

Authentication ■ Integrates with Oracle single sign-on solutions for
login authentication in J2EE application
environments.

■ Supplies an out-of-the-box RealmLoginModule
class for non-SSO environments, such as OracleAS
Core or Java Edition.

■ Supports any JAAS-compliant custom login module.

"Introducing Authentication
Features in the OC4J
Environment" on page 3-5

Declarative model ■ Integrates J2EE deployment descriptors, such as
web.xml and ejb-jar.xml, with JAAS security.

Authorization ■ Supports the J2EE authorization model.

■ Supports the JAAS authorization model.

■ Supports the Java Authorization Contract for
Containers.

"Authorization APIs, JAAS Mode,
and JACC in the OC4J
Environment" on page 5-4

Realm management ■ The package oracle.security.jazn.realm is
provided to support user and role management.

Policy management ■ The package oracle.security.jazn.policy is
provided for administration of authorization policy.

Administration ■ Supports administration and configuration using
Oracle Enterprise Manager 10g or the command-line
OracleAS JAAS Provider Admintool.

"Tools for Oracle Application
Server and OracleAS JAAS
Provider" on page 4-2

JAZNUserManager ■ Supplies a security provider implementation that
integrates with the file-based provider, Oracle
Identity Management, and Oracle Access Manager.
This class is in the oracle.security.jazn.oc4j
package.

See Also:

■ "Using Security Realms in OC4J" on page 6-3

■ "Realm Management for the LDAP-Based Provider" on page 8-15

Introducing the OracleAS JAAS Provider and Security Providers

3-4 Oracle Containers for J2EE Security Guide

The file-based provider, discussed in Chapter 7, "File-Based Security Provider", is a
fast, lightweight JAAS login module implementation that uses an XML repository.
User, role, and policy information is typically stored in the OC4J instance-level file
system-jazn-data.xml.

This is the default security provider.

■ LDAP-based provider: Oracle Identity Management

This is the security provider if you want to use Oracle Internet Directory as your
user repository, with or without Oracle Single Sign-On, as described in Chapter 8,
"Oracle Identity Management". The Oracle Identity Management provider stores
user, role, realm, and policy information in Oracle Internet Directory, which is
based on the Lightweight Directory Access Protocol (LDAP) for centralized
storage of information.

This security provider, intended for production environments, is scalable, secure,
enterprise-ready, and integrated with Oracle Single Sign-On.

OC4J must be associated with an Oracle Internet Directory instance in order to use
Oracle Identity Management.

■ External LDAP providers

Oracle Application Server supports external (third-party) LDAP providers such as
Sun Java System Directory Server or Microsoft Active Directory, as described in
Chapter 10, "External LDAP Security Providers". The external LDAP provider
implements the login module LDAPLoginModule.

■ Custom security providers

Oracle Application Server allows you or a third party to implement a custom
security provider using custom login modules to implement special authentication
functionality for an application, as described in Chapter 9, "Login Modules". A
custom login module implements the standard JAAS login module interface. You
can configure custom login modules when you deploy an application through
Oracle Enterprise Manager 10g. The configuration is stored in the OC4J
system-jazn-data.xml file.

Support for custom login modules is implemented through an extension of the
file-based provider.

■ Oracle Access Manager (formerly Oracle COREid Access and Identity)

Beginning with OC4J 10.1.3.x implementations, an additional choice for security
provider is Oracle Access Manager, as described in Chapter 11, "Oracle Access
Manager". This is an enterprise-class authentication, authorization, and auditing
solution that provides centralized security administration. This includes
functionality for access control, single sign-on (separate from Oracle Single
Sign-On), personalization, and user profile management in heterogeneous
application environments across a variety of application servers, legacy
applications, and databases. Oracle Access Manager implements the login module
CoreIDLoginModule.

Introducing Authentication Features in the OC4J Environment

Overview of OC4J Security 3-5

Figure 3–1 shows how the supported security providers interact with the overall
security provider framework.

Figure 3–1 OC4J Security Architecture

Introducing Authentication Features in the OC4J Environment
This section discusses the following topics relating to authentication in OC4J:

■ Supported Web Application Authentication Methods

■ Overview of OC4J Login Modules

■ Overview of Oracle Application Server Single Sign-On Alternatives

■ JAZNUserManager Delegation (File-Based Provider)

Supported Web Application Authentication Methods
OC4J supports the standard basic, digest, form, and client-cert authentication
methods. These are summarized in "Web Application Standard Authentication
Methods" on page 2-2, and configured in the standard web.xml file. Details are
provided in "Specifying the Authentication Method (auth-method)" on page 17-1.

OC4J also supports various single sign-on authentication methods supplied with
Oracle Application Server and OC4J. These are summarized in "Overview of Oracle

Note: Note the following terminology in this document:

■ The terms "file-based provider" and "XML-based provider"
(sometimes referred to as "JAZN-XML") are equivalent.

■ In the context of Oracle Application Server, the term "LDAP-based
provider" (also sometimes "JAZN-LDAP") refers to Oracle Identity
Management and its repository, the Oracle Internet Directory.

■ In OC4J 10.1.3.x implementations, the term "custom security
provider" is essentially synonymous with "custom login module".

Authentication Authorization User/Role
Management

Policy
Management

Security Provider Framework

OC4J

Oracle HTTP Server

File-based
Provider

(JAZN-XML)

LDAP-based
Provider

(JAZN-LDAP)

External LDAP
Provider

Custom
Provider

Oracle Access
Manager

Introducing Authentication Features in the OC4J Environment

3-6 Oracle Containers for J2EE Security Guide

Application Server Single Sign-On Alternatives" below, which includes
cross-references for further information.

Overview of OC4J Login Modules
Oracle supplies the following login modules:

■ RealmLoginModule, the default login module for the file-based provider or
Oracle Identity Management, discussed in "RealmLoginModule" on page 9-4

■ LDAPLoginModule, for external LDAP providers, discussed in "Overview of
External LDAP Provider Configuration and Administration" on page 10-2

■ DBTableOraDataSourceLoginModule, for user repositories in a database
(replaces previous functionality of the DataSourceUserManager class),
discussed in "DBTableOraDataSourceLoginModule" on page 9-5

■ CoreIDLoginModule, for use with Oracle Access Manager, discussed in
"Configure the Oracle Access Manager Login Module" on page 11-18

OC4J also supports any custom login module that adheres to login module standards,
as discussed throughout Chapter 9, "Login Modules".

Overview of Oracle Application Server Single Sign-On Alternatives
Single sign-on is a feature that lets a user log in just a single time to access multiple Web
applications within an OC4J instance or cluster. The following single sign-on
authentication methods are Oracle-specific. Usage of these methods is indicated by
configuration in the Oracle orion-application.xml file rather than the standard
web.xml file.

■ SSO

For this authentication method, OracleAS Single Sign-On is used to authenticate
users. This requires an Oracle Application Server infrastructure that includes
Oracle Identity Management, Oracle Internet Directory, and OracleAS Single
Sign-On. You can find information about OracleAS Single Sign-On in Chapter 8,
"Oracle Identity Management".

■ COREIDSSO

For this authentication method, Oracle Access Manager single sign-on (distinct
from OracleAS Single Sign-On) is used to authenticate users. This requires an
infrastructure that includes Oracle Access Manager. You can find information
about Oracle Access Manager SSO in Chapter 11, "Oracle Access Manager".

■ CUSTOM_AUTH (for Java Single Sign-On)

New with the OC4J 10.1.3.1 implementation, Java SSO is a an alternative SSO
solution packaged with OC4J for customers who desire a smaller deployment
environment. When Java SSO is properly configured and enabled, a
CUSTOM_AUTH setting (which is for the OC4J identity management framework,
introduced in "Overview of General-Use Identity Management Frameworks and
APIs" on page 3-8) will enable Java SSO (which is a default implementation of the
identity management framework). Java SSO is packaged as part of the OC4J
container itself and requires no additional infrastructure. You can find information
about Java SSO in Chapter 14, "OC4J Java Single Sign-On".

Introducing Authorization Features in the OC4J Environment

Overview of OC4J Security 3-7

JAZNUserManager Delegation (File-Based Provider)
The OracleAS JAAS Provider JAZNUserManager coordinates authentication in OC4J.
For a Web application, before HTTP requests can be dispatched to a target servlet,
JAZNUserManager gets the authenticated user information (set by the Oracle HTTP
Server mod_osso module for SSO, for example) from the HTTP request object, and
sets the JAAS subject in OC4J.

JAZNUserManager supports a delegation model as detailed below, but effectively
this applies only to the file-based provider. With delegation, if a user or group is not
found at the application-level JAZNUserManager instance, the request is delegated to
the parent user manager.

Specifically, note the following restrictions and additional details:

■ If the application and parent application are both configured to use the file-based
provider, delegation goes up through the parent hierarchy as far as necessary, until
a parent is not configured to use the file-based provider. Delegation is not
propagated beyond that point.

■ If the application is configured to use the file-based provider, and the parent is
configured to use the LDAP-based provider, an external LDAP provider, or a
custom login module, there is no delegation support.

■ If the application itself is configured to use the LDAP-based provider, an external
LDAP provider, or a custom login module, there is no delegation support.

Introducing Authorization Features in the OC4J Environment
Authorization in the OC4J environment includes the following features, detailed in
Chapter 5, "Authorization in OC4J":

■ Support for Java 2 security and code-based policy management, including use of
the standard java2.policy file

■ "JAAS mode" setting, which determines security behavior related to functionality
of the standard Subject class doAs() and doAsPrivileged() methods

■ Granting, checking, and revoking permissions; Oracle permission classes
RMIPermission, AdminPermission, RoleAdminPermission,
JAZNPermission, and RealmPermission

■ JAAS policy management

Important: This also applies with a developer-supplied
UserManager implementation instead of JAZNUserManager.
However, developer-supplied UserManager classes are deprecated in
OC4J 10.1.3.x implementations, and will be desupported in a future
release. Use custom login modules instead.

Note: In OC4J, the system application is at the root of the hierarchy,
but the default application is the default parent of any deployed
application. Both use system-jazn-data.xml as the user
repository.

See Also:

■ "Web Application Standard Authentication Methods" on page 2-2

Overview of Security Role Mapping

3-8 Oracle Containers for J2EE Security Guide

■ Implementation of the Java Authorization Contract for Containers

Overview of Security Role Mapping
OC4J enables you to map a J2EE logical role (or simply "J2EE role") defined in a
standard descriptor to a deployment role (referred to as a JAAS role in a previous version
of this document) so that a user who is a member of a given deployment role has
access to resources that are accessible from the associated J2EE role. Deployment roles
are defined in the security provider—for example, in system-jazn-data.xml for
the file-based provider, in Oracle Internet Directory for the LDAP-based provider, or in
an external LDAP provider, custom login module, or Oracle Access Manager.

The basic steps in security role configuration and mapping are as follows:

1. Specify J2EE logical roles, through standard J2EE functionality, in deployment
descriptors such as web.xml and ejb-jar.xml. There is nothing OC4J-specific
in this step. A J2EE role is declared in a <security-role> element.

2. As applicable, specify security role references to link application logical roles (roles
defined in your application code) to J2EE roles declared through
<security-role> elements. This is accomplished in standard deployment
descriptors through <security-role-ref> elements. Through this mechanism,
you can adjust your definitions of logical security roles without having to change
your application code, then simply link J2EE logical roles to application roles as
desired. There is nothing OC4J-specific in this step.

3. Configure deployment roles, or use default roles. For the file-based provider, for
example, deployment roles are defined in the OC4J system-jazn-data.xml
file, or optionally in an application-specific jazn-data.xml file. For the
LDAP-based provider, deployment roles are defined in Oracle Internet Directory.

4. Map J2EE roles to deployment roles. You can accomplish this through Application
Server Control, and mappings are reflected in <security-role-mapping>
elements in orion-application.xml, orion-ejb-jar.xml, or
orion-web.xml.

Overview of General-Use Identity Management Frameworks and APIs
The OC4J 10.1.3.1 implementation includes new general-purpose support for
third-party identity repositories, with the following features:

■ A pluggable identity management framework that allows integration of
heterogeneous third-party systems into OC4J, hence allowing any J2EE application
to interoperate with these third-party systems. Integration of third-party identity
management systems into OC4J is based on standard JAAS login modules.

Chapter 13, "Pluggable Identity Management Framework" describes how to use
this framework, with discussion of its programmatic interfaces, configuration
features, and so on.

See Also:

■ "Mapping Security Roles" on page 6-10

■ "Web Application Security Role and Constraint Configuration" on
page 17-6

■ "Authenticating and Authorizing EJB Applications" on page 18-1

Overview of General-Use Identity Management Frameworks and APIs

Overview of OC4J Security 3-9

Note that Java SSO, an alternative Java single sign-on solution that does not rely
on additional infrastructure required by other single sign-on products, is
implemented through the pluggable identity management framework. Java SSO is
discussed in Chapter 14, "OC4J Java Single Sign-On".

■ An identity management API framework for accessing user and role information
from disparate identity management repositories. This user and role API
framework allows applications to access identity information (users and roles) in a
uniform and portable manner regardless of the particular underlying identity
repository. The underlying repository could be an LDAP directory server such as
Oracle Internet Directory, Active Directory (from Microsoft), or Sun Java System
Directory Server (from Sun Microsystems), or could be a database, flat file, or
some other custom repository. Supported operations include searching, creating,
updating, or deleting users and roles.

To avoid confusion with the pluggable identity management framework discussed
in Chapter 13, which is independent, we refer to the identity management API
framework as the "user and role APIs" or "user and role API framework".
Chapter 12, "User and Role API Framework", describes how to use these APIs.

Overview of General-Use Identity Management Frameworks and APIs

3-10 Oracle Containers for J2EE Security Guide

Overview of Security Administration 4-1

4
Overview of Security Administration

This chapter provides an overview of features and tools for security administration
and configuration in OC4J and Oracle Application Server, covering the following
topics:

■ General OC4J Deployment and Configuration Features

■ Tools for Oracle Application Server and OracleAS JAAS Provider

■ JMX and MBeans Administration

■ Overview of Configuration Files and Key Elements

■ OC4J System Application

■ Summary of OC4J Accounts

■ Summary of Configuration Repositories and Security Management Tools

General OC4J Deployment and Configuration Features
OC4J supports the following standards for deploying and managing applications in a
J2EE environment:

■ Java Management Extensions (JMX) 1.2 specification allows standard interfaces to be
created for managing resources, such as services and applications, in a J2EE
environment. The OC4J implementation of JMX provides a user interface that you
can use to completely manage an OC4J server and applications running within it.

■ Java 2 Platform, Enterprise Edition Management Specification (JSR-77) allows objects
known as MBeans (managed beans) to be created for runtime management of
applications in a J2EE environment. In OC4J, you can directly access MBeans
through the System MBean Browser in Oracle Enterprise Manager 10g, but many
of their properties are exposed in a more user-friendly way through other features
of Enterprise Manager.

■ Java 2 Enterprise Edition Deployment API Specification (JSR-88) defines a standard
API for configuring and deploying J2EE applications and modules into a
J2EE-compatible environment. The OC4J implementation includes the ability to
create or edit a deployment plan containing the OC4J-specific configuration data
needed to deploy a component into OC4J.

See Also:

■ Oracle Containers for J2EE Deployment Guide and Oracle Containers
for J2EE Configuration and Administration Guide for general
information about OC4J deployment, configuration, and
administration

Tools for Oracle Application Server and OracleAS JAAS Provider

4-2 Oracle Containers for J2EE Security Guide

Tools for Oracle Application Server and OracleAS JAAS Provider
Managing security in the J2SE and J2EE environments involves creating and managing
realms, users, roles, permissions, and policies. The following Oracle tools are involved
in managing security configuration:

■ Oracle Enterprise Manager 10g Application Server Control is used for overall
security administration and configuration during and after deployment, and to
manage the file-based provider.

■ OracleAS JAAS Provider Admintool is used to manage the file-based provider,
and also to manage policies and login modules for any security provider.

■ Oracle Identity Management and Oracle Internet Directory tools: Oracle Delegated
Administration Services (DAS) and Oracle Directory Manager (oidadmin) are
used to manage users and roles in Oracle Internet Directory for Oracle Identity
Management.

These tools will be summarized more thoroughly in the subsections that follow.

Overview of Oracle Enterprise Manager 10g Application Server Control
Typically, you should use Application Server Control to deploy and administer your
applications. The user interface for this is the Application Server Control Console.
Application Server Control includes features for the following:

■ Deploying an application to OC4J. This includes a deployment plan editor. For
security, this also includes features to specify the security provider and security
role mapping during deployment.

■ Using the System MBean Browser for MBean configuration and operations
(further discussed in "JMX and MBeans Administration" on page 4-5). Also be
aware, however, that many parameters corresponding to MBeans properties are
exposed through other pages of the Application Server Control Console. Avoid
direct manipulation of OC4J MBeans when possible.

■ Changing to a different security provider after deployment, or updating security
provider settings.

■ Performing OC4J runtime administration and configuration.

OC4J-specific XML configuration files are updated automatically by OC4J when you
use the Application Server Control Console.

Note: Wherever possible, Oracle Enterprise Manager 10g
Application Server Control should be your first-choice tool to
administer OC4J, including OC4J security. For features that the
Application Server Control does not support, you can, as applicable,
use the OracleAS JAAS Provider Admintool. Occasionally, you will
have to directly manipulate a configuration file, particularly the
instance-level jazn.xml file (discussed in "The jazn.xml File" on
page 4-9).

See Also:

■ "Summary of Configuration Repositories and Security
Management Tools" on page 4-15

Tools for Oracle Application Server and OracleAS JAAS Provider

Overview of Security Administration 4-3

Overview of the OracleAS JAAS Provider Admintool
The OracleAS JAAS Provider Admintool, for use during development, is a lightweight
Java application with the following management features:

■ For the file-based provider: administration for users, roles, and policies

■ For Oracle Identity Management: administration for policies, plus read-only access
to users and roles

■ For external LDAP providers: administration for policies and login modules

■ For custom security providers: administration for policies and login modules

Admintool functions can be called directly from a command line or through an
interactive shell. The Admintool is located in ORACLE_HOME/j2ee/home/jazn.jar.

The general command-line syntax is as follows:

% java -jar jazn.jar [-user username -password pwd] [option1 option2 ...]

When you use the Admintool for the file-based provider, by default it updates the
system-jazn-data.xml file in the ORACLE_HOME/j2ee/home/config directory.

Notes:

■ In standalone OC4J you also have the option of using the
command-line OC4J admin_client.jar tool, which operates
through the OC4J system application, to deploy and bind your
J2EE applications. Alternatively, if you use the Oracle JDeveloper
tool to develop your application, you can use it to deploy the
application and any resource adapters as well.

■ Whenever a configuration change is made using Application
Server Control or the OC4J security provider MBean, the
application must be restarted. Until the application is restarted, all
other operations of the security provider MBean are invalidated
and will return an error message.

See Also:

■ Oracle Application Server Administrator’s Guide for more
information about Application Server Control

■ Oracle Containers for J2EE Configuration and Administration Guide
for information about the admin_client.jar utility

■ "OC4J System Application" on page 4-10

Note: In general, changes made by the Admintool are not effective
until you restart OC4J.

See Also:

■ Appendix C, "OracleAS JAAS Provider Admintool Reference"

Tools for Oracle Application Server and OracleAS JAAS Provider

4-4 Oracle Containers for J2EE Security Guide

Overview of Oracle Identity Management and Oracle Internet Directory Tools
This section provides an overview of tools to manage Oracle Internet Directory when
you use Oracle Identity Management as your security provider.

Overview of Delegated Administration Services
Delegated administration is an important feature of the Oracle Identity Management
infrastructure. It enables you to store all data for users, groups, and services in a
central directory, while distributing the administration of that data to various
administrators and end users. It does this in a way that respects the various security
requirements in your environment.

Suppose, for example, that your enterprise stores all user, group, and services data in a
central directory, and requires one administrator for user data, and another for the
e-mail service. Delegated administration as provided by the Oracle Identity
Management infrastructure enables different administrators with different security
requirements to administer centralized data in a way that is both secure and scalable.
Privileges can be delegated with Oracle Delegated Administration Services to (among
other things) create, edit, and delete users and groups; assign privileges to users and
groups; and manage services and accounts.

Oracle Delegated Administration Services (DAS) is a set of pre-defined, Web-based
units for performing directory operations on behalf of a user. It frees directory
administrators from the more routine directory management tasks by enabling them to
delegate specific functions to other administrators and to end users. It provides most
of the functionality that directory-enabled applications require, such as creating a user
entry, creating a group entry, searching for entries, and changing user passwords.

You can use DAS to develop your own tools for administering application data in the
directory. Alternatively, you can use the Oracle Internet Directory Self-Service Console,
a tool based on DAS. This tool comes ready to use with Oracle Internet Directory.

Overview of Oracle Directory Manager
Oracle Directory Manager is an administration tool with a Java-based graphical user
interface that you can use to administer Oracle Internet Directory. The executable file
is located in the ORACLE_HOME/bin directory, and you can run it from the command
line as follows:

% oidadmin

In general, any directory-specific configuration or maintenance task not available
through Application Server Control can be accomplished through Oracle Directory
Manager (as well as various command-line interfaces supplied with Oracle Internet
Directory).

You can use Oracle Directory Manager for tasks such as the following:

■ Configuring realms

■ Specifying password policies

■ Configuring the Oracle Directory Synchronization Service and Oracle Internet
Directory connectors and agents

See Also:

■ Oracle Identity Management Guide to Delegated Administration

Overview of Configuration Files and Key Elements

Overview of Security Administration 4-5

You can also manage features such as attribute uniqueness, plug-ins, garbage
collection, change logs, replication, query optimization, debug logging, and access
control lists.

JMX and MBeans Administration
OC4J support for the JMX specification allows standard interfaces to be created for
managing resources dynamically in a J2EE environment. The OC4J implementation of
JMX provides a JMX client, the System MBean Browser, that you can use to manage an
OC4J instance through MBeans that are provided with OC4J.

An MBean is a Java object that represents a JMX manageable resource. Each
manageable resource within OC4J is managed through an instance of the appropriate
MBean. Each MBean provided with OC4J exposes a management interface that is
accessible through the System MBean Browser in the Application Server Control
Console. You can set MBean attributes, execute operations to call methods on an
MBean, subscribe to notifications of errors or specific events, and display execution
statistics.

To access the browser from the OC4J Home page, select the Administration tab and
then, under the list of tasks, go to the JMX task "System MBean Browser". From the
browser, you can do the following:

■ Select the MBean of interest in the left-hand frame.

■ Use the Attributes tab in the right-hand frame to view or change attributes. A
settable attribute has a field where you can type in a new value. Then apply the
change.

■ Use the Operations tab in the right-hand frame to invoke methods on the MBean.
Select the operation of interest. In the Operation window, you can invoke it with
specified parameter settings.

■ Use the Notifications tab (where applicable) in the right-hand frame to subscribe
to notifications. You can select each item for which you want notification, and then
apply the changes.

■ Use the Statistics tab (where applicable) in the right-hand frame to display
execution statistics.

Be aware that MBeans and their attributes vary regarding when changes take effect. In
the runtime model, changes take effect immediately. In the configuration model, some
changes take effect when the resource is restarted, others when the application is
restarted, and still others when OC4J is restarted. There is also variation in whether
changes are persisted.

Overview of Configuration Files and Key Elements
This section provides an overview of the following key XML files and elements for
security configuration:

■ The orion-application.xml File (<jazn> and <jazn-web-app> Elements)

■ The system-application.xml File

■ The system-jazn-data.xml File

See Also:

■ Oracle Internet Directory Administrator’s Guide for general
information about Oracle Directory Manager

Overview of Configuration Files and Key Elements

4-6 Oracle Containers for J2EE Security Guide

■ Application-Specific jazn-data.xml File (Optional)

■ The jazn.xml File

The orion-application.xml File (<jazn> and <jazn-web-app> Elements)
The OC4J orion-application.xml file is for general (not just security-related)
application-level configuration. Settings in this file apply across a single J2EE
application (EAR file).

For security settings in orion-application.xml, there is the <jazn> element. In
particular, this element can specify the security provider, the user and role repository
location, and the default realm for the application, as in the following example to use
the file-based provider:

<jazn provider="XML" location="./system-jazn-data.xml" default-realm="jazn.com" >
 ...
</jazn>

(The system-jazn-data.xml file, discussed in "The system-jazn-data.xml File" on
page 4-7, would actually be the repository by default, but is specified here for
illustrative purposes.)

A subelement of <jazn> in orion-application.xml is the <jazn-web-app>
element, which is where you specify OC4J-specific authentication methods (using the
auth-method attribute) for Web applications.

Note: In general, you should use the Application Server Control
Console or OracleAS JAAS Provider Admintool (both discussed
earlier in this chapter) for configuration and administration, instead of
manipulating configuration files directly. Using these tools results in
the appropriate entries automatically being made in the configuration
files.

See Also:

■ "Summary of Configuration Repositories and Security
Management Tools" on page 4-15

■ Reference appendix in the Oracle Containers for J2EE Developer’s
Guide for information about elements of the
orion-application.xml (and system-application.xml)
file

Notes:

■ In order to take effect, changes to orion-application.xml
require an application restart (if the changes were made through
Application Server Control or security provider MBean) or an
OC4J restart (if the changes were made manually).

■ If there is no <jazn> element in orion-application.xml, the
security provider settings defer to those of the instance-level
jazn.xml file (where the system-jazn-data.xml repository
and jazn.com default realm are the default settings).

Overview of Configuration Files and Key Elements

Overview of Security Administration 4-7

The system-application.xml File
This OC4J configuration file is associated with the OC4J system application, which is
described in "OC4J System Application" on page 4-10. For the system application,
system-application.xml is equivalent to the orion-application.xml file for
a deployed application.

The system-application.xml file, through its <jazn> element, specifies the
file-based security provider for OC4J instance-level user and role settings (including
some used for special OC4J functionality). The system-application.xml file
points to the system-jazn-data.xml file (described in the next section), which is
also instance-level, as the repository for these settings, which are located under the
<jazn-realm> element.

By default, OC4J expects the system-application.xml to be in the
ORACLE_HOME/j2ee/instance_name/config directory.

The system-jazn-data.xml File
The system-jazn-data.xml file is a new file in OC4J 10.1.3.x implementations.
This file (as well as system-application.xml) is associated with the OC4J system
application, which is described in "OC4J System Application" on page 4-10.

The system-application.xml file points to the system-jazn-data.xml file as
the repository for OC4J instance-level user and role settings (located under the
<jazn-realm> element) for the file-based provider, which uses
system-jazn-data.xml for authentication and authorization. (Note that the
file-based provider is the default security provider.)

If you use the file-based provider for an application, you can optionally use
system-jazn-data.xml as your user repository, or you can use an
application-specific jazn-data.xml file that you package with your application, as
described in the next section, "Application-Specific jazn-data.xml File (Optional)".

The system-jazn-data.xml file also stores JAAS login module configuration
(under the <jazn-loginconfig> element) and JAAS policy configuration (under
the <jazn-policy> element).

By default, OC4J expects the system-jazn-data.xml file to be in the
ORACLE_HOME/j2ee/instance_name/config directory.

There is a persistence mode that governs how often changes are written to the
system-jazn-data.xml file and, if applicable (for the file-based provider), to an
application-level jazn-data.xml file. There are three possible values for persistence,
according to the <jazn> element persistence attribute in either the instance-level
jazn.xml file or application-level orion-application.xml file:

■ "NONE": Do not write changes.

■ "ALL": Write changes after every modification.

■ "VM_EXIT" (default): Write changes when the Java Virtual Machine exits.

Here is an example:

<jazn provider="XML" persistence="ALL" ... >
 ...
</jazn>

Overview of Configuration Files and Key Elements

4-8 Oracle Containers for J2EE Security Guide

Application-Specific jazn-data.xml File (Optional)
When you use the file-based provider, you can optionally use a jazn-data.xml file
as the user and role repository. In OC4J 10.1.3.x implementations, this file is
application-specific. You can specify its location in the <jazn> element of the
orion-application.xml file, according to where you deploy it:

<jazn provider="XML" location="path/jazn-data.xml">
 ...
</jazn>

Note that if orion-application.xml is configured exactly as follows, but a
jazn-data.xml file is not packaged with the application, then one will be created
during deployment:

See Also:

■ Appendix D, "OracleAS JAAS Provider Configuration Files" for
details about the hierarchy, elements, and attributes of this file

Notes:

■ If changes to system-jazn-data.xml are made through
Application Server Control or the security provider MBean, then
an OC4J restart is not required for the changes to take effect. A
restart is required, though, if changes are made manually (which
is not generally recommended).

■ In previous releases, system-jazn-data.xml was named
jazn-data.xml. For the file-based provider, you can still use a
file named jazn-data.xml to store user and role information,
but this file would be application-specific. See the next section,
"Application-Specific jazn-data.xml File (Optional)".

■ Settings in the system-jazn-data.xml file can be manipulated
using Application Server Control or the OracleAS JAAS Provider
Admintool.

■ Changes made to the system-jazn-data.xml file are visible to
all applications that use it.

■ The system-jazn-data.xml file contains accounts for
predefined OC4J users and roles. See "Predefined OC4J Accounts
in system-jazn-data.xml" on page 7-12.

■ White space in element settings is significant, such as the
differences between the following:

<name>scott</name>
<name>scott </name>
<name> scott</name>
<name> scott </name>

See Also:

■ "Supplying an Application-Specific jazn-data.xml File" on
page 7-11

■ Appendix D, "OracleAS JAAS Provider Configuration Files" for
details about the hierarchy, elements, and attributes of this file

Overview of Configuration Files and Key Elements

Overview of Security Administration 4-9

<jazn provider="XML" location="./jazn-data.xml" />

Persistence mode for changes to the repository, described in the preceding section for
system-jazn-data.xml, also affects jazn-data.xml.

The jazn.xml File
The jazn.xml file, located in the ORACLE_HOME/j2ee/instance_name/config
directory, is an OC4J instance-level configuration file for the OracleAS JAAS Provider.
It specifies the instance-level security provider and repository for policy and
permission settings. The main element of the jazn.xml file is the <jazn> element,
with largely the same functionality as discussed earlier for the
orion-application.xml file for application-level settings.

By default, jazn.xml specifies the file-based provider, with
system-jazn-data.xml as the repository and jazn.com as the default realm:

<jazn provider="XML" location="./system-jazn-data.xml" default-realm="jazn.com">
 ...
</jazn>

The jazn.xml file for the OC4J home instance, referred to as the bootstrap jazn.xml
file, is typically located in the ORACLE_HOME/j2ee/home/config directory. It is
read at OC4J startup and used by the OracleAS JAAS Provider runtime. Without a
valid jazn.xml file, the OracleAS JAAS Provider cannot begin running.

If you use Application Server Control to associate OC4J with an Oracle Internet
Directory instance in order to use the Oracle Identity Management security provider,
then the <jazn> element of the bootstrap jazn.xml file is updated appropriately for
the Oracle Internet Directory instance. For example:

<jazn provider="LDAP" location="ldap://myoid.oracle.com:389" default-realm="us" >
 ...
</jazn>

Notes:

■ Think of the application-specific jazn-data.xml file as a
repository, not as a configuration file.

■ White space in element settings is significant, such as the
differences between the following:

<name>scott</name>
<name>scott </name>
<name> scott</name>
<name> scott </name>

Note: Changes to jazn.xml require an OC4J restart in order to take
effect.

See Also:

■ Appendix D, "OracleAS JAAS Provider Configuration Files" for
details about the hierarchy, elements, and attributes of this file

OC4J System Application

4-10 Oracle Containers for J2EE Security Guide

You can optionally use a system property to specify an alternative location for the
bootstrap jazn.xml file. When the OracleAS JAAS Provider starts, it searches for
jazn.xml in the following order, stopping the search as soon as it finds one:

1. Location specified by the system property oracle.security.jazn.config

2. Location specified by the system property java.security.auth.policy

3. J2EE_HOME/config, where J2EE_HOME is specified by the system property
oracle.j2ee.home

4. ORACLE_HOME/j2ee/home/config, where ORACLE_HOME is specified by the
system property oracle.home (this is generally the same location as
J2EE_HOME/config)

5. ./config

Sample jazn.xml Files
Here are sample jazn.xml files, first with the default configuration for the file-based
provider:

<?xml version="1.0" encoding="UTF-8" standalone='yes'?>
<jazn xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://xmlns.oracle.com/oracleas/schema/jazn-10_0.xsd"
 schema-major-version="10"
 schema-minor-version="0"
 provider="XML"
 location="./system-jazn-data.xml"
 default-realm="jazn.com"
/>

And for the LDAP-based provider:

<?xml version="1.0" encoding="UTF-8" standalone='yes'?>
<jazn xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://xmlns.oracle.com/oracleas/schema/jazn-10_0.xsd"
 schema-major-version="10"
 schema-minor-version="0"
 provider="LDAP"
 location="ldap://myoid.us.oracle.com:389"
/>

OC4J System Application
The OC4J system application is an internal component defined in OC4J 10.1.3.x
implementations. It is auto-deployed to the OC4J instance the first time OC4J is
started. This application was added primarily to address issues related to deploying or
redeploying applications to OC4J.

The system application is at the root of the application hierarchy, and provides classes
and configuration required at OC4J startup, including shared libraries imported by
default by all other deployed applications. It is an OC4J internal component only.
Applications cannot be deployed to it, nor can it be declared the parent of another
application. (The OC4J default application continues to serve as the default parent of
all deployed applications, as in previous OC4J implementations.)

By default, the system application is configured to use the file-based provider for user
and role settings, using system-jazn-data.xml for the repository. (Note this means
that authorization of all system resources, such as MBeans and admin_client.jar,

Summary of OC4J Accounts

Overview of Security Administration 4-11

is based on entries in system-jazn-data.xml.) It is not advisable to alter this
configuration.

The OC4J-specific application descriptor for the system application is
system-application.xml, with the same functionality as
orion-application.xml for a deployed application. (For the default application,
the OC4J-specific application descriptor is application.xml, not to be confused
with the J2EE standard application.xml file for deployed applications, and by
default this configures the default application to also use the
system-jazn-data.xml repository.) These files are located in the
ORACLE_HOME/j2ee/instance_name/config directory.

Summary of OC4J Accounts
This section provides a summary of key OC4J accounts, covering the following topics:

■ Predefined Accounts

■ Activation of the oc4jadmin Account (Standalone OC4J)

■ Creating and Configuring a New Administrator Account

■ Configuring an Anonymous User

Predefined Accounts
OC4J 10.1.3.x implementations include predefined "bootstrap" users and roles for
Oracle Internet Directory (when you use Oracle Identity Management) or the
file-based provider.

For the file-based provider, the accounts are predefined in the
system-jazn-data.xml file. For Oracle Internet Directory (OID), they are created
automatically as default accounts as part of the OC4J-OID association process.

The following predefined accounts are common to both providers:

■ oc4jadmin user (formerly admin)

This is the default administrator account. During the Oracle Application Server or
OC4J installation process, you must specify a password for this account. You can
then use this account to log in to the Application Server Control Console. This
account is also used by Application Server Control when it performs
administrative functions (through the OC4J system application).

In a cluster environment, the oc4jadmin name and password serve as
administrative credentials for the cluster. Because there is only one set of
administrative credentials for a cluster, by default each OC4J instance must have
an oc4jadmin account with the same password. For this reason, use caution
when changing the password for this account.

As a good practice, you may consider creating additional administrative accounts
rather than using oc4jadmin for day-to-day administrative activities.

See Also:

■ Oracle Containers for J2EE Configuration and Administration Guide
for information about the OC4J application hierarchy and the
system and default applications

Summary of OC4J Accounts

4-12 Oracle Containers for J2EE Security Guide

■ oc4j-administrators role (formerly administrators), with member
oc4jadmin, RMI permission "login" granted, and administration permission
"administration" granted (com.evermind.server.rmi.RMIPermission and
oracle.security.jazn.policy.AdminPermission, respectively)

■ oc4j-app-administrators role (formerly jmx-users), with RMI permission
"login" granted, to allow access to JMX application-level connectors

■ ascontrol_admin (administrative role for all SOA controls, including
Application Server Control), with member oc4jadmin

■ ascontrol_appadmin (Application Server Control required role)

■ ascontrol_monitor (Application Server Control required role)

The following additional accounts are predefined for the file-based provider only:

■ anonymous user, initially deactivated

Activate anonymous directly in the system-jazn-data.xml file, by changing
the deactivated attribute of the <user> element from "true" to "false".
Unlike for oc4jadmin, there is no support in the OracleAS JAAS Provider
Admintool for activating anonymous.

■ users role, for EJB/RMI access

■ jtaadmin user, to allow transaction propagation over ORMI

Do not remove any of the accounts described in this section, or the administrative
functions of the OracleAS JAAS Provider will not work.

Activation of the oc4jadmin Account (Standalone OC4J)
The oc4jadmin account (formerly the admin account) is activated during Oracle
Application Server installation, but is initially deactivated for the file-based provider
in standalone OC4J. It is activated under the following circumstances:

■ When standalone OC4J is first started (and you are prompted for a password)

See Also:

■ "Creating and Configuring a New Administrator Account" on
page 4-13

Important: When you use an external LDAP security provider, you
must take manual steps (through whatever provisioning tool is
appropriate for the provider) to create the preceding user and role
accounts and grant the oc4j-administrators and
ascontrol_admin roles to oc4jadmin. Also use the OracleAS JAAS
Provider Admintool to grant the noted permissions.

See Also:

■ The next section, "Activation of the oc4jadmin Account
(Standalone OC4J)"

■ Application Server Control online help topics: "About the
oc4jadmin User", "About Administrative Users and Roles" (for
additional information about the Application Server Control
roles), and "Best Practices When Defining Administration Users
and Roles".

Summary of OC4J Accounts

Overview of Security Administration 4-13

■ When you run the OracleAS JAAS Provider Admintool with the
-activateadmin option

You also specify the password as part of this command:

% java -jar jazn.jar -activateadmin password

Creating and Configuring a New Administrator Account
By default, as noted previously, oc4jadmin is the administrator account for OC4J.
This section discusses how to use an alternative administrator account, such as to
access SOA components (including the Application Server Control Console and Oracle
Web Services Manager, for example) and for internal use by the OC4J system
application. The system application is used by Application Server Control for various
administrative functions (such as deploying and undeploying applications).

Creating a New Administrator Account
You may choose to create and use a new administrator account, rather than
oc4jadmin. This could be to access SOA components such as the Application Server
Control Console, for example (typically through Java SSO), which is the scenario we
consider here.

The steps to take depend on whether the security provider for SOA components is the
file-based provider or Oracle Identity Management, both of which have key
administrator roles defined by default with necessary RMI permissions, or some other
security provider such as an external LDAP provider, where you must configure these
roles and permissions manually.

For the File-Based Provider or Oracle Identity Management If you use the file-based provider
or Oracle Identity Management as the security provider for SOA components, the
following steps are required to use a custom administrator account:

1. Create the new administrative user account.

2. Grant the new administrative user account the roles oc4j-administrators and
ascontrol_admin.

3. Optionally set the admin.user property to allow the OC4J system application to
use the new account, as discussed in "Configuring a New Administrator Account
for the System Application" on page 4-15. If you are not using
system-jazn-data.xml as your repository, then this step requires you to also
create your new administrator account in system-jazn-data.xml, for use by
the system application, and grant it the necessary administrator roles.

Notes: The following additional points are applicable to Application
Server Control:

■ For Application Server Control to work properly in a clustered
environment, you must create the new user across the cluster.

■ If you remove the oc4jadmin account, you will see the
Application Server Control "post login" page. This is expected,
because Application Server Control would no longer be able to
make a connection with the previously cached oc4jadmin user.
Once you enter the new user name and password, you will not see
this page again.

Summary of OC4J Accounts

4-14 Oracle Containers for J2EE Security Guide

No further steps are required. By default, the oc4j-administrators and
ascontrol_admin roles exist in the file-based provider and Oracle Internet
Directory, and have RMI permission "login" granted.

For Other Security Providers If you use anything other than the file-based provider or
Oracle Identity Management as the security provider for SOA components, the
following steps are required to use a custom administrator account:

1. Create the new administrative user account, using the appropriate tool for the
security provider.

2. Create the administrator roles oc4j-administrators and ascontrol_admin,
using the appropriate tool, if you have not already created them. For an external
LDAP provider, these roles must be under the group search base configured for
the LDAP provider. (See Table 10–4, " Application Server Control External LDAP
Role and Member Options" on page 10-5 and Table 10–7, " External LDAP Role
and Member Options" on page 10-7 for information about the group search base.)

3. Grant the new administrative user account the roles oc4j-administrators and
ascontrol_admin, using the appropriate tool, if you have not already done so.

4. Create the additional administrator roles oc4j-app-administrators,
ascontrol_appadmin, and ascontrol_monitor. (These do not have to be
granted to the administrative user.)

5. If the administrator must access EJBs, grant the roles oc4j-administrators
and ascontrol_admin RMI permission "login", if you have not already done so.
You can use the OracleAS JAAS Provider Admintool for this, as in the following
example:

% java -jar jazn.jar -grantperm myrealm -role oc4j-administrators \
 com.evermind.server.rmi.RMIPermission login

Be aware that although the roles are defined in the external LDAP provider, these
permission grants are stored in the system-jazn-data.xml file.

6. Optionally set the admin.user property to allow the OC4J system application to
use the new account, as discussed in the next section, "Configuring a New
Administrator Account for the System Application". This step requires you to also
create your new administrator account in system-jazn-data.xml, for use by
the system application, and grant it the necessary administrator roles.

Notes:

■ For the file-based provider, use the Application Server Control
Console for user and role management, as detailed in
"Configuring the File-Based Provider in Application Server
Control" on page 7-2.

■ For Oracle Internet Directory, use the Oracle Delegated
Administration Services (DAS) for user and role management, as
detailed in the Oracle Identity Management Guide to Delegated
Administration.

See Also:

■ "Creating the Administrative User and Roles and Granting RMI
Permission" on page 10-9

Summary of Configuration Repositories and Security Management Tools

Overview of Security Administration 4-15

Configuring a New Administrator Account for the System Application
You can specify a different administrator account for use by the OC4J system
application as follows:

1. Create the desired account in the system-jazn-data.xml file, if it does not
already exist there, and grant it the roles oc4j-administrators and
ascontrol_admin. Use the Application Server Control Console for user and role
management, as detailed in "Configuring the File-Based Provider in Application
Server Control" on page 7-2.

2. Set the admin.user property in the instance-level jazn.xml file, as follows:

<jazn ... >
 ...
 <property name="admin.user" value="desired_admin_user_name" />
 ...
</jazn>

(These steps assume the OC4J system application is configured to use the file-based
security provider, as should always be the case.)

The specified account will then be used for a variety of administrative functions,
including, for example, being used by Application Server Control to deploy and
undeploy applications.

Configuring an Anonymous User
When using either the file-based provider or Oracle Identity Management, you can
map an anonymous user to an existing user by setting the anonymous.user property
in the instance-level jazn.xml file. For example, assuming there is a user PUBLIC in
Oracle Internet Directory:

<jazn ... >
 ...
 <property name="anonymous.user" value="PUBLIC" />
 ...
</jazn>

Summary of Configuration Repositories and Security Management Tools
Management tools and configuration repositories have been discussed previously, but
Table 4–1 summarizes the configuration repositories and the preferred management
tools to use for the various types of configuration for each security provider.

Where applicable, Application Server Control is the preferred tool.

Table 4–1 Configuration Repositories and Preferred Management Tools

Security Provider

Repository and
Management Tool for
Realms, Users, Roles

Repository and
Management Tool for
Policies

Repository and
Management Tool for
JAAS Login Modules

File-based system-jazn-data.xml
(or application-specific
jazn-data.xml)

Use Application Server
Control Console
(preferred) or OracleAS
JAAS Provider
Admintool.

system-jazn-data.xml

Use OracleAS JAAS
Provider Admintool.

n/a

Summary of Configuration Repositories and Security Management Tools

4-16 Oracle Containers for J2EE Security Guide

Oracle Identity
Management

Oracle Internet
Directory

Use DAS (or OracleAS
JAAS Provider
Admintool for
read-only).

Oracle Internet Directory

Use OracleAS JAAS
Provider Admintool.

n/a

External LDAP External (third-party)
LDAP server

Use tool supplied by
provider.

system-jazn-data.xml

Use OracleAS JAAS
Provider Admintool.

system-jazn-data.xml

Use Application Server
Control Console
(preferred) or
OracleAS JAAS
Provider Admintool.

Custom security
provider

Custom security
repository

Use tool supplied by
provider.

system-jazn-data.xml

Use OracleAS JAAS
Provider Admintool.

system-jazn-data.xml

Use Application Server
Control Console
(preferred) or
OracleAS JAAS
Provider Admintool.

Oracle Access
Manager

Oracle Access Manager

Use the Policy Manager
tool.

system-jazn-data.xml

Use OracleAS JAAS
Provider Admintool.

system-jazn-data.xml

Use Application Server
Control Console
(preferred) or
OracleAS JAAS
Provider Admintool.

Note: "Policies" in this table refers to subject-based policies.
Code-based policies are stored in a standard Java 2 policy file (such as
java2.policy or java.policy). OC4J currently offers no
management tool to update or maintain Java 2 policy files.

Table 4–1 (Cont.) Configuration Repositories and Preferred Management Tools

Security Provider

Repository and
Management Tool for
Realms, Users, Roles

Repository and
Management Tool for
Policies

Repository and
Management Tool for
JAAS Login Modules

Authorization in OC4J 5-1

5
Authorization in OC4J

Chapter 2, "Java Platform Security" provided an overview of three major Java security
models: J2EE role-based security, Java 2 code-based security, and JAAS subject-based
security.

This chapter shows how to use the authorization features with each of these models.
They can be used individually or in combinations. At the end of the chapter there is
discussion of how to choose between security models.

The following topics are covered:

■ Java 2 Security and Code-Based Policy Management

■ Authorization APIs, JAAS Mode, and JACC in the OC4J Environment

■ OracleAS JAAS Provider Policy Management

■ Authorization Coding and Configuration

■ Authorization Strategies

Java 2 Security and Code-Based Policy Management
This section discusses security managers and policy files for Java 2 (code-based)
security, covering the following topics:

■ Specifying a Java 2 Security Manager and Policy File

■ Using PrintingSecurityManager to Determine Required Java 2 Permissions

■ Creating or Updating a Java 2 Policy File

Specifying a Java 2 Security Manager and Policy File
For Java 2 (code-based) security policies to be enforced by OC4J and the underlying
JDK, a security manager (java.lang.SecurityManager instance) must be enabled.
This may affect, for example, access to class loaders, access to JDK resources, execution
of JDK APIs, or execution of JAAS APIs (such as the ability for the Subject.doAs()
or Subject.doAsPrivileged() method to be executed). With a security manager
enabled, the policies specified in the Java 2 policy file determine the resources that
executing code can access.

You can specify a security manager in either of the following ways:

■ Call the static setSecurityManager(SecurityManager) method of the
java.lang.System class to specify any desired security manager.

Java 2 Security and Code-Based Policy Management

5-2 Oracle Containers for J2EE Security Guide

■ Use the system property java.security.manager when starting OC4J, either
with no setting to use the default security manager, or with a setting that indicates
a desired security manager.

The following example starts OC4J with the default security manager:

% java -Djava.security.manager ... -jar oc4j.jar

The following example specifies a security manager:

% java -Djava.security.manager=com.abc.MySecurityManager ... -jar oc4j.jar

The permissions granted to particular classes by the default security manager are
determined by reading a policy file. The default policy file is supplied as part of the
J2SE. You can specify any desired policy file by setting the system property
java.security.policy to the full path of the desired file. The following example
starts OC4J with the default security manager and the policy file that is supplied with
OC4J:

% java -Doracle.home=$ORACLE_HOME -Djava.security.manager \
 -Djava.security.policy=$ORACLE_HOME/j2ee/home/config/java2.policy \
 -jar oc4j.jar

Notes:

■ Using a security manager is not typically necessary in OC4J.
Within an Oracle Application Server installation, OC4J
instances run by default with no security manager. If you
choose to install a security manager, there may be significant
performance impact. If you use a custom security manager,
ensure that it does not interfere with OC4J functions.

■ Assuming you use the default implementation of
AccessController (provided with the Sun JDK), a call to
AccessController.checkPermission(), discussed in
"Using the checkPermission() Method" on page 5-17, enforces
Java 2 security policy for your application regardless of
whether a security manager is enabled.

Notes:

■ Be aware that this java2.policy file includes permissions that
are required for OC4J to run with a security manager. If you use a
different policy file, make sure the same permissions are included
in that file.

■ A .policy file is for Java 2 (code-based) policies only. With the
OracleAS JAAS Provider, JAAS (subject-based) policies are
declared within the <jazn-policy> element of the
system-jazn-data.xml file, or in Oracle Internet Directory if
you are using the Oracle Identity Management security provider,
as discussed in "OracleAS JAAS Provider Policy Configuration"
on page 5-14.

Java 2 Security and Code-Based Policy Management

Authorization in OC4J 5-3

Using PrintingSecurityManager to Determine Required Java 2 Permissions
To assist you in identifying all the required permissions for an application running on
OC4J, Oracle provides a custom security manager, PrintingSecurityManager,
that does not throw security exceptions. Instead, it prints a message specifying what
exceptions the default security manager would have thrown.
PrintingSecurityManager also generates the policy grants that would avoid the
security exceptions.

Run PrintingSecurityManager as in the following example, assuming you run
OC4J from ORACLE_HOME/j2ee/home:

% java -Xbootclasspath/p:lib/oc4j-psm.jar -Doracle.home=$ORACLE_HOME \
 -Djava.security.manager=oracle.oc4j.security.PrintingSecurityManager \
 -Djava.security.policy=$ORACLE_HOME/j2ee/home/config/java2.policy \
 -jar oc4j.jar

(-Xbootclasspath puts PrintingSecurityManager into the boot classpath,
where it runs with all permissions.)

PrintingSecurityManager generates output that lists the following:

■ Which codesources require which permissions

■ Policy grants that you can copy and paste into the policy file

By default, these outputs go to System.out, but you can specify output files through
the following system properties. The first is for messages about missing permissions;
the second is for policy grants:

-Doracle.oc4j.security.manager.printing.file=filenamepath
-Doracle.oc4j.security.manager.printing.generated.grants.file=filenamepath

Creating or Updating a Java 2 Policy File
A Java 2 policy file grants permissions to trusted code or applications, allowing them
appropriate access privileges to execute properly in your environment.

A preconfigured Java 2 policy file, java2.policy, is provided in
ORACLE_HOME/j2ee/home/config. You can modify this file if desired, or create
and specify an alternative policy file. Be aware, however, that the java2.policy file
supplied by Oracle includes permissions that are required for OC4J to run with a
security manager. If you use a different policy file, make sure the same permissions are
included in that file.

The following policy file sample grants all permissions, such as opening system files
and opening sockets or ports, to the trusted jazn.jar (the OracleAS JAAS Provider
Admintool):

See Also:

■ The following sections, "Using PrintingSecurityManager to
Determine Required Java 2 Permissions" and "Creating or
Updating a Java 2 Policy File", for related information

■ "Java 2 Authorization: Security Managers and Access
Controllers" on page 2-11 for an overview of security managers

Note: PrintingSecurityManager is not tied to OC4J, so you
can alternatively use it outside of OC4J.

Authorization APIs, JAAS Mode, and JACC in the OC4J Environment

5-4 Oracle Containers for J2EE Security Guide

/* grant the JAAS library AllPermission */
grant codebase "file:${oracle.home}/j2ee/home/jazn.jar" {
 permission java.security.AllPermission;
};

Similarly, the following example grants all permissions to wssecurity.jar (for Web
services security functions):

/* grant the WSSecurity AllPermission */
grant codebase "file:${oracle.home}/webservices/lib/wssecurity.jar" {
 permission java.security.AllPermission;
};

The following example grants specific permissions to all applications running in the
ORACLE_HOME/appdemo directory:

/* Assuming you are running your application demo in $ORACLE_HOME/appdemo/, */
/* Grant JAAS permissions to the demo to run JAAS APIs*/
grant codebase "file:/${oracle.home}/appdemo/-" {
 permission oracle.security.jazn.JAZNPermission "getPolicy";
 permission oracle.security.jazn.JAZNPermission "getRealmManager";
 permission oracle.security.jazn.policy.AdminPermission;
}

You can grant additional permissions for your application code or for classes
generated by OC4J, as necessary, by manually creating additional entries in the
.policy file. (There is currently no tool for this.) The required permissions will
depend on the details of your application, and the required codebase will depend on
the details of your installation.

Authorization APIs, JAAS Mode, and JACC in the OC4J Environment
This section discusses the following authorization features in OC4J:

■ JAAS Authorization and OracleAS JAAS Provider JAAS Mode

■ Implementation of Java Authorization Contract for Containers

JAAS Authorization and OracleAS JAAS Provider JAAS Mode
OracleAS JAAS Provider allows any protected resource to be modeled using Java
permissions. The Java permission model (and associated
java.security.Permission class) is extensible and allows a flexible way to define
fine-grained access control.

OracleAS JAAS Provider builds upon the J2SE standard, using standard APIs to
support the following features related to fine-grained authorization:

Note: Note the use of "${oracle.home}" to specify the location of
ORACLE_HOME. This is an environment variable that is set
appropriately by default.

See Also:

■ For details about policy file syntax:

http://java.sun.com/j2se/1.5.0/docs/guide/security/Pol
icyFiles.html

Authorization APIs, JAAS Mode, and JACC in the OC4J Environment

Authorization in OC4J 5-5

■ JAAS mode, which is related to standard Subject.doAs() and
Subject.doAsPrivileged() functionality for either Web applications or EJBs

■ OracleAS JAAS Provider realm and policy API features

■ Features for granting permissions

■ Features for checking permissions

Introduction to JAAS Mode
OC4J 10.1.3.x implementations provide a fine-grained authorization feature called
JAAS mode, which is related to standard functionality of the Subject class static
methods doAs() and doAsPrivileged(), discussed in "JAAS Authorization:
Subject Methods doAs() and doAsPrivileged()" on page 2-15.

These methods are used with your application according to your JAAS mode setting.
Set JAAS mode in the jaas-mode attribute of the <jazn> element in the
orion-application.xml file of your application. JAAS mode determines doAs()
or doAsPrivileged() usage as follows:

■ With the setting jaas-mode="doAs", application modules (Web modules and
EJBs) are executed by OC4J within a Subject.doAs() block.

This mode is useful if you want code-based security together with subject-based
security.

■ With the setting jaas-mode="doAsPrivileged", application modules are
executed within a Subject.doAsPrivileged() block, using a null access
control context.

This mode is useful if you want subject-based security only.

■ With the setting jaas-mode="null" (default), modules are executed under
neither method.

Note: APIs documented here can be used with either
system-jazn-data.xml or Oracle Internet Directory as the policy
repository.

See Also:

■ "Authorization Coding and Configuration" on page 5-16 for
related task-oriented steps and examples

■ For standard JAAS programming reference information:

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaa
s/JAASRefGuide.html

■ For detailed JAAS API information, java.security.* packages
and javax.security.auth.* packages:

http://java.sun.com/j2se/1.4.2/docs/api/

■ For details about permissions:

http://java.sun.com/j2se/1.5.0/docs/guide/security/per
missions.html

■ Oracle Containers for J2EE Security Java API Reference for Javadoc
for the OracleAS JAAS Provider

Authorization APIs, JAAS Mode, and JACC in the OC4J Environment

5-6 Oracle Containers for J2EE Security Guide

This mode is useful if you want code-based security only.

Because jaas-mode is set in the application-level orion-application.xml file, it
will affect any Web module or EJB in the application.

OracleAS JAAS Provider Realm and Policy APIs
This section discusses OracleAS JAAS Provider classes and methods related to JAAS
authorization.

An instance of the oracle.security.jazn.JAZNConfig class represents a
configuration of the <jazn> element. This class includes the following methods:

■ JAZNConfig getJAZNConfig()

This static method of the JAZNConfig class returns a JAZNConfig instance.

■ RealmManager getRealmManager()

This instance method of the JAZNConfig class returns a RealmManager instance,
which is used to manage realms.

The oracle.security.jazn.realm.RealmManager class includes the following
instance method:

Important:

■ Set jaas-mode in orion-application.xml only, not in
jazn.xml.

■ If you switch from the file-based provider to Oracle Identity
Management at any time for any application through Application
Server Control, the <jazn> element in
orion-application.xml for the application is replaced with
the following. Any previous <jazn> settings would be lost and
would have to be redone.

<jazn provider="LDAP" />

Note: JAAS mode replaces runas-mode and
doasprivileged-mode settings from earlier releases, in the
<jazn-web-app> element of orion-application.xml or
orion-web.xml.

These settings are deprecated in OC4J 10.1.3.x implementations, but
still supported for backward compatibility.

The setting jaas-mode="null" is equivalent to
runas-mode="false"; jaas-mode="doas" is equivalent to
runas-mode="true" with doasprivileged-mode="false";
jaas-mode="doAsPrivileged" is equivalent to
runas-mode="true" with doasprivileged-mode="true".

See Also:

■ "Java 2 Authorization: Security Managers and Access Controllers"
on page 2-11 for an introduction to access controllers and access
control contexts

■ "Configuring and Using JAAS Mode" on page 5-18

Authorization APIs, JAAS Mode, and JACC in the OC4J Environment

Authorization in OC4J 5-7

■ Realm getRealm(String)

This method returns a realm object for the specified realm name.

An instance of the oracle.security.jazn.realm.Realm class provides access to
the store of users and roles for the particular realm. In the realm package, user
management is defined by the UserManager interface and role management is
defined by the RoleManager interface. The Realm class includes the following
instance methods:

■ UserManager getUserManager()

This method returns a UserManager instance, which you can use to manage
users in this realm.

■ RoleManager getRoleManager()

This method returns a RoleManager instance, which you can use to manage roles
in this realm.

Use an oracle.security.jazn.realm.UserManager instance to manage (add,
retrieve, or remove) users in the realm. This interface includes the following method:

■ RealmUser getUser(String)

This method returns a user object, for the specified name of a user in the realm.

OracleAS JAAS Provider APIs for Granting or Revoking Permissions
The JAZNConfig class, mentioned in the preceding section, also has the following
method:

■ JAZNPolicy getPolicy()

This method returns an oracle.security.jazn.policy.JAZNPolicy
instance, which represents the repository of JAAS (subject-based) authorization
policies.

The JAZNPolicy interface includes the following methods:

■ void grant(Grantee, Permission)

This method grants the specified permission to the specified grantee, taking as
input an oracle.security.jazn.policy.Grantee instance and a
java.security.Permission instance.

■ void revoke(Grantee, Permission)

This method revokes the specified permission for the specified grantee.

■ boolean hasPermission(Grantee, Permission)

This method determines whether the specified grantee has the specified
permission.

The Grantee class includes a constructor that takes a Principal instance as input:

■ new Grantee(Principal)

Table 5–1 summarizes permission classes supplied by Oracle.

See Also:

■ Chapter 12, "User and Role API Framework" for information
about new user and role APIs that are available, and in future
releases will replace some of the APIs discussed here

Authorization APIs, JAAS Mode, and JACC in the OC4J Environment

5-8 Oracle Containers for J2EE Security Guide

You can construct instances of these permission classes as follows:

■ new AdminPermission(String)

■ new AdminPermission(Permission)

The AdminPermission constructor takes an encoded permission string or a
java.security.Permission instance.

■ new RoleAdminPermission(String)

■ new RoleAdminPermission(RealmRole)

The RoleAdminPermission constructor takes one of the following:

– A string indicating the name of the role whose administrative permission is to
be granted, of the form realmname/rolename. Specifying just "*" will match
all roles in the system; specifying "realm/*" will match all roles in the realm.

Note: Features to grant permissions to a role replace functionality in
the deprecated com.evermind.security.Group class.

See Also:

■ For information about these classes, the OracleAS JAAS Provider
Javadoc: Oracle Containers for J2EE Security Java API Reference

Table 5–1 OracleAS JAAS Provider Permission Classes

Permission Part of Package Description

AdminPermission oracle.security.jazn.policy Represents the right to administer
a permission (that is, grant or
revoke another user’s permission
assignment).

RoleAdminPermission oracle.security.jazn.policy The grantee of this permission is
granted the right to further
grant/revoke the target role.

JAZNPermission oracle.security.jazn For authorization permissions.
JAZNPermission contains a
name (also called a target name),
but no actions list; you either have
or do not have the named
permission.

RealmPermission oracle.security.jazn.realm Represents permission actions for
a realm (such as createRealm
and dropRealm). Extends
java.security.Permission,
and is used like any regular Java
permission. A
RealmPermission instance
associates a realm name (target
name) with a list of actions.

RMIPermission com.evermind.server.rmi This permission is required for
access to EJBs over the ORMI
protocol. Typical usage is
RMIPermission login (such as
from the OracleAS JAAS Provider
Admintool).

Authorization APIs, JAAS Mode, and JACC in the OC4J Environment

Authorization in OC4J 5-9

– An oracle.security.jazn.realm.RealmRole instance, which is an
instance of a class that implements the RealmRole interface, representing a
role associated with a particular realm.

■ new JAZNPermission(String)

The JAZNPermission constructor takes a symbolic name of the permission, such
as "getRealmManager", "getPolicy", "getProperty.propertyname", and so
on.

■ new RealmPermission(String realm, String actions)

The RealmPermission constructor takes a string for the name of the realm, and
a string consisting of a comma-delimited list of the actions applicable to the realm.

■ new RMIPermission(String param, String actions)

The RMIPermission constructor takes a string for the RMIPermission
parameter (login, for example) and a string consisting of a comma-delimited list
of applicable actions.

You can also construct instances of standard permission classes, as needed:

■ new Permission(String permname)

The java.security.Permission constructor takes a string to specify the name
of the permission.

■ new BasicPermission(String permname)

The java.security.BasicPermission constructor takes a string to specify
the name of the permission.

■ new FilePermission(String path, String actions)

The java.security.FilePermission constructor takes one string to specify
the path of the file in question, and another string that is a comma-delimited list of
permissible actions. Supported actions are "read", "write", "execute", and "delete".

■ new AllPermission()

An instance of the java.security.AllPermission class is a permission that
represents all other permissions. Its constructor takes no parameters.

APIs for Checking Permissions
Access control, such as checking permissions, was introduced in "Java 2 Authorization:
Security Managers and Access Controllers" on page 2-11. Any of the following APIs
may be involved in retrieving and checking permissions.

The java.security.AccessController class includes the following methods:

■ AccessControlContext getContext()

Important: AllPermission should be used with caution, and only
when necessary.

Note: While there are standard mechanisms for checking
permissions (as described in the next section), JAAS does not provide
standard mechanisms for managing users and granting permissions.
This is why the classes and methods described in this section are
Oracle-specific.

Authorization APIs, JAAS Mode, and JACC in the OC4J Environment

5-10 Oracle Containers for J2EE Security Guide

This method examines the current calling context, which includes the inherited
access control context of the current thread, and represents the context as a
java.security.AccessControlContext instance.

■ void checkPermission(Permission)

Given a java.security.Permission instance, this static method checks
whether the access request indicated by the permission should be allowed, and
throws an AccessControlException if it should be denied. This method uses
the default access control context.

Note that this method enables you to check against Java 2 policy (as applicable)
without a security manager enabled.

The java.security.AccessControlContext class includes the following
method:

■ void checkPermission(Permission)

This has the same functionality as the
AccessController.checkPermission() method, but is called on a particular
AccessControlContext instance to use that access control context. (You can
construct an AccessControlContext instance from an array of
ProtectionDomain instances.)

Note that this method enables you to check against Java 2 policy (as applicable)
without a security manager enabled.

The java.lang.SecurityManager class includes the following method:

■ void checkPermission(Permission)

This has the same functionality as the checkPermission() methods of the
AccessController and AccessControlContext classes, but is used with a
security manager in place, is called against the security manager instance, and
throws a SecurityException if access should be denied.

The javax.security.auth.Subject class includes the following method:

■ Subject getSubject(AccessControlContext)

This static method returns the subject that is associated with the specified access
control context. You can specify the default access control context as follows:

mysubject = Subject.getSubject(AccessController.getContext());

The abstract class javax.security.auth.Policy includes the following methods:

■ Policy getPolicy()

This static method returns a Policy instance.

■ PermissionCollection getPermissions(Subject, CodeSource)

This method, given a javax.security.auth.Subject instance or a
java.security.CodeSource instance or both (inputs can be null), returns a
java.security.PermissionCollection instance that indicates the set of
permissions allowed. The codesource field can be null.

The PermissionCollection class includes the following method:

■ boolean implies(Permission)

This abstract method indicates whether the specified permission is implied by the
set of permissions in the permission collection. For example, if the permission

Authorization APIs, JAAS Mode, and JACC in the OC4J Environment

Authorization in OC4J 5-11

collection consists of permissions of a subject, this method tells you if the subject
has the specified permission, such as in the following example:

jaaspolicy = javax.security.auth.Policy.getPolicy();
jaaspolicy.getPermissions(mysubject,null).implies(perm);

Implementation of Java Authorization Contract for Containers
OC4J 10.1.3.x implementations support the Java Authorization Contract for Containers
(JACC), as specified in JSR-115. This is a contract between containers and authorization
service providers, allowing authorization to be decoupled from the container. OC4J
authorization functionality is delegated to a standard JACC provider.

Note that as a result of the JACC contract, J2EE security constraints are translated into
Java 2 permissions, so that the J2EE security model fully leverages the J2SE security
model. Yet JACC still fully preserves the existing J2EE declarative security model as
well as the J2EE security API. Essentially, you can enable JACC to use an extended
version of J2EE authorization, using the same configuration and code for authorization
in your application.

JACC is typically invisible to a developer; it is more of a deployment-time
consideration.

The contract defined in JSR-115 interacts with an application server container,
deployment tools, and policy provider, and is divided into the following subcontracts:

■ Provider configuration subcontract

■ Policy configuration subcontract

■ Policy decision and enforcement subcontract

JACC provides new java.security.Permission class implementations that
adhere to the J2EE authorization model. Under JACC, access decisions by the
container are made according to operations on instances of these Permission classes.
JACC defines the ways that policy providers make use of the new permission classes
to address requirements of the J2EE authorization model, as follows:

■ Defining roles as collections of permissions

■ Granting the permissions of a role to a principal

■ Determining whether a principal has been granted the permissions of a role

Note: The javax.security.auth.Policy class is deprecated in
JDK 1.4 but fully supported in OC4J 10.1.3.x implementations and still
supported by the Sun Microsystems JDK and J2SE. As of this release,
OC4J itself does not support the java.security.Policy class.

See Also:

■ "Java 2 Authorization: Java 2 Security Policies" on page 2-10 for an
introduction to codesources

OracleAS JAAS Provider Policy Management

5-12 Oracle Containers for J2EE Security Guide

OracleAS JAAS Provider Policy Management
There is not a set standard for subject-based policy management; the implementation
is left up to each vendor. This section discusses how to use OracleAS JAAS Provider
features for subject-based policy management—granting permissions, the resulting
configuration, checking permissions, and (where necessary) explicitly specifying the
OracleAS JAAS Provider policy provider:

■ Granting Permissions through the OracleAS JAAS Provider Admintool

■ Using OracleAS JAAS Provider Policy Management APIs

■ OracleAS JAAS Provider Policy Configuration

■ Specification of the Oracle Policy Provider

Granting Permissions through the OracleAS JAAS Provider Admintool
With either system-jazn-data.xml or Oracle Internet Directory as the policy
repository, you can use the OracleAS JAAS Provider Admintool to grant, revoke, or list
permissions—using the grantperm, revokeperm, or listperm command,
respectively. (An alternative, for runtime, is to use APIs discussed in the next section,
"Using OracleAS JAAS Provider Policy Management APIs".) Complete syntax for
these commands is documented in "Granting and Revoking Permissions" on page C-14
and "Listing Permissions" on page C-15.

You can grant permissions to a user (through the grantperm -user option), to a role
(through the -role option), or to a principal.

For example, to grant RMI permission "login" to the role developers in the realm
myrealm:

% java -jar jazn.jar -grantperm myrealm -role developers \
 com.evermind.server.rmi.RMIPermission login

(RMI permission "login" is a permission you must often grant to allow EJB/RMI
access.)

To grant this same permission to the user JDOE_ENDUSER:

% java -jar jazn.jar -grantperm myrealm -user JDOE_ENDUSER \
 com.evermind.server.rmi.RMIPermission login

To grant this permission to the LDAP principal hobbes (when using an external
LDAP provider):

% java -jar jazn.jar -grantperm oracle.security.jazn.realm.LDAPPrincipal hobbes \
 com.evermind.server.rmi.RMIPermission login

See Also:

■ "Enabling the Java Authorization Contract for Containers" on
page 5-19

■ For general information about JACC:

http://java.sun.com/j2ee/javaacc/
http://www.jcp.org/en/jsr/detail?id=115

See Also:

■ "Java 2 Security and Code-Based Policy Management" on page 5-1
regarding code-based policy

OracleAS JAAS Provider Policy Management

Authorization in OC4J 5-13

To grant FilePermission for a file sample.txt for actions "read, write" to user
martha in realm foo:

% java -jar jazn.jar -grantperm foo -user martha java.io.FilePermission
 sample.txt read,write

Resulting configuration from the grantperm command is discussed in "OracleAS
JAAS Provider Policy Configuration" on page 5-14.

Using OracleAS JAAS Provider Policy Management APIs
With either system-jazn-data.xml or Oracle Internet Directory as the policy
repository, you can use OracleAS JAAS Provider policy management APIs to grant or
revoke permissions. (An alternative, for nonruntime, is to use OracleAS JAAS Provider
Admintool commands discussed in the preceding section, "Granting Permissions
through the OracleAS JAAS Provider Admintool".) In this example, the doGet()
method shown in "Using J2EE Authorization APIs" on page 5-16 is expanded to use
the OracleAS JAAS Provider policy management API to grant file permissions to a
user.

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 ServletOutputStream out = response.getOutputStream();

 response.setContentType("text/html");
 out.println("<HTML><BODY bgcolor=\"#FFFFFF\">");
 out.println("Time stamp: " + new Date().toString());
 out.println("request.isUserInRole('ar_developers') = " +
 request.isUserInRole("ar_developers") + "
");
 try {
 //Grant Permissions to a user developer

 //get JAZNConfiguration related info
 JAZNConfig jc = JAZNConfig.getJAZNConfig();

 //create a Grantee for "developer"
 RealmManager realmmgr = jc.getRealmManager();
 Realm realm = realmMgr.getRealm("jazn.com");
 UserManager userMgr = realm.getUserManager();
 final RealmUser user = userMgr.getUser("developer");

 //grant developer file permission
 JAZNPolicy policy = jc.getPolicy();
 if (policy != null) {
 Grantee gtee = new Grantee((Principal) user);
 java.io.FilePermission fileperm =
 new java.io.FilePermission("foo.txt", "read");
 policy.grant(gtee, fileperm);
 }
 } catch (Exception e) { /* print stack trace */ }

 out.println("</BODY>");
 out.println("</HTML>");
}

See Also:

■ "OracleAS JAAS Provider Policy Configuration" on page 5-14
regarding configuration resulting from permission grants

OracleAS JAAS Provider Policy Management

5-14 Oracle Containers for J2EE Security Guide

OracleAS JAAS Provider Policy Configuration
This section documents subject-based policy configuration that results from granting
permissions when you use the OracleAS JAAS Provider Admintool or policy
management APIs, as discussed in preceding sections. In OC4J, this configuration can
be located in either the system-jazn-data.xml file or in Oracle Internet Directory,
depending on the security provider.

The following topics are covered:

■ Policy Repository Setting in jazn.xml

■ Policy Configuration in system-jazn-data.xml

■ Policy Configuration in Oracle Internet Directory

Policy Repository Setting in jazn.xml
The policy repository for security policies for an OC4J instance is the provider
specified in the jazn.xml file, as indicated by the provider setting in the <jazn>
element, as follows:

■ provider="XML" to use system-jazn-data.xml for policy configuration

■ provider="LDAP" to use Oracle Internet Directory for policy configuration

By default, provider in jazn.xml is set to "XML" to use system-jazn-data.xml
as the policy repository. When you use Oracle Identity Management and associate an
Oracle Internet Directory instance with the OC4J instance, the provider setting in
jazn.xml is changed to "LDAP", resulting in the use of Oracle Internet Directory as
the policy repository.

(Similarly, the provider setting in orion-application.xml specifies the security
provider of the application, which is "XML" for the file-based provider, "LDAP" for
Oracle Identity Management, and by convention is also "XML" for an external LDAP
provider, custom login module, or Oracle Access Manager.)

See Also:

■ "OracleAS JAAS Provider Realm and Policy APIs" on page 5-6

■ "OracleAS JAAS Provider APIs for Granting or Revoking
Permissions" on page 5-7

■ "APIs for Checking Permissions" on page 5-9

■ The next section, "OracleAS JAAS Provider Policy
Configuration", regarding configuration resulting from
permission grants

Note: Configuration discussed here is for subject-based security only.
Code-based security is configured in a Java 2 policy file (.policy), as
discussed in "Specifying a Java 2 Security Manager and Policy File" on
page 5-1 and "Creating or Updating a Java 2 Policy File" on page 5-3.

OracleAS JAAS Provider Policy Management

Authorization in OC4J 5-15

Policy Configuration in system-jazn-data.xml
For the file-based provider, Oracle Access Manager, an external LDAP provider, or a
custom login module, policy configuration is located in the <jazn-policy> element
of the system-jazn-data.xml file.

As an example, we repeat one of the grantperm examples from "Granting
Permissions through the OracleAS JAAS Provider Admintool" on page 5-12:

% java -jar jazn.jar -grantperm myrealm -role developers \
 com.evermind.server.rmi.RMIPermission login

This results in <jazn-policy> configuration such as in the following example:

<jazn-data>
 ...
 <jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <realm-name>myrealm</realm-name>
 <type>role</type>
 <class>oracle.security.jazn.XMLRealmRole</class>
 <name>developers</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>com.evermind.server.rmi.RMIPermission</class>
 <name>login</name>
 </permission>
 </permissions>
 </grant>
 ...
 </jazn-policy>
 ...
</jazn-data>

Policy Configuration in Oracle Internet Directory
For Oracle Identity Management (the LDAP-based provider), policy configuration is
located in Oracle Internet Directory. As with system-jazn-data.xml, policy
information stored in Oracle Internet Directory is accessible through the OracleAS
JAAS Provider Admintool or policy management APIs.

Note: Policy repository configuration in jazn.xml (such as settings
for the provider and location attributes of the <jazn> element) is
OC4J instance-level configuration. If you deploy an application to the
OC4J instance, and the application configures a different provider, the
result would be a mixed usage where the provider configured in
orion-application.xml would be the identity store used for
authentication, while the provider specified in jazn.xml would be
the policy store used for authorization. This is not recommended.

Authorization Coding and Configuration

5-16 Oracle Containers for J2EE Security Guide

Specification of the Oracle Policy Provider
If you use the Java virtual machine shipped with Oracle Application Server, the JAAS
policy provider supplied with OracleAS JAAS Provider is automatically specified as
the policy provider to use in OC4J. If you use another JVM (in other words, if you run
an application outside OC4J), then the Oracle JAAS policy provider,
oracle.security.jazn.spi.PolicyProvider, must be explicitly specified as
the policy provider. (By default, a non-Oracle JVM uses the Sun Microsystems JAAS
provider.)

You can specify Oracle-specific JAAS properties, such as the policy provider, in a
security properties file that you supply to the JVM when you run OC4J. Oracle offers a
default security properties file,
ORACLE_HOME/j2ee/home/config/jazn.security.props, that specifies
oracle.security.jazn.spi.PolicyProvider as the policy provider to use in
OC4J, with the following configuration:

auth.policy.provider=oracle.security.jazn.spi.PolicyProvider

To append default Oracle-specific security property settings, including the above
specification of the Oracle JAAS policy provider, to existing security properties, set the
java.security.properties system property as follows:

-Djava.security.properties=ORACLE_HOME/j2ee/home/config/jazn.security.props

To replace all security properties with the Oracle properties (note the two equals signs,
"=="):

-Djava.security.properties==ORACLE_HOME/j2ee/home/config/jazn.security.props

Authorization Coding and Configuration
This section provides discussion and examples of the following steps to check
authorization during runtime:

1. Using J2EE Authorization APIs

2. Obtaining a Subject

3. Using the checkPermission() Method

4. Configuring and Using JAAS Mode

5. Enabling the Java Authorization Contract for Containers (optional extension of
J2EE authorization)

Samples here use a servlet method, but the basic functionality is similar for EJBs.

Using J2EE Authorization APIs
This sample servlet doGet() method uses standard J2EE authorization methods to
retrieve a user and principal, and determine whether a user is in the specified role.

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 ServletOutputStream out = response.getOutputStream();

 response.setContentType("text/html");

See Also:

■ Appendix B, "OracleAS JAAS Provider Samples" for the
complete example

Authorization Coding and Configuration

Authorization in OC4J 5-17

 out.println("<HTML><BODY bgcolor=\"#FFFFFF\">");
 out.println("Time stamp: " + new Date().toString());
 out.println("request.isUserInRole('ar_developers') = " +
 request.isUserInRole("ar_developers") + "
");
 out.println("</BODY>");
 out.println("</HTML>");
}

Obtaining a Subject
To perform authorization in your code, you will often have to obtain a Subject
instance for the authenticated user who is attempting to access resources. You can
accomplish this through standard JAAS functionality, using the static
Subject.getSubject() method and specifying an access control context.

Typically, use the default access control context:

mysubject = Subject.getSubject(AccessController.getContext());

Alternatively, you can specify a particular access control context (such as one you have
constructed from a set of protection domains, for example):

mysubject = Subject.getSubject(acc);

Note that when you use JAAS mode, OC4J associates an authenticated subject and its
permissions with the default access control context and its permissions.

Using the checkPermission() Method
You will typically use a checkPermission(Permission) call in your authorization
code, which checks whether the access request indicated by the specified permission
should be allowed, based on the security policy currently in effect, and throws an
exception if not.

This method is available in the AccessController and AccessControlContext
classes. Assuming you use the default implementations (provided with the Sun JDK),
the checkPermission() method of either class can enforce Java 2 (code-based)
policy in your application regardless of whether a security manager is enabled.

When you use a security manager, the method is also available in the
SecurityManager class, but the default SecurityManager implementation of
checkPermission() calls AccessController.checkPermission().

You will typically use the AccessController.checkPermission() method,
which is static. This call uses the default access control context (the context inherited
when the thread was created). If you want the permissions check to be with respect to
some other context, however, you can call the instance method checkPermission()
on a particular AccessControlContext instance. The following example uses the
AccessController method:

See Also:

■ "Related Web Application APIs" on page 2-4

■ "Related EJB APIs" on page 2-6

See Also:

■ "APIs for Checking Permissions" on page 5-9

■ "Configuring and Using JAAS Mode" on page 5-18

Authorization Coding and Configuration

5-18 Oracle Containers for J2EE Security Guide

 //create permission
 FilePermission perm = new FilePermission("/home/developer/foo.txt","read");
 //check permission
 AccessController.checkPermission(perm);

In OC4J, any JAAS mode setting is relevant with respect to what the access control
context consists of when AccessController.checkPermission() is called, as
follows:

■ With no JAAS mode (jaas-mode="null"), checkPermission() enforces
code-based security based on the security policy in effect, as presumably specified
in a Java 2 policy file. There is no provision for subject-based security.

■ With doAs JAAS mode (jaas-mode="doas"), checkPermission() enforces a
combination of code-based and subject-based security according to the new access
control context created through the doAs() block within which OC4J executes
your application code. OC4J appends the permissions of the subject to the
permissions of the default access control context.

■ With doAsPrivileged JAAS mode (jaas-mode="doasprivileged"),
checkPermission() has the same functionality as in doAs mode, but OC4J uses
a null access control context, as specified when OC4J calls doAsPrivileged().
This is to use subject-based security only.

Configuring and Using JAAS Mode
In this example, the doGet() method shown in "Using J2EE Authorization APIs" on
page 5-16 is expanded to create and check permissions. Furthermore, assume the JAAS
mode doAsPrivileged, which is set with configuration such as the following in the
application orion-application.xml file:

<orion-application ... >
 ...
 <jazn ... jaas-mode="doAsPrivileged" />
 ...
</orion-application>

The code follows, using two different ways to check permissions, for demonstration
purposes. Because of the JAAS mode setting, the action method, in this case doGet(),
will be executed by OC4J within a Subject.doAsPrivileged() block for the
authenticated subject.

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 ServletOutputStream out = response.getOutputStream();

 response.setContentType("text/html");
 out.println("<HTML><BODY bgcolor=\"#FFFFFF\">");
 out.println("Time stamp: " + new Date().toString());
 out.println("request.isUserInRole('ar_developers') = " +
 request.isUserInRole("ar_developers") + "
");

See Also:

■ "Introduction to JAAS Mode" on page 5-5

■ "APIs for Checking Permissions" on page 5-9

■ "JAAS Authorization: Subject Methods doAs() and
doAsPrivileged()" on page 2-15

Authorization Coding and Configuration

Authorization in OC4J 5-19

 //create Permission
 FilePermission perm = new FilePermission("/home/developer/foo.txt","read");
 {
 // CHECK PERMISSION VIA ACCESS CONTROLLER
 AccessController.checkPermission(perm);

 // CHECK PERMISSION VIA JAAS POLICY
 //get current AccessControlContext
 AccessControlContext acc = AccessController.getContext();

 javax.security.auth.Policy currPolicy =
 javax.security.auth.Policy.getPolicy();

 // Query policy now
 out.println("Policy permissions for this subject are " +
 currPolicy.getPermissions(Subject.getSubject(acc),null));

 //Check Permissions
 out.println("Policy.implies permission: "+ perm +" ? " +
 currPolicy.getPermissions(Subject.getSubject(acc),null).implies(perm));
 }
 out.println("</BODY>");
 out.println("</HTML>");
 }

Enabling the Java Authorization Contract for Containers
This section describes how to enable the Oracle JACC provider in OC4J. With JACC,
J2EE security constraints are translated into Java 2 permissions to effectively provide
an extended version of J2EE authorization, using the same configuration and code for
authorization in your application.

The following topics are covered:

■ System Property to Enable JACC Features

■ System Properties to Specify the JACC Provider

System Property to Enable JACC Features
By default, JACC is disabled in OC4J. It can be enabled with the following system
property setting at OC4J startup:

-Doracle.oc4j.security.jacc=true

See Also:

■ "APIs for Checking Permissions" on page 5-9

Note: JACC is supported only for the file-based provider.
Generated policies are stored in system-jazn-data.xml.

See Also:

■ "Implementation of Java Authorization Contract for
Containers" on page 5-11 for an overview

Authorization Strategies

5-20 Oracle Containers for J2EE Security Guide

System Properties to Specify the JACC Provider
To employ a JACC provider, the system properties described in Table 5–2 must be set
appropriately at application server startup. For the Oracle JACC provider, this
happens automatically when you enable JACC, with the properties being set as shown
in parentheses.

Authorization Strategies
For each of the key Java security models discussed earlier—J2EE, Java 2, and
JAAS—this section summarizes when it may be advantageous to use it, and how it
works. Complete operational details are provided elsewhere in this manual (mostly
earlier in this chapter).

Considering J2EE Security
J2EE (static role-based) security is a coarse-grained model that specifies what security
roles can access a Web application or EJB.

When Should You Use It?
In a J2EE application, this is the simplest and most basic form of security. Almost any
J2EE application will use it, and it will often be enough to suit your needs. It is
standard and therefore platform-independent.

Because of its limitations, however, it is sometimes used in conjunction with the other
security models. Note that with J2EE security alone, you cannot control access to
particular resources or define particular permissions for a role. You also cannot control
access by particular code entities. In addition, the J2EE security model is a static
model; policies cannot be changed at runtime.

How Do You Set It Up?
Set up J2EE security through standard specifications for security roles, role-linking,
and security constraints through the web.xml and ejb-jar.xml files, in addition to
specifications for role-mapping through the OC4J-specific descriptors such as
orion-application.xml.

If you use only J2EE security, JAAS mode is unnecessary (jaas-mode="null").

Table 5–2 System Properties for the JACC Provider

Property Description

javax.security.jacc.policy.provider Class name of the policy provider
(oracle.security.jacc.provider.J2SEPolicy)

javax.security.jacc.policy.
PolicyConfigurationFactory.provider

Class name of the policy mapping
configuration factory
(oracle.security.jacc.provider.
JACCPolicyConfigurationFactory)

oracle.security.jacc.provider.
RoleMappingConfigurationFactory.provider

Class name of the role mapping configuration
factory
(oracle.security.jacc.provider.
JACCRoleMappingConfigurationFactoryImpl)

See Also:

■ "Security Considerations during Development" on page 2-17

Authorization Strategies

Authorization in OC4J 5-21

How Is It Enforced?
J2EE security is enforced by the J2EE container (OC4J).

Considering Java 2 Security
Java 2 (code-based) security controls access to resources based on the location of
executing code or on code signers.

When Should You Use It?
Use Java 2 security when your application must check code-based permissions,
perhaps regardless of the user or role trying to access it. With Java 2 security, an
administrator can enable or disable a security manager to control when the security
manager performs security checks.

Generally, code-based security and the use of a security manager is required only if a
situation may arise where the application server is exposed to untrusted code. Also be
aware that there may be a performance impact with the use of a security manager.

Java 2 security may be used in conjunction with either J2EE security, JAAS security, or
both.

How Do You Set It Up?
Specify Java 2 policies through a standard .policy file, typically named
java.policy or java2.policy. The policy file
ORACLE_HOME/j2ee/home/config/java2.policy is supplied with OC4J and
includes permissions that are required for OC4J to run with a security manager.

Oracle provides no tools to maintain Java 2 policy files; you must do so manually or
use tools provided by the JDK vendor or a third-party vendor.

If you use Java 2 security alone or with J2EE security only, JAAS mode is unnecessary
(jaas-mode="null").

How Is It Enforced?
For Java 2 security policies to be enforced by an application server and the underlying
JDK, a security manager must be enabled.

For Java 2 security policies to be enforced within your application:

■ If you want the capability of code-based security in your application, but with an
administrator being able to control when the security checks are performed, you
can choose to enforce code-based security only when a security manager is
enabled. In this case, you can use the checkPermission() method of the
SecurityManager instance.

Be aware that for this scenario, the JVM must be started with a security manager
enabled.

■ If code-based security requirements in your application are independent of a
security manager, you can choose to enforce code-based security within your
application regardless of the presence of a security manager. In this case, you can
use the static AccessController.checkPermission() method to check
permissions.

In this scenario, it is important to note that the overall environment will not be
secure without a security manager. Other code in the environment, including JDK
classes, will not be running in a secure mode.

Authorization Strategies

5-22 Oracle Containers for J2EE Security Guide

■ To specify the particular protection domains to be checked, you can construct an
AccessControlContext instance from an array of ProtectionDomain
instances, and call the checkPermission() method on the
AccessControlContext instance. (This is not a common usage scenario,
however.)

Considering JAAS Security
JAAS (subject-based) security is a relatively fine-grained model that controls access to
resources according to the particular permissions of the authenticated subject.

When Should You Use It?
Usually, the coarser-grained security of the J2EE model will suffice. JAAS security is
more complicated to administer and deploy; however, JAAS security is valuable if you
want finer control over resources, such as:

■ According to factors other than whether the resource is accessed as part of the
execution of a Web module or EJB

■ According to individual permissions that can be granted or revoked either by an
administrator beforehand or in your code at runtime

J2EE security, by contrast, is more static—access control cannot be modified at
runtime.

JAAS security is typically used together with J2EE security, and may also be used
together with Java 2 security.

How Do You Set It Up?
You can grant (or revoke) permissions either beforehand, using the OracleAS JAAS
Provider Admintool (as shown in "Granting Permissions through the OracleAS JAAS
Provider Admintool" on page 5-12) or at runtime through OracleAS JAAS Provider
APIs (as shown in "Using OracleAS JAAS Provider Policy Management APIs" on
page 5-13). The resulting JAAS (subject-based) policy is reflected in
system-jazn-data.xml, or Oracle Internet Directory if you use Oracle Identity
Management as the security provider.

How you set the JAAS mode is also relevant. To use JAAS authorization without Java
2 (code-based) authorization, use the doAsPrivileged JAAS mode by setting
jaas-mode="doasprivileged", and check permissions by using the
Policy.implies() method.

To use JAAS authorization together with Java 2 authorization:

■ Use the doAs JAAS mode by setting jaas-mode="doas".

■ Specify Java 2 policies through a standard .policy file, typically the
java2.policy file supplied by Oracle.

How Is It Enforced?
You can enforce JAAS security through the
AccessController.checkPermission() method or Policy.implies()
method.

Note: If a resource being accessed in doAsPrivileged mode is a
resource defined by the JVM vendor, additional security checks may
be performed if a security manager is enabled.

Authorization Strategies

Authorization in OC4J 5-23

If you are also using Java 2 security and have a security manager enabled, you can
alternatively use the SecurityManager.checkPermission() method.

(Also refer to earlier discussion regarding enforcement of Java 2 policy.)

Authorization Strategies

5-24 Oracle Containers for J2EE Security Guide

General Tasks for OC4J Security 6-1

6
General Tasks for OC4J Security

This chapter discusses general tasks and related guidelines that apply across the
various security providers you can use with OC4J:

■ Tasks for Password Management

■ Using Security Realms in OC4J

■ Deployment Tasks for Security

■ Post-Deployment Tasks for Security

■ Tasks to Share a Library

Tasks for Password Management
Many OC4J components require passwords for authentication. Embedding these
passwords into deployment and configuration files poses a security risk, especially if
the permissions on the files allow them to be read by any user. To avoid this problem,
OC4J provides two solutions:

■ Password indirection, which replaces cleartext passwords with information
necessary to look up the password in another location (system-jazn-data.xml
in OC4J).

■ Password obfuscation, which replaces passwords stored in cleartext files with an
encrypted version of the password.

The rest of this discussion covers these topics:

■ Using Password Indirection

■ Specifying a Password Manager in system-application.xml

■ Password Obfuscation in OC4J Configuration Files

Using Password Indirection
The following configuration files support password indirection in one or more
elements:

See Also:

■ Oracle Application Server Best Practices (available post-release)
for information about best practices for security

■ The following Web site for OC4J "how-to" examples:

http://www.oracle.com/technology/tech/java/oc4j/1013
/how_to/index.html

Tasks for Password Management

6-2 Oracle Containers for J2EE Security Guide

■ data-sources.xml: password attribute of <data-source> element

■ ra.xml: <res-password> element

■ rmi.xml: keystore-password attribute of <ssl-config> element

■ jms.xml: <password> element

■ *-web-site.xml: keystore-password attribute of <ssl-config> element

To make any of these passwords indirect, replace the literal password string with a
string containing "->" followed by either the user name or by the realm and user name
separated by a slash ("/").

Here are some examples of indirect versus direct passwords.

■ <data-source password="->Scott">

Look up Scott in the default realm, and use the password stored in the password
manager.

■ <res-password="->customers/Scott">

Look up Scott in the customers realm, and use the password stored there.

■ <cluster password="mypass">

The literal string "mypass" is the password; the password is not indirect.

Specifying a Password Manager in system-application.xml
The <password-manager> element in the OC4J-specific
system-application.xml file (associated with the OC4J system application)
specifies the security provider that is used to look up indirect passwords (discussed in
the preceding section, "Using Password Indirection"). If this element is omitted, the
security provider of the global application is used for authentication and authorization
of indirect passwords. The <jazn> element within a <password-manager> element
in the system-application.xml file can be different from the <jazn> element at
the top level of that file.

Note that for security reasons, credentials stored in Oracle Internet Directory cannot
usually be retrieved in decrypted (cleartext) format, which means that Oracle Internet
Directory cannot be used as a password manager for your application. To resolve this,
you can specify the file-based provider as your application password manager, even
when your application uses Oracle Identity Management as the security provider.

To do this, add an entry such as the following to the OC4J-specific
system-application.xml file:

<password-manager>
 <jazn provider="XML"
 location=ORACLE_HOME/j2ee/instance_name/config/system-jazn-data.xml />
</password-manager>

Note: If you choose to use indirect passwords in the current OC4J
implementation, an indirect user is created in the
system-jazn-data.xml file. Be aware that these indirect user
accounts are not removed automatically when an application is
undeployed; you must use Application Server Control Console to
delete any stale indirect user accounts manually.

Using Security Realms in OC4J

General Tasks for OC4J Security 6-3

Password Obfuscation in OC4J Configuration Files
The JAAS configuration files jazn.xml and system-jazn-data.xml (or optionally
an application-specific jazn-data.xml file) contain user names and passwords for
JAAS authorization. To protect these files, OC4J uses password obfuscation.

Generally, whenever you update jazn.xml or system-jazn-data.xml, OC4J reads
the file, then rewrites it with obfuscated (encrypted) versions of all passwords.

In addition (relevant for Oracle Identity Management), a setting for the
ldap.password property within a <jazn> element, such as in
orion-application.xml, is obfuscated. For example:

<jazn ... >
 <property name="ldap.password" value="welcome123"/>
 ...
</jazn>

In other OC4J configuration, you can avoid exposing password cleartext by using
password indirection, as explained in "Using Password Indirection" on page 6-1.

Using Security Realms in OC4J
In OC4J, both the file-based provider and LDAP-based Oracle Identity Management
use the concept of security realms, introduced in "Security Realms in the OracleAS
JAAS Provider" on page 3-3. You can configure a single realm or multiple realms, and
the default realm is specified through your OC4J configuration. Note that the concept
of realms is not supported when you use external LDAP providers such as Active
Directory or Sun Java System Directory Server.

This section discusses key details for using security realms to control authentication
and authorization in OC4J, covering the following topics:

■ Default Realm with the File-Based Provider or Oracle Identity Management

■ Evaluation of Default Realm for File-Based Provider, Oracle Identity Management

■ Using the Default Realm

Note: By default, system-jazn-data.xml is used as the password
manager.

Note: In system-jazn-data.xml or an application-specific
jazn-data.xml file, you can specify clear (human-readable)
passwords in one of two ways, although this is discouraged:

■ Set the clear attribute of the <credentials> element to
"true":

<user>
 <name>myname</name>
 <credentials clear="true">welcome</credentials>
 ...
</user>

■ Precede the password with "!" (in which case "!" is not
considered part of the password):

 <credentials>!welcome</credentials>

Using Security Realms in OC4J

6-4 Oracle Containers for J2EE Security Guide

■ Using a Nondefault Realm

■ Using Multiple Realms

■ Omitting the Realm Name When Retrieving an Authenticated Principal

Default Realm with the File-Based Provider or Oracle Identity Management
A default realm is specified in the default-realm attribute of the <jazn> element.
For the file-based provider, this is either at application level in your
orion-application.xml file, or at the OC4J level in the instance-level jazn.xml
file. For Oracle Identity Management, this is in the jazn.xml file of the OC4J home
instance.

For the file-based provider, jazn.com is configured as the default realm by default, at
the instance level:

<jazn provider="XML" location="./system-jazn-data.xml" default-realm="jazn.com" />

For Oracle Identity Management, the default realm is according to the Oracle Internet
Directory, where it is determined during Oracle Internet Directory installation. After
you associate OC4J with an Oracle Internet Directory instance, the default realm is
reflected at the OC4J instance level, such as in the following example:

<jazn provider="LDAP" location="ldap://www.example.com:636" default-realm="us"/>

"Using the Default Realm" on page 6-5 discusses guidelines to be aware of when you
use the default realm.

Evaluation of Default Realm for File-Based Provider, Oracle Identity Management
As noted in the preceding section, a default realm should always be configured.
However, for reference purposes only, this section discusses the progression that is
followed to determine the default realm if one is not specified, when using the
file-based provider or Oracle Identity Management.

If your application uses the file-based provider:

1. OracleAS JAAS Provider looks for default realm configuration at the application
level, in the orion-appliation.xml file. If a default realm is found there, it is
used as the default realm for your application.

2. If there is no default realm setting at the application level, OracleAS JAAS
Provider looks for default realm configuration at the OC4J instance level, in the
jazn.xml file:

■ If jazn.xml sets provider="XML", OracleAS JAAS Provider uses the
default realm specified in jazn.xml, if one is specified, as the default realm

Important:

■ A default realm should always be specified, even if you use
only one realm. For the file-based provider, this means you
should specify a default realm when you configure your
security provider during application deployment.

■ Do not remove configuration of the jazn.com realm from
system-jazn-data.xml; it is there by default and must
remain there for use by the OC4J system application.

Using Security Realms in OC4J

General Tasks for OC4J Security 6-5

for your application. If none is specified, an error is thrown to indicate that
you are missing the default realm attribute.

■ If jazn.xml sets provider="LDAP", OracleAS JAAS Provider uses
jazn.com as the default realm for your application.

If your application uses Oracle Identity Management:

1. If configuration specifies the LDAP-based provider both for your application and
at the OC4J instance level (in jazn.xml), then OracleAS JAAS Provider looks for
default realm configuration in jazn.xml. If a default realm is found there, it is
used as the default realm for your application.

2. If configuration does not specify the LDAP-based provider at the OC4J instance
level, or if there is no default realm setting at the instance level, the Oracle Internet
Directory default subscriber is used as the default realm. (This is configured in the
Oracle Internet Directory server.)

Using the Default Realm
For authentication, when you use the default realm, there is no need to prefix the user
name with a realm name. For example, if a user scott is in the default realm
jazn.com, for authentication the user name need only be specified as "scott".

This is also true for applicable OC4J components and services such as JNDI, JMS, and
J2EE Connector Architecture.

Similarly, for password indirection, the OC4J deployment descriptor need not prefix
the realm name in the user name specified for indirection: "->scott".

Using a Nondefault Realm
If you are using a nondefault realm (in other words, a custom realm)—such as
acme.com, for example, in this discussion—you must always prefix user names with
the realm name. To authenticate the user scott in acme.com, for example, you
would have to specify "acme.com/scott", not just "scott".

This is also the case for applicable OC4J components and services such as JNDI, JMS,
and J2EE Connector Architecture.

Similarly, for password indirection, the OC4J deployment descriptor must prefix the
realm name in the user name specified for indirection, if the user is in a nondefault
realm: "->acme.com/scott".

Also be aware that when you use a custom realm, and JAAS policies are granted to
users or roles in the custom realm, you should do the following:

1. In the <jazn> element of your application orion-application.xml file,
specify a default-realm setting of "custom_realm_name".

2. Do not specify a location attribute setting in the <jazn> element.

3. Set the jaas.username.simple property to "false" in jazn.xml, using a
<property> subelement of the <jazn> element, as discussed in "Omitting the
Realm Name When Retrieving an Authenticated Principal" on page 6-6.

These steps allow the custom realm and its users, roles, and policies to be persisted.

Note that to use JAAS authorization, in particular to grant permissions to users or
roles in a custom realm, the custom realm and its users and groups must be defined
and persisted in system-jazn-data.xml, not in an application-specific
jazn-data.xml file.

Using Security Realms in OC4J

6-6 Oracle Containers for J2EE Security Guide

Using Multiple Realms
When multiple realms are configured, you must prefix user names with the realm
name for any nondefault realm that you use. For this discussion, assume the realms
jazn.com, acme.com, and example.org are configured, with jazn.com being the
default realm. Further assume user scott is in jazn.com, while user ralph is in
example.org.

To specify scott for authentication, you need only specify the user as "scott",
because he is in the default realm jazn.com.

To specify ralph for authentication, you must specify "example.org/ralph".

This is also the case for applicable OC4J components and services such as JNDI, JMS,
and J2EE Connector Architecture. The realm name must be specified for a user in any
nondefault realm.

Similarly, for password indirection, the OC4J deployment descriptor must prefix the
realm name in the user name specified for indirection if the user is in any nondefault
realm: "->example.org/ralph". But you need not specify the realm name for any
user in the default realm, such as "scott".

Omitting the Realm Name When Retrieving an Authenticated Principal
Unless you configure custom realms, it is typically desirable to omit the realm name
from the authenticated principal that is returned by key methods for servlets, EJBs,
and Web services. In OC4J, use the jaas.username.simple property to control this
behavior. This property affects the following methods:

■ getUserPrincipal() method of any HTTPServletRequest instance
(servlets)

■ getRemoteUser() method of any HTTPServletRequest instance (servlets)

■ getCallerPrincipal() method of any EJBContext instance (EJBs)

■ getUserPrincipal() method of any ServletEndpointContext instance
(Web services)

With a "true" property setting, which is the default, principal names returned by
these methods do not include the realm name: for example, "scott".

If you set the property to "false", then principal names returned by these methods
are prefixed with the realm name: for example, "jazn.com/scott".

To specify a "false" setting, use a <property> subelement of the <jazn> element
(in orion-application.xml for application level, or in the instance-level
jazn.xml file for OC4J instance level) as follows:

<jazn ... >
 ...
 <property name="jaas.username.simple" value="false" />
 ...
</jazn>

Important: Always set jaas.username.simple to "false"
when multiple realms are configured. (See the next section,
"Omitting the Realm Name When Retrieving an Authenticated
Principal".)

Deployment Tasks for Security

General Tasks for OC4J Security 6-7

Deployment Tasks for Security
This section discusses security issues to consider when deploying your application,
covering the following topics:

■ Overview of Deployment Considerations

■ Deploying an Application

■ Specifying a Security Provider

■ Mapping Security Roles

Overview of Deployment Considerations
The security provider is designed to work with the J2EE declarative security model.
This declarative model requires little or no programming to use JAAS security in your
application. Instead, most security decisions are made as part of the deployment
process, making it easy to make changes without requiring re-coding. If the declarative
model is not sufficient, the security provider also supports programmatic security in
the same manner that JAAS is used in any J2SE environment.

Using the declarative security model, the deployer must make the following
security-related decisions:

■ Decide which security provider you want to use. The Oracle Application Server
includes Oracle Identity Management, which uses the LDAP-based Oracle Internet
Directory as the repository, and the file-based provider, which uses an XML file as
the repository. OC4J also supports external (third-party) LDAP providers, custom
security providers (custom login modules), and, beginning in OC4J 10.1.3.x
implementations, the Oracle Access Manager.

■ Determine the J2EE logical roles that are assumed in the application, then define
these roles in the deployment descriptors. For example, an HR application may
assume that the J2EE role hr_manager is running the application; the deployer
must define that role.

■ Determine the authorization constraints that apply to these roles and define them
in the deployment descriptors. For web modules, these constraints typically apply
to URL patterns as defined in the J2EE specification. EJB modules typically have
constraints at the EJB-method level.

Important:

■ If you switch from the file-based provider to Oracle Identity
Management at any time for any application through
Application Server Control, the <jazn> element in
orion-application.xml for the application is replaced
with the following. Any prior settings within the <jazn>
element would be lost and would have to be redone.

<jazn provider="LDAP" />

■ Always set jaas.username.simple to "false" when
multiple realms are configured.

See Also:

■ Oracle Containers for J2EE Deployment Guide for a full discussion of
deployment and related considerations

Deployment Tasks for Security

6-8 Oracle Containers for J2EE Security Guide

■ Map the security roles (including the application-specific roles, if they exist) to
users and roles defined by the OracleAS JAAS Provider. For example, the J2EE
role called hr_manager may be mapped to a given set of users defined by the
OracleAS JAAS Provider.

■ Consider whether you have any code that you will want to load as shared libraries
(login modules, for example).

Deploying an Application
This section discusses how to deploy an application, focusing on the functionality of
the Application Server Control Console.

Deploying an Application through Application Server Control
General information about deploying an application to OC4J, including information
about deployment plans and using Application Server Control Console, is provided in
the Oracle Containers for J2EE Deployment Guide. This section reviews the basic steps:

1. In the OC4J Home page, select the Applications tab. (In an Oracle Application
Server environment, from the Cluster Topology page, choose the desired OC4J
instance to get to its home page.)

2. In the resulting Applications page, choose Deploy.

3. In the resulting Deploy: Select Archive page (page 1 of 3), specify the archive file
to deploy and your desired choice for a deployment plan.

4. In the Deploy: Application Attributes page (page 2 of 3), specify the desired
application name, parent application, Web site, and context root.

5. In the Deploy: Deployment Settings page (page 3 of 3), you can choose any of the
following tasks:

■ Map Environment References (if applicable)

■ Select Security Provider

■ Map Security Roles (if applicable)

■ Configure EJBs (if applicable)

■ Configure Clustering

■ Configure Class Loading (such as for loading shared libraries)

For security, selecting a security provider and mapping security roles are of
particular interest. You may also want to configure class loading for shared
libraries, such as if you have login modules that you want to load as shared
libraries.

6. In the Deploy: Deployment Settings page, when you are done with any applicable
tasks mentioned in the previous step, select Deploy.

See Also:

■ "Specifying the Security Provider through Application Server
Control" on page 6-9

■ "Specifying Security Role Mapping through Application Server
Control" on page 6-11

■ "Providing Login Modules as OC4J Shared Libraries" on page 9-15

Deployment Tasks for Security

General Tasks for OC4J Security 6-9

Specifying a Security Provider
This section discusses how to specify the security provider using Application Server
Control Console, as well as considerations for using the file-based provider versus the
LDAP-based provider.

Considering the File-Based Provider Versus Oracle Identity Management
Generally, use the file-based provider during development and for deployed
applications with a small user population, such as in a standalone OC4J environment.
Use Oracle Identity Management in larger production environments.

The file-based provider is a lighter-weight implementation, while Oracle Identity
Management offers better security and performance. The centralized Oracle Internet
Directory server scales well as the number of applications and users grows, and
enables you to configure cache parameters to improve overall performance of
authentication and authorization. It also simplifies access to the user repository from
multiple OC4J instances; with the file-based provider, user data updates have to be
coordinated between instances, given that each instance has its own repository.

In addition, Oracle Internet Directory offers features such as centralized account
creation and management, single passwords, and credential management.

Specifying the Security Provider through Application Server Control
In Application Server Control Console, specify the security provider during
deployment, from the Deploy: Deployment Settings page (see "Deploying an
Application through Application Server Control" on page 6-8 for how to get to this
page), as follows:

1. Choose the Select Security Provider task.

2. In the resulting Deployment Settings: Select Security Provider page, choose the
desired security provider from the dropdown list. The choices are:

■ File-Based

■ Oracle Identity Management

■ Third Party LDAP Server (for an external LDAP provider)

■ Custom (for a custom login module)

3. Each type of security provider necessitates its own set of configuration tasks,
documented in the following locations:

■ "Configuring the File-Based Provider during Application Deployment" on
page 7-3

■ "Specifying Oracle Identity Management during Deployment" on page 8-12

■ "Specifying and Configuring a Custom Security Provider during Deployment"
on page 9-15

■ "Specifying and Configuring an External LDAP Provider during Deployment"
on page 10-3

Note: To use Oracle Identity Management, the OC4J instance must
have been previously associated with an Oracle Internet Directory
instance through Application Server Control.

Deployment Tasks for Security

6-10 Oracle Containers for J2EE Security Guide

4. Back in the Deploy: Deployment Settings page, choose Deploy to complete the
deployment, or choose another task, as desired. The list of tasks is noted in
"Deploying an Application through Application Server Control" on page 6-8.

Mapping Security Roles
This section discusses various aspects of the following:

■ Defining security roles in an application and linking them to J2EE logical roles
declared in the standard deployment descriptor

■ Mapping J2EE roles to deployment roles in the OC4J-specific configuration, and
how to accomplish this mapping in Application Server Control

The information is organized as follows:

■ Application Role Definitions and References

■ Specifying Security Role Mapping through Application Server Control

■ Mapping J2EE Roles to Deployment Roles in OC4J Configuration Files

■ Using the OC4J PUBLIC Role to Allow General Access by Authenticated Users

Application Role Definitions and References
The process of security role definitions and references includes the following steps:

1. In your standard deployment descriptor (web.xml or ejb-jar.xml), use
<security-role> elements to define J2EE logical roles, such as in the following
example:

<security-role>
 <role-name>sr_developers</role-name>
</security-role>

2. Use <security-role-ref> elements in the standard deployment descriptor to
link from the roles you have developed in your application to the J2EE roles you
have defined in the standard descriptors, such as in the following example, where
ar_developers is an application role:

Note: The Oracle Access Manager security provider is not
supported through Application Server Control (although its login
module can be configured through Application Server Control like
any other login module). See Chapter 11, "Oracle Access Manager"
for information about how to configure Oracle Access Manager.

Note: Security role mappings are not inherited from a parent
application.

See Also:

■ "Overview of Security Role Mapping" on page 3-8

■ "Web Application Security Role and Constraint Configuration"
on page 17-6

■ "Mapping J2EE Roles to Deployment Users and Roles" on
page 18-6

Deployment Tasks for Security

General Tasks for OC4J Security 6-11

<security-role-ref>
 <role-name>ar_developers</role-name>
 <role-link>sr_developers</role-link>
</security-role-ref>

After these steps, mappings to deployment roles defined in the security provider (such
as in a jazn-data.xml file or the system-jazn-data.xml file for the file-based
security provider, or in Oracle Internet Directory for the LDAP-based provider) are
defined in the OC4J-specific descriptors—orion-web.xml, orion-ejb-jar.xml,
or orion-application.xml. These files are updated, as appropriate, through the
mappings you define when you deploy an application through Application Server
Control, and are reflected in <security-role-mapping> elements. These mappings
are discussed in the next two sections, "Specifying Security Role Mapping through
Application Server Control" and "Mapping J2EE Roles to Deployment Roles in OC4J
Configuration Files".

Specifying Security Role Mapping through Application Server Control
In Application Server Control Console, map J2EE roles to deployment roles during the
deployment process, from the Deploy: Deployment Settings page (see "Deploying an
Application through Application Server Control" on page 6-8 for how to get to this
page), as follows:

1. Select the Map Security Roles task.

2. In the resulting Deployment Settings: Map Security Roles page, choose the Map
Role task for each J2EE role you want to map. (You can also choose Clear All
Mappings.)

3. In the Deployment Settings: Map Security Role page for the role, you can do any
of the following:

■ Map all users and groups (deployment roles) to the J2EE role.

■ Map selected users to the J2EE role. Choose Add Existing User, then specify
the desired users in the Select and Search: Users page, then choose Select. If
Add Existing User does not list the desired user, use the Add User feature in
the Deployment Settings: Map Security Role page.

■ Map selected groups to the J2EE role. Choose Add Existing Group, then
specify the desired groups in the Select and Search: Groups page, then choose
Select. If Add Existing Group does not list the desired group, use the Add
Group feature in the Deployment Settings: Map Security Role page.

■ Choose Continue when you are finished mapping users and groups.

4. Back in the Deployment Settings: Map Security Roles page, choose OK.

5. Back in the Deploy: Deployment Settings page, choose Deploy to complete the
deployment, or choose another task, as desired. The list of tasks is noted in
"Deploying an Application through Application Server Control" on page 6-8.

See Also: The preceding discussion leaves out some details that
differ between Web applications and EJBs. Refer to the following for
additional information:

■ "Web Application Security Role and Constraint Configuration" on
page 17-6

■ "Authenticating and Authorizing EJB Applications" on page 18-1

Deployment Tasks for Security

6-12 Oracle Containers for J2EE Security Guide

These actions create <security-role-mapping> elements in the applicable OC4J
configuration file, such as orion-application.xml, orion-web.xml, or
orion-ejb-jar.xml, as shown in the next section, "Mapping J2EE Roles to
Deployment Roles in OC4J Configuration Files".

Mapping J2EE Roles to Deployment Roles in OC4J Configuration Files
Portable J2EE logical roles defined in a standard deployment descriptor are mapped to
deployment roles in OC4J through <security-role-mapping> settings in the
orion-application.xml file (to apply throughout a J2EE application),
orion-web.xml file (to apply to a particular Web application), or
orion-ejb-jar.xml file (to apply to a particular EJB application).

In this example, the J2EE role sr_developers is mapped to the deployment role
developers. Note that a <group> subelement under a
<security-role-mapping> element corresponds to a deployment role, such as one
defined in system-jazn-data.xml or Oracle Internet Directory. You can also have
<user> subelements for mapping individual users.

<security-role-mapping name="sr_developers">
 <group name="developers" />
</security-role-mapping>

This association permits the developer role to access resources that are accessible to
the sr_developers role according to security constraints configured in the standard
deployment descriptors.

Consider a user john, for example, who is a member of the developer deployment
role. Because this role is mapped to the J2EE role sr_developers, john has access to
the application resources available to the sr_developers role.

Using the OC4J PUBLIC Role to Allow General Access by Authenticated Users
For situations where you care only about authentication, not authorization, OC4J
supports a mode where any authenticated user is allowed access to a given application
or resource. This is supported through the PUBLIC role, and can be configured down
to a per-URL or per-method basis as desired. This involves the following steps:

1. If you do not already have a J2EE logical role intended for public access, you can
define such a role in web.xml (for a Web application) or in ejb-jar.xml (for an
EJB).

For example, in web.xml:

<web-app>
 ...
 <security-role>
 <role-name>public_role</role-name>
 </security-role>
 ...
 <auth-constraint>
 <role-name>public_role</role-name>

Note: There is no way to alter security mappings through
Application Server Control after deployment. You would have to
update the configuration manually (as shown in "OC4J Mapping of
J2EE Roles to Deployment Roles" on page 17-9 and "Mapping J2EE
Roles to Deployment Users and Roles" on page 18-6) and then
restart or redeploy the application.

Post-Deployment Tasks for Security

General Tasks for OC4J Security 6-13

 </auth-constraint>
 ...
</web-app>

Or, in ejb-jar.xml:

<assembly-descriptor>
 ...
 <security-role>
 <role-name>public_role</role-name>
 </security-role>
 ...
 <method-permission>
 <role-name>public_role</role-name>
 <method>method</method>
 </method-permission>
 ...
</assembly-descriptor>

2. Map your public role to the PUBLIC role in orion-application.xml (for a
Web application) or orion-ejb-jar.xml (for an EJB).

To map the role defined in web.xml above, include the following in
orion-application.xml:

<orion-application>
 ...
 <security-role-mapping name="public_role">
 <group name="{{PUBLIC}}"/>
 </security-role-mapping>
 ...
</orion-application>

Or, for an EJB, use the <security-role-mapping> element in
orion-ejb-jar.xml instead (where it is a subelement of the
<assembly-descriptor> element).

Post-Deployment Tasks for Security
This section discusses the following consideration for after you have deployed your
application:

■ Navigating to the Security Provider Page for Your Application

Navigating to the Security Provider Page for Your Application
After you have deployed your application, you can go to the Security Provider page
for your application in the Application Server Control Console to examine or update
the application-level security settings. Starting from the OC4J Home page for your
OC4J instance:

1. Choose the Administration tab.

2. In the Administration page, go to the Security Providers task (under "Security").

Note: This example assumes the default setting of "{{PUBLIC}}"
for the OC4J public group. This may be overridden through the
OracleAS JAAS Provider public.group property.

Tasks to Share a Library

6-14 Oracle Containers for J2EE Security Guide

3. In the Security Providers page, under "Application Level Security", go to the Edit
task for your application.

This brings you to the Security Provider page, displaying information on the provider
for your application and allowing you to update settings or change to a different
security provider.

Tasks to Share a Library
The OracleAS JAAS Provider is integrated with the OC4J class loading architecture.
You can make libraries available to applications by loading them as OC4J shared
libraries. This is useful to share the following among applications, for example:

■ Login modules

■ Principal classes for authorization and subject propagation

■ Identity management framework implementation classes

There are two main steps to sharing and using a library (considering functionality of
the Application Server Control Console in particular):

1. Loading the Library as an OC4J Shared Library

2. Importing the Library into Your Application

Loading the Library as an OC4J Shared Library
To load a library as an OC4J shared library through Application Server Control, use
the Shared Libraries task.

1. Go to the Administration tab for the OC4J instance.

2. Choose the Shared Libraries Task (under Properties).

3. From the Shared Libraries page, choose Create.

4. From the Create Shared Library: Attributes page, specify the desired library name
and version, then proceed to the next page.

5. From the Create Shared Library: Add Archives page, choose Add to add a library.

6. From the Add Archives: Add Archive page, you can choose to upload a library
from the local host, upload a library from the server where Application Server
Control is located, or specify a location on the target server where the library
already exists. Repeat this process for each library you want to add, then continue.

7. Again from the Create Shared Library: Add Archives page, you can either finish,
or go to the next page, Create Shared Library: Import Shared Libraries page. There
you can import additional libraries into your library, then finish. This takes you
back to the Shared Libraries page.

Note: The <library> element and
ORACLE_HOME/j2ee/home/applib location are still supported for
OC4J shared libraries, but are discouraged.

See Also:

■ Oracle Containers for J2EE Developer’s Guide for more information
about OC4J class loading and shared libraries

Tasks to Share a Library

General Tasks for OC4J Security 6-15

Loading a library results in configuration such as the following in the OC4J
server.xml file:

<application-server ... >
 ...
 <shared-library name="mylib.lib" version="1.0" library-compatible="true">
 <code-source path="../mypath" />
 </shared-library>
 ...
</application-server>

Importing the Library into Your Application
You can import a library into your application through Application Server Control in
the process of deploying your application:

1. When you reach the Deploy: Deployment Settings page (as discussed in
"Deploying an Application through Application Server Control" on page 6-8), you
can choose the Configure Class Loading task to import shared libraries.

2. From the Deployment Settings: Configure Class Loading page, choose the libraries
to import, then choose OK.

3. Proceed with the deployment.

Importing a library results in configuration such as the following in your application
orion-application.xml file:

<orion-application ... >
 ...
 <imported-shared-libraries>
 <import-shared-library name="mylib.lib" />
 ...
 </imported-shared-libraries>
 ...
</orion-application>

Tasks to Share a Library

6-16 Oracle Containers for J2EE Security Guide

File-Based Security Provider 7-1

7
File-Based Security Provider

OC4J supplies a file-based security provider, where an XML-based file is used as the
repository for users, roles, and policies. Use of this file-based provider is typical during
development and in small production environments (such as when using standalone
OC4J), and is the default security provider. Specifically, OracleAS JAAS Provider
supports the following tasks for the file-based (XML-based) provider:

■ Create realms, users, and roles.

■ Grant roles to users and to other roles.

■ Assign permissions to specific users and roles (principals).

This information is stored in an XML repository, typically system-jazn-data.xml,
although you have the option of using an application-specific jazn-data.xml file
instead.

This chapter discusses basic user, role, and realm management tasks for the file-based
provider, focusing on features of the Application Server Control Console.

The chapter is divided into the following sections:

■ Tools for File-Based Provider Policy and Realm Management

■ Configuring the File-Based Provider in Application Server Control

■ File-Based Provider Settings in OC4J Configuration Files

■ OracleAS JAAS Provider Migration Tool

■ Migrating Principals from the principals.xml File

■ Using the File-Based Provider Across an OC4J Group

Notes:

■ Be aware that with the file-based provider, role comparisons for
authorization are case-sensitive.

■ By default, the file-based provider is the security provider, the
system-jazn-data.xml file is the repository, and jazn.com is
the default realm. The system-jazn-data.xml file is located in
the ORACLE_HOME/j2ee/instance_name/config directory.
Changes made to this repository are visible to all applications that
use it.

Tools for File-Based Provider Policy and Realm Management

7-2 Oracle Containers for J2EE Security Guide

Tools for File-Based Provider Policy and Realm Management
To manage users and roles for the file-based provider, use Application Server Control
Console, as described in "Managing Application Realms through Application Server
Control" on page 7-4. This updates the user repository, either
system-jazn-data.xml or an application-specific jazn-data.xml file that you
provide.

To manage policies for the file-based provider, use the OracleAS JAAS Provider
Admintool. Refer to the policy options listed in "Summary of Admintool
Command-Line Syntax and Options" on page C-4.

Generally avoid direct manipulation of the system-jazn-data.xml or
jazn-data.xml file.

Configuring the File-Based Provider in Application Server Control
This section covers the following administration tasks, using the Application Server
Control Console, for an application using the file-based provider. There is also a
section at the end for instance-level administration.

■ Configuring the File-Based Provider during Application Deployment

■ Changing to the File-Based Provider after Deployment

■ Managing Application Realms through Application Server Control

■ Managing Application Users through Application Server Control

■ Managing Roles through Application Server Control

■ Administering Instance-Level Security through Application Server Control

See Also:

■ "Creating a New Administrator Account" on page 4-13 if you
want to use an administrator account other than oc4jadmin

Note: There is one exception regarding the tool for policy
management: Granting RMI permission or Administration permission
to a role in the file-based provider is something you can do as part of
editing or adding the role through Application Server Control, as
described later in this chapter.

Note that to enable application access to EJBs using RMI, you must
grant RMI permission "login" to your user or role. If you do not enable
this through Application Server Control, you can use the OracleAS
JAAS Provider Admintool. For example:

% java -jar jazn.jar -grantperm myrealm -role myrole \
 com.evermind.server.rmi.RMIPermission login

See Also:

■ Appendix C, "OracleAS JAAS Provider Admintool Reference"

Configuring the File-Based Provider in Application Server Control

File-Based Security Provider 7-3

Configuring the File-Based Provider during Application Deployment
You can specify the file-based provider when you deploy an application through
Application Server Control. Optionally, you can also specify a jazn-data.xml file
location and a default realm.

From the Deploy: Deployment Settings page (see "Deploying an Application through
Application Server Control" on page 6-8 for how to get to this page):

1. Go to the Select Security Provider task.

2. In the resulting Deployment Settings: Select Security Provider page, choose
File-Based from the Security Provider dropdown list.

3. Under "Configuration of File-Based Security Provider" (which appears after you
choose the file-based provider in the dropdown), you can accomplish the
following:

■ Choose whether to use the default file-based provider of the OC4J instance, or
an application-specific file-based provider.

■ Specify the location of your repository, optionally an application-specific
jazn-data.xml file, for user and role configuration. By default, the
system-jazn-data.xml file will be used.

■ Specify a default realm. Otherwise, the default realm is jazn.com, unless
there is a different setting in the instance-level jazn.xml file.

4. Choose OK to finish the security provider selection.

5. Back in the Deploy: Deployment Settings page, choose Deploy to complete the
deployment, or choose another task, as desired. The list of tasks is noted in
"Deploying an Application through Application Server Control" on page 6-8.

Changing to the File-Based Provider after Deployment
You can select a security provider for your application at deployment time, as
described above. You can also change to a different security provider after
deployment. You can change to the file-based provider as follows:

1. Go to the Security Provider page for your application, as described in "Navigating
to the Security Provider Page for Your Application" on page 6-13.

Notes:

■ Procedures discussed throughout this section assume you are
logged in to Application Server Control as a user with required
administrative permissions (as oc4jadmin, for example).

■ Security provider settings, optionally including specification of
the repository file, affect settings in the <jazn> element of the
orion-application.xml file. Realm, user, and role settings
affect settings under the <jazn-realm> element in the repository
file.

See Also:

■ "File-Based Provider Settings in OC4J Configuration Files" on
page 7-9, for examples of the XML configuration that results from
the steps described in this section

Configuring the File-Based Provider in Application Server Control

7-4 Oracle Containers for J2EE Security Guide

2. In the Security Provider page, choose Change Security Provider.

3. In the Change Security Provider page, select File-Based Security Provider from the
Security Provider Type dropdown.

4. Under "Security Provider Attributes: File-Based Security Provider" (which appears
after you select "File-Based Security Provider"):

■ Choose whether to use the default file-based provider of the OC4J instance, or
an application-specific file-based provider.

■ Optionally specify the location of your repository file, such as an
application-specific jazn-data.xml file. Otherwise, the
system-jazn-data.xml file will be used.

■ Optionally specify a default realm. Otherwise, the default realm is jazn.com,
unless there is a different setting in the instance-level jazn.xml file.

5. Choose OK to finish the change.

This takes you back to the Security Provider page, where you can examine your
settings. You are prompted to restart your application for the change to take effect.

Managing Application Realms through Application Server Control
This section describes how to configure realms for the file-based provider.

The first step for any of these instructions is to go to the Application Server Control
Console Security Provider page for your application, as described in "Navigating to
the Security Provider Page for Your Application" on page 6-13.

The tasks here create or modify subelements under the <jazn-realm> element in
your repository file. There is a <realm> subelement under <jazn-realm> for each
realm.

Search for a Realm
From the Security Provider page for your application, execute the following steps to
search for a realm:

1. Choose the Realms tab.

2. In the Realms page, under "Search", specify a search string then choose Go.

3. Realms matching the search string appear under "Results". (An empty search
string displays all existing realms.)

Create a Realm
From the Security Provider page for your application, execute the following steps to
create a realm:

1. Choose the Realms tab.

2. Above the list of existing realms, choose Create.

3. In the resulting Add Realm page:

Note: There is no "Edit" task for realms. Editing a realm includes
updating users, roles, or both, as described in "Managing Application
Users through Application Server Control" on page 7-5 and
"Managing Roles through Application Server Control" on page 7-7.

Configuring the File-Based Provider in Application Server Control

File-Based Security Provider 7-5

■ Specify the desired name of the realm.

■ Specify the desired name for the administrative user of the realm.

■ Specify and confirm the desired password for the administrative user.

■ Specify the desired administrator role of the realm. The administrative user
you specified will belong to this realm.

4. Choose OK to create the realm.

This takes you back to the Security Provider page, where you can see the new realm in
the list of realms.

Delete a Realm
From the Security Provider page for your application, execute the following steps to
delete a realm:

1. In the list of existing realms, choose the Delete task for the realm you want to
delete.

2. In the resulting Confirmation page, choose Yes to delete the realm.

This takes you back to the Security Provider page.

Managing Application Users through Application Server Control
This section describes how to configure users for the file-based provider.

The first step for any of these instructions is to go to the Application Server Control
Console Security Provider page for your application, as described in "Navigating to
the Security Provider Page for Your Application" on page 6-13.

The tasks here create or modify subelements under a <users> element in your
repository file. Each <realm> element has a <users> subelement for the users in that
realm.

Search for a User
From the Security Provider page for your application, execute the following steps to
search for a user:

1. Choose the Realms tab.

2. In the Realms page, under "Users" in the list of realms, and in the row for the
realm of interest, select the number that shows how many users are in the realm.
This is a link to the Users page for the realm.

3. In the Users page, under "Search", specify a search string then choose Go.

4. Users matching the search string appear under "Results". (An empty search string
displays all users in the realm.)

Create a User
From the Security Provider page for your application, execute the following steps to
create a user:

1. Choose the Realms tab.

2. In the Realms page, under "Users" in the list of realms, and in the row for the
realm of interest, select the number that shows how many users are in the realm.
This is a link to the Users page for the realm.

Configuring the File-Based Provider in Application Server Control

7-6 Oracle Containers for J2EE Security Guide

3. In the Users page, above the list of existing users in the realm, choose Create.

4. In the resulting Add User page:

■ Specify the desired user name.

■ Specify and confirm the desired password for the user.

■ Under "Assign Roles", for any available role you want the user to belong to,
move the role name into the "Selected Roles" column.

■ Choose OK to add the user.

This takes you back to the Users page, where you can see the new user in the list of
users.

Delete a User
From the Security Provider page for your application, execute the following steps to
delete a user:

1. Choose the Realms tab.

2. In the Realms page, under "Users" in the list of realms, and in the row for the
realm of interest, select the number that shows how many users are in the realm.
This is a link to the Users page for the realm.

3. In the Users page, choose the Delete task for the user you want to delete.

4. In the resulting Confirmation page, choose Yes to delete the user.

This takes you back to the Users page.

Edit a User
From the Security Provider page for your application, execute the following steps to
edit the properties of a user:

1. Choose the Realms tab.

2. In the Realms page, under "Users" in the list of realms, and in the row for the
realm of interest, select the number that shows how many users are in the realm.
This is a link to the Users page for the realm.

3. In the Users page, select the user you want to edit.

4. In the resulting User page:

■ If you want to change the user password, enter the old password, then specify
and confirm the desired new password.

■ If you want to add the user to any roles or remove the user from any roles,
under "Assign Roles", move role names into or out of the "Selected Roles"
column as desired.

■ Choose Apply to edit the user.

This takes you back to the Users page.

Note: Do not create user names that contain slash (/) characters, as
in a/b/c.

Configuring the File-Based Provider in Application Server Control

File-Based Security Provider 7-7

Managing Roles through Application Server Control
This section describes how to configure roles for the file-based provider.

The first step for any of these instructions is to go to the Application Server Control
Console Security Provider page for your application, as described in "Navigating to
the Security Provider Page for Your Application" on page 6-13.

The tasks here create or modify subelements under a <roles> element in your
repository file. Each <realm> element has a <roles> subelement for the roles in that
realm.

Search for a Role
From the Security Provider page for your application, execute the following steps to
search for a role:

1. Choose the Realms tab.

2. In the Realms page, under "Roles" in the list of realms, and in the row for the realm
of interest, select the number that shows how many roles are in the realm. This is a
link to the Roles page for the realm.

3. In the Roles page, under "Search", specify a search string then choose Go.

4. Roles matching the search string appear under "Results". (An empty search string
displays all roles in the realm.)

Create a Role
From the Security Provider page for your application, execute the following steps to
create a role:

1. Choose the Realms tab.

2. In the Realms page, under "Roles" in the list of realms, and in the row for the realm
of interest, select the number that shows how many roles are in the realm. This is a
link to the Roles page for the realm.

3. In the Roles page, above the list of existing users in the realm, choose Create.

4. In the resulting Add Role page:

■ Specify the desired role name.

■ Choose the permissions you want to grant to the role (essentially, to users or
other entities belonging to the role)—RMI permission, administration
permission, neither, or both.

A user needs RMI (remote method invocation) permission to be able to access
objects on OC4J through RMI, such as from a remote EJB client.

A user needs administration permission to perform administrative functions
such as startup, shutdown, and configuration changes.

■ Under "Assign Roles", for any available role you want the new role to inherit
from, move the role name into the "Selected Roles" column.

Note: You can also reach the User page for a given user by
navigating from the Role page (see "Edit a Role" on page 7-8) for any
role that the user belongs to. In the Role page, under "Users", select the
user of interest.

Configuring the File-Based Provider in Application Server Control

7-8 Oracle Containers for J2EE Security Guide

■ Choose OK to add the role.

This takes you back to the Roles page, where you can see the new role in the list of
roles.

Delete a Role
From the Security Provider page for your application, execute the following steps to
delete a role:

1. Choose the Realms tab.

2. In the Realms page, under "Roles" in the list of realms, and in the row for the realm
of interest, select the number that shows how many roles are in the realm. This is a
link to the Roles page for the realm.

3. In the Roles page, choose the Delete task for the role you want to delete.

4. In the resulting Confirmation page, choose Yes to delete the role.

This takes you back to the Roles page.

Edit a Role
From the Security Provider page for your application, execute the following steps to
edit the properties of a role:

1. Choose the Realms tab.

2. In the Realms page, under "Roles" in the list of realms, and in the row for the realm
of interest, select the number that shows how many roles are in the realm. This is a
link to the Roles page for the realm.

3. In the Roles page, select the role you want to edit.

4. In the resulting Role page:

■ Update permissions for the role as desired, by selecting or unselecting RMI
permission and administration permission.

■ Under "Assign Roles", move role names into or out of the "Selected Roles"
column, depending on which roles you want this role (the role you are
editing) to inherit from.

■ Choose Apply to edit the role.

This takes you back to the Roles page.

Administering Instance-Level Security through Application Server Control
You can specifically configure realms, users, and roles for the OC4J instance-level
file-based security provider. Changes made in this way will always affect the
system-jazn-data.xml file, rather than any application-level jazn-data.xml file
(if any have been specified).

(The instance-level file-based provider is specified to be system-jazn-data.xml
according to settings in the <jazn> element of the OC4J system-application.xml
file.)

See Also:

■ "Edit a User" on page 7-6 for how to add a user to a role

File-Based Provider Settings in OC4J Configuration Files

File-Based Security Provider 7-9

You can administer the instance-level file-based provider in much the same was as you
would administer the file-based provider for an application. You can navigate to the
Application Server Control Console Instance Level Security page as follows:

1. From the OC4J Home page for the OC4J instance, choose the Administration tab.

2. In the Administration page, choose the Security Providers task (under "Security").

3. In the Security Providers page, choose Instance Level Security.

4. From the resulting Instance Level Security page, you can manage instance-level
realms, users, and roles using essentially the same steps as documented earlier in
this chapter, in "Managing Application Realms through Application Server
Control" on page 7-4, "Managing Application Users through Application Server
Control" on page 7-5, and "Managing Roles through Application Server Control"
on page 7-7.

File-Based Provider Settings in OC4J Configuration Files
This section provides reference information for important security configuration for
the file-based provider in key OC4J configuration files. In general, you should use the
Application Server Control Console (discussed earlier in this chapter) for
configuration and administration, instead of manipulating the files directly. Using this
tool results in the appropriate entries automatically being made in the configuration
files.

The rest of this discussion covers the following:

■ Settings in the <jazn> Element for the File-Based Provider

■ Realm Configuration in the Repository File

■ Policy Configuration in the Repository File

■ Predefined OC4J Accounts in system-jazn-data.xml

Settings in the <jazn> Element for the File-Based Provider
The <jazn> element, which appears in both the jazn.xml file and the
orion-application.xml file, includes configuration for the security provider,
repository, and default realm. By default, the system-jazn-data.xml file is the
repository for user, role, and policy configuration for the file-based provider, but OC4J
can be configured to use an application-specific jazn-data.xml file instead.

This section discusses the following related topics:

■ Scenarios for <jazn> Settings in orion-application.xml

■ Configuration to Automatically Create an Application-Specific jazn-data.xml File

■ Supplying an Application-Specific jazn-data.xml File

Note: Be aware that OC4J has some dependencies on the
instance-level security provider settings in
system-application.xml and system-jazn-data.xml. For
example, admin_client.jar uses accounts in
system-jazn-data.xml. Do not delete or alter default settings in
these files regarding the instance-level security provider and related
accounts.

File-Based Provider Settings in OC4J Configuration Files

7-10 Oracle Containers for J2EE Security Guide

Scenarios for <jazn> Settings in orion-application.xml
There are three typical deployment scenarios for an application, as determined by
<jazn> element settings in the orion-application.xml file and instance-level
jazn.xml file, in using the file-based provider:

■ Delegate to the instance-level jazn.xml file for the repository and default realm.
If the <jazn> element in jazn.xml has the setting provider="XML", then its
settings for the repository (location attribute) and default realm
(default-realm attribute) are used if the orion-application.xml file has
the following <jazn> element:

<jazn provider="XML" />

Or, if the jazn.xml file has no location and default-realm settings, this
would use the default repository system-jazn-data.xml and the default realm
jazn.com.

■ Delegate to the instance-level jazn.xml file for the repository. If the <jazn>
element in jazn.xml has the setting provider="XML", then its setting for the
repository (location attribute) is used, but the orion-application.xml file
setting for the default-realm (default-realm attribute) is used, if
orion-application.xml has a <jazn> element such as the following:

<jazn provider="XML" default-realm="abc.com" />

Or, if the jazn.xml file has no location setting, this would use the default
repository system-jazn-data.xml.

■ Do not delegate; specify both the repository and the default realm in
orion-application.xml. In this example, orion-application.xml
specifies the repository jazn-data.xml and the default realm myrealm:

<jazn provider="XML" location="./jazn-data.xml" default-realm="myrealm" />

Note: This becomes the default <jazn> setting if there is no <jazn>
element in orion-application.xml when the application is
deployed.

Note: This example assumes the abc.com realm is defined in the
system-jazn-data.xml repository.

Notes: Note the following for situations where the application uses
the file-based provider (provider="XML" in
orion-application.xml) but the jazn.xml file has the setting
provider="LDAP":

■ If orion-application.xml specifies no repository file, then
system-jazn-data.xml will be the repository.

■ If orion-application.xml specifies no default realm, then
jazn.com file will be the default realm.

File-Based Provider Settings in OC4J Configuration Files

File-Based Security Provider 7-11

Configuration to Automatically Create an Application-Specific jazn-data.xml File
If orion-application.xml is configured exactly as follows, but the
jazn-data.xml file is not packaged with the application, then one will be created
during deployment:

<jazn provider="XML" location="./jazn-data.xml" />

Supplying an Application-Specific jazn-data.xml File
If you supply a jazn-data.xml file with your application, then you must specify its
location through the <jazn> element location attribute in the
orion-application.xml file for your application. For example:

1. In orion-application.xml, specify the following:

<jazn provider="XML" location="./jazn-data.xml" default-realm="myrealm" />

If you specify a relative location, the location is relative to that of the
orion-application.xml file within which the <jazn> element is contained,
typically the /META-INF directory of the application EAR file.

2. Package the jazn-data.xml file in the /META-INF directory of the EAR file.

Realm Configuration in the Repository File
This section shows configuration for users and roles in the system-jazn-data.xml
file for the jazn.com realm. The general structure would be the same for
configuration of any realm in system-jazn-data.xml or a jazn-data.xml file.
This configuration is created automatically when you manage realms through
Application Server Control.

 <jazn-realm>
 <realm>
 <name>jazn.com</name>
 <users>
 <user deactivated="true">
 <name>anonymous</name>
 <description>The default guest/anonymous user</description>
 </user>
 <user deactivated="true">
 <name>oc4jadmin</name>
 <display-name>OC4J Administrator</display-name>
 <description>OC4J Administrator</description>
 <credentials>!welcome</credentials>
 </user>
 <user>
 <name>JtaAdmin</name>
 <display-name>JTA Recovery User</display-name>
 <description>Used to recover propagated OC4J transactions</description>
 <credentials>!defaultJtaPassword</credentials>
 </user>
 </users>
 <roles>
 <role>
 <name>oc4j-administrators</name>
 <display-name>OC4J Admin Role</display-name>
 <description>Administrative role for OC4J</description>
 <members>
 <member>
 <type>user</type>
 <name>oc4jadmin</name>

File-Based Provider Settings in OC4J Configuration Files

7-12 Oracle Containers for J2EE Security Guide

 </member>
 <member>
 <type>user</type>
 <name>JtaAdmin</name>
 </member>
 </members>
 </role>
 <role>
 <name>oc4j-app-administrators</name>
 <display-name>OC4J Application Administrators</display-name>
 <description>OC4J application-level administrators</description>
 <members>
 </members>
 </role>
 <role>
 <name>users</name>
 <display-name>users</display-name>
 <description>users role for rmi/ejb access</description>
 <members>
 </members>
 </role>
 </roles>
 </realm>
 </jazn-realm>

Policy Configuration in the Repository File
You can use the OracleAS JAAS Provider Admintool to grant JAAS permissions to
custom principals, using the -grantperm option, as described in "Granting and
Revoking Permissions" on page C-14.

Policy data is stored in the file system-jazn-data.xml. In the following example, a
segment of this file shows the result of granting RMI permission "login" to the admin
principal. (This example assumes admin is a user in the jazn.com realm.)

<jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <realm-name>jazn.com</realm-name>
 <type>user</type>
 <class>oracle.security.jazn.samples.SampleUser</class>
 <name>admin</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>com.evermind.server.rmi.RMIPermission</class>
 <name>login</name>
 </permission>
 </permissions>
 </grant>
</jazn-policy>

Predefined OC4J Accounts in system-jazn-data.xml
The following accounts are predefined in system-jazn-data.xml for the file-based
provider:

OracleAS JAAS Provider Migration Tool

File-Based Security Provider 7-13

■ oc4jadmin user (initially deactivated in standalone OC4J)

■ oc4j-administrators role (with member oc4jadmin)

■ oc4j-app-administrators role

■ ascontrol_admin role (with member oc4jadmin)

■ ascontrol_appadmin role

■ ascontrol_monitor role

■ anonymous user, initially deactivated

■ users role

■ jtaadmin user

OracleAS JAAS Provider Migration Tool
OC4J includes a tool for migrating from a file-based repository to either an Oracle
Internet Directory repository or an alternative file-based repository. (Do not confuse
this with the tool for migrating from principals.xml; that is separate, and is
documented later in this chapter.)

When migrating to an Oracle Internet Directory repository, the output is an LDIF file,
which can be imported into Oracle Internet Directory using commands such as
ldapmodify or bulkload.

This section covers the following topics:

■ Overview of the Migration Tool

■ Migration Tool Command Syntax

■ Migration Tool APIs

Overview of the Migration Tool
The migration tool supports the migration of users, roles, role memberships, and
policies (permissions granted to roles, users, custom principals, or codebases).

There are three modes for migration:

■ Realm mode migrates only users and roles. All users and roles in the source realm,
other than deactivated users, are migrated. Migrated roles include membership
information.

■ Policy mode migrates grantees and the permissions that have been granted to them.
Grantees can be realm grantees, such as users and roles, or non-realm grantees,
such as custom principals and codebases. When migrating to Oracle Internet
Directory, realm grantees and their permissions are migrated to the policy that is
specific to the destination realm, while non-realm grantees and their permissions
are migrated to the global policy.

■ All mode combines realm mode and policy mode.

See Also:

■ "Predefined Accounts" on page 4-11 for additional information
about these accounts

■ "Activation of the oc4jadmin Account (Standalone OC4J)" on
page 4-12

OracleAS JAAS Provider Migration Tool

7-14 Oracle Containers for J2EE Security Guide

Migration Tool Command Syntax
Command-line options and syntax of the migration tool are as follows:

% java JAZNMigrationTool [-st xml] [-dt ldap|xml]
 [-D binddn] [-w passwd] [-h ldaphost] [-p ldapport]
 [-sf sourcefilename] [-df destfilename]
 [-sr source_realm] [-dr dest_realm]
 [-m policy|realm|all]
 [-help]

Table 7–1 describes these options.

Notes: Be aware of the following when you use the migration tool:

■ To migrate to Oracle Internet Directory, the directory server must
be running and available when you run the tool.

■ When output to an LDIF file is generated, passwords are in clear
text. It is your responsibility to take proper care in protecting this
information.

■ When migrating to Oracle Internet Directory, passwords may
have to be modified to conform to Oracle Internet Directory
requirements (such as having at least one numeric character).

■ When in policy mode or all mode: 1) When migrating permissions
for a non-realm custom principal, the JAR file containing the class
files for the custom principal must be available in the classpath. 2)
If you are migrating custom permissions, the JAR file containing
the class files for the custom permissions must be available in the
classpath.

■ The migration tool is not intended for migration of indirect
password accounts to Oracle Internet Directory.

■ Be aware of the possibility of conflict. Migrated users and roles
may already exist in the destination realm. When migrating to
Oracle Internet Directory, for example, commands such as
ldapmodify and bulkload can be used in conjunction with
standard JDK logging to obtain information that will help you to
recover from conflicts.

Table 7–1 OracleAS JAAS Provider Migration Tool Options

Option Description Default (where applicable)

-help To display option information

-st Type of provider at the source

Currently only the setting xml is supported,
for migrating from a file-based provider.

xml

-dt Type of provider at the destination—either
xml (to migrate to a file-based repository) or
ldap (to migrate to Oracle Internet Directory)

ldap

-D Oracle Internet Directory user name (for
migration to Oracle Internet Directory only)

-w Oracle Internet Directory user password (for
migration to Oracle Internet Directory only)

OracleAS JAAS Provider Migration Tool

File-Based Security Provider 7-15

The following example migrates in all mode to the default subscriber realm in Oracle
Internet Directory on the specified host:

% java oracle.security.jazn.tools.JAZNMigrationTool -D cn=orcladmin -w welcome1 \
 -h myhost.example.com -p 389 -sf /tmp/jazn-data.xml -df /tmp/dest.ldif \
 -sr jazndemo.com

Migration Tool APIs
You can also invoke the migration tool (class JAZNMigrationTool in package
oracle.security.jazn.tools) from an application. Oracle provides the
following APIs:

/**
 * Create an instance with the provided parameters. These parameters are
 * equivalent to the options supported by the executable utility version.
 */
public JAZNMigrationTool(Map params)

/**
 * Perform the migration operation
 */
public void migrateData() throws JAZNException

The params parameter in the constructor supports the same options as described in
Table 7–1 in the preceding section, with the same defaults. Parameter keys are defined
as constants in the JAZNMigrationTool class. Table 7–2 shows the correlation
between constants defined in JAZNMigrationTool and command-line options.

-h Oracle Internet Directory host system (for
migration to Oracle Internet Directory only)

According to <jazn> element
location setting in jazn.xml

-p Oracle Internet Directory port (for migration
to Oracle Internet Directory only)

According to <jazn> element
location setting in jazn.xml

-sf Source file—path to the file-based repository
you are migrating from

ORACLE_HOME/j2ee/home/config/
system-jazn-data.xml

-df Destination file—path to the LDIF output file
(if migrating to Oracle Internet Directory) or
to the destination file-based repository (if
migrating to file-based)

If migrating to a file-based repository,
ORACLE_HOME/j2ee/home/config/
system-jazn-data.xml (otherwise
no default)

-sr Source realm—the realm you are migrating
from

Name of the realm in the source
repository, if there is only one realm

-dr Destination realm—the realm you are
migrating to

If migrating to a file-based repository,
name of the realm in the destination
repository, if there is only one realm; if
migrating to Oracle Internet Directory,
the default subscriber realm

-m The desired migration mode—realm mode
(realm), policy mode (policy), or both
(all)

all

Table 7–2 JAZNMigrationTool Constants

Key Constant Corresponds to Option

SRC_TYPE -st

Table 7–1 (Cont.) OracleAS JAAS Provider Migration Tool Options

Option Description Default (where applicable)

Migrating Principals from the principals.xml File

7-16 Oracle Containers for J2EE Security Guide

Migrating Principals from the principals.xml File
Use the OracleAS JAAS Provider Admintool convert option to migrate your data out
of the principals.xml file, which is deprecated.

-convert filename realm

The -convert option migrates the principals.xml file into the specified realm of
the current OracleAS JAAS Provider. The filename argument specifies the path
name of the input file (typically
ORACLE_HOME/j2ee/home/config/principals.xml).

The migration converts principals.xml users to deployment users and converts
principals.xml groups to deployment roles. All permissions that were previously
granted to a principals.xml group are mapped to the deployment role. Users that
were deactivated at the time of migration are not migrated. This ensures that no users
can inadvertently gain access through the migration.

Before you convert principals.xml, you must make sure that you have an
administrative user that is authorized to manage realms. To do this:

1. Activate the administrative user in principals.xml, which is deactivated by
default. Be sure to create a password for the administrator.

2. Create the realm principals.com with a dummy user and a dummy role. For
example, in the Admintool shell you would type:

JAZN> addrealm principals.com u1 welcome r1

Make sure that the administrator name you used to create the realm is different
from the name of the administrator in principals.xml. This is necessary
because the convert option does not migrate duplicate users, and migrates
duplicate roles by overwriting the old one.

3. Migrate principals.xml to the principals.com realm, as in:

% java -jar jazn.jar -convert config/principals.xml principals.com

DEST_TYPE -dt

OID_USER -D

OID_PASSWORD -w

OID_HOST -h

OID_PORT -p

SRC_FILE -sf

DEST_FILE -df

SRC_REALM -sr

DEST_REALM -dr

MIGRATE_OPT -m

Note: The principals.xml file is deprecated. (It will not be
supported in the 11g release.)

Table 7–2 (Cont.) JAZNMigrationTool Constants

Key Constant Corresponds to Option

Using the File-Based Provider Across an OC4J Group

File-Based Security Provider 7-17

4. Change the <default-realm> to principals.com; see "Settings in the <jazn>
Element for the File-Based Provider" on page 7-9.

5. Stop and restart OC4J.

Using the File-Based Provider Across an OC4J Group
The OC4J 10.1.3.1 implementation adds features to include OC4J instances in a "group"
(where previously, instances could only be in a group if they had the same instance
name).

Through use of these features, and use of OC4J J2EEServerGroup MBean, you can
coordinate changes to the system-jazn-data.xml file in each OC4J instance in a
group.

OC4J Basic Group Features
In an OC4J cluster, you can create a new group through Application Server Control as
follows:

1. In the Cluster Topology page, under Groups, choose Create.

2. In the Create Group page:

a. Specify the desired name of the group.

b. Select the OC4J instances to move to the group. Be aware that an OC4J
instance you move into the new group is removed from the group it was in
previously (if applicable), and that an instance must be stopped before it can
be moved.

c. Choose Create.

You can administer a group through Application Server Control as follows:

1. In the Cluster Topology page, under Groups, choose the desired group.

2. Choose the Administration tab.

3. The Administration page provides administration features for the group as a
whole. Note, however, that this does not include Security Provider administration.

Important: When you stop an OC4J instance, at least one other OC4J
instance must be running on the application server that hosts the
instances. If the check box to stop an OC4J instance is disabled, then
no other OC4J instances in that application server are running.

Note: You can also move an OC4J instance into a group after the
group is created:

1. In the Cluster Topology page, under Groups, select the group.

2. In the Group: groupname page, in the OC4J Instances tab, choose Add.

3. In the Add OC4J Instances to Group page, select and add OC4J instances
to the group as desired.

Using the File-Based Provider Across an OC4J Group

7-18 Oracle Containers for J2EE Security Guide

Cluster MBean Browser Features and the J2EEServerGroup MBean
Once you have created a group and populated it with OC4J instances, you can use the
Cluster MBean Browser to coordinate settings to each system-jazn-data.xml file
across the group, by invoking operations on the J2EEServerGroup MBean for the
group. This also involves the J2EEApplication MBean for the system application.

You can accomplish this as follows:

1. In the Cluster Topology page, under Groups, chose the group.

2. In the Group: groupname page, choose the Administration tab.

3. In the Administration page, under JMX, go the Cluster MBean Browser task.

4. In the Cluster MBean Browser page:

a. Under the J2EEServerGroup MBean, select the OC4J group.

b. Choose the Operations tab.

c. Choose the invoke operation.

5. In the Operation: invoke page (shown in Figure 7–1 at the end of this procedure),
use the flashlight icon to search for MBeans by name.

6. In the Search and Select: MBean page (shown in Figure 7–2 at the end of this
procedure):

a. Search by MBean name "SecurityProvider".

b. In the search results, select the result with J2EEApplication=system (the
last result shown in the figure).

7. Back in the Operation: invoke page:

a. For the parameter name operationName, choose the desired operation from
the dropdown menu. Available operations for the J2EEApplication MBean
include (among many others): addUser, addRole, remUser, remRole,
revokeUserRole, revokeUserPerm, grantUserPerm, and
grantRolePerm, for example.

b. Use the pencil icon to specify parameter settings for the operation. For
example, for addUser, the parameters are username, passwd, and realm.

c. In the Edit Params page, specify the desired settings.

8. Back in the Operation: invoke page, choose Invoke Operation.

Results of the operation will apply to system-jazn-data.xml files across all
instances of the group.

See Also:

■ For additional information about OC4J group features, the topic
"Group OC4J Instances Page" in the Application Server Control
online help

Using the File-Based Provider Across an OC4J Group

File-Based Security Provider 7-19

Figure 7–1 Operation: Invoke

Figure 7–2 Search and Select: MBean

Using the File-Based Provider Across an OC4J Group

7-20 Oracle Containers for J2EE Security Guide

Oracle Identity Management 8-1

8
Oracle Identity Management

In Oracle Application Server, Oracle Identity Management with Oracle Internet
Directory and (optionally) Oracle Single Sign-On is the LDAP-based security provider.

This chapter is for those who use or plan to use Oracle Identity Management as the
security provider, and covers the integration of Oracle Identity Management with
OC4J. The following topics are covered:

■ Initial Considerations for OC4J Support of Oracle Identity Management

■ Overview of Oracle Identity Management Key Components

■ Prerequisite: Oracle Application Server Infrastructure

■ Steps to Use the Oracle Identity Management Security Provider

■ Settings for Authentication Method with Oracle Identity Management

■ Realm Management for the LDAP-Based Provider

■ LDAP-Based Provider Settings in OC4J Configuration Files

■ Tips and Troubleshooting for the LDAP-Based Provider

Initial Considerations for OC4J Support of Oracle Identity Management
Be aware of the following notes regarding the use of Oracle Identity Management with
OC4J:

■ Beginning with OC4J 10.1.3.x implementations, the LDAP-based provider is
supported in standalone OC4J as well as in an Oracle Application Server
environment.

■ The OracleAS JAAS Provider supports the identity management realm type in
Oracle Internet Directory. (This realm type is discussed in "Overview of OracleAS
JAAS Provider Realms for Oracle Identity Management" on page 8-16.) The
external and application realm types are deprecated. Specifically, in package
oracle.security.jazn.realm, APPLICATION_REALM and
EXTERNAL_REALM are deprecated in the RealmType class; _extRealm and
_appRealm are deprecated in the InitRealmInfo class. External realms and
application realms will be desupported in future releases.

■ Managing users and roles in Oracle Internet Directory is beyond the scope of this
document. Consult the Oracle Identity Management Guide to Delegated
Administration.

■ OC4J provides a login module, LDAPLoginModule, for use with LDAP servers.
For Oracle Internet Directory, however, use the default RealmLoginModule.

Overview of Oracle Identity Management Key Components

8-2 Oracle Containers for J2EE Security Guide

(Configuring LDAPLoginModule for use with Oracle Internet Directory would
result in the loss of optimizations and integrations that are otherwise available.)

Overview of Oracle Identity Management Key Components
Oracle Identity Management provides an enterprise infrastructure for securing
distributed enterprise applications. It is an integrated package that includes the
LDAP-based Oracle Internet Directory, Oracle Single Sign-On, and additional security
and user management functionality.

To use Oracle Identity Management as your security provider, you must consider the
underlying Oracle Internet Directory and Oracle Single Sign-On. This section provides
an overview of these features, covering the following topics:

■ Overview of Oracle Internet Directory

■ About Distinguished Names

■ Overview of Oracle Single Sign-On

■ SSO-Enabled J2EE Environment: Typical Scenario

Overview of Oracle Internet Directory
Oracle Internet Directory provides Windows integration, password policy options,
partial replication, and other important security features, including the following.

■ Windows integration capabilities: Provides a preconfigured directory
synchronization solution for Windows Active Directory Services. This feature
allows users to have a single identity and password credential across Oracle and
Windows environments. It also includes directory plug-ins that support mastering

Notes:

■ Be aware that with the LDAP-based provider, role comparisons
for authorization are not case-sensitive.

■ After you add or modify a user account in Oracle Internet
Directory, you should be able to log in without restarting OC4J,
assuming you have associated Oracle Internet Directory with
OC4J as described in "Associate Oracle Internet Directory with
OC4J" on page 8-5.

See Also:

■ For information about migrating from a file-based repository to an
Oracle Internet Directory repository, "OracleAS JAAS Provider
Migration Tool" on page 7-13

■ For information about user and role APIs that you can use with
Oracle Internet Directory, Chapter 12, "User and Role API
Framework"

■ "Creating a New Administrator Account" on page 4-13 if you
want to use an administrator account other than oc4jadmin.

See Also:

■ Oracle Identity Management Infrastructure Administrator’s Guide

■ Oracle Identity Management Application Developer’s Guide

Overview of Oracle Identity Management Key Components

Oracle Identity Management 8-3

and changing passwords stored in the Windows environment, thereby relieving
customers of overhead and potential security concerns associated with
synchronizing passwords across the two environments.

■ Flexible password policy: Supports password policy options. In addition, Oracle
Internet Directory plug-in support allows customers to implement an almost
unlimited variety of site-specific password policies.

■ Partial replication: Supports replication models, enabling improved scalability and
performance in large network configurations.

■ Other features include support for dynamic groups, an expanded Oracle Internet
Directory Self-Service Console, easy synchronization of directory data with
database tables, and features to permit user identity synchronization with the
Oracle e-Business Suite Release 11i.

When using Oracle Internet Directory with OC4J 10.1.3.x implementations, the basic,
digest, client-cert, username token, X.509 token, and SAML token authentication
methods are supported.

About Distinguished Names
The term distinguished name, or DN, is used frequently in this chapter. This is a
standard LDAP concept. A DN comprises a set of one or more relative distinguished
names (RDNs) separated by commas. An RDN can be any of the following:

■ DC (domain component)

■ CN (common name)

■ OU (organizational unit name)

■ O (organization name)

■ STREET (street address)

■ L (locality name)

■ ST (state or province)

■ C (country)

■ UID (user ID)

RDNs most often consist of common names or domain components in the discussion
in this chapter. A common name could be something like "Jeff Smith" or "Oracle", for
example.

Overview of Oracle Single Sign-On
Oracle Single Sign-On supports multilevel authentication. This allows customers to
establish more than one authentication mechanism, and indicates the way in which a
user is authenticated to single sign-on enabled applications. Applications can take
advantage of this to grant different degrees of privilege to users, depending on how
they authenticated.

For example, users may get partial privileges if they authenticate using a password,
but more complete privileges if they use stronger authentication, such as X.509v3.

There is also support for global logout and session timeout.

See Also:

■ Oracle Internet Directory Administrator’s Guide

Overview of Oracle Identity Management Key Components

8-4 Oracle Containers for J2EE Security Guide

SSO-Enabled J2EE Environment: Typical Scenario
Oracle Single Sign-On lets a user access multiple applications with a single set of login
credentials. Figure 8–1 shows JAAS integration in an application running in an
SSO-enabled J2EE environment.

Figure 8–1 Oracle Single Sign-On and J2EE Environments

The following steps describe the responsibilities of Oracle components when an HTTP
client request is initiated in a J2EE environment with Oracle Single Sign-On enabled.

1. An HTTP client attempts to access a Web application, WebApp A1, hosted by
OC4J (the Web container for executing servlets). Oracle HTTP Server (using an
Apache listener) handles the request.

2. Oracle HTTP Server/mod_osso receives the request and:

■ Determines that WebApp A1 application requires Web-based Oracle Single
Sign-On for authenticating HTTP clients.

■ Redirects the HTTP client request to the Web-based Oracle Single Sign-On
(because it has not yet been authenticated).

3. The HTTP client is authenticated by OracleAS Single Sign-On through a user name
and password or through a user certificate. OracleAS Single Sign-On then:

See Also:

■ Oracle Application Server Single Sign-On Administrator’s Guide

■ Oracle Identity Management Application Developer’s Guide
(particularly the chapter on developing applications for single
sign-on)

Oracle
HTTP
Server

HTTP
Client

Java Plug-in
mod_oc4j

mod_osso

Apache JServ
Protocol

HTTP

HTTP

OracleAS
Single
Sign-On

OC4J

Oracle
Internet
Directory

WebApp A1

servlet
s1

servlet
s2

Security Provider
Framework

LDAP-based Security
Provider

Steps to Use the Oracle Identity Management Security Provider

Oracle Identity Management 8-5

■ Validates the user's stored login credentials.

■ Sets the Oracle Single Sign-On cookie (including the user’s distinguished
name and realm).

■ Redirects back to the WebApp A1 application (in OC4J).

4. The security provider retrieves the Oracle Single Sign-On user.

Prerequisite: Oracle Application Server Infrastructure
Oracle Identity Management is part of the Oracle Application Server infrastructure.
Using Oracle Identity Management as security provider requires a suitable version of
the infrastructure to be installed. This is in a separate ORACLE_HOME from OC4J.

For using Oracle Identity Management (with Oracle Internet Directory) as the security
provider under OracleAS JAAS Provider in the OC4J 10.1.3.1 implementation, the
supported versions of the Oracle Application Server infrastructure are 10.1.2.0.1,
10.1.2.0.2, and 10.1.4.x.

For information about installing Oracle Application Server infrastructure, refer to the
appropriate Oracle Application Server Installation Guide for your platform.

Steps to Use the Oracle Identity Management Security Provider
This section documents the steps involved in setting up Oracle Identity Management
as your security provider, optionally using Oracle Single Sign-On for authentication:

1. Associate Oracle Internet Directory with OC4J

2. Configure SSO (Optional)

3. Configure Oracle Identity Management as the Security Provider

Associate Oracle Internet Directory with OC4J
This section discusses the step of associating an Oracle Internet Directory instance
with your OC4J instance, which you must do before you can specify Oracle Identity
Management as the security provider. It also shows the corresponding XML
configuration. The following subtopics are covered:

■ Associating Oracle Internet Directory with OC4J

■ Changing the Oracle Internet Directory Association

■ Required Accounts Created in Oracle Internet Directory

■ Oracle Internet Directory Association in jazn.xml

■ Considering Multiple OC4J Instances when Associating Oracle Internet Directory

See Also:

■ Oracle Application Server Single Sign-On Administrator’s Guide for
details on Oracle Single Sign-On

Steps to Use the Oracle Identity Management Security Provider

8-6 Oracle Containers for J2EE Security Guide

Associating Oracle Internet Directory with OC4J
Use the Application Server Control Console to associate your OC4J instance with an
instance of the LDAP-based Oracle Internet Directory (OID), the repository for Oracle
Identity Management. Here are the steps:

1. In the OC4J Home page for your instance, choose the Administration tab.

2. In the resulting Administration page, choose the Identity Management task (one of
the Security tasks).

3. In the resulting Identity Management page, choose Configure. (This assumes no
Oracle Internet Directory instance was previously associated with the OC4J
instance, so that the Oracle Internet Directory host name and port are listed as "not
configured". If a different Oracle Internet Directory instance was previously
associated with this OC4J instance, see the next section, "Changing the Oracle
Internet Directory Association".)

4. In the resulting Configure Identity Management: Connection Information page, do
the following:

■ Specify the fully qualified host name for the Oracle Internet Directory instance
(myoid.oracle.com, for example).

■ Specify the distinguished name for the Oracle Internet Directory user, such as
cn=orcladmin (see note below). The user specified here must belong to the
iASAdmins role in the Oracle Internet Directory instance.

■ Specify the password for the Oracle Internet Directory user. This will also be
set as the default password for the oc4jadmin user created in Oracle Internet
Directory (unless the oc4jadmin account had previously been created, due to
associating a different OC4J instance with the Oracle Internet Directory
instance).

■ Specify whether to use SSL connections or non-SSL connections to the Oracle
Internet Directory instance, and the appropriate port to use. The port for SSL is
typically 636; for non-SSL it is typically 389. (To change the SSL or port setting
later, you would have to redo the OC4J-OID association, as described in the
next section, "Changing the Oracle Internet Directory Association".)

■ When you are done, go to the next page.

Important:

■ When you associate an OC4J instance with an Oracle Internet
Directory instance, the <jazn> element configuration in the
jazn.xml file of the OC4J home instance is rewritten and any
previous settings are lost.

■ Associating an Oracle Internet Directory instance with an OC4J
instance results in provider settings at the instance level—such as
the provider and location attribute settings in the <jazn>
element of the jazn.xml file. If you deploy an application to the
OC4J instance, and the application configures a different provider,
the result would be a mixed usage where the provider configured
in orion-application.xml would be the identity store used
for authentication, while the provider specified in jazn.xml
would be the policy store used for authorization. This is not
recommended.

Steps to Use the Oracle Identity Management Security Provider

Oracle Identity Management 8-7

5. In the Configure Identity Management: Application Server Control page, you can
optionally specify Oracle Identity Management as the security provider for
Application Server Control. (If you do this, only users and roles defined in the
Oracle Internet Directory instance will be able to access Application Server
Control.)

When you are done, go to the next page.

6. In the Configure Identity Management: Deployed Applications page, you can
optionally specify Oracle Internet Directory (actually, Oracle Identity
Management), with or without SSO, as the security provider for each deployed
application in the OC4J instance.

When you are done, choose Configure. This completes the OC4J-OID association
process and takes you back to the Identity Management page.

Changing the Oracle Internet Directory Association
This section describes the steps to change the OC4J-OID association to use a different
Oracle Internet Directory instance, or to change the port or SSL configuration. A new
OracleAS JAAS Provider administrator account (for internal use) is created in Oracle
Internet Directory.

1. As in the previous section, "Associating Oracle Internet Directory with OC4J",
navigate to the Identity Management page.

2. In the Identity Management page, choose Change. (This is in the same place as
Configure would be if there had been no previous OC4J-OID association.)

3. In the Change Identity Management page, as for the Configure Identity
Management page in the previous section, specify the Oracle Internet Directory
host name, the distinguished name and password of the Oracle Internet Directory
user, whether to use SSL connections, and the port number for connections.

4. Choose OK. This completes the OC4J-OID reassociation process and brings you
back to the Identity Management page. You are prompted to restart OC4J for the
change to take effect.

Required Accounts Created in Oracle Internet Directory
Oracle Internet Directory does not by default include certain accounts that are required
by OC4J and Application Server Control 10.1.3.x implementations. Therefore, the
accounts listed below are created automatically, under the default identity
management realm, as part of the OC4J-OID association process. This occurs the first
time an OC4J instance is associated with the Oracle Internet Directory instance. On any

Notes:

■ Using SSL requires appropriate SSL configuration for OC4J and
Oracle Internet Directory, as discussed in Chapter 15, "SSL
Communication with OC4J", and the Oracle Internet Directory
Administrator’s Guide, respectively.

■ Because Oracle Internet Directory is associated at OC4J instance
level, OracleAS JAAS Provider picks up the Oracle Internet
Directory host, port, password, and SSL settings only from the
jazn.xml file of a given OC4J instance, not from any
application-level configuration.

■ Each user in a directory must have a unique distinguished name.

Steps to Use the Oracle Identity Management Security Provider

8-8 Oracle Containers for J2EE Security Guide

subsequent associations of the same or any other OC4J instance with the same Oracle
Internet Directory instance, these accounts are not changed. In fact, if any of these
accounts are found to already exist in Oracle Internet Directory at the time of the
OC4J-OID association process, the account creation step is skipped.

■ oc4jadmin user

■ oc4j-administrators role, with member oc4jadmin

■ oc4j-app-administrators role

■ ascontrol_admin (administrative role for all SOA controls, including
Application Server Control), with member oc4jadmin

■ ascontrol_appadmin (Application Server Control required role)

■ ascontrol_monitor (Application Server Control required role)

Oracle Internet Directory Association in jazn.xml
OC4J-OID association is effective at the level of the OC4J home instance. After you
have associated OC4J with Oracle Internet Directory, the location, user, password, and
LDAP protocol configurations are reflected in the jazn.xml file of the OC4J home
instance. Here is a sample entry:

<jazn provider="LDAP" location="ldap://myoid.oracle.com:389" default-realm="us" >
 <property
 name="ldap.user"
 value="orclApplicationCommonName=jaznadmin1,cn=JAZNContext,cn=products,
 cn=OracleContext"/>
 <property name="ldap.password"
 value="{903}3o4PTHbgMzVlzbVfKITIO5Bgio6KK9kD"/>
 <property name="ldap.protocol" value="no-ssl"/>
</jazn>

The default realm "us" corresponds to the default identity management realm in
Oracle Internet Directory. Supported ldap.protocol settings are "ssl" or "no-ssl",
according to whether you use SSL connections. The default is to use SSL, so if you

Notes:

■ In addition, the JAZNAdminGroup role with its OracleAS JAAS
Provider administrator member are shipped with Oracle Internet
Directory for internal use.

■ The file oidConfigForOc4j.sbs in directory
ORACLE_HOME/j2ee/home/jazn/install contains the OC4J
accounts and permissions for default users and roles that are
created in Oracle Internet Directory the first time an OC4J instance
is associated with that Oracle Internet Directory instance. Do not
modify or delete this file, as these accounts are required for
normal OC4J operations. Also, do not modify or delete any of
these default accounts or their permissions once they are created.

See Also:

■ "Predefined Accounts" on page 4-11 for additional information
about the OC4J accounts

■ "Activation of the oc4jadmin Account (Standalone OC4J)" on
page 4-12

Steps to Use the Oracle Identity Management Security Provider

Oracle Identity Management 8-9

specify SSL when you use Application Server Control, this does not actually result in
any ldap.protocol setting.

Considering Multiple OC4J Instances when Associating Oracle Internet Directory
If you are using Oracle Internet Directory in an environment with multiple OC4J
instances (such as the home and SOA instances in a SOA installation), then after you
complete the steps for OC4J-OID association detailed earlier (in "Associating Oracle
Internet Directory with OC4J" on page 8-6), you must manually copy the relevant
<jazn> element configuration from the jazn.xml file of the home instance to the
jazn.xml file of any other instance. This includes settings of the provider and
location attributes, and any relevant property settings in <property> subelements.

Consider the following example, shown earlier:

<jazn provider="LDAP" location="ldap://myoid.oracle.com:389" default-realm="us" >
 <property
 name="ldap.user"
 value="orclApplicationCommonName=jaznadmin1,cn=JAZNContext,cn=products,
 cn=OracleContext"/>
 <property name="ldap.password"
 value="{903}3o4PTHbgMzVlzbVfKITIO5Bgio6KK9kD"/>
 <property name="ldap.protocol" value="no-ssl"/>
</jazn>

All of this configuration would have to be copied. Be careful, however, to not
overwrite any special settings in the jazn.xml file of the target instance.

Configure SSO (Optional)
This step is required only if you want to use Oracle Single Sign-On functionality with
Oracle Identity Management. The following subtopics are covered:

1. Run the SSO Registration Tool

2. Transfer the osso.conf File to the OC4J Instance

3. Run the osso1013 Script

4. Synchronization of OracleAS JAAS Provider User Context with Servlet Sessions

5. Restart the Oracle HTTP Server and OC4J Instances

Note: At runtime, the LDAP-based provider connects as the
OracleAS JAAS Provider administrator to Oracle Internet Directory.
This user is a member of JAZNAdminGroup.

See Also:

■ "Configuring LDAP User and SSL Properties" on page 8-20

Important: Do not confuse this SSO with Java SSO, which is a
separate feature (documented in Chapter 14, "OC4J Java Single
Sign-On"). You can use one SSO product or the other, but not both.

Steps to Use the Oracle Identity Management Security Provider

8-10 Oracle Containers for J2EE Security Guide

Run the SSO Registration Tool
The first task in configuring Oracle Single Sign-On is to register your application as a
partner application with the single sign-on server in your infrastructure. This is a
post-installation step. Accomplish this by running the ssoreg utility in your
infrastructure installation (the SSO server system) to create an (obfuscated)
osso.conf file.

The ssoreg utility is ORACLE_HOME/sso/bin/ssoreg.sh in a Linux installation or
ORACLE_HOME\sso\bin\ssoreg.bat in a Windows installation.

Here is the syntax for ssoreg options required for this usage, with options described
in Table 8–1:

-oracle_home_path path
-site_name name
-config_mod_osso TRUE
-mod_osso_url url
-remote_midtier
-config_file path

Here is an example (assume that $ORACLE_HOME has been set properly).

% $ORACLE_HOME/sso/bin/ssoreg.sh -oracle_home_path $ORACLE_HOME \
 -site_name myhost.mydomain.com -config_mod_osso TRUE \
 -mod_osso_url http://myhost.mydomain.com:7777 -remote_midtier \
 -config_file $ORACLE_HOME/Apache/Apache/conf/osso/osso.conf

See Also:

■ "OC4J Configuration for Oracle Single Sign-On Authentication" on
page 8-14

Table 8–1 Key ssoreg Options

Option Description

oracle_home_path The absolute path to the ORACLE_HOME location in your infrastructure
installation.

site_name Name of the Web site, such as www.example.com.

config_mod_osso A TRUE setting (which is what you want) indicates that mod_osso, the
Apache mod for Oracle Single Sign-On, is effectively the application
being registered. (Actually, your application is being registered through
mod_osso.) This results in an obfuscated osso.conf file being
generated.

mod_osso_url A URL consisting of the host name and port where your application
will run:

http://www.example.com:7777

remote_midtier When present on the command line, specifies that the application being
registered is on a remote middle tier. Because your OC4J installation is
on a different tier (with a different ORACLE_HOME) than your
infrastructure, including Oracle Single Sign-On, you must include this
option.

config_file Desired location of the osso.conf file, typically something like:

ORACLE_HOME/Apache/Apache/conf/osso/osso.conf

Steps to Use the Oracle Identity Management Security Provider

Oracle Identity Management 8-11

Transfer the osso.conf File to the OC4J Instance
Transfer, such as by FTP, the osso.conf file produced during SSO registration (at
your infrastructure installation, after installation) to a desired location on the OC4J
middle tier.

Run the osso1013 Script
At your OC4J installation, run a script called osso1013 to complete the SSO
registration process, specifying the location where you placed the osso.conf file.

% osso1013 path/osso.conf

This script is located in the ORACLE_HOME/Apache/Apache/bin directory.

On Windows, you may have to run it through Perl:

% perl osso1013 path/osso.conf

Synchronization of OracleAS JAAS Provider User Context with Servlet Sessions
For situations where a Web application is used with the Oracle Identity Management
security provider and with Oracle Single Sign-On (acting as the login, timeout, and
logout service), OC4J 10.1.3.x implementations support synchronization between the
OracleAS JAAS Provider user context and the servlet session.

With this synchronization, if there is an SSO logout or timeout, after which the user
tries to access a protected resource, he or she receives the SSO login prompt again.
(This does not occur if the user is only trying to access a public resource.)

This synchronization is disabled by default. You can enable it (or explicitly disable it)
through the property sso.session.synchronize under the <jazn-web-app>
element in the orion-application.xml file. The following example enables it:

<orion-application ... >
 ...
 <jazn ... >
 ...
 <jazn-web-app ... >
 <property name="sso.session.synchronize" value="true" />
 </jazn-web-app>
 ...
 </jazn>
 ...
</orion-application>

Important: To use Oracle Single Sign-On with Oracle Identity
Management as the security provider under OracleAS JAAS Provider
in a 10.1.2.0.x infrastructure, you must upgrade to 10.1.2.0.1 or higher.
Older versions do not support the -remote_midtier option, and
ignoring this option may cause unintended changes in Oracle
Application Server Distributed Configuration Management (DCM) on
the infrastructure host where you run the command.

See Also:

■ Oracle Application Server Single Sign-On Administrator’s Guide for
additional information about the ssoreg utility, including
options not mentioned here

Steps to Use the Oracle Identity Management Security Provider

8-12 Oracle Containers for J2EE Security Guide

Restart the Oracle HTTP Server and OC4J Instances
You must restart Oracle HTTP Server and OC4J for the registration to take effect.

Configure Oracle Identity Management as the Security Provider
This section covers the step of specifying Oracle Identity Management as the security
provider for your application, using the Application Server Control Console. The
following subtopics are covered:

■ Specifying Oracle Identity Management during Deployment

■ Changing to Oracle Identity Management after Deployment

Specifying Oracle Identity Management during Deployment
Assuming you have completed the OC4J-OID association as discussed earlier, you can
specify Oracle Identity Management (the LDAP-based provider) as the security
provider when you deploy an application through Application Server Control.

From the Deploy: Deployment Settings page (see "Deploying an Application through
Application Server Control" on page 6-8 for how to get to this page):

1. Go to the Select Security Provider task.

2. In the resulting Deployment Settings: Select Security Provider page, choose Oracle
Identity Management from the Security Provider dropdown list.

3. Under "Configuration of Oracle Identity Management Security Provider" (which
appears after you choose Oracle Identity Management from the dropdown), do the
following:

■ Confirm the Oracle Internet Directory host and port are correct, as established
earlier when you associated the Oracle Internet Directory instance with your
OC4J instance.

■ Optionally enable Oracle Single Sign-On authentication. This results in the
configuration auth-method="SSO" in orion-application.xml for your

Note: The orion-web.xml file, used to configure a single Web
application, also supports the <jazn-web-app> element, as a
subelement of <orion-web-app>. In the event of competing settings,
the orion-web.xml setting takes precedence for the particular Web
application.

Notes:

■ Procedures discussed throughout this section assume you are
logged in to Application Server Control as a user with required
administrative permissions (as oc4jadmin, for example).

■ To enable application access to EJBs over RMI, you must grant
RMI permission "login" to your user or role. When using the
Oracle Identity Management security provider, you can
accomplish this through the OracleAS JAAS Provider Admintool.
For example:

% java -jar jazn.jar -grantperm myrealm -role myrole \
 com.evermind.server.rmi.RMIPermission login

Steps to Use the Oracle Identity Management Security Provider

Oracle Identity Management 8-13

application, as discussed in "OC4J Configuration for Oracle Single Sign-On
Authentication" on page 8-14.

Important: Do not confuse this with enabling Java SSO, which is a separate
feature (documented in Chapter 14, "OC4J Java Single Sign-On") that has its
own Application Server Control configuration page. You can use one SSO
product or the other, but not both.

4. Choose OK to finish the security provider selection.

5. Confirm the JAAS mode setting, as appropriate:

a. Back in the Deploy: Deployment Settings page, under "Advanced Deployment
Plan Editing", choose Edit Deployment Plan.

b. In the Deploy: Deployment Settings: Edit Deployment Plan page, in the Edit
OC4J Descriptor tab, for the jazn descriptor, choose Edit jazn.

c. In the Deploy: Deployment Settings: Edit Deployment Plan: jazn page, be sure
the jaasMode attribute is set appropriately (such as to doAsPrivileged if
your application requires that mode). Then choose Continue.

d. Back in the Deploy: Deployment Settings: Edit Deployment Plan page, choose
OK.

Refer to "Introduction to JAAS Mode" on page 5-5 and "Configuring and Using
JAAS Mode" on page 5-18 for more information on when and how to use this
mode.

6. Back in the Deploy: Deployment Settings page, choose Deploy to complete the
deployment, or choose another task, as desired. The list of tasks is noted in
"Deploying an Application through Application Server Control" on page 6-8.

Changing to Oracle Identity Management after Deployment
You can select a security provider for your application at deployment time, as
described in the preceding section. You can also change to a different security provider
after deployment. Assuming you have completed the OC4J-OID association discussed
earlier, you can change to the Oracle Identity Management security provider as
follows:

1. Go to the Security Provider page for your application, as described in "Navigating
to the Security Provider Page for Your Application" on page 6-13.

2. In the Security Provider page, choose Change Security Provider.

Notes:

■ Specifying Oracle Identity Management as the security provider
for your application results in the setting provider="LDAP" in
the <jazn> element in orion-application.xml.

■ During deployment, there is no need to specify the Oracle Internet
Directory location, since this was already specified when you
associated OC4J with Oracle Internet Directory (and is reflected in
the <jazn> element in jazn.xml).

■ The default realm is the default Oracle Identity Management
realm. This is determined when Oracle Internet Directory is
installed.

Settings for Authentication Method with Oracle Identity Management

8-14 Oracle Containers for J2EE Security Guide

3. In the Change Security Provider page, select Oracle Identity Management Security
Provider from the Security Provider Type dropdown.

4. Under "Security Provider Attributes: Oracle Identity Management Security
Provider" (which appears after you select Oracle Identify Management in the
dropdown):

■ Confirm the Oracle Internet Directory host and port are correct, as established
earlier when you associated the Oracle Internet Directory instance with your
OC4J instance.

■ Optionally enable Oracle Single Sign-On authentication. This results in the
configuration auth-method="SSO" for your application, as discussed in
"OC4J Configuration for Oracle Single Sign-On Authentication" on page 8-14.

Important: Do not confuse this with enabling Java SSO, which is a separate
feature (documented in Chapter 14, "OC4J Java Single Sign-On") that has its
own Application Server Control configuration page. You can use one SSO
product or the other, but not both.

5. Choose OK to finish the change.

This takes you back to the Security Provider page, where you are prompted to restart
the application for the change to take effect.

Settings for Authentication Method with Oracle Identity Management
This section discusses Oracle-specific settings for certain authentication methods you
can use when Oracle Identity Management is the security provider for a Web
application:

■ OC4J Configuration for Oracle Single Sign-On Authentication

■ Using Digest Authentication with Oracle Internet Directory

OC4J Configuration for Oracle Single Sign-On Authentication
For use of Oracle Single Sign-On for authentication, the auth-method attribute is set
to "SSO" in the <jazn-web-app> element (a subelement of the <jazn> element) in
the OC4J orion-application.xml file.

Here is a sample entry:

<orion-application ... >
 ...
 <jazn provider="LDAP" >
 <jazn-web-app auth-method="SSO"/>
 ...
 </jazn>
 ...
</orion-application>

Important: If you switch from the file-based provider to Oracle
Identity Management at any time for any application through
Application Server Control, the <jazn> element in
orion-application.xml for the application is replaced with the
following. Any prior settings within the <jazn> element would be
lost and would have to be redone.

<jazn provider="LDAP" />

Realm Management for the LDAP-Based Provider

Oracle Identity Management 8-15

Using Digest Authentication with Oracle Internet Directory
Before using digest authentication with Oracle Identity Management as your security
provider, you must complete the following preparatory steps:

1. Using Oracle Directory Manager, update the Oracle Internet Directory password
policy for your realm:

a. Launch Oracle Directory Manager with the oidadmin command.

b. In the Oracle Directory Manager "System Objects" window, under "Oracle
Internet Directory Servers", look for the appropriate server (if there are more
than one).

c. For the appropriate server, under "Password Policy Management", select
"Password Policy" for the appropriate realm that you have configured for the
security provider. If your realm is "us", for example, this would be "Password
Policy for Realm dc=us,dc=oracle,dc=com".

d. In the Oracle Directory Manager "Password Policy for Realm..." window,
enable Userpassword Reversible Encryption.

2. Create users and assign roles in Oracle Internet Directory. Do not do this until you
have completed step 1. You can administer users and roles through Oracle
Delegated Administration Services (DAS).

3. In the OracleAS JAAS Provider configuration, ensure that SSL has not been
disabled for LDAP. Under the <jazn> element in the jazn.xml file of the OC4J
home instance, be sure that the ldap.protocol property does not have a setting
of "no-ssl". (SSL is enabled by default.)

Realm Management for the LDAP-Based Provider
This section discusses realm management for the LDAP-based provider, Oracle
Identity Management. The following topics are covered:

■ Overview of OracleAS JAAS Provider Realms for Oracle Identity Management

Notes:

■ You do not need an <auth-method> setting in the web.xml
file. Any setting in web.xml would be overridden by the "SSO"
setting in orion-application.xml.

■ The auth-method="SSO" setting is automatically written to
the orion-application.xml file when you specify Oracle
Identity Management with single sign-on when deploying an
application through Application Server Control.

■ The <jazn-web-app> element is also supported in the
orion-web.xml file. In the event of conflict, orion-web.xml
takes precedence over orion-application.xml for the
particular Web application in question.

See Also:

■ "Overview of Oracle Identity Management and Oracle Internet
Directory Tools" on page 4-4

■ "Configuring LDAP User and SSL Properties" on page 8-20

Realm Management for the LDAP-Based Provider

8-16 Oracle Containers for J2EE Security Guide

■ Realm Management for Oracle Identity Management

Overview of OracleAS JAAS Provider Realms for Oracle Identity Management
The OracleAS JAAS Provider supports the identity management realm type in Oracle
Internet Directory.

The realm framework provides a means for registering Oracle Internet Directory realm
instances with the OracleAS JAAS Provider and managing their information.

This section covers the following topics:

■ Realm Hierarchy for the OracleAS JAAS Provider

■ Relation of JAAS Provider Realms to Oracle Internet Directory Realms

■ Access Control Lists and OracleAS JAAS Provider Directory Entries

Realm Hierarchy for the OracleAS JAAS Provider
As Figure 8–2 illustrates, the OracleAS JAAS Provider stores directory entries within
the product container cn=JAZNContext. Beneath cn=JAZNContext is the
cn=Realms container, which stores realm entries, and a cn=Policy container, which
stores global OracleAS JAAS Provider policies. The cn=Policy container in turn
stores two types of entries, cn=Permissions and cn=Grantees.

Figure 8–2 Global JAZNContext Subtree

Note that the OracleAS JAAS Provider has its own Groups and Users containers. The
Groups container contains the role JAZNAdminGroup. The Users container contains
the OracleAS JAAS Provider administrative user that populates this role. Both the role
and its member user are for internal use only, and note that the administrative user
JAZNAdminUser is deprecated. An administrative user is created for each Oracle
Application Server middle tier associated with the Oracle Internet Directory. A typical
DN for the administrative user is something like the following:

orclapplicationcommonname=jaznadmin1,cn=jazncontext,cn=products,cn=oraclecontext

Using the identity management realm DN, the OracleAS JAAS Provider locates the
realm-specific Oracle context and creates a corresponding cn=JAZNContext subtree.

In Figure 8–3, cn=oracle is an identity management realm. The OracleAS JAAS
Provider stores the cn=usermgr entry, cn=rolemgr entry, and policy-related entries
under the JAZNContext entry corresponding to the identity management realm.

Realm Management for the LDAP-Based Provider

Oracle Identity Management 8-17

Figure 8–3 Identity Management Realm JAZNContext Subtree

Relation of JAAS Provider Realms to Oracle Internet Directory Realms
For each identity management realm that you use, a corresponding OracleAS JAAS
Provider realm is created. This is the mechanism through which identity management
realms in Oracle Internet Directory are visible to the OracleAS JAAS Provider.

In OracleAS JAAS Provider, as shown earlier, a Realms container object exists under
the site-wide JAAS context. For each Oracle Internet Directory realm instance, a
corresponding realm entry is created under the Realms container to store the realm
attributes. The directory hierarchy is known to the OracleAS JAAS Provider, which
enables it to create new realm entries in the appropriate directory location and find all
the registered realms at runtime.

Oracle Internet Directory has a default identity management realm, depending on the
system domain. In United States locations, for example, the default realm has a
distinguished name such as "dc=us,dc=abc,dc=com" for company abc. OracleAS
JAAS Provider creates a corresponding realm called "us", under
cn=Realms,cn=JAZNContext,cn=OracleContext in the directory information
tree. This is shown in Figure 8–4 below.

During runtime, the OracleAS JAAS Provider finds each Oracle Internet Directory
realm and its attributes (name, user manager implementation class, role manager
implementation class, and their properties) and instantiates the realm implementation
class with the realm properties for initialization.

Figure 8–4 Simplified Directory Information Tree for the Identity Management Realm

Oracle Internet Directory

com

abc

us

Users Roles

OracleAS JAAS Provider

OracleContext

JAZNContext

Realms

us

Realm Management for the LDAP-Based Provider

8-18 Oracle Containers for J2EE Security Guide

Access Control Lists and OracleAS JAAS Provider Directory Entries
OracleAS JAAS Provider directory entries are protected by access control lists (ACLs)
at the root of the product subtree. These ACLs grant full read and write privileges for
OracleAS JAAS Provider directory objects to the role JAZNAdminGroup and its
member OracleAS JAAS Provider administrative superuser (both for internal use
only). Non-superusers who are not JAZNAdminGroup members are denied access to
OracleAS JAAS Provider entries.

Because identity management JAZNContext subtrees are mirror images of their
site-wide parents, the security measures that they use to protect entries are the same.

Realm Management for Oracle Identity Management
This section discusses realm management when you use the LDAP-based provider
(Oracle Identity Management), requiring administration tools of the Oracle Internet
Directory. The following topics are covered:

■ Managing Realms in Oracle Internet Directory

■ Changing Your Default Realm

■ Using Multiple Realms and Oracle Single Sign-On with OC4J

Managing Realms in Oracle Internet Directory
Manage users and roles in an Oracle Internet Directory identity management realm by
using administrative features of the Oracle Delegated Administration Services (DAS),
as detailed in the Oracle Identity Management Guide to Delegated Administration.

In addition, perform any further configuration of an Oracle Internet Directory realm
through DAS as well. For example, this includes configuration of the user search base,
group search base, user creation base, group creation base, and user nickname
attribute.

OracleAS JAAS Provider itself does not perform any management of Oracle Internet
Directory realms; it merely looks up existing information in Oracle Internet Directory
as necessary.

Changing Your Default Realm
Oracle Internet Directory is shipped with a default realm, but you can optionally use a
different realm as your default realm, using the following basic steps:

1. Create a new identity management realm in Oracle Internet Directory to use as
your default realm. This is accomplished through DAS, as detailed in the Oracle
Identity Management Guide to Delegated Administration. When you do this, the
corresponding OracleAS JAAS Provider realm is provisioned automatically.

2. Set the OracleAS JAAS Provider default-realm attribute to the desired realm,
as described in "Default Realm with the File-Based Provider or Oracle Identity
Management" on page 6-4.

Important: Do not use the OracleAS JAAS Provider Admintool to
create realms for Oracle Internet Directory. Realms created with this
tool are suitable for the file-based provider only, and would not
include sufficient information for use with Oracle Internet Directory.

Realm Management for the LDAP-Based Provider

Oracle Identity Management 8-19

Using Multiple Realms and Oracle Single Sign-On with OC4J
Creating additional identity management realms in Oracle Internet Directory is
accomplished much as noted in the preceding section, "Changing Your Default
Realm". Use DAS, as detailed in the Oracle Identity Management Guide to Delegated
Administration. The corresponding OracleAS JAAS Provider realm is provisioned
automatically.

Additional steps are required for using Oracle Single Sign-On in a multi-realm
environment, to make the Oracle Single Sign-On server aware of the realms. In all,
using multiple realms with Oracle Single Sign-On consists of the following steps,
documented elsewhere (as referenced):

1. Create the realms, as summarized immediately above.

2. Configure the single sign-on server for multiple realms. This consists of the
following steps, covered in detail in the Oracle Application Server Single Sign-On
Administrator’s Guide.

a. Enable hosting on the single sign-on server. This is accomplished through a
script called enblhstg.csh.

b. Create an entry for each realm in the Oracle Single Sign-On database. This is
accomplished through a script called addsub.csh.

c. Update the sample login page to create a version of the page for multiple
realms.

d. Stop and restart the Oracle Single Sign-On middle tier.

3. Grant administrative privileges for multiple realms. This is also discussed in the
Oracle Application Server Single Sign-On Administrator’s Guide.

4. Configure Oracle Single Sign-On as described in "Configure SSO (Optional)" on
page 8-9.

5. Configure the SSO authentication method setting in OC4J, as described in "OC4J
Configuration for Oracle Single Sign-On Authentication" on page 8-14.

Important:

■ Multiple Oracle Internet Directory realms are supported by
OracleAS JAAS Provider only in conjunction with the use of
Oracle Single Sign-On.

■ Do not use the OracleAS JAAS Provider Admintool to create
realms for Oracle Internet Directory. Realms created with this tool
are suitable for the file-based provider only, and would not
include sufficient information for use with Oracle Internet
Directory.

■ When you add a realm, you may need to make existing
applications aware of it. The procedure for doing this is specific to
each application; refer to the application documentation.

See Also: For important additional information about using
multiple realms with the OracleAS JAAS Provider:

■ "Using a Nondefault Realm" on page 6-5

■ "Using Multiple Realms" on page 6-6

LDAP-Based Provider Settings in OC4J Configuration Files

8-20 Oracle Containers for J2EE Security Guide

The authentication sequence for single sign-on to multiple realms is much the same as
it is for single sign-on in a single, default realm. The only difference from the user's
perspective is that, when a user affiliated with the first type of realm is presented with
the login screen, the user must enter not only a user name and password but also a
new credential, the realm nickname.

Once a user has entered his credentials, both his realm nickname and user name are
mapped to entries in Oracle Internet Directory. More specifically, the single sign-on
server uses directory metadata to find the realm entry in the directory. Once it finds
this entry, the single sign-on server uses realm metadata to locate the user. Once the
user's entry is found, his password, an attribute of his entry, is validated. And once his
password is validated, he is authenticated.

LDAP-Based Provider Settings in OC4J Configuration Files
This section describes how to configure aspects of the LDAP-based Oracle Internet
Directory, covering the following topics:

■ Configuring LDAP User and SSL Properties

■ Configuring LDAP Connection Properties

■ Configuring LDAP Caching Properties

Configuring LDAP User and SSL Properties
Table 8–2 summarizes LDAP user and SSL properties, supported through
<property> subelements under the <jazn> element in the jazn.xml file of the
OC4J home instance. These parameters are set as appropriate through your
configuration in Application Server Control Console when you associate OC4J with
Oracle Internet Directory, described earlier in this chapter.

The resulting configuration is as follows:

<jazn ... >
 ...
 <property name="propname" value="propvalue" />
 ...

Important: Do not make property settings in the jazn.xml file of
the OC4J home instance until after you have associated the OC4J
instance with the Oracle Internet Directory instance. When you do the
association, the <jazn> element configuration in the home instance
jazn.xml file is rewritten and any previous settings are lost.

See Also:

■ Oracle Identity Management Guide to Delegated Administration for
information about creating users and roles, through the Oracle
Delegated Administration Services (DAS), when using Oracle
Identity Management

Note: This discussion assumes appropriate SSL configuration has
been completed for OC4J and Oracle Internet Directory, as discussed
in Chapter 15, "SSL Communication with OC4J", and the Oracle
Internet Directory Administrator’s Guide, respectively.

LDAP-Based Provider Settings in OC4J Configuration Files

Oracle Identity Management 8-21

</jazn>

You must restart OC4J for the changes to take effect.

Oracle Internet Directory supports null authentication for SSL communication. Data
are encrypted with the Anonymous Diffie-Hellman cipher suite, but no certificates are
used for authentication.

Here is a sample configuration:

<jazn provider="LDAP" location="ldap://www.example.com:389" default-realm="us">
 <property name="ldap.protocol" value="no-ssl"/>
 ...
</jazn>

Configuring LDAP Connection Properties
Table 8–3 summarizes LDAP connection properties. Table 8–4 summarizes properties
for the LDAP JNDI connection pool. You can set these properties in <property>
subelements under the <jazn> element in the instance-level jazn.xml file, as
follows:

<jazn ... >
 ...
 <property name="propname" value="propvalue" />
 ...
</jazn>

You must restart OC4J for the changes to take effect.

Table 8–2 LDAP SSL Properties and Related Properties

Property Name Property Definition

ldap.user LDAP user name or distinguished name. This element is
populated automatically; you should not change the contents.
For example:

orclApplicationCommonName=jaznadmin1,cn=JAZNContext,
cn=products,cn=OracleContext

ldap.password Obfuscated password for the LDAP user name. For example:

{903}oZZYqmGc/iyCaDrD4qs2FHbXf3LAWtMN

See Also: "Password Obfuscation in OC4J Configuration
Files" on page 6-3 for details on obfuscation.

ldap.protocol Determines whether to use SSL. (By default, SSL is used.)
Supported settings are "ssl" (typically used with port 636) or
"no-ssl" (typically used with port 389).

Note: As an alternative to the "ssl" setting, you can use the
protocol "ldaps://" in the LDAP URL.

See Also:

■ "SSL Authentication" on page 1-4

LDAP-Based Provider Settings in OC4J Configuration Files

8-22 Oracle Containers for J2EE Security Guide

Configuring LDAP Caching Properties
Oracle Internet Directory supports caching, which allows improved performance and
scalability. There are three separate caches:

■ Policy cache, which stores grantees and permissions

■ Realm cache, which stores realms, users and roles, and a role graph

■ Session cache, which stores users and role graphs in an HTTP session object
(available only to Web-based clients with cookies enabled)

The caching service maintains a global hashmap (java.util.HashMap instance)
that is used to store and retrieve cached objects. Expired objects in the hashmap are
periodically invalidated and cleaned up automatically, as appropriate. Objects in the
cache expire based on a time-to-live algorithm; expiration time can be set through the
cache properties described below.

Table 8–3 LDAP Connection Properties

Property Name Property Definition
Default
Value

ldap.connect.max.retry Number of times the security provider attempts
to create an LDAP connection before giving up.

5

ldap.connect.sleep.time Number of milliseconds the security provider
waits before retrying a failed LDAP connection
attempt.

5000

Table 8–4 LDAP JNDI Connection Pool Properties

Property Name Property Definition
Default
Value

jndi.ctx_pool.init_size Initial size of the LDAP JNDI connection pool. 5

jndi.ctx_pool.inc_size Pool increment size for the LDAP JNDI
connection pool—number of connections added
to pool whenever the supply of connections in
the pool is exhausted.

10

jndi.ctx_pool.timeout Timeout value, in milliseconds, for the LDAP
JNDI connection pool. (This may be useful, for
example, when there is a firewall between the
middle tier, including the OracleAS JAAS
Provider, and the Oracle Internet Directory. The
timeout on the firewall connection could be
coordinated with the timeout of the directory
connection.)

0 (no
timeout)

Note: The configurations discussed here must be performed
manually; there is currently no support for these in Application Server
Control.

Note: Only Oracle Internet Directory supports these caches. The
file-based provider defaults to caching the entire XML document.

LDAP-Based Provider Settings in OC4J Configuration Files

Oracle Identity Management 8-23

Table 8–5 describes LDAP caching properties and their default values. You can set
these properties in <property> subelements under the <jazn> element in the
instance-level jazn.xml file, as follows:

<jazn ... >
 ...
 <property name="propname" value="propvalue" />
 ...
</jazn>

Caching is enabled by default. You should disable the caches when performing certain
management and administrative tasks. In particular:

■ Disable the realm cache when managing realms. This includes adding realms,
dropping realms, granting roles, and revoking roles.

■ Disable the session cache when you disable HTTP session cookies.

The following example disables all three caches:

<jazn provider="LDAP" location="ldap://myhost.example.com:636" >
 ...
 <property name="ldap.cache.session.enable" value="false" />
 <property name="ldap.cache.realm.enable" value="false" />
 <property name="ldap.cache.policy.enable" value="false" />
 ...
</jazn>

Or, as startup parameter settings:

Table 8–5 LDAP Cache Properties

Property Description Default

ldap.cache.policy.enable If set to true, enables policy cache; if
set to false, disables cache.

true

ldap.cache.realm.enable If set to true, enables realm cache; if
set to false, disables cache.

true

ldap.cache.session.enable If set to true, enables session cache; if
set to false, disables cache.

true

ldap.cache.initial.capacity Initial capacity for the hashmap. This
property affects performance; it is
important to not set it too low.

20

ldap.cache.load.factor Load factor for the hashmap. This is a
measure of how full to allow the cache
to get before the capacity is
automatically increased. This property
affects performance; it is important to
not set it too high.

0.7

ldap.cache.purge.initial.delay String containing an integer that
represents the number of milliseconds
the daemon thread waits before it starts
checking for expired objects.

3600000
(one hour)

ldap.cache.purge.timeout String representation of an integer that
represents the number of milliseconds
an object remains in cache before being
invalidated and removed. It is also the
sleep time for the daemon thread
between each run looking for expired
objects.

3600000
(one hour)

Tips and Troubleshooting for the LDAP-Based Provider

8-24 Oracle Containers for J2EE Security Guide

-Dldap.cache.session.enable=false
-Dldap.cache.realm.enable=false
-Dldap.cache.policy.enable=false

The following example leaves all caches enabled, and sets a cache size of 100 and a
10,000-millisecond timeout:

<jazn provider="LDAP" location="ldap://myhost.example.com:636" >
 <property name="ldap.cache.initial capacity" value="100" />
 <property name="ldap.cache.purget.timeout" value="10000" />
</jazn>

Tips and Troubleshooting for the LDAP-Based Provider
Important issues when troubleshooting the Oracle Identity Management LDAP-based
provider include:

■ Checking Configuration (JAZN-LDAP)

■ Using ldapsearch to Retrieve Realm Names from Oracle Internet Directory

■ Avoiding OC4J Restart for Oracle Internet Directory Changes to Take Effect

Checking Configuration (JAZN-LDAP)
To verify that your usage of Oracle Identity Management has been configured
properly, do the following:

1. Use Application Server Control to verify that OC4J is associated with an Oracle
Internet Directory instance and that the security provider is specified as Oracle
Identity Management.

a. Go to the Security Provider page, as described in "Navigating to the Security
Provider Page for Your Application" on page 6-13.

b. In the Security Provider page, confirm that the security provider type is listed
as Oracle Identity Management Security Provider, and that the host and port
listed for Oracle Internet Directory under the security provider attributes are
correct.

2. Issue the Admintool -listrealms command to verify that data can be retrieved
from Oracle Internet Directory.

% java -jar jazn.jar -listrealms

3. If the Admintool responds with the message "Communication Error", then it is
likely that Oracle Internet Directory is down.

4. If the Admintool responds with the message "Invalid Credentials", then the
LDAP users and credentials are incorrectly configured.

Notes:

■ The OracleAS JAAS Provider Admintool automatically disables
caching while it is in operation, then reenables caching when it
finishes.

■ The configurations discussed here must be performed manually;
there is currently no support for these in Application Server
Control.

Tips and Troubleshooting for the LDAP-Based Provider

Oracle Identity Management 8-25

Using ldapsearch to Retrieve Realm Names from Oracle Internet Directory
As an alternative to the OracleAS JAAS Provider Admintool, you can use LDAP search
commands to retrieve a realm name from Oracle Internet Directory, as follows.

1. Start with a command such as the following, specifying the port, host, user DN,
and password. This will return values for
orclSubscriberNicknameAttribute and orclSubscriberSearchbase.

% ldapsearch -p port -h host -D dn_of_user -w password \
 -b "cn=common, cn=products,cn=oraclecontext" -s base "objectclass=*" \
 orclSubscriberNicknameAttribute orclSubscriberSearchbase

2. Next, use the values of orclSubscriberNicknameAttribute and
orclSubscriberSearchbase to get the realm name:

% ldapsearch -p port -h host -D dn_of_user -w password \
 -b "orclSubscriberSearchbase" \
 -s sub "orclSubscriberNicknameAttribute=*" \
 orclSubscriberNicknameAttribute

This will return the Oracle Internet Directory realm, which is useful if you use multiple
identity management realms in Oracle Internet Directory and would like to configure
a specific nondefault realm for J2EE applications.

Avoiding OC4J Restart for Oracle Internet Directory Changes to Take Effect
When doing administration to Oracle Internet Directory, such as adding grantees,
permissions, or groups, you should disable LDAP caching. If caching is left enabled,
your changes will not take effect until you stop and restart OC4J. See "Configuring
LDAP Caching Properties" on page 8-22 for how to disable caching.

Accessing the Oracle Single Sign-On Administration Pages
In the Oracle Identity Management 10.1.4 implementation, you can access the Oracle
Single Sign-On administration pages as follows:

http://host:port/sso

You can use this to check Oracle Single Sign-On setup.

Note: In the jazn.xml file of the OC4J home instance, the <jazn>
element has the setting provider="LDAP" to use the LDAP-based
provider. This element also reflects the Oracle Internet Directory
location and port.

See Also:

■ Oracle Internet Directory Administrator’s Guide for information
about the ldapsearch command

Note: In previous releases, the administration pages were accessed
as follows:

http://host:port/pls/orasso

Tips and Troubleshooting for the LDAP-Based Provider

8-26 Oracle Containers for J2EE Security Guide

See Also:

■ Oracle Application Server Single Sign-On Administrator’s Guide for
additional information about the Oracle Single Sign-On
administration pages

Login Modules 9-1

9
Login Modules

This chapter discusses login modules supplied with OC4J, as well as how to
implement, install, and configure a custom login module. The following topics are
covered:

■ Initial Login Module Considerations

■ Login Modules Supplied with OC4J

■ Introducing Custom JAAS Login Modules

■ Summary of Choices for Packaging Login Modules

■ Configuring the Custom Security Provider in Application Server Control

■ Using Admintool to Configure Login Modules and Grant RMI Permission

■ Summary of Login Module Configuration in OC4J Configuration Files

■ Step by Step: Integrating a Custom Login Module with OC4J

■ Custom Login Module Example

Initial Login Module Considerations
This section covers the following:

■ Specification of the Oracle Login Configuration Provider

■ Login Module Notes and Tips

Specification of the Oracle Login Configuration Provider
By default, OC4J specifies usage of the OracleAS JAAS Provider login configuration
provider (oracle.security.jazn.spi.LoginConfigProvider) by the OC4J
JVM, overriding usage of the Sun Microsystems default JAAS login configuration
provider.

This is accomplished through the following configuration in the file
ORACLE_HOME/j2ee/home/config/jazn.security.props:

login.configuration.provider=oracle.security.jazn.spi.LoginConfigProvider

The Oracle login configuration provider uses the system-jazn-data.xml file for
login module configuration.

See Also:

■ "JAAS Authentication: Login Modules" on page 2-13

Initial Login Module Considerations

9-2 Oracle Containers for J2EE Security Guide

Login Module Notes and Tips
Be aware of the following notes regarding the use of login modules with OC4J:

■ By convention, a setting of provider="XML" is required for an application using
custom login modules (custom security provider). See related information about
the custom.loginmodule.provider property in "Settings in <jazn> for Login
Modules" on page 9-23.

■ When using custom login modules, it is possible to instruct the OracleAS JAAS
Provider to base authorization checks on the authenticated subject instead of
basing checks on the users and roles defined in system-jazn-data.xml or the
application-specific jazn-data.xml file. See related information about the
role.mapping.dynamic property in "Settings in <jazn> for Login Modules" on
page 9-23.

To ensure that all relevant principals are taken into consideration during
authorization, the login module must add the relevant principals (including any
roles that the authenticated user belongs to) to the subject during the commit
phase of the authentication process.

■ Login module configuration (under the <jazn-loginconfig> element) cannot
be in an application-specific jazn-data.xml file; it must be in
system-jazn-data.xml. Configuration will be written to
system-jazn-data.xml automatically if you configure login modules through
Application Server Control or in your orion-application.xml file. (Also see
"Settings in <jazn-loginconfig> in orion-application.xml" on page 9-22.)

■ If you use any identity repository other than the file-based provider or Oracle
Internet Directory, you must define an administrative user account and
administrator roles, grant the roles to the user, and grant necessary permissions to
the roles, as discussed in "Creating the Administrative User and Roles and
Granting RMI Permission" on page 10-9.

■ Because the JAAS specification does not cover user management, when you
configure your application to use a custom login module, the use of the
UserManager API within your application is not supported. The J2EE API,
however, will continue to function within your application.

■ See "OracleAS JAAS Provider Policy Management" on page 5-12 regarding
subject-based policy management when using a custom login module. The policy
configuration must be in system-jazn-data.xml.

■ "Using the File-Based Provider Across an OC4J Group" on page 7-17 discusses
how to maintain system-jazn-data.xml settings across multiple OC4J
instances. This functionality also applies to login modules, using MBean
operations such as setLoginModule, remLoginModule, and
getLoginModuleControlFlagTypes.

Login Modules Supplied with OC4J

Login Modules 9-3

Login Modules Supplied with OC4J
OC4J supplies the set of login modules, including standard J2EE login modules, listed
in Table 9–1.

This rest of this section offers additional information about the following login
modules:

■ RealmLoginModule

■ DBTableOraDataSourceLoginModule

Troubleshooting Tips:

■ If an application is configured to use a custom login module but
the login module is not found in the classpath, a "class not found"
exception is thrown with a message such as the following:
"WARNING unable to find LoginModule class: Missing class:
Xxxxxx..." See "Summary of Choices for Packaging Login
Modules" on page 9-13 for related information.

■ Be aware that when you use a custom login module, role
comparisons for authorization are not case-sensitive unless you
add the following property setting to the <jazn> element in
orion-application.xml:

<property name="role.compare.ignorecase" value="false" />

Table 9–1 Login Modules Supplied with OC4J

Login Module Description

oracle.security.jazn.login.module.
RealmLoginModule

OC4J login module for the file-based
provider or Oracle Identity Management.
(Additional information follows.)

oracle.security.jazn.login.module.db.
DBTableOraDataSourceLoginModule

OC4J login module for user data in a
database. (Additional information follows.)

oracle.security.jazn.login.module.
LDAPLoginModule

OC4J login module for external LDAP
providers.

See Also: Chapter 10, "External LDAP
Security Providers"

oracle.security.jazn.login.module.coreid.
CoreIDLoginModule

OC4J login module for Oracle Access
Manager.

See Also: Chapter 11, "Oracle Access
Manager"

Notes:

■ This table does not show additional login modules internal to
OC4J.

■ Oracle does not currently validate Sun login modules for use with
OC4J. (These login modules, in package
com.sun.security.auth.module, are not currently part of
the JDK.)

Login Modules Supplied with OC4J

9-4 Oracle Containers for J2EE Security Guide

RealmLoginModule
The RealmLoginModule class is the default login module, for use with the file-based
provider or Oracle Identity Management, and is configured when you configure these
security providers through Application Server Control. This configuration is reflected
in a <login-module> element under <jazn-loginconfig> in the
system-jazn-data.xml file.

The RealmLoginModule class authenticates user login credentials before the user can
access J2EE applications. Authentication is performed using OC4J container-based
authentication (HTTP basic, form-based, and so on).

RealmLoginModule supports the options shown in Table 9–2 (reflected in <name>
and <value> subelements of an <option> element under <login-module>).

Here is sample configuration of RealmLoginModule, in system-jazn-data.xml.
(We recommend that you not alter RealmLoginModule configuration manually; this
example is just for illustrative purposes.)

<jazn-loginconfig>

Table 9–2 RealmLoginModule Options

Option Description Default

debug If set to true, debugging messages are printed. false

addRoles If set to true, the RealmLoginModule adds all directly
granted roles of the user to the subject after successful
authentication.

true

addAllRoles If set to true, the RealmLoginModule adds all directly
or indirectly granted roles of the user to the subject after
successful authentication.

true

storePrivateCredentials If set to true, the RealmLoginModule adds all private
credentials (for example, password credentials) to the
subject after successful authentication.

false

supportNullPassword (Oracle Identity Management only) If set to true, the
RealmLoginModule does not check to see if the
supplied password is null or empty. If set to false,
authentication fails if the supplied password is null or
empty.

false

Notes:

■ RealmLoginModule does not have to be enabled if your
application uses Oracle Single Sign-On authentication.

■ RealmLoginModule is used only with declarative security, not
programmatic security.

■ The use of RealmLoginModule as a custom login module—in
other words, as a custom security provider—is not supported.

See Also:

■ "Login Module Settings in system-jazn-data.xml" on page 9-21

■ "Using Admintool to Configure Login Modules and Grant RMI
Permission" on page 9-19 for information on using the
Admintool

Login Modules Supplied with OC4J

Login Modules 9-5

 <application>
 <name>oracle.security.jazn.tools.Admintool</name>
 <login-modules>
 <login-module>
 <class>oracle.security.jazn.realm.RealmLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>debug</name>
 <value>false</value>
 </option>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>
 <application>
 <name>oracle.security.jazn.oc4j.JAZNUserManager</name>
 <login-modules>
 <login-module>
 <class>oracle.security.jazn.realm.RealmLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>
</jazn-loginconfig>

DBTableOraDataSourceLoginModule
The OC4J 10.1.3.1 implementation supplies a login module you can use if you have a
user identity store in a database:

oracle.security.jazn.login.module.db.DBTableOraDataSourceLoginModule

This replaces previous functionality of the
com.evermind.sql.DataSourceUserManager class, now deprecated (but still
supported for backward compatibility, and still documented at the end of this section
for completeness). It also replaces some authentication functionality of the deprecated
com.evermind.security.User class.

Once you have created your database schema and an Oracle data source to connect to
the database (as described in the data sources chapter of the Oracle Containers for J2EE
Services Guide), you are ready to configure the login module.

DBTableOraDataSourceLoginModule supports a number of options for specifying
such items as data location (table and column names) and password encryption. You
can set these options through Application Server Control or the OracleAS JAAS
Provider Admintool, with the settings being reflected in the <jazn-loginconfig>
element of the system-jazn-data.xml file.

This section covers the following topics:

Login Modules Supplied with OC4J

9-6 Oracle Containers for J2EE Security Guide

■ DBTableOraDataSourceLoginModule Options

■ Configuring DBTableOraDataSourceLoginModule in Application Server Control

■ Configuring DBTableOraDataSourceLoginModule in the Admintool

■ Sample DBTableOraDataSourceLoginModule Settings in system-jazn-data.xml

■ Principals for DBTableOraDataSourceLoginModule

■ Implementing DBLoginModuleEncodingInterface for Password Encryption

■ Previous Functionality: DataSourceUserManager (Deprecated)

DBTableOraDataSourceLoginModule Options
Table 9–3 summarizes the options supported by
DBTableOraDataSourceLoginModule, noting which options are required, and
including default values as applicable and examples as appropriate. There is no
configuration of this login module in OC4J as shipped; refer to the sections that follow,
"Configuring DBTableOraDataSourceLoginModule in Application Server Control" and
"Configuring DBTableOraDataSourceLoginModule in the Admintool", for information
about tools you can use in configuring the login module.

Note that DBTableOraDataSourceLoginModule supports encrypted passwords in
the database table, and you can use custom password encryption algorithms. To use
this feature, you must use an implementation of the following interface, discussed in
"Implementing DBLoginModuleEncodingInterface for Password Encryption" on
page 9-10:

oracle.security.jazn.login.module.db.DBLoginModuleEncodingInterface

Oracle supplies implementations for the SHA1 and MD5 algorithms.

Note: DBTableOraDataSourceLoginModule is available with the
OC4J product and automatically included in the classpath.

Table 9–3 DBTableOraDataSourceLoginModule Options

Option Description

data_source_name (required) Name of the data source for the database, as configured
in the data-sources.xml file.

Default: n/a

Example: jdbc/OracleDS

table (required) Name of the database table containing user
authentication information (user names, passwords,
and so on).

Default: n/a

Example: userinfo

groupMembershipTableName
(required)

Name of the database table containing role information.

Default: n/a

Example: groupinfo

usernameField (required) Name of the column containing user names, in the table
specified in the table option.

Default: n/a

Example: userName

Login Modules Supplied with OC4J

Login Modules 9-7

passwordField (required) Name of the column containing passwords, in the table
specified in the table option.

Default: n/a

Example: passWord

pw_encoding_class Name of your password encryption class, if you use
password encryption. (See the discussion immediately
preceding this table.)

Default: oracle.security.jazn.login.module.db.util.
DBLoginModuleClearTextEncoder (no encryption)

Example: oracle.security.jazn.login.module.db.util.
DBLoginModuleSHA1Encoder

See Also: "Implementing
DBLoginModuleEncodingInterface for Password
Encryption" on page 9-10

pw_key The password encryption key, if you use password
encryption. This key is accessed by the class specified in
the pw_encoding_class option.

Default: n/a

Example: xyz

groupMembershipGroupFieldName
(required)

Name of the column containing role names, in the table
specified in the groupMembershipTableName option.

user_pk_column Column name for the primary key in the table specified
in the table option.

Default: Value of the usernameField option.

Example: userName

roles_fk_column Column name for the foreign key in the table specified
in the groupMembershipTableName option.

Default: Value of the usernameField option.

Example: userName

casing The case-sensitivity when comparing login user names
to names in the database. Use sensitive to require
case-sensitive comparisons, toupper to convert the
login user name to all-uppercase, or tolower to
convert the login user name to all-lowercase. (If
anything other than these three values is specified, the
default value will be used.)

Default: sensitive

Example: toupper

Table 9–3 (Cont.) DBTableOraDataSourceLoginModule Options

Option Description

Login Modules Supplied with OC4J

9-8 Oracle Containers for J2EE Security Guide

Configuring DBTableOraDataSourceLoginModule in Application Server Control
"Configuring the Custom Security Provider in Application Server Control" on
page 9-15 discusses how to specify and configure a custom login module during
deployment, change to a custom login module after deployment, add a login module,
or update a login module. You can use these procedures to configure
DBTableOraDataSourceLoginModule. The Application Server Control Console
login module configuration page enables you to specify the login module class, and to
specify names and values for any number of properties corresponding to the options
documented in the preceding section, "DBTableOraDataSourceLoginModule Options".

Configuring DBTableOraDataSourceLoginModule in the Admintool
As an alternative to using the Application Server Control Console, you can configure
DBTableOraDataSourceLoginModule through the OracleAS JAAS Provider
Admintool. Use of the Admintool for login modules is discussed in "Using Admintool
to Configure Login Modules and Grant RMI Permission" on page 9-19.

Here is an example:

java -jar jazn.jar -addloginmodule application_name \
 oracle.security.jazn.login.module.db.DBTableOraDataSourceLoginModule \
 required data_source_name="jdbc/OracleDS" roles_fk_column="username" \
 table="userinfo" groupMembershipTableName="groupinfo" \
 groupMembershipGroupFieldName="role" usernameField="username" \
 user_pk_column="username" passwordField="password" casing="sensitive"

Sample DBTableOraDataSourceLoginModule Settings in system-jazn-data.xml
As with any login module, option settings and other configuration are stored within
the <jazn-loginconfig> element of the system-jazn-data.xml file. Here is an
example:

<jazn-loginconfig>
 <application>
 <name>application_name</name>
 <login-modules>
 <login-module>
 <class>
 oracle.security.jazn.login.module.db.DBTableOraDataSourceLoginModule

Notes:

■ It is permissible to use the same table for user information and
role information; in other words, to specify the same table for the
table and groupMembershipTableName options. Notice that
in this scenario, however, each user can have only one role. It is
typical, and advisable, to use separate tables.

■ DBTableOraDataSourceLoginModule does not support null
or empty passwords.

■ If you use password encryption, passwords are compared
according to their encrypted values, not the unencrypted strings.
When a user logging in types the password, it is encrypted
according to the encrypting method of the class you specify in the
pw_encoding_class option, and compared to the encrypted
password stored in the database. No attempt is made to decrypt
the password stored in the database.

Login Modules Supplied with OC4J

Login Modules 9-9

 </class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>data_source_name</name>
 <value>jdbc/OracleDS</value>
 </option>
 <option>
 <name>table</name>
 <value>userinfo</value>
 </option>
 <option>
 <name>roles_fk_column</name>
 <value>userName</value>
 </option>
 <option>
 <name>groupMembershipGroupFieldName</name>
 <value>role</value>
 </option>
 <option>
 <name>user_pk_column</name>
 <value>userName</value>
 </option>
 <option>
 <name>passwordField</name>
 <value>passWord</value>
 </option>
 <option>
 <name>groupMembershipTableName</name>
 <value>groupinfo</value>
 </option>
 <option>
 <name>usernameField</name>
 <value>userName</value>
 </option>
 <option>
 <name>casing</name>
 <value>sensitive</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>
 ...
</jazn-loginconfig>

Principals for DBTableOraDataSourceLoginModule
DBTableOraDataSourceLoginModule uses the following principals:

■ oracle.security.jazn.login.module.db.principals.DBUserPrincipal
 (for users)

■ oracle.security.jazn.login.module.db.principals.DBRolePrincipal
 (for roles)

See Also:

■ "Summary of Login Module Configuration in OC4J Configuration
Files" on page 9-21

Login Modules Supplied with OC4J

9-10 Oracle Containers for J2EE Security Guide

A subject passed to the DBTableOraDataSourceLoginModule is populated with
instances of these principal types.

For a user name in the user table (a name in the column indicated by the
usernameField option, in the table indicated by the table option), there would be a
corresponding DBUserPrincipal instance in the subject.

For a role name in the role table (a name in the column indicated by the
groupMembershipGroupFieldName option, in the table indicated by the
groupMembershipTableName option), there would be a corresponding
DBRolePrincipal instance in the subject.

You can use the Admintool to grant permissions to a user or role, as follows:

% java -jar jazn.jar -grantperm \
 oracle.security.jazn.login.module.db.principals.DBUserPrincipal name \
 permissionclass [permission_parameters]

% java -jar jazn.jar -grantperm \
 oracle.security.jazn.login.module.db.principals.DBRolePrincipal name \
 permissionclass [permission_parameters]

In this syntax, name is the name of the DBUserPrincipal or DBRolePrincipal
instance, permissionclass is the fully qualified name of the permission class for the
permission you are granting, and permission_parameters are any appropriate
parameters of the permission class (login for RMIPermission, for example).

Implementing DBLoginModuleEncodingInterface for Password Encryption
To use password encryption with DBTableOraDataSourceLoginModule, you must
use an implementation of the following interface to perform the encryption:

oracle.security.jazn.login.module.db.DBLoginModuleEncodingInterface

The implementing class must implement the following method, which is called by the
login module:

■ String getKeyDigestString(String text, String key)

This method takes a text string to encrypt (such as a password) and a string that
specifies a key, as set in the pw_key option for the login module (if applicable). The
method would then encrypt the text string with any desired algorithm (with the key if
specified), and preferably also formats the post-encryption binary data using any
desired encoding standard (Base64Encoding, for example). It outputs the encrypted
digest string.

For algorithms that do not use a key, such as MD5 or SHA1, any key passed could be
ignored. If the pw_key option is not set, then its value is null and null is passed.

Oracle provides the following implementations in the
oracle.security.jazn.login.module.db.util package:

■ DBLoginModuleSHA1Encoder

This class generates a hash value for the given password string using the SHA1
algorithm, and encodes the binary hash using Base64Encoding. The binary hash
of the password must be stored in the database using Base64Encoding.

■ DBLoginModuleMD5Encoder

Important: Ensure that permission classes are in the classpath.

Login Modules Supplied with OC4J

Login Modules 9-11

This class generates a hash value for the given password string using the MD5
algorithm, and encodes the binary hash using Base64Encoding. The binary hash
of the password must be stored in the database using Base64Encoding.

■ DBLoginModuleClearTextEncoder

If you do not specify an encryption class, DBLoginModuleClearTextEncoder
is used, resulting in no encryption. This class simply passes the password string as
it is given.

Previous Functionality: DataSourceUserManager (Deprecated)
Prior to implementation of DBTableOraDataSourceLoginModule in the OC4J
10.1.3.1 implementation, equivalent functionality was available through the
com.evermind.sql.DataSourceUserManager class. While this feature is
currently still supported for backward compatibility, it is deprecated and will be
desupported in future releases. You should use
DBTableOraDataSourceLoginModule instead.

However, for completeness, we include the following documentation for the
DataSourceUserManager feature.

When you configure DataSourceUserManager (as described shortly), you can
specify values for the properties described in Table 9–4, as appropriate. The
DataSourceUserManager instance uses these properties to access the user-defined
database table that lists the current users and their associated credentials.

Notes:

■ The database you use must be specified as a data source, for
which you provide a JNDI location in your configuration. The
configuration also specifies the relevant database tables and
fields.

■ In OC4J 10.1.3.x implementations, DataSourceUserManager
obtains group information only from the database, which
differs from the behavior in previous implementations.
Therefore, you must map groups to users in the database, as
applicable.

Table 9–4 DataSourceUserManager Properties

Property Description

dataSource A JNDI location for the installed data source
(database) to use.

table Name of the database table containing user data.

usernameField Name of the column for user names in the database
table.

passwordField Name of the column for passwords in the database
table.

certificateIssuerField An identifier for the certificate issuer, if applicable.

certificateSerialField The serial ID of the certificate issuer, if applicable.

localeField The locale, if applicable.

defaultGroups Comma-delimited list of groups that the users are
members of.

Introducing Custom JAAS Login Modules

9-12 Oracle Containers for J2EE Security Guide

To use DataSourceUserManager, configure it in a <user-manager> element in
your orion-application.xml file. This is a subelement of
<orion-application>, and must be configured manually. There is no
UserManager support in Application Server Control 10.1.3.x implementations.

Specify the DataSourceUserManager fully qualified name in the class attribute of
<user-manager>. Use a <property> subelement to specify the name and value of
each property you want to set.

Here is an example:

<orion-application ... >
 ...
 <user-manager class="com.evermind.sql.DataSourceUserManager">
 <property name="dataSource" value="jdbc/OracleCoreDS" />
 <property name="table" value="j2ee_users" />
 <property name="usernameField" value="username" />
 <property name="passwordField" value="password" />
 <property name="groupMembershipTableName" value="second_table" />
 <property name="groupMembershipGroupFieldName" value="group" />
 <property name="groupMembershipUserNameFieldName" value="userId" />
 </user-manager>
 ...
</orion-application>

Introducing Custom JAAS Login Modules
Because OC4J support for JAAS fully complies with the JAAS 1.0 specification, users
can plug in any JAAS-compliant LoginModule implementation, if desired. (OC4J
includes the RealmLoginModule class as its default login module implementation.
This class combines J2EE security constraints with either the file-based provider or
Oracle Identity Management.)

groupMembershipTableName Name of an optional database table that maps users to
groups, if the use of defaultGroups is not sufficient.

groupMembershipUserNameFieldName Name of the column for user names in the group
membership database table, if applicable.

groupMembershipGroupFieldName Name of the column for group names in the group
membership database table, if applicable.

staleness Number of milliseconds for which a fetched set of
user data will be valid. The default setting is -1
(forever).

casing Flag that controls how DataSourceUserManager
handles character case for user names (but not group
names) when trying to match a name against the list
of known users in the database.

The default "sensitive" setting results in
case-sensitive matching. For the "toupper" and
"tolower" settings, the name is converted to all
uppercase or all lowercase, respectively, for purposes
of matching.

debug Flag to enable output of debug information.

Table 9–4 (Cont.) DataSourceUserManager Properties

Property Description

Summary of Choices for Packaging Login Modules

Login Modules 9-13

A custom login module may be desirable, for example, when users and roles are
defined in an external repository. When you create a custom login module, consider
the following preliminary questions:

■ Development: Do you want to take advantage of J2EE security constraints?

■ Debugging: Do you want the login module to support a debugging option for use
during development? (As noted previously, RealmLoginModule, for example,
supports a debug option that provides diagnostic output. Also, "Custom Login
Module Example" on page 9-28 includes debugging functionality.)

■ Packaging and deployment: Are you using login modules that come with OC4J or
J2SE 1.4? Or are you deploying custom or third-party login modules? And are you
packaging the login modules with your application, or making them available
separately as an optional package or library?

When you associate a custom login module with an application (through
configuration, as shown later), the subject and the principals it contains are used as the
sole basis for all authorization tasks, including evaluating J2EE security constraints. To
ensure that all relevant principals are considered during authorization, the login
module must add the relevant principals, including all roles that the authenticated
user participates in, to the subject during the commit phase of the authentication
process. (The role.mapping.dynamic property, discussed in "Settings in <jazn> for
Login Modules" on page 9-23, is related to subject-based authorization.)

The custom login module framework supports the J2EE declarative security model.
This means that subject-based authorization enforces the J2EE security constraints
declared in application deployment descriptors (web.xml and ejb-jar.xml, for
example).

Custom login modules are configured through the OC4J system-jazn-data.xml
file, which can be updated automatically through use of tools such as Application
Server Control Console and OracleAS JAAS Provider Admintool. You can also
configure login modules through orion-application.xml, in which case the
configuration is copied to system-jazn-data.xml.

Summary of Choices for Packaging Login Modules
If you are using one or more of the default login modules provided with OC4J or the
J2SE, then no additional configuration is needed. The OracleAS JAAS Provider can
locate the default login modules.

If you are deploying your application with one or more custom login modules, then
you must deploy the login modules and configure the OracleAS JAAS Provider
properly so that the module can be found at runtime. The following sections discuss
ways to accomplish this:

■ Packaging Login Modules within the J2EE Application

■ Providing Login Modules as Optional Packages

■ Providing Login Modules as OC4J Shared Libraries

See Also:

■ "JAAS Authentication: Login Modules" on page 2-13

■ Sun Microsystems JAAS documentation for general information
about developing custom login modules:

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaa
s/JAASLMDevGuide.html

Summary of Choices for Packaging Login Modules

9-14 Oracle Containers for J2EE Security Guide

The remainder of this section discusses these options in greater detail.

Packaging Login Modules within the J2EE Application
If your login modules are used by only a single J2EE application, then you can simply
package the login modules as part of your application by including the login module
JAR file in the application EAR file.

The login modules must be configured through <jazn-loginconfig> settings, in
one of two places:

■ In the system-jazn-data.xml file, as discussed in "Login Module Settings in
system-jazn-data.xml" on page 9-21

■ In the orion-application.xml file in your application EAR file, as discussed
in "Settings in <jazn-loginconfig> in orion-application.xml" on page 9-22

Using the Application Server Control Console, you can configure custom login
modules as you deploy an application, or later if you change the security provider to
custom. This results in system-jazn-data.xml being updated automatically.

Administering custom login modules through the OracleAS JAAS Provider Admintool
will also update system-jazn-data.xml settings for you.

Providing Login Modules as Optional Packages
If you deploy your login modules as an optional package (formerly known as a
"standard extension"), the OracleAS JAAS Provider will be able to find them. No
additional configuration is necessary. Deploying login modules as an optional package
allows multiple applications to share them.

There are two ways to use the optional package mechanism:

■ Use the login module classes as an installed optional package. Place the login module
JAR file in the jre/lib/ext directory. Classes in JAR files in this directory can be
used by applications without having to be included in the classpath.

■ Use the login module classes as a download optional package. Specify the login
module JAR file in the Class-Path header field in the manifest of other JAR files,

Important: If an application is configured to use a custom login
module but the login module is not found in the classpath, a "class not
found" exception is thrown with a message such as the following:
"WARNING unable to find LoginModule class: Missing class:
Xxxxxx..."

Note: If a different application needs the same login module, you
must repackage the login module and any relevant classes with the
new application, or make it available as an optional package or shared
library.

See Also:

■ "Configuring the Custom Security Provider in Application Server
Control" on page 9-15

■ "Using Admintool to Configure Login Modules and Grant RMI
Permission" on page 9-19

Configuring the Custom Security Provider in Application Server Control

Login Modules 9-15

as desired. In this way, classes in the login module JAR file can be used by classes
in the other JAR files that reference it.

The login modules must also be configured in system-jazn-data.xml, as
discussed in "Login Module Settings in system-jazn-data.xml" on page 9-21.

Providing Login Modules as OC4J Shared Libraries
The OracleAS JAAS Provider is integrated with the OC4J class loading architecture.
Because of this, you can make login modules available to applications by loading them
as OC4J shared libraries, as documented in "Tasks to Share a Library" on page 6-14.

Configuring the Custom Security Provider in Application Server Control
This section discusses the following administration tasks for the custom security
provider (custom login modules) using the Application Server Control Console:

■ Specifying and Configuring a Custom Security Provider during Deployment

■ Changing to a Custom Security Provider after Deployment

■ Adding a Login Module to the Custom Security Provider

■ Updating a Login Module in the Custom Security Provider

■ Deleting a Login Module in the Custom Security Provider

Specifying and Configuring a Custom Security Provider during Deployment
When you plan to use a custom security provider and you deploy an application
through Application Server Control, you have the opportunity to configure your
custom login modules during deployment.

From the Deploy: Deployment Settings page (see "Deploying an Application through
Application Server Control" on page 6-8 for how to get to this page):

1. Go to the Select Security Provider task.

2. In the resulting Deployment Settings: Select Security Provider page, choose
Custom from the Security Provider dropdown list.

3. Under "Configuration of Custom Security Provider" (which appears after you
choose Custom), you can edit or delete any custom login module that is found
with your application, or add a new custom login module.

See Also:

■ For general information about the standard "optional package"
mechanism:

http://java.sun.com/j2se/1.4.2/docs/guide/extensions

Notes:

■ Procedures discussed throughout this section assume you are
logged in to Application Server Control as a user with required
administrative permissions (as oc4jadmin, for example).

■ Any login module you specify must be in the classpath at
runtime. (One option is to load it as a shared library, as described
in "Tasks to Share a Library" on page 6-14.)

Configuring the Custom Security Provider in Application Server Control

9-16 Oracle Containers for J2EE Security Guide

■ To add a new custom login module, choose Add Login Module. See "Adding
a Custom Login Module during Deployment" on page 9-17.

■ To edit an existing custom login module, choose the Edit task for the
appropriate module. See "Editing a Custom Login Module Configuration
during Deployment" on page 9-16.

■ To delete an existing custom login module, choose the Delete task for the
appropriate module.

4. Still in the Deployment Settings: Select Security Provider page, choose OK to
finish the security provider selection.

5. Back in the Deploy: Deployment Settings page, choose Deploy to complete the
deployment, or choose another task, as desired. The list of tasks is noted in
"Deploying an Application through Application Server Control" on page 6-8.

Deploying or configuring a custom login module through Application Server Control
results in the following required settings being inserted automatically in the
orion-application.xml file:

<jazn provider="XML">
 <property name="role.mapping.dynamic" value="true" />
 <property name="custom.loginmodule.provider" value="true" />
</jazn>

Editing a Custom Login Module Configuration during Deployment
To edit a custom login module while deploying an application using the Custom
Security Provider, take the following steps, starting under "Configuration of Custom
Security Provider" in the Deployment Settings: Select Security Provider page (see
earlier in "Specifying and Configuring a Custom Security Provider during
Deployment" on page 9-15 for how to get to this point):

1. Choose the Edit task for the appropriate login module in the list of login module
classes.

2. In the Deployment Settings: Select Security Provider: Edit Login Module page:

Notes:

■ Grants for custom login modules, which are stored in
system-jazn-data.xml, cannot be configured through
Application Server Control.

■ By convention, there is a <jazn> setting of provider="XML"
when you use custom login modules.

■ Custom login module configuration settings are reflected under
the <jazn-loginconfig> element in the
system-jazn-data.xml file, as shown in "Login Module
Settings in system-jazn-data.xml" on page 9-21.

See Also:

■ "Summary of Login Module Configuration in OC4J Configuration
Files" on page 9-21 and "Step by Step: Integrating a Custom Login
Module with OC4J" on page 9-24 for information and examples
regarding the resulting XML configuration for login modules

Configuring the Custom Security Provider in Application Server Control

Login Modules 9-17

■ Specify a value for the login module control flag (from the dropdown list):
Required, Requisite, Optional, or Sufficient. Table 9–5 describes these settings.

■ As desired, choose Add Another Row to create properties.

■ As desired, edit the name or value of any property in the Properties list.

■ As desired, use the Delete task for a property to remove that property.

■ Choose Continue to go back to the Deployment Settings: Select Security
Provider page to continue the deployment steps in "Specifying and
Configuring a Custom Security Provider during Deployment" on page 9-15.

These control flag settings are used according to standard functionality of the
javax.security.auth.login.Configuration class. The overall authentication
succeeds only if all "required" and "requisite" login modules succeed, possibly unless a
"sufficient" login module is configured and succeeds—in that case, only the required
and requisite login modules prior to the sufficient login module in the login module
list must succeed.

Adding a Custom Login Module during Deployment
To add a custom login module while deploying an application using the Custom
Security Provider, take the following steps, starting under "Configuration of Custom
Security Provider" in the Deployment Settings: Select Security Provider page (see
earlier in "Specifying and Configuring a Custom Security Provider during
Deployment" on page 9-15 for how to get to this point):

1. Choose Add Login Module.

2. In the Deployment Settings: Select Security Provider: Add Login Module page:

■ Specify your login module package and class name.

■ Specify a value for the login module control flag (from the dropdown list):
Required, Requisite, Optional, or Sufficient. See Table 9–5, " Login Module
Control Flags" in the preceding section for information about these settings.

■ As desired, choose Add Another Row to create properties.

■ As desired, edit the name or value of any property in the Properties list.

■ As desired, use the Delete task for a property to remove that property.

Table 9–5 Login Module Control Flags

 Flag Meaning

Required The login module is nominally required to succeed. Whether or
not it succeeds, however, authentication proceeds down the
login module list.

Requisite The login module nominally must succeed. If it succeeds,
authentication continues down the login module list. If it fails,
control immediately returns to the application—authentication
does not continue down the login module list.

Sufficient The login module is not required to succeed. If it succeeds,
control immediately returns to the application, and
authentication does not proceed down the login module list. If
it fails, authentication continues down the login module list.

Optional The login module is not required to succeed. Whether or not it
succeeds, authentication proceeds down the login module list.

Configuring the Custom Security Provider in Application Server Control

9-18 Oracle Containers for J2EE Security Guide

■ Choose Continue to go back to the Deployment Settings: Select Security
Provider page to continue the deployment steps in "Specifying and
Configuring a Custom Security Provider during Deployment" on page 9-15.

Changing to a Custom Security Provider after Deployment
You can select a security provider for your application at deployment time, as
described above. You can also change to a different security provider after
deployment. You can change to a custom security provider as follows:

1. Go to the Security Provider page for your application, as described in "Navigating
to the Security Provider Page for Your Application" on page 6-13.

2. In the Security Provider page, choose Change Security Provider.

3. In the Change Security Provider page, select "Custom Security Provider" from the
dropdown.

4. Under "Login Modules" (which appears after you select Custom Security Provider
in the dropdown), specify the first login module to be used, as follows. Later you
can go back to the Security Provider to add more login modules, as described in
the next section, "Adding a Login Module to the Custom Security Provider".

■ Specify your login module package and class name.

■ Specify a value for the login module control flag (from the dropdown
list)—Required, Requisite, Optional, or Sufficient. See Table 9–5, " Login
Module Control Flags" on page 9-17 for information about these settings.

■ As desired, choose Add Another Row to create properties.

■ As desired, edit the name or value of any property in the Properties list.

■ As desired, use the Delete task for a property to remove that property.

■ Choose OK to finish the change.

This takes you back to the Security Provider page, where you are prompted to restart
your application for the changes to take effect.

Adding a Login Module to the Custom Security Provider
Once you have established a custom security provider, either during or after
deployment, you can add custom login modules as follows:

1. Go to the Security Provider page for your application, as described in "Navigating
to the Security Provider Page for Your Application" on page 6-13.

2. In the Security Provider page, under "Login Modules", choose Create.

3. In the Add Login Module page:

■ Specify your login module package and class name.

■ Specify a value for the login module control flag (from the dropdown list):
Required, Requisite, Optional, or Sufficient. See Table 9–5, " Login Module
Control Flags" on page 9-17 for information about these settings.

■ As desired, choose Add Another Row to create properties.

■ As desired, edit the name or value of any property in the Properties list.

■ As desired, use the Delete task for a property to remove that property.

■ Choose OK to finish the change.

Using Admintool to Configure Login Modules and Grant RMI Permission

Login Modules 9-19

This takes you back to the Security Provider page, where you can examine the settings.

Updating a Login Module in the Custom Security Provider
Once you have established a custom security provider, either during or after
deployment, you can update custom login modules as follows:

1. Go to the Security Provider page for your application, as described in "Navigating
to the Security Provider Page for Your Application" on page 6-13.

2. In the Security Provider page, in the list of login module classes, choose the Edit
task for the login module you want to update.

3. In the Edit Login Module page:

■ As desired, update the value for the login module control flag (from the
dropdown list): Required, Requisite, Optional, or Sufficient. See Table 9–5,
" Login Module Control Flags" on page 9-17 for information about these
settings.

■ As desired, choose Add Another Row to create properties.

■ As desired, edit the name or value of any property in the Properties list.

■ As desired, use the Delete task for a property to remove that property.

■ Choose Apply to finish the change.

This leaves you in the Edit Login Module page. You can use the breadcrumbs at the
top of the page to go back to the Security Provider page.

Deleting a Login Module in the Custom Security Provider
Once you have established a custom security provider, either during or after
deployment, you can delete custom login modules as follows:

1. Go to the Security Provider page for your application, as described in "Navigating
to the Security Provider Page for Your Application" on page 6-13.

2. In the Security Provider page, in the list of login module classes, choose the Delete
task for the login module you want to delete.

3. Choose Yes in the Confirmation page.

This takes you back to the Security Provider page, where you can see that the login
module was deleted.

Using Admintool to Configure Login Modules and Grant RMI Permission
This section describes how to use the OracleAS JAAS Provider Admintool in the
following ways:

■ As an alternative to the Application Server Control Console for adding and
configuring login modules

■ To grant RMI permission "login" to appropriate principals to access EJBs through
RMI

See Also:

■ Appendix C, "OracleAS JAAS Provider Admintool Reference"

Using Admintool to Configure Login Modules and Grant RMI Permission

9-20 Oracle Containers for J2EE Security Guide

Configuring Login Modules through the Admintool
Although Application Server Control is the preferred and recommended tool for
adding and configuring custom login modules, it is also possible to use the OracleAS
JAAS Provider Admintool. The following information is presented for reference:

■ -addloginmodule: Configures a new login module for the named application.
This includes specifying a control flag: one of required, requisite,
sufficient or optional, as specified by
javax.security.auth.login.Configuration and in Table 9–5, " Login
Module Control Flags" on page 9-17.

If the login module supports options, specify each option and its value as an
optionname=value pair. Each login module has its own individual set of
options.

For example, to add MyLoginModule, which we will assume supports a debug
option, to the application myapp as a required module with debug set to true:

% java -jar jazn.jar -addloginmodule myapp MyLoginModule required debug=true

■ -remloginmodule: Removes the specified login module.

To remove MyLoginModule from myapp:

% java -jar jazn.jar -remloginmodule myapp MyLoginModule

■ -listloginmodules: Displays all login modules for a specified application, or,
if no application name is specified, displays login modules for all applications.
Specifying a login module class after the application name displays information on
only the specified class within the application.

For example, to display all login modules for the application myapp:

% java -jar jazn.jar -listloginmodules myapp

You can also execute these commands from the Admintool shell.

Granting RMI Permission through the Admintool
In case your application includes EJBs, note that to access an EJB through RMI, you
must grant RMI permission "login" to the appropriate user, role, or principal. You can
accomplish this through the Admintool, as in the following examples:

% java -jar jazn.jar -grantperm myrealm -role managers \
 com.evermind.server.rmi.RMIPermission login

% java -jar jazn.jar -grantperm oracle.security.jazn.samples.SamplePrincipal \
 managers com.evermind.server.rmi.RMIPermission login

(Always specify a realm when granting permissions to a user or role, but not when
granting permissions to a principal.)

Important: Restart OC4J for changes to take effect.

See Also:

■ "Adding and Removing Login Modules" on page C-10

■ "Listing Login Modules" on page C-15

Summary of Login Module Configuration in OC4J Configuration Files

Login Modules 9-21

If you are in an Oracle Application Server environment with multiple OC4J instances,
then you must specify the appropriate instance name (and hence the appropriate home
directory) for the applicable OC4J instance, so that the system-jazn-data.xml file
for the appropriate OC4J instance is updated. Set %oracleas.oc4j.instance%
appropriately for your environment.

% java -jar -Doracle.j2ee.home=%ORACLE_HOME%/j2ee/%oracleas.oc4j.instance% \
 jazn.jar -grantperm myrealm -role managers \
 com.evermind.server.rmi.RMIPermission login

% java -jar -Doracle.j2ee.home=%ORACLE_HOME%/j2ee/%oracleas.oc4j.instance% \
 jazn.jar -grantperm oracle.security.jazn.samples.SamplePrincipal managers \
 com.evermind.server.rmi.RMIPermission login

Summary of Login Module Configuration in OC4J Configuration Files
This section discusses files that contain configuration for custom login modules:

■ Login Module Settings in system-jazn-data.xml

■ Login Modules Settings in orion-application.xml

■ Login Module Settings in oc4j-ra.xml (J2EE Connector Architecture)

Login Module Settings in system-jazn-data.xml
The system-jazn-data.xml file is the repository for login module configuration.

Note that settings in system-jazn-data.xml are updated automatically when you
administer login modules through Application Server Control or the OracleAS JAAS
Provider Admintool.

The <jazn-loginconfig> element contains information that associates applications
with login modules.

If this information is in the orion-application.xml file during deployment, as
discussed in "Settings in <jazn-loginconfig> in orion-application.xml" on page 9-22, the
system-jazn-data.xml file will be updated accordingly.

Example 9–1 Example jazn-loginconfig element

<jazn-data>
 ..
 <jazn-loginconfig>
 <application>
 <name>myapp</name>

Important: Restart OC4J for changes to take effect.

See Also:

■ "Granting and Revoking Permissions" on page C-14

Note: Where there are multiple OC4J instances, login module
configuration is added to the instance-specific
system-jazn-data.xml file, not
ORACLE_HOME/j2ee/home/system-jazn-data.xml.

Summary of Login Module Configuration in OC4J Configuration Files

9-22 Oracle Containers for J2EE Security Guide

 <login-modules>
 <login-module>
 <class>mypath.MyLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>myoptionname</name>
 <value>myoptionvalue</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>
 </jazn-loginconfig>
 ..
</jazn-data>

This fragment associates the login module MyLoginModule with the application
myapp.

Login Modules Settings in orion-application.xml
This section discusses particular settings for login modules in the OC4J
application-level descriptor orion-application.xml. The following topics are
covered:

■ Settings in <jazn-loginconfig> in orion-application.xml

■ Settings in <jazn> for Login Modules

■ Settings in <namespace-access> for Access to JNDI Context

Settings in <jazn-loginconfig> in orion-application.xml
Settings in the <jazn-loginconfig> element in system-jazn-data.xml were
documented in "Login Module Settings in system-jazn-data.xml" on page 9-21. You can
add this element to orion-application.xml prior to deployment, and the settings
will be written to the system-jazn-data.xml file automatically. In addition, when

Note: Do not remove login configuration information for
RealmLoginModule from the system-jazn-data.xml file.

See Also:

■ "The system-jazn-data.xml File" on page 4-7

■ Table 9–5, " Login Module Control Flags" on page 9-17 for
information about control flag settings

■ "Configuring the Custom Security Provider in Application Server
Control" on page 9-15

■ "Using Admintool to Configure Login Modules and Grant RMI
Permission" on page 9-19

See Also:

■ Oracle Containers for J2EE Developer’s Guide for general reference
information about orion-application.xml

Summary of Login Module Configuration in OC4J Configuration Files

Login Modules 9-23

you undeploy the application, the <jazn-loginconfig> settings will be removed
from system-jazn-data.xml automatically.

Settings in <jazn> for Login Modules
The following <jazn> properties are specific to login module configuration:

■ role.mapping.dynamic

This property, when set to true, instructs the OracleAS JAAS Provider to base
authorization checks on the authenticated subject instead of basing checks on the
users and roles defined in system-jazn-data.xml or the application-specific
jazn-data.xml file.

A LoginModule instance must ensure that the appropriate principals (users or
roles) are associated with the Subject instance during the commit phase of the
authentication process, in order for the principals to be taken into consideration
during the authorization process. This association of principals to the subject is
typically implemented using the standard JAAS API.

■ custom.loginmodule.provider

This property, when set to true, instructs Application Server Control that the
security provider is the custom provider. Without this setting, because the custom
security provider uses the setting provider="XML", Application Server Control
would mistakenly report that the security provider is the file-based provider
(although custom login modules you provide in your EAR file would still work).

These properties are automatically set to "true" in orion-application.xml, as
shown in the following example, when you have a <jazn-loginconfig> element in
orion-application.xml, or when you deploy and configure your custom login
module using the Application Server Control Console as discussed in "Specifying and
Configuring a Custom Security Provider during Deployment" on page 9-15.

<jazn provider="XML" ... >
 <property name="role.mapping.dynamic" value="true" />
 <property name="custom.loginmodule.provider" value="true" />
</jazn>

Settings in <namespace-access> for Access to JNDI Context
If an application contains an EJB, remote clients must be given namespace access to
read (look up) and write (bind) objects as required on the server-side JNDI context of
the application.

The following example, which would appear in orion-application.xml, shows
how the namespace access is granted for read operations to roles named managers
and developers.

<orion-application ... >
 ...
 <namespace-access>
 <read-access>
 <namespace-resource root="">
 <security-role-mapping name="sr_developer">
 <group name="developers"/>
 </security-role-mapping>
 <security-role-mapping name="sr_manager">
 <group name="managers"/>
 </security-role-mapping>
 </namespace-resource>
 </read-access>

Step by Step: Integrating a Custom Login Module with OC4J

9-24 Oracle Containers for J2EE Security Guide

 </namespace-access>
 ...
</orion-application>

This assumes the indicated role mappings had already been set up elsewhere in
orion-application.xml.

Login Module Settings in oc4j-ra.xml (J2EE Connector Architecture)
When you configure resource adapters, each <connector-factory> element in the
oc4j-ra.xml file can specify a different JAAS login module, as in the following
example. This also shows <config-property> setup to connect to a database
through Oracle JDBC.

<oc4j-connector-factories ... >
 ...
 <connector-factory connector-name="myBlackbox" location="eis/myEIS1">
 <config-property name="connectionURL"
 value="jdbc:oracle:thin:@localhost:5521/myservice" />
 <security-config use="jaas-module">
 <jaas-module>
 <jaas-application-name>JAASModuleDemo</jaas-application-name>
 </jaas-module>
 </security-config>
 </connector-factory>
 ...
</oc4j-connector-factories>

Step by Step: Integrating a Custom Login Module with OC4J
Developing a login module follows the standard development, packaging, and
deployment cycle. For applications with EJBs, you must also grant RMI permission
and configure namespace access as necessary. The following sections discuss each step
in the cycle:

1. Develop the Login Module

2. Configure and Package the Login Module

3. Configure Namespace Access and Role Mappings (as applicable)

4. Deploy the Login Module

5. Grant RMI Permission (as applicable)

6. Set JNDI Properties (as applicable)

Develop the Login Module
Develop a JAAS-compliant LoginModule implementation according to the JAAS
service provider interface.

See Also:

■ "Configuring Namespace Access" on page 18-8

See Also:

■ Oracle Containers for J2EE Resource Adapter Administrator’s Guide for
additional information about configuring resource adapters

Step by Step: Integrating a Custom Login Module with OC4J

Login Modules 9-25

When a login module is associated with an application (which occurs in the
<jazn-loginconfig> configuration shown earlier), OC4J uses the principals set in
the subject to determine if the client has access to the requested J2EE resource. Thus, it
is imperative that the login module correctly set all the roles the user is a member of.

In the following example, the login module authenticates the developer user. After
the user is successfully authenticated, a principal corresponding to the roles associated
with the user is added to the current authenticated subject. Assume the developer
user is a member of the developers role.

if(username.equals("developer") && password.equals("welcome"))
{
 _succeeded = true;
 _name = "developer";
 _password = password.toCharArray();
 _authPrincipals = new SamplePrincipal[2];
 //Adding username as principal to the subject
 _authPrincipals[0] = new SamplePrincipal("developer");
 //Adding role developers to the subject
 _authPrincipals[1] = new SamplePrincipal("developers");
}

Configure and Package the Login Module
"Summary of Choices for Packaging Login Modules" on page 9-13 summarizes the
various ways you can package a login module so that it is accessible to your
application. The choices are:

■ Package the login module with the application.

■ Provide the login module as an optional package.

■ Provide the login module as an OC4J shared library.

There are also choices for how you can specify the configuration of a login module:

■ Manually configure the <jazn-loginconfig> element in your
orion-application.xml file, as discussed in "Settings in <jazn-loginconfig> in
orion-application.xml" on page 9-22. This may be particularly appropriate if you
are packaging the login module with your application. The
<jazn-loginconfig> element in system-jazn-data.xml is updated
accordingly.

■ Use the Application Server Control Console to specify the login module settings,
such as when you deploy your application, as discussed in "Configuring the
Custom Security Provider in Application Server Control" on page 9-15. The
<jazn-loginconfig> element in system-jazn-data.xml is configured
automatically.

■ Use the OracleAS JAAS Provider Admintool to specify the login module settings,
as discussed in "Using Admintool to Configure Login Modules and Grant RMI
Permission" on page 9-19. The <jazn-loginconfig> element in
system-jazn-data.xml is configured automatically.

The following sections highlight key configuration details.

See Also:

■ javax.security.auth.spi.LoginModule Javadoc:

http://java.sun.com/j2se/1.4.2/docs/api/

■ "Custom Login Module Example" on page 9-28

Step by Step: Integrating a Custom Login Module with OC4J

9-26 Oracle Containers for J2EE Security Guide

Configuration to Enable Login Module Usage
OC4J requires the following configuration in the orion-application.xml file in
order to use a custom login module to perform security checks. This occurs
automatically when you specify login module configuration through Application
Server Control or in orion-application.xml.

<jazn provider="XML" >
 <property name="role.mapping.dynamic" value="true"/>
 <property name="custom.loginmodule.provider" value="true"/>
</jazn>

You can examine the orion-application.xml file after deployment to confirm
this.

Configuration of the Login Module
The following configuration is for the sample login module shown in "Custom Login
Module Example" on page 9-28.

<!-- Configuring a Login Module in an Application EAR file. -->
<jazn-loginconfig>
 <application>
 <name>cutomjaas</name>
 <login-modules>
 <login-module>
 <class>oracle.security.jazn.samples.SampleLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>debug</name>
 <value>true</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>
</jazn-loginconfig>

You could manually put this configuration into the orion-application.xml file
before deployment, or set the parameters (class name, control flag, and option names
and values) as prompted during deployment when you deploy your application
through Application Server Control. In either case, the configuration will
automatically be written to system-jazn-data.xml.

Configure Namespace Access and Role Mappings (as applicable)
Configure namespace access in orion-application.xml if the application includes
any EJBs. This is to allow remote client access to JNDI bindings for read (lookup) or
write (bind) operations as required on objects in the server-side JNDI context of the
application. The following example shows how the namespace access is granted to
roles named managers and developers.

<orion-application ... >
 ...
 <namespace-access>
 <read-access>
 <namespace-resource root="">
 <security-role-mapping name="sr_developer">
 <group name="developers"/>
 </security-role-mapping>

Step by Step: Integrating a Custom Login Module with OC4J

Login Modules 9-27

 <security-role-mapping name="sr_manager">
 <group name="managers"/>
 </security-role-mapping>
 </namespace-resource>
 </read-access>
 </namespace-access>
 ...
</orion-application>

This assumes the role mappings—mapping logical roles defined in the application to
roles supported by the custom login module—have been properly defined, as in the
following example from orion-application.xml:

<orion-application ... >
 ...
 <!-- Mapping the logical roles to the container roles -->
 <security-role-mapping name="sr_manager">
 <group name="managers" />
 </security-role-mapping>
 <security-role-mapping name="sr_developer">
 <group name="developers" />
 </security-role-mapping>
 ...
</orion-application>

You can specify role mappings through Application Server Control, as discussed in
"Mapping Security Roles" on page 6-10. This results in the orion-application.xml
entries being added automatically.

Deploy the Login Module
"Summary of Choices for Packaging Login Modules" on page 9-13 discusses how you
can deploy your login module either with your application or separately (as an
optional package or shared library).

"Specifying and Configuring a Custom Security Provider during Deployment" on
page 9-15 discusses how to configure and deploy your login module through
Application Server Control when you deploy your application.

Grant RMI Permission (as applicable)
If your application includes EJBs, be aware that to access an EJB through RMI, you
must grant RMI permission "login" to the appropriate users, roles, and principals. You
can accomplish this through the Admintool, as shown in "Granting RMI Permission
through the Admintool" on page 9-20.

Set JNDI Properties (as applicable)
To access resources through JNDI, you must configure the jndi.properties file to
set properties such as the provider URL, principal, and credential, as appropriate for
your environment. Here is an example:

java.naming.factory.initial=
 oracle.j2ee.naming.ApplicationClientInitialContextFactory
java.naming.provider.url=ormi://localhost:23791/customjaas
#java.naming.provider.url=opmn:ormi://localhost:6003:home/customjaas
java.naming.security.principal=manager
java.naming.security.credentials=welcome

Custom Login Module Example

9-28 Oracle Containers for J2EE Security Guide

(The ormi protocol is for standalone OC4J, while the opmn:ormi protocol is for an
Oracle Application Server environment. Uncomment the appropriate one.)

Custom Login Module Example
This section shows the login module code and principal code for an OC4J "how-to"
example at the following location:

http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/index.html

Look for the login module how-to under "J2EE Security / JAAS".

SampleLoginModule Code
This section contains the code for the sample login module.

package oracle.security.jazn.samples;

import java.util.Set;
import java.util.Iterator;
import java.util.Map;
import java.security.Principal;
import javax.security.auth.Subject;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.login.LoginException;
import javax.security.auth.spi.LoginModule;

public class SampleLoginModule implements LoginModule {

 // initial state
 protected Subject _subject;
 protected CallbackHandler _callbackHandler;
 protected Map _sharedState;
 protected Map _options;

 // configuration options
 protected boolean _debug;

 // the authentication status
 protected boolean _succeeded;
 protected boolean _commitSucceeded;

 // username and password
 protected String _name;
 protected char[] _password;

 protected Principal[] _authPrincipals;

 /*
 * Initialize this LoginModule.
 *
 * subject the Subject to be authenticated.
 * callbackHandler a CallbackHandler for communicating
 * with the end user (prompting for usernames and
 * passwords, for example).
 * sharedState shared LoginModule state.
 * options options specified in the login

Custom Login Module Example

Login Modules 9-29

 * Configuration for this particular
 * LoginModule.
 */
 public void initialize(Subject subject,
 CallbackHandler callbackHandler,
 Map sharedState,
 Map options) {
 this._subject = subject;
 this._callbackHandler = callbackHandler;
 this._sharedState = sharedState;
 this._options = options;

 // initialize any configured options
 _debug = "true".equalsIgnoreCase((String) _options.get("debug"));

 if (debug()) {
 printConfiguration(this);
 }
 }

 final public boolean debug() {
 return _debug;
 }

 protected Principal[] getAuthPrincipals() {
 return _authPrincipals;
 }

 /*
 * Authenticate the user by prompting for a username and password.
 *
 * return true if the authentication succeeded, or false if this
 * LoginModule should be ignored.
 * throws FailedLoginException if the authentication fails.
 * throws LoginException if this LoginModule
 * is unable to perform the authentication.
 */
 public boolean login() throws LoginException {
 if (debug())
 System.out.println("\t\t[SampleLoginModule] login");

 if (_callbackHandler == null)
 throw new LoginException("Error: no CallbackHandler available " +
 "to garner authentication information from the user");

 // Setup default callback handlers.
 Callback[] callbacks = new Callback[] {
 new NameCallback("Username: "),
 new PasswordCallback("Password: ", false)
 };

 try {
 _callbackHandler.handle(callbacks);
 } catch (Exception e) {
 _succeeded = false;
 throw new LoginException(e.getMessage());
 }

 String username = ((NameCallback)callbacks[0]).getName();
 String password =

Custom Login Module Example

9-30 Oracle Containers for J2EE Security Guide

 new String(((PasswordCallback)callbacks[1]).getPassword());

 if (debug())
 {
 System.out.println("\t\t[SampleLoginModule] username : " + username);
 }

 // Authenticate the user. On successfull authentication add principals
 // to the Subject. The name of the principal is used for authorization by
 // OC4J by mapping it to the value of the name attribute of the group
 // element in the security-role-mapping for the application.
 if(username.equals("developer") && password.equals("welcome"))
 {
 _succeeded = true;
 _name = "developer";
 _password = password.toCharArray();
 _authPrincipals = new SamplePrincipal[2];
 //Adding username as principal to the subject
 _authPrincipals[0] = new SamplePrincipal("developer");
 //Adding role developers to the subject
 _authPrincipals[1] = new SamplePrincipal("developers");
 }
 if(username.equals("manager") && password.equals("welcome"))
 {
 _succeeded = true;
 _name = "manager";
 _password = password.toCharArray();
 _authPrincipals = new SamplePrincipal[3];
 //Adding username as principal to the subject
 _authPrincipals[0] = new SamplePrincipal("manager");
 //Adding roles developers and managers to the subject
 _authPrincipals[1] = new SamplePrincipal("developers");
 _authPrincipals[2] = new SamplePrincipal("managers");
 }

 if (username.equals("sirish") && password.equals("sirish"))
 {
 _succeeded = true;
 _password = password.toCharArray();
 _name = "sirish";
 _authPrincipals = new SamplePrincipal[1];
 _authPrincipals[0] = new SamplePrincipal("sirish");
 }

 ((PasswordCallback)callbacks[1]).clearPassword();
 callbacks[0] = null;
 callbacks[1] = null;

 if (debug())
 {
 System.out.println("\t\t[SampleLoginModule] success : " + _succeeded);
 }

 if (!_succeeded)
 throw new LoginException
 ("Authentication failed: Password does not match");

 return true;
 }

Custom Login Module Example

Login Modules 9-31

 /*
 * This method is called if the LoginContext's
 * overall authentication succeeded
 * (the relevant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL LoginModules
 * succeeded).
 *
 * If this LoginModule's own authentication attempt
 * succeeded (checked by retrieving the private state saved by the
 * login method, then this method associates a
 * Principal with the Subject located in the
 * LoginModule. If this LoginModule's own
 * authentication attempted failed, then this method removes
 * any state that was originally saved.
 *
 * return true if this LoginModule's own login and commit
 * attempts succeeded, or false otherwise.
 * throws LoginException if the commit fails.
 */
 public boolean commit()
 throws LoginException {
 try {

 if (_succeeded == false) {
 return false;
 }

 if (_subject.isReadOnly()) {
 throw new LoginException("Subject is ReadOnly");
 }

 // add authenticated principals to the Subject
 if (getAuthPrincipals() != null) {
 for (int i = 0; i < getAuthPrincipals().length; i++) {
 if(!_subject.getPrincipals().contains(getAuthPrincipals()[i]))
{
 _subject.getPrincipals().add(getAuthPrincipals()[i]);
 }
 }
 }

 // in any case, clean out state
 cleanup();
 if (debug()) {
 printSubject(_subject);
 }

 _commitSucceeded = true;
 return true;

 } catch (Throwable t) {
 if (debug()) {
 System.out.println(t.getMessage());
 t.printStackTrace();
 }
 throw new LoginException(t.toString());
 }
 }

 /*
 * This method is called if the LoginContext's

Custom Login Module Example

9-32 Oracle Containers for J2EE Security Guide

 * overall authentication failed.
 * (the relevant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL LoginModules
 * did not succeed).
 *
 * If this LoginModule's own authentication attempt
 * succeeded (checked by retrieving the private state saved by the
 * login and commit methods),
 * then this method cleans up any state that was originally saved.
 *
 * return false if this LoginModule's own login and/or commit attempts
 * failed, and true otherwise.
 * throws LoginException if the abort fails.
 */
 public boolean abort() throws LoginException {
 if (debug()) {
 System.out.println
 ("\t\t[SampleLoginModule] aborted authentication attempt.");
 }

 if (_succeeded == false) {
 cleanup();
 return false;
 } else if (_succeeded == true && _commitSucceeded == false) {
 // login succeeded but overall authentication failed
 _succeeded = false;
 cleanup();
 } else {
 // overall authentication succeeded and commit succeeded,
 // but someone else's commit failed
 logout();
 }
 return true;
 }

 protected void cleanup() {
 _name = null;
 if (_password != null) {
 for (int i = 0; i < _password.length; i++) {
 _password[i] = ' ';
 }
 _password = null;
 }
 }

 protected void cleanupAll() {
 cleanup();

 if (getAuthPrincipals() != null) {
 for (int i = 0; i < getAuthPrincipals().length; i++) {
 _subject.getPrincipals().remove(getAuthPrincipals()[i]);
 }
 }
 }

 /*
 * Logout the user.
 *
 * This method removes the Principal
 * that was added by the commit method.
 *

Custom Login Module Example

Login Modules 9-33

 * return true in all cases since this LoginModule
 * should not be ignored.
 * throws LoginException if the logout fails.
 */
 public boolean logout() throws LoginException {
 _succeeded = false;
 _commitSucceeded = false;
 cleanupAll();
 return true;
 }

 // helper methods //

 protected static void printConfiguration(SampleLoginModule slm) {
 if (slm == null) {
 return;
 }
 System.out.println("\t\t[SampleLoginModule] configuration options:");
 if (slm.debug()) {
 System.out.println("\t\t\tdebug = " + slm.debug());
 }
 }

 protected static void printSet(Set s) {
 try {
 Iterator principalIterator = s.iterator();
 while (principalIterator.hasNext()) {
 Principal p = (Principal) principalIterator.next();
 System.out.println("\t\t\t" + p.toString());
 }
 } catch (Throwable t) {
 }
 }

 protected static void printSubject(Subject subject) {
 try {
 if (subject == null) {
 return;
 }
 Set s = subject.getPrincipals();
 if ((s != null) && (s.size() != 0)) {
 System.out.println
 ("\t\t[SampleLoginModule] added the following Principals:");
 printSet(s);
 }

 s = subject.getPublicCredentials();
 if ((s != null) && (s.size() != 0)) {
 System.out.println
 ("\t\t[SampleLoginModule] added the following Public Credentials:");
 printSet(s);
 }
 } catch (Throwable t) {
 }
 }
}

SamplePrincipal Code
This section contains the code for the sample principal.

Custom Login Module Example

9-34 Oracle Containers for J2EE Security Guide

The login module sets the SamplePrincipal instance in the current Subject
instance. To create the SamplePrincipal instance, the login module directly invokes
the SamplePrincipal constructor, so the constructor is defined as public.

package oracle.security.jazn.samples;

import java.security.Principal;

/*
 * This class implements the Principal interface
 * and represents a Sample user.
 *
 * Principals such as this SamplePrincipal
 * may be associated with a particular Subject
 * to augment that Subject with an additional
 * identity. Authorization decisions can then be based upon
 * the Principals associated with a Subject.
 *
 */
public class SamplePrincipal implements Principal {

 private String _name = null;

 /*
 * Create a SamplePrincipal with a Sample username.
 *
 */
 public SamplePrincipal(String name) {
 if (name == null)
 throw new NullPointerException("name cannot be null");
 _name = name;
 }

 /*
 * Return a string representation of this SamplePrincipal.
 *
 */
 public String getName() {
 return _name;
 }

 /*
 * Return a hash code for this SamplePrincipal.
 *
 */
 public int hashCode() {
 return _name.hashCode();
 }

 /*
 * Return a string representation of this SamplePrincipal.
 *
 */
 public String toString() {
 return "[SamplePrincipal] : " + _name;
 }

 /*
 * Compares the specified Object with this SamplePrincipal

Custom Login Module Example

Login Modules 9-35

 * for equality. Returns true if the given object is also a
 * SamplePrincipal and the two SamplePrincipals
 * have the same username.
 *
 */
 public boolean equals(Object o) {
 if (o == null)
 return false;

 if (this == o)
 return true;

 if (!(o instanceof SamplePrincipal))
 return false;
 SamplePrincipal that = (SamplePrincipal)o;

 if (this.getName().equals(that.getName()))
 return true;
 return false;
 }
}

Custom Login Module Example

9-36 Oracle Containers for J2EE Security Guide

External LDAP Security Providers 10-1

10
External LDAP Security Providers

This chapter discusses how to configure OC4J to use a non-Oracle ("third-party" or
"external") LDAP server as the user repository. It is divided into the following sections:

■ Overview of External LDAP Provider Configuration and Administration

■ Configuring External LDAP Providers in Application Server Control

■ External LDAP Provider Settings in system-jazn-data.xml

■ Creating Necessary Accounts and Granting Necessary Permissions

■ Sample Configuration for Sun Java System Directory Server

■ Using SSL with External LDAP Providers

OC4J 10.1.3.x implementations support the following external LDAP providers:

■ Active Directory (for Windows Server 2003)

■ Sun Java System Directory Server (version 5.2)

Notes:

■ Support for external LDAP providers requires JDK 1.4 or later.

■ Beginning with OC4J 10.1.3.x implementations, external LDAP
providers are supported in standalone OC4J as well as in an
Oracle Application Server environment.

■ The concept of security realms is not supported when using
external LDAP providers.

■ See "OracleAS JAAS Provider Policy Management" on page 5-12
regarding subject-based policy management when using an
external LDAP provider. The policy configuration must be in
system-jazn-data.xml.

See Also:

■ For information about user and role APIs that you can use with
external LDAP providers, Chapter 12, "User and Role API
Framework"

Overview of External LDAP Provider Configuration and Administration

10-2 Oracle Containers for J2EE Security Guide

Overview of External LDAP Provider Configuration and Administration
When you deploy an application using Application Server Control Console, you have
the opportunity to specify an external (third-party) LDAP provider, as noted in
"Specifying the Security Provider through Application Server Control" on page 6-9.

Specifying an external LDAP provider automatically results in the following setting in
orion-application.xml:

<jazn provider="XML">
 <property name="custom.ldap.provider" value="true" />
</jazn>

OC4J provides a login module, LDAPLoginModule, to use for authentication and
authorization with an external LDAP provider. (Alternatively, you can provide a
custom login module to use with any custom repository.) Configurable options for an
external LDAP provider include the following:

■ URL of the external LDAP provider

■ LDAP principal DN to connect (user must have privileges to query role
information for any user in the LDAP directory)

■ Credential of the LDAP principal DN

■ LDAP attribute that uniquely identifies a user

■ User object classes, search bases, search scope

Note: This is assuming you have already completed the prerequisite
of installing and configuring Sun Java System Directory Server
(formerly iPlanet) or Active Directory.

Notes:

■ Note that by convention, the <jazn> setting provider="XML" is
used for external LDAP providers.

■ Be aware that when you use an external LDAP provider, role
comparisons for authorization are not case-sensitive unless you
add the following property setting to the <jazn> element in
orion-application.xml:

<property name="role.compare.ignorecase" value="false" />

Troubleshooting Tips: Note the following potential issues if you
have trouble using an external LDAP provider:

■ Be sure you are using the Distinguished Name (DN) of the LDAP
user to connect to the LDAP server. This user must be an
administrator with privileges to search users and groups.

■ If you provide the correct user name and password for login, but
still get an authentication failure for invalid credentials, ensure
that the LDAP host and port are configured correctly. Using the
ldapbind command to bind against the configured LDAP host
and port would be a good way to check.

Configuring External LDAP Providers in Application Server Control

External LDAP Security Providers 10-3

■ Role object classes, search bases, search scope

■ Enabling or disabling of connection pooling

■ Enabling or disabling of login module caching

Option settings to configure LDAPLoginModule are reflected within a
<login-module> element under <jazn-loginconfig> in
system-jazn-data.xml.

Configuring External LDAP Providers in Application Server Control
This section discusses the following topics for administering external LDAP providers
using the Application Server Control Console:

■ Specifying and Configuring an External LDAP Provider during Deployment

■ Changing to an External LDAP Provider after Deployment

Specifying and Configuring an External LDAP Provider during Deployment
When you plan to use an external LDAP provider and deploy an application through
Application Server Control, you have the opportunity to configure the external LDAP
provider when you specify it as the security provider.

From the Deploy: Deployment Settings page (see "Deploying an Application through
Application Server Control" on page 6-8 for how to get to this page):

1. Go to the Select Security Provider task.

2. In the resulting Deployment Settings: Select Security Provider page, choose Third
Party LDAP Server from the Security Provider dropdown list.

3. Under "Configuration of Oracle Security Provider for 3rd Party LDAP Server"
(which appears after you choose Third Party LDAP Server), specify settings for the
options documented in:

■ Table 10–1, " Application Server Control External LDAP Provider Options" on
page 10-4

■ Table 10–2, " Application Server Control External LDAP Connection Pool
Options" on page 10-4 (if you enable connection pooling)

■ Table 10–3, " Application Server Control External LDAP User Options" on
page 10-5

■ Table 10–4, " Application Server Control External LDAP Role and Member
Options" on page 10-5

Note: Sample login module entries for Sun Java System Directory
Server and Microsoft Active Directory are provided in the directory
ORACLE_HOME/j2ee/home/jazn/config. A non-provider-specific
login module entry is provided in the file
ldap_login_module.template in the
ORACLE_HOME/j2ee/home/jazn/config directory.

Note: Procedures discussed throughout this section assume you are
logged in to Application Server Control as a user with required
administrative permissions (as oc4jadmin, for example).

Configuring External LDAP Providers in Application Server Control

10-4 Oracle Containers for J2EE Security Guide

Or, alternatively, choose Set Values to Vendor Defaults for the vendor specified
through the LDAP Directory Vendor setting. Apart from this, you must still
specify LDAP Location, User DN, User Search Base, and Group Search Base.

4. You can optionally choose Test LDAP Authorization prior to deployment. This
tests whether the LDAP session can successfully be created, thereby confirming
key settings such as the LDAP host, port, administrative user, and password.

5. Choose OK to finish the security provider selection.

6. Back in the Deploy: Deployment Settings page, choose Deploy to complete the
deployment, or choose another task, as desired. The list of tasks is noted in
"Deploying an Application through Application Server Control" on page 6-8.

Table 10–1 Application Server Control External LDAP Provider Options

Option
Required?
Or Settings / Default

Equivalent Option in Table 10–5 (see for
description)

LDAP Location Required oracle.security.jaas.ldap.provider.url

LDAP Directory Vendor Active Directory, Sun
Directory Server, or Other
(from dropdown menu)

oracle.security.jaas.ldap.provider.type

User DN Required oracle.security.jaas.ldap.provider.principal

User Password No default oracle.security.jaas.ldap.provider.credential

Enable Caching (checkbox) Default: true oracle.security.jaas.ldap.lm.cache_enabled

Enable Connection Pooling
(checkbox)

Default: true oracle.security.jaas.ldap.provider.connect.pool

Table 10–2 Application Server Control External LDAP Connection Pool Options

Option Default Description

Initial Size of Connection Pool 2 Number of connections initially created in the pool
for each connection identity.

Maximum Size of Connection Pool 25 Maximum number of connections that can be
concurrently maintained in the pool for each
connection identity.

Preferred Size of Connection Pool 10 Preferred number of connections in the pool for
each connection identity.

Idle Connection Timeout (milliseconds) 300000 (5 minutes) The amount of time that an idle connection can
remain in the pool before being removed.

Note: The above connection pooling properties correspond to the
following:

com.sun.jndi.ldap.connect.pool.initsize
com.sun.jndi.ldap.connect.pool.maxsize
com.sun.jndi.ldap.connect.pool.prefsize
com.sun.jndi.ldap.connect.pool.timeout

These are described at:

http://java.sun.com/products/jndi/tutorial/ldap/connect/c
onfig.html

Configuring External LDAP Providers in Application Server Control

External LDAP Security Providers 10-5

Changing to an External LDAP Provider after Deployment
You can select a security provider for your application at deployment time, as
described in the preceding section. You can also change to a different security provider
after deployment. In particular, to change to an external LDAP provider:

1. Go to the Security Provider page for your application, as described in "Navigating
to the Security Provider Page for Your Application" on page 6-13.

2. In the Security Provider page, choose Change Security Provider.

3. In the Change Security Provider page, select Oracle Security Provider for 3rd Party
LDAP Server from the Security Provider Type dropdown.

4. Under "Security Provider Attributes: Oracle Security Provider for 3rd Party LDAP
Server" (which appears after you select 3rd Party LDAP Server in the dropdown),
specify settings for the options documented in the following tables in the
preceding section:

■ Table 10–1, " Application Server Control External LDAP Provider Options"

■ Table 10–2, " Application Server Control External LDAP Connection Pool
Options" (if you enable connection pooling)

■ Table 10–3, " Application Server Control External LDAP User Options"

Table 10–3 Application Server Control External LDAP User Options

Option
Required?
Or Settings / Default

Equivalent Option in Table 10–6 (see for
description)

User Search Base Required oracle.security.jaas.ldap.user.searchbase

User Search Scope Subtree (default) or One Level
(from dropdown menu)

Note: Although the default in the
dropdown menu is Subtree, the
vendor default is One Level.

oracle.security.jaas.ldap.user.searchscope

LDAP User Name Attribute Required oracle.security.jaas.ldap.user.name.attribute

LDAP User Object Class Required oracle.security.jaas.ldap.user.object.class

Table 10–4 Application Server Control External LDAP Role and Member Options

Option
Required?
Or Settings / Default

Equivalent Option in Table 10–7 (see for
description)

Group Search Base Required oracle.security.jaas.ldap.role.searchbase

Group Search Scope Subtree (default) or One Level
(from dropdown menu)

Note: Although the default in
the dropdown menu is Subtree,
the vendor default is One
Level.

oracle.security.jaas.ldap.role.searchscope

LDAP Group Name Attribute Required oracle.security.jaas.ldap.role.name.attribute

LDAP Group Object Class Required oracle.security.jaas.ldap.role.object.class

LDAP Group Member Attribute Required oracle.security.jaas.ldap.member.attribute

Group Membership Scope
Search

Direct (default) or Nested (from
dropdown menu)

oracle.security.jaas.ldap.membership.searchscope

External LDAP Provider Settings in system-jazn-data.xml

10-6 Oracle Containers for J2EE Security Guide

■ Table 10–4, " Application Server Control External LDAP Role and Member
Options"

Or, alternatively, choose Set Values to Vendor Defaults for the vendor specified
through the LDAP Directory Vendor setting. Apart from this, you must still
specify LDAP Location, User DN, User Search Base, and Group Search Base.

5. You can optionally choose Test LDAP Authorization prior to deployment. This
tests whether the LDAP session can successfully be created, thereby confirming
key settings such as the LDAP host, port, administrative user, and password.

6. Choose OK to finish the change.

This takes you back to the Security Provider page, where you are prompted to restart
your application for the changes to take effect.

External LDAP Provider Settings in system-jazn-data.xml
Configuration of an external LDAP provider is reflected in a <login-module>
element in system-jazn-data.xml that configures the LDAPLoginModule, the
login module used for external LDAP providers in OracleAS JAAS Provider. Any
<login-module> elements are subelements of the <login-modules> element
under <jazn-loginconfig>.

Each option setting in a <login-module> element is specified in an <option>
element (subelement of <options>) and corresponds to a configuration setting in the
external LDAP provider. The <name> subelement of an <option> element specifies
the name of the option, and the <value> subelement specifies the corresponding
value.

You can specify settings of these options through Application Server Control, as
documented in "Specifying and Configuring an External LDAP Provider during
Deployment" on page 10-3, which also documents the correspondence between
options listed in this section and what you see in the Application Server Control
Console.

Supported options are listed in Table 10–5, Table 10–6 , and Table 10–7 following.
Where applicable, the tables indicate default values that are used when you configure
an external LDAP provider through Application Server Control and choose Set Values
to Vendor Defaults. Except where noted otherwise, these options are required, either
by specifying them directly or using vendor defaults.

Important: Also confirm that role mapping is set up appropriately, to
correctly map deployment roles (roles defined in the external LDAP
provider) to J2EE logical roles. Refer to "Mapping Security Roles" on
page 6-10 for additional information.

Note: The <jazn-loginconfig> element can also appear in the
orion-application.xml file, in which case it is copied from there
into the system-jazn-data.xml file.

See Also:

■ "Settings in system-jazn-data.xml for Sun Java System Directory
Server" on page 10-11 for examples of some option settings

External LDAP Provider Settings in system-jazn-data.xml

External LDAP Security Providers 10-7

Table 10–5 External LDAP Provider Options

Option Name Meaning

oracle.security.jaas.ldap.provider.url The URL of the LDAP provider, in the format ldap://host:port,
such as:

ldap://myhost.example.com:389

oracle.security.jaas.ldap.provider.principal The Distinguished Name (DN) of the LDAP user that is used to
connect to the LDAP server. This user must be an administrator with
privileges to search users and roles, and to invoke ldapcompare on
a user password if the target directory supports that functionality.

oracle.security.jaas.ldap.provider.credential The credential (generally a password) used to authenticate the
LDAP user defined in:

oracle.security.jaas.ldap.provider.principal

oracle.security.jaas.ldap.provider.type (Optional) The product name of the LDAP provider. Supported
values are sun directory server, active directory, and
other. If you supply sun directory server or active
directory, the login module is able to infer some LDAP properties
and do some optimizations.

oracle.security.jaas.ldap.provider.connect.pool (Optional) Boolean indicating whether connection pooling is
enabled. A true setting (default) enables connection pooling;
false disables it.

oracle.security.jaas.ldap.lm.cache_enabled (Optional) Boolean indicating whether login module caching is
enabled. A true setting (default) enables caching, false disables it.

Table 10–6 External LDAP User Options

Option Name Meaning

oracle.security.jaas.ldap.user.name.attribute The name of the LDAP attribute that uniquely identifies the name of
the user. The default for Sun Java System Directory Server is uid; for
Active Directory, it is sAMAccountName.

oracle.security.jaas.ldap.user.object.class A list of one or more space-delimited LDAP schema object classes to
represent a user. The default for either Sun Java System Directory
Server or Active Directory is inetOrgPerson.

oracle.security.jaas.ldap.user.searchbase A list of space-delimited distinguished names (DNs) in the LDAP
directory that contains users. Here is a sample DN:

cn=users,dc=us,dc=abc,dc=com

oracle.security.jaas.ldap.user.searchscope Specifies how deep in the LDAP directory tree to search for users.
Supported values are subtree or onelevel (default).

Table 10–7 External LDAP Role and Member Options

Option Name Meaning

oracle.security.jaas.ldap.role.name.attribute The name of the LDAP attribute that uniquely identifies the
name of the role. For either Sun Java System Directory
Server or Active Directory, the default is "cn".

oracle.security.jaas.ldap.role.object.class A list of one or more space-delimited LDAP schema object
classes that is used to represent a role. The default for Sun
Java System Directory Server is groupOfUniqueNames; for
Active Directory, it is group.

oracle.security.jaas.ldap.role.searchbase A list of space-delimited distinguished names (DN) in the
LDAP directory that contains roles. For example:

cn=groups,dc=us,dc=abc,dc=com

Creating Necessary Accounts and Granting Necessary Permissions

10-8 Oracle Containers for J2EE Security Guide

Here is an example:

<jazn-data ... >
 ...
 <jazn-loginconfig>
 <application>
 <name>callerInfo</name>
 <login-modules>
 <login-module>
 <class>oracle.security.jazn.login.module.LDAPLoginModule</class>
 <control-flag>required</control-flag>
 <options>

 <option>
 <name>oracle.security.jaas.ldap.provider.url</name>
 <value>ldap://myhost.example.com:389</value>
 </option>
 ...more options...
 </options>
 </login-module>
 ...
 </login-modules>
 </application>
 ...
 </jazn-loginconfig>
 ...
</jazn-data>

See "Settings in system-jazn-data.xml for Sun Java System Directory Server" on
page 10-11 for the complete example.

Creating Necessary Accounts and Granting Necessary Permissions
This section discusses steps you must take when using an external LDAP provider to
create necessary accounts and grant necessary permissions, covering the following
topics:

■ Creating the Administrative User and Roles and Granting RMI Permission

■ Granting RMI Permission to an LDAP Principal

■ Granting Additional Permissions to External LDAP Principals

oracle.security.jaas.ldap.role.searchscope Specifies how deep in the LDAP directory tree to search for
roles. Supported values are subtree or onelevel
(default).

oracle.security.jaas.ldap.membership.searchscope Specifies how deep in the LDAP directory tree to search for
role membership. Supported values are direct (default) or
nested. A direct setting means the runtime will only get
the roles directly assigned to the role or user in question, as
opposed to nested roles within roles.

oracle.security.jaas.ldap.member.attribute The attribute of a static LDAP role object specifying the
distinguished names (DNs) of the members of the role. The
default for Sun Java System Directory Server is
uniqueMember; for Active Directory, it is member.

Table 10–7 (Cont.) External LDAP Role and Member Options

Option Name Meaning

Creating Necessary Accounts and Granting Necessary Permissions

External LDAP Security Providers 10-9

■ Using JAAS Mode with External LDAP Providers

Creating the Administrative User and Roles and Granting RMI Permission
When you use an external LDAP provider, you must define an administrative user
account and administrator roles, grant the roles to the user, and grant necessary
permissions to the roles. (These steps are handled automatically in the file-based
security provider and Oracle Internet Directory.)

1. Create an administrative user account in the external LDAP directory, using the
appropriate tool for the security provider. (The name oc4jadmin is used for the
administrator account by convention, but you can use any name.)

2. Create the administrator roles oc4j-administrators and ascontrol_admin
in the external LDAP directory, using the appropriate tool. These roles must be
under the group search base configured for the LDAP provider. (See Table 10–4 on
page 10-5 and Table 10–7 on page 10-7 for information about the group search
base.)

3. Grant these roles to the administrative user, using the appropriate tool.

4. Create the additional administrator roles oc4j-app-administrators,
ascontrol_appadmin, and ascontrol_monitor. (These do not have to be
granted to the administrative user.)

5. If the administrator must access EJBs, grant these roles RMI permission "login".
You can use the OracleAS JAAS Provider Admintool for this, as in the following
example:

% java -jar jazn.jar -grantperm myrealm -role oc4j-administrators \
 com.evermind.server.rmi.RMIPermission login

Be aware that although the roles are defined in the external LDAP provider, these
permission grants are stored in the system-jazn-data.xml file.

Granting RMI Permission to an LDAP Principal
When using an external LDAP provider for an EJB application, it is necessary to grant
RMI permission "login" for the appropriate LDAP principal for EJB access.

The following example uses the OracleAS JAAS Provider Admintool to accomplish
this for an LDAP principal hobbes:

% java -jar jazn.jar -grantperm oracle.security.jazn.realm.LDAPPrincipal hobbes \
 com.evermind.server.rmi.RMIPermission login

This example would result in the following configuration in the
system-jazn-data.xml file, assuming that is your policy repository.

<jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jazn.realm.LDAPPrincipal</class>
 <name>hobbes</name>
 </principal>
 </principals>

See Also:

■ "Predefined Accounts" on page 4-11

Sample Configuration for Sun Java System Directory Server

10-10 Oracle Containers for J2EE Security Guide

 </grantee>
 ...
 <permissions>
 <permission>
 <class>com.evermind.server.rmi.RMIPermission</class>
 <name>login</name>
 </permission>
 ...
 </permissions>
 ...
 </grant>
 ...
</jazn-policy>

Granting Additional Permissions to External LDAP Principals
Any additional permission required by any external LDAP principal can be granted in
the same way as RMI permission, shown in the preceding section.

Using JAAS Mode with External LDAP Providers
The use of OC4J JAAS mode is supported for an application that uses an external
LDAP provider, in case that is required by your application in checking authorizations
with respect to the permissions you have granted. It is configured as shown in the
following example:

<orion-application ... >
 ...
 <jazn ... jaas-mode="doAsPrivileged" />
 ...
</orion-application>

Refer to "Introduction to JAAS Mode" on page 5-5 and "Configuring and Using JAAS
Mode" on page 5-18 to gain an understanding of when and how to use this mode.

Sample Configuration for Sun Java System Directory Server
This section provides the following sample configuration to use the Sun Java System
Directory Server as an external LDAP provider:

■ Sample LDIF Description

■ Sample Entries in OC4J Configuration Files

The orion-application.xml and system-jazn-data.xml settings would be
made automatically if you use Application Server Control Console as described earlier
in this chapter.

Note: A template file containing a sample login module entry for
Sun Java System Directory Server is provided in the file
sample_login_module.sun in the
ORACLE_HOME/j2ee/home/jazn/config directory. (Similarly, a
template file containing a sample login module entry for Active
Directory is provided in the file sample_login_module.ad in the
ORACLE_HOME/j2ee/home/jazn/config directory.)

Sample Configuration for Sun Java System Directory Server

External LDAP Security Providers 10-11

Sample LDIF Description
Assume the following LDIF description is used for the Sun Java System Directory
Server example:

Example 10–1 Sample LDIF Defining a User and Role

An example user object entry
uid= jdoe,dc=us,dc=example,dc=com
uid= jdoe
givenName=John
sn=Doe
cn=John Doe
userPassword={SSHA}zD/44JbZY33osry4mzfLn0du7nBhIIAHKDG5Fg==
uidNumber=1
gidNumber=1
homeDirectory=c:\
objectClass=top
objectClass=person
objectClass=organizationalPerson
objectClass= inetOrgPerson
objectClass=posixAccount

An example role object entry
cn=managers,ou=groups,dc=us,dc=example,dc=com
objectClass=top
objectClass= groupOfUniqueNames
cn=managers
uniqueMember=uid=jdoe,dc=us,dc=example,dc=com

Sample Entries in OC4J Configuration Files
This section shows OC4J configuration in the following files for an external LDAP
provider:

■ Settings in system-jazn-data.xml for Sun Java System Directory Server

■ Settings in orion-application.xml for an External LDAP Server

Settings in system-jazn-data.xml for Sun Java System Directory Server
Assume your Sun Java System Directory Server installation is described by the set of
LDIF entries shown in Example 10–1 on page 10-11. The corresponding
<jazn-loginconfig> entries in the system-jazn-data.xml file are shown in the
following example:

Example 10–2 JAAS Login Module Configuration Corresponding to Example 10–1

<jazn-data ... >
 ...
 <jazn-loginconfig>
 <application>
 <name>callerInfo</name>
 <login-modules>
 <login-module>
 <class>oracle.security.jazn.login.module.LDAPLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>oracle.security.jaas.ldap.provider.url</name>
 <value>ldap://myhost.example.com:389</value>

Using SSL with External LDAP Providers

10-12 Oracle Containers for J2EE Security Guide

 </option>
 <option>
 <name>oracle.security.jaas.ldap.user.name.attribute</name>
 <value>uid</value>
 </option>
 <option>
 <name>oracle.security.jaas.ldap.user.object.class</name>
 <value>inetOrgPerson</value>
 </option>
 <option>
 <name>oracle.security.jaas.ldap.user.searchbase</name>
 <value>dc=us,dc=example,dc=com</value>
 </option>
 <option>
 <name>oracle.security.jaas.ldap.role.name.attribute</name>
 <value>cn</value>
 </option>
 <option>
 <name>oracle.security.jaas.ldap.role.object.class</name>
 <value>groupOfUniqueNames</value>
 </option>
 <option>
 <name>oracle.security.jaas.ldap.role.searchbase</name>
 <value>ou=groups,dc=us,dc=example,dc=com</value>
 </option>
 <option>
 <name>oracle.security.jaas.ldap.member.attribute</name>
 <value>uniqueMember</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>
 </jazn-loginconfig>
 ...
</jazn-data>

Settings in orion-application.xml for an External LDAP Server
The following settings in orion-application.xml are used for any external LDAP
provider:

<jazn provider="XML">
 <property name="custom.ldap.provider" value="true" />
</jazn>

You must restart OC4J to synchronize the login module information from
system-jazn.data.xml.

Using SSL with External LDAP Providers
This section discusses how to use Secure Sockets Layer communication when using an
external LDAP provider with OC4J, covering the following topics:

■ Initial SSL Considerations for External LDAP Providers

■ Configuring OC4J to Use SSL with an External LDAP Provider

■ Configuring the External LDAP Provider for SSL

Using SSL with External LDAP Providers

External LDAP Security Providers 10-13

Initial SSL Considerations for External LDAP Providers
"SSL Authentication" on page 1-4 discusses the various authentication modes for
Secure Sockets Layer communication—no authentication, one-way authentication, and
two-way authentication. Be aware that most LDAP providers do not support "no
authentication" mode (although Oracle Internet Directory does).

Configuring OC4J to Use SSL with an External LDAP Provider
To enable SSL communication to an external LDAP provider, set the LDAP provider
option oracle.security.jaas.ldap.provider.url to a URL value that
specifies the LDAPS protocol, the host name, and an appropriate port for SSL
communication. The syntax is similar to that for plain LDAP URLs discussed earlier,
but the default port for LDAPS is 636 instead of 389.

When you use the Application Server Control Console for external LDAP provider
configuration, this option corresponds to the setting for LDAP Location, as noted in
"Specifying and Configuring an External LDAP Provider during Deployment" on
page 10-3. This option is also discussed in "External LDAP Provider Settings in
system-jazn-data.xml" on page 10-6.

For example, setting LDAP Location to ldaps://myhost.example.com:636
results in oracle.security.jaas.ldap.provider.url being set in
system-jazn-data.xml as follows:

 <login-module>
 <class>oracle.security.jazn.login.module.LDAPLoginModule</class>
 <control-flag>...</control-flag>
 <options>
 <option>
 <name>oracle.security.jaas.ldap.provider.url</name>
 <value>ldaps://myhost.example.com:636</value>
 </option>
 ...more options...
 </options>
 </login-module>

Configuring the External LDAP Provider for SSL
SSL communication between OC4J and an external LDAP provider requires the
following:

■ The external LDAP provider must be configured to use SSL. It must have a wallet
or keystore that contains its certificate as well as the certificate of the CA that
issued its certificate (issued the external LDAP provider certificate).

■ OC4J must be configured to use SSL, as discussed in Chapter 15, "SSL
Communication with OC4J". Its wallet or keystore must contain a certificate that

See Also: For information about OC4J server-side SSL support:

■ Chapter 15, "SSL Communication with OC4J"

Important: This configuration is sufficient for SSL in "no
authentication" mode, but any external LDAP provider presumably
requires at least one-way authentication (for communication to the
LDAP server). The additional steps for that are discussed in the next
section, "Configuring the External LDAP Provider for SSL".

Using SSL with External LDAP Providers

10-14 Oracle Containers for J2EE Security Guide

identifies the container, as well as the certificate of the CA that issued its certificate
(issued the OC4J certificate).

■ All trustpoints (CAs) used in the process must be imported into the wallets or
keystores used by the external LDAP provider and by OC4J. If different CAs are
used to sign the OC4J and external LDAP provider certificates, then the OC4J and
external LDAP provider wallet or keystore each must contain a copy of the
certificate of each of these CAs.

You can use the following general steps to configure an external LDAP provider, such
as Active Directory or Sun Java System Directory Server, for SSL using standard JSSE
functionality and one-way authentication (two-way authentication is not supported
for use with external LDAP providers in the current release):

1. Import the root CA certificate from the directory server to your local machine. For
example, create your own keystore and then import the root CA certificate to this
keystore. You can accomplish this using the JSSE keytool.

2. Set Java system properties as necessary for your truststore:

■ Set the -Djavax.net.ssl.trustStore property to indicate the path to
your wallet or keystore that serves as truststore.

■ If you need to secure the truststore, also set the
-Djavax.net.ssl.trustStorePassword property. (This may not
necessary for one-way authentication, as the truststore would typically contain
only public keys.)

For standalone OC4J, accomplish this on the JVM command line. In an Oracle
Application Server environment, accomplish this through Java property settings
for the OC4J instance in the opmn.xml file.

Here is a sample opmn.xml entry for the OC4J home instance:

<ias-component id="OC4J">
 <process-type id="home" module-id="OC4J" status="enabled">
 <module-data>
 <category id="start-parameters">
 <data id="java-options" value="-Xrs -server
 -Djava.security.policy=
 $ORACLE_HOME/j2ee/home/config/java2.policy
 -Djava.awt.headless=true
 -Dhttp.webdir.enable=false"
 -Djavax.net.ssl.trustStore=pathtotruststore/>
 </category>
 ...
 </module-data>
 ...
 </process-type>
</ias-component>

Using SSL with External LDAP Providers

External LDAP Security Providers 10-15

See Also:

■ "Using Keys and Certificates with OC4J and Oracle HTTP Server"
on page 15-2 and "Using SSL with Standalone OC4J" on page 15-5
for introductory information about keytool

■ For detailed information about the keytool utility:

http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/k
eytool.html

■ Oracle Containers for J2EE Configuration and Administration Guide, in
the chapter on OC4J runtime configuration, for general
information about setting system properties

Using SSL with External LDAP Providers

10-16 Oracle Containers for J2EE Security Guide

Oracle Access Manager 11-1

11
Oracle Access Manager

This chapter discusses how to use the Oracle Access Manager security provider,
formerly known as Oracle COREid Access and Identity, for authentication,
authorization, and single sign-on. The chapter is useful for those who have already
deployed, or plan to deploy, the Oracle Access Manager system. It describes
integration between the Oracle Access Manager 10.1.4 implementation and the OC4J
10.1.3.1 implementation, and how to secure applications deployed on OC4J through
features of Oracle Access Manager. This includes detailed configuration steps for Web
applications, and examples for Web applications, EJBs, and Web Service authentication
schemes (including username token, X.509 token, and SAML token).

This chapter covers the following topics:

■ Getting Started with Oracle Access Manager

■ Oracle Access Manager Concepts

■ Configuring Oracle Access Manager

■ Configuring OC4J with the Access Manager SDK

■ Configuring opmn.xml for Oracle Access Manager

■ Creating Required Accounts in the LDAP Server

■ Configuring the Application

■ Granting Permissions to Oracle Access Manager Principals

■ Considerations for Oracle Application Server SOA Applications

■ Oracle Access Manager Examples for J2EE Applications

■ Oracle Access Manager Support and Examples for Web Services

■ Troubleshooting the Oracle Access Manager Setup

Getting Started with Oracle Access Manager

11-2 Oracle Containers for J2EE Security Guide

Getting Started with Oracle Access Manager
This section provides an overview of Oracle Access Manager and discusses
prerequisites and architecture:

■ Overview of Oracle Access Manager

■ Oracle Access Manager Prerequisites

■ Oracle Access Manager Architecture

■ Top-Level Summary of Configuration Stages for Oracle Access Manager

Overview of Oracle Access Manager
Oracle Access Manager is an enterprise-class authentication, authorization, and
auditing solution that provides centralized security administration. This includes
functionality for access control, single sign-on (separate from Oracle Single Sign-On),
personalization, and user profile management in heterogeneous application

Notes:

■ The emphasis in this chapter is on what you must do from an
OC4J and OracleAS JAAS Provider perspective to enable the use
of Oracle Access Manager with Oracle Application Server. Some
prior familiarity with Oracle Access Manager is assumed, and
there is no attempt to thoroughly document the use of its features
or tools. In terms of what to do for necessary Oracle Access
Manager setup, the emphasis is on required settings, and how
they map to OracleAS JAAS Provider configuration, rather than
on how to accomplish the settings. Please consult Oracle Access
Manager documentation for details on its features and
administration.

■ Only the 10.1.4 implementation of Oracle Access Manager is
supported with the 10.1.3.1 implementation of OC4J.

See Also:

■ Oracle Access Manager Installation Guide

■ Oracle Access Manager System Administration Guide for information
related to settings of the Access Server (described later in this
chapter) and definition of access controls and user access to
applications and data

■ Oracle Access Manager Identity and Common Administration Guide
for information related to Identity Server settings and functions
common to both the Access Server and Identity Server (both
described later in this chapter)

■ Oracle Access Manager Developer Guide

These and other Oracle Access Manager documents are available
through:

http://www.oracle.com/technology/documentation/index.html

They are available with the Oracle Identity Management 10.1.4
documentation release, listed under "Application Servers".

Getting Started with Oracle Access Manager

Oracle Access Manager 11-3

environments across a variety of application servers, legacy applications, and
databases. Oracle Access Manager provides key features for creating, managing, and
enforcing access policies. If you have different sets of users that require access to
different data sets, while all require access to a common set of data, Oracle Access
Manager can allow the right levels of access to each group so that everyone can access
only the data that is appropriate for them.

In comparing Oracle Access Manager to other authentication, single sign-on, and
authorization services, note the following differentiating features:

■ You can centralize authentication and authorization for multiple OC4J instances
through a single Oracle Access Manager instance, allowing centralized single
sign-on and auditing functionality, as well as more robust authentication options.

■ Oracle Access Manager offers superior identity administration through workflow,
fine-grained attribute control, and delegation of administration.

■ Oracle Access Manager supports access control based on dynamic groups, with
members based on a given identity profile.

■ Oracle Access Manager allows realtime access and identity integration, with
runtime changes made through Oracle Access Manager being automatically
populated into the Access Server cache to eliminate security loopholes.

In OC4J 10.1.3.x implementations, OracleAS JAAS Provider supports Oracle Access
Manager integration through a custom login module and a special authentication
method setting.

Oracle Access Manager includes the following components:

■ WebGate, the policy enforcer, is a Web server plug-in access client (with an
associated Apache mod for use on Oracle HTTP Server) that intercepts HTTP
requests and forwards them to the Access Server for authentication and
authorization. In comparison, an AccessGate is a custom access client, built with
the Oracle Access Manager SDK, that processes Web and non-Web resource
requests from users or applications. It intercepts user requests and forwards them
to the Access Server for authentication and authorization. The terms WebGate and
AccessGate can be used interchangeably in most situations.

■ WebPass is a Web server plug-in that passes information between a Web server
and an Oracle Access Manager Identity Server.

■ Oracle Access Manager Identity Server processes all user identity, group,
organization, and credential-management requests.

■ Access Server, the policy decision-maker, receives requests, responds to the access
client, and manages the login session. The Access Server receives requests from
WebGate and queries the authentication, authorization, and auditing rules in
Oracle Internet Directory. The Access Server also manages the login session by
helping WebGate terminate sessions, set user session timeouts, reauthenticate
when timeouts occur, and track session activity.

■ Policy Manager writes policy data to Oracle Internet Directory (or other suitable
LDAP server), and updates the Access Server with policy modifications. It
includes an Access System Console that enables administrators to manage policies
and the system configuration.

Note: In the 10.1.3.1 implementation, Application Server Control
does not support configuration of Oracle Access Manager.

Getting Started with Oracle Access Manager

11-4 Oracle Containers for J2EE Security Guide

Oracle Access Manager Prerequisites
This section describes what you must have installed to use Oracle Access Manager.
Oracle Access Manager components are version 10.1.4.

At a high level, prerequisites include installing Oracle Access Manager and Oracle
Application Server, and configuring the Access Manager SDK and your applications
on OC4J.

Detailed requirements on the Oracle Access Manager side:

1. A suitable LDAP repository, such as Oracle Internet Directory (included in the
Oracle Application Server 10.1.4 or 10.1.2 infrastructure).

2. A Web server, such as Oracle HTTP Server (included in the Oracle Application
Server 10.1.3.x middle-tier infrastructure).

3. The Oracle Access Manager Identity Server and Access Server. When you install
Oracle Access Manager, you will be asked to specify the LDAP repository you are
using, which must be accessible for communication with Oracle Access Manager
Identity Server and Access Server during runtime.

4. Oracle Access Manager WebGate, WebPass, and Policy Manager installed on the
Web server. WebGate is the SSO interceptor and communicates with Access Server
during runtime. WebPass communicates with Oracle Access Manager Identity
Server. Policy Manager communicates with the LDAP repository. When you install
WebGate and WebPass, you will be asked to specify the Access Server and Identity
Server you are using.

Detailed requirements on the OC4J side:

1. Oracle Application Server 10.1.3.x middle-tier installation, with OC4J and Oracle
HTTP Server, including the mod_oc4j Apache mod. Note that this is separate
from the Web server you install on the Oracle Access Manager side, which may or
may not be Oracle HTTP Server.

Using Oracle Access Manager requires Oracle HTTP Server; you cannot use
standalone OC4J.

2. Oracle Access Manager WebGate installed on this Oracle HTTP Server.

3. Additional OC4J instances as needed. Typically, when using Oracle Access
Manager SSO, multiple OC4J instances are used in the topology, so the Oracle
HTTP Server instance must be configured to route and maintain multiple OC4J
instances.

4. Access Manager SDK, one for each OC4J instance, on the same system as OC4J.
The Access Manager SDK is installed independently and is required by OC4J at
runtime to communicate with Access Server. Each OC4J instance communicates
with an Access Manager SDK instance, which has been configured to
communicate with an Access Server instance.

The next section, "Oracle Access Manager Architecture", shows how the Oracle Access
Manager components fit with key components of the Oracle Application Server
middle-tier infrastructure.

See Also:

■ Oracle Access Manager Installation Guide for installation instructions

Getting Started with Oracle Access Manager

Oracle Access Manager 11-5

Oracle Access Manager Architecture
Figure 11–1 shows the Oracle Access Manager architecture.

Figure 11–1 Oracle Access Manager Architecture

Top-Level Summary of Configuration Stages for Oracle Access Manager
There are three stages of configuration steps to use OC4J applications with Oracle
Access Manager:

1. One-time configurations for the Oracle Access Manager Policy Manager
installation. This includes setting up authentication schemes and configuring an
Oracle Access Manager resource type. Refer to "Configuring Oracle Access
Manager" on page 11-8.

2. Configurations for each OC4J instance. This includes configuring each OC4J
instance with an Access Manager SDK installation. Refer to "Configuring OC4J
with the Access Manager SDK" on page 11-14.

3. Configurations for your application. This includes web.xml settings,
deployment-time settings, orion-application.xml settings (pre-deployment
or post-deployment), and JAAS login module settings. Refer to "Configuring the
Application" on page 11-17.

Note: Also ensure that the LDAP server you use has the accounts
you will need, as discussed in "Creating Required Accounts in the
LDAP Server" on page 11-16.

Oracle Access Manager Concepts

11-6 Oracle Containers for J2EE Security Guide

Running the Policy Manager
Several of the configuration steps documented later in this chapter involve running the
Policy Manager. Run it with a URL such as the following, then log in:

http://host:port/access/oblix

This will put you at the Access System Console, used frequently in this chapter.

Oracle Access Manager Concepts
This section provides background on some Oracle Access Manager concepts that will
be relevant later in this chapter:

■ About Oracle Access Manager Resource Types

■ About Oracle Access Manager Authentication

■ About Using HTTP Header Variables for Authentication

■ About the Oracle Access Manager Single Sign-On Cookie

About Oracle Access Manager Resource Types
In Oracle Access Manager, a resource type describes the kind of resource to be
protected, including its associated operations. Operations associated with a resource
are tied to its type. Before you can add resources to a policy domain, you must define
their types and the operation or operations associated with them that you want to
protect.

For example, by default Oracle Access Manager supports resource types that are
named "HTTP" and "EJB". The HTTP resource type supports operations such as
CONNECT, DELETE, GET, POST, PUT, and TRACE. The EJB resource type supports the
operation EXECUTE, which executes a bean. For a custom resource type, you can
specify a custom operation name.

To create a session to the Access Server, OC4J uses the Access Manager SDK, and the
SDK expects some resource type and resource operation to be specified. For this
reason, when you configure the Oracle Access Manager login module, you must
configure a custom Oracle Access Manager resource type, including the following:

■ Desired name of the resource type (can be arbitrary)

■ Desired name of the operation (can be arbitrary)

You will specify just a single resource operation, but this will encompass whatever
you want to execute against the protected resource.

■ URL of the protected resource

About Oracle Access Manager Authentication
In order to validate any user, Oracle Access Manager must be configured with an
authentication scheme. An authentication scheme consists of plug-ins.

OC4J support for Oracle Access Manager uses the credential_mapping plug-in,
which maps user credentials to profiles, and, where applicable, the

See Also:

■ Oracle Access Manager System Administration Guide for information
about Oracle Access Manager resource types

Oracle Access Manager Concepts

Oracle Access Manager 11-7

validate_password plug-in, which validates user passwords. You must configure
these plug-ins as shown later in this chapter.

Additionally, OC4J supports two modes of integrating end-user authentication
(identity assertion) with Oracle Access Manager:

■ Use of the Oracle Access Manager SSO cookie, ObSSOCookie, discussed further
in the next section, "About the Oracle Access Manager Single Sign-On Cookie"

■ Use of a user name and password that are passed in HTTP headers, discussed
further in "About Using HTTP Header Variables for Authentication" on page 11-7

About the Oracle Access Manager Single Sign-On Cookie
Oracle Access Manager implements single-domain and multi-domain single sign-on
through an encrypted session cookie called the ObSSOCookie. (This is one of two
possible modes of end-user authentication, the other involving HTTP header variables
as discussed in the next section.) WebGate sends this cookie to the user’s browser
upon successful authentication. This cookie can then act as an authentication
mechanism for other protected resources that require the same or a lower level of
authentication.

When a user requests access to a resource, the request flows from WebGate to the
Access Server. Once the user is validated, the ObSSOCookie is set, and then passed to
OC4J. With this single sign-on functionality, Oracle Access Manager uses the cookie for
subsequent requests instead of prompting the user to supply authentication
credentials.

OC4J uses the ObSSOCookie to connect to the Access Server and retrieve user roles.

About Using HTTP Header Variables for Authentication
Oracle Access Manager supports the use of HTTP header variables for authentication,
where a user name and password are passed in HTTP headers to assert an end user.
(This is one of two possible modes of end-user authentication, the other being the use
of the Oracle Access Manager ObSSOCookie as discussed in the preceding section.)

To use this mode, you must configure the Oracle Access Manager login module with
this user name and password (as discussed in "Configure the Oracle Access Manager
Login Module" on page 11-18) for OC4J to use in accessing the Access Server.

Consider the 4K size limit of the HTTP header when you use HTTP header variables
and cookies to pass information to downstream applications. This HTTP header size
limit includes all cookies, server variables, and environment variables—that is, all of
the content of the HTTP header. There is no constraint on the number of individual
elements an HTTP header can contain if the content does not exceed the 4K limit.

See Also:

■ Oracle Access Manager System Administration Guide for information
about Oracle Access Manager plug-ins

Note: ObSSOCookie is a session cookie by default, but can be made
persistent.

See Also:

■ Oracle Access Manager System Administration Guide for information
about the ObSSOCookie

Configuring Oracle Access Manager

11-8 Oracle Containers for J2EE Security Guide

Therefore, when assessing the amount of available space in the HTTP header, take into
account the byte size of the data used by Oracle Access Manager and other
applications. For example, if Oracle Access Manager and other applications combine
to use 1K in the HTTP header, you would have 3K for your data.

Configuring Oracle Access Manager
This section discusses one-time configurations to your Oracle Access Manager
installation:

1. Configure Oracle Access Manager Form-Based Authentication

2. Configure Oracle Access Manager Basic Authentication

3. Configure the Resource Type

4. Protect the Action URL

Configure Oracle Access Manager Form-Based Authentication
For single sign-on functionality, a form-based authentication scheme must be used in
protecting your resources, due to limitations in the basic authentication scheme. (Some
aspects of your configuration will have to use a no-password authentication, however,
as discussed in "Configure Oracle Access Manager Basic Authentication" on
page 11-10.)

The steps here are to create and protect a login page for form-based authentication in
Oracle Access Manager, for use by WebGate in protecting your resource. You will later
configure your application to be protected by this form-based authentication.

1. Create a Login Form

2. Define Form-Based Authentication in Policy Manager

3. Configure the credential_mapping Plug-In for Form-Based Authentication

4. Configure the validate_password Plug-In for Form-Based Authentication

Create a Login Form
Create a login page for form-based authentication. As will be pointed out, some of the
parameters you set in this page correspond to settings you will make in Policy
Manager and related plug-ins.

Put the login page under the OHS_HOME/document_root directory, typically
ORACLE_HOME/Apache/Apache/htdocs, on the middle-tier system.

Here is a sample login page, login.html. Assume it is in the
ORACLE_HOME/Apache/Apache/htdocs/login directory.

<html>
<head>
<title> COREid SSO Login Page</title>
<body bgcolor="white">
<h1 align="center">COREid SSO Provider Example : Sign in</h1>
<form method="POST" action="/coreid/access/test.html" >
 <table border="0" cellspacing="5">

See Also:

■ Discussion of how to configure form-based authentication in the
Oracle Access Manager System Administration Guide, particularly the
related appendix

Configuring Oracle Access Manager

Oracle Access Manager 11-9

 <tr>
 <th align="right">Username:</th>
 <td align="left"><input type="text" name="usernamevar"></td>
 </tr>
 <tr>
 <th align="right">Password:</th>
 <td align="left"><input type="password" name="passwordvar"></td>
 </tr>
 <tr>
 <td align="right"><input type="submit" value="Log In"></td>
 <td align="left"><input type="reset"></td>
 </tr>
 </table>
</form>
</body>
</html>

The action URL for the POST method can be arbitrary, but must match the action URL
you specify when you configure authentication management in Policy Manager in the
next step.

The variable for the user name (usernamevar here) must match what you specify in
the Oracle Access Manager credential_mapping plug-in. The variable for the
password (passwordvar here) must match what you specify in the Oracle Access
Manager validate_password plug-in.

Define Form-Based Authentication in Policy Manager
This step uses the Policy Manager to define form-based authentication. Navigate as
follows in Policy Manager:

Access System Console > Access System Configuration > Authentication Management

List all authentication schemes, then choose to add a new scheme. In the General tab
to define a new authentication scheme, makes entries such as the following:

Name: COREidSSOform
Description: COREid SSO Form Based
Level: 1
Challenge Method: Form
Challenge Parameter: form: /login/login.html
 creds: usernamevar passwordvar
 action: /coreid/access/test.html
 passthrough: No

SSL Required: No
Challenge Redirect
Enabled: Yes

You can choose any name and description; here "COREidSSOform" and "COREid SSO
Form Based" are just examples. The challenge parameter specifies
login/login.html as the form because that is the path relative to the Oracle HTTP
Server document root where we created the login page in the previous step. Leave
"Challenge Redirect" blank.

Note that the entries for "creds" here must match the variables specified for user and
password in your login page in the previous step, and these variables are used in the
credential_mapping plug-in and validate_password plug-in, respectively, for
form-based authentication.

Configuring Oracle Access Manager

11-10 Oracle Containers for J2EE Security Guide

Also note that the action URL (/coreid/access/test.html here) can be arbitrary,
but must match the action URL for the POST method in your login page. Protect this
URL with the basic (no password) authentication scheme described in "Configure
Oracle Access Manager Basic Authentication", following shortly.

Configure the credential_mapping Plug-In for Form-Based Authentication
Next, you must configure the Oracle Access Manager credential_mapping plug-in
for form-based authentication in Policy Manager. This is to protect the login form.

Navigate to the appropriate page as follows:

Access System Console > Access System Configuration > Authentication Management

List all authentication schemes, then choose the form-based scheme, then go to the
Plugins tab.

Modify the credential_mapping plug-in with entries such as the following:

obMappingBase="cn=users,dc=us,dc=oracle,dc=com",obMappingFilter="(&(&
(objectclass=inetorgperson)(uid=%usernamevar%))(|(!
(obuseraccountcontrol=*)) (obuseraccountcontrol=ACTIVATED)))"

The value entered for uid (usernamevar here) must match the variable you specified
for the user name in the login form, and when defining form-based authentication in
Policy Manager, shown in previous steps.

This also corresponds to the value of the coreid.name.attribute option in the
Oracle Access Manager login module configuration in OC4J.

Configure the validate_password Plug-In for Form-Based Authentication
Now configure the Oracle Access Manager validate_password plug-in for
form-based authentication in Policy Manager. This is to protect the login form.

Navigate as for the credential_mapping plug-in in the previous step. Modify the
validate_password plug-in with an entry such as the following:

obCredentialPassword="passwordvar"

The value entered for obCredentialPassword (passwordvar here) must match
the password variable specified in the login page, and when defining form-based
authentication in Policy Manager (shown in previous steps).

This also corresponds to the value of the coreid.password.attribute option in
the Oracle Access Manager login module configuration.

Configure Oracle Access Manager Basic Authentication
You must configure the Oracle Access Manager basic authentication scheme, which
must not be password protected. (It will use only the credential_mapping plug-in,
not the validate_password plug-in.) This scheme will be used to protect two
resources:

■ A URL associated with the resource type that you configure, as discussed in
"Configure and Protect the URL of the Configured Resource Type" on page 11-12.

See Also:

■ Oracle Access Manager System Administration Guide for more
information about the credential_mapping plug-in

Configuring Oracle Access Manager

Oracle Access Manager 11-11

The Oracle Access Manager login module will use this URL to communicate to the
Access Server through the Access Manager SDK.

■ The action URL for the form page, noted in "Create a Login Form" on page 11-8
and "Define Form-Based Authentication in Policy Manager" on page 11-9. This is
so submitted form requests can be intercepted by WebGate in order to enforce
rules for submitted credentials.

(Your application itself, however, must be protected by form-based authentication,
described in "Configure Oracle Access Manager Form-Based Authentication" on
page 11-8.)

These steps define basic authentication, without a password, to protect the resource.

1. Define Basic Authentication in Policy Manager

2. Configure the credential_mapping Plug-In for Basic Authentication

Define Basic Authentication in Policy Manager
This step uses the Policy Manager to configure basic authentication. Navigate as
follows in Policy Manager:

Access System Console > Access System Configuration > Authentication Management

List all authentication schemes, then choose to add a new scheme. In the General tab
to define a new authentication scheme, makes entries such as the following:

Name: COREidSSONoPwd
Description: Authentication without Password
Level: 1
Challenge Method: Basic
Challenge Parameter: realm:NetPoint Basic Over LDAP
SSL Required: No
Challenge Redirect
Enabled: Yes

You can choose any name and description; here "COREidSSONoPwd" and
"Authentication without Password" are just examples. The challenge parameter entry
indicated here is one of the choices available from a dropdown list. Leave "Challenge
Redirect" blank.

Configure the credential_mapping Plug-In for Basic Authentication
Next, configure the Oracle Access Manager credential_mapping plug-in for basic
authentication in Policy Manager. This is to protect your resource, but without a
password so WebGate can intercept results.

Navigate to the appropriate page as follows:

Access System Console > Access System Configuration > Authentication Management

List all authentication schemes, then choose the basic scheme, then go to the Plugins
tab.

Modify the credential_mapping plug-in with entries such as the following:

obMappingBase="cn=users,dc=us,dc=oracle,dc=com",obMappingFilter="(&(&
(objectclass=inetorgperson)(uid=%usernamevar%))(|(!
(obuseraccountcontrol=*)) (obuseraccountcontrol=ACTIVATED)))"

These are the same entries as for the credential_mapping plug-in for form-based
authentication. The value entered for uid (usernamevar here) must match the user
name variable specified in the login form.

Configuring Oracle Access Manager

11-12 Oracle Containers for J2EE Security Guide

This also corresponds to the value of the coreid.name.attribute option in the
Oracle Access Manager login module configuration.

Configure the Resource Type
In Oracle Access Manager, a resource type describes the kind of resource to be
protected, including its associated operations. Operations associated with a resource
are tied to its type. You must configure an Oracle Access Manager resource type for
your resource, and then protect your resource type, action URL, and application.

There are three parts to configuring the resource type for your resource, accomplished
through Policy Manager and described below:

1. Configure the Name and Operation of the Resource Type

2. Configure and Protect the URL of the Configured Resource Type

3. Configure the Return Action Attributes

The Oracle Access Manager login module will need information for the resource type,
as will be noted. OC4J uses the resource type to retrieve user information based on the
Oracle Access Manager ObSSOCookie or the user name, using APIs of the Access
Manager SDK.

Once these configuration steps are complete, the resource URL will be associated with
the resource type and protected by the no-password basic authentication method you
configured.

Configure the Name and Operation of the Resource Type
To configure the name and operation of the resource type in Policy Manager, navigate
as follows:

Access System Console > Access System Configuration > Common Information
Configuration > Resource Type Definitions

On the page that lists all resource types, choose to add a new resource type.

Make entries such as the following to define a new resource type:

Resource Name: myresourcetype
Display Name: My Resource Type Display Name
Resource Matching: Case Insensitive
Resource Operation: myresourceoperation

You can choose any names for the resource type and resource operation, but you must
use the same names for the coreid.resource.type and
coreid.resource.operation option values in the Oracle Access Manager login
module configuration.

Configure and Protect the URL of the Configured Resource Type
To configure and protect the URL of your configured resource type in Policy Manager,
navigate as follows:

See Also:

■ Oracle Access Manager System Administration Guide for more
information about the credential_mapping plug-in

See Also:

■ "About Oracle Access Manager Resource Types" on page 11-6

Configuring Oracle Access Manager

Oracle Access Manager 11-13

Policy Manager > Create Policy Domains

Choose the link for your policy domain. In the Resources tab, use entries such as the
following:

Resource Type: myresourcetype
Host Identifiers: myhost
URL Prefix: /myresourceurl
Description: My Description

This configuration must be protected using a no-password scheme. Use the basic
scheme that you configured in "Define Basic Authentication in Policy Manager" on
page 11-11.

Choose your resource type (myresourcetype in these examples) from the dropdown
list, then choose the appropriate host name.

The URL prefix must start with a "/" and is the designated URL of the resource type.
This must match the value of the coreid.resource.name option in the Oracle
Access Manager login module configuration.

The description can be anything; "My Description" is just an example.

Configure the Return Action Attributes
After authentication, OC4J requires access to the user’s roles in order to check for
authorization. To enable this, you must set up an Oracle Access Manager "return
action" that allows Oracle Access Manager to return the appropriate roles to OC4J for
the user after successful authentication.

To set up the return action in Oracle Access Manager, navigate as follows:

Policy Manager > My Policy Domains > Select myresourcetype > Authorization Rules
tab > Choose role name > Actions tab

Under the Authorization Success section, add the following entries (continuing the
preceding example using myresourcetype):

Return Type: myresourcetype
Return Name: myresourcetype
Return Attribute: ObMyGroups

ObMyGroups is an action attribute defined in Oracle Access Manager for use in
returning all the roles of an authenticated user.

Protect the Action URL
Using Policy Manager, protect the action URL you specified in "Configure Oracle
Access Manager Form-Based Authentication" on page 11-8. Use similar steps as for
protecting the resource type URL, as described in "Configure and Protect the URL of
the Configured Resource Type" on page 11-12.

■ This configuration must be under a no-password authentication scheme. Use the
basic authentication scheme that you configured in "Configure Oracle Access
Manager Basic Authentication" on page 11-10.

■ Use "HTTP" as the resource type.

Note: Do not confuse the URL specified here with the "action URL"
specified when setting up authentication in earlier steps. The two are
separate.

Configuring OC4J with the Access Manager SDK

11-14 Oracle Containers for J2EE Security Guide

■ Specify the action URL (/coreid/access/test.html in the examples).

Configuring OC4J with the Access Manager SDK
This section describes configuration steps for each OC4J instance on the middle tier.

As a prerequisite to this, you must install WebGate on the Oracle HTTP Server
instance in the middle tier. This Oracle HTTP Server instance, in turn, can (and
typically does) support multiple OC4J instances.

This section covers the following steps:

1. Create OC4J Instances as Needed

2. Configure the Access Manager SDK to Each OC4J Instance

3. Configure the Access Manager SDK Library Path for Each OC4J Instance

Create OC4J Instances as Needed
Typically, when using Oracle Access Manager SSO, multiple OC4J instances are used
in the topology, so the Oracle HTTP Server instance must be configured to route and
maintain multiple OC4J instances:

1. Create new OC4J instances as desired, using the createinstance utility as
described in the Oracle Containers for J2EE Configuration and Administration Guide.

2. Each OC4J instance should be tied to the Oracle HTTP Server instance. Each
application deployed to an OC4J instance must be configured in the mod_oc4j
configuration file, ORACLE_HOME/Apache/Apache/conf/mod_oc4j.conf, so
that requests are properly routed to the OC4J instance. This should occur
automatically when you create the OC4J instance.

Configure the Access Manager SDK to Each OC4J Instance
You will need Oracle Access Manager SDK, one installation for each OC4J instance, on
the same system as OC4J. The Access Manager SDK is required by OC4J at runtime to
communicate with Access Server. OC4J must be given the Access Manager SDK
location during startup (through the java.library.path property, as shown later
in this chapter), so that it can initialize the SDK. Note this initialization occurs only if
at least one application is using Oracle Access Manager as the security provider. Also
note the following:

1. Create a separate Access Manager SDK installation for each OC4J instance, on the
same system as OC4J. You can have multiple Access Manager SDK installations on
the same system.

See Also: For information about protecting resources:

■ Oracle Access Manager System Administration Guide

Note: Your middle-tier and OC4J installation can be on the same
system as Oracle Access Manager, but would typically not be.

See Also:

■ Oracle Access Manager Installation Guide for information about
installing AccessGate/WebGate

Configuring opmn.xml for Oracle Access Manager

Oracle Access Manager 11-15

2. Configure each Access Manager SDK to work with the appropriate Access Server.
From Access_SDK_Home/access/oblix/tools/configureAccessGate
directory, run the command configureAccessGate. This utility requires the
Access Server ID, AccessGate ID, and other related parameters.

3. Copy the Oracle Access Manager file jobaccess.jar from the Access Manager
SDK to the OC4J path. You will find this file in the
Access_SDK_Home/AccessServerSDK/oblix/lib directory. Create the
directory ORACLE_HOME/j2ee/home/lib/ext (if it does not already exist) and
copy the jobaccess.jar to that directory.

Configure the Access Manager SDK Library Path for Each OC4J Instance
You must configure the java.library.path property for each OC4J instance, in the
ORACLE_HOME/opmn/conf/opmn.xml file, so that the OC4J instance has access to
the Access Manager SDK at runtime. Set the property so that it points to the SDK
location.

For example, on a Windows system:

-Djava.library.path=C:\CoreID\AccessSDK\AccessServerSDK\oblix\lib

This is shown in more detail in the next section, "Configuring opmn.xml for Oracle
Access Manager".

Configuring opmn.xml for Oracle Access Manager
Where OC4J is managed by OPMN, add settings to opmn.xml for Oracle HTTP Server
and OC4J, as follows, when you use Oracle Access Manager:

1. For OC4J, under the process types "home", "OC4J_SOA", and any other OC4J
instance where applications will be deployed that use Oracle Access Manager, do
the following:

a. Set the LD_ASSUME_KERNEL environment variable to the value "2.4.19".

b. Set the LD_LIBRARY_PATH environment variable to point to the
AccessServerSDK library path.

c. Add the AccessServerSDK library path to java.library.path as a start
parameter.

Then restart the OC4J instances.

2. For Oracle HTTP Server, under the process type "HTTP_Server", set
LD_ASSUME_KERNEL to "2.4.19", then restart the Oracle HTTP Server instance.

Following is an opmn.xml example for the OC4J home instance. Repeat these settings
for the OC4J_SOA instance and any other OC4J instances as appropriate:

See Also:

■ Oracle Access Manager Developer Guide for information about
installing the Access Manager SDK

■ Oracle Access Manager System Administration Guide for information
about the configureAccessGate utility

See Also:

■ Oracle Process Manager and Notification Server Administrator’s Guide
for information about OPMN and the opmn.xml file

Creating Required Accounts in the LDAP Server

11-16 Oracle Containers for J2EE Security Guide

<ias-component id="OC4J">
 <process-type id="home" module-id="OC4J" status="enabled">
 <environment>
 <variable id="LD_ASSUME_KERNEL" value="2.4.19"/>
 <variable id="LD_LIBRARY_PATH"
 value="/your_asdk_home/AccessServerSDK/oblix/lib" append="true"/>
 </environment>
 <module-data>
 <category id="start-parameters">
 <data id="java-options" value="-server ...
 -Djava.library.path=/your_asdk_home/AccessServerSDK/oblix/lib
 ... />
 </category>
 ...
 </module-data>
 ...
 </process-type>
 ...
</ias-component>

And here is an example for Oracle HTTP Server:

<ias-component id="HTTP_Server">
 <process-type id="HTTP_Server" module-id="OHS">
 <environment>
 <variable id="LD_ASSUME_KERNEL" value="2.4.19" />
 </environment>
 ...
 </process-type>
 ...
</ias-component>

Creating Required Accounts in the LDAP Server
In the LDAP directory server that you use (such as Oracle Internet Directory), the
following accounts are required by OC4J and Application Server Control 10.1.3.x
implementations:

■ oc4jadmin user

■ oc4j-administrators role, with member oc4jadmin

■ oc4j-app-administrators role

■ ascontrol_admin (administrative role for all SOA controls, including
Application Server Control), with member oc4jadmin

■ ascontrol_appadmin (Application Server Control required role)

■ ascontrol_monitor (Application Server Control required role)

If you use Oracle Internet Directory, these accounts are created automatically when
you associate the OC4J instance with the Oracle Internet Directory instance, as
described in "Associate Oracle Internet Directory with OC4J" on page 8-5. ("Required
Accounts Created in Oracle Internet Directory" on page 8-7 is a subsection of this.)

If you use an external LDAP provider, you must create accounts manually, as
described in "Creating the Administrative User and Roles and Granting RMI
Permission" on page 10-9.

Configuring the Application

Oracle Access Manager 11-17

Configuring the Application
Instructions in this section are geared toward a Web application, consisting of the
following steps:

1. Protect the Application URLs in web.xml

2. Settings for Application Deployment

3. Configure Oracle Access Manager SSO in orion-application.xml

4. Protect the Application URLs in Oracle Access Manager

5. Configure the Oracle Access Manager Login Module

6. Test the Application

Protect the Application URLs in web.xml
The first step in protecting your application is to protect appropriate URLs or URL
prefixes through settings in the web.xml file, using standard J2EE features.

These are the same URLs that you will you protect through Oracle Access Manager
configuration in "Protect the Application URLs in Oracle Access Manager" on
page 11-18.

Settings for Application Deployment
In Oracle Application Server 10.1.3.x implementations, Application Server Control
does not yet support Oracle Access Manager as a security provider. When you deploy
your application using the Application Server Control Console, choose the file-based
provider. This will be overridden through the configuration steps documented in this
chapter.

Configure Oracle Access Manager SSO in orion-application.xml
To use Oracle Access Manager Single Sign-On as the authentication method for Web
applications, set the auth-method attribute to "COREIDSSO" in the
<jazn-web-app> element in the OC4J orion-application.xml file. You can do
this as either a pre-deployment step (packaged in the EAR file) or a post-deployment
step.

Here is a sample entry in orion-application.xml, where <jazn-web-app> is a
subelement of the <jazn> element:

See Also:

■ "Predefined Accounts" on page 4-11

Notes:

■ You do not need an <auth-method> setting in the web.xml file.
Any setting in web.xml would be overridden by the
"COREIDSSO" setting in orion-application.xml.

■ The <jazn-web-app> element is also supported in the
orion-web.xml file. In the event of conflict, orion-web.xml
takes precedence over orion-application.xml for the
particular Web application in question.

Configuring the Application

11-18 Oracle Containers for J2EE Security Guide

<orion-application ... >
 ...
 <jazn provider="XML" >
 <jazn-web-app auth-method="COREIDSSO"/>
 ...
 </jazn>
 ...
</orion-application>

Protect the Application URLs in Oracle Access Manager
Use Policy Manager to protect your application URLs or URL prefixes through
form-based authentication. These will be the same URLs as in "Protect the Application
URLs in web.xml" on page 11-17. Use the following navigation:

Policy Manager > Create Policy Domains

Then choose the appropriate public policy domain. You should protect each URL or
URL prefix you protected in web.xml, as follows:

1. Use "HTTP" as the resource type.

2. Specify the URL (for example, /foo).

3. The configuration must be under the form-based authentication scheme that you
defined in "Configure Oracle Access Manager Form-Based Authentication" on
page 11-8.

Configure the Oracle Access Manager Login Module
For a Web application, the OC4J implementation to support Oracle Access Manager
requires the login module CoreIDLoginModule, supplied by Oracle. The following
template shows the general form of the configuration, in the
system-jazn-data.xml file. Note the <class> and <control-flag> element
settings. Table 11–1 following describes the available options, followed by an example.
Additional examples of specific scenarios and their configurations are shown later in
this chapter.

<application>
 <name>yourappname</name>
 <login-modules>
 <login-module>
 <class>
 oracle.security.jazn.login.module.coreid.CoreIDLoginModule
 </class>
 <control-flag>required</control-flag>

See Also: For information about protecting resources:

■ Oracle Access Manager System Administration Guide

Note: By convention, as with other custom login modules, the
<jazn> setting provider="XML" is used with the Oracle Access
Manager login module.

See Also:

■ Table 9–5, " Login Module Control Flags" on page 9-17 for
information about <control-flag> settings

Configuring the Application

Oracle Access Manager 11-19

 <options>
 ...
 </options>
 </login-module>
 </login-modules>
</application>

Table 11–1 Oracle Access Manager Login Module Options

Option Name Required/Optional Option Value

addAllRoles Required This flag should be set to true so the
authenticated user will have
permissions for all his/her roles. With a
false setting, there are permissions
only for top-level roles, not nested roles.

coreid.resoure.type Required Name of the resource type you defined
through Policy Manager.

See Also: "About Oracle Access
Manager Resource Types" on page 11-6
and "Configure the Name and
Operation of the Resource Type" on
page 11-12

coreid.resource.operation Required Name of the resource operation
associated with the resource type
specified in coreid.resource.type,
as defined through Policy Manager.

See Also: "Configure the Name and
Operation of the Resource Type" on
page 11-12

coreid.resource.name Required The URL prefix associated with the
resource type specified in
coreid.resource.type, and
protected using the no-password basic
authentication scheme defined through
Policy Manager.

See Also: "Configure and Protect the
URL of the Configured Resource Type"
on page 11-12

coreid.name.attribute Required Variable for the user name for
authentication, as defined in the
credential_mapping plug-in.

See Also: "About Oracle Access
Manager Authentication" on page 11-6
and "Configure the credential_mapping
Plug-In for Form-Based Authentication"
on page 11-10

coreid.password.attribute Required (except
when using X.509
token or SAML
authentication)

Variable for the password for
authentication, as defined in the
validate_password plug-in.

See Also: "Configure the
validate_password Plug-In for
Form-Based Authentication" on
page 11-10

Configuring the Application

11-20 Oracle Containers for J2EE Security Guide

The following sample corresponds to the example that runs throughout "Configure
Oracle Access Manager Form-Based Authentication" on page 11-8, "Configure Oracle
Access Manager Basic Authentication" on page 11-10, and "Configure the Resource
Type" on page 11-12:

<application>
 <name>foo</name>
 <login-modules>
 <login-module>
 <class>
 oracle.security.jazn.login.module.coreid.CoreIDLoginModule
 </class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 <option>
 <name>coreid.resource.type</name>
 <value>myresourcetype</value>
 </option>
 <option>
 <name>coreid.resource.operation</name>
 <value>myresourceoperation</value>
 </option>
 <option>

coreid.name.header Optional If you use HTTP header variables for
authentication, this parameter is the
user name that OC4J should use to
authenticate against the Oracle Access
Manager Access Server.

See Also: "About Using HTTP Header
Variables for Authentication" on
page 11-7 and "Web Application Using
HTTP Header Variables through Oracle
Access Manager" on page 11-26

coreid.password.header Optional If you use HTTP header variables for
authentication, this parameter is the
password that OC4J should use with
the user name specified in
coreid.name.header to authenticate
against the Access Server.

Note: The values of coreid.resource.type,
coreid.resource.operation, and coreid.resource.name are
determined during one-time Oracle Access Manager configuration, as
described in "Configure the Resource Type" on page 11-12, and are the
same for any application using the same installation of Oracle Access
Manager. Each application must have appropriate settings for these
property values in its configuration for the Oracle Access Manager
login module, which you can accomplish using Application Server
Control or the OracleAS JAAS Provider Admintool.

Table 11–1 (Cont.) Oracle Access Manager Login Module Options

Option Name Required/Optional Option Value

Granting Permissions to Oracle Access Manager Principals

Oracle Access Manager 11-21

 <name>coreid.resource.name</name>
 <value>/myresourceurl</value>
 </option>
 <option>
 <name>coreid.name.attribute</name>
 <value>usernamevar</value>
 </option>
 <option>
 <name>coreid.password.attribute</name>
 <value>passwordvar</value>
 </option>
 </options>
 </login-module>
 </login-modules>
</application>

(This uses all supported options for the Oracle Access Manager login module except
for coreid.name.header and coreid.password.header. Examples for these are
shown later in this chapter.)

Test the Application
After you have deployed your Web application, restarted OC4J, and restarted Oracle
HTTP Server, run the application. This example assumes Oracle HTTP Server listens
on port 6666:

http://www.example.com:6666/foo

WebGate will intercept this request and will check the authentication scheme for this
URL. The configuration shown earlier in this chapter will result in the user being
prompted with the login.html login form from "Create a Login Form" on page 11-8.
Then the following sequence will take place:

1. WebGate will capture the user name and password from the login form and
communicate to Access Server.

2. Access Server will communicate to Oracle Internet Directory (or other LDAP
repository that you use).

3. After the user is authenticated, the Oracle Access Manager SSO token will be
returned to WebGate.

4. WebGate will set the ObSSOCookie and pass the cookie and other HTTP headers
to mod_oc4j, which will route the request to the appropriate OC4J instance.

5. OC4J will take the cookie and validate it, or retrieve roles for the user associated
with this cookie from Access Server using the Access Manager SDK configured on
OC4J.

Granting Permissions to Oracle Access Manager Principals
You must grant any necessary permissions to any Oracle Access Manager principals
that require privileges in your application. For an EJB application, this includes
granting RMIPermission "login" for EJB access.

This section covers the following topics:

■ Granting RMI Permission to an Oracle Access Manager Principal

■ Granting Required Permissions to Additional Oracle Access Manager Principals

Granting Permissions to Oracle Access Manager Principals

11-22 Oracle Containers for J2EE Security Guide

■ Confirming Configured Realm Names for Oracle Access Manager Principals

Granting RMI Permission to an Oracle Access Manager Principal
When using Oracle Access Manager for an EJB application, it is necessary to grant RMI
permission "login" to an Oracle Access Manager principal for EJB access.

The following example uses the OracleAS JAAS Provider Admintool to accomplish
this, assuming the principal name orcladmin:

% java -jar jazn.jar -grantperm oracle.security.jazn.realm.CoreIDPrincipal \
 orcladmin com.evermind.server.rmi.RMIPermission login

This example would result in the following configuration in the
system-jazn-data.xml file.

<jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jazn.realm.CoreIDPrincipal</class>
 <name>orcladmin</name>
 </principal>
 </principals>
 </grantee>
 ...
 <permissions>
 <permission>
 <class>com.evermind.server.rmi.RMIPermission</class>
 <name>login</name>
 </permission>
 ...
 </permissions>
 ...
 </grant>
 ...
</jazn-policy>

Granting Required Permissions to Additional Oracle Access Manager Principals
When using Oracle Access Manager, authentication occurs at the Oracle Access
Manager end, but JAAS authorization occurs at the OC4J end. (Other levels of
authorization may occur at the Oracle Access Manager end.) For JAAS authorization
in your application to be successful, the appropriate permissions must be granted to
any Oracle Access Manager principals that are populated into your application
subjects after authentication, and these grants must be stored in the
system-jazn-data.xml file.

For this discussion, assume a principal BPMSystemAdmin requires the
ServerPermission "server". The following example uses the OracleAS JAAS
Provider Admintool to accomplish this:

% java -jar jazn.jar -grantperm oracle.security.jazn.realm.CoreIDPrincipal \
 BPMSystemAdmin com.collaxa.security.ServerPermission server

Important: Also refer to "Confirming Configured Realm Names for
Oracle Access Manager Principals" on page 11-24.

Granting Permissions to Oracle Access Manager Principals

Oracle Access Manager 11-23

This example would result in the following configuration in the
system-jazn-data.xml file.

<jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jazn.realm.CoreIDPrincipal</class>
 <name>BPMSystemAdmin</name>
 </principal>
 </principals>
 </grantee>
 ...
 <permissions>
 <permission>
 <class>com.collaxa.security.ServerPermission</class>
 <name>server</name>
 <actions>all</actions>
 </permission>
 ...
 </permissions>
 ...
 </grant>
 ...
</jazn-policy>

Here is a sample configuration for the BPMSystemAdmin role:

 <role>
 <name>BPMSystemAdmin</name>
 <guid>3E9D3A5037A311DBBFA2B1BC62ED9FBC</guid>
 <members>
 <member>
 <type>user</type>
 <name>bpeladmin</name>
 </member>
 <member>
 <type>user</type>
 <name>oc4jadmin</name>
 </member>
 </members>
 </role>

Important:

■ Ensure that the permission class is in the classpath before you
attempt to grant the permission.

■ Also refer to "Confirming Configured Realm Names for Oracle
Access Manager Principals" on page 11-24.

Considerations for Oracle Application Server SOA Applications

11-24 Oracle Containers for J2EE Security Guide

Confirming Configured Realm Names for Oracle Access Manager Principals
In permissions configuration for Oracle Access Manager principals, each configured
principal name must exactly match the principal name, including any realm name, as
it comes over from Oracle Access Manager when the principal is populated into a
subject.

For example, if BPMSystemAdmin is in the abc realm in Oracle Access Manager, then
the principal name in system-jazn-data.xml must be exactly as follows:

 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jazn.realm.CoreIDPrincipal</class>
 <name>abc/BPMSystemAdmin</name>
 </principal>
 </principals>
 </grantee>

Considerations for Oracle Application Server SOA Applications
This section discusses special considerations when you use Oracle Access Manager to
protect Oracle Application Server SOA applications such as Application Server
Control and OWSM. The following topics are covered:

■ Configure Logout for Oracle Application Server SOA Applications

■ Troubleshooting Login to Oracle Application Server SOA Applications

Notes:

■ The use of OC4J JAAS mode is supported for an application that
uses Oracle Access Manager, in case that is required by your
application in checking authorizations with respect to the
permissions you have granted. Refer to "Introduction to JAAS
Mode" on page 5-5 and "Configuring and Using JAAS Mode" on
page 5-18 to gain an understanding of when and how to use this
mode.

■ For authorization to work properly, also confirm that role
mapping is set up appropriately, to correctly map deployment
roles to J2EE logical roles. Refer to "Mapping Security Roles" on
page 6-10 for additional information.

Important:

■ When using Oracle Access Manager, do not attempt to use the
Admintool addrealm option, which would result in incorrect
realm information in the configuration. (This command is
intended for only the file-based provider.)

■ If you encounter any difficulty, ensure that only the appropriate
realm information is included in any principal names for
permission grants in system-jazn-data.xml.

Oracle Access Manager Examples for J2EE Applications

Oracle Access Manager 11-25

Configure Logout for Oracle Application Server SOA Applications
For logout to work properly for Oracle Application Server SOA applications protected
by Oracle Access Manager, complete the following steps (assuming Oracle HTTP
Server is the Web server for Policy Manager):

1. Create a shared logout page for all the applications. Assuming the logout page is
logout.html, you can accomplish this by copying logout.html to the Oracle
HTTP Server Apache/Apache/htdocs directory.

2. Configure SSO logout to use the logout page "/logout.html". This registers this
URL as the logout URL with Policy Manager. To accomplish this, navigate as
follows in Policy Manager:

Access System Console > Access System Configuration > AccessGate
Configuration > WebGate Configuration

Set LogOutURLs to: /logout.html

3. Make sure the logout page is not protected by WebGate, or is protected using the
"none" authentication scheme.

4. Restart the Oracle HTTP Server instance that Policy Manager uses.

5. In the <jazn> element of the OC4J jazn.xml file, set the property
custom.sso.url.logout to point to the logout page URL, such as:

<jazn ... >
 <property name="custom.sso.url.logout" value="/logout.html" />
 ...
</jazn>

6. Restart the OC4J instance.

Also ensure that the login page and logout page are in the same cookie domain, or that
the cookies set during login and logout map to a shared domain.

Troubleshooting Login to Oracle Application Server SOA Applications
If you try to log in to an Oracle Application Server SOA application (for example,
using http://www.example.com:7778/ccore/index.html for OWSM), and the
login hangs on the form login page after you enter your credentials, one possible cause
is that there is a time-synch mismatch between the server running the SOA application
(such as OWSM) and the server running Oracle Access Manager. In this case, WebGate
will fail to successfully create a session for the user. If you experience this, the
administrator should confirm that both systems are synchronized.

Oracle Access Manager Examples for J2EE Applications
This section discusses the following Oracle Access Manager usages for Web
applications and EJBs:

■ Web Application Using HTTP Header Variables through Oracle Access Manager

■ Web Application Using the Oracle Access Manager ObSSOCookie

■ EJB Application Using Oracle Access Manager

See Also:

■ "Oracle Access Manager Support and Examples for Web Services"
on page 11-29

Oracle Access Manager Examples for J2EE Applications

11-26 Oracle Containers for J2EE Security Guide

Web Application Using HTTP Header Variables through Oracle Access Manager
You can optionally configure a Web application to use HTTP header variables for
authentication. The header variable for user name corresponds to the
coreid.name.header option in the Oracle Access Manager login module
configuration. The header variable for password corresponds to the
coreid.password.header option.

You must execute the following steps to use these header variables:

1. Configure Name and Password in Policy Manager

2. Configure HTTP Header Variables for the Oracle Access Manager Login Module

3. Secure the Web Application That Uses HTTP Headers

Configure Name and Password in Policy Manager
Use Policy Manager to enable the credential_mapping and validate_password
plug-ins.

Configure HTTP Header Variables for the Oracle Access Manager Login Module
Include option settings for coreid.name.header and (as appropriate)
coreid.password.header in the Oracle Access Manager login module
configuration in system-jazn-data.xml. In the following example, password
authentication is used. Assume the desired HTTP header variables are
myhttpuservar and myhttppwdvar:

<options>
 ...
 <option>
 <name>coreid.name.header</name>
 <value>myhttpuservar</value>
 </option>
 <option>
 <name>coreid.password.header</name>
 <value>myhttppwdvar</value>
 </option>
 ...
</options>

See Also:

■ "About Using HTTP Header Variables for Authentication" on
page 11-7

See Also:

■ "Configure the credential_mapping Plug-In for Form-Based
Authentication" on page 11-10 and "Configure the
validate_password Plug-In for Form-Based Authentication" on
page 11-10

■ Oracle Access Manager System Administration Guide for information
about using HTTP header variables

Oracle Access Manager Examples for J2EE Applications

Oracle Access Manager 11-27

Secure the Web Application That Uses HTTP Headers
Define appropriate security constraints in your standard Web application
configuration, and set auth-method="COREIDSSO" in orion-application.xml
as shown in "Configure Oracle Access Manager SSO in orion-application.xml" on
page 11-17.

Web Application Using the Oracle Access Manager ObSSOCookie
When no HTTP header variables are provided for a secure Web application, the Oracle
Access Manager ObSSOCookie is used to retrieve authentication information. By
default, this cookie contains the cookie in the HTTP header.

You must execute the following steps to use the cookie:

1. Configure User Name and Password for the Oracle Access Manager Login Module

2. Secure the Web Application That Uses ObSSOCookie

Configure User Name and Password for the Oracle Access Manager Login Module
Include option settings for coreid.name.attribute and (as appropriate)
coreid.password.attribute in the Oracle Access Manager login module
configuration in system-jazn-data.xml. In the following example, password
authentication is used. Assume the user name and password variables you defined for
the credential_mapping and validate_password plug-ins are usernamevar
and passwordvar:

<options>
 ...
 <option>
 <name>coreid.name.attribute</name>
 <value>usernamevar</value>
 </option>
 <option>
 <name>coreid.password.attribute</name>
 <value>passwordvar</value>
 </option>
 ...
</options>

Secure the Web Application That Uses ObSSOCookie
Define appropriate security constraints in your standard Web application
configuration, and set auth-method="COREIDSSO" in orion-application.xml
as shown in "Configure Oracle Access Manager SSO in orion-application.xml" on
page 11-17.

Note: When using HTTP header variables, be aware that option
settings for coreid.name.attribute and
coreid.password.attribute are still required, in addition to
settings for coreid.name.header and
coreid.password.header.

Oracle Access Manager Examples for J2EE Applications

11-28 Oracle Containers for J2EE Security Guide

EJB Application Using Oracle Access Manager
For EJB authentication, OC4J gets the user name and password from the EJB context
and passes them to the Oracle Access Manager login module. The same user name and
password are used to authenticate against Oracle Access Manager.

The EJB scenario requires both the credential_mapping plug-in and the
validate_password plug-in, discussed earlier in this chapter. The user name and
password variables you define for the plug-ins must be reflected in option settings for
the Oracle Access Manager login module, as discussed in "Configure Oracle Access
Manager Form-Based Authentication" on page 11-8.

The client must send the user name and password for authenticating itself before it can
access the EJB.

Configure the Oracle Access Manager login module. Assume Oracle Access Manager
authentication variables are as follows:

■ myejbappname is the name of the EJB application.

■ myejbusernamevar is the variable name for the EJB user name, as you define in
the credential_mapping plug-in.

■ myejbpwdvar is the variable name for the EJB user password, as you define in the
validate_password plug-in.

<application>
 <name>myejbappname</name>
 <login-modules>
 <login-module>
 <class>
 oracle.security.jazn.login.module.coreid.CoreIDLoginModule
 </class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 <option>
 <name>coreid.resource.type</name>
 <value>myresourcetype</value>
 </option>
 <option>
 <name>coreid.resource.operation</name>
 <value>myresourceoperation</value>
 </option>
 <option>
 <name>coreid.resource.name</name>
 <value>/myresourceurl</value>
 </option>
 <option>
 <name>coreid.name.attribute</name>
 <value>myejbusernamevar</value>
 </option>
 <option>
 <name>coreid.password.attribute</name>
 <value>myejbpwdvar</value>
 </option>
 </options>
 </login-module>
 </login-modules>

Oracle Access Manager Support and Examples for Web Services

Oracle Access Manager 11-29

</application>

Oracle Access Manager Support and Examples for Web Services
Web services can use Oracle Access Manager for authenticating Web service clients.
With respect to Oracle Access Manager, OC4J supports username token
authentication, X.509 token authentication, and SAML token authentication, as
follows:

■ Username token: OC4J extracts the user name and password, and uses them to
authenticate against Oracle Access Manager.

■ X.509 token: OC4J uses the CN value of the X.509 entry to authenticate against
Oracle Access Manager.

■ SAML token: OC4J uses the subject name to authenticate against Oracle Access
Manager.

The following usages are shown below:

■ Web Service with Username Token Authentication for Oracle Access Manager

■ Web Service with X.509 Token Authentication for Oracle Access Manager

■ Web Service with SAML Token Authentication for Oracle Access Manager

Web Service with Username Token Authentication for Oracle Access Manager
A username token client uses the user name and password for authentication. You
must configure variables for the user name and password through the Oracle Access
Manager credential_mapping and validate_password plug-ins, with
corresponding settings for the coreid.name.attribute and
coreid.password.attribute options in the Oracle Access Manager login module

Note: In the current release there is no direct support for a scenario
where Oracle Access Manager ObSSOCookie is sent instead of the
user name and password for authentication.

See Also:

■ "Configure the Resource Type" on page 11-12 for information
about coreid.resource.type,
coreid.resource.operation, and
coreid.resource.name

Note: In the current release there is no direct support for a scenario
where the Oracle Access Manager ObSSOCookie is sent instead of the
user name and password for authentication.

See Also:

■ "Oracle Access Manager Examples for J2EE Applications" on
page 11-25

■ Oracle Application Server Web Services Security Guide for general
information about username token, X.509 token, and SAML token
authentication

Oracle Access Manager Support and Examples for Web Services

11-30 Oracle Containers for J2EE Security Guide

configuration, as discussed in "Configure Oracle Access Manager Form-Based
Authentication" on page 11-8.

Configure the login module as follows, assuming these settings:

■ UsernameAppName is the name of the Web service application using username
token authentication.

■ UsernameNamevar is the variable name for the user name, as you define in the
credential_mapping plug-in.

■ UsernamePwdvar is the variable name for the user password, as you define in the
validate_password plug-in.

<application>
 <name>UsernameAppName</name>
 <login-modules>
 <login-module>
 <class>
 oracle.security.jazn.login.module.coreid.CoreIDLoginModule
 </class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 <option>
 <name>coreid.resource.type</name>
 <value>myresourcetype</value>
 </option>
 <option>
 <name>coreid.resource.operation</name>
 <value>myresourceoperation</value>
 </option>
 <option>
 <name>coreid.resource.name</name>
 <value>/myresourceurl</value>
 </option>
 <option>
 <name>coreid.name.attribute</name>
 <value>UsernameNamevar</value>
 </option>
 <option>
 <name>coreid.password.attribute</name>
 <value>UsernamePwdvar</value>
 </option>
 </options>
 </login-module>
 </login-modules>
</application>

See Also:

■ "Configure the Resource Type" on page 11-12 for information
about coreid.resource.type,
coreid.resource.operation, and
coreid.resource.name

Oracle Access Manager Support and Examples for Web Services

Oracle Access Manager 11-31

Web Service with X.509 Token Authentication for Oracle Access Manager
An X.509 client uses the CN value from the X.509 entry for authentication. You must
configure a variable for the CN user name through the Oracle Access Manager
credential_mapping plug-in, with a corresponding setting for the
coreid.name.attribute option in the Oracle Access Manager login module
configuration, as discussed in "Configure Oracle Access Manager Form-Based
Authentication" on page 11-8.

Do not configure the Oracle Access Manager validate_password plug-in or set the
login module coreid.password.attribute option when X.509 token
authentication is used.

Configure the login module as follows, assuming these settings:

■ X509AppName is the name of the Web service application using X.509 token
authentication.

■ cn_name_var is the variable name for the CN user name, as you define in the
credential_mapping plug-in.

<application>
 <name>X509AppName</name>
 <login-modules>
 <login-module>
 <class>
 oracle.security.jazn.login.module.coreid.CoreIDLoginModule
 </class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 <option>
 <name>coreid.resource.type</name>
 <value>myresourcetype</value>
 </option>
 <option>
 <name>coreid.resource.operation</name>
 <value>myresourceoperation</value>
 </option>
 <option>
 <name>coreid.resource.name</name>
 <value>/myresourceurl</value>
 </option>
 <option>
 <name>coreid.name.attribute</name>
 <value>cn_name_var</value>
 </option>
 </options>
 </login-module>
 </login-modules>
</application>

See Also:

■ "Configure the Resource Type" on page 11-12 for information
about coreid.resource.type,
coreid.resource.operation, and
coreid.resource.name

Oracle Access Manager Support and Examples for Web Services

11-32 Oracle Containers for J2EE Security Guide

Web Service with SAML Token Authentication for Oracle Access Manager
For a SAML client, OC4J determines the subject name, and you must configure a
variable name for SAML subject authentication through the Oracle Access Manager
credential_mapping plug-in. This credential_mapping setting must be
reflected in the setting of the coreid.name.attribute option in the Oracle Access
Manager login module configuration, as discussed in "Configure Oracle Access
Manager Form-Based Authentication" on page 11-8. OC4J passes the subject name and
credential_mapping variable name to Oracle Access Manager for authentication.

Do not configure the Oracle Access Manager validate_password plug-in or set the
login module coreid.password.attribute option when SAML authentication is
used.

Configure the login module as shown below, assuming these settings:

■ SAMLAppName is the name of the Web service application using SAML token
authentication.

■ subject_name_var is the variable for the subject name, as you define in the
credential_mapping plug-in.

In the SAML scenario, there is also a SAML login module, SAMLLoginModule, that
you must configure along with the CoreIDLoginModule login module, as follows.
This example uses www.example.com for the issuer name.

<application>
 <name>SAMLAppName</name>
 <login-modules>

 <login-module>
 <class>
 oracle.security.jazn.login.module.saml.SAMLLoginModule
 </class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 <option>
 <name>issuer.name.1</name>
 <value>www.example.com</value>
 </option>
 </options>
 </login-module>

 <login-module>
 <class>
 oracle.security.jazn.login.module.coreid.CoreIDLoginModule
 </class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addAllRoles</name>
 <value>true</value>

Important: The SAMLLoginModule configuration must precede the
CoreIDLoginModule configuration in system-jazn-data.xml.

Troubleshooting the Oracle Access Manager Setup

Oracle Access Manager 11-33

 </option>
 <option>
 <name>coreid.resource.type</name>
 <value>myresourcetype</value>
 </option>
 <option>
 <name>coreid.resource.operation</name>
 <value>myresourceoperation</value>
 </option>
 <option>
 <name>coreid.resource.name</name>
 <value>/myresourceurl</value>
 </option>
 <option>
 <name>coreid.name.attribute</name>
 <value>subject_name_var</value>
 </option>
 </options>
 </login-module>

 </login-modules>
</application>

Troubleshooting the Oracle Access Manager Setup
Table 11–2 provides some troubleshooting tips for your Oracle Access Manager setup
and configuration.

See Also:

■ "Configure the Resource Type" on page 11-12 for information
about coreid.resource.type,
coreid.resource.operation, and
coreid.resource.name

■ Oracle Application Server Web Services Security Guide for
information about the SAMLLoginModule

Table 11–2 Oracle Access Manager Troubleshooting

Problem Cause/Solution

The application is configured to use
Oracle Access Manager SSO. When
you try to access the application,
Access Server crashes and restarts.

This will happen if you have configured the incorrect
search base in Oracle Internet Directory, or the group
name is not properly created.

When you try to access the Oracle
Access Manager SSO application, it
throws a Class Not Found
exception.

Confirm you copied the Oracle Access Manager file
jobaccess.jar from the Access Manager SDK to the
OC4J path, as described in "Configure the Access
Manager SDK to Each OC4J Instance" on page 11-14.

When you try to access the Oracle
Access Manager SSO application, it
gives an internal server error.

Confirm that the Access Manager SDK installed on the
OC4J server is configured to use the appropriate Access
Server, as discussed in "Configure the Access Manager
SDK to Each OC4J Instance" on page 11-14. Also confirm
that OC4J is running.

When you try to access the Oracle
Access Manager SSO application, it
does not appear in the login page.

Confirm you have enabled your authentication scheme
with proper settings, using Policy Manager, as discussed
in "Configure Oracle Access Manager Form-Based
Authentication" on page 11-8.

Troubleshooting the Oracle Access Manager Setup

11-34 Oracle Containers for J2EE Security Guide

When you try to access the Oracle
Access Manager SSO application,
the login page keeps coming back.

Confirm that the form-based authentication scheme is
enabled, that the form variable names (for user and
password) in your login page are the same as you
configured in the Oracle Access Manager form-based
authentication scheme, and that the credential mapping
scheme and password validation scheme are configured
for the form-based authentication scheme. Refer to
"Configure Oracle Access Manager Form-Based
Authentication" on page 11-8.

You have configured the
application to use Oracle Access
Manager, but you always get an
"unauthorized" or
"unauthenticated" error.

Confirm that the Oracle Access Manager login module is
correctly configured for this application in
system-jazn-data.xml. Refer to "Configure the
Oracle Access Manager Login Module" on page 11-18.

You have configured the
application to use Oracle Access
Manager, but you get an internal
server error.

Confirm that the LDAP server (Oracle Internet Directory,
for example) that is configured with the Oracle Access
Manager Identity Server is running and accessible.

You have configured the
application to use Oracle Access
Manager SSO, but when you
attempt to access it, after you enter
the user name and password, the
application hangs.

Confirm that the action URL used in the form page is
protected with an authentication scheme without
password, such as the basic scheme. (Protecting the
action URL with a password-protected authentication
scheme results in an execution loop.) See "Create a Login
Form" on page 11-8.

See Also:

■ "Troubleshooting Login to Oracle Application Server SOA
Applications" on page 11-25

Table 11–2 (Cont.) Oracle Access Manager Troubleshooting

Problem Cause/Solution

User and Role API Framework 12-1

12
User and Role API Framework

OC4J 10.1.3.x implementations provide a new pluggable identity management API
framework for accessing user and role information from disparate identity
management repositories. To avoid confusion with the pluggable identity
management framework discussed in Chapter 13, which is independent, we will
simply refer to the APIs discussed here as the "user and role APIs".

These APIs include functionality to replace the deprecated UserManager, User, and
Group classes of the com.evermind.security package.

This chapter covers the following topics:

■ Overview of User and Role (Identity Management) API Framework

■ User and Role API Features to Replace UserManager, User, Group

■ User and Role API Framework and Providers

■ Summary of User and Role Interfaces and Classes

■ User and Role API Usage Models

■ Example: Basic User and Role API Framework

■ Example: OC4J Integration with User and Role API Framework

Overview of User and Role (Identity Management) API Framework
The user and role API framework allows applications to access identity information
(users and roles) in a uniform and portable manner regardless of the particular
underlying identity repository. The underlying repository could be an LDAP directory
server such as Oracle Internet Directory, Active Directory (from Microsoft), or Sun
Java System Directory Server (from Sun Microsystems), or could be a database, flat
file, or some other custom repository.

This API framework provides a convenient way to access repositories
programmatically in a portable way, freeing the application developer from the
potentially difficult task of accounting for the intricacies of particular identity sources.
The framework allows an application to work against different repositories seamlessly.
An application can switch between various identity repositories without any code
changes being required.

Supported operations include creating, updating, or deleting users and roles, or
searching users and roles for attributes or information of interest. For example, you
may want to search for the e-mail addresses of all users in a certain role. These APIs
are not for authentication or authorization functions.

User and Role API Features to Replace UserManager, User, Group

12-2 Oracle Containers for J2EE Security Guide

You can use a basic usage model (without OC4J integration) or a usage model with
OC4J integration that allows your code to be portable.

User and Role API Features to Replace UserManager, User, Group
The user and role APIs include features to replace functionality of the deprecated
com.evermind.security.UserManager, User, and Group classes, as follows:

■ User and role API features to create, modify, or retrieve users and roles in the
identity repository replace UserManager functionality to create and retrieve users
and roles.

■ User and role API features to retrieve or modify user roles (such as assigning a
user to a role) replace User functionality to retrieve or modify user roles.
(Authentication features of the User class are replaced by
DBTableOraDataSourceLoginModule, discussed in
"DBTableOraDataSourceLoginModule" on page 9-5.)

■ User and role API features to retrieve a role replace Group functionality to retrieve
a role. (Features of the Group class to grant permissions to a role are replaced by
functionality of the OracleAS JAAS Provider policy management APIs, discussed
in "OracleAS JAAS Provider APIs for Granting or Revoking Permissions" on
page 5-7.)

User and Role API Framework and Providers
The user and role APIs are based on a framework and provider model similar to JNDI.

The framework specifies a generic mechanism for accessing identity information, and
consists only of Java interfaces. It does not provide implementation details.

The "providers" (included with OC4J) each implement the framework interfaces, with
specific implementation classes for accessing information from particular
repositories—for example, to read identity information from Active Directory. Each
type of identity repository has a corresponding provider.

The application developer creates code based on the generic framework. Later, during
a configuration step, the application is plugged in to the appropriate provider for the
desired identity repository. Subsequently, the application can be updated to use a
different repository by simply reconfiguring it to use the corresponding provider. No
changes are required to the application code.

OC4J comes with providers for Oracle Internet Directory, Active Directory, Sun Java
System Directory Server (formerly iPlanet), Novell eDirectory, and OpenLDAP (an
open source LDAP directory). Figure 12–1 following depicts the framework with
respect to a few particular providers.

Summary of User and Role Interfaces and Classes

User and Role API Framework 12-3

Figure 12–1 User and Role API Framework Model

Summary of User and Role Interfaces and Classes
This section summarizes interfaces and classes of the user and role API package,
oracle.security.idm.

User and Role Interface Descriptions
This section summarizes interfaces in the oracle.security.idm package.

There are the following interfaces for identity repositories:

■ IdentityStore: An IdentityStore instance represents a handle to an identity
repository. Methods are specified for the following functions:

– Get a user manager or role manager.

– Search for users, roles, or their profiles.

– Get a search filter or the list of searchable attributes for the identity repository.

■ IdentityStoreFactory: An IdentityStoreFactory instance represents the
underlying identity repository, and includes a method to get an IdentityStore
instance, taking as input a hashtable consisting of properties specific to the
provider that are required in order to create the instance.

There are the following interfaces for user entries in the identity repository:

■ User: A User instance represents a user in the identity store. This is a subinterface
of Identity, and specifies a method to get a user profile. It is also a
superinterface of UserProfile.

■ UserProfile: A UserProfile instance represents detailed information about a
user and includes constants for commonly accessed properties such as name, title,
employee number, manager, postal address, e-mail address, phone number, fax
number, wireless number, and many more. This is a subinterface of User. It

See Also:

■ Oracle Containers for J2EE User and Role Java API Reference (Javadoc)

User and Role API Usage Models

12-4 Oracle Containers for J2EE Security Guide

specifies methods to get and set any of these common properties, as well as the
more general methods getProperty(), getProperties(), setProperty(),
and setProperties(). The setProperty() and setProperties() methods
take instances of the oracle.security.idm.ModProperty class (described
below).

■ UserManager: A UserManager instance is used to manage the user population
within the repository, including the execution of operations involving users. This
includes creating, authenticating, or dropping a user.

There are the following interfaces for roles in the identity repository:

■ Role: A Role instance represents a role in the identity store. This is a subinterface
of Identity, and specifies a method to get a role profile. It is also a
superinterface of RoleProfile.

■ RoleProfile: A RoleProfile instance represents detailed information about a
role. This is a subinterface of Role, and specifies methods to add, remove, or get
owners of the role; get all the grantees that are directly or indirectly granted the
role; and determine whether this is an application role or an enterprise role.

■ RoleManager: A RoleManager instance is used to manage the role population
within the repository, including the execution of operations involving roles. This
includes creating a role, dropping a role, granting a role to a specified principal, or
revoking a role from a specified principal.

User and Role Class Descriptions
This section summarizes a key class in the oracle.security.idm package.

■ IdentityStoreFactoryBuilder: Use an instance of this class to build an
identity store factory. It includes the overloaded getIdentityStoreFactory()
method to get an IdentityStoreFactory instance.

User and Role API Usage Models
This section supplies step-by-step instructions and samples for using the basic API
framework and OC4J integration features, covering the following topics:

■ Step by Step: Basic Usage Model

■ Step by Step: OC4J Integration Usage Model

■ Permission Requirements for the OC4J Integration Feature

■ User and Role Properties File

Step by Step: Basic Usage Model
This section describes steps to use the basic API framework. Steps 1 and 2 are
primarily related to configuration, determining the provider to be used and its
configuration. The code in these two steps would change for a different identity
repository and provider. The operations performed on the repository in step 3 are
generic in nature. Changing to a different repository would not affect this code.

User and Role API Usage Models

User and Role API Framework 12-5

1. Obtain an IdentityStoreFactory instance. This factory instance will represent
the identity repository and is created using a getIdentityStoreFactory()
call on an IdentityStoreFactoryBuilder instance. This call accepts the name
of the provider to be used for connecting to the particular identity repository. It
also accepts any configuration information required by the provider.

For example, assume the application must connect to Oracle Internet Directory.
The following is the provider name for Oracle Internet Directory:

oracle.security.idm.providers.oid.OIDIdentityStoreFactory

An LDAP provider, such as Oracle Internet Directory, will require configuration
information including the LDAP URL, security principal, and credentials. For
example:

IdentityStoreFactoryBuilder builder =
 new IdentityStoreFactoryBuilder();
IdentityStoreFactory oidFactory = null;

Hashtable factEnv = new Hashtable();

// creating the factory instance
// set the configuration information
factEnv.put(OIDIdentityStoreFactory.ST_SECURITY_PRINCIPAL, "cn=orcladmin");
factEnv.put(OIDIdentityStoreFactory.ST_SECURITY_CREDENTIALS, "welcome1");
factEnv.put(OIDIdentityStoreFactory.ST_LDAP_URL,
 "ldap://ilinabc10.us.oracle.com:3060/");
factEnv.put(OIDIdentityStoreFactory.ST_LOGGING,"false");
factEnv.put(OIDIdentityStoreFactory.ST_LOG_LEVEL,
 java.util.logging.Level.ALL);
oidFactory = builder.getIdentityStoreFactory(
 "oracle.security.idm.providers.oid.OIDIdentityStoreFactory", factEnv);

2. Obtain an IdentityStore instance to carry out operations on the repository.
This is obtained using a getIdentityStoreInstance() call on the
IdentityStoreFactory instance. This call can accept configuration
information required for creation of the identity store instance. For example, for
Oracle Internet Directory you must specify the subscriber or realm name upon
which the operations are to be performed, as shown in the following sample:

Hashtable storeEnv = new Hashtable();

// creating the store instance
storeEnv.put(OIDIdentityStoreFactory.ST_SUBSCRIBER_NAME,
 "dc=us,dc=oracle,dc=com");
oidStore = oidFactory.getIdentityStoreInstance(storeEnv);

3. Using the IdentityStore instance, perform any operations of interest on the
identity repository, such as searching, updating, creating, or deleting entries. For
example, the following code will search for all users whose name begins with
"john":

// search filter for users whose name begins with "john"

See Also:

■ "Example: Basic User and Role API Framework" on page 12-8 for
the complete sample code

■ "Step by Step: OC4J Integration Usage Model" on page 12-6 for
features that allow you to make your code portable

User and Role API Usage Models

12-6 Oracle Containers for J2EE Security Guide

SimpleSearchFilter sf = oidStore.getSimpleSearchFilter(
 UserProfile.NAME, SimpleSearchFilter.TYPE_EQUAL, null);

// Add the wildcard character
sf.setValue("john"+sf.getWildCardChar());

// generate the search parameter instance and set the search filter
SearchParameters params = new SearchParameters();
params.setFilter(sf);

// Searching for users
// search on the IdentityStore instance

SearchResponse resp = oidStore.searchUsers(params);
System.out.println("Searched users are:");

// Iterate on the search results
while (resp.hasNext()
{
 User usr = (User) resp.next();
 System.out.println("Name: "+usr.getName());
}

Step by Step: OC4J Integration Usage Model
As explained in the preceding section, "Step by Step: Basic Usage Model", the
configuration-related code is tied to the identity repository and its associated provider,
and thus is subject to change whenever the application changes to use a different
identity repository.

To make your code portable, you can use the OC4J integration feature of the API
framework. This feature uses security provider information present in the OC4J login
module of the application, so that the application itself need not specify any
configuration for the repository and provider. The application code becomes generic,
and the application can change to a different identity source simply by changing the
security provider information in the login module configuration.

Use the OC4J integration feature as follows:

1. The user and role framework requires a path to a user/role properties file
(typically called userrole.properties by convention), specified as a Java
system property, as follows:

System.setProperty("oracle.userrole.properties",
 "/home/jdoe/userrole.properties");

Important: The OC4J integration feature is a security-sensitive
operation and requires the application to have necessary permissions.
See the next section, "Permission Requirements for the OC4J
Integration Feature", for java2.policy requirements.

See Also:

■ "Example: OC4J Integration with User and Role API Framework"
on page 12-9 for the complete sample code

User and Role API Usage Models

User and Role API Framework 12-7

The properties file contains settings required by the framework to access OC4J
login module information. The properties file format is shown in "User and Role
Properties File" on page 12-8.

2. Creating the IdentityStoreFactory instance is a privileged operation and
must be carried out within an AccessController.doPrivileged() block, as
follows:

IdentityStoreFactory factory = null;

try
{
 factory = (IdentityStoreFactory) AccessController.doPrivileged(
 new PrivilegedExceptionAction()
 {
 public Object run() throws IMException
 {
 IdentityStoreFactoryBuilder builder =
 new IdentityStoreFactoryBuilder();
 return builder.getIdentityStoreFactory();
 }
 });

}catch (PrivilegedActionException e)
{
 e.getException().printStackTrace(out);
}
catch (Exception e)
{
 e.printStackTrace(out);
}

3. Obtaining the IdentityStore instance is convenient:

IdentityStore store = factory.getIdentityStoreInstance();

4. Perform operations on the identity store as shown in the previous section,"Step by
Step: Basic Usage Model".

Permission Requirements for the OC4J Integration Feature
Because the OC4J integration feature is a security-sensitive operation, the application
code must have certain permissions. In particular, the
getIdentityStoreFactory() method of the IdentityStoreFactoryBuilder
class makes API calls that require certain permissions.

In the OC4J java2.policy file, grant the following permissions to the application
codebase:

grant codebase "file:${oracle.home}/application_code_base"
{
 permission oracle.security.jazn.JAZNPermission "*";
};

Be aware that in order to use Java 2 policies, you must specifically enable a security
manager, as discussed in "Specifying a Java 2 Security Manager and Policy File" on
page 5-1.

Example: Basic User and Role API Framework

12-8 Oracle Containers for J2EE Security Guide

User and Role Properties File
To use the OC4J integration feature, the API framework must know the path to the
user/role properties file, expressed as a Java system property. The properties file
contains the properties required by the framework to access required OC4J login
module information. The file can have any name you choose, but must have the
following file format:

This line should not be changed.
configurationsourceclass=oracle.security.idm.util.OC4JConfigurationSource

This property specifies the JMX Mbean URL for the OC4J container in which the
application is deployed.
For OPMN-managed OC4J, uncomment the URL that follows; comment out all others.
format: service:jmx:rmi:///opmn://opmnhost[:opmnport]/oc4jInstance

jmxserviceurl=service:jmx:rmi:///opmn://localhost:6008/home

For standalone OC4J, uncomment the URL that follows; comment out all others.
format: service:jmx:rmi:///opmn://oc4jhost:rmiport/oc4jContextRoot
#jmxserviceurl=service:jmx:rmi://localhost:23791/oc4j/

Example: Basic User and Role API Framework
This section supplies the complete example corresponding to the steps discussed in
"Step by Step: Basic Usage Model" on page 12-4.

import oracle.security.idm.*;
import oracle.security.idm.providers.oid.*;
import java.util.*;
import java.io.*;

public class BasicSampleOID
{
 public static void main(String args[])
 {
 IdentityStoreFactoryBuilder builder = new IdentityStoreFactoryBuilder();
 IdentityStoreFactory oidFactory = null;
 IdentityStore oidStore = null;

 try
 {

 Hashtable factEnv = new Hashtable();
 Hashtable storeEnv = new Hashtable();

 // creating the factory instance
 factEnv.put(OIDIdentityStoreFactory.ST_SECURITY_PRINCIPAL,
 "cn=user,....");
 factEnv.put(OIDIdentityStoreFactory.ST_SECURITY_CREDENTIALS,
 "password");
 factEnv.put(OIDIdentityStoreFactory.ST_LDAP_URL,
 "ldap://johnmc.us.oracle.com:3060/");
 factEnv.put(OIDIdentityStoreFactory.ST_LOGGING,"false");
 factEnv.put(OIDIdentityStoreFactory.ST_LOG_LEVEL,

See Also:

■ Oracle Containers for J2EE Developer’s Guide for information about
setting the JMX Service URI for an OPMN-managed or standalone
OC4J instance

Example: OC4J Integration with User and Role API Framework

User and Role API Framework 12-9

 java.util.logging.Level.ALL);

 oidFactory = builder.getIdentityStoreFactory(
 "oracle.security.idm.providers.oid.OIDIdentityStoreFactory",
 factEnv);

 // creating the store instance
 storeEnv.put(OIDIdentityStoreFactory.ST_SUBSCRIBER_NAME,
 "dc=us,dc=oracle,dc=com");
 oidStore = oidFactory.getIdentityStoreInstance(storeEnv);

 // search filter (cn=a*)
 SimpleSearchFilter sf = oidStore.getSimpleSearchFilter(
 UserProfile.NAME, SimpleSearchFilter.TYPE_EQUAL, null);
 sf.setValue("john"+sf.getWildCardChar());

 SearchParameters params = new SearchParameters();
 params.setFilter(sf);

 // Searching for users
 SearchResponse resp = oidStore.searchUsers(params);
 System.out.println("Searched users are:");
 while (resp.hasNext())
 {
 User usr = (User) resp.next();
 System.out.println("Name: "+usr.getName());
 }

 }catch (IMException e)
 {
 e.printStackTrace();
 }
 }
}

Example: OC4J Integration with User and Role API Framework
This section supplies the complete example corresponding to the steps discussed in
"Step by Step: OC4J Integration Usage Model" on page 12-6.

import java.io.*;
import java.util.*;
import java.security.AccessController;
import java.security.PrivilegedExceptionAction;
import java.security.PrivilegedActionException;

// Packages for Servlets
import javax.servlet.*;
import javax.servlet.http.*;
import oracle.security.idm.*;

public class UserSearch extends HttpServlet
{
 private String USERROLEPROPFILE = "UserRolePropFile";
 IdentityStore store = null;

 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 }

Example: OC4J Integration with User and Role API Framework

12-10 Oracle Containers for J2EE Security Guide

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 String name = "";
 String searchType = "usersearch";
 try
 {
 name = request.getParameter("name");
 searchType = request.getParameter("searchtype");
 } catch (Exception e)
 {
 e.printStackTrace();
 }

 String filter = (name != null)? name: "";

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head><title>UserSearch</title></head>");
 out.println("<body>");
 out.println(
 "<label for=\"fld\">User name begining with</label>");
 out.println(
 "<form action=\"usersearch\">"+
 "<P><select name=\"searchtype\" size=\"1\">"+
 "<option value=\"usersearch\">Search Users</option>"+
 "<option value=\"rolesearch\">Search Roles</option>"+
 "<option value=\"membershipsearch\">Search Membership details"+
 "<option value=\"membersearch\">Searchs Members of role"+
 "</option></select></P>"+
 "<input name=\"name\" id=\"fld\" value=\""
 + filter +
 "\"type=\"text\"/><input type=\"SUBMIT\" value=\"Search\"/></form>");
 out.println("

");

 // Create the IdentityStore instance required for searching
 configureAPI(out);

 // Carries out the actual search using IdentityStore instance obtained
 // above
 doSearch(out, searchType, name);

 out.println("</body></html>");
 out.close();
 }

 public void configureAPI(PrintWriter out)
 {
 IdentityStoreFactoryBuilder builder = new IdentityStoreFactoryBuilder();

 // Set the following system property to specify the location of
 // "userrole.properties" file. This file is used by user-role apis for
 // reading the configuration from OC4J

 // Get the file location from the servlet init parameters
 System.setProperty("oracle.userrole.properties",
 getServletConfig().getInitParameter(USERROLEPROPFILE));

 IdentityStoreFactory factory = null;

Example: OC4J Integration with User and Role API Framework

User and Role API Framework 12-11

 try
 {
 factory = (IdentityStoreFactory) AccessController.doPrivileged(
 new PrivilegedExceptionAction()
 {
 public Object run() throws IMException
 {
 IdentityStoreFactoryBuilder builder =
 new IdentityStoreFactoryBuilder();
 return builder.getIdentityStoreFactory();
 }
 });
 store = factory.getIdentityStoreInstance();
 }catch (PrivilegedActionException e)
 {
 e.getException().printStackTrace(out);
 }
 catch (Exception e)
 {
 e.printStackTrace(out);
 }
 }

 public void doSearch(PrintWriter out, String searchType, String name)
 {
 System.out.println("Inside doSearch");

 if (name == null) return;
 if (searchType.equals("usersearch"))
 searchUsers(out, name);
 else if (searchType.equals("rolesearch"))
 searchRoles(out, name);
 else if (searchType.equals("membershipsearch"))
 searchMembership(out, name);
 else if (searchType.equals("membersearch"))
 searchMembers(out, name);
 }

 public void searchMembers(PrintWriter out, String name)
 {
 System.out.println("Inside searchMembers");
 if (name == null) return;
 out.println("Results:
");

 try {
 Role rle = store.searchRole(IdentityStore.SEARCH_BY_NAME, name);
 out.println("Members of role \""+rle.getName()+
 "\" are:
");
 SearchResponse resp =
 rle.getRoleProfile().getGrantees(null, false);
 while (resp.hasNext()) {
 Identity idy = resp.next();
 out.println("Unique name: " + idy.getUniqueName() + "
");
 }

 } catch (IMException e) {
 e.printStackTrace(out);
 }
 }

Example: OC4J Integration with User and Role API Framework

12-12 Oracle Containers for J2EE Security Guide

 public void searchMembership(PrintWriter out, String name)
 {
 System.out.println("Inside searchMembership");
 if (name == null) return;
 out.println("Results:
");

 try {
 User usr = store.searchUser(name);
 out.println("Membership details for user \""+usr.getName()+
 "\" are:
");
 SearchResponse resp =
 store.getRoleManager().getGrantedRoles(usr.getPrincipal(), false);
 while (resp.hasNext()) {
 Identity idy = resp.next();
 out.println("Unique name: " + idy.getUniqueName() + "
");
 }

 } catch (IMException e) {
 e.printStackTrace(out);
 }
 }

 public void searchRoles(PrintWriter out, String name)
 {
 System.out.println("Inside searchRoles");
 if (name == null) return;
 out.println("Results:
");

 try {
 SimpleSearchFilter sf = store.getSimpleSearchFilter(
 RoleProfile.NAME, SimpleSearchFilter.TYPE_EQUAL, null);
 sf.setValue(name + sf.getWildCardChar());

 SearchParameters params = new SearchParameters();
 params.setFilter(sf);

 // Searching for users
 SearchResponse resp = store.searchRoles(0, params);
 out.println("Searched roles are:
");
 while (resp.hasNext()) {
 Identity idy = resp.next();
 out.println("Unique name: " + idy.getUniqueName() + "
");
 }

 } catch (IMException e) {
 e.printStackTrace(out);
 }
 }

 public void searchUsers(PrintWriter out, String name)
 {
 System.out.println("Inside searchUsers");
 if (name == null) return;
 out.println("Results:
");

 try {
 SimpleSearchFilter sf = store.getSimpleSearchFilter(
 UserProfile.NAME, SimpleSearchFilter.TYPE_EQUAL, null);
 sf.setValue(name + sf.getWildCardChar());

Example: OC4J Integration with User and Role API Framework

User and Role API Framework 12-13

 SearchParameters params = new SearchParameters();
 params.setFilter(sf);

 // Searching for users
 SearchResponse resp = store.searchUsers(params);
 out.println("Searched users are:
");
 while (resp.hasNext()) {
 Identity idy = resp.next();
 out.println("Unique name: " + idy.getUniqueName() + "
");
 }

 } catch (IMException e) {
 e.printStackTrace(out);
 }
 }
}

Example: OC4J Integration with User and Role API Framework

12-14 Oracle Containers for J2EE Security Guide

Pluggable Identity Management Framework 13-1

13
Pluggable Identity Management Framework

In addition to support for specific security providers documented earlier in this
manual, OC4J includes a framework to more generally support heterogeneous
third-party identity management systems for use by Web-based applications.

This chapter documents this identity management framework, covering the following
topics:

■ Overview of OracleAS JAAS Provider Identity Management Framework

■ Identity Management Framework Programmatic Interfaces

■ Identity Management Framework Configuration

■ Summary of How to Use the Identity Management Framework

■ Sample Use Case: Using a Header-Based Identity Token

Overview of OracleAS JAAS Provider Identity Management Framework
This section introduces the OC4J identity management framework, for use by
Web-based applications, with the following discussion:

■ Need for a Pluggable Identity Management Framework

■ How the Identity Management Framework Works

■ Overview of Identity Management Framework Programmatic Implementation

■ Overview of Identity Management Framework Configuration

■ Use of the Identity Management Framework by OC4J Java Single Sign-On

Notes:

■ Note that by convention, the <jazn> setting provider="XML" is
used with the pluggable identity management framework.

■ If you use any identity repository other than the file-based
provider or Oracle Internet Directory, you must define an
administrative user account and administrator roles, grant the
roles to the user, and grant necessary permissions to the roles, as
discussed in "Creating the Administrative User and Roles and
Granting RMI Permission" on page 10-9.

Overview of OracleAS JAAS Provider Identity Management Framework

13-2 Oracle Containers for J2EE Security Guide

Need for a Pluggable Identity Management Framework
As discussed earlier in this document, Oracle Application Server provides security
infrastructure such as Oracle Identity Management and Oracle Access Manager, which
both include identity repositories. There is also support, as noted previously, for
certain external LDAP providers (Active Directory and Sun Java System Directory
Server).

However, in earlier releases there was no general framework to support other
third-party identity management and security systems. The OC4J 10.1.3.1
implementation adds such a framework, allowing integration of heterogeneous
third-party systems into OC4J, and hence allowing any J2EE application to
interoperate with these third-party systems.

How the Identity Management Framework Works
This section introduces the components of the identity management framework, and
summarizes how they work together. (Integration of third-party identity management
systems into OC4J is based on standard JAAS login modules.)

In the general model of the identity management framework, the components work
together as follows (as shown in Figure 13–1 below):

1. A token collector takes appropriate action to collect user credentials from the HTTP
request. The token collector interface enables you to plug in a mechanism to collect
the credentials. For form-based authentication, for example, a token collector
would redirect to the login page for input of the user name and password. A token
collector can be used to collect various types of credentials—including user name
and password, or HTTP cookie—using basic, form-based, or custom
authentication methods. An X.509 or SAML token can also be used, as long as it is
received as part of the HTTP request object.

2. The token collector creates an appropriate identity token (depending on a specified
token type) that corresponds to the user credentials, and passes it to OC4J. In the
identity management framework, the type of token is typically an HTTP cookie or
HTTP header that contains the user identity. If you do not want to use a cookie or
header, then the HTTP request object itself can be used, and you are responsible
for an implementation that would know how to parse a request object to retrieve
the identity. (For example, the identity could be obtained by parsing and
interpreting query parameters.)

3. A token asserter receives the identity token from OC4J and validates the identity,
either by authenticating it against the third-party identity management system, or
by validating the token in some other way. The token asserter interface enables
you to plug in an assertion mechanism for the identity token. (For example: With
OC4J Java SSO, which uses the identity management framework, the identity
token is encoded into a cookie, and a symmetric key is used to validate the
information in the cookie.)

With respect to the identity management framework, assertion refers to the ability
to interpret the identity token, validate its contents, and establish the identity
corresponding to the token. This does not necessarily require a password or other
credentials, as the token typically comes from a trusted source or is submitted with
a key.

Note that a token asserter can accept an identity authenticated by any single
sign-on system, allowing the single sign-on system to collect credentials from a
custom security provider and pass the identity to OC4J. The token asserter then
verifies the identity and establishes the identity within the OC4J container.

Overview of OracleAS JAAS Provider Identity Management Framework

Pluggable Identity Management Framework 13-3

4. Once the identity has been validated, the token asserter returns user information
to OC4J through an identity callback handler, which it constructs. At this point, the
identity passed in the callback handler is a trusted identity. The callback handler
may be constructed simply by passing in an identity string, or an identity string
and request object, for example.

5. OC4J passes the identity callback handler with user information to the login
module configured for the application. The login module constructs appropriate
callback types to handle user information, and passes them to the identity callback
handler through the callback handler handle(Callback[]) method (standard
login module functionality). The login module collects principals for the user, such
as for roles the user belongs to, by retrieving information from the third-party
identity management system as necessary. The login module then sends a
populated subject to OC4J.

Note that because the identity has already been validated by the token asserter,
there is no need for the login module to perform authentication again. Also note
that a custom login module for the identity management framework must be able
to handle an identity callback handler.

Alternative: Instead of implementing and configuring a login module for the
application, you can provide a token asserter that creates the subject and
implements the getSubject() method to return the subject (populated with
user roles) directly to OC4J, without a login module. If you choose this option,
there is an identity management framework property
(idm.subject.loginmodule.disabled) that you must set accordingly.

6. A subject asserter can optionally validate the subject propagated by the login
module. For example, you may want to sign and verify subject principals to
protect the authenticity of the principals.

Oracle supplies Java interfaces for these components, which you can implement as
appropriate to integrate a third-party identity management system with OC4J.

An administrator must configure OC4J to reference the implementation classes to use,
and configure the login module.

Figure 13–1 Identity Management Framework Data Flow

Overview of OracleAS JAAS Provider Identity Management Framework

13-4 Oracle Containers for J2EE Security Guide

Overview of Identity Management Framework Programmatic Implementation
Use the following programmatic steps to use a third-party identity management
system through the Oracle framework:

1. Provide a token collector class that implements the token collector interface. One
option is to extend the Oracle implementation.

2. Choose the appropriate identity token class that Oracle supplies, for an HTTP
cookie identity token, HTTP header identity token, or HTTP request identity
token.

3. Provide a token asserter class that implements the token asserter interface.

4. Provide an identity callback handler class that implements the identity callback
handler interface, or use the Oracle implementation.

5. Implement a login module (unless you choose the alternative of having your token
asserter populate the subject and implement the getSubject() method). A login
module must be able to appropriately process an identity callback handler
instance.

6. Optionally provide a subject asserter class that implements the subject asserter
interface.

Overview of Identity Management Framework Configuration
The Oracle identity management framework requires the following configuration,
discussed in detail later in this chapter:

1. An administrator configures jazn.xml to set identity management properties,
such as to indicate the token collector implementation class, token asserter
implementation class, and token type (such as HTTP header or cookie). Each
property is set in a <property> subelement of the <jazn> element.

Note: The token asserter and login module may access different
backend identity systems. For example, the token asserter may access
an identity management system in order to validate the identity, while
the login module may access a separate identity store, such as a
database, containing additional application-specific information about
the user, such as user groups or roles. This additional information can
be included in the subject that is populated for the user. (An identity
store is a repository, such as a directory or database, that contains user
information.)

See Also:

■ "JAAS Authentication: Login Modules" on page 2-13

■ "Identity Management Framework Programmatic Interfaces" on
page 13-5

■ "Identity Management Framework Configuration" on page 13-13

See Also:

■ "Identity Management Framework Programmatic Interfaces" on
page 13-5

Identity Management Framework Programmatic Interfaces

Pluggable Identity Management Framework 13-5

2. An administrator configures the appropriate login module (or optionally uses the
default login module, RealmLoginModule). Configuration is stored under the
<jazn-loginconfig> element in system-jazn-data.xml.

3. For any application to use the framework, the application assembler specifies the
authentication method CUSTOM_AUTH in the orion-application.xml file
packaged with the application.

Use of the Identity Management Framework by OC4J Java Single Sign-On
The OC4J 10.1.3.1 implementation packages an alternative Java single sign-on
implementation, Java SSO, that uses the identity management framework. Java SSO,
discussed fully in Chapter 14, "OC4J Java Single Sign-On", is an SSO implementation
that decouples OC4J from whatever identity system you want to use. It does not have
particular infrastructure requirements such as Oracle Identity Management (required
for Oracle Single Sign-On) or Oracle Access Manager (required for Oracle Access
Manager SSO).

Java SSO includes a token collector implementation to collect cookie credentials and
return an identity token to OC4J, and a token asserter implementation to verify the
identity in the token and pass the identity back to OC4J in a callback handler.

Identity Management Framework Programmatic Interfaces
This section discusses interfaces, APIs, and Oracle implementations to integrate a
third-party identity management system with OC4J.

Methods discussed here are typically called by the identity management framework in
OC4J.

■ Identity Token Interface and Oracle Implementations

■ Token Collector Interface and Oracle Implementation

■ Token Asserter Interface

■ Identity Callback Handler Interface

■ Subject Asserter Interface

■ Packaging Your Identity Management Framework Implementation Classes

See Also:

■ "Identity Management Framework Configuration" on page 13-13

Notes:

■ The identity management framework is driven by your
configuration of the implementation classes you choose to use or
provide.

■ For any class implementations you supply yourself, we
recommend that you package them in a single JAR file that you
deploy as an OC4J shared library. (Refer to "Tasks to Share a
Library" on page 6-14.)

Identity Management Framework Programmatic Interfaces

13-6 Oracle Containers for J2EE Security Guide

Identity Token Interface and Oracle Implementations
Oracle defines the following identity token interface:

oracle.security.jazn.token.IdentityToken

An identity token object contains user credentials. It is returned by the token collector
and passed to the token asserter.

The IdentityToken interface specifies the following methods:

■ void setTokenType(String tokenType)

This method specifies the token type: HTTP_COOKIE, HTTP_HEADER, or
HTTP_REQUEST.

■ String getTokenType()

This method returns the token type.

OC4J supplies the following IdentityToken implementations:

■ oracle.security.jazn.token.HttpCookieIdentityToken

Instances of this class can be constructed by the token collector by providing a Map
instance that contains the name of the cookie as a key to the cookie value:

HttpCookieIdentityToken(java.util.Map Cookies)

It includes the following method to retrieve identity information:

Map getCookies()

■ oracle.security.jazn.token.HttpHeaderIdentityToken

Instances of this class can be constructed by the token collector by providing a Map
instance that contains the name of the header as a key to the header value:

HttpHeaderIdentityToken(java.util.Map headerValues)

It includes the following method to retrieve identity information:

Map getHeaderValues()

■ oracle.security.jazn.token.HttpRequestIdentityToken

This class has the following constructor:

HttpRequestIdentityToken(HttpServletRequest request)

It includes the following method to retrieve identity information:

HttpServletRequest getRequest()

Token Collector Interface and Oracle Implementation
Oracle supplies the following token collector interface:

oracle.security.jazn.collector.TokenCollector

Use an implementation of this interface to receive HTTP-based authentication
credentials and create an identity token. The implementation class should include the
following functionality:

See Also:

■ Oracle Containers for J2EE Security Java API Reference for Javadoc
that includes the identity management framework APIs

Identity Management Framework Programmatic Interfaces

Pluggable Identity Management Framework 13-7

1. Collect the credentials from the user request.

2. Create an identity token for the user.

3. Pass the token to OC4J.

A token collector takes the following input:

■ Desired token type (so it knows what type to create)

■ HTTP request object

■ List of cookie or header names (as applicable, if the token type is cookie or header)

■ Any user-defined properties, as applicable

If the token supplied by the user is not valid, the token is missing, or the user cannot
be properly asserted (among other possible scenarios), then OC4J calls the token
collector fail() method and passes it the reason for failure. The token collector can
then take action as appropriate. The fail() method must be implemented to perform
appropriate failure actions, such as redirecting the user back to a login page, for
example.

The TokenCollector interface specifies the following methods:

■ IdentityToken getToken(String tokenType,
 HttpServletRequest request,
 List names,
 Properties props)

This method returns an identity token as an Oracle IdentityToken instance
(discussed in the preceding section, "Identity Token Interface and Oracle
Implementations"). It takes as input the token type (HTTP_COOKIE,
HTTP_HEADER, or HTTP_REQUEST); the current request object; a list of names of
cookies or headers, from the HTTP request, that will constitute the token; and any
custom properties that may be configured.

The list of names is not applicable when using HTTP_REQUEST, so would be null
in that case. When using HTTP_COOKIE or HTTP_HEADER, the list corresponds to
cookie names or header names configured through the properties
idm.token.collector.cookie.# or idm.token.collector.header.#,
respectively. The # is replaced by numbers (1, 2, ..., n), as discussed in
"Configuring Identity Management Framework Properties" on page 13-13.

The list of properties would be specific to the particular token collector
implementation and would be used by the token collector as applicable. By
convention, any such property names must start with "custom." (including the
period). For example, Java SSO properties include custom.sso.url.login and
custom.sso.key.alias.

■ void fail(HttpServletRequest request,
 HttpServletResponse response,
 int reason) throws CollectorException

This method would be called in a variety of failure modes, including:

– The required token is not found in the HTTP request object during execution
of the getToken() method.

– The identity is not asserted successfully (such as if the supplied token is not
valid).

– The identity is successfully established but the user attempts to access
resources without proper permission (authorization failure).

Identity Management Framework Programmatic Interfaces

13-8 Oracle Containers for J2EE Security Guide

The integer reason is a code specified by OC4J that indicates why the failure
occurred, and is one of the following values (defined in the class
oracle.security.jazn.collector.IdmErrorConstants):

– REASON_CHALLENGE_USER: The user is not authenticated, but can be
prompted for authentication (401 error in the browser). This is typically for
basic authentication, where the browser will bring up the authentication
window again. The value of this constant is 1.

– REASON_INVALID_USER: The user is not authenticated, for example due to
invalid credentials (401 error). The value of this constant is 1.

– REASON_UNAUTHORIZED: The user is authenticated, but not authorized to
access the protected resource (403 error). The value of this constant is 2.

– REASON_PRECLUDED_ACCESS: The resource is protected by a security
constraint that contains no roles (403 error). The value of this constant is 3.

Oracle supplies the following TokenCollector implementation:

oracle.security.jazn.collector.oc4j.TokenCollectorImpl

This implementation is an abstract class that supports the use of an HTTP cookie or
HTTP header for the identity token. If either of these is what you want to use, then you
can extend TokenCollectorImpl and add appropriate error handling in the
fail() method (such as redirecting the user to the login page, for example).

The getToken() method of TokenCollectorImpl returns the appropriate token
type according to your configuration—either HttpCookieIdentityToken or
HttpHeaderIdentityToken.

To use the HTTP request object itself instead of a cookie or header, you must
implement a custom token collector.

A token collector uses the constructor of the appropriate identity token class to create
the token. The HttpCookieIdentityToken, HttpHeaderIdentityToken, and
HttpRequestIdentityToken constructors are documented in "Identity Token
Interface and Oracle Implementations" on page 13-6.

Token Asserter Interface
Oracle supplies the following token asserter interface:

oracle.security.jazn.asserter.TokenAsserter

Implement this interface to accept an identity token passed by OC4J and return an
identity callback handler to OC4J.

Once OC4J successfully receives an identity token from the token collector, it passes
the token to the token asserter, which must validate the identity for that token.

If the identity is validated successfully, then the user is considered authenticated and
the identity is returned to OC4J as an identity callback handler.

A token asserter can also optionally get all the roles or groups for the identity and
populate a subject for it, or this can be left to a login module.

The TokenAsserter interface specifies the following method:

Important: You must provide your own implementation of the
fail() method, which is an abstract method in
TokenCollectorImpl.

Identity Management Framework Programmatic Interfaces

Pluggable Identity Management Framework 13-9

■ IdentityCallbackHandler assertIdentity(String tokenType,
 IdentityToken token,
 Properties props)
 throws AsserterException

Upon successful validation, this method returns the asserted identity in an
instance of IdentityCallbackHandler (discussed in the next section, "Identity
Callback Handler Interface"). The token type is HTTP_COOKIE, HTTP_HEADER, or
HTTP_REQUEST. The token is an instance of IdentityToken (discussed earlier).
The properties would be the same as described for the getToken() method in
"Token Collector Interface and Oracle Implementation" on page 13-6.

If you extend TokenCollectorImpl for the token collector, your token asserter must
use the applicable identity token method to get identity information from the token.
These methods in HttpCookieIdentityToken, HttpHeaderIdentityToken, and
HttpRequestIdentityToken were noted earlier.

Identity Callback Handler Interface
Use an identity callback handler in conjunction with a token asserter. Oracle supplies
the following identity callback handler interface:

oracle.security.jazn.callback.IdentityCallbackHandler

An identity callback handler is constructed by the token asserter and used to pass the
asserted identity to OC4J. This is the user identity that will also be passed, typically to
a login module, so that a subject corresponding to the identity can be populated with
principals as appropriate.

The IdentityCallbackHandler interface specifies the following methods:

■ void setIdentity(String identity) throws AsserterException

This method takes a string to specify the user identity.

■ String getIdentity()

This method returns a string with the user identity.

■ Subject getSubject()

If a subject was populated by the token asserter, then the identity management
framework uses this method to retrieve it. Otherwise (if it is the login module that
populates the subject), this method returns null.

Note: You can avoid using a login module by implementing a token
asserter that accesses the identity management system, populates the
subject, and implements a getSubject() method. If you choose this
alternative, the identity management property
idm.subject.loginmodule.disabled must be set accordingly.

See Also:

■ "Identity Token Interface and Oracle Implementations" on
page 13-6 for information about the IdentityToken interface,
HttpCookieIdentityToken implementation,
HttpHeaderIdentityToken implementation,
HttpRequestIdentityToken implementation, and related
methods and constructors

Identity Management Framework Programmatic Interfaces

13-10 Oracle Containers for J2EE Security Guide

There is also the following standard callback handler method:

■ void handle(Callback[] callbacks)

This method takes an array of one or more
javax.security.auth.callback.Callback instances in order to handle
(such as retrieve or display) information in the provided callbacks.

Oracle supplies the following identity callback handler implementation:

oracle.security.jazn.callback.IdentityCallbackHandlerImpl

Oracle Callback Implementations
Oracle provides the following callback implementations in package
oracle.security.jazn.callback, for use with the identity management
framework:

■ IdentityCallback

■ HttpRequestCallback

Identity Callback
Oracle supplies an identity callback class for use with the identity management
framework:

oracle.security.jazn.callback.IdentityCallback

You can use an IdentityCallback instance to obtain the identity itself, as well as
the authentication state of the identity (whether it has been authenticated) and the
authentication method used to authenticate it.

The constructor takes no parameters:

IdentityCallback()

You can then use the identity callback handler handle() method to set an identity
callback into the callback handler.

// In token asserter:
IdentityCallbackHandler ich = new IdentityCallbackHandlerImpl("identity");
...

// In login module:
IdentityCallback icb = new IdentityCallback();
Callback[] callback = {icb};
ich.handle(callback);

The IdentityCallback class has the following methods:

■ String getIdentity()

Retrieves the identity from the identity callback, as a string.

■ boolean isIdentityAsserted()

Returns true if the identity has been asserted, or false if it has not.

■ String getAuthenticationType()

Indicates the authentication method (such as form-based or basic) used to
authenticate the identity.

Identity Management Framework Programmatic Interfaces

Pluggable Identity Management Framework 13-11

HTTP Request Callback
Oracle provides an HTTP request callback class for identity management framework
implementations that do not use HTTP cookies or HTTP headers as the token type:

oracle.security.jazn.callback.HttpRequestCallback

Using an HTTP request callback instance, the login module can obtain the credentials
from the request object, authenticate the user, and populate a subject for the user.

The constructor takes no parameters:

HttpRequestCallback()

You can then use the identity callback handler handle() method to set an HTTP
request callback into the callback handler.

// In token asserter:
IdentityCallbackHandler ich = new IdentityCallbackHandlerImpl("identity");
...

// In login module:
HttpRequestCallback httpreqcb = new HttpRequestCallback();
Callback[] callback = {httpreqcb};
ich.handle(callback);

The HttpRequestCallback class has the following methods:

■ void setHttpRequest(HttpServletRequest request)

Use this method to set the HTTP request object, presumably containing the user
credentials.

■ HttpServletRequest getHttpRequest()

This method returns the HTTP request object.

Login Module Requirements
A typical implementation of the identity management framework includes a custom
login module. After an identity is successfully asserted by the token asserter, the token
asserter passes the identity to OC4J as an identity callback handler, which OC4J then
passes to the login module.

In typical JAAS usage, a login module executes two key functions: authenticating the
user, and populating a subject for the user. Within the identity management
framework, however, the login module need not handle authentication. Its key
function is to access the identity management system as necessary in order to get
information about roles for the user and to populate the subject.

A login module used with the identity management framework must be able to handle
an IdentityCallbackHandler instance that is used to pass the user name. The
login module must accomplish the following:

1. Receive an IdentityCallbackHandler instance from OC4J.

2. Construct appropriate callbacks for handling user information. If you use cookie
or header tokens, this can include the Oracle callback
oracle.security.jazn.callback.IdentityCallback as well as standard
callbacks such as javax.security.auth.callback.NameCallback and
PasswordCallback. If you use HTTP request tokens, you would use an Oracle
callback oracle.security.jazn.callback.HttpRequestCallback.

Identity Management Framework Programmatic Interfaces

13-12 Oracle Containers for J2EE Security Guide

3. Pass callbacks to the IdentityCallbackHandler instance through its
handle(Callback[]) method.

4. Get the identity through the appropriate callback.

5. Go to the identity system to find out the roles (or groups) for the identity.

6. Populate a subject to send to OC4J.

Subject Asserter Interface
You can optionally implement a subject asserter to validate the subject that was
populated and returned by the token asserter or login module. OC4J will invoke a
subject asserter if one is configured. In a typical use case, the subject has been signed,
the signature has been added to the subject as a principal, and the subject asserter
examines and validates the signature.

Oracle supplies the following subject asserter interface:

oracle.security.jazn.asserter.SubjectAsserter

The SubjectAsserter interface specifies the following method:

■ boolean assertSubject(Subject subject)
throws AsserterException

Use this method to validate the subject; it returns true if successful.

Packaging Your Identity Management Framework Implementation Classes
Implementation classes you create for the identity management framework are not
part of your application and are not packaged and deployed with your application.
Package them into a single JAR file, and add the JAR file to the OC4J class path. You
can do this as a shared library that can be imported by any application that needs to
use it, as documented in "Tasks to Share a Library" on page 6-14.

If you implement a login module as part of your identity management framework
implementation, you can include that in the same library or as a separate library.

Notes:

■ It is not required to use a custom login module with the identity
management framework. For the file-based provider or Oracle
Identity Management, RealmLoginModule will suffice. For
supported external LDAP providers (Active Directory and Sun
Java System Directory Server), LDAPLoginModule will suffice.

■ You can avoid using any login module if you instead implement a
token asserter that accesses the identity management system,
populates the subject itself, and implements the getSubject()
method. If you choose this alternative, the identity management
framework property idm.subject.loginmodule.disabled
must be set accordingly.

See Also:

■ "JAAS Authentication: Login Modules" on page 2-13

Identity Management Framework Configuration

Pluggable Identity Management Framework 13-13

Identity Management Framework Configuration
This section documents configuration for the identity management framework,
covering the following topics:

■ Configuring Identity Management Framework Properties

■ Configuring the Identity Management Framework Login Module

■ Configuring an Application to Use the Identity Management Framework

■ Considerations for Multiple OC4J Instances

An administrator configures the framework properties and login module, while an
application assembler sets the authentication method to configure the application to
use the framework.

Configuring Identity Management Framework Properties
An administrator configures jazn.xml to set properties for the identity management
framework, as appropriate for the class implementations being used. Table 13–1
describes the identity management framework properties.

Note: The shared library feature is the preferred way to make a JAR
file available to OC4J applications, but alternatively you can put the
JAR file into the following directory:

ORACLE_HOME/j2ee/home/lib/ext

(Note that this makes it globally available.)

Note: By default in any single-instance OC4J installation, Java SSO,
which is an implementation of the identity management framework,
is preconfigured as shown in "Default Java SSO Property Settings for
Single-Instance OC4J Installations" on page 14-14.

Table 13–1 Identity Management Framework Properties

Property Description

idm.authentication.name This can be anything that specifies or qualifies how the
identity management framework is being used. It is
merely for reference and is not used by the framework.
(For example, for OC4J Java SSO this is set to "JavaSSO"
by convention.)

idm.token.type Type of identity token to use: HTTP_COOKIE,
HTTP_HEADER, or HTTP_REQUEST.

idm.token.collector.class Fully qualified name of the class that implements the
token collector interface.

idm.token.asserter.class Fully qualified name of the class that implements the
token asserter interface.

idm.subject.asserter.class Fully qualified name of the class that implements the
subject asserter interface (if applicable).

idm.subject.loginmodule.disabled A boolean that specifies whether to invoke the login
module (false by default, so the login module is
enabled). If no login module is invoked, then the token
asserter must populate the subject.

Identity Management Framework Configuration

13-14 Oracle Containers for J2EE Security Guide

Set these properties in <property> subelements of the <jazn> element, as in the
following example:

<jazn provider="XML" location="./system-jazn-data.xml" default-realm="jazn.com">
 ...
 <!-- properties to configure the 3rd party IDM framework -->
 <property name="idm.authentication.name" value="JavaSSO" />
 <property name="idm.token.asserter.class"
 value="oracle.security.jazn.sso.SSOCookieTokenAsserter" />
 <property name="idm.token.collector.class"
 value="oracle.security.jazn.sso.SSOCookieTokenCollector" />
 <property name="idm.token.type" value="HTTP_COOKIE" />
 <property name="idm.token.collector.cookie.1" value="ORA_OC4J_SSO"/>
 ...
</jazn>

Configuring the Identity Management Framework Login Module
Assuming you will use a custom login module (as is typical), it must be configured.
You can configure a custom login module either during or after application
deployment through Application Server Control, as discussed in "Configuring the
Custom Security Provider in Application Server Control" on page 9-15. (The OracleAS
JAAS Provider Admintool also has options for login module configuration, as noted in
"Using Admintool to Configure Login Modules and Grant RMI Permission" on
page 9-19.)

The configuration is stored in the system-jazn-data.xml file. The following
example is for a custom login module CustomLM used with an application myapp:

<jazn-loginconfig>

idm.token.collector.cookie.# Name(s) of cookie(s) containing identity information.
You can specify one or more, replacing "#" with
numbers, such as idm.token.collector.cookie.1.
(It is typical to have just one.)

idm.token.collector.header.# Name(s) of HTTP header(s) containing identity
information. As with cookies, you can specify one or
more, replacing "#" with numbers. (It is typical to have
two, for the user name and password.)

Important:

■ By default, the identity management framework is configured to
use Java SSO (discussed in Chapter 14, "OC4J Java Single
Sign-On").

■ If you associate an OC4J instance with an Oracle Internet
Directory instance, the <jazn> element configuration in the
jazn.xml file of the OC4J home instance is rewritten and any
previous settings are lost.

■ For an installation of the OC4J 10.1.3.1 patch over an existing
10.1.3.0.0 installation (as opposed to a fresh 10.1.3.1 installation),
any default configurations are not in place—the properties are not
referenced in jazn.xml. In this case, you should manually add
the above configuration to jazn.xml.

Table 13–1 (Cont.) Identity Management Framework Properties

Property Description

Identity Management Framework Configuration

Pluggable Identity Management Framework 13-15

 <application>
 <name>myapp</name>
 <login-modules>
 <login-module>
 <class>mypackage.CustomLM</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>
</jazn-loginconfig>

Configuring an Application to Use the Identity Management Framework
For any application that will use the identity management framework, the application
assembler must specify the authentication method CUSTOM_AUTH in the
<jazn-web-app> element of the orion-application.xml file. Here is an
example:

<jazn provider="XML" ... >
 ...
 <jazn-web-app auth-method="CUSTOM_AUTH" />
 ...
</jazn>

This triggers usage of the identity management framework according to configuration
of the framework properties in jazn.xml, and of the login module in
system-jazn-data.xml (as applicable).

See Also:

■ Chapter 9, "Login Modules"

Important: If you switch from the file-based provider to Oracle
Identity Management at any time for any application through
Application Server Control, the <jazn> element in
orion-application.xml for the application is replaced with the
following. A CUSTOM_AUTH setting for the identity management
framework would be lost and would have to be redone.

<jazn provider="LDAP" />

Notes:

■ The <jazn-web-app> element is also supported in the
orion-web.xml file, as a subelement of <orion-web-app>, for
a particular Web application. A setting there overrides the
orion-application.xml setting for that Web application.

■ An authentication method setting in orion-application.xml
(or orion-web.xml) overrides any authentication method
setting in web.xml.

Summary of How to Use the Identity Management Framework

13-16 Oracle Containers for J2EE Security Guide

Considerations for Multiple OC4J Instances
For an installation type with multiple OC4J instances, any configuration for the
identity management framework must be duplicated across instances. This includes
identity management framework property settings in jazn.xml, and the login
module configuration (as applicable) in system-jazn-data.xml. Take the following
steps, as appropriate:

1. Repeat the same security provider configuration in each OC4J instance.

2. Use OC4J group functionality to coordinate system-jazn-data.xml updates.
This updates each system-jazn-data.xml file across a group of OC4J
instances. This would include user settings if you are using the file-based security
provider. "Cluster MBean Browser Features and the J2EEServerGroup MBean" on
page 7-18 discusses how to coordinate settings in each system-jazn-data.xml
file across OC4J instances. There are also operations for maintaining login module
configuration across instances (for example, setLoginModule).

3. As necessary, go to each OC4J instance and repeat configuration, through
Application Server Control or manually as applicable. Generally speaking, for
property settings in the jazn.xml file, such as for identity management
framework settings, the only option is to manually configure jazn.xml in each
OC4J instance.

Summary of How to Use the Identity Management Framework
This section summarizes previous discussion of the key duties involved in using the
identity management framework.

1. The integrator (the developer who is integrating some third-party identity
management system into OC4J) implements classes as appropriate for identity
management framework components: token collector, identity token, token
asserter, identity callback handler, and subject asserter.

2. The integrator develops a custom login module as desired.

3. The integrator packages the implementation classes into a JAR file, and packages
the login module into the same JAR file or a separate JAR file.

4. The integrator or administrator deploys each JAR file to the target system as a
shared library.

5. The application is enabled to use the identity management framework. This can be
accomplished by the assembler in setting auth-method="CUSTOM_AUTH" before
deployment, in the <jazn-web-app> element of the orion-application.xml
file packaged with the application.

6. The application deployer deploys the application, using Application Server
Control. This includes configuring any custom login module (or it can be
configured later by an administrator) and importing the shared library comprising
the implementation classes.

7. On the target system, the administrator configures identity management
framework properties in the jazn.xml file.

See Also:

■ For additional information about OC4J group features, the topic
"Group OC4J Instances Page" in the Application Server Control
online help

Sample Use Case: Using a Header-Based Identity Token

Pluggable Identity Management Framework 13-17

Sample Use Case: Using a Header-Based Identity Token
This sample assumes that the user is being authenticated against some custom identity
store. Subsequently, a custom HTTP header ("Acme-Custom-Auth") containing the
identity of the logged-in user is added to the request. Sample components function as
follows:

■ The token collector implementation extracts the header value.

■ The token asserter implementation verifies the identity from the header, then
asserts this identity through identity callback handler functionality using the
IdentityCallbackHandlerImpl class that Oracle supplies.

The corresponding configuration is in jazn.xml, as shown.

Sample Token Collector: CollectorImpl.java
This section shows the code for the sample token collector implementation.

package com.acme.idm;

import java.io.IOException;

import java.util.List;
import java.util.Map;
import java.util.Properties;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import oracle.security.jazn.collector.CollectorException;
import oracle.security.jazn.collector.oc4j.TokenCollectorImpl;
import oracle.security.jazn.token.HttpHeaderIdentityToken;
import oracle.security.jazn.token.IdentityToken;
import oracle.security.jazn.token.TokenNotFoundException;
import oracle.security.jazn.collector.IdmErrorConstants;

public class CollectorImpl extends TokenCollectorImpl {
 public CollectorImpl() {
 }

 public IdentityToken getToken(String tokenType,
 HttpServletRequest request,
 List tokenNames,
 Properties properties)
 throws CollectorException,

TokenNotFoundException {
 if (null == tokenType || 0 == tokenType.length() ||
 !IdentityToken.HTTP_HEADER.equalsIgnoreCase(tokenType)) {
 throw new CollectorException("invalid token type" + tokenType);
 }

 HttpHeaderIdentityToken identityToken =
 (HttpHeaderIdentityToken)super.getToken(tokenType,
 request,
 tokenNames,
 properties);
 Map m = identityToken.getHeaderValues();

Sample Use Case: Using a Header-Based Identity Token

13-18 Oracle Containers for J2EE Security Guide

 if (m == null || m.size() == 0) {
 throw new TokenNotFoundException("no HTTP Header token was found");
 }

 return identityToken;
 }

 public void fail(HttpServletRequest httpServletRequest,
 HttpServletResponse httpServletResponse, int reason) {
 try {
 switch (reason) {
 case IdmErrorConstants.REASON_INVALID_USER:
 httpServletResponse.sendError(HttpServletResponse.SC_UNAUTHORIZED);
 case IdmErrorConstants.REASON_UNAUTHORIZED:
 httpServletResponse.sendError(HttpServletResponse.SC_FORBIDDEN);
 }
 } catch (Exception e) {
 System.err.println("failed to send response " + e);
 e.printStackTrace(System.err);
 }
 }
}

Sample Token Asserter: TokenAsserterImpl.java
This section shows the code for the sample token asserter implementation.

The assumption is that for all unauthenticated users, the Oracle HTTP Server or other
Web server in front of OC4J will send "Acme-Custom-Auth" set to "ANONYMOUS". The
Acme implementation requires that the user be authenticated. (A more
production-quality implementation would very likely not pass a clear user name in the
header, because there would be no way to validate where the header was generated.)

package com.acme.idm;

import java.util.Map;
import java.util.Properties;

import oracle.security.jazn.asserter.AsserterException;
import oracle.security.jazn.asserter.TokenAsserter;
import oracle.security.jazn.callback.IdentityCallbackHandler;
import oracle.security.jazn.callback.IdentityCallbackHandlerImpl;
import oracle.security.jazn.token.IdentityToken;
import oracle.security.jazn.token.HttpHeaderIdentityToken;

public class TokenAsserterImpl implements TokenAsserter {
 private static final String HEADER_NAME = "Acme-Custom-Auth";
 private static final String AUTH_TYPE = "CUSTOM_HTTP_HEADER";
 public TokenAsserterImpl() {
 }

 public IdentityCallbackHandler assertIdentity(String tokenType,
 IdentityToken identityToken,
 Properties properties)
 throws AsserterException {
 if (tokenType != null &&
 tokenType.length() > 0 &&
 IdentityToken.HTTP_HEADER.equalsIgnoreCase(tokenType)) {
 HttpHeaderIdentityToken token =
 (HttpHeaderIdentityToken) identityToken;

Sample Use Case: Using a Header-Based Identity Token

Pluggable Identity Management Framework 13-19

 Map m = token.getHeaderValues();
 if (m != null && m.size() > 0) {
 String user = (String) m.get(HEADER_NAME);
 if ("ANONYMOUS".equalsIgnoreCase(user)) {
 throw new AsserterException
 ("anon user - expected authenticated user");
 }
 IdentityCallbackHandler idcb =
 new IdentityCallbackHandlerImpl(user);
 idcb.setIdentityAsserted(true);
 idcb.setAuthenticationType(AUTH_TYPE);

 return idcb;
 }
 else {
 throw new AsserterException
 ("not a valid token - no identity to assert");
 }
 }
 }
}

Sample Configuration: jazn.xml
This section shows the configuration in the jazn.xml file for this sample.

<?xml version="1.0" encoding="UTF-8" standalone='yes'?>
<jazn xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://xmlns.oracle.com/oracleas/schema/jazn-10_0.xsd"
 schema-major-version="10" schema-minor-version="0"
 provider="XML" location="./system-jazn-data.xml"
 default-realm="jazn.com" >
 <property name="idm.token.asserter.class"
 value="com.acme.idm.TokenAsserterImpl" />
 <property name="idm.token.collector.class"
 value="com.acme.idm.CollectorImpl" />
 <property name="idm.token.type" value="HTTP_HEADER" />
 <property name="idm.token.collector.header.1" value="Acme-Custom-Auth" />
 <property name="idm.authentication.name" value="Acme-IDM" />
</jazn>

Sample Use Case: Using a Header-Based Identity Token

13-20 Oracle Containers for J2EE Security Guide

OC4J Java Single Sign-On 14-1

14
OC4J Java Single Sign-On

The OC4J 10.1.3.1 implementation packages an alternative Java single sign-on solution
that does not rely on additional required infrastructure like other Oracle Application
Server single sign-on products. This Java SSO, based on the OracleAS JAAS Provider
identity management framework discussed in Chapter 13, can be used across Web
applications in any of the following deployment scenarios:

■ Web applications are deployed in the same application EAR file.

■ Web applications are deployed in different application EAR files in the same OC4J
instance.

■ Web applications are deployed in different application EAR files in different OC4J
instances, where the Web applications share a common security domain and
cookie domain.

■ A single application EAR file, including Web applications, is deployed into
multiple OC4J instances within an OC4J cluster.

This chapter documents OC4J Java SSO, covering the following topics:

■ Overview of OC4J Java SSO

■ Java SSO Setup and Configuration

■ Java SSO APIs

■ Summary of How to Use Java SSO

■ Troubleshooting Java SSO

Overview of OC4J Java SSO
This section provides an overview of Java SSO, including the following:

Notes:

■ If you use any identity store other than the file-based provider or
Oracle Internet Directory, you must define an administrative user
account and administrative roles, grant the roles to the user, and
grant necessary permissions to the roles, as discussed in "Creating
the Administrative User and Roles and Granting RMI Permission"
on page 10-9.

■ This upgrades and replaces the functionality of the "Lightweight
J2EE Single Sign-On" feature documented for Oracle Application
Server 10g Release 2 (10.1.2). That feature is desupported.

Overview of OC4J Java SSO

14-2 Oracle Containers for J2EE Security Guide

■ Need for an OC4J Container-Level Java Single Sign-On Solution

■ How Java SSO Works

■ Java SSO Deployment Scenarios

■ Summary of Java SSO Configuration

■ About the Java SSO Login Page and Error Page

Need for an OC4J Container-Level Java Single Sign-On Solution
In Oracle Application Server, to use Oracle Single Sign-On you must have a separate
Oracle Application Server installation with Oracle Identity Management, including
Oracle Internet Directory, Oracle Single Sign-On, and Oracle Database. Alternatively,
to use the Oracle Access Manager single sign-on solution, you must have a full Oracle
Access Manager installation. These single sign-on solutions are closely coupled with
the required infrastructure. While robust, neither may be viable for smaller
deployment scenarios, and neither can be used with standalone OC4J by itself.

As an alternative, the OC4J 10.1.3.1 implementation supplies Java SSO, which is
packaged with OC4J itself and decouples OC4J from whatever identity server you
want to use. This allows applications deployed in the same OC4J instance or cluster to
have a single point of authentication and the ability to share user identities.

OC4J Java SSO can be used with any security provider supported by OracleAS JAAS
Provider (summarized in "Introducing the OracleAS JAAS Provider and Security
Providers" on page 3-1). Furthermore, any login module (including custom ones) that
conforms to certain requirements can be used in conjunction with Java SSO. In
particular, the login modules RealmLoginModule, LDAPLoginModule, and
DBTableOraDataSourceLoginModule provided with OC4J support the identity
assertion feature of the identity management framework and can be used with Java
SSO and partner applications. (An instance of IdentityCallback, discussed in
"Oracle Callback Implementations" on page 13-10, is used to determine the identity to
assert.)

How Java SSO Works
Java SSO includes a dedicated Java SSO application (predeployed in OC4J) and an
implementation of the OracleAS JAAS Provider identity management framework.

This section discusses the following:

■ Single Sign-On Interaction and Logical Flow

■ Java SSO Runtime Operations

■ Java SSO Implementation of the Identity Management Framework

Notes: Be aware of the following limitations in the 10.1.3.1 Java SSO
implementation:

■ There is no access control or authorization functionality. It is for
authentication and identity assertion only.

■ It is limited to Web applications sharing a common cookie
domain.

■ The UserManager interface (deprecated for general use anyway)
is not supported.

Overview of OC4J Java SSO

OC4J Java Single Sign-On 14-3

Single Sign-On Interaction and Logical Flow
There are three basic scenarios to consider in discussing how OC4J Java SSO works
with a particular application:

■ A user with no identity token tries to access the application, in which case login is
required. As discussed in Chapter 13, "Pluggable Identity Management
Framework", an identity token corresponds to a user and user credentials. For Java
SSO, the token is an HTTP cookie.

■ A user with an identity token tries to access the application, in which case the
token must be validated and the identity asserted.

■ An authenticated user tries to access the application, where a subject and identity
token are both available and no further authentication or assertion is required.

Typical interaction with Java SSO is as follows:

1. A client tries to access protected content (requests a protected URL) from an
application, App1 for example.

2. App1 requires SSO authentication; the client is prompted for credentials by Java
SSO.

3. The client provides credentials.

4. Java SSO delegates authentication to the security provider.

5. Upon successful authentication, the security subsystem establishes the identity.

6. The SSO provider (the Java SSO implementation of the identity management
framework) encodes an identity token—the Java SSO cookie—corresponding to
the authenticated user, and returns the cookie to the client.

7. The client presents the cookie to access App1.

8. App1 determines the client identity from the cookie and allows the client to access
the protected content.

9. The client reuses the cookie to try to access protected content of another
application, App2 for example.

10. App2 determines the client identity from the cookie and allows the client to access
the protected content.

When using Java SSO, a user session is active until one of the following occurs:

■ The application calls the Java SSO logout API (discussed in "Java SSO Logout API"
on page 14-17).

■ The Java SSO cookie becomes invalid.

The set of applications that will share usage of Java SSO are referred to as partner
applications. These may be customer applications, or may be Oracle Application Server
console applications such as Application Server Control, Oracle BPEL Process
Manager, or Oracle Web Services Manager. A partner application is one of the
applications in a security domain that delegates authentication through Java SSO. In a
security domain, multiple applications share common identity stores, algorithms, and
keys used in the authentication and validation process.

Figure 14–1 following presents a flow chart for Java SSO logic.

Overview of OC4J Java SSO

14-4 Oracle Containers for J2EE Security Guide

Figure 14–1 Java SSO Internal Logic Flow

Java SSO Runtime Operations
The Java SSO application, javasso, is deployed in all OC4J instances as a built-in
system application. The application consists of the login servlet SSOLogin and the
logout servlet SSOLogout.

When you start OC4J, javasso is typically disabled (except in an Oracle Application
Server "Basic Install"). An administrator can start javasso through Application
Server Control.

Once javasso is enabled, attempts to access Java SSO partner applications result in a
process such as the following, as depicted in Figure 14–2 below.

1. A user, through the browser, attempts to access a protected URL for application
App1.

2. There is a redirect to javasso (more specifically, the SSOLogin servlet) through
the browser.

3. The App1 URL is passed to javasso.

4. Through javasso functionality, the user is prompted with the Java SSO login
page.

5. The user supplies the user name and password.

6. Through javasso functionality, the user is authenticated according to
information in the identity store. After the user is successfully authenticated, the
SSOLogin servlet maps the authenticated identity to the Java SSO cookie (identity
token), then uses a symmetric key cipher to sign and encrypt the contents of the
cookie.

7. There is a redirect to App1 through the browser, and the secured cookie is sent
back to the client.

8. The user accesses the content of App1.

Note: Assume App1 and App2 below are partner applications
configured to use Java SSO for single sign-on.

Overview of OC4J Java SSO

OC4J Java Single Sign-On 14-5

9. The user attempts to access a protected URL for application App2, and is able to
access the content of App2 without authentication.

Figure 14–2 Java SSO Runtime Operations

Java SSO Implementation of the Identity Management Framework
Java SSO is an implementation of the identity management framework documented in
Chapter 13, "Pluggable Identity Management Framework". The Java SSO
implementation uses a cookie for credentials.

Java SSO is installed with OC4J and includes the following:

■ There is a cookie, ORA_OC4J_SSO, for user credentials.

■ A token collector implementation class, SSOCookieTokenCollector, collects
credentials from a cookie (passed through the HTTP request), constructs a cookie
identity token, and returns the cookie identity token to OC4J. Content of the token
includes the user identity, issuing authority, token lifetime, and a digital signature
to ensure content integrity.

■ A token asserter implementation class, SSOCookieTokenAsserter, asserts the
user identity—receives the cookie token from OC4J, validates it, determines the
identity in the cookie, and passes the asserted identity back to OC4J in an identity
callback handler.

To decode the cookie token, the token asserter retrieves a shared key (shared
between all partner applications and the Java SSO application) and decrypts the
contents of the cookie. The token asserter validates the data by verifying the
signature. (If the cookie has expired, an error is thrown, typically resulting in the
user being redirected to the login page.)

Java SSO Deployment Scenarios
Of particular significance, consider these Java SSO deployment scenarios:

■ Single instance of OC4J

The javasso application, customer applications, and Application Server Control
all run in the same OC4J instance.

Note: In the Java SSO implementation, the cookie used as the
identity token is a session cookie; it is not persistent.

javasso App2

Identity Store

754

6

3821 9

Browser

App1

Overview of OC4J Java SSO

14-6 Oracle Containers for J2EE Security Guide

■ SOA installation with two OC4J instances, using the file-based provider

The Oracle BPEL Process Manager (the Business Process Execution Language
engine) and OWSM (Oracle Web Services Manager) run on the OC4J_SOA
instance. The javasso application, customer applications, and Application Server
Control run on the OC4J_Home instance.

The system-jazn-data.xml file (file-based provider) must be synchronized
between the two instances, as discussed in "Considerations with the File-Based
Provider and Two OC4J Instances" on page 14-15.

■ SOA installation with two OC4J instances, using Oracle Internet Directory

The Oracle BPEL Process Manager and OWSM run on the OC4J_SOA instance.
The javasso application, customer applications, and Application Server Control
run on the OC4J_Home instance.

A single Oracle Internet Directory instance is used as the security provider.

■ High-availability installation with multiple OC4J instances, using Oracle Internet
Directory

The javasso application and all customer applications are available on all
instances.

A single Oracle Internet Directory instance is used as the security provider.

Summary of Java SSO Configuration
Beyond standard configuration for a user’s J2EE application, the following
configuration steps are required. These are covered in detail in "Java SSO Setup and
Configuration" on page 14-7.

1. The javasso application must be started, through Application Server Control.

2. In any target OC4J instance, the jazn.xml file must have the correct property
settings for Java SSO and its implementation of the identity management
framework. You can set properties through Application Server Control, which can
also generate the symmetric key. Settings are indicated in <property>
subelements of the <jazn> element. Configuration includes the following (default
settings may be adequate):

■ Java SSO login URL and logout URL

■ Symmetric key used to encrypt the cookie token

■ DNS domain to which the Java SSO cookie is restricted (required in advanced
installations, across multiple OC4J instances and hosts)

Notes:

■ Partner applications (either Oracle Application Server console
applications or customer applications) can be split between OC4J
instances however desired, but scenarios such as the above are
typical.

■ Customers using Oracle Internet Directory within a full Oracle
Identity Management environment would typically use Oracle
Single Sign-On instead of Java SSO, but there may be situations
where Java SSO with Oracle Internet Directory is useful.

Java SSO Setup and Configuration

OC4J Java Single Sign-On 14-7

(Be sure the cookie domain is set properly, as discussed in the troubleshooting
section, "Returned to Java SSO Login Page Despite Correct Credentials" on
page 14-19.)

3. The partner applications using Java SSO must all be configured to use the same
security provider and same identity store as the javasso application. (In
particular, when using the file-based provider, use the same repository file. For a
scenario with multiple OC4J instances, see "Considerations with the File-Based
Provider and Two OC4J Instances" on page 14-15.) By default, javasso is
configured to use the file-based provider, but you can change this using the
Application Server Control Console.

For partner applications that are customer applications, you can configure the
security provider during deployment. For Application Server Control itself, there
are special steps in Application Server Control Console to change the security
provider. For other Oracle Application Server console applications that you want
to include, if changes are necessary they can be handled similarly to changing the
security provider for javasso.

4. Each partner application must be enabled to use Java SSO. This can also be
configured through Application Server Control . Being enabled to use Java SSO is
indicated by a setting of auth-method="CUSTOM_AUTH" in the
<jazn-web-app> element, a subelement of <jazn> in
orion-application.xml.

About the Java SSO Login Page and Error Page
This section discusses localization and customization of the Java SSO login page and
error pages.

Localization Support for the Java SSO Login Page and Error Pages
The Java SSO login page and error pages shipped with OC4J support localization.
Content displayed by these pages is localized according to the browser settings.

Customizing the Login Page or Error Page
We do not directly support the use of a custom login page or custom error pages with
Java SSO, but you can customize the deployed login.jsp, loginerror.jsp, and
error.jsp files and do one of the following:

■ Replace the existing files in the deployment directory:

ORACLE_HOME/j2ee/home/applications/javasso/javasso-web/WEB-INF

■ Repackage and redeploy the javasso.ear file with the customized files.

Java SSO Setup and Configuration
This section discusses Java SSO configuration in OC4J, covering the following topics:

■ Configuring Java SSO through Application Server Control

■ Java SSO Configuration Properties

■ Configuration for Enabling Partner Applications for Java SSO

Note: Java SSO supports any provider supported by OracleAS JAAS
Provider.

Java SSO Setup and Configuration

14-8 Oracle Containers for J2EE Security Guide

■ Configuration for Special Scenarios

We recommend that you configure Java SSO and partner applications through
Application Server Control, which is covered in the first section. The second and third
sections show the configuration parameters and properties that are set as a result (and
can also be set manually as necessary). The final section is for special considerations
and scenarios.

Configuring Java SSO through Application Server Control
In the Application Server Control Console, use the Java SSO Configuration page. You
can navigate to this page as follows:

■ In an Oracle Application Server clustered environment, from the Cluster Topology
page, choose Java SSO Configuration.

■ In an OC4J standalone environment:

1. From the OC4J Home page, select the Administration tab.

2. From the Administration page, under "Properties", go to the SSO
Configuration task.

The rest of this section covers the following topics:

■ Start the javasso Application

■ Set Java SSO Properties and Generate the Symmetric Key

■ Configure the Security Provider for the javasso Application

■ Configure the Security Provider for Partner Applications

■ Enable Partner Applications to Use Java SSO

Start the javasso Application
In an Oracle Application Server clustered environment, from the Cluster Topology
page, you can start the javasso application for any OC4J instance (as necessary):

1. Under Members (which lists the application server and OC4J instances), choose
the Expand All link to see all the applications under each instance.

2. Select the javasso application for the desired instance.

3. Choose Start.

In an OC4J standalone environment, you can start the javasso application as follows:

1. From the OC4J Home page, choose Applications.

2. From the Applications page, select the javasso application.

3. Choose Start.

Set Java SSO Properties and Generate the Symmetric Key
From the Java SSO Configuration page, select the Instances and Properties tab to set
Java SSO properties. This also enables you to generate a new symmetric key.

From the Instances and Properties page, you can specify the following:

■ The key type. Choose AES_128_CBC, AES_192_CBC, AES_256_CBC, or
DES_EDE_CBC. This information is coded into the custom.sso.key.alias Java
SSO property, discussed in "Java SSO Configuration Properties" on page 14-12.

Java SSO Setup and Configuration

OC4J Java Single Sign-On 14-9

■ The URL for the Java SSO SSOLogin servlet (corresponding to the
custom.sso.url.login property). If you have multiple hosts, use the fully
qualified domain name.

■ The URL for the Java SSO SSOLogout servlet (corresponding to the
custom.sso.url.logout property). If you have multiple hosts, use the fully
qualified domain name.

■ The session timeout in seconds (corresponding to the
custom.sso.session.timeout property). Note that this is a hard timeout, not
an inactivity timeout. The session will timeout after this amount of time no matter
what.

■ The number of login attempts to allow (corresponding to the
custom.sso.login.attempts property).

If Java SSO has not yet been properly configured, use Configure Java SSO, after
setting any of the above parameters as appropriate, to configure it. This will
automatically generate a new symmetric key.

To reconfigure Java SSO after it has been properly configured, there is a checkbox to
specify whether a new symmetric key should be generated when you apply the
reconfiguration. You should generate a new key in either of the following
circumstances:

■ If an error condition has arisen where different OC4J instances may be using
different keys. All instances must use the same key.

■ If you want a new key just to be cautious from a security standpoint. (We
recommend that you do this on a regular basis.)

Choose Apply (which appears in place of Configure Java SSO), after setting any of
the above parameters as appropriate, to apply the reconfiguration and generate the
key (as applicable).

Settings are reflected in <property> subelements under the <jazn> element in the
jazn.xml file. In a cluster, these settings and the key apply across all OC4J instances.

Java SSO Setup and Configuration

14-10 Oracle Containers for J2EE Security Guide

Configure the Security Provider for the javasso Application
The javasso application that is used, and each partner application using Java SSO,
must all be configured to use the same security provider. By default, javasso is
configured to use the file-based provider.

To change the security provider for javasso in a given OC4J instance, go to the OC4J
Home page for that instance in the Application Server Control Console. In a
standalone environment, there is only one OC4J Home page. In an Oracle Application
Server clustered environment, choose the desired OC4J instance in the Cluster
Topology page.

1. From the OC4J Home page, select the Administration tab.

2. From the Administration page, under "Security", go to the Security Providers task.

3. From the Security Providers page, go to the Edit task for javasso.

4. From the Security Provider page for javasso, choose Change Security Provider.

Each type of security provider necessitates its own set of configuration tasks,
documented in the following locations:

Important:

■ When using the 10.1.3.1 patch set (as opposed to a fresh 10.1.3.1
installation), default jazn.xml settings shown in "Default Java
SSO Property Settings for Single-Instance OC4J Installations" on
page 14-14 will not be present. Add these settings manually before
configuring Java SSO.

■ By default, the jazn.xml file has a dummy value for the key (in
the custom.sso.key.alias setting) until you configure Java
SSO.

■ All applications configured to use the same Java SSO should share
a single key. (This is a potential issue only in a scenario with
multiple OC4J instances.)

■ You must restart OC4J instances for these changes to take effect.
You will be notified and prompted to do so.

■ If you will be using Oracle Identity Management, make Java SSO
settings after associating the OC4J instance with the Oracle
Internet Directory instance. When you do the association, the
<jazn> element configuration in the jazn.xml file of the OC4J
home instance is rewritten and any previous settings are lost.

Notes:

■ You must restart the application for a change in security provider
to take effect.

■ Where there are multiple OC4J instances and not all javasso
applications have the same security provider, there is a Change
Security Provider option relating to the javasso application for
each OC4J instance on the Java SSO Instances and Properties page
in the Application Server Control Console. This simplifies the
process of configuring the javasso application you want to use.

Java SSO Setup and Configuration

OC4J Java Single Sign-On 14-11

■ "Changing to the File-Based Provider after Deployment" on page 7-3

■ "Changing to Oracle Identity Management after Deployment" on page 8-13

■ "Changing to a Custom Security Provider after Deployment" on page 9-18

■ "Changing to an External LDAP Provider after Deployment" on page 10-5

Configure the Security Provider for Partner Applications
As noted above, all partner applications and the javasso application must be
configured to use the same security provider. For customer applications that are
partner applications, configure the appropriate security provider during deployment.
Each type of security provider necessitates its own set of configuration tasks,
documented in the following locations:

■ "Configuring the File-Based Provider during Application Deployment" on
page 7-3

■ "Specifying Oracle Identity Management during Deployment" on page 8-12

■ "Specifying and Configuring a Custom Security Provider during Deployment" on
page 9-15

■ "Specifying and Configuring an External LDAP Provider during Deployment" on
page 10-3

If you want any Oracle Application Server console applications to share in using Java
SSO (Application Server Control, for example), you must also ensure that the console
applications use the same security provider.

For Application Server Control, you can change the security provider through the
following steps:

1. In the OC4J Home page for the instance where Application Server Control is
running, choose Administration.

2. In the Administration page, under "Security", go to the Security Providers task.

3. In the Security Providers page, choose Application Server Control Security.

4. In the initial Setup page, choose Security Provider.

5. In the Security Provider page, choose Change Security Provider.

6. In the Change Security Provider page, specify whether to use the
system-jazn-data.xml file-based provider, an application-specific
jazn-data.xml file-based provider, or Oracle Identity Management (if an Oracle
Internet Directory instance had previously been associated with the OC4J instance,
as described in "Associating Oracle Internet Directory with OC4J" on page 8-6).

7. Choose OK. You must then restart Application Server Control for the change to
take effect.

For other console applications, steps for changing the security provider would be
similar to those for javasso in the preceding section, "Configure the Security
Provider for the javasso Application". You must then restart the application for a
change in security provider to take effect.

Enable Partner Applications to Use Java SSO
From the Java SSO Configuration page, select the Participating Applications tab to
enable applications to use Java SSO.

From the Participating Applications page:

Java SSO Setup and Configuration

14-12 Oracle Containers for J2EE Security Guide

1. Select Java SSO Enabled for each desired application.

2. Choose Apply to enable them to use Java SSO.

This results in the setting auth-method="CUSTOM_AUTH" in the <jazn-web-app>
element of the orion-application.xml file for each application.

Once you have started the javasso application and enabled an application to use
Java SSO, invoking the application results in a login prompt through Java SSO.

Java SSO Configuration Properties
In general, we recommend that you configure Java SSO through Application Server
Control, as discussed in preceding sections.

This section provides descriptions for all Java SSO configuration properties and shows
the default settings (as applicable) upon OC4J installation.

Java SSO Configuration Property Descriptions
Table 14–1 describes Java SSO properties whose settings would be reflected in the
jazn.xml file, in <property> subelements of the <jazn> element.

Properties that are not supported through Application Server Control (as indicated by
"n/a" in the table) must be set manually.

Important:

■ If you will be using Oracle Identity Management as the security
provider for an application, configure that before enabling the
application for Java SSO. When you switch from the file-based
provider to Oracle Identity Management through Application
Server Control at any time for any partner application, the
<jazn> element in orion-application.xml for the
application is replaced with the following. Any previous setting to
enable the application for Java SSO (the CUSTOM_AUTH setting)
will be lost and must be redone.

<jazn provider="LDAP" />

■ You must restart OC4J instances for these changes to take effect.
You will be notified and prompted to do so.

■ If you have multiple hosts, use the fully qualified domain name
when invoking partner applications from your browser.

See Also:

■ "Set Java SSO Properties and Generate the Symmetric Key" on
page 14-8

Table 14–1 Java SSO Properties

Property Description
Name in Application
Server Control

custom.sso.app.url.default The default URL for redirection from
the SSOLogin servlet if none is
provided.

n/a

Java SSO Setup and Configuration

OC4J Java Single Sign-On 14-13

custom.sso.cookie.domain The Java SSO cookie is restricted to
this DNS domain. By default,
without a domain setting, the cookie
is restricted to the host from which
the SSOLogin URL is accessed. A
domain setting is required in
advanced installations, across
multiple OC4J instances and hosts.

(Be sure the cookie domain is set
properly, as discussed in the
troubleshooting section "Returned to
Java SSO Login Page Despite Correct
Credentials" on page 14-19.)

n/a

custom.sso.cookie.path Path restriction for the cookie.

Default: /

n/a

custom.sso.cookie.secure If true, only HTTPS sites are
supported.

Default: false

n/a

custom.sso.key.alias Stores the shared symmetric key
used to sign the contents of the Java
SSO cookie identity token.

n/a

custom.sso.login.attempts Number of login attempts allowed.

Default: 3

Number of Login
Attempts

custom.sso.session.timeout Period of time (in seconds) for which
the Java SSO cookie is valid. Note
that this is a hard timeout, not an
inactivity timeout. The session will
timeout after this amount of time no
matter what.

Default: 7200

Session Timeout

custom.sso.token.asserter.authtypes Java SSO authentication method.
This is the method that will be used
to authenticate end users once they
are redirected to Java SSO. You can
specify a standard J2EE Web
application authentication method.

Default: FORM

n/a

custom.sso.url.login URL of the SSOLogin servlet. If you
have multiple hosts, use the fully
qualified domain name.

Java SSO Login URL

custom.sso.url.logout URL of the SSOLogout servlet. If
you have multiple hosts, use the
fully qualified domain name.

Java SSO Logout
URL

Important: If you associate an OC4J instance with an Oracle Internet
Directory instance, the <jazn> element configuration in the
jazn.xml file of the OC4J home instance is rewritten and any
previous settings are lost.

Table 14–1 (Cont.) Java SSO Properties

Property Description
Name in Application
Server Control

Java SSO Setup and Configuration

14-14 Oracle Containers for J2EE Security Guide

Default Java SSO Property Settings for Single-Instance OC4J Installations
By default in an installation where there is a single OC4J instance, OC4J is set up to use
Java SSO as the identity management framework implementation. This includes
settings for Java SSO properties documented in the preceding section, "Java SSO
Configuration Property Descriptions", and Java SSO settings for identity management
framework properties documented in "Configuring Identity Management Framework
Properties" on page 13-13.

Here are the preconfigured settings in jazn.xml:

<jazn provider="XML" location="./system-jazn-data.xml" default-realm="jazn.com">
 <!-- properties to configure the 3rd party IDM framework -->
 <property name="idm.authentication.name" value="JavaSSO" />
 <property name="idm.token.asserter.class"
 value="oracle.security.jazn.sso.SSOCookieTokenAsserter" />
 <property name="idm.token.collector.class"
 value="oracle.security.jazn.sso.SSOCookieTokenCollector" />
 <property name="idm.token.type" value="HTTP_COOKIE" />
 <property name="idm.token.collector.cookie.1" value="ORA_OC4J_SSO" />

 <!-- properties for the out of the box Java SSO -->
 <property name="custom.sso.url.login" value="/jsso/SSOLogin" />
 <property name="custom.sso.url.logout" value="/jsso/SSOLogout" />
 <property name="custom.sso.key.alias" value="ssoSymmetricKey" />
</jazn>

Configuration for Enabling Partner Applications for Java SSO
Each partner application that is to use Java SSO must be configured to enable Java
SSO. We recommend that you do this through Application Server Control, as
discussed in "Enable Partner Applications to Use Java SSO" on page 14-11.

Enabling a partner application to use Java SSO is indicated by the authentication
method setting "CUSTOM_AUTH" in the <jazn-web-app> element of the
orion-application.xml file, as in the following example:

<jazn provider="XML" ... >
 ...
 <jazn-web-app auth-method="CUSTOM_AUTH" />
 ...
</jazn>

Important:

■ These settings do not exist by default in some scenarios, as noted
in "General Considerations for Multiple OC4J Instances" on
page 14-16 and "Considerations When Using the 10.1.3.1 Patch
over 10.1.3.0.0" on page 14-17. In these cases, manually add the
default configuration to jazn.xml before configuring Java SSO.

■ By default, there is a dummy value for the key in the
custom.sso.key.alias setting (as shown above) until you
configure Java SSO through Application Server Control, as
discussed in "Set Java SSO Properties and Generate the Symmetric
Key" on page 14-8. Once you configure Java SSO, the setting will
change to something like the following:

value="{AES-128}IdG4OPSqGPJ8hZFPn1W4Uw=="

Java SSO Setup and Configuration

OC4J Java Single Sign-On 14-15

This triggers usage of Java SSO and its implementation of the identity management
framework according to configuration in jazn.xml.

Configuration for Special Scenarios
Preceding discussion covered general configuration for Java SSO, but this section
covers the following special considerations:

■ Considerations with the File-Based Provider and Two OC4J Instances

■ General Considerations for Multiple OC4J Instances

■ Considerations When Using the 10.1.3.1 Patch over 10.1.3.0.0

Considerations with the File-Based Provider and Two OC4J Instances
This section discusses a use case where you want to employ Java SSO with the
file-based provider for single sign-on access across two OC4J instances, such as in a
SOA installation. The key issue is synchronizing user accounts and roles within two
system-jazn-data.xml files across both OC4J instances.

Consider a use case where:

■ A customer has created OC4J instances OC4J_HOME and OC4J_SOA (such as
through the installer or manually through createinstance).

Important: If you will be using Oracle Identity Management as the
security provider for an application, configure that before enabling the
application for Java SSO. When you switch from the file-based
provider to Oracle Identity Management through Application Server
Control at any time for any partner application, the <jazn> element
in orion-application.xml is replaced with the following. Any
previous setting to enable the application for Java SSO (the
CUSTOM_AUTH setting) will be lost and must be redone.

<jazn provider="LDAP" />

Notes:

■ Notice that because the OC4J default configuration specifies Java
SSO as the identity management framework implementation,
enabling a partner application to use the identity management
framework (auth-method="CUSTOM_AUTH") enables it to use
Java SSO.

■ The <jazn-web-app> element is also supported in the
orion-web.xml file, as a subelement of <orion-web-app>, for
a particular Web application. A setting there overrides the
orion-application.xml setting for that Web application.

■ An authentication method setting in orion-application.xml
(or orion-web.xml) overrides any authentication method
setting in web.xml.

See Also:

■ "Configuring an Application to Use the Identity Management
Framework" on page 13-15

Java SSO Setup and Configuration

14-16 Oracle Containers for J2EE Security Guide

■ They would like to activate Java SSO in OC4J_HOME and deploy SOA applications
in OC4J_SOA.

■ They would like to use the file-based provider in both OC4J_HOME and
OC4J_SOA.

By default, each OC4J instance is configured with its own file-based provider, the
system-jazn-data.xml file. For Java SSO to work correctly across both instances,
however, user accounts and user roles must be synchronized across the two
system-jazn-data.xml files. Using OC4J group functionality, the following steps
make this possible:

1. Create an OC4J group for Java SSO—JSSO_GROUP, for example. Refer to "OC4J
Basic Group Features" on page 7-17.

2. Start the Java SSO application in OC4J_HOME after making sure it is configured to
use the file-based provider, system-jazn-data.xml, which is its default setting.
(Note that the Java SSO application should be started in only one OC4J instance in
this sample use case.)

3. Deploy the J2EE applications that are to use Java SSO to the OC4J_SOA instance;
configure each application to use the file-based provider; and enable Java SSO for
each application.

4. Add OC4J_HOME and OC4J_SOA as members of JSSO_GROUP. Again refer to
"OC4J Basic Group Features".

For ongoing user and role administration for these applications, the customer would
use the OC4J J2EEServerGroup MBean that corresponds to JSSO_GROUP, executing
appropriate security provider MBean operations. This MBean will ensure
synchronization of user accounts and roles across the JSSO_GROUP members. Refer to
"Cluster MBean Browser Features and the J2EEServerGroup MBean" on page 7-18.

General Considerations for Multiple OC4J Instances
For an installation type with multiple OC4J instances, the default configurations
discussed in "Default Java SSO Property Settings for Single-Instance OC4J
Installations" on page 14-14 are not in place—the properties may be referenced in
jazn.xml, but not set.

Any configuration for Java SSO (and related configuration for the identity
management framework) must be duplicated across instances. The primary concern is
Java SSO or related identity management framework properties in jazn.xml that are
not set through Application Server Control, as well as system-jazn-data.xml
settings (as applicable). Java SSO properties that are set through Application Server
Control, as well as the shared Java SSO key, are already propagated to all OC4J
instances through Application Server Control functionality.

Take the following steps, as appropriate:

Note: You can achieve the same result by manually coordinating
user configuration between the system-jazn-data.xml files on the
two instances, although this may be more prone to error.

See Also:

■ For additional information about OC4J group features, the topic
"Group OC4J Instances Page" in the Application Server Control
online help

Java SSO APIs

OC4J Java Single Sign-On 14-17

1. Complete your Java SSO setup and configuration, as described under
"Configuring Java SSO through Application Server Control" on page 14-8.
Remember that Java SSO properties set through Application Server Control apply
across instances.

2. Ensure that any other relevant property settings in jazn.xml, such as Java SSO
properties not supported by Application Server Control, or additional related
identity management framework properties, are duplicated across OC4J instances.
Generally speaking, the only option for such properties is to manually repeat the
configuration in the jazn.xml file of each OC4J instance.

3. Use OC4J group functionality to configure system-jazn-data.xml across a
group. (This may be for the file-based security provider, login module settings, or
policy settings, for example.) OC4J groups are discussed in "OC4J Basic Group
Features" on page 7-17. Also, "Cluster MBean Browser Features and the
J2EEServerGroup MBean" on page 7-18 discusses how to coordinate
system-jazn-data.xml user settings across OC4J instances. There are also
operations for maintaining login module configuration across instances (for
example, setLoginModule).

Considerations When Using the 10.1.3.1 Patch over 10.1.3.0.0
For an installation of the OC4J 10.1.3.1 patch over an existing 10.1.3.0.0 installation (as
opposed to a fresh 10.1.3.1 installation), the default configurations discussed in
"Default Java SSO Property Settings for Single-Instance OC4J Installations" on
page 14-14 are not in place—the properties are not referenced in jazn.xml.

Manually add the default configuration to jazn.xml, then complete the appropriate
Java SSO configuration described under "Configuring Java SSO through Application
Server Control" on page 14-8.

Java SSO APIs
Java SSO supplies the following utility class:

oracle.security.jazn.sso.util.JSSOUtil

In the OC4J 10.1.3.1 implementation, this class provides the following API:

■ Java SSO Logout API

Java SSO Logout API
The JSSOUtil utility class that comes with Java SSO provides a static logout()
method, to be used as the last step in application session logout, once you have
completed any application-specific logout preparations and processing:

■ logout(HttpServletResponse response, String targetURL)

See Also:

■ For additional information about OC4J group features, the topic
"Group OC4J Instances Page" in the Application Server Control
online help

See Also:

■ Oracle Containers for J2EE Security Java API Reference for Javadoc
that includes the Java SSO APIs

Summary of How to Use Java SSO

14-18 Oracle Containers for J2EE Security Guide

Supply the HTTP response object that corresponds to the request being processed,
and specify the URL where the application is to be redirected after logout. The
application is first directed to the Java SSO SSOLogout servlet, which unsets the
Java SSO cookie, and then to the specified target URL.

For example:

JSSOUtil.logout(response, "http://portal.acme.com");

Summary of How to Use Java SSO
This section summarizes the previously discussed key action items for using Java SSO.

For development, using Java SSO is mostly transparent, without special coding
required. The one point of integration, which you can optionally use, is the logout API
documented in the previous section, "Java SSO Logout API".

For configuration, use the following steps, described in detail in "Java SSO Setup and
Configuration" on page 14-7. All steps can be completed through Application Server
Control.

1. Start the javasso application.

2. Configure Java SSO properties. (Settings are written into <property> elements
under the <jazn> element in jazn.xml.)

3. Configure the javasso application to use the appropriate security provider.

4. Configure partner applications to use the same security provider as javasso. For
customer applications, set the security provider during deployment. For any
Oracle Application Server console applications (such as Application Server
Control) that will share in Java SSO, you can change the security provider
appropriately.

5. Enable each partner application to use Java SSO. (This results in the setting
auth-method="CUSTOM_AUTH" in the application orion-application.xml
file.) This is the only configuration step required to convert an existing application
to be Java SSO-enabled. You can leave <login-config> settings in web.xml
files unchanged (they are overridden).

Troubleshooting Java SSO
This section discusses the following issues you may encounter:

■ Page Not Found

■ Returned to Java SSO Login Page Despite Correct Credentials

Page Not Found
If you receive a "Page Not Found" error when attempting to access a partner
application that has been enabled for Java SSO, it may be that the javasso
application is not running. You can test this by trying to access the SSOLogin servlet.
You can go to the URL directly:

http://host:port/jsso/SSOLogin

Important: If you have multiple hosts, use the fully qualified domain
name when invoking partner applications from your browser.

Troubleshooting Java SSO

OC4J Java Single Sign-On 14-19

Or you can choose Test Login URL from the Application Server Control page where
you configure Java SSO properties.

If you are redirected to the host:port top-level page, then the test is successful.

Instructions for starting the javasso application are in "Start the javasso Application"
on page 14-8.

Returned to Java SSO Login Page Despite Correct Credentials
If you provide correct credentials to the Java SSO login page but keep getting returned
to that page, consider the following possibilities:

■ You are attempting to access a partner application through localhost or an IP
address, which you are not allowed to do.

■ You are attempting to access a partner application where the domain is not
specified exactly as it is for the javasso application. For example, it would not
work to access an application as http://sso/myapp/index.jsp when the Java
SSO login URL set through Application Server Control (and corresponding to the
custom.sso.url.login property) is set as
http://sso.mydomain.com/jsso/SSOLogin.

■ The cookie domain setting (custom.sso.cookie.domain property) does not
match the domain where you try to access a partner application. For example, it
would not work to access an application at
http://app.mydomain.com/myapp/index.jsp when the cookie domain is
set to .sso.mydomain.com. It would work, however, if the cookie domain is set
to .mydomain.com.

Troubleshooting Java SSO

14-20 Oracle Containers for J2EE Security Guide

SSL Communication with OC4J 15-1

15
SSL Communication with OC4J

OC4J supports Secure Sockets Layer (SSL) communication, as follows:

■ In an Oracle Application Server environment (OPMN-managed), OC4J supports
SSL communication between Oracle HTTP Server and OC4J using AJPS. This is
the secure version of Apache JServ Protocol, the protocol that Oracle HTTP Server
uses to communicate with OC4J. (Note, however, that the AJPS protocol used
between Oracle HTTP Server and OC4J is not visible to the end user.)

■ In a standalone OC4J environment, or in an OPMN-managed environment
without Oracle HTTP Server, OC4J supports SSL communication directly between
a client and OC4J, using HTTPS.

■ OC4J also supports ORMI over SSL, or ORMIS. With this feature, OC4J supports
RMI communication over SSL between objects across OC4J server instances.

Note that this chapter discusses the standalone OC4J scenario as well as two scenarios
in an Oracle Application Server environment—OPMN-managed OC4J with OC4J as
the Web listener, and OPMN-managed OC4J with Oracle HTTP Server as the Web
listener. In all, the following topics are covered:

■ Integrating the Security Provider with SSL-Enabled Applications

■ Using Keys and Certificates with OC4J and Oracle HTTP Server

■ Using SSL with Standalone OC4J

■ Using SSL in OPMN-Managed OC4J without Oracle HTTP Server

■ Using SSL in OPMN-Managed OC4J with Oracle HTTP Server

■ Requesting Client Authentication

■ Troubleshooting and Debugging SSL

■ Enabling ORMIS for OC4J

■ Enabling ORMI Tunneling through HTTPS

Notes:

■ Secure communication between a client and Oracle HTTP
Server is independent of secure communication between Oracle
HTTP Server and OC4J.

■ This chapter assumes some prior knowledge of security and
SSL concepts.

Integrating the Security Provider with SSL-Enabled Applications

15-2 Oracle Containers for J2EE Security Guide

Integrating the Security Provider with SSL-Enabled Applications
This section describes the responsibilities of Oracle components when an HTTP client
request is initiated in an SSL-enabled J2EE environment. Figure 15–1 shows an
application running in such an environment.

Figure 15–1 Oracle Component Integration in SSL-Enabled J2EE Environments

Here are the steps of the process:

1. An HTTP client attempts to access a Web application (named WebApp A1) hosted
by OC4J. Oracle HTTP Server handles the request.

2. The mod_ossl/Oracle HTTP Server receives the request and determines that the
WebApp A1 application requires SSL server authentication for HTTP clients.

3. If a server or client wallet certificate is configured, the HTTP client is prompted to
accept the server certificate of Oracle HTTP Server and provide the client
certificate.

4. OC4J security provider retrieves the SSL client certificate.

5. The security provider retrieves the SSL user from the certificate.

6. The final step or steps depend on the jaas-mode setting in the <jazn> element.
Refer to "Introduction to JAAS Mode" on page 5-5 and "Configuring and Using
JAAS Mode" on page 5-18 for information about how JAAS mode works.

Using Keys and Certificates with OC4J and Oracle HTTP Server
The steps below describe using keys and certificates for SSL communication in OC4J.
These are server-level steps, typically executed prior to deployment of an application
that will require secure communication, perhaps when you first set up an Oracle
Application Server instance.

Note that a keystore stores certificates, including the certificates of all trusted parties,
for use by an application. Through its keystore, an entity such as OC4J (for example)

See Also:

■ "Transport-Level Security" on page 1-3 (overview)

■ Oracle HTTP Server Administrator’s Guide for related information
about using SSL with Oracle HTTP Server

■ Oracle Application Server Administrator’s Guide for information
about configuring additional Oracle Application Server
components to take advantage of SSL

Oracle
HTTP
Server

HTTP
Client

Java Plug-in
mod_oc4j

mod_ossl

Apache JServ
Protocol

OC4J
HTTP

WebApp A1

servlet
s1

servlet
s2

Security Provider

Using Keys and Certificates with OC4J and Oracle HTTP Server

SSL Communication with OC4J 15-3

can authenticate other parties, as well as authenticate itself to other parties. Oracle
HTTP Server uses what is called a wallet for the same purpose.

In Java, a keystore is a java.security.KeyStore instance that you can create and
manipulate using the keytool utility that is provided with the Sun Microsystems
JDK. The underlying physical manifestation of this object is a file.

The Oracle Wallet Manager has functionality for Oracle wallets that is equivalent to
the functionality of keytool for keystores.

Here are the steps at the OC4J end for using certificates between OC4J and Oracle
HTTP Server:

1. Use keytool to generate a private key, public key, and unsigned certificate.You
can place this information into either a new keystore or an existing keystore.

2. Obtain a signature for the certificate, using either of the following two approaches.

Generate your own signature:

a. Use keytool to "self-sign" the certificate. This is appropriate if your clients
trust you as, in effect, your own certificate authority.

Alternatively, obtain a signature from a recognized certificate authority:

a. Using the certificate from Step 1, use keytool to generate a certificate request,
which is a request to have the certificate signed by a certificate authority.

b. Submit the certificate request to a certificate authority (such as Verisign or
Thawte; links following shortly).

c. Receive the signature from the certificate authority and import it into the
keystore, again using keytool. In the keystore, the signature is matched with
the associated certificate.

Notes:

■ A keystore or wallet must include a private key, a public key, and
a trusted certificate (such as a CA certificate) in order to be used in
establishing trust relationships.

■ OC4J comes with a default wallet that does not include a trusted
certificate. You should create and provision your own wallet
instead of using the default wallet.

See Also:

■ For information about keytool:

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keyto
ol.html

■ For information on Oracle Wallet Manager, the Oracle Application
Server Administrator’s Guide

Note: Oracle Application Server includes Oracle Application
Server Certificate Authority (OCA). OCA enables customers to
create and issue certificates for themselves and their users,
although these certificates would probably be unrecognized outside
a customer’s organization without prior arrangements.

Using Keys and Certificates with OC4J and Oracle HTTP Server

15-4 Oracle Containers for J2EE Security Guide

The process for requesting and receiving signatures is up to the particular certificate
authority you use. Because that is outside the scope and control of Oracle Application
Server, this document does not cover it. You can go to the Web site of any certificate
authority for information. (Any browser should have a list of trusted certificate
authorities.) Here are the Web addresses for VeriSign, Inc. and Thawte, Inc., for
example:

http://www.verisign.com/

http://www.thawte.com/

For SSL communication between OC4J and Oracle HTTP Server, at the Oracle HTTP
Server end you must execute the following steps as necessary.

1. Execute steps equivalent to the preceding steps for OC4J, but using a wallet and
Oracle Wallet Manager instead of a keystore and the keytool utility.

2. As appropriate: If the OC4J certificate is signed by an entity that Oracle HTTP
Server does not yet trust, obtain the certificate of the entity and import it into
Oracle HTTP Server. The specifics depend on whether the OC4J certificate in
question is self-signed, as follows.

If OC4J has a self-signed certificate (essentially, Oracle HTTP Server does not yet
trust OC4J):

a. From OC4J, use keytool to export the OC4J certificate. This step places the
certificate into a file that is accessible to Oracle HTTP Server.

b. From Oracle HTTP Server, use Oracle Wallet Manager to import the OC4J
certificate.

Alternatively, if OC4J has a certificate that is signed by another entity (that Oracle
HTTP Server does not yet trust):

a. Obtain the certificate of the entity in any appropriate way, such as by
exporting it from the entity. The exact steps vary, depending on the entity.

b. From Oracle HTTP Server, use Oracle Wallet Manager to import the certificate
of the entity.

3. As appropriate: If the Oracle HTTP Server certificate is signed by an entity that
OC4J does not yet trust, and OC4J is in a mode of operation that requires client
authentication:

(This is discussed in "Requesting Client Authentication" on page 15-15.)

a. Obtain the certificate of the entity in any appropriate way, such as by
exporting it from the entity. The exact steps vary, depending on the entity.

b. From OC4J, use keytool to import the certificate of the entity.

See Also:

■ Oracle Application Server Certificate Authority Administrator’s Guide
for information about OCA

Using SSL with Standalone OC4J

SSL Communication with OC4J 15-5

Using SSL with Standalone OC4J
Standalone OC4J supports SSL communication directly between a client and OC4J,
using HTTPS. This section describes how to accomplish this.

Use the following steps:

1. Create a keystore with an RSA private/public key pair using the keytool utility.
In this example, we generate a keystore to reside in a file named
mykeystore.jks, which has a password of 123456, using the RSA key pair
generation algorithm:

% keytool -genkey -keyalg RSA -keystore mykeystore.jks -storepass 123456

In this tool:

■ The keystore option sets the filename where the keys are stored.

■ The storepass option sets the password for protecting the keystore. You can
optionally omit this from the command line and be prompted for a password
instead.

The keytool prompts you for additional information, as follows:

What is your first and last name?
 [Unknown]: Test User
What is the name of your organizational unit?
 [Unknown]: Support
What is the name of your organization?
 [Unknown]: Oracle
What is the name of your City or Locality?
 [Unknown]: Redwood Shores
What is the name of your State or Province?
 [Unknown]: CA
What is the two-letter country code for this unit?
 [Unknown]: US
Is <CN=Test User, OU=Support, O=Oracle, L=Redwood Shores, ST=CA, C=US> correct?
 [no]: yes

Enter key password for <mykey>
 (RETURN if same as keystore password):

Always press RETURN for the key password. In OC4J 10.1.3.x implementations, the
keystore password must be the same as the key entry password.

The mykeystore file is created in the current directory. The default alias of the
key is mykey.

Note: During communications over SSL between Oracle HTTP
Server and OC4J, all data on the communications channel between
the two is encrypted. The following steps are executed:

1. The OC4J certificate chain is authenticated to Oracle HTTP Server
during establishment of the encrypted channel.

2. Optionally, if OC4J is in client-authentication mode, Oracle HTTP
Server is authenticated to OC4J. This process also occurs during
establishment of the encrypted channel.

3. Any further communication after this initial exchange will be
encrypted.

Using SSL with Standalone OC4J

15-6 Oracle Containers for J2EE Security Guide

2. If you do not have a secure-web-site.xml file, create one in the following
location: ORACLE_HOME/j2ee/home/config/secure-web-site.xml (by
convention). You can start by copying whatever content you need from
default-web-site.xml. This typically includes the following subelements
under the <web-site> element:

■ <web-app> (for each Web application you want to secure)

■ <access-log> (for logging; confirm this specifies an appropriate log file)

■ <default-web-app>

You will also need an <ssl-config> element for your SSL configuration; that is
discussed later in this procedure.

3. Update secure-web-site.xml with the following elements:

a. Update the <web-site> element to add secure="true" and to set the port
value to some available port. (For example, port="4443". To use the default
of 443, you have to be a super user.) For standalone OC4J, use HTTP protocol,
which is the default setting. (The setting protocol="http" in combination
with secure="true" results in HTTPS being used.)

<web-site port="4443" secure="true" protocol="http"
 display-name="Default OracleAS Containers for J2EE Web Site" >
 ...
</web-site>

(Also remember to change the display-name setting as appropriate.)

b. Add the following under the <web-site> element to define the keystore and
password.

<ssl-config keystore="your_keystore" keystore-password="your_password" />

Where your_keystore is the path to the keystore—either absolute, or
relative to ORACLE_HOME/j2ee/home/config (where the Web site XML file
is located)—and your_password is the keystore password.

c. Also see "Optional Steps in secure-web-site.xml" below.

d. Save the changes to secure-web-site.xml.

Note: The keytool utility supports PKCS12 format wallets as well
as JKS format keystores.

See Also:

■ For detailed information about the keytool utility:

http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/k
eytool.html

■ For the ISO two-letter country code list:

http://www.bcpl.net/~jspath/isocodes.html

Note: You can hide the password through password indirection, as
described in "Using Password Indirection" on page 6-1.

Using SSL with Standalone OC4J

SSL Communication with OC4J 15-7

Here is an example:

<?xml version="1.0"?>
<web-site display-name="OC4J 10g Secure Web Site" protocol="http"
 port="4443" secure="true">
 <ssl-config keystore="./roadrunner.jks" keystore-password="welcome1" />
 <default-web-app application="default" name="defaultWebApp" root="/" />
 <web-app application="SSLDemos-Project1-WS" name="WebServices"
 load-on-startup="true" root="/SSLDemos-Project1-context-root" />
 <access-log path="../log/default-web-access2.log" split="day" />
</web-site>

4. Ensure that server.xml points to the secure-web-site.xml file.

a. As necessary, uncomment or add the following line in server.xml:

<web-site path="./secure-web-site.xml" />

b. Save the changes to server.xml.

5. Stop and restart OC4J to initialize the secure-web-site.xml file additions. Test
the SSL port by accessing the site in a browser on the SSL port. If successful, you
will be asked to accept the certificate, because it is not signed by an accepted
authority.

When completed, OC4J listens for SSL requests on one port and non-SSL requests on
another. You can disable either SSL requests or non-SSL requests, by commenting out
the appropriate *-web-site.xml pointer in the server.xml configuration file:

<web-site path="./secure-web-site.xml" /> - comment this to remove SSL
<default-site path="./default-web-site.xml" /> - comment this to remove non-SSL

These Web sites must use different ports.

Optional Steps in secure-web-site.xml
In addition to the steps outlined above for configuring secure-web-site.xml, the
following optional steps may be appropriate as well:

1. Turn on the needs-client-auth flag, an attribute of the <ssl-config>
element, to specify that client authentication is required, as follows:

<web-site ... secure="true" ... >
 ...
 <ssl-config keystore="path_and_file" keystore-password="pwd"
 needs-client-auth="true" />
</web-site>

This step sets up a mode where OC4J accepts or rejects a client entity for secure
communication according to its identity. The needs-client-auth attribute
instructs OC4J to request the client certificate chain upon connection. If the root
certificate of the client is recognized, then the client is accepted.

The keystore specified in the <ssl-config> element must contain the certificates
of any clients that are authorized to connect to OC4J through HTTPS.

Important: In standalone OC4J (no Oracle HTTP Server), setting
needs-client-auth="true" is required in order to use client-cert
authentication mode. See "Requesting Client Authentication" on
page 15-15 for related information.

Using SSL with Standalone OC4J

15-8 Oracle Containers for J2EE Security Guide

2. Specify each application in the Web site as shared. The shared attribute of the
<web-app> element indicates whether multiple bindings (different Web sites, or
ports, and context roots) can be shared. Supported values are "true" and
"false" (default).

Sharing implies the sharing of everything that makes up a Web application,
including sessions, servlet instances, and context values. A typical use for this
mode is to share a Web application between an HTTP site and an HTTPS site at the
same context path, when SSL is required for some but not all of the
communications. Performance is improved by encrypting only sensitive
information, rather than all information.

If an HTTPS Web application is marked as shared, then instead of using the SSL
certificate to track the session, the cookie is used to track the session. This is
beneficial in that the SSL certificate uses 50K to store each certificate when tracking
it, which sometimes results in an "out of memory" problem for the session before
the session times out. This could possibly make the Web application less secure,
but might be necessary to work around issues such as SSL session timeouts not
being properly supported in some browsers.

3. Set the cookie domain if shared="true" and the default ports are not used.
When the client interacts with a Web server over separate ports, the cookie
believes that each separate port denotes a separate Web site. If you use the default
ports of 80 for HTTP and 443 for HTTPS, the client recognizes these as two
different ports of the same Web site and creates only a single cookie. However, if
you use nondefault ports, the client does not recognize these ports as part of the
same Web site and will create separate cookies for each port, unless you specify
the cookie domain.

Cookie domains track the client’s communication across multiple servers within a
DNS domain. If you use nondefault ports for a shared environment with HTTP
and HTTPS, set cookie-domain in the <session-tracking> element in the
orion-web.xml file for the application. The cookie-domain attribute contains
the DNS domain with at least two components of the domain name provided:

<session-tracking cookie-domain=".oracle.com" />

4. Specify the cipher suites to use—combinations of cryptographic specifications that
define security algorithms and key sizes. (This is a server-side cipher suite setting,
as opposed to HTTPClient settings discussed in Chapter 16, "Oracle HTTPS for
Client Connections".) Use the cipher-suites attribute of the <ssl-config>
element in secure-web-site.xml, as in this example:

<ssl-config keystore="your_keystore" keystore-password="your_password"
 cipher-suites="SSL_RSA_WITH_RC4_128_SHA,
 SSL_RSA_WITH_RC4_128_MD5,..." />

This is a comma-delimited list of cipher suites. If you omit this attribute, the set of
cipher suites used is according to those specified as "enabled by default" in the
reference documentation at:

http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JSSERefGuid
e.html

See Also:

■ Oracle Containers for J2EE Configuration and Administration Guide
for more information about sharing Web applications between
Web sites

Using SSL in OPMN-Managed OC4J without Oracle HTTP Server

SSL Communication with OC4J 15-9

Example 15–1 HTTPS Communication with Client Authentication

The following example configures a Web site for HTTPS secure communication with
client authentication:

<web-site display-name="OC4J Web Site" protocol="http" port="4443" secure="true" >
 <default-web-app application="default" name="defaultWebApp" />
 <access-log path="../log/default-web-access.log" />
 <ssl-config keystore="../keystore" keystore-password="welcome"
 needs-client-auth="true" />
</web-site>

Only the portions in bold are specific to security. The protocol value is always "http"
for HTTP communication in standalone OC4J, whether or not you use secure
communication. A protocol value of http with secure="false" indicates HTTP
protocol; http with secure="true" indicates HTTPS protocol.

The needs-client-auth flag instructs OC4J to request the client certificate chain
upon connection. If OC4J recognizes the root certificate of the client, then the client is
accepted.

The keystore that is specified in the <ssl-config> element must contain the
certificates of any clients that are authorized to connect to OC4J through HTTP and
SSL.

Using SSL in OPMN-Managed OC4J without Oracle HTTP Server
OC4J, when managed by OPMN and used as its own Web listener (in other words,
without Oracle HTTP Server), supports SSL communication between a client and OC4J
using HTTPS (similarly to the standalone OC4J scenario discussed previously). You
must also configure OPMN to support HTTPS.

This section describes how to use SSL in this OPMN-managed scenario, involving the
following steps:

1. Configure OC4J with SSL (Scenario without Oracle HTTP Server)

2. Configure OPMN to Support HTTPS (Scenario without Oracle HTTP Server)

Configure OC4J with SSL (Scenario without Oracle HTTP Server)
Configuring OC4J with SSL in an OPMN-managed environment without Oracle HTTP
Server is largely the same as for standalone OC4J, as covered above in "Using SSL with
Standalone OC4J" on page 15-5. Refer there for additional details.

1. Create a keystore.

2. Create secure-web-site.xml (by convention). (Copy content from
default-web-site.xml as appropriate.)

3. Update secure-web-site.xml with the following elements:

a. Update the <web-site> element to add secure="true". Typically, in an
OPMN-managed environment, the choice of port defers to OPMN, as
indicated by setting port="0". Use protocol="http". (The setting
protocol="http" in combination with secure="true" results in HTTPS
being used.)

<web-site port="0" secure="true" protocol="http"
 display-name="Default OracleAS Containers for J2EE Web Site" >
 ...
</web-site>

Using SSL in OPMN-Managed OC4J without Oracle HTTP Server

15-10 Oracle Containers for J2EE Security Guide

(Also remember to change the display-name setting as appropriate.)

b. Add an <ssl-config> element under <web-site> to define the keystore
location and password, using the keystore and keystore-password
attributes.

c. Save the changes to secure-web-site.xml.

Here is an example:

<web-site display-name="OC4J Web Site" protocol="http" port="0"
 secure="true" >
 <default-web-app application="default" name="defaultWebApp" root="/j2ee" />
 <access-log path="../log/default-web-access.log" />
 <ssl-config keystore="../keystore" keystore-password="welcome" />
</web-site>

4. Ensure that server.xml points to secure-web-site.xml.

5. Stop and restart OC4J to initialize secure-web-site.xml.

Configure OPMN to Support HTTPS (Scenario without Oracle HTTP Server)
To use SSL with OC4J in an OPMN-managed environment without Oracle HTTP
Server, you must configure OPMN to support HTTPS. Update the file
ORACLE_HOME/opmn/conf/opmn.xml as follows:

1. Under component ID "OC4J", configure the security parameters (wallet
information):

<ias-component id="OC4J">
 ...
 <category id="security-parameters">
 <data id="wallet-file" value="file:walletfile"/>
 <data id="wallet-password" value="pwd"/>
 </category>
 ...
</ias-component>

2. Also under component ID "OC4J", specify HTTPS protocol for the Web site:

<ias-component id="OC4J">
 ...
 <port id="secure-web-site" range="12501-12600" protocol="https"/>
 ...
</ias-component>

Notes:

■ It is possible to enter a real port here, rather than port 0, if you
configure OPMN to not override the setting in this Web site XML
file.

■ In an OC4J environment without Oracle HTTP Server, setting
needs-client-auth="true" is required in order to use
client-cert authentication mode. See "Requesting Client
Authentication" on page 15-15 for related information.

Using SSL in OPMN-Managed OC4J with Oracle HTTP Server

SSL Communication with OC4J 15-11

Using SSL in OPMN-Managed OC4J with Oracle HTTP Server
In an Oracle Application Server environment, where OC4J is managed by OPMN and
Oracle HTTP Server is the Web listener, OC4J supports SSL communication between
Oracle HTTP Server and OC4J using AJPS (the secure version of Apache JServ
Protocol). This section describes how to use SSL in this scenario, involving the
following:

1. Configure OC4J with SSL (Scenario with Oracle HTTP Server)

2. Configure AJP over SSL

This discussion concludes with sample configuration files.

Configure OC4J with SSL (Scenario with Oracle HTTP Server)
Configuring OC4J with SSL in an Oracle Application Server environment is largely the
same as for standalone OC4J, as covered above in "Using SSL with Standalone OC4J"
on page 15-5. Refer there for additional details.

1. Create a keystore.

2. Create secure-web-site.xml (by convention). Copy content from
default-web-site.xml as appropriate.

3. Update secure-web-site.xml with the following elements:

a. Update the <web-site> element to add secure="true". Typically, in an
Oracle Application Server environment, the choice of port defers to OPMN (as
indicated by the port="0" setting, which is added automatically). Also, use
protocol="ajp13", which is the default setting in an Oracle Application
Server environment. (The setting protocol="ajp13" in combination with
secure="true" results in AJPS being used.)

<web-site port="0" secure="true" protocol="ajp13"
 display-name="Default OracleAS Containers for J2EE Web Site" >
 ...
</web-site>

See Also:

■ Oracle Process Manager and Notification Server Administrator’s Guide
for details about OPMN and opmn.xml

Note: In Oracle Application Server 10.1.3.x implementations, SSL is
enabled by default for communication between Oracle HTTP Server
and the client. No special steps are required. Note that this is
unrelated to the discussion in this section for using SSL between OC4J
and Oracle HTTP Server.

See Also:

■ Oracle HTTP Server Administrator’s Guide for related information
about using SSL with Oracle HTTP Server, including how to
customize your configuration to enable client authentication

■ Oracle Application Server Administrator’s Guide for information
about configuring additional Oracle Application Server
components to take advantage of SSL

Using SSL in OPMN-Managed OC4J with Oracle HTTP Server

15-12 Oracle Containers for J2EE Security Guide

(Also remember to change the display-name setting as appropriate.)

b. Add an <ssl-config> element under <web-site> to define the keystore
location and password, using the keystore and keystore-password
attributes.

c. Save the changes to secure-web-site.xml.

Here is an example:

<web-site display-name="OC4J Web Site" protocol="ajp13" port="0"
 secure="true" >
 <default-web-app application="default" name="defaultWebApp" root="/j2ee" />
 <access-log path="../log/default-web-access.log" />
 <ssl-config keystore="../keystore" keystore-password="welcome" />
</web-site>

The protocol value is always "ajp13" for communication through Oracle HTTP
Server, whether or not you use secure communication. A protocol value of ajp13
with secure="false" indicates AJP protocol; ajp13 with secure="true"
indicates AJPS protocol.

4. Ensure that server.xml points to secure-web-site.xml.

5. Stop and restart OC4J to initialize secure-web-site.xml.

Configure AJP over SSL
This section covers the following aspects of using AJP over SSL:

■ Configure AJPS between OC4J and Oracle HTTP Server

■ Configure OPMN to Support AJPS (Scenario with Oracle HTTP Server)

Configure AJPS between OC4J and Oracle HTTP Server
Configuring AJPS between OC4J and Oracle HTTP Server involves the following
steps:

Important: The OC4J 10.1.3 implementation can support only a
single AJP/AJPS Web site. For example, you cannot have a
default-web-site.xml file that configures an AJP Web site at the
same time that you have a secure-web-site.xml file that
configures an AJPS Web site.

Notes:

■ It is possible to enter a real port here, rather than port 0, if you
configure OPMN to not override the setting in this Web site XML
file.

■ In an Oracle Application Server environment, where Oracle HTTP
Server is the Web listener, the OC4J needs-client-auth
attribute in the <ssl-config> element is not relevant to SSL
authentication from the browser—that would be by arrangement
between the client and Oracle HTTP Server. This attribute is
relevant, however, if you want OC4J to require SSL authentication
from Oracle HTTP Server. See "Requesting Client Authentication"
on page 15-15 for related information.

Using SSL in OPMN-Managed OC4J with Oracle HTTP Server

SSL Communication with OC4J 15-13

1. Use Oracle Wallet Manager to create an auto-login wallet, otherwise known as an
SSO wallet, to use with Oracle HTTP Server.

2. Use the keytool utility to export a certificate from your keystore. (It is assumed
you already have a keystore in OC4J from the step of configuring OC4J with SSL,
described earlier.)

% keytool -export -file cert_file_name -keystore keystore_file_name \
 -storepass=password

Where cert_file_name is the desired file name for the certificate that is
produced, and keystore_file_name is the name of the keystore you already
created. You can optionally omit storepass from the command line and be
prompted for a password instead. You will receive a message confirming the
certificate file name if the command is successful.

3. Use Oracle Wallet Manager to import the generated certificate into your wallet.
Under "Operations", use "Import Trusted Certificate".

4. In Oracle HTTP Server, verify proper SSL settings in the mod_oc4j.conf file for
secure communication. SSL must be enabled, and you must specify a path to the
wallet you created in step 1. (It is not necessary to specify a wallet password here.)

Oc4jEnableSSL on
Oc4jSSLWalletFile wallet_path

The wallet_path value is a directory path to the wallet file, without a file name.
(The wallet file name is already known.)

Configure OPMN to Support AJPS (Scenario with Oracle HTTP Server)
In an Oracle Application Server environment, configuration steps are also required for
OPMN. Update the file ORACLE_HOME/opmn/conf/opmn.xml as follows:

1. Under component ID "OC4J", configure the security parameters (wallet
information):

<ias-component id="OC4J">
 ...
 <category id="security-parameters">
 <data id="wallet-file" value="file:walletfile"/>
 <data id="wallet-password" value="pwd"/>
 </category>
 ...
</ias-component>

2. Also under component ID "OC4J", specify AJPS protocol for the Web site:

<ias-component id="OC4J">
 ...
 <port id="secure-web-site" range="12501-12600" protocol="ajps"/>
 ...
</ias-component>

See Also:

■ Oracle HTTP Server Administrator’s Guide for information about
mod_oc4j.conf

■ Regarding steps 1 and 3, Oracle Application Server Administrator’s
Guide for details about managing wallets and certificates

Using SSL in OPMN-Managed OC4J with Oracle HTTP Server

15-14 Oracle Containers for J2EE Security Guide

3. Under component ID "HTTP_Server", confirm SSL is enabled with the default
"ssl-enabled" setting. (A setting of "ssl-disabled" would disable it.)

<ias-component id="HTTP_Server">
 ...
 <data id="start-mode" value="ssl-enabled"/>
 ...
</ias-component>

Sample Configuration Files for SSL
This section presents samples relating to the configuration discussed in the preceding
sections.

Sample <web-site> Element
This shows a sample <web-site> element from the secure-web-site.xml file:

<web-site port="0" protocol="ajp13" secure="true">
 <default-web-app application="default" name="defaultWebApp" root="/j2ee" />
 <web-app application="default" name="dms" root="/dmsoc4j" />
 ...
 <ssl-config
 keystore="C:\demotest\j2eetest\tsrc\shiphome\sslfiles\KEYSTORE\keystore"
 keystore-password="welcome1"/>
</web-site>

Sample mod_oc4j.conf File
This shows a sample mod_oc4j.conf file:

<IfModule mod_oc4j.c>

 Oc4jEnableSSL on
 Oc4jSSLWalletFile C:\demotest\j2eetest\tsrc\shiphome\sslfiles\ssl.wlt\default
 Oc4jSSLWalletPassword welcome1

 <Location /oc4j-service>
 SetHandler oc4j-service-handler
 Order deny,allow
 Deny from all
 Allow from localhost ani-pc.us.oracle.com ani-pc
 </Location>

</IfModule>

Sample opmn.xml File
This shows sample opmn.xml configuration for component IDs "OC4J" and
"HTTP_Server".

<ias-component id="OC4J">
 <process-type id="home" module-id="OC4J" status="enabled">
 <module-data>
 <category id="start-parameters">
 <data id="java-options" value="-Xrs -server
 -Djava.security.policy=$ORACLE_HOME/j2ee/home/config/java2.policy
 -Djava.awt.headless=true"/>

See Also:

■ Oracle Process Manager and Notification Server Administrator’s Guide
for details about OPMN and opmn.xml

Requesting Client Authentication

SSL Communication with OC4J 15-15

 </category>
 <category id="security-parameters">
 <data id="wallet-file" value=
 "file:C:/demotest/j2eetest/tsrc/shiphome/sslfiles/ssl.wlt/default"/>
 <data id="wallet-password" value="welcome"/>
 </category>
 <category id="stop-parameters">
 <data id="java-options" value=
 "-Djava.security.policy=$ORACLE_HOME/j2ee/home/config/java2.policy
 -Djava.awt.headless=true"/>
 </category>
 </module-data>
 <start timeout="600" retry="2"/>
 <stop timeout="120"/>
 <restart timeout="720" retry="2"/>
 <port id="secure-web-site" range="12501-12600" protocol="ajps"/>
 <port id="rmi" range="3201-3300"/>
 <port id="jms" range="3701-3800"/>
 <process-set id="default_island" numprocs="1"/>
 </process-type>
</ias-component>

<ias-component id="HTTP_Server">
 <process-type id="HTTP_Server" module-id="OHS">
 <module-data>
 <category id="start-parameters">
 <data id="start-mode" value="ssl-enabled"/>
 </category>
 </module-data>
 <process-set id="HTTP_Server" numprocs="1"/>
 </process-type>
</ias-component>

Requesting Client Authentication
This section discusses SSL authentication of a client to a server, focusing in particular
on the OC4J client authentication mode that uses the OC4J needs-client-auth
attribute.

The discussion considers the following scenarios:

■ An end user as a direct client to OC4J (either standalone or OPMN-managed)

■ Oracle HTTP Server, for purposes of this discussion, as a client to OC4J in an
Oracle Application Server environment

■ An end user as a client to Oracle HTTP Server in an Oracle Application Server
environment (for which OC4J configuration, including the needs-client-auth
attribute, is irrelevant)

Overview of OC4J Client Authentication Mode
OC4J supports a client authentication mode in which the OC4J server explicitly
requests SSL authentication from the client (or, in an Oracle Application Server
environment, from Oracle HTTP Server). A client must identify itself with a digital
certificate, which OC4J requests upon connection.

During secure communication with authentication between the client and OC4J, the
following functionality is executed:

■ All communications between the two are encrypted.

Requesting Client Authentication

15-16 Oracle Containers for J2EE Security Guide

■ OC4J is authenticated to the client. A "secret key" is securely exchanged and used
for the encryption of the link.

■ The client is authenticated to OC4J.

Request client authentication through the needs-client-auth attribute of the
<ssl-config> element in secure-web-site.xml, as shown in the following
example, and then perform the steps that follow:

<web-site ... secure="true" ... >
 ...
 <ssl-config keystore="path_and_file" keystore-password="pwd"
 needs-client-auth="true" />
</web-site>

1. A certificate that OC4J trusts is called a trust point. Decide which of the certificates
in the chain from the client is to be your trust point. Ensure that you either have
control over the issuance of certificates using this trust point or that you trust the
certificate authority as an issuer.

2. Import the intermediate or root certificate in the server keystore as a trust point for
authentication of the client certificate.

3. Execute the steps to create the client certificate, documented in "Using SSL with
Standalone OC4J" on page 15-5. The client certificate includes the intermediate or
root certificate that is installed in the server. If you wish to trust another certificate
authority, obtain a certificate from that authority.

4. Save the certificate in a file on the client.

5. Provide the certificate for the client initiation of the secure connection.

OC4J accepts or rejects a client entity for secure communication according to the client
identity. If the root certificate of the client is recognized, then the client is accepted. The
keystore specified in the <ssl-config> element in secure-web-site.xml must
contain the certificates of any clients that are authorized to connect to OC4J.

In the certificate chain from the client, the trust point is the first certificate OC4J
encounters that matches one in its own keystore. There are three ways to establish
trust:

■ The client certificate is in the keystore.

■ One of the intermediate CA certificates in the certificate chain from the client is in
the keystore.

■ The root CA certificate in the certificate chain from the client is in the keystore.

OC4J verifies that the entire certificate chain up to and including the trust point is
valid to prevent any forged certificates.

Client Authentication to OC4J
When the OC4J HTTP listener is used—in standalone OC4J, or in OPMN-managed
OC4J without Oracle HTTP Server—you can set needs-client-auth="true" in
the <ssl-config> element in secure-web-site.xml to request SSL

Note: If you do not want OC4J to accept certain trust points, make
sure these trust points are not in the keystore.

Troubleshooting and Debugging SSL

SSL Communication with OC4J 15-17

authentication from the client (end user). In fact, this setting is required in order to use
client-cert authentication with the OC4J listener.

To provide a certificate, you would set the certificate in the client browser security area
if the client is a browser, or programmatically present the client certificate and the
certificate chain when initiating the HTTPS connection from a Java client.

Refer to the preceding section, "Overview of OC4J Client Authentication Mode", for
additional information.

Oracle HTTP Server Authentication to OC4J in Oracle Application Server
In an Oracle Application Server environment, Oracle HTTP Server, in a manner of
speaking, acts as the client to OC4J. For client authentication in this mode, Oracle
HTTP Server must have its own certificate, and authenticates itself by sending a
certificate and a certificate chain that ends with a root certificate. OC4J can be
configured to accept only root certificates from a specified list in establishing a chain of
trust back to a client.

For this scenario, consider Oracle HTTP Server to be the client for purposes of the
discussion in "Overview of OC4J Client Authentication Mode" on page 15-15.

AJPS (secure Apache JServ Protocol) is used instead of HTTPS for secure
communication between Oracle HTTP Server and OC4J.

Client Authentication to Oracle HTTP Server
For requesting SSL authentication from the client (end user) to Oracle HTTP Server in
an Oracle Application Server environment, OC4J is not involved and its configuration
(including the needs-client-auth attribute) is not relevant. This calls for an
arrangement between the client and Oracle HTTP Server. Refer to the Oracle HTTP
Server Administrator’s Guide for information about using SSL with Oracle HTTP Server,
including how to customize your configuration to enable client authentication.

Set the certificate in the client browser security area if the client is a browser, or
programmatically present the client certificate and the certificate chain when initiating
the HTTPS connection for a Java client.

Troubleshooting and Debugging SSL
This section discusses some common SSL errors and their causes and remedies,
followed by a brief discussion of general SSL debugging.

Common SSL Errors and Solutions
The following errors may occur when using SSL certificates:

Keytool Error: java.security.cert.CertificateException: Unsupported encoding
Cause: There is trailing white space, which the keytool utility does not allow.

Action: Delete all trailing white space. If the error still occurs, add a newline in
your certificate reply file.

Keytool Error: KeyPairGenerator not available
Cause: You are probably using the keytool utility from an older JDK.

See Also:

■ Chapter 16, "Oracle HTTPS for Client Connections"

Enabling ORMIS for OC4J

15-18 Oracle Containers for J2EE Security Guide

Action: Use the keytool utility from the latest JDK on your system. To ensure
that you are using the latest JDK, specify the full path for this JDK.

Keytool Error: Failed to establish chain from reply
Cause: The keytool utility cannot locate the root CA certificates in your
keystore, and therefore cannot build the certificate chain from your server key to
the trusted root certificate authority.

Action: Execute the following command:

% keytool -keystore mykeystore -import -alias cacert -file cacert.cer
 (keytool -keystore mykeystore -import -alias intercert -file inter.cer)

If you use an intermediate CA keytool utility, then execute these commands:

% keytool -keystore mykeystore -genkey -keyalg RSA -alias serverkey
% keytool -keystore mykeystore -certreq -file my.host.com.csr

Get the certificate from the Certificate Signing Request (CSR), then execute the
following command:

% keytool -keystore mykeystore -import -file my.host.com.cer -alias serverkey

No available certificate corresponds to the SSL cipher suites that are enabled
Cause: Something is wrong with your certificate.

Action: Determine and rectify the problem.

General SSL Debugging: javax.net.debug Property
You can display verbose debug information from the Java Secure Socket Extension
(JSSE) implementation for SSL connections, using the javax.net.debug property. To
get a list of options, start OC4J as follows:

■ -Djavax.net.debug=help (for a list of options)

■ -Djavax.net.debug=all (for debug messages with full verbosity)

This includes display of the browser request header, server HTTP header, server HTTP
body, content length (before and after encryption), and SSL version.

Enabling ORMIS for OC4J
ORMI over SSL (ORMIS) is disabled by default in OC4J, because it is recommended
that client and server keystores or Oracle wallets be created before ORMIS is used.

This section describes the configuration to enable ORMIS with OC4J in a standalone
environment, or in a clustered environment in Oracle Application Server. Once these
steps are complete, the "ormis:" protocol can be used wherever the "ormi:" protocol
was used previously.

In all, the following topics are discussed:

■ Configuring ORMIS for Standalone OC4J

■ Configuring ORMIS for OC4J in an Oracle Application Server Environment

■ Configuring ORMIS Access Restrictions

■ Configuring Clients to Use ORMIS

Enabling ORMIS for OC4J

SSL Communication with OC4J 15-19

Configuring ORMIS for Standalone OC4J
ORMIS configuration and related RMI configuration require updates to the
server.xml file and rmi.xml file on each OC4J instance. This section covers the
following topics:

■ Configure server.xml for the RMI Configuration File Location

■ Configure rmi.xml for ORMIS

■ Disable ORMI with ORMIS Enabled (Optional)

Configure server.xml for the RMI Configuration File Location
To enable ORMIS in an OC4J instance, the first step is to ensure that server.xml, the
OC4J server configuration file, has an <rmi-config> element that specifies the path
to rmi.xml, the OC4J RMI configuration file.

Specify the path to rmi.xml as follows:

<rmi-config path="rmi_path" />

Because both the server.xml file and the rmi.xml file are typically in the
ORACLE_HOME/j2ee/home/config directory, the typical value for rmi_path is
"./rmi.xml".

Configure rmi.xml for ORMIS
To use ORMIS, take the following steps to define the SSL configuration in rmi.xml on
each OC4J instance:

1. Use the ssl-port attribute in the <rmi-server> element to specify the SSL
listener port. For example:

<rmi-server ... port="23791" ssl-port="23943">
 ...
</rmi-server>

(This also sets the ORMI listener port to 23791.)

2. Add an <ssl-config> subelement under the <rmi-server> element. This is
for keystore configuration, as desired, and results in startup of an ORMIS listener
(in addition to the non-secure ORMI listener) when OC4J is restarted. There are
two techniques, described below. One is to specify a keystore and password; the
other is to use an anonymous cipher suite.

See Also:

■ Oracle Containers for J2EE Services Guide for general information
about using ORMI in OC4J

See Also:

■ Oracle Containers for J2EE Configuration and Administration Guide
for details about server.xml

Note: The default RMI port is 23791; the default ORMIS port is
23943.

Enabling ORMIS for OC4J

15-20 Oracle Containers for J2EE Security Guide

Using a Keystore and Password The following example sets the SSL port to 23943 and
configures OC4J to use Oracle wallet-based certificates (as well as specifying an RMI
log file):

<rmi-server xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://xmlns.oracle.com/oracleas/schema/rmi-server-10_0.xsd"
 port="23791" ssl-port="23943">
 <ssl-config keystore="/wallets/wallet-server-a/ewallet.p12"
 keystore-password="serverkey-a" />
 ...
 <log>
 <file path="../log/rmi.log" />
 </log>
</rmi-server>

The value of the keystore attribute specifies the keystore location (absolute path, or
path relative to ORACLE_HOME/j2ee/home/config, where the Web site XML file is
located) and file name.

To use a Java keystore instead of an Oracle wallet, configure the <ssl-config>
element as in the following example:

<ssl-config keystore="/keystores/keystore_a.jks" keystore-password="serverkey-a"/>

When using keystores and passwords, the server keystore must contain the signed
certificate of any client that is authorized to connect to OC4J through ORMIS, or
contain the root CA-issued certificate of the client.

Using an Anonymous Cipher Suite Alternatively, you can enable ORMIS using
anonymous cipher suites. To accomplish this, omit the keystore and
keystore-password attributes from the <ssl-config> element:

<ssl-config />

In this mode, any ORMIS client can connect to the server without certification checks
being performed.

Disable ORMI with ORMIS Enabled (Optional)
In standalone OC4J, ORMI can be disabled while ORMIS is enabled. To do this, set the
ORMI port to -1:

<rmi-server ... port="-1" ssl-port="23943">
 <ssl-config keystore="keystore" keystore-password="password" />
 ...
</rmi-server>

With this configuration, the non-secure ORMI listener will be disabled when OC4J is
restarted.

See Also:

■ Oracle Containers for J2EE Services Guide for additional information
about rmi.xml

Important: Use this mode judiciously, given that it allows SSL
communication without regard for a client’s transport-level
authenticity.

Enabling ORMIS for OC4J

SSL Communication with OC4J 15-21

Configuring ORMIS for OC4J in an Oracle Application Server Environment
To enable ORMIS in a clustered Oracle Application Server environment managed by
OPMN, do the following:

1. Generally complete the steps documented for standalone OC4J above, in
"Configure server.xml for the RMI Configuration File Location" on page 15-19 and
"Configure rmi.xml for ORMIS" on page 15-19. The exception is to not set
ssl-port in the <rmi-server> element in rmi.xml. This is not required in an
OPMN-managed environment; in fact, the OPMN-managed RMIS port will
override the ssl-port attribute in rmi.xml.

2. For each Oracle Application Server instance that belongs to the cluster, update the
opmn.xml file to add a <port> element with the rmis port range shown below:

<ias-component id="OC4J">
 <process-type id="home" module-id="OC4J" status="enabled">
 <module-data>
 <category id="start-parameters">
 <data id="java-options" value="-server
 -Djava.security.policy=$ORACLE_HOME/j2ee/home/config/java2.policy
 -Djava.awt.headless=true
 -Dhttp.webdir.enable=false"/>
 </category>
 <category id="stop-parameters">
 <data id="java-options" value=
 "-Djava.security.policy=$ORACLE_HOME/j2ee/home/config/java2.policy
 -Djava.awt.headless=true -Dhttp.webdir.enable=false"/>
 </category>
 </module-data>
 <start timeout="600" retry="2"/>
 <stop timeout="120"/>
 <restart timeout="720" retry="2"/>
 <port id="default-web-site" range="12501-12600" protocol="ajp"/>
 <port id="rmi" range="12401-12500"/>
 <port id="rmis" range="12701-12800"/>
 <port id="jms" range="12601-12700"/>
 <process-set id="default_group" numprocs="1"/>
 </process-type>
 ...
</ias-component>

Configuring ORMIS Access Restrictions
ORMIS (like ORMI) supports the ability to restrict incoming IP access by defining
access control list (ACL) masks, through settings in the <access-mask> element and
its <host-access> and <ip-access> subelements in rmi.xml.

Access controls can be either exclusive or inclusive:

■ In the exclusive mode, access is denied to all IP addresses or hosts except those
specifically included. Use mode="deny" in <access-mask>, then specify which

Note: This is not supported for an OPMN-managed OC4J instance.

See Also:

■ Oracle Application Server Administrator’s Guide for general
information about OPMN and the opmn.xml file

Enabling ORMIS for OC4J

15-22 Oracle Containers for J2EE Security Guide

particular hosts or IP addresses to allow by using mode="allow" in
<host-access> or <ip-access> subelements (or both).

■ In the inclusive mode, access is available to all IP addresses or hosts except those
specifically excluded. Use mode="allow" in <access-mask>, then specify
which particular hosts or IP addresses to deny by using mode="deny" in
<host-access> or <ip-access> subelements (or both).

The following example configures an exclusive mode, allowing access to only
localhost and 192.168.1.0. (255.255.255.0 is the applicable subnet mask.)

<rmi-server xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://xmlns.oracle.com/oracleas/schema/rmi-server-10_0.xsd"
 port="23791" ssl-port="23943">

 <ssl-config keystore="../wallets/wallet-server-a/ewallet.p12"
 keystore-password="serverkey-a" />

 <access-mask default="deny">
 <host-access domain="localhost" mode="allow"/>
 <ip-access ip="192.168.1.0" netmask="255.255.255.0" mode="allow"/>
 </access-mask>

 ...

</rmi-server>

Configuring Clients to Use ORMIS
This section discusses the following client-side configurations for ORMIS:

■ Specify the Appropriate Java Naming Provider URL

■ Specify the Keystore and Password

Specify the Appropriate Java Naming Provider URL
For an application in a standalone OC4J environment, specify the ormis protocol in
the setting of the java.naming.provider.url environment property, which
defines the URI of the system and application:

java.naming.provider.url=ormis://hostname/appname

For an application in an Oracle Application Server (OPMN-managed) environment,
specify the opmn:ormis protocol:

java.naming.provider.url=opmn:ormis://hostname/appname

See Also:

■ Oracle Containers for J2EE Servlet Developer’s Guide for additional
information about the <access-mask> element, which is
supported with the same functionality in orion-web.xml

Note: It is not necessary to include a port number in the URL. The
protocol determines what port is used.

Enabling ORMI Tunneling through HTTPS

SSL Communication with OC4J 15-23

Specify the Keystore and Password
To call an EJB over ORMIS, you must also specify the following on the client side, as
applicable:

■ Path to client keystore (absolute path is recommended)

This is the location of the client-side keystore, where server certificates have been
imported.

■ Keystore password

There are three choices for where to specify these settings, in order of precedence:

■ As JSSE properties:

-Djavax.net.ssl.keyStore=keystore_path
-Djavax.net.ssl.keyStorePassword=keystore_password

■ As properties in jndi.properties (ignored if JSSE property settings are used):

oc4j.[rmi.]keyStoreLoc=keystore_path
oc4j.[rmi.]keyStorePass=keystore_password

■ As properties in ejb_sec.properties (ignored if JSSE or jndi.properties
property settings are used):

oc4j.[rmi.]keyStoreLoc=keystore_path
oc4j.[rmi.]keyStorePass=keystore_password

Enabling ORMI Tunneling through HTTPS
The RMI chapter of the Oracle Containers for J2EE Services Guide discusses how to
configure ORMI tunneling through HTTP.

It is also possible to configure ORMI tunneling through HTTPS for SSL functionality.
The basic steps are as follows:

1. Complete your SSL configuration as discussed in "Using SSL with Standalone
OC4J" on page 15-5 or "Using SSL in OPMN-Managed OC4J with Oracle HTTP
Server" on page 15-11 (as applicable).

For standalone OC4J, this consists of creating your keystore and configuring the
secure-web-site.xml file.

For an Oracle Application Server environment, this consists of creating your
keystore, configuring the secure-web-site.xml file (with some differences
compared to standalone OC4J, as noted), configuring AJP over SSL (as desired),
and configuring OPMN to enable HTTP and use SSL. Note that SSL is enabled by
default in Oracle HTTP Server.

2. Configure your client appropriately (parallel to the steps in "Configuring Clients
to Use ORMIS" on page 15-22):

Notes:

■ Either oc4j.keyStoreLoc or oc4j.rmi.keyStoreLoc is
acceptable. Similarly for keyStorePass.

■ To use ejb_sec.properties, place it in the current directory,
from which the client Java VM was launched.

Enabling ORMI Tunneling through HTTPS

15-24 Oracle Containers for J2EE Security Guide

a. For either standalone OC4J or an Oracle Application Server environment,
specify the ormi:https protocol in setting the
java.naming.provider.url environment property, which defines the URI
of the system and application:

java.naming.provider.url=ormi:https://hostname:https_port/appname

For standalone OC4J, the https_port is as specified in
secure-web-site.xml, as discussed in "Using SSL with Standalone OC4J"
on page 15-5. In an Oracle Application Server environment, the https_port
is the Oracle HTTP Server SSL port.

b. Configure the keystore and password, as discussed in "Specify the Keystore
and Password" on page 15-23.

The following client code snippet uses a URL with the ormi:https protocol:

 private static Context getInitialContext() throws NamingException {
 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "oracle.j2ee.naming.ApplicationClientInitialContextFactory");
 env.put(Context.SECURITY_PRINCIPAL, "oc4jadmin");
 env.put(Context.SECURITY_CREDENTIALS, "welcome1");
 env.put(Context.PROVIDER_URL, "ormi:https://localhost:443/apache-ejb");
 env.put("oc4j.keyStoreLoc",
 "C:/product/iasSOA0622/Apache/Apache/conf/ssl.wlt/default/ewallet.p12");
 env.put("oc4j.keyStorePass", "welcome");

 return new InitialContext(env);
 }

Oracle HTTPS for Client Connections 16-1

16
Oracle HTTPS for Client Connections

This chapter discusses features of Oracle HTTPS for clients. These features provide
Secure Sockets Layer (SSL) functionality to client HTTP connections in conjunction
with functionality of the HTTPClient package, and support the use of the standard
Java Secure Socket Extension (JSSE). This chapter may be of interest for any Java
application that is to use SSL, where either OC4J is the Web listener (such as in
standalone OC4J), or OC4J is behind Oracle HTTP Server. The following topics are
included:

■ HTTPS and Clients

■ Overview of Client-Side HTTPS Features

■ Supported Default System Properties

■ Using HTTPClient with JSSE

■ HTTPClient Support for SSL Host Name Verification

■ Migrating from Oracle Java SSL to JSSE

■ Features for Oracle Java SSL (Deprecated)

Notes:

■ In addition to JSSE, Oracle Java SSL is also supported, but is
deprecated in the OC4J 10.1.3.1 implementation and will be
desupported in future releases. We recommend that you use
JSSE. As a step in the Oracle Java SSL deprecation, JSSE is the
default SSL implementation for HTTPClient in the OC4J
10.1.3.1 implementation. Aside from the last section on Oracle
Java SSL, this chapter emphasizes the use of JSSE.

■ This chapter assumes that you have already obtained keys and
certificates. For general information about configuring OC4J to
use the Secure Sockets Layer, see Chapter 15, "SSL
Communication with OC4J". You can also refer to that chapter
for information about "Requesting Client Authentication" on
page 15-15.

See Also:

■ For general information about JSSE:

http://java.sun.com/j2se/1.4.2/docs/guide/security/jss
e/JSSERefGuide.html

HTTPS and Clients

16-2 Oracle Containers for J2EE Security Guide

HTTPS and Clients
HTTPS is vital to securing client/server interactions. For many server applications,
HTTPS is handled by the Web server. However, any application that acts as a client,
such as a Web application that initiates connections to other Web servers, needs its
own HTTPS implementation to make requests and to receive information securely
from the server. Java application developers who are familiar with either the
HTTPClient package or the Sun Microsystems java.net package can easily use
HTTPS to secure client interactions with a server.

Oracle client HTTPS functionality is based on the HTTPConnection class of the
HTTPClient package, which provides a complete HTTP client library. The
HTTPConnection class is used to create new connections that use HTTP, with or
without SSL.

Overview of Client-Side HTTPS Features
Oracle client HTTPS extends the HTTPConnection class of the HTTPClient package
to provide SSL functionality, including cipher suite selection, security credential
management with Oracle Wallet Manager, support of security-aware applications, and
other features that are described in the following sections. Oracle client HTTPS
supports HTTP 1.0 and HTTP 1.1 connections between a client and a server.

HTTPClient supports two SSL implementations, JSSE and Oracle Java SSL. The latter
is deprecated in the OC4J 10.1.3.1 implementation, however, and will be desupported
in future releases. We recommend that you use JSSE.

In addition to the functionality included in the HTTPClient package, Oracle client
HTTPS supports the following:

■ Multiple cryptographic algorithms

■ Certificate and key management with Oracle Wallet Manager

■ Limited support for the java.net.URL framework

In addition, the HTTPClient package is used to support:

■ HTTPS tunneling through proxies

■ HTTP proxy authentication

The following sections describe some of the features:

Important: The Oracle implementation of HTTPClient has
diverged from the original open source version upon which it was
based. The Oracle version should be considered as a distinct
product. Even though there are still many similarities, the two are
not necessarily compatible with each other.

See Also:

■ Documentation for JSSE and the java.net package:

http://java.sun.com/products/jsse/index.jsp

http://java.sun.com/j2se/1.4.2/docs/api/

■ Oracle Application Server HTTPClient Java API Reference (Javadoc
for the HTTPClient packages)

Overview of Client-Side HTTPS Features

Oracle HTTPS for Client Connections 16-3

■ Supported Keystore Formats

■ Accessing Information for Established SSL Connections

■ Support for java.net.URL Framework

■ SSL Cipher Suites

Supported Keystore Formats
When using JSSE, you can use a PKCS12 or SSO (auto-login) Oracle wallet with the
Oracle JSSE implementation (OraclePKIProvider), or a JKS-format keystore with
the default Sun Microsystems JSSE implementation. (Oracle Java SSL supports only
text-format Oracle wallets.)

For either PKCS12 or SSO wallets, credential information is encrypted. The main
difference is that with an SSO wallet, you do not have to present a wallet password to
open the wallet at time of access.

JKS and PKCS12 are standard formats; SSO wallets are Oracle-proprietary.

Accessing Information for Established SSL Connections
Users can access information regarding established SSL connections using the
getSSLSession() method in the HTTPConnection class of the Oracle
HTTPClient package. After a connection is established, users can retrieve the cipher
suite used for the connection, the peer certificate chain, and other information about
the current connection.

Support for java.net.URL Framework
The HTTPClient package provides basic support for the java.net.URL framework
with the HTTPClient.HttpURLConnection class. However, many of the Oracle
client HTTPS features are supported through system properties only.

Features that are supported only through system properties are:

■ Confidentiality-only option

■ Server authentication option

■ Mutual authentication option

■ Security credential management with Oracle Wallet Manager

See Also:

■ Oracle Application Server Administrator’s Guide (in the chapter for
managing wallets and certificates) for details about creating and
using PKCS12 and SSO/auto-login wallets

Note: If the java.net.URL framework is used, set the
java.protocol.handler.pkgs system property to select the
HTTPClient package as a replacement for the JDK client, as follows:

java.protocol.handler.pkgs=HTTPClient

Overview of Client-Side HTTPS Features

16-4 Oracle Containers for J2EE Security Guide

SSL Cipher Suites
Before data can flow through an SSL connection, both sides of the connection must
negotiate common algorithms to be used for data transmission. A set of such
algorithms combined to provide a mix of security features is called a cipher suite.
Selecting a particular cipher suite lets the participants in an SSL connection establish
the appropriate level for their communications.

In general, you should prefer:

■ RSA to Diffie-Hellman, because RSA defeats many security attacks

■ 3DES or RC4 128 to other encryption methods, because 3DES and RC4 128 have
strong keys

■ SHA1 digest to MD5, because SHA1 produces a stronger digest

As of the OC4J 10.1.3.1 release, JSSE supports the following cipher suites, listed in
default preference order. In this list, "*" indicates the cipher suite is enabled by default,
and "**" indicates the cipher suite requires the installation of the JCE Unlimited
Strength Jurisdiction Policy Files from Sun Microsystems. Note that with null
encryption, SSL is used only for authentication and data integrity purposes.

SSL_RSA_WITH_RC4_128_MD5 *
SSL_RSA_WITH_RC4_128_SHA *
TLS_RSA_WITH_AES_128_CBC_SHA *
TLS_DHE_RSA_WITH_AES_128_CBC_SHA *
TLS_DHE_DSS_WITH_AES_128_CBC_SHA *
SSL_RSA_WITH_3DES_EDE_CBC_SHA *
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA *
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA *
SSL_RSA_WITH_DES_CBC_SHA *
SSL_DHE_RSA_WITH_DES_CBC_SHA *
SSL_DHE_DSS_WITH_DES_CBC_SHA *
SSL_RSA_EXPORT_WITH_RC4_40_MD5 *
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA *
SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA *
SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA *
TLS_RSA_WITH_AES_256_CBC_SHA **
TLS_DHE_RSA_WITH_AES_256_CBC_SHA **
TLS_DHE_DSS_WITH_AES_256_CBC_SHA **
SSL_RSA_WITH_NULL_MD5
SSL_RSA_WITH_NULL_SHA
SSL_DH_anon_WITH_RC4_128_MD5
TLS_DH_anon_WITH_AES_128_CBC_SHA
TLS_DH_anon_WITH_AES_256_CBC_SHA **
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA
SSL_DH_anon_WITH_DES_CBC_SHA
SSL_DH_anon_EXPORT_WITH_RC4_40_MD5
SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA

See Also:

■ Javadoc for the java.net.URL class, at:

http://java.sun.com/j2se/1.4.2/docs/api/

Note: HTTPClient does not provide a way to selectively enable a
subset of supported cipher suites.

Supported Default System Properties

Oracle HTTPS for Client Connections 16-5

Supported Default System Properties
This section discusses standard Java system properties supported for keystores and
truststores. (These properties offer the only way for users of the java.net.URL
framework to set security credential information.) Oracle client HTTPS recognizes the
following properties:

■ Property javax.net.ssl.keyStore

■ Property javax.net.ssl.keyStorePassword

■ Property javax.net.ssl.keyStoreType

■ Property javax.net.ssl.trustStore

■ Property javax.net.ssl.trustStorePassword

■ Property javax.net.ssl.trustStoreType

Property javax.net.ssl.keyStore
This property specifies the location and name of the keystore file or wallet file to use as
the keystore.

Property javax.net.ssl.keyStorePassword
This property can be set to indicate the password that is necessary to open the keystore
(keystore file or wallet file). For example:

javax.net.ssl.keyStorePassword=welcome1

See Also:

■ For general information about JSSE:

http://java.sun.com/j2se/1.4.2/docs/guide/security/jss
e/JSSERefGuide.html

Note: You can set Java system properties on the JVM command line
for standalone OC4J, or in a Java property setting for the OC4J
instance in the opmn.xml file in an Oracle Application Server
environment. Setting system properties is described in the Oracle
Containers for J2EE Configuration and Administration Guide, in the
chapter on OC4J runtime configuration.

Important: Storing the keystore password as a Java system property
can result in a security risk in some environments. To avoid this risk,
use one of the following alternatives:

■ If mutual authentication is not required for the application, use an
SSO wallet, which does not require a password.

■ If a password is necessary, do not store it in a clear text file. As an
alternative, you can load the property dynamically before the
HTTPConnection is started by using the
System.setProperty() method. Unset the property after the
handshake is completed.

Using HTTPClient with JSSE

16-6 Oracle Containers for J2EE Security Guide

Property javax.net.ssl.keyStoreType
This property specifies the type of file used for the keystore. With the Oracle JSSE
implementation (OraclePKIProvider), you can specify PKCS12 or SSO. With the
default Sun Microsystems JSSE implementation, you can specify JKS.

Property javax.net.ssl.trustStore
This property is used similarly to javax.net.ssl.keyStore, but specifies the
location and name of the keystore file or wallet file to use as the truststore (a file that
includes the trusted certificate authorities that a client will implicitly accept).

Property javax.net.ssl.trustStorePassword
This property is used similarly to javax.net.ssl.keyStorePassword, but
specifies the password that is necessary to open the truststore (keystore file or wallet
file).

Property javax.net.ssl.trustStoreType
Similarly to javax.net.ssl.keyStoreType, this property specifies the type of file
used for the truststore—PKCS12 or SSO for the Oracle JSSE implementation, or JKS
for the default Sun Microsystems JSSE implementation.

Using HTTPClient with JSSE
This section describes Oracle Application Server support for HTTPS client connections
using JSSE, covering the following topics:

■ Prerequisites for using JSSE

■ Configuring HTTPClient to Use JSSE

Prerequisites for using JSSE
Note the following requirements to use JSSE with Oracle client HTTPS:

■ You must be using Sun Microsystems JDK version 1.2 or higher. (JSSE is included
as part of JDK 1.4 or higher.)

■ The file oraclepki.jar, located in directory ORACLE_HOME/network/jlib,
must be in your classpath. (The file jssl-1_1.jar or jssl-1_2.jar, used by
Oracle Java SSL, is no longer necessary. These files are incompatible with JSSE and
are no longer included with your installation.)

See Also:

■ The SSL overview in the Oracle Application Server Administrator’s
Guide for discussion of the PKCS12 type

See Also:

■ Oracle Application Server Administrator’s Guide (in the chapter for
managing wallets and certificates) for information about Oracle
Wallet Manager and orapki features for creating and
maintaining wallets

■ For complete information on JSSE:

http://java.sun.com/products/jsse/

Using HTTPClient with JSSE

Oracle HTTPS for Client Connections 16-7

Configuring HTTPClient to Use JSSE
Oracle Application Server supports HTTPS client connections using JSSE. A client can
configure HTTPClient to use JSSE as the underlying SSL provider as follows:

1. Create a truststore using the Sun Microsystems keytool.

2. Set the truststore property. A client wishing to use JSSE must specify the client
truststore location through the javax.net.ssl.trustStore property. The
client is not required to set the javax.net.ssl.keyStore property.

3. Obtain the JSSE SSL socket factory (javax.net.ssl.SSLSocketFactory
instance) by calling the static SSLSocketFactory.getDefault() method.

4. Create an HTTPClient connection (HTTPConnection instance).

5. Configure the HTTPClient connection to use the JSSE implementation of SSL.
HTTPClient can be configured to use JSSE in either of the following ways:

■ (For each connection) The client calls the following method on the
HTTPConnection instance, specifying the JSSE SSL socket factory retrieved
by the getDefault() method in step 3:

void setSSLSocketFactory(SSLSocketFactory factory)

In this case, the SSL socket factory is set for only this connection instance.
Example 16–1 below demonstrates this technique.

■ (Entire VM) The client calls the following static method on the
HTTPConnection class:

void HttpConnection.setDefaultSSLSocketFactory(SSLSocketFactory factory)

In this case, the SSL socket factory is set for all connection instances in the Java
VM, until the method is called again with a different setting. This method
must be called before instantiating any HTTPConnection instances that are to
be affected.

6. There must be a call to the HTTPConnection class connect() method before
sending any HTTPS data. This allows the connection to verify the SSL
handshaking that must occur between client and server before any data can be
encrypted and sent. In the Oracle implementation, this method is called implicitly
during calls to HTTP methods, such as the HTTPConnection class Get()
method. In addition, an explicit call to the connect() method is useful when the
calling application requires SSL session information before sending data. Also see
"Verifying Additional Connection Information" on page 16-10.

7. Use the HTTPConnection instance normally. At this point, the client is set up to
use HTTPClient with JSSE. There is no additional configuration necessary and
basic usage is the same.

Example 16–1 Using JSSE with HTTPClient

public void obtainHTTPSConnectionUsingJSSE() throws Exception
{
 // set the truststore to the location of the client's truststore file

See Also:

■ For details on using the keytool:

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keyto
ol.html

HTTPClient Support for SSL Host Name Verification

16-8 Oracle Containers for J2EE Security Guide

 // this value specifies the certificate authorities the client accepts
 System.setProperty("javax.net.ssl.trustStore", KEYSTORE_FILE);
 // creates the HTTPS URL
 URL testURL = new URL("https://" + HOSTNAME + ":" + HTTPS_PORTNUM);
 // call SSLSocketFactory.getDefault() to obtain the default JSSE implementation
 // of an SSLSocketFactory
 SSLSocketFactory socketFactory =
 (SSLSocketFactory)SSLSocketFactory.getDefault();
 HTTPConnection connection = new HTTPConnection(testURL);

 // configure HTTPClient to use JSSE as the underlying
 // SSL provider
 connection.setSSLSocketFactory(socketFactory);
 // call connect to setup SSL handshake
 try
 {
 connection.connect();
 }
 catch (IOException e)
 {
 e.printStackTrace(); }

 HTTPResponse response = connection.Get("/index.html");

}

HTTPClient Support for SSL Host Name Verification
Although SSL verifies that the certificate chain presented by the server is valid and
contains at least one certificate trusted by the client, that does not prevent
impersonation by malicious third parties. An HTTPS standard that addresses this
problem requires that HTTPS servers have certificates issued to their host name. Then
it is the responsibility of the client to perform this validation after the SSL connection
is established.

A host name verifier (javax.net.ssl.HostnameVerifier implementation) is used
by HTTPClient to verify that the host name in the SSL certificate matches the host
name of the URI used to access the protected server. This helps detect
"man-in-the-middle" attacks. HTTPClient invokes the HostnameVerifier instance
immediately after establishing an SSL session, throwing a
javax.net.ssl.SSLPeerUnverifiedException if a host name mismatch is
detected.

Notes:

■ If no SSL socket factory is specified, JSSE would be used
anyway, by default, if Oracle Java SSL is not specified as
preferred or if Oracle Java SSL classes are not found in the
application classpath. If no SSL socket factory is specified and
Oracle Java SSL is specified as preferred, and Oracle Java SSL
classes are found in the classpath, then Oracle Java SSL is used
by default. Also see "Specifying Oracle Java SSL as the SSL
Implementation for HTTPClient" on page 16-13.

■ The JSSE SSL implementation is not thread-safe.

HTTPClient Support for SSL Host Name Verification

Oracle HTTPS for Client Connections 16-9

The section discusses how to enable and use this feature, covering the following
topics:

■ Enabling Host Name Verification through System Property Setting

■ Enabling Host Name Verification Programmatically

■ Using the Oracle Standard Host Name Verifier

■ Verifying Additional Connection Information

Without either the system property setting or the programmatic setting described
below, host name verification will not be performed.

Enabling Host Name Verification through System Property Setting
To enable host name verification without having to alter your code, set the system
property HTTPClient.defaultHostnameVerifier to the fully-qualified class
name of a host name verifier implementation in the classpath.

The setting must specify the name of an appropriate class (a
javax.net.ssl.HostnameVerifier implementation with a no-argument
constructor).

Enabling Host Name Verification Programmatically
You can use the following methods of the HTTPConnection class to enable host name
verification programmatically, by specifying the
javax.net.ssl.HostnameVerifier instance to use for verification:

■ static HostnameVerifier setDefaultHostnameVerifier
(HostnameVerifier defaultHostnameVerifier)

Use this static method to assign the specified HostnameVerifier instance as the
JVM default. This method returns the previously set default host name verifier, or
null if host name verification was previously disabled by default.

■ HostnameVerifier setHostnameVerifier
(HostnameVerifier hostnameVerifier)

Use this instance method to override the default host name verifier and assign the
specified HostnameVerifier instance for use by the connection. You can also
specify null, in order to disable host name verification for the connection.

This method returns the previous host name verifier for the connection, or null if
host name verification was previously disabled for the connection.

Important: You can provide your own HostnameVerifier
implementation, or use one provided by Oracle (as described below).
The implementation must have a no-argument constructor.

See Also:

■ Javadoc for javax.net.ssl.HostnameVerifier, available
through:

http://java.sun.com/j2se/1.4.2/docs/api/

HTTPClient Support for SSL Host Name Verification

16-10 Oracle Containers for J2EE Security Guide

Using the Oracle Standard Host Name Verifier
Oracle supplies the host name verifier implementation
StandardHostnameVerifier, in the HTTPClient package.

StandardHostnameVerifier implements standard host name matching rules for
site identity checking, providing the following features:

■ It verifies the SSL session host name by checking whether the given host name is
the same as the common name (CN) of the distinguished name (DN) from the first
certificate in the SSL certificate chain. The comparison is not case-sensitive.

■ If wildcard matching is enabled, it will recognize and match the given host name
with a wildcard CN in the SSL certificate (for example, *.oracle.com), if
present.

StandardHostnameVerifier has the following methods:

■ boolean setRecognizeWildcardCNs(boolean recognizeWildcardCNs)

Specify whether to recognize wildcard CNs. This method returns the previously
set value.

■ boolean isRecognizeWildcardCNs()

This method tells you whether wildcard CNs are recognized.

■ boolean verify(java.lang.String hostname,
javax.net.ssl.SSLSession sslSession)

Call this method to verify that the host name is an acceptable match with the
authentication scheme of the server. (This is standard functionality specified in the
javax.net.ssl.HostnameVerifier interface.)

You can specify StandardHostnameVerifier as your host name verifier either
programmatically or through the system property setting, as discussed previously. To
set it as the default host name verifier, for example, use the following system property
setting:

HTTPClient.defaultHostnameVerifier=HTTPClient.StandardHostnameVerifier;

Verifying Additional Connection Information
Further validation (beyond host name verification) may be performed using any data
found in the javax.net.ssl.SSLSession object returned from the
HTTPConnection class getSSLSession() method, after the HTTPConnection
class connect() is called.

To perform this validation, establish a connection to the server without transferring
any data, as follows:

httpsConnection.connect();

After the connection is established, the connection information, in this example the
server certificate chain, is obtained as follows:

peerCerts = (httpsConnection.getSSLSession()).getPeerCertificateChain();

Finally the server certificate common name is obtained as follows.

String peerCertDN = peerCerts[0].getSubjectDN().getName();
peerCertDN = peerCertDN.toLowerCase();

(The user’s certificate is first in the array; the root CA’s certificate is last.)

Migrating from Oracle Java SSL to JSSE

Oracle HTTPS for Client Connections 16-11

If the certificate name is not the same as the host name used to connect to the server,
then the connection is aborted as follows:

if(peerCertDN.lastIndexOf("cn="+ hostname) == -1)
{
 System.out.println("Certificate for " + hostname + " is issued to " +
 peerCertDN);
 System.out.println("Aborting connection");
 System.exit(-1);
}

Migrating from Oracle Java SSL to JSSE
As noted earlier, in the OC4J 10.1.3.1 implementation and beyond, we recommend that
you use JSSE rather than Oracle Java SSL. The latter is deprecated in the 10.1.3.1
implementation and will be desupported in future releases. This section discusses how
to modify your client code to use JSSE instead of Oracle Java SSL for your SSL
functionality.

Code Samples for Migration to JSSE
This section provides code samples to show the steps for creating a new SSL socket
factory using JSSE, compared to equivalent code you would have used previously for
Oracle Java SSL. The java.security.Keystore class and various
javax.net.ssl classes are used to open the keystore or wallet and apply
Oracle-specific security policies for verifying peer certificates.

Here are the steps, with explanations and comparisons:

1. Register the SSL provider. This step is not necessary if providers are set statically
in the jre/lib/security/java.security properties file for your JDK.

Old code for Oracle Java SSL: not applicable

New code for JSSE:

Security.insertProviderAt(new oracle.security.ssl.OraclePKIProvider(), 1);

The static insertProviderAt() method of the java.security.Security
class adds a new provider, at a specified preference position. The position refers to
the preference order in which providers are searched for requested algorithms,
with 1 being most preferred. Use OraclePKIProvider for enforcement of Oracle
security policies. Once you set the provider, you can use standard JSSE classes for
your SSL functionality.

2. Load your keystore, wallet, or trusted certificates.

Old code for Oracle Java SSL:

OracleSSLCredential cred = new OracleSSLCredential();

Note: The preferred mechanism is to use the host name verification
facility described in the preceding sections.

See Also:

■ Javadoc for Keystore and the javax.net.ssl classes, available
through:

http://java.sun.com/j2se/1.4.2/docs/api/

Migrating from Oracle Java SSL to JSSE

16-12 Oracle Containers for J2EE Security Guide

cred.loadWallet("walletpath", "password");

New code for JSSE:

KeyStore myWallet = KeyStore.getInstance("keystoretype","OraclePKI");
FileInputStream istr = new FileInputStream("pathtowallet");
myWallet.load(istr, password);

The static getInstance() method of the Keystore class creates a keystore
object for the specified keystore type from the specified provider. Use OraclePKI
as the provider.

In this sample: keystoretype is PKCS12 or SSO; pathtowallet is the path and
file name of the keystore or wallet file; and password is a char[] array for the
password, or null if you use an SSO wallet.

Note that the OracleSSLCredential class, used for Oracle Java SSL, is not used
for JSSE.

3. Create the SSL socket factory.

Old code for Oracle Java SSL:

OracleSSLSocketFactory socketFactory = new OracleSSLSocketFactoryImpl();
SocketFactory.setSSLCredentials(cred);

New code for JSSE:

TrustManagerFactory tmf = TrustManagerFactory.getInstance("OracleX509");
tmf.init(trustCerts);
TrustManager[] tmA = tmf.getTrustManagers();

KeyManagerFactory kmf = KeyManagerFactory.getInstance("OracleX509");
kmf.init(trustCerts, password);
KeyManager[] kmA = kmf.getKeyManagers();

SSLContext ctx = SSLContext.getInstance("SSL");
ctx.init(kmA, tmA, null);
SSLSocketFactory factory = ctx.getSocketFactory();

Create and set trust managers so the SSL connection can verify the peer certificate
chain. Create and set key managers so the SSL connection can access the user
certificate and private key. Then use key managers and trust managers to
configure the SSL context, which is used to create new SSL socket factories. Once
an SSLSocketFactory instance is created, you can use it to create SSL sockets.

Additional Changes Relevant for Migration to JSSE
Note the following additional changes between Oracle Java SSL and JSSE that may
affect your application:

■ There is a different signature for the createSocket() method of the SSL socket
factory. (This is an OracleSSLSocketFactory instance for Oracle Java SSL, and
an SSLSocketFactory instance for JSSE.) Note, however, that users of
HTTPClient are not required to call createSocket() directly.

Old signature for Oracle Java SSL:

createSocket(Socket sock)

New signature for JSSE:

createSocket(Socket sock, String host, int port, boolean autoClose)

Features for Oracle Java SSL (Deprecated)

Oracle HTTPS for Client Connections 16-13

This method creates a new socket layered over an existing socket. Specify the
existing socket, server host, server port, and whether to close the underlying
socket when the created socket is closed.

■ There is a difference in the peer certificate chain returned by the SSL session object.

For Oracle Java SSL: The getPeerCertificateChain() method of
OracleSSLSession returns a certificate chain with the root CA certificate first
and the peer certificate last.

For JSSE: The getPeerCertificates() method (preferred) or
getPeerCertificateChain() method (maintained for backward
compatibility) of SSLSession returns a certificate chain with the peer certificate
first and the root CA certificate last.

Features for Oracle Java SSL (Deprecated)
Oracle Java SSL is deprecated in the OC4J 10.1.3.1 implementation but not yet
desupported. (It will be desupported in future releases.)

For completeness, this section documents features specific to Oracle Java SSL, but we
strongly recommend that you migrate to JSSE, as discussed in "Migrating from Oracle
Java SSL to JSSE" on page 16-11.

The following topics are covered here:

■ Specifying Oracle Java SSL as the SSL Implementation for HTTPClient

■ OracleSSLCredential Class for Oracle Java SSL

■ Security-Aware Applications Support in Oracle Java SSL

■ Using HTTPClient with Oracle Java SSL

■ Specifying Cipher Suites for Oracle Java SSL

■ SSL Cipher Suites Supported by Oracle Java SSL

Specifying Oracle Java SSL as the SSL Implementation for HTTPClient
In the OC4J 10.1.3.1 implementation, the JDK-default JSSE implementation is now the
default SSL implementation for HTTPClient. (This is a step toward deprecating
Oracle Java SSL, the previous default SSL implementation for HTTPClient.)

You can, however, explicitly specify Oracle Java SSL as the default SSL implementation
for HTTPClient by completing the following steps:

1. Specify the following system property setting:

HTTPClient.preferOracleSSL=true

Note: Depending on the JDK you use, Oracle Java SSL requires the
file jssl-1_1.jar or jssl-1_2.jar to be in the classpath.

See Also:

■ Oracle Advanced Security Administrator’s Guide for information
about Oracle Java SSL

Features for Oracle Java SSL (Deprecated)

16-14 Oracle Containers for J2EE Security Guide

2. Ensure that the Oracle Java SSL classes (for example,
oracle.security.ssl.OracleSSLSocketFactory) are in your classpath.

OracleSSLCredential Class for Oracle Java SSL
To support client HTTPS connections for use with Oracle Java SSL, several methods
were added to the HTTPConnection class that use the Oracle Java SSL class,
OracleSSLCredential.

For Oracle Java SSL, security credentials are used to authenticate the server and the
client to each other. OracleSSLCredential is used to load user certificates and trust
points from base64 or DER-encoded certificates. (DER, part of the X.690 ASN.1
standard, stands for Distinguished Encoding Rules.)

The API for Oracle Java SSL requires that security credentials be passed to the HTTP
connection before the connection is established. The OracleSSLCredential class is
used to store these security credentials. Typically, a wallet generated by Oracle Wallet
Manager is used to populate the OracleSSLCredential object. Alternatively,
individual certificates can be added by using an OracleSSLCredential class API.
After the credentials are complete, they are passed to the connection with the
setSSLCredential() method of the HTTPConnection class.

Security-Aware Applications Support in Oracle Java SSL
Oracle client HTTPS uses SSL to provide security-aware applications support. When
security-aware applications do not set trust points, SSL allows them to perform their
own validation, letting the handshake complete successfully only if a complete
certificate chain is sent by the peer. When applications authenticate to the trust point
level, they are responsible for authenticating individual certificates below the trust
point.

After the handshake is complete, the application must obtain the SSL session
information and perform any additional validation for the connection.

Security-unaware applications that require the trust point check must ensure that trust
points are set in the HTTPS infrastructure.

Using HTTPClient with Oracle Java SSL
This section shows an application that uses HTTPClient and Oracle Java SSL to
connect to a Web server, send a GET request, and fetch a Web page.

Sample Code (Oracle Java SSL)
This section contains the sample code using HTTPClient and Oracle Java SSL.

import HTTPClient.HTTPConnection;
import HTTPClient.HTTPResponse;
import oracle.security.ssl.OracleSSLCredential;
import java.io.IOException;

Important: If an SSL socket factory
(javax.net.ssl.SSLSocketFactory implementation) is
explicitly specified through the setSSLSocketFactory() method
of HTTPConnection, the SSL implementation associated with the
specified factory will be used, regardless of the setting of the
HTTPClient.preferOracleSSL property.

Features for Oracle Java SSL (Deprecated)

Oracle HTTPS for Client Connections 16-15

public class HTTPSConnectionExample
{
 public static void main(String[] args)
 {
 if(args.length < 4)
 {
 System.out.println(
 "Usage: java HTTPSConnectionTest [host] [port] " +
 "[wallet] [password]");
 System.exit(-1);
 }

 String hostname = args[0].toLowerCase();
 int port = Integer.decode(args[1]).intValue();
 String walletPath = args[2];
 String password = args[3];

 HTTPConnection httpsConnection = null;
 OracleSSLCredential credential = null;

 try
 {
 httpsConnection = new HTTPConnection("https", hostname, port);
 }
 catch(IOException e)
 {
 System.out.println("HTTPS Protocol not supported");
 System.exit(-1);
 }

 try
 {
 credential = new OracleSSLCredential();
 credential.setWallet(walletPath, password);
 }
 catch(IOException e)
 {
 System.out.println("Could not open wallet");
 System.exit(-1);
 }
 httpsConnection.setSSLCredential(credential);

 try
 {
 httpsConnection.connect();
 }
 catch (IOException e)
 {
 System.out.println("Could not establish connection");
 e.printStackTrace();
 System.exit(-1);
 }

 javax.servlet.request.X509Certificate[] peerCerts = null;
 try
 {
 peerCerts =
 (httpsConnection.getSSLSession()).getPeerCertificateChain();
 }
 catch(javax.net.ssl.SSLPeerUnverifiedException e)

Features for Oracle Java SSL (Deprecated)

16-16 Oracle Containers for J2EE Security Guide

 {
 System.err.println("Unable to obtain peer credentials");
 System.exit(-1);
 }

 String peerCertDN =
 peerCerts[peerCerts.length -1].getSubjectDN().getName();
 peerCertDN = peerCertDN.toLowerCase();
 if(peerCertDN.lastIndexOf("cn="+ hostname) == -1)
 {
 System.out.println("Certificate for " + hostname + " is issued to "
 + peerCertDN);
 System.out.println("Aborting connection");
 System.exit(-1);
 }

 try
 {
 HTTPResponse rsp = httpsConnection.Get("/");
 System.out.println("Server Response: ");
 System.out.println(rsp);
 }
 catch(Exception e)
 {
 System.out.println("Exception occured during Get");
 e.printStackTrace();
 System.exit(-1);
 }
 }
}

Initializing SSL Credentials in Oracle Java SSL
This example uses a wallet created by Oracle Wallet Manager to set up credential
information.

1. First, create the credentials and load the wallet:

mycredential = new OracleSSLCredential();
mycredential.setWallet(wallet_path, password);

2. After the credentials are created, pass them to your HTTPConnection instance
(here called httpsConnection) through its setSSLCredential() method.
This method takes the OracleSSLCredential instance, created in the first step,
as input:

httpsConnection.setSSLCredential(mycredential);

The private key, user certificate, and trust points located in the wallet can now be used
for the connection.

System Property Features with Oracle Java SSL
"Supported Default System Properties" on page 16-5 discusses the Java system
properties keyStore, keyStorePassword, keyStoreType, trustStore,
trustStorePassword, and trustStoreType. This section discusses features
relating to javax.net.ssl.keyStore that are specific to Oracle Java SSL:

■ This property can be set to point to the text wallet file exported from Oracle Wallet
Manager that contains the credentials that are to be used.

Features for Oracle Java SSL (Deprecated)

Oracle HTTPS for Client Connections 16-17

■ If no other credentials have been set for the HTTPS connection, then the file
indicated by this property is opened when a handshake first occurs. If any errors
occur as this file is read, then the connection fails and an IOException is thrown.

■ If this property has no setting, the application is responsible for verifying that the
certificate chain contains a certificate that can be trusted.

Specifying Cipher Suites for Oracle Java SSL
This section discusses how to specify cipher suites for Oracle Java SSL.

Property Oracle.ssl.defaultCipherSuites
For Oracle Java SSL, Oracle.ssl.defaultCipherSuites property can be set to a
comma-delimited list of cipher suites. For example:

Oracle.ssl.defaultCipherSuites=
 SSL_RSA_WITH_DES_CBC_SHA,
 SSL_RSA_EXPORT_WITH_RC4_40_MD5,
 SSL_RSA_WITH_RC4_128_MD5

You can set this property before establishing an SSL connection using Oracle Java SSL.
The cipher suites that you specify in this property setting are used as the enabled
cipher suites for new HTTPS connections.

Method setSSLEnabledCipherSuites()
For Oracle Java SSL, you can also set cipher suites per connection by using the
following method of the HTTPConnection class in package HTTPClient:

■ boolean setSSLEnabledCipherSuites(String[] cipherSuites)

This takes a Java string array, with each array element specifying a cipher suite. It
returns a boolean indicating whether the current SSL implementation supports this
method.

SSL Cipher Suites Supported by Oracle Java SSL
Oracle Java SSL supports the cipher suites listed in Table 16–1. Note that with NULL
encryption, SSL is used only for authentication and data-integrity purposes.

See Also:

■ Table 16–1, " Cipher Suites Supported by Oracle Java SSL"
below

Note: There is no way to specify cipher suites per HTTP connection
in JSSE.

See Also:

■ Oracle Application Server HTTPClient Java API Reference (Javadoc)
for additional information

Features for Oracle Java SSL (Deprecated)

16-18 Oracle Containers for J2EE Security Guide

Table 16–1 Cipher Suites Supported by Oracle Java SSL

Cipher Suite Authentication Encryption
Hash Function
(Digest)

SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES EDE CBC SHA1

SSL_RSA_WITH_RC4_128_SHA RSA RC4 128 SHA1

SSL_RSA_WITH_RC4_128_MD5 RSA RC4 128 MD5

SSL_RSA_WITH_DES_CBC_SHA RSA DES CBC SHA1

SSL_RSA_EXPORT_WITH_RC4_40_MD5 RSA RC4 40 MD5

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA RSA DES40 CBC SHA1

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA DH anon 3DES EDE CBC SHA1

SSL_DH_anon_WITH_RC4_128_MD5 DH anon RC4 128 MD5

SSL_DH_anon_WITH_DES_CBC_SHA DH anon DES CBC SHA1

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 DH anon RC4 40 MD5

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA DH anon DES40 CBC SHA1

SSL_RSA_WITH_NULL_SHA RSA NULL SHA1

SSL_RSA_WITH_NULL_MD5 RSA NULL MD5

Web Application Security Configuration 17-1

17
Web Application Security Configuration

This chapter discusses security issues affecting Web applications, covering the
following topics:

■ Specifying the Authentication Method (auth-method)

■ Web Application Security Role and Constraint Configuration

Specifying the Authentication Method (auth-method)
This section discusses configuration settings to specify the authentication method for
Web applications. The following topics are covered:

■ Specifying auth-method in web.xml

■ Specifying auth-method in orion-application.xml

■ Using Basic Authentication Fallback in Digest Authentication Mode

■ Using Client-Cert Authentication

■ Using Form-Based Authentication

Specifying auth-method in web.xml
To specify a standard authentication method at the Web application level, use the
<login-config> element and its <auth-method> subelement in web.xml. For
example:

<web-app ... >

See Also:

■ Oracle Containers for J2EE Servlet Developer’s Guide for general
information about Web applications

■ "Synchronization of OracleAS JAAS Provider User Context
with Servlet Sessions" on page 8-11 for information relevant
when using Oracle Identity Management as the security
provider with Oracle Single Sign-On

■ "Introduction to JAAS Mode" on page 5-5 and "Configuring
and Using JAAS Mode" on page 5-18 for information about
JAAS mode, which can be used with Web applications

■ The following Web site for OC4J "how-to" examples:

http://www.oracle.com/technology/tech/java/oc4j/1013
/how_to/index.html

Specifying the Authentication Method (auth-method)

17-2 Oracle Containers for J2EE Security Guide

 ...
 <login-config>
 <auth-method>BASIC</auth-method>
 ...
 </login-config>
 ...
</web-app>

 Table 17–1 shows the standard <auth-method> settings in web.xml.

Specifying auth-method in orion-application.xml
Use the <jazn-web-app> element and its auth-method attribute in
orion-application.xml to specify an Oracle-specific authentication method at the
J2EE application level. Supported settings in the OC4J 10.1.3.1 implementation are

Table 17–1 Values for auth-method in web.xml

Setting Meaning

BASIC The application uses basic authentication.

DIGEST The application uses digest authentication (not supported for
an external LDAP provider or custom provider).

FORM The application uses custom form-based authentication (not
supported for a custom provider).

CLIENT-CERT The application requires the client to supply its own HTTPS
certificate for use with SSL.

Notes:

■ For either the file-based provider or Oracle Identity
Management, we recommend digest authentication as a more
secure solution than basic authentication.

■ When you use DIGEST with Oracle Identity Management as
your security provider, you must take preparatory steps as
described in "Using Digest Authentication with Oracle Internet
Directory" on page 8-15.

■ When you use FORM, you can optionally set an OC4J flag for
appropriate client-side redirects, as described in "Using
Form-Based Authentication" on page 17-4. (This section also
discusses standard configuration for form-based
authentication.)

■ To use CLIENT-CERT, you must also configure the OracleAS
JAAS Provider property x509cert.mapping.attribute, as
described in "Using Client-Cert Authentication" on page 17-5.

See Also:

■ "Web Application Standard Authentication Methods" on
page 2-2 for a summary of these authentication methods

■ The next section, "Specifying auth-method in
orion-application.xml", for Oracle-specific authentication
methods

Specifying the Authentication Method (auth-method)

Web Application Security Configuration 17-3

"SSO" (for Oracle Single Sign-On), "COREIDSSO" (for Oracle Access Manager single
sign-on), and "CUSTOM_AUTH" (to use the identity management framework, including
Java SSO). Refer to "Overview of Oracle Application Server Single Sign-On
Alternatives" on page 3-6 for more information about these features. The following
example is for Oracle Single Sign-On:

<orion-application ... >
 ...
 <jazn provider="LDAP" >
 <jazn-web-app auth-method="SSO"/>
 ...
 </jazn>
 ...
</orion-application>

Using Basic Authentication Fallback in Digest Authentication Mode
In the OC4J 10.1.3.1 implementation, the default behavior is that the digest
authentication module does not handle basic authentication, even if the client sends a
basic authentication header. (This is different from the default behavior in the 10.1.3.0.0
implementation.) To enable basic authentication fallback in the event that the client
sends a basic authentication header, set the digest.auth.basic.fallback
property to "true" in a <property> subelement of the <jazn> element in
orion-application.xml, as in the example below. (Note that the logic of this
property is the reverse of what it was in the 10.1.3.0.0 implementation.)

<jazn provider="XML" location="jazn-data.xml">
 <property name="digest.auth.basic.fallback" value="true" />
 ...
</jazn>

Notes:

■ The authentication method is set in
orion-application.xml automatically for SSO alternatives
you configure through Application Server Control (Oracle
Single Sign-On and Java SSO).

■ Any standard authentication method should be configured in
the web.xml file as described in the preceding section,
"Specifying auth-method in web.xml", not in any OC4J-specific
file. (This differs in some cases from proprietary functionality in
earlier releases, although that functionality is still supported for
backward compatibility.)

■ The <jazn-web-app> element is also supported in the
orion-web.xml file. In the event of conflict, orion-web.xml
takes precedence over orion-application.xml for the
particular Web application in question.

■ A setting for auth-method in orion-application.xml (or
orion-web.xml) overrides any setting in web.xml.

See Also:

■ "Overview of Oracle Application Server Single Sign-On
Alternatives" on page 3-6 for a summary of Oracle-specific
authentication methods

Specifying the Authentication Method (auth-method)

17-4 Oracle Containers for J2EE Security Guide

To avoid using basic authentication fallback, either do not set this property, or
explicitly set it to "false".

Using Form-Based Authentication
This section discusses standard and OC4J-specific aspects of form-based
authentication.

Setting Standard Configuration for Form-Based Authentication
A setting of FORM requires additional configuration within the <login-config>
element in web.xml to specify the URLs for the login page and error page. There is
nothing OC4J-specific about this functionality. Here is an example:

<login-config>
 <auth-method>FORM</auth-method>
 ...
 <form-login-config>
 <form-login-page>mylogin.jsp</form-login-page>
 <form-error-page>myerror.jsp</form-error-page>
 </form-login-config>
</login-config>

Setting the OC4J Flag for Client-Side Redirects
OC4J supports the property oc4j.formauth.redirect for client-side redirects. If
you set this property to true when you start OC4J, then OC4J will execute an
appropriate client-side redirect after a user has entered their credentials for form-based
authentication, affecting the request URI that is listed in the browser. The property is
set as follows:

-Doc4j.formauth.redirect=true

The default setting is false.

With a true setting, if a user enters a user name and password with sufficient
credentials to pass the form-based authentication, the content of the protected resource
will be displayed, and the request URI listed in the browser is the same as the URI that
triggered the form-based authentication. (If the form-based authentication does not
succeed, the client will instead be redirected to the error page specified in the
configuration, described in the preceding section, "Setting Standard Configuration for
Form-Based Authentication".)

Without a true setting, an OC4J-specific j_security_check request URI is listed in
the browser after any form-based authentication.

As an example, assume the following resource is protected by form-based
authentication:

http://myhost:8888/testapp/SecureServlet

Important: If you switch from the file-based provider to Oracle
Identity Management at any time for any application through
Application Server Control, the <jazn> element in
orion-application.xml for the application is replaced with the
following. Any prior settings within the <jazn> element would be
lost and would have to be redone.

<jazn provider="LDAP" />

Specifying the Authentication Method (auth-method)

Web Application Security Configuration 17-5

If oc4j.formauth.redirect=true and form-based authentication succeeds, then
the SecureServlet URI shown above will be listed in the browser when the content
of the protected resource is displayed after form-based authentication. Without the
true flag setting, though, the request URI listed in the browser would be the
following:

http://myhost:8888/testapp/j_security_check

Using Client-Cert Authentication
This section describes how to configure OC4J to authenticate a client through HTTPS,
and describes the OC4J logic flow for this authentication method.

Configuring OC4J for Client-Cert Authentication
To use client authentication through HTTPS:

1. Configure SSL, as described in Chapter 15, "SSL Communication with OC4J".

2. Set <auth-method> to CLIENT-CERT in web.xml, as described in "Specifying
auth-method in web.xml" on page 17-1.

3. Set the OC4J x509cert.mapping.attribute property in the <jazn> element
of the application orion-application.xml file, as necessary.

4. If you use a default realm other than jazn.com (the default realm specified in
jazn.xml), specify that through the default-realm attribute in the <jazn>
element.

For the file-based provider, the default x509cert.mapping.attribute value is
"CN". For Oracle Identity Management (LDAP-based provider) or an external LDAP
provider, the default value is "DN". Here is an example that explicitly sets it to "CN" for
the file-based provider, and also specifies a default realm:

<orion-application ... >
 ...
 <jazn provider="XML" ... default-realm="myrealm" ... >
 <property name="x509cert.mapping.attribute" value="CN"/>
 ...
 </jazn>
 ...
</orion-application>

Note: To use client certificates with Oracle Single Sign-On, follow
procedures outlined in the Oracle Application Server Single Sign-On
Administrator’s Guide rather than procedures here.

Web Application Security Role and Constraint Configuration

17-6 Oracle Containers for J2EE Security Guide

Client-Cert Execution Flow in OC4J
Here is how CLIENT-CERT authentication works in OC4J:

1. A user tries to access a protected resource.

2. OracleAS JAAS Provider retrieves the distinguished name of the certificate user
from the certificate.

3. According to the value of x509cert.mapping.attribute, OracleAS JAAS
Provider retrieves the appropriate value from the certificate user’s distinguished
name. For example, if the attribute setting is "CN", OracleAS JAAS Provider
retrieves the common name from the distinguished name.

4. OracleAS JAAS Provider searches for the certificate user in the relevant user
repository (such as jazn-data.xml for the file-based provider, or Oracle Internet
Directory for the LDAP-based provider). The setting of
x509cert.mapping.attribute determines the search filter. If the attribute
setting is "CN", for example, the common name is the search filter in the user
repository.

Note, however, that the exact behavior differs between the file-based provider and
the LDAP-based or an external LDAP provider. If johndoe is the common name,
for example:

■ For the file-based provider, OracleAS JAAS Provider looks for "johndoe" in
the repository.

■ For the LDAP-based provider or an external LDAP provider, OracleAS JAAS
Provider looks for "cn=johndoe" in the repository.

5. OracleAS JAAS Provider loads the certificate principal and its granted roles, and
populates a Subject instance with this information.

6. Authorization is performed against the subject.

Web Application Security Role and Constraint Configuration
This section describes role types and how they are mapped together:

■ Configuring J2EE Roles and Security Constraints

■ Linking Application Roles to J2EE Roles

■ Definition of Deployment Roles and Users

Important:

■ In standalone OC4J (no Oracle HTTP Server), setting
needs-client-auth="true" in the <ssl-config> element
in secure-web-site.xml is required in order to use client-cert
authentication mode. This attribute is discussed in "Optional Steps
in secure-web-site.xml" on page 15-7.

■ If you switch from the file-based provider to Oracle Identity
Management at any time for any application through Application
Server Control, the <jazn> element in
orion-application.xml for the application is replaced with
the following. Any prior settings within the <jazn> element
would be lost and would have to be redone.

<jazn provider="LDAP" />

Web Application Security Role and Constraint Configuration

Web Application Security Configuration 17-7

■ Specifying a Run-As Security Identity for a Web Application

■ OC4J Mapping of J2EE Roles to Deployment Roles

Configuring J2EE Roles and Security Constraints
J2EE includes a feature for portable security roles defined in the standard deployment
descriptor web.xml for servlets and JavaServer Pages. These J2EE roles are used in
defining a set of resource access permissions for an application. For example, assume
you configure a J2EE role called sr_developers in web.xml. This is accomplished
using a <security-role> element (a subelement of the top-level <web-app>
element):

<web-app>
 ...
 <security-role>
 <role-name>sr_developers</role-name>
 </security-role>
 ...
</web-app>

You also define the access permissions for the sr_developers role in web.xml. A
role is tied to capabilities and constraints through additional standard descriptor
elements, such as under the <security-constraint> element (also a subelement of
<web-app>):

<web-app>
 ...
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>access to the entire application</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <!-- authorization -->
 <auth-constraint>
 <role-name>sr_developers</role-name>
 </auth-constraint>
 </security-constraint>
 ...
</web-app>

Linking Application Roles to J2EE Roles
Associating a principal or logical role defined in your application code with a J2EE role
assigns the defined access permissions of the J2EE role to that principal or application
logical role. You can accomplish this in the web.xml file so that you do not have to
update application code to change role definitions. Use the <security-role-ref>
element (a subelement of the <servlet> element) to link an application role to a J2EE
role:

<web-app>
 ...
 <servlet>
 ...
 <security-role-ref>
 <role-name>ar_developers</role-name>
 <role-link>sr_developers</role-link>
 </security-role-ref>
 ...
 </servlet>

Web Application Security Role and Constraint Configuration

17-8 Oracle Containers for J2EE Security Guide

 ...
</web-app>

The <role-name> element indicates a role in the application code. The
<role-link> element specifies that this application role (ar_developers) should
be linked to a J2EE role (sr_developers) defined previously in a
<security-role> element.

In this example, if a servlet running as a user belonging to sr_developers invokes
the HttpServletRequest method isUserInRole("ar_developers"), the
method will return true.

Definition of Deployment Roles and Users
Deployment roles and users are defined in the security provider that you use. For the
file-based provider, for example, deployment users and roles are defined in the
system-jazn-data.xml file (or, optionally, a user-supplied jazn-data.xml file).

The following configures a developers deployment role:

<jazn-data>
 ...
 <jazn-realm>
 ...
 <realm>
 ...
 <roles>
 ...
 <role>
 <name>developers</name>
 <members>
 <member>
 <type>user</type>
 <name>john</name>
 </member>
 </members>
 </role>
 ...
 </roles>
 ...
 </realm>
 ...
 </jazn-realm>
 ...
</jazn-data>

Specifying a Run-As Security Identity for a Web Application
There are situations where a Web container must allow access to users who are not
known by the container. In such situations, the standard Web application descriptor
may declare a <run-as> setting to specify the role to be allowed access:

<servlet>
 ...

Note: Whenever the container finds no <security-role-ref>
element matching a particular security role, the container checks
the <role-name> value against the entire list of security roles for
the application.

Web Application Security Role and Constraint Configuration

Web Application Security Configuration 17-9

 <run-as>
 <role-name>sr_developers</role-name>
 </run-as>
 ...
</servlet>

The role name must be one of the roles already defined for the Web application. The
Web container must propagate the specified identity for any call from a servlet to the
EJB layer.

OC4J Mapping of J2EE Roles to Deployment Roles
OC4J enables you to map J2EE roles defined in the web.xml file to deployment roles
in the security provider. You can accomplish this through Application Server Control
during deployment, as described in "Specifying Security Role Mapping through
Application Server Control" on page 6-11. Mappings are reflected in
<security-role-mapping> settings in the orion-application.xml file (for a
J2EE application) or orion-web.xml file (for a single Web application). In
orion-application.xml, <security-role-mapping> is a subelement of the
top-level <orion-application> element. Similarly, in orion-web.xml, it is a
subelement of the top-level <orion-web-app> element.

A <group> subelement under a <security-role-mapping> element corresponds
to a role in the security provider.

The following configuration in orion-application.xml would map the J2EE role
sr_developers (defined in web.xml) to the deployment role developers (defined
in system-jazn-data.xml for the file-based provider, for example):

<orion-application>
 ...
 <security-role-mapping name="sr_developers">
 <group name="developers" />
 </security-role-mapping>
 ...
</orion-appliction>

This association permits the developers role to access resources that are configured
in web.xml to be accessible for the sr_developers role.

Consider a user john, for example, who is a member of the developers role.
Because this role is mapped to the J2EE role sr_developers, john has access to
application resources that are made available to the sr_developers role.

See Also:

■ "Run-As Mode and Propagated Identities in Web Applications"
on page 2-3

Web Application Security Role and Constraint Configuration

17-10 Oracle Containers for J2EE Security Guide

EJB Security Configuration 18-1

18
EJB Security Configuration

This chapter discusses security issues affecting EJBs, covering the following topics:

■ Authenticating and Authorizing EJB Applications

■ Specifying Credentials in EJB Clients

■ Permitting EJB RMI Client Access

■ Granting Permissions in the Browser

■ Configuring Anonymous EJB Lookup

■ Enabling and Configuring Subject Propagation for ORMI

Note that beginning with OC4J 10.1.3.x implementations, the EJB container supports
the OracleAS JAAS Provider.

Authenticating and Authorizing EJB Applications
You can define security constraints and J2EE roles in the standard EJB deployment
descriptor to protect your EJB methods. These J2EE roles can be linked to roles you
define in your application, and then mapped to deployment roles in the security
provider, as appropriate. (In the case of EJBs, a deployment role may correspond to a
role in the backend database that the EJB will access, for example.) The mapping to

See Also:

■ Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide
for general information about EJBs and information about EJB
3.0 security annotations

■ Oracle Containers for J2EE Services Guide for information about
ORMI

■ "Enabling ORMIS for OC4J" on page 15-18 (in this document)
for information about ORMIS

■ "JAAS Authorization and OracleAS JAAS Provider JAAS
Mode" on page 5-4 and "Configuring and Using JAAS Mode"
on page 5-18 for information about JAAS mode, which can be
used with EJB applications

■ Chapter 19, "Common Secure Interoperability Protocol" for
information about CSIv2, used in conjunction with EJBs

■ The following Web site for OC4J "how-to" examples:

http://www.oracle.com/technology/tech/java/oc4j/1013
/how_to/index.html

Authenticating and Authorizing EJB Applications

18-2 Oracle Containers for J2EE Security Guide

deployment roles can be accomplished through Application Server Control during
deployment, as described in "Specifying Security Role Mapping through Application
Server Control" on page 6-11, and results in appropriate configuration in the
OC4J-specific deployment descriptors.

For authentication and authorization, this section focuses on XML configuration
within the EJB deployment descriptors. EJB authorization is managed as follows:

■ The standard EJB deployment descriptor describes access rules using J2EE logical
roles.

■ The OC4J-specific deployment descriptor maps the J2EE roles to deployment users
and roles (configured in system-jazn-data.xml, jazn-data.xml, or Oracle
Internet Directory, for example).

Figure 18–1 provides an overview of EJB role definitions and role mapping (in this
case for the file-based provider).

Figure 18–1 End-to-End Security Role Configuration

The steps for EJB authorization are described in the following sections:

■ Specifying J2EE Roles and Method Permissions in the EJB Deployment Descriptor

■ Specifying Unchecked Security for EJB Methods

■ Specifying a Run-As or Caller Security Identity for an EJB

■ Mapping J2EE Roles to Deployment Users and Roles

■ Configuring Namespace Access

■ Specifying a Default Role Mapping for Unidentified Methods

Note: RMI lookup authentication is integrated with JAAS custom
login modules. Refer to Chapter 9, "Login Modules" for information
about login modules.

Authenticating and Authorizing EJB Applications

EJB Security Configuration 18-3

Specifying J2EE Roles and Method Permissions in the EJB Deployment Descriptor
As shown in Figure 18–2 below, you can specify the name of a role (such as POMgr)
that is defined within your bean implementation, and link this name to the
appropriate J2EE user or role (such as myMgr) that is defined in the standard EJB
deployment descriptor. (The next step, mapping to a deployment role, is reflected in
the OC4J-specific deployment descriptor, as discussed in "Mapping J2EE Roles to
Deployment Users and Roles" on page 18-6.)

Figure 18–2 Security Role References

The following steps describe this in more detail:

1. Declare the application logical role, such as POMgr above, with a <role-name>
subelement of <security-role-ref> in the <enterprise-beans> section in

Troubleshooting Tips:

■ For an application to access EJBs using RMI, you must grant
RMI permission "login" to the appropriate user or role. Refer to
"Permitting EJB RMI Client Access" on page 18-10.

■ If an application contains an EJB, remote clients must be
granted access for read (lookup) and write (bind) operations on
the server-side JNDI context of the application, as required.
Refer to "Configuring Namespace Access" on page 18-8.

Authenticating and Authorizing EJB Applications

18-4 Oracle Containers for J2EE Security Guide

the standard EJB deployment descriptor. (For this example, assume this role has
purchase order authority. A caller would have to be mapped into this role, as
confirmed by an isCallerInRole() call, to work with a purchase order.)

Use a <role-link> subelement of <security-role-ref> to link the
application role to a desired J2EE logical role (which you will define in the next
step, also in the standard EJB deployment descriptor). This functionality allows
you to use your application in various J2EE environments without changing the
bean code. The application role POMgr is linked to the J2EE role myMgr:

<enterprise-beans>
 ...
 <security-role-ref>
 <role-name>POMgr</role-name>
 <role-link>myMgr</role-link>
 </security-role-ref>
 ...
</enterprise-beans>

(The J2EE role in the <role-link> setting can be the same as a deployment role,
or it can be mapped to a deployment role in a later step.)

2. Define the J2EE role and the EJB methods for which it has permissions in the
standard EJB deployment descriptor. In this purchase order example, assume any
method executed within a bean PurchaseOrder must have authorized itself as
myMgr, a J2EE role that is declared through a <role-name> subelement of
<security-role>. This is the J2EE role that was linked to the application role
POMgr in the previous step. Note that PurchaseOrder is the name declared in
the <ejb-name> element, a subelement of the <session> or <entity> element.

The following example defines the role myMgr and gives it permission to access all
methods (as indicated by the "*" symbol) of the EJB PurchaseOrder bean:

<assembly-descriptor>
 ...
 <security-role>
 <description>Role for purchase order authorization</description>
 <role-name>myMgr</role-name>
 </security-role>
 <method-permission>
 <role-name>myMgr</role-name>
 <method>
 <ejb-name>PurchaseOrder</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 ...
</assembly-descriptor>

After performing both steps, you can refer to POMgr within the bean implementation,
and OC4J maps POMgr to myMgr.

Note: The <security-role-ref> element is required only
when you use security context methods within your bean.

Authenticating and Authorizing EJB Applications

EJB Security Configuration 18-5

Looking more closely at the <method-permission> element: the <method>
subelement is used to specify the security role for one or more methods within an
interface or implementation. According to the EJB specification, this definition can take
one of the following forms:

■ Defining all methods within a bean by specifying the bean name and using the "*"
character to denote all methods within the bean, as follows:

<method-permission>
 <role-name>myMgr</role-name>
 <method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>

■ Defining a specific method that is uniquely identified within the bean. Use the
appropriate interface name and method name, as follows:

<method-permission>
 <role-name>myMgr</role-name>
 <method>
 <ejb-name>myBean</ejb-name>
 <method-name>myMethodInMyBean</method-name>
 </method>
</method-permission>

■ Defining a method with a specific signature among many overloaded versions, as
follows:

<method-permission>
 <role-name>myMgr</role-name>
 <method>
 <ejb-name>myBean</ejb-name>
 <method-name>myMethod</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
</method-permission>

The parameters are the fully-qualified Java types of the input parameters of the
method. If the method has no input arguments, the <method-params> element
contains no subelements.

Note: If you specify different roles within the
<method-permission> element for methods in the same EJB, the
resulting permission is a union of all the method permissions
defined for the methods of this bean.

Note: If there are multiple methods with the same overloaded
name, the element of this style refers to all the methods with the
overloaded name.

Authenticating and Authorizing EJB Applications

18-6 Oracle Containers for J2EE Security Guide

Specifying Unchecked Security for EJB Methods
If you want certain methods to not be checked for security roles, use the standard EJB
deployment descriptor to define these methods as unchecked, as follows:

<method-permission>
 <unchecked/>
 <method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>

Instead of defining a <role-name> element, you define an empty <unchecked>
element. When executing any methods in the EJBNAME bean, the container does not
check for security. Unchecked methods always override any other role definitions.

Specifying a Run-As or Caller Security Identity for an EJB
You can specify in the standard EJB deployment descriptor that all methods of an EJB
execute under a specific identity. That is, the container does not check different roles
for permission to run specific methods; instead, the container executes all of the EJB
methods under the specified security identity. You can specify a particular role or the
caller identity as the security identity.

Specify the "run-as" security identity in the <security-identity> element, which
is in the <enterprise-beans> section. The following example indicates that POMgr
is the role under which all the entity bean methods execute:

<enterprise-beans>
 <entity>
 ...
 <security-identity>
 <run-as>
 <role-name>POMgr</role-name>
 </run-as>
 </security-identity>
 ...
 </entity>
 ...
</enterprise-beans>

Alternatively, the following example demonstrates how to specify that all methods of
the bean execute under the identity of the caller:

<enterprise-beans>
 <entity>
 ...
 <security-identity>
 <use-caller-identity/>
 </security-identity>
...
 </entity>
</enterprise-beans>

Mapping J2EE Roles to Deployment Users and Roles
As noted earlier, you can define J2EE roles and related security constraints in the
standard EJB deployment descriptor to protect your EJB methods. These J2EE roles can
then be mapped to deployment users and roles that are defined in the security

Authenticating and Authorizing EJB Applications

EJB Security Configuration 18-7

provider. This security role mapping can be accomplished through Application Server
Control during deployment, as described in "Specifying Security Role Mapping
through Application Server Control" on page 6-11.

Mappings are reflected in <security-role-mapping> settings in Oracle-specific
descriptors, as shown in the discussion that follows.

While we recommend that you use Application Server Control for role mapping, the
following discussion provides reference information for the resulting configuration in
orion-ejb-jar.xml when you map the J2EE role myMgr to the deployment role
managers. Any user that can log in as part of the managers role is considered to
have permissions of the myMgr role (which had previously been linked to the POMgr
application logical role), and can execute the methods of the PurchaseOrder bean.

In the standard EJB deployment descriptor:

<assembly-descriptor>
 ...
 <security-role>
 <role-name>myMgr</role-name>
 </security-role>
 <method-permission>
 <role-name>myMgr</role-name>
 <method>...</method>
 </method-permission>
 ...
</assembly-descriptor

In the OC4J-specific deployment descriptor:

<assembly-descriptor>
 ...
 <security-role-mapping name="myMgr">
 <group name="managers" />
 </security-role-mapping>
 ...
</assembly-descriptor>

Alternatively, for mapping to a specific user:

<security-role-mapping name="myMgr">
 <user name="guest" />
</security-role-mapping>

For mapping to a specific user within a specific role:

<security-role-mapping name="myMgr">
 <group name="managers" />
 <user name="guest" />
</security-role-mapping>

See Also:

■ Oracle Containers for J2EE Developer’s Guide for information
about the orion-application.xml file

■ Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide
for information about the orion-ejb-jar.xml file

Authenticating and Authorizing EJB Applications

18-8 Oracle Containers for J2EE Security Guide

Configuring Namespace Access
If an application contains an EJB, remote clients must be given namespace access to
read (look up) and write (bind) objects as required on the server-side JNDI context of
the application. "Read" and "write" correspond to the lookup() and bind() methods
of a javax.naming.Context object, respectively.

The remote client’s user credentials (the JNDI properties passed to the remote client
context) should map to one of the roles that are granted access to the JNDI context of
the application.

The following example, which would appear in orion-application.xml, shows
how the namespace access is granted for read operations to roles named managers
and developers.

<orion-application ... >
 ...
 <namespace-access>
 <read-access>
 <namespace-resource root="">
 <security-role-mapping name="sr_developer">
 <group name="developers"/>
 </security-role-mapping>
 <security-role-mapping name="myMgr">
 <group name="managers"/>
 </security-role-mapping>
 </namespace-resource>
 </read-access>
 </namespace-access>
 ...
</orion-application>

This assumes the indicated role mappings had already been set up elsewhere in
orion-application.xml.

Specifying a Default Role Mapping for Unidentified Methods
If any methods have not been associated with a role mapping, they are mapped to the
default security role through the <default-method-access> element in the
orion-ejb-jar.xml file. The following is the automatic mapping for any unsecured
methods:

<assembly-descriptor>
 ...
 <default-method-access>
 <security-role-mapping name="<default-ejb-caller-role>"
 impliesAll="true" />
 </default-method-access>
 ...
</assembly-descriptor>

The default role is <default-ejb-caller-role>, specified in the name attribute.
You can replace this string with any name for the default role. The impliesAll
attribute indicates whether any security role checking occurs for these methods. A
"true" setting indicates that no security role checking occurs. A "false" setting
indicates that the container will check for this default role on these methods.

In the orion-ejb-jar.xml file, the impliesAll attribute has defaults as follows:

Specifying Credentials in EJB Clients

EJB Security Configuration 18-9

■ If <security-role-mapping> is specified in orion-ejb-jar.xml but
impliesAll is not set, then this attribute defaults to "false" and the container
checks for this default role on these methods.

■ If <security-role-mapping> is not specified in orion-ejb-jar.xml, the
OC4J EJB layer defaults to a "true" setting for impliesAll and no security role
checking occurs for these methods.

If the impliesAll attribute is "false", you must map the default role defined in the
name attribute to a deployment user or role through the <user> or <group>
subelement. The following example shows how all methods not associated with a
method permission are mapped to the others role.

<default-method-access>
 <security-role-mapping name="default-role" impliesAll="false" />
 <group name="others" />
 </security-role-mapping>
</default-method-access>

Specifying Credentials in EJB Clients
When you access EJBs in a remote container, you must pass valid credentials to this
container.

■ Standalone clients define their credentials in the jndi.properties file deployed
in client.jar (standard J2EE client module).

■ Servlets or JavaBeans running within the container pass their credentials within
the InitialContext, which is created to look up the remote EJBs.

Credentials in JNDI Properties
When you access EJBs in a remote container, you must pass valid credentials to the
container. Standalone clients define their credentials in the jndi.properties file
deployed with the client’s code, using the following properties:

java.naming.security.principal=username
java.naming.security.credentials=password

For example, if you want to access remote EJBs as POMGR/welcome, set the properties
as follows. The java.naming.factory.initial setting indicates that you will use
the Oracle JNDI implementation:

java.naming.security.principal=POMGR
java.naming.security.credentials=welcome
java.naming.factory.initial=
 oracle.j2ee.naming.ApplicationClientInitialContextFactory
java.naming.provider.url=ormi://myhost/ejbsamples

In your application program, authenticate and access the remote EJBs as shown in the
following example:

InitialContext ic = new InitialContext();
CustomerHome =
 (CustomerHome)ic.lookup("java:comp/env/purchaseOrderBean");

Note: RMI lookup authentication is integrated with JAAS custom
login modules. Refer to Chapter 9, "Login Modules" for information
about login modules.

Permitting EJB RMI Client Access

18-10 Oracle Containers for J2EE Security Guide

Credentials in the InitialContext
JavaBeans running within the container pass their credentials within the
javax.naming.InitialContext instance, which is created to look up the remote
EJBs.

For example, to pass JNDI security properties within the Hashtable environment:

Hashtable env = new Hashtable();
env.put("java.naming.provider.url", "ormi://myhost/ejbsamples");
env.put("java.naming.factory.initial",
 "oracle.j2ee.naming.ApplicationClientInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "guest");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
Context ic = new InitialContext (env);
Object homeObject = ic.lookup("java:comp/env/employeeBean");

// Narrow the reference to a TemplateHome.
EmployeeHome empHome =
 (EmployeeHome) PortableRemoteObject.narrow(homeObject, EmployeeHome.class);

Permitting EJB RMI Client Access
For an application to access EJBs using RMI, you must grant RMI permission "login" to
the appropriate user or role. You can accomplish this through the OracleAS JAAS
Provider Admintool.

The following example sets this permission for a role (users):

% java -jar jazn.jar -grantperm myrealm -role users \
 com.evermind.server.rmi.RMIPermission login

And this example sets the permission for a user (JDOE_ENDUSER):

% java -jar jazn.jar -grantperm myrealm -user JDOE_ENDUSER \
 com.evermind.server.rmi.RMIPermission login

For the file-based provider, you can also grant this permission to a role through
Application Server Control, by selecting the role and checking the "Grant RMI
Permission" checkbox. (Also refer to "Create a Role" on page 7-7 or "Edit a Role" on
page 7-8.)

Restart OC4J for changes to take effect.

Important: The jndi.properties file must be accessible from
the classpath.

Note: ApplicationClientInitialContextFactory is in the
file oc4jclient.jar.

See Also:

■ Appendix C, "OracleAS JAAS Provider Admintool Reference"

■ "Policy Configuration in system-jazn-data.xml" on page 5-15

Configuring Anonymous EJB Lookup

EJB Security Configuration 18-11

Granting Permissions in the Browser
If you download the EJB application as a client where the security manager is active,
you must grant the following permissions before you can execute:

permission java.net.SocketPermission "*:*", "connect,resolve";
permission java.lang.RuntimePermission "createClassLoader";
permission java.lang.RuntimePermission "getClassLoader";
permission java.util.PropertyPermission "*", "read";
permission java.util.PropertyPermission "LoadBalanceOnLookup", "read,write";

Configuring Anonymous EJB Lookup
Anonymous EJB lookup is a mode you may consider, presumably only during
development or very special circumstances. In this mode, you do not specify the
principal and credential when creating the InitialContext, and therefore do not
have to specify a principal or credential to remotely access EJBs. Your
jndi.properties file would look like this:

java.naming.factory.initial=
 oracle.j2ee.naming.ApplicationClientInitialContextFactory
java.naming.provider.url=ormi://localhost:23791/ejb30slsb
java.naming.security.principal=
java.naming.security.credentials=

You can enable this mode as follows:

1. Confirm that the anonymous user is configured in system-jazn-data.xml,
and that this user is activated, as described in "Predefined Accounts" on page 4-11.

2. Also in system-jazn-data.xml, under the appropriate realm, assign the
anonymous user to a role that has been granted RMI permissions, as described in
"Permitting EJB RMI Client Access" on page 18-10. For example, assuming the
users role is granted RMI permissions:

<jazn-data>
 ...
 <jazn-realm>
 <realm>
 <name>myrealm</name>
 ...
 <roles>

 <role>
 <name>users</name>
 <members>
 <member>
 <type>user</type>
 <name>anonymous</name>
 </member>
 </members>
 </role>
 ...
 </roles>
 ...
 </realm>

Important: Oracle generally discourages this practice, as it leaves
EJBs completely unsecured.

Enabling and Configuring Subject Propagation for ORMI

18-12 Oracle Containers for J2EE Security Guide

 ...
 </jazn-realm>
 ...
</jazn-data>

3. Give the role (users in this example) appropriate namespace access so that it can
execute read (lookup) and write (bind) operations on the server-side JNDI context
of the application. Use configuration such as the following in the
orion-application.xml file for the application:

<orion-application>
 ...
 <namespace-access>
 <read-access>
 <namespace-resource root="">
 <security-role-mapping name="jndi-user-role">
 <group name="administrators" />
 <group name="users" />
 </security-role-mapping>
 </namespace-resource>
 </read-access>
 <write-access>
 <namespace-resource root="">
 <security-role-mapping name="jndi-user-role">
 <group name="administrators" />
 <group name="users" />
 </security-role-mapping>
 </namespace-resource>
 </write-access>
 </namespace-access>
 ...
</orion-application>

With this configuration, you can access remote EJBs without specifying principals or
credentials.

Enabling and Configuring Subject Propagation for ORMI
This section discusses subject propagation in OC4J, and documents how to enable it
with ORMI. (It is always used with IIOP, in accordance with the CSIv2 specification.)
The following topics are covered:

■ Overview of Subject Propagation in OC4J

■ Enabling Subject Propagation for ORMI

■ Sharing Principal Classes for Subject Propagation

■ Removing and Configuring Subject Propagation Restrictions

Enabling and Configuring Subject Propagation for ORMI

EJB Security Configuration 18-13

Overview of Subject Propagation in OC4J
OC4J supports subject propagation, as summarized in Figure 18–3. Through this
feature, a Web client can establish its identity to a servlet, and the servlet can then use
that identity to communicate with other EJBs and servlets, where the identity is the
appropriate subject (javax.security.auth.Subject instance). Similarly, a remote
EJB fat client can use this feature in calling to the EJB container.

Figure 18–3 Subject Propagation

After the client’s current subject is obtained, through a Subject.getSubject() call,
subject propagation works as follows:

1. The subject is serialized over to the RMI server.

2. The RMI server deserializes the subject and uses it to set up the server-side JAAS
context.

Subjects may be propagated through a series of EJB invocations, for example. The EJB
incorporates the client identity if the EJB is configured to use the client’s identity. The
EJB cannot be configured to use run-as mode with a specific role.

Important:

■ Subject propagation is a powerful feature that should be used
only in environments where the server is secure from untrusted
client access. It is therefore advised, in order to ensure proper
integrity of client requests, that appropriate safeguards be
established before this feature is used in production
environments. For example, consider using application or
network firewalls, RMI access restrictions (through the
<access-mask> element in rmi.xml, as documented in
"Configuring ORMIS Access Restrictions" on page 15-21), or
RMI subject-propagation restrictions (through the
<subject-propagation-mask> element in rmi.xml, as
documented in "Removing and Configuring Subject
Propagation Restrictions" on page 18-15).

■ Subject propagation is supported only between OC4J 10.1.3.x
instances.

J2EE Container

Enterprise Information
System Tier

EJB

Messaging
System

ERP, SAP
Applications

Username

Password

Caller ID

Database

J2EE Container
Web Client

(such as browser)

Caller ID
EJB EJB

JSP / Servlet

Enabling and Configuring Subject Propagation for ORMI

18-14 Oracle Containers for J2EE Security Guide

Enabling Subject Propagation for ORMI
The following steps are required in order to use subject propagation:

1. Set the Subject Propagation System Property

2. Enable JAAS Mode

3. Grant RMI Permission for Subject Propagation

Set the Subject Propagation System Property
In OC4J, you can use subject propagation with ORMI if you specifically enable it on
the client and server. (It is always enabled for IIOP, in accordance with the CSIv2
specification.) You can accomplish this with the following system property setting on
the client and on the server:

-Dsubject.propagation=true

In the current release, this setting controls subject propagation at a global OC4J level.

Enable JAAS Mode
For subject propagation to work properly, JAAS mode must be enabled for the Web
application where the subject is being propagated from, and for the EJB where the
subject is being propagated to. So for each, there must be a setting of
jaas-mode="doAs" or jaas-mode="doAsPrivileged" in the <jazn> element of
the orion-application.xml file, as discussed in "Introduction to JAAS Mode" on
page 5-5.

Grant RMI Permission for Subject Propagation
A propagated subject is accepted by the server only if the RMIPermission
subject.propagation is granted to the EJB caller. The following example uses the
OracleAS JAAS Provider Admintool to grant this permission to the user oc4jadmin,
so that this user will have its subject propagated to the server:

% java -jar jazn.jar -grantperm myrealm -user oc4jadmin \
 com.evermind.server.rmi.RMIPermission subject.propagation

You can also grant subject.propagation permission to a role. With the following
example, any user in the users role would have its subject propagated to the server:

% java -jar jazn.jar -grantperm myrealm -role users \
 com.evermind.server.rmi.RMIPermission subject.propagation

You can restrict subject propagation by specifying the principal names that the server
will accept in the subject. The following example again grants
subject.propagation permission to any user in the users role, but the server will
filter out all but the developer and manager principals from propagated subjects.
(Note that the filtering is according to principal names, not principal types.)

% java -jar jazn.jar -grantperm myrealm -role users \
 com.evermind.server.rmi.RMIPermission subject.propagation developer,manager

By default, there is no restriction—all principals in the subject are accepted. But you
can also explicitly specify this with the subject.propagation parameter "*"
(including the quotes):

% java -jar jazn.jar -grantperm myrealm -user oc4jadmin \
 com.evermind.server.rmi.RMIPermission subject.propagation "*"

Enabling and Configuring Subject Propagation for ORMI

EJB Security Configuration 18-15

This is equivalent to the first example above.

Sharing Principal Classes for Subject Propagation
While java.security.Subject is a class provided with the JDK,
java.security.Principal is an interface that you can implement as desired. For
subject propagation to work properly with ORMI, you must ensure that the remote
client, application, and OC4J all have access to any Principal class definitions.

You can accomplish this by putting them in a library that is loaded as an OC4J shared
library, as documented in "Tasks to Share a Library" on page 6-14.

Removing and Configuring Subject Propagation Restrictions
By default, access to subject propagation is denied to all ORMI clients. You can
configure desired access through settings in the <subject-propagation-mask>
element and its <host-access> and <ip-access> subelements in rmi.xml.

Subject propagation access can be either exclusive or inclusive:

■ In the exclusive mode, access is denied to all IP addresses or hosts except those
specifically included. Use mode="deny" in <subject-propagation-mask>,
then specify which particular hosts or IP addresses to allow by using
mode="allow" in <host-access> or <ip-access> subelements (or both).

■ In the inclusive mode, access is available to all IP addresses or hosts except those
specifically excluded. Use mode="allow" in <subject-propagation-mask>,
then specify which particular hosts or IP addresses to deny by using
mode="deny" in <host-access> or <ip-access> subelements (or both).

The following example configures an exclusive mode, allowing subject propagation
for only localhost and 192.168.1.0. (255.255.255.0 is the applicable subnet
mask.)

<rmi-server ... >
 ...
 <subject-propagation-mask default="deny">
 <host-access domain="localhost" mode="allow"/>
 <ip-access ip="192.168.1.0" netmask="255.255.255.0" mode="allow"/>
 </subject-propagation-mask>
 ...
</rmi-server>

The default setting is as follows:

<subject-propagation-mask default="deny"/>

Enabling and Configuring Subject Propagation for ORMI

18-16 Oracle Containers for J2EE Security Guide

Common Secure Interoperability Protocol 19-1

19
Common Secure Interoperability Protocol

OC4J supports the Common Secure Interoperability Version 2 protocol (CSIv2), an
Object Management Group (OMG) standard that can be used in conjunction with EJBs
for a secure interoperable wire protocol that supports authorization and identity
delegation.

CSIv2 specifies different conformance levels; OC4J complies with the EJB specification,
which requires conformance level 0.

There are three files relevant to CSIv2 configuration:

■ internal-settings.xml (server side)

■ ejb_sec.properties (client side)

■ orion-ejb-jar.xml

 This chapter is organized as follows:

■ CSIv2 Security Properties in internal-settings.xml (EJB Server)

■ CSIv2 Security Properties in ejb_sec.properties (EJB Client)

■ CSIv2 Security Properties in orion-ejb-jar.xml

CSIv2 Security Properties in internal-settings.xml (EJB Server)
Specify server security properties for CSIv2 in the file internal-settings.xml,
using attribute values within <sep-property> elements.

Table 19–1 contains a list of properties. The table refers to keystore and truststore files,
which use the Java Key Store (JKS), a JDK-specified format, to store keys and
certificates. A keystore stores a map of private keys and certificates. A truststore stores
trusted certificates for the certificate authorities (CAs, such as VeriSign and Thawte).

Table 19–1 EJB Server Security Properties

Property Description

port IIOP port number (defaults to 5555).

ssl A true setting indicates IIOP/SSL is supported.

ssl-port IIOP/SSL port number (defaults to 5556). This port is used for
server-side authentication only. If your application uses client and
server authentication, you also need to set
ssl-client-server-auth-port.

CSIv2 Security Properties in internal-settings.xml (EJB Server)

19-2 Oracle Containers for J2EE Security Guide

To use the CSIv2 protocol with OC4J, you must both set ssl to true and specify an
IIOP/SSL port (ssl-port). Note the following:

■ If you do not set ssl to true, CSIv2 is not enabled.

■ Setting ssl to true permits clients and servers to use CSIv2, but does not require
them to communicate using SSL.

■ If you do not specify ssl-port, then no CSIv2 component tag is created, even if
you configure an <ior-security-config> entity in orion-ejb-jar.xml.

When IIOP/SSL is enabled on the server, OC4J listens on two different sockets—one
for server authentication alone and one for server and client authentication. Specify
the server authentication port number within the <sep-property> element. OC4J
adds 1 to this for the server and client authentication port number.

For SSL clients using server authentication alone, you can specify your choice of the
following:

■ Truststore only

■ Both keystore and truststore

■ Neither

If you specify neither keystore nor truststore, the handshake may fail if there are no
default truststores established by the security provider.

SSL clients using client authentication must specify both a keystore and a truststore.
The certificate from the keystore is used for client authentication.

The following example shows a typical internal-settings.xml file:

<server-extension-provider name="IIOP"
 class="com.oracle.iiop.server.IIOPServerExtensionProvider">
 <sep-property name="port" value="5555" />
 <sep-property name="host" value="localhost" />
 <sep-property name="ssl" value="true" />
 <sep-property name="ssl-port" value="5556" />
 <sep-property name="ssl-client-server-auth-port" value="5557" />
 <sep-property name="keystore" value="keystore.jks" />

ssl-client-server-auth-port Port used for client and server authentication (defaults to 5557).
This is the port on which OC4J listens for SSL connections that
require both client and server authentication. If not set, OC4J will
listen on ssl-port + 1 for client-side authentication.

keystore Name and path of the keystore (used only if ssl is true). An
absolute path is recommended.

keystore-password Password for keystore (used only if ssl is true).

trusted-clients Comma-delimited list of hosts whose identity assertions can be
trusted. Each entry in the list can be an IP address, a host name, a
host name pattern (for example, *.example.com), or * (where
"*" alone means that all clients are trusted). The default is to trust
no clients.

truststore Name and path of the truststore. An absolute path is
recommended. If you do not specify a truststore for a server, OC4J
uses the keystore as the truststore (used only if ssl is true).

truststore-password Password for truststore (used only if ssl is true).

Table 19–1 (Cont.) EJB Server Security Properties

Property Description

CSIv2 Security Properties in ejb_sec.properties (EJB Client)

Common Secure Interoperability Protocol 19-3

 <sep-property name="keystore-password" value="123456" />
 <sep-property name="truststore" value="truststore.jks" />
 <sep-property name="truststore-password" value="123456" />
 <sep-property name="trusted-clients" value="*" />
</server-extension-provider>

Here is the DTD for internal-settings.xml:

<!-- A server extension provider that is to be plugged in to the server. -->
<!ELEMENT server-extension-provider (sep-property*) (#PCDATA)>
<!ATTLIST server-extension-provider name class CDATA #IMPLIED>
<!ELEMENT sep-property (#PCDATA)>
<!ATTLIST sep-property name value CDATA #IMPLIED>
<!-- This file contains internal server configuration settings. -->
<!ELEMENT internal-settings (server-extension-provider*)>

CSIv2 Security Properties in ejb_sec.properties (EJB Client)
Any client, whether running inside a server or not, has EJB security properties.
Table 19–2 following lists the EJB client security properties controlled by the
ejb_sec.properties file. By default, OC4J searches for this file in the current
directory when running as a client, or in ORACLE_HOME/j2ee/home/config when
running in the server. You can specify the location of this file explicitly with the system
property setting -Dejb_sec_properties_location=pathname.

Notes:

■ You cannot update internal-settings.xml through
Application Server Control.

■ Although here the default value of port is one less than the
default value for ssl-port, this relationship is not required.

■ If OC4J is started by the Oracle Process Manager and
Notification Server (OPMN) in an Oracle Application Server
environment, the ports specified in
internal-settings.xml are overridden. Note that IIOP
SSL ports may fail to start if the keystore location, truststore
location, or either password is missing or incorrect. In such a
case, you are advised to look at the appropriate OPMN log file
to see the exact nature of the failure.

■ If OPMN is configured to disable IIOP for a particular OC4J
instance, then any setting to enable IIOP through
internal-settings.xml is overridden. (Refer to the Oracle
Containers for J2EE Services Guide RMI chapter for information
about enabling or disabling IIOP through OPMN.)

■ Keystore and truststore settings are supported in
internal-settings.xml for both standalone OC4J and a
full Oracle Application Server environment. In Oracle
Application Server, there are no OPMN options to set these
values, so they must be configured manually.

CSIv2 Security Properties in ejb_sec.properties (EJB Client)

19-4 Oracle Containers for J2EE Security Guide

If the client does not use client-side SSL authentication, you must set
client.sendpassword in the ejb_sec.properties file in order for the client
runtime to insert a subject and send the user name and password. You must also set
server.trustedhosts to include your server.

If the client does use client-side SSL authentication, the server extracts the DN from
the client's certificate and then looks it up in the corresponding security provider; it
does not perform password authentication.

Two types of trust relationships exist:

■ Clients trusting servers to transmit user names and passwords using non-SSL
connections

■ Servers trusting clients to send identity assertions, which delegate an originating
client’s identity

Clients list trusted servers in the EJB property oc4j.iiop.trustedServers.
Servers list trusted clients in the trusted-client property of the <sep-property>
element in internal-settings.xml, discussed in "CSIv2 Security Properties in
internal-settings.xml (EJB Server)" on page 19-1.

Conformance level 0 of the EJB standard defines two ways of handling trust
relationships:

■ Presumed trust, in which the server presumes that the logical client is trustworthy,
even if the logical client has not authenticated itself to the server, and even if the
connection is not secure.

■ Authenticated trust, in which the target trusts the intermediate server based on
authentication, either at the transport level or in the trusted-client list or
both.

Table 19–2 EJB Client Security Properties

Property Description

oc4j.iiop.keyStoreLoc The path and name of the keystore. An absolute path is
recommended.

oc4j.iiop.keyStorePass The password for the keystore.

oc4j.iiop.trustStoreLoc The path name and name of the truststore. An absolute path is
recommended.

oc4j.iiop.trustStorePass The password for the truststore.

oc4j.iiop.enable.clientauth Whether the client supports client-side authentication. If this
property is set to true, you must specify a keystore location and
password.

nameservice.useSSL Whether to use SSL when making the initial connection to the
server.

client.sendpassword Whether to send user name and password in clear form
(unencrypted) in the service context when not using SSL. If this
property is set to true, the user name and password are sent only
to servers listed in the trustedServer list.

oc4j.iiop.trustedServers A list of servers that can be trusted to receive passwords sent in
clear form. This has no effect if client.sendpassword is set to
false. The list is comma-delimited. Each entry in the list can be
an IP address, a host name, a host name pattern (for example,
*.example.com), or * (where "*" alone means that all servers
are trusted.

CSIv2 Security Properties in orion-ejb-jar.xml

Common Secure Interoperability Protocol 19-5

OC4J supports both kinds of trust. Configure trust using the
<ior-security-config> element in orion-ejb-jar.xml, discussed in the next
section, "CSIv2 Security Properties in orion-ejb-jar.xml".

CSIv2 Security Properties in orion-ejb-jar.xml
This section discusses the CSIv2 security properties for an EJB. Configure the CSIv2
security policies of each individual bean in its orion-ejb-jar.xml file. The CSIv2
security properties are specified within <ior-security-config> elements. Each
element contains a <transport-config> subelement, an <as-context>
subelement, and a <sas-context> subelement.

The DTD for the <ior-security-config> element is as follows:

<!ELEMENT ior-security-config (transport-config?, as-context? sas-context?) >
<!ELEMENT transport-config (integrity, confidentiality,
establish-trust-in-target, establish-trust-in-client) >
<!ELEMENT as-context (auth-method, realm, required) >
<!ELEMENT sas-context (caller-propagation) >
<!ELEMENT integrity (#PCDATA) >
<!ELEMENT confidentiality (#PCDATA)>
<!ELEMENT establish-trust-in-target (#PCDATA) >
<!ELEMENT establish-trust-in-client (#PCDATA) >
<!ELEMENT auth-method (#PCDATA) >
<!ELEMENT realm (#PCDATA) >
<!ELEMENT required (#PCDATA)> <!-- Must be true or false -->
<!ELEMENT caller-propagation (#PCDATA) >

The rest of this section covers the following elements:

■ The <transport-config> element

■ The <as-context> element

■ The <sas-context> element

The <transport-config> element
This element specifies the transport security level. Each subelement under
<transport-config> must be set to supported, required, or none. The setting
none means the bean neither supports nor uses that feature; supported means the
bean permits the client to use the feature; required means the bean insists that the
client use the feature. The subelements are:

■ <integrity>: Is there a guarantee that all transmissions are received exactly as
they were transmitted?

■ <confidentiality>: Is there a guarantee that no third party was able to read
transmissions?

Notes:

■ Server-side authentication takes precedence over a user name
and password.

■ You can also configure the server to both require SSL client
authentication and specify a list of trusted client (or
intermediate) hosts that are allowed to insert identity
assertions.

CSIv2 Security Properties in orion-ejb-jar.xml

19-6 Oracle Containers for J2EE Security Guide

■ <establish-trust-in-target>: Does the server authenticate itself to the
client? This element may be set to either supported or none; it cannot be set to
required.

■ <establish-trust-in-client>: Does the client authenticate itself to the
server?

The <as-context> element
This element specifies the message-level authentication properties. Its subelements are:

■ <auth-method>: Must be set to either username_password or none. If it is set
to username_password, beans use user names and passwords to authenticate
the caller.

■ <realm>: Must be set to default in the current implementation.

■ <required>: If this is set to true, the bean requires the caller to specify a user
name and password.

The <sas-context> element
This element specifies the identity delegation properties. It has one subelement,
<caller-propagation>, which can be set to supported, required, or none, as
follows:

■ If it is set to supported, the bean accepts delegated identities from intermediate
servers.

■ If it is set to required, the bean requires all other beans to transmit delegated
identities.

■ If it is set to none, the bean does not support identity delegation.

Example: <ior-security-config>
The following example uses the <ior-security-config> element and its
subelements:

<ior-security-config>
 <transport-config>
 <integrity>supported</integrity>
 <confidentiality>supported</confidentiality>
 <establish-trust-in-target>supported</establish-trust-in-target>
 <establish-trust-in-client>supported</establish-trust-in-client>
 </transport-config>
 <as-context>

Notes:

■ If you set <establish-trust-in-client> to required,
this overrides setting <auth-method> to
username_password under <as-context>. If you do this,
you must also set the <required> element in the
<as-context> section to false; otherwise access permission
issues will arise.

■ Setting any of the <transport-config> properties to
required means that the bean will use RMI/IIOP/SSL to
communicate.

CSIv2 Security Properties in orion-ejb-jar.xml

Common Secure Interoperability Protocol 19-7

 <auth-method>username_password</auth-method>
 <realm>default</realm>
 <required>true</required>
 </as-context>
 <sas-context>
 <caller-propagation>supported</caller-propagation>
 </sas-context>
</ior-security-config>

CSIv2 Security Properties in orion-ejb-jar.xml

19-8 Oracle Containers for J2EE Security Guide

Security Support for Resource Adapters 20-1

20
Security Support for Resource Adapters

This chapter discusses security considerations and how to configure security and
authentication when using resource adapters for an enterprise information system
(EIS) connection. The following topics are covered:

■ Overview of Security and Authentication Setup for EIS Connections

■ Understanding Component-Managed Sign-On

■ Understanding Container-Managed Sign-On

■ Using Declarative Container-Managed Sign-On

■ Using Programmatic Container-Managed Sign-On

Overview of Security and Authentication Setup for EIS Connections
To ensure secure interactions between a J2EE application and an EIS, the J2EE
Connector Architecture allows application components to associate a JAAS subject
with connections established to the EIS. To accomplish this, the J2EE Connector
Architecture security contract can work in conjunction with standard JAAS. The
following sections provide an overview:

■ Summary of J2EE Connector Architecture Security Contract

■ Summary of Component-Managed Versus Container-Managed Sign-On

Summary of J2EE Connector Architecture Security Contract
The J2EE Connector Architecture security contract, between an application server and
a resource adapter, extends the connection management contract with functionality
relating to secure connections. The security contract supports standard JAAS
interfaces, allowing it to be independent of any particular security framework or
mechanism. In particular, the security contract includes features for the following:

■ Propagating a subject directly from a J2EE component to a resource adapter (for
component-managed sign-on)

■ Propagating a subject from an application server to a resource adapter (for
container-managed sign-on)

The security contract supports two particular authentication mechanisms:

See Also:

■ Oracle Containers for J2EE Resource Adapter Administrator’s Guide for
general information about resource adapters and the J2EE
Connector Architecture

Overview of Security and Authentication Setup for EIS Connections

20-2 Oracle Containers for J2EE Security Guide

■ The commonly used basic password mechanism relies on a user name / password
pair, contained together in a password credential object. The application server
passes this object to the resource adapter for authentication.

■ The Kerberos version 5 mechanism ("Kerbv5" for short) is an authentication
protocol distributed by the Massachusetts Institute of Technology. This mechanism
uses a "generic credential" object that encapsulates credential information such as
a Kerberos ticket. The application server passes this object to the resource adapter
for verification.

Security contract functionality includes use of the following key interfaces:

■ javax.security.auth.Subject

■ java.security.Principal

■ javax.security.auth.spi.LoginModule

■ javax.resource.spi.security.PasswordCredential

This J2EE Connector Architecture class represents a user name / password pair for
basic password authentication.

■ org.ietf.jgss.GSSCredential (in J2SE version 1.4)

This interface represents a generic credential object for Kerberos version 5
authentication. (This replaces the J2EE Connector Architecture
javax.resource.spi.security.GenericCredential interface, which is
deprecated.)

Summary of Component-Managed Versus Container-Managed Sign-On
Sign-on from a J2EE application to an EIS can be managed either by the application
component or by the J2EE container (OC4J). Component-managed sign-on must be set
up programmatically and does not involve OC4J-specific configuration.
Container-managed sign-on can be set up either declaratively, through OC4J-specific
configuration without any programming requirements, or programmatically,
involving a combination of OC4J-specific configuration and programming
requirements. Programmatic container-managed sign-on can use either a principal
mapping class or a JAAS login module.

The following list summarizes the options and the type of setup required for
component-managed and container-managed sign-on. Bullets at each level represent
choices.

■ Component-managed sign-on: Requires a<res-auth> setting of Application
in web.xml or ejb-jar.xml. Setup for sign-on is programmatic. There is no
OC4J-specific configuration.

■ Container-managed sign-on: Requires a <res-auth> setting of Container in
web.xml or ejb-jar.xml. Setup for sign-on may be declarative or
programmatic. Use OC4J-specific configuration, as follows, for each of the
container-managed sign-on modes:

Note: Reauthentication may be supported in the ra.xml file of a
resource adapter, through a value of true in the
<reauthentication-support> element. In this case, it is possible
for a managed connection to be reused even for a connection request
with a subject that differs from the subject with which the managed
connection was initially created.

Overview of Security and Authentication Setup for EIS Connections

Security Support for Resource Adapters 20-3

– None: Implies either component-managed sign-on or no security; specify by
disabling security for container-managed sign-on through Application Server
Control (as described in "Using Declarative Container-Managed Sign-On" on
page 20-9); reflected as use="none" in the <security-config> element of
oc4j-ra.xml.

– Declarative: OC4J configuration through principal mapping entries; specify by
enabling security for container-managed sign-on through Application Server
Control (as also described in "Using Declarative Container-Managed
Sign-On"); reflected as use="principal-mapping-entries" with
appropriate subelements under the <security-config> element.

– Programmatic, using either a principal mapping class or a JAAS login module:

* Principal mapping class: Implement the PrincipalMapping interface
directly or extend AbstractPrincipalMapping class (both in package
oracle.j2ee.connector); configure directly through oc4j-ra.xml
(no Application Server Control support) with
use="principal-mapping-interface" and appropriate subelements
under the <security-config> element.

* JAAS login module: Use a JAAS login module; configure directly through
oc4j-ra.xml (no Application Server Control support) with
use="jaas-module" and appropriate subelements under the
<security-config> element.

Choices for container-managed sign-on in OC4J are also illustrated in Figure 20–1 that
follows.

Overview of Security and Authentication Setup for EIS Connections

20-4 Oracle Containers for J2EE Security Guide

Figure 20–1 Flow Chart of Choices for OC4J Container-Managed Sign-On

Summary of Security-Related Resource Adapter Configuration Elements
This section discusses the following key resource adapter configuration elements for
security:

■ The oc4j-ra.xml File <security-config> Element

■ The oc4j-connectors.xml File <security-permission> Element

The oc4j-ra.xml File <security-config> Element
The oc4j-ra.xml descriptor provides OC4J-specific deployment information (JNDI
path name and connector properties) for resource adapters. For each resource
adapter, oc4j-ra.xml contains one or more <connector-factory> elements
specifying a JNDI name corresponding to a set of configuration parameter values.
OC4J binds each connection into the proper JNDI namespace location as a
ConnectionFactory instance.

A <connector-factory> element can contain an optional <security-config>
element that describes how to supply user names and passwords to the EIS.

See Also:

■ Oracle Containers for J2EE Resource Adapter Administrator’s Guide for
additional information about the files and elements discussed
here

Developer

Develop JAAS
Login Module

(As Applicable)

Administrator

Configure JAAS
Login Module

Instance

Developer

Extend
AbstractPrincipalMapping

Class

Administrator

Configure Principal
Mapping Instance

Developer

Implement
PrincipalMapping

Interface

Administrator

Configure Principal
Mapping Instance

Administrator

Configure Principal
Mapping Instance

How to
Implement

Principal Mapping
Class?

Implement Interface
Directly

Extend Abstract
Class

Which
OC4J-Managed

Sign-On
Mode?

Declarative Programmatic

Which
Programmatic

OC4J-Managed
Sign-On
Mode?

Principal Mapping
Class

JAAS Login
Module

Overview of Security and Authentication Setup for EIS Connections

Security Support for Resource Adapters 20-5

The <security-config> element specifies the user name and password for
container-managed sign-ons.

There are two ways of supplying this information in the <security-config>
element of the oc4j-ra.xml file:

■ Specify mapping subelements explicitly (in the
<principal-mapping-entries> subelement).

■ Specify the name of a user-created mapping class that either implements
oracle.j2ee.connector.PrincipalMapping or inherits from
oracle.j2ee.AbstractPrincipalMapping (in the
<principal-mapping-interface> subelement).

Authentication issues are discussed in detail in "Authentication in Container-Managed
Sign-On" on page 20-9. This section discusses only the syntax for the
<security-config> element.

A <security-config> element contains one of the following:

■ <principal-mapping-entries> element, specifying user names and
passwords explicitly

■ <principal-mapping-interface> element, specifying the name of the
mapping class

■ <jaas-module> element, specifying the JAAS module to be used for
authentication

The oc4j-connectors.xml File <security-permission> Element
The oc4j-connectors.xml descriptor lists the standalone resource adapters that
are deployed in this OC4J instance, as well as the resource adapters that are embedded
within applications. This descriptor contains, for each individual connector, a
<connector> element that specifies the name and path name for the connector. Each
<connector> element contains a <security-permission> element that defines
the permissions granted to each resource adapter. The syntax is:

<security-permission enabled="booleanvalue">

This element specifies the permissions to be granted to each resource adapter. Each
<security-permission> element contains a <security-permission-spec>
setting that conforms to the Java 2 Security policy file syntax.

OC4J automatically generates a <security-permission> element in
oc4j-connectors.xml for each <security-permission> element in ra.xml.
Each generated element has the enabled attribute set to "false". Setting the
enabled attribute to "true" grants the named permission.

<oc4j-connectors>
 <connector name="myEIS" path="eis.rar">
 . . .
 <security-permission>
 <security-permission-spec enabled="false">
 grant {permission java.lang.RuntimePermission "LoadLibrary", *’};
 </security-permission-spec>
 </security-permission>
 </connector>
</oc4j-connectors>

Understanding Component-Managed Sign-On

20-6 Oracle Containers for J2EE Security Guide

Understanding Component-Managed Sign-On
When deploying an application that is to manage its EIS sign-on, use a <res-auth>
setting of Application in the appropriate descriptor file (web.xml for a Web
component or ejb-jar.xml for an EJB component). The application component is
then responsible for providing explicit security information for the sign-on. Here is an
example:

 <resource-ref>
 <res-ref-name>...</res-ref-name>
 <res-type>...</res-type>
 <res-auth>Application</res-auth>
 <res-sharing-scope>...</res-sharing-scope>
 </resource-ref>

No OC4J-specific configuration is required for component-managed sign-on.

Figure 20–2 shows the steps in component-managed sign-on, with the text that follows
providing further detail.

Figure 20–2 Component-Managed Sign-On

1. The client makes a request, which is associated with an incoming subject (security
context) for the initiating principal.

2. As part of servicing the request, the application component maps the incoming
subject to an outgoing subject for the resource principal, or hard-codes an
outgoing subject, then uses the outgoing subject to request a connection to the EIS.

3. As part of the connection acquisition, the resource adapter signs on to the EIS
using the outgoing subject provided by the application component.

4. Once the connection is acquired, the application component can interact with the
EIS under the established outgoing subject.

The following example is an excerpt from an application that performs
component-managed sign-on:

Context initctx = new InitialContext();
// Perform JNDI lookup to obtain a connection factory.
javax.resource.cci.ConnectionFactory cxf =
 (javax.resource.cci.ConnectionFactory)initctx.lookup
 ("java:com/env/eis/MyEIS");
// Assume a custom class ConnectionSpecImpl, used to store sign-on credentials.

OC4J

Get connection
with explicit
outgoing security
context determined
by component

Resource
Adapter EIS

2

Logon to EIS
with outgoing
security context

3

Interact with EIS under
explicit outgoing security
context

4

Request with
incoming
security context

1

Client

Application
Component

Understanding Container-Managed Sign-On

Security Support for Resource Adapters 20-7

com.myeis.ConnectionSpecImpl connSpec = ...
connSpec.setUserName("EISuser");
connSpec.setPassword("EISpassword");
// Pass sign-on credentials through getConnection() method call.
javax.resource.cci.Connection cx = cxf.getConnection(connSpec);

Understanding Container-Managed Sign-On
When deploying an application that is to depend on OC4J to manage EIS sign-on, use
a <res-auth> setting of Container in the appropriate descriptor file (web.xml for
a Web component or ejb-jar.xml for an EJB component). OC4J is then responsible
for providing security information for the sign-on. Here is an example:

 <resource-ref>
 <res-ref-name>...</res-ref-name>
 <res-type>...</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>...</res-sharing-scope>
 </resource-ref>

For declarative container-managed sign-on, OC4J uses configuration information that
you specify through Application Server Control, as described in "Using Declarative
Container-Managed Sign-On" on page 20-9. For programmatic container-managed
sign-on, through either a principal mapping class or a JAAS login module, OC4J uses
configuration information that you specify directly through the oc4j-ra.xml file.
When an application tries to obtain a connection, OC4J uses the applicable mechanism
to determine the outgoing subject and to perform authentication.

Figure 20–3 following illustrates the steps in container-managed sign-on. These steps
are detailed following the diagram.

Understanding Container-Managed Sign-On

20-8 Oracle Containers for J2EE Security Guide

Figure 20–3 Container-Managed Sign-On

1. The client makes a request, which is associated with an incoming subject (security
context) for the initiating principal.

2. As part of servicing the request, the application component requests a connection
to the EIS.

3. As part of the connection acquisition, the container (the OC4J security context
manager shown in the figure) maps the incoming subject to the outgoing subject
for the resource principal. This is based on principal mapping entry elements, a
principal mapping class, or a JAAS login module.

4. The resource adapter logs in to the EIS using the outgoing subject provided by
OC4J.

5. Once the connection is acquired, the application component can interact with the
EIS under the established outgoing subject.

The following example is an excerpt from an application that depends on
container-managed sign-on:

Context initctx = new InitialContext();

// perform JNDI lookup to obtain a connection factory
javax.resource.cci.ConnectionFactory cxf =
 (javax.resource.cci.ConnectionFactory)initctx.lookup("java:com/env/eis/MyEIS");
// For container-managed sign-on, no security information is passed in the
// getConnection call
javax.resource.cci.Connection cx = cxf.getConnection();

OC4J

Get connection
without explicit
outgoing security
context

OC4J Security
Context Manager
For Resource
Adapters

Resource
Adapter EIS

2

Logon to EIS
with outgoing
security context

4

Interact with EIS
under established
outgoing security
context

5

Request with
incoming
security context

1

Client

Application
Component

Map incoming
security context
to outgoing
security context

3

Custom
Authentication
Mechanism

Using Declarative Container-Managed Sign-On

Security Support for Resource Adapters 20-9

Authentication in Container-Managed Sign-On
When you use container-managed sign-on, OC4J must provide a resource principal
and its credentials to the EIS. The principal and credentials can be obtained in one of
the following ways:

■ Configured identity: The resource principal is independent of the initiating or
caller principal and can be configured at deployment time in a deployment
descriptor.

■ Principal mapping: The resource principal is determined by a mapping from the
identity and security attributes of the initiating or caller principal.

■ Caller impersonation: The resource principal acts on behalf of an initiating or
caller principal by delegating the caller identity and credentials to the EIS.

■ Credentials mapping: The resource principal is identical to the initiating or caller
principal, but with its credential mapped from the authentication type that OC4J
uses to the authentication type that the EIS uses. An example would be to map a
public key certificate-based credential associated with a principal to a Kerberos
credential.

OC4J supports all these methods through JAAS pluggable authentication, user-created
authentication classes, or appropriate settings in the oc4j-ra.xml file.

Using Declarative Container-Managed Sign-On
This section describes how to set up authentication through OC4J-specific
configuration of principal mapping entries. We refer to this as "declarative
container-managed sign-on" (as opposed to "programmatic container-managed
sign-on"). You can configure this through Application Server Control.

Specify a default resource user and a set of principal mapping entries. Each principal
mapping entry specifies an initiating principal and a corresponding resource principal.
If the actual initiating principal (OC4J user) during program execution matches one of
the initiating principals you specified, then the corresponding resource principal is
used for sign-on to the EIS. If the actual initiating principal does not match any you
specified, then the default resource user is used for sign-on to the EIS, assuming one is
provided or defined. If no default resource user is specified, then a null subject will
be passed to the EIS. In this case, the EIS has the option of signing on with its own
default.

Use the following steps in the Application Server Control Console.

Using Declarative Container-Managed Sign-On

20-10 Oracle Containers for J2EE Security Guide

1. From the Connection Factories tab of the appropriate Resource Adapter page,
choose the connection factory you want to edit. Connection factories are listed by
JNDI location.

2. In the Edit Connection Factory page, go to the Security tab.

3. Choose to enable security for container-managed sign-on.

4. Specify declarative principal mappings. This is to specify the default resource user.

a. Specify the default resource user name.

b. Specify a password for the default resource user. You can choose to do this
either indirectly or by typing the desired password in clear text. For an
indirect password, specify a key (which might just be the user name, for
example). OC4J uses the key to do a lookup in the security provider (such as
through the system-jazn-data.xml file).

5. Specify initiating user mappings. Specify a mapping for each initiating principal
that you want to map to a resource principal. You can edit an existing row or
change an existing mapping, or add another row to specify a new mapping. For
each mapping:

a. Specify the initiating user, which is the user name of an initiating principal.

b. Specify the resource user, which is the user name for a corresponding resource
principal.

c. Specify the resource password, which is a password for the mapped resource
principal. As with the default principal mapping, you can choose to do this
either indirectly or by typing the password directly.

6. Choose Apply to apply the changes.

Table 20–1 following summarizes how these settings correspond to XML entities in the
oc4j-ra.xml file. An example follows the table.

Notes: To get to the Resource Adapter page for a standalone
resource adapter:

1. From the OC4J Home page, select the Applications tab.

2. View "Standalone Resource Adapters".

3. Select the resource adapter of interest.

To get to the Resource Adapter page for a resource adapter deployed
with an application:

1. From the OC4J Home page, select the Applications tab.

2. View "Applications".

3. Select the desired application.

4. From the resulting Application Home page, under "Modules", select the
resource adapter of interest.

See Also:

■ "Using Password Indirection" on page 6-1

Using Declarative Container-Managed Sign-On

Security Support for Resource Adapters 20-11

<oc4j-connector-factories ... >
 <connector-factory ... >
 ...
 <security-config use="principal-mapping-entries">
 <principal-mapping-entries>
 <default-mapping>
 <res-user>scott</res-user>
 <res-password>->tiger</res-password>
 </default-mapping>
 <principal-mapping-entry>
 <initiating-user>servletuser1</initiating-user>
 <res-user>jmsuser1</res-user>
 <res-password>->jmsuser1</res-password>
 </principal-mapping-entry>
 <principal-mapping-entry>
 <initiating-user>servletuser2</initiating-user>
 <res-user>jmsuser2</res-user>
 <res-password>->jmsuser2</res-password>
 </principal-mapping-entry>
 </principal-mapping-entries>
 </security-config>
 </connector-factory>
 ...
</oc4j-connector-factories>

Table 20–1 Properties for Declarative Container-Managed Sign-On

Application Server
Control Property Corresponding XML Entity Description

Enable security for
container-managed
sign-on

<security-config> element
use attribute

Being enabled corresponds to
use="principal-mapping-entries"
(assuming declarative container-managed
sign-on). Being disabled corresponds to
use="none".

Default Resource
User

<res-user> subelement of
<default-mapping>

User name for the default resource
principal.

Indirect Password
or Password (for
Declarative
Principal Mappings)

<res-password> subelement
of <default-mapping>

Password for the default resource principal,
specified either indirectly or directly.

Initiating User <initiating-user> subelement
of <principal-mapping-entry>

User name for an initiating principal that
you want to map to a resource principal.
This may be a simple user name, or a realm
name followed by a slash and the user
name.

Resource User <res-user> subelement of
<principal-mapping-entry>

User name for a resource principal that you
want to map to an initiating principal.
Each initiating-user/resource-user pair uses
a separate <principal-mapping-entry>
element.

Resource Password <res-password> subelement
of <principal-mapping-entry>

Password for the resource principal,
specified either indirectly or directly.

Using Programmatic Container-Managed Sign-On

20-12 Oracle Containers for J2EE Security Guide

Using Programmatic Container-Managed Sign-On
OC4J can manage programmatic authentication, either through an OC4J-specific
mechanism that uses a principal mapping class, or through a pluggable JAAS
mechanism that uses a JAAS login module. The following sections discuss these
mechanisms plus additional features:

■ Using a Principal Mapping Class

■ Using a JAAS Login Module for an EIS Connection

Using a Principal Mapping Class
One option in OC4J for programmatic container-managed sign-on is to use an Oracle
feature that implements principal mapping. The application must include a principal
mapping class, which is a class that implements the
oracle.j2ee.connector.PrincipalMapping interface. A developer can
accomplish this by implementing the interface directly, or by extending the
oracle.j2ee.connector.AbstractPrincipalMapping class, supplied by
Oracle for convenience. You must configure a principal mapping class through the
oc4j-ra.xml file. The following sections describe aspects of using a principal
mapping class:

■ Understanding the PrincipalMapping Interface APIs

■ Extending the AbstractPrincipalMapping Class

■ Configuring a Principal Mapping Class

Understanding the PrincipalMapping Interface APIs
Table 20–2 following describes how OC4J uses methods of the PrincipalMapping
interface.

Note: At this release, the initiating user’s name can be specified in
the <initiating-user> element either as a simple name (scott)
or as a realm name / user name pair separated by a slash, as in
myRealm/scott. The user name must be a valid OracleAS JAAS
Provider user.

In either case, you must specify an OracleAS JAAS Provider default
realm, as discussed in "Default Realm with the File-Based Provider or
Oracle Identity Management" on page 6-4. If you supply a simple user
name, that name must be a member of the default realm.

Using Programmatic Container-Managed Sign-On

Security Support for Resource Adapters 20-13

Extending the AbstractPrincipalMapping Class
As a convenience, OC4J provides the abstract class AbstractPrincipalMapping,
which implements the PrincipalMapping interface. This class provides default
implementations of the setManagedConnectionFactory() and
setAuthenticationMechanism() methods, as well as utility methods to
accomplish the following:

■ Retrieve the managed connection factory used for connections to the EIS.

■ Retrieve the authentication mechanisms supported by the resource adapter.

■ Determine whether the resource adapter supports the basic password
authentication mechanism.

■ Determine whether the resource adapter supports the Kerberos version 5
authentication mechanism.

■ Extract a Principal instance from a Subject instance.

When extending the AbstractPrincipalMapping class, developers need only
implement the init() and mapping() methods.

The methods exposed by the AbstractPrincipalMapping class are summarized in
Table 20–3 that follows.

Table 20–2 Method Descriptions for PrincipalMapping Interface

Method Signature Use by OC4J

 void init(java.util.Properties prop) OC4J calls init() to initialize the settings for the
PrincipalMapping instance, passing in property values
specified under the <principal-mapping-interface>
element in oc4j-ra.xml. (See "Configuring a Principal Mapping
Class" on page 20-15.) The implementation class can use the
properties to set either a default user name and password,
information for an LDAP connection, or a default mapping.

void setManagedConnectionFactory
(ManagedConnectionFactory mcf)

OC4J calls setManagedConnectionFactory() to provide the
PrincipalMapping instance with a
ManagedConnectionFactory instance (for connections to the
EIS), which is used in creating a PasswordCredential instance.

void setAuthenticationMechanisms
(java.util.Map authMechanisms)

OC4J calls setAuthenticationMechanisms() to pass the
authentication mechanisms supported by the resource adapter to
the PrincipalMapping instance. The key in the map that is
passed is a string containing the supported mechanism type, such
as "BasicPassword" or "Kerbv5". The value corresponding to
the key is a string containing the fully qualified name of the
corresponding credentials interface, as declared in a
<credential-interface> element in ra.xml, such as for the
PasswordCredential interface. The map can contain multiple
entries if the resource adapter supports multiple authentication
mechanisms.

Subject mapping(Subject initiatingSubject) OC4J calls mapping() to instruct the PrincipalMapping
instance to perform the principal mapping. A Subject instance
for the OC4J user (initiating principal) is passed in, and this
method returns a Subject instance for the resource principal, for
use by the resource adapter for sign-on to the EIS. (The
implementation may return null if the proper resource principal
cannot be determined.)

Using Programmatic Container-Managed Sign-On

20-14 Oracle Containers for J2EE Security Guide

Example 20–1 extends the AbstractPrincipalMapping class to provide a principal
mapping from the OC4J user to the EIS default user and password. This assumes a
default user and password are specified under the
<principal-mapping-interface> element in oc4j-ra.xml, as shown in
"Configuring a Principal Mapping Class" on page 20-15.

Example 20–1 Extending AbstractPrincipalMapping

package com.example.app;

import java.util.*;
import javax.resource.spi.*;
import javax.resource.spi.security.*;
import oracle.j2ee.connector.AbstractPrincipalMapping;
import javax.security.auth.*;

Table 20–3 Method Descriptions for AbstractPrincipalMapping Class

Method Signature Description

abstract void init (java.util.Properties prop) The subclass must implement the init() method. See Table 20–2,
" Method Descriptions for PrincipalMapping Interface" for a
description.

void setManagedConnectionFactory
(ManagedConnectionFactory mcf)

The subclass need not implement the
setManagedConnectionFactory() method. See Table 20–2 for
a description.

void setAuthenticationMechanisms
(java.util.Map authMechanisms)

The subclass need not implement the
setAuthenticationMechanisms() method. See Table 20–2 for
a description. Note that the subclass can use the
isBasicPasswordSupported() and isKerbv5Supported()
methods (described later in this table) to determine which
authentication mechanism is supported by the resource adapter.
The subclass can also use the
getAuthenticationMechanisms() method to retrieve the
authentication mechanisms.

abstract Subject mapping
(Subject initiatingSubject)

The subclass must implement the mapping() method. See
Table 20–2 for a description.

ManagedConnectionFactory
getManagedConnectionFactory()

The getManagedConnectionFactory() utility method returns
the ManagedConnectionFactory instance (for connections to
the EIS), which may be required to create a
PasswordCredential instance.

java.util.Map getAuthenticationMechanisms() The getAuthenticationMechanisms() utility method returns
a map of all authentication mechanisms supported by the resource
adapter. See setManagedConnectionFactory() in Table 20–2
for a description of the map.

boolean isBasicPasswordSupported() The isBasicPasswordSupported() utility method determines
whether the basic password authentication mechanism is
supported by the resource adapter.

boolean isKerbv5Supported() The isKerbv5Supported() utility method determines whether
the Kerbv5 authentication mechanism is supported by the
resource adapter.

Principal getPrincipal(Subject) The getPrincipal() utility method extracts the Principal
instance from the OC4J user Subject instance passed from OC4J.

Note: In cases where there are multiple principals in a subject, this
method would retrieve the first principal. (There is also a
getPrincipals() method, and the "first" principal is the first
element of the collection of principals that this method would
return.)

Using Programmatic Container-Managed Sign-On

Security Support for Resource Adapters 20-15

import java.security.*;

public class MyMapping extends AbstractPrincipalMapping
{
 String m_defaultUser;
 String m_defaultPassword;

 public void init(Properties prop)
 {
 if (prop != null)
 {
 // Retrieves the default user and password from the properties
 m_defaultUser = prop.getProperty("user");
 m_defaultPassword = prop.getProperty("password");
 }
 }
 public Subject mapping(Subject initiatingSubject)
 {
 // This implementation is for BasicPassword authentication
 // mechanism. Return if the resource adapter does not support it.
 if (!isBasicPasswordSupported())
 return null;
 // Use the utility method to retrieve the Principal from the incoming Subject
 // (security context), corresponding to the OC4J user.
 // This code is included here only as an example.
 // The principal obtained is not actually used in this example.
 Principal principal = getPrincipal(initiatingSubject);
 char[] resPasswordArray = null;
 if (m_defaultPassword != null)
 resPasswordArray = m_defaultPassword.toCharArray();
 // Create a PasswordCredential using the default user name and
 // password, and add it to the Subject, as in "Option A" in the
 // J2EE Connector Architecture specification.
 PasswordCredential cred =
 new PasswordCredential(m_defaultUser, resPasswordArray);
 cred.setManagedConnectionFactory(getManagedConnectionFactory());
 initiatingSubject.getPrivateCredentials().add(cred);
 return initiatingSubject;
 }
}

Configuring a Principal Mapping Class
To use a principal mapping class, you must update oc4j-ra.xml to include a
<principal-mapping-interface> element for the class. This is a subelement of
the <security-config> element and must include the following:

■ An <impl-class> subelement to specify the fully qualified name of the principal
mapping class.

■ Property settings appropriate to the principal mapping class implementation. For
the class shown in the preceding section, there would be a <property>
subelement with name="user" and a value setting to specify the default user
name for EIS sign-on, and a <property> subelement with name="password"
and a value setting to specify the password for the default user, as shown in the
following example.

<oc4j-connector-factories>
 <connector-factory name="..." location="...">
 ...
 <security-config use="principal-mapping-interface">

Using Programmatic Container-Managed Sign-On

20-16 Oracle Containers for J2EE Security Guide

 <principal-mapping-interface>
 <impl-class>com.example.app.MyMapping</impl-class>
 <property name="user" value="scott" />
 <property name="password" value="tiger" />
 </principal-mapping-interface>
 </security-config>
 ...
 </connector-factory>
</oc4j-connector-factories>

Using a JAAS Login Module for an EIS Connection
Alternatively, you can manage sign-on to an EIS programmatically through JAAS.

OC4J furnishes a JAAS pluggable authentication framework that conforms to the
Connector Architecture specification. With this framework, an application server and
its underlying authentication services remain independent from each other, and new
authentication services can be plugged in without requiring modifications to the
application server.

Authentication services can obtain resource principals and credentials using any of the
following types of JAAS login modules:

■ Principal mapping login module

■ Credential mapping login module

■ Kerberos login module (for caller impersonation)

The login modules can be furnished by the customer, the EIS vendor, or the resource
adapter vendor. Login modules implement the
javax.security.auth.spi.LoginModule interface.

OC4J provides initiating user subjects to login modules by passing an instance of the
javax.security.auth.Subject class containing any public certificates and an
instance of oracle.j2ee.connector.InitiatingPrincipal representing the
OC4J user. OC4J can pass a null subject if there is no authenticated user (essentially, if
there is an anonymous user). The login method of the login module must, based on the
initiating user, find the corresponding resource principal and create new
PasswordCredential or GenericCredential instances for the resource principal.
The resource principal and credential objects are then added to the initiating Subject
instance in the commit() method. The resource credential is passed to the
createManagedConnection() method in the
javax.resource.spi.ManagedConnectionFactory implementation that is
provided by the resource adapter. If a null Subject instance is passed, the login
module is responsible for creating a new Subject instance containing the resource
principal and the appropriate credential.

The InitiatingPrincipal and InitiatingGroup Classes
The oracle.j2ee.connector.InitiatingPrincipal class represents OC4J
users to a login module. OC4J creates instances of InitiatingPrincipal and

Note: You can use password indirection to hide the password, as
discussed in "Using Password Indirection" on page 6-1.

See Also:

■ Chapter 9, "Login Modules"

Using Programmatic Container-Managed Sign-On

Security Support for Resource Adapters 20-17

incorporates them into the subject that is passed to the initialize() method of a
login module. The InitiatingPrincipal class implements the
java.security.Principal interface and adds the method getGroups().

The oracle.j2ee.connector.InitiatingGroup class also implements the
Principal interface, but represents OC4J roles. OC4J creates an
InitiatingPrincipal instance and incorporates it into the subject that is passed
either to the initialize() method of a login module, or to the mapping() method
of a principal mapping class. The InitiatingPrincipal class also has a
getGroups() method.

The getGroups() method returns a set (java.util.Set instance) of
InitiatingGroup objects, representing the OC4J roles or OracleAS JAAS Provider
roles for this OC4J user. The role membership is defined in an OC4J-specific descriptor
file, typically system-jazn-data.xml.

Login modules can use getGroups() to provide mappings between OC4J roles and
EIS users. The Principal interface methods support mappings between OC4J users
and EIS users. Login modules are not required to refer to the InitiatingPrincipal
and InitiatingGroup classes if they do not provide mappings between OC4J roles
and EIS users.

JAAS and the <connector-factory> Element
Each <connector-factory> element in oc4j-ra.xml can specify a different JAAS
login module. Specify a name for the connector factory configuration in the
<jaas-module> element. Here is an example of a <connector-factory> element
in oc4j-ra.xml that uses a login module for container-managed sign-on:

 <connector-factory connector-name="myBlackbox" location="eis/myEIS1">
 <description>Connection to my EIS</description>
 <config-property name="connectionURL"
 value="jdbc:oracle:thin:@localhost:5521/myservice" />
 <security-config>
 <jaas-module>
 <jaas-application-name>JAASModuleDemo</jaas-application-name>
 </jaas-module>
 </security-config>
 </connector-factory>

With JAAS, you must specify which login module to use for a particular application,
and in what order to invoke the login modules. JAAS uses values specified in
<jaas-application-name> elements to look up login modules.

Using Programmatic Container-Managed Sign-On

20-18 Oracle Containers for J2EE Security Guide

Tips and Troubleshooting for OC4J Security A-1

A
Tips and Troubleshooting for OC4J Security

This appendix discusses best practices for the OC4J security, as well as troubleshooting
issues to be aware of, and related tips:

■ Best Practices for OC4J Security

■ General OC4J Security Tips and Troubleshooting

■ Logging

Best Practices for OC4J Security
This section describes best practices in the following areas:

■ JAAS Best Practices

■ HTTPS Best Practices

JAAS Best Practices
The following JAAS practices are recommended:

■ Migrate your user management from principals.xml to the OracleAS JAAS Provider. In
earlier releases of Oracle Application Server, the J2EE application server
component stored all user information in a file called principals.xml
(including storing passwords in cleartext). The OracleAS JAAS Provider uses a
similar security model as a default, without storing passwords in cleartext. The
OracleAS JAAS Provider also offers tight integration with Oracle Application
Server infrastructure (including Oracle Single Sign-On and Oracle Internet
Directory) out of the box. Refer to "Migrating Principals from the principals.xml
File" on page 7-16.

■ Avoid writing custom UserManager classes. The OC4J container continues to supply
several methods and levels of extending security providers. Although you can still
implement the UserManager interface (deprecated in 10.1.3.x releases), you will
have more time to focus on business logic instead of infrastructure code if you
leverage the rich functionality provided by the OracleAS JAAS Provider, Oracle
Single Sign-On, and Oracle Internet Directory. Both Oracle Single Sign-On and
Oracle Internet Directory provide APIs to integrate with external authentication
servers and directories, respectively. If you require custom functionality, you can
use a custom login module instead of a custom UserManager implementation.

Note: There are also troubleshooting notes and sections elsewhere in
this book, particular to the topics of the chapters where they appear.

Best Practices for OC4J Security

A-2 Oracle Containers for J2EE Security Guide

■ Use Oracle Internet Directory as the central repository for the OracleAS JAAS Provider in
production environments. Although the OracleAS JAAS Provider supports a
file-based repository, it should be configured to use Oracle Identity Management,
which uses Oracle Internet Directory as its repository, for most production
environments. Oracle Internet Directory provides standard LDAP features for
modeling administrative meta data and is built on the Oracle database platform,
inheriting all the database properties of scalability, reliability, manageability, and
performance. (Alternatively, use one of the external LDAP providers that Oracle
supports.)

■ Use Oracle Single Sign-On as the authentication mechanism with the OracleAS JAAS
Provider. Various authentication options are available; however, we strongly
recommend leveraging the Oracle Single Sign-On server whenever possible
because:

– It is the default mechanism for most Oracle Application Server components,
such as Portal, Forms, Reports, and Wireless.

– It is easy to set up in a declarative fashion and does not require any custom
programming.

– It provides seamless PKI integration.

(Alternatively, use Java SSO if your installation does not include Oracle
Application Server infrastructure.)

■ Use the OracleAS JAAS Provider declarative features to reduce programming. Because
most of the features in the OracleAS JAAS Provider are controlled declaratively
(through configuration), particularly in the area of authentication, developers can
postpone setup until deployment time. This not only reduces the programming
tasks for integrating a JAAS-based application, it enables the deployer to use
environment-specific security models for that application.

■ Take advantage of the authorization features of the OracleAS JAAS Provider. In addition
to the authorization functionality defined in the JAAS 1.0 specification, the
OracleAS JAAS Provider supports:

– Hierarchical, role-based access control

– Ability to partition security policy by subscriber (that is, each user
community)

These extensions provide a more scalable and manageable framework for security
policies covering a large user population.

■ When assigning privileges to modules, use the lowest levels that are adequate to perform
the module functions. Using low-level privileges provides "fault containment"; if
security is compromised, it is contained within a small area of the network and
cannot invade the entire intranet.

HTTPS Best Practices
Oracle HTTP Server has several features that provide security to an application
without requiring you to modify the application. You should evaluate and leverage
these features before coding similar features yourself. HTTP security features include:

■ Authentication: Oracle HTTP Server can authenticate users and pass the
authenticated user ID to an application in a standard manner (REMOTE_USER). It
also supports single sign-on, thus reusing existing login mechanisms.

General OC4J Security Tips and Troubleshooting

Tips and Troubleshooting for OC4J Security A-3

■ Authorization: Oracle HTTP Server has directives that can allow access to your
application only if the end user is authenticated and authorized. Again, no code
change is required.

■ Encryption: Oracle HTTP Server can provide transparent SSL communication to
end customers without any code change on the application.

Other suggestions for securing HTTPS:

■ Configure Oracle Application Server to fail attempts to use weak encryption. You can
configure Oracle Application Server to use only specified encryption ciphers for
HTTPS connections. For example, your application could reject connections from
non-128-bit client-side SSL libraries. This ability is especially useful for banks and
other financial institutions because it provides server-side control of the
encryption strength for each connection.

■ Use HTTPS-to-HTTP appliances for accelerating HTTP over SSL. Use HTTPS
everywhere you need to. However, the significant performance overhead of
HTTPS forces a trade-off in some situations.

These appliances provide much better solutions than adding mathematics or
cryptography cards to UNIX, Windows, or Linux systems.

■ Ensure that sequential HTTPS transfers are requested through the same Web server. Most
CPU time in initiating SSL sessions is spent in the key exchange logic, where the
bulk encryption key is exchanged. If the accesses are routed to the same Web
server, caching the bulk encryption will significantly reduce CPU overhead on
subsequent accesses.

■ Keep secure pages on separate servers from pages not requiring security. Although it may
be easier to place all pages for an application on one HTTPS server, this strategy
has significant performance costs. Reserve your HTTPS server for pages needing
SSL, and put the pages not needing SSL on an HTTP server.

If secure pages are composed of many GIF, JPEG, or other files to be displayed on
the same screen, it is probably not worth the effort to segregate secure from
unsecured static content. The SSL key exchange (a major consumer of CPU cycles)
is likely to be called exactly once in any case, and the overhead of bulk encryption
is not that high.

■ Tune the Oracle HTTP ServerSSLSessionCacheTimeout directive if you are using SSL.
Oracle HTTP Server caches a client's SSL session information by default. With
session caching, only the first connection to the server incurs high latency.

The default SSLSessionCacheTimeout is 300 seconds. Note that the duration of
an SSL session is unrelated to the use of HTTP persistent connections. You can
change the SSLSessionCacheTimeout directive in the httpd.conf file to meet
your application needs.

General OC4J Security Tips and Troubleshooting
Be aware of the following issues and how to handle them:

■ File jazn.xml Not Found

■ Authentication Issues

■ Failure to Specify OracleAS JAAS Provider as the JAAS Provider

See Also:

■ Oracle HTTP Server Administrator’s Guide

General OC4J Security Tips and Troubleshooting

A-4 Oracle Containers for J2EE Security Guide

■ Realm Issues

File jazn.xml Not Found
Without a valid jazn.xml file, the OracleAS JAAS Provider cannot begin running. If
no jazn.xml file is found, the following error message is generated.

"JAZN has not been properly configured"

Authentication Issues
If you attempt to log in to a protected application and authentication fails, but you
know the user and password are properly configured in the identity repository,
confirm by some other means that the identity repository is up and available, and is in
the location specified in the <jazn> element location attribute in
orion-application.xml or jazn.xml (as applicable).

Failure to Specify OracleAS JAAS Provider as the JAAS Provider
If you receive an exception and stack trace similar to:

Exception in thread "main" java.lang.SecurityException: Unable to locate a login
configuration
at com.sun.security.auth.login.ConfigFile.<init>(ConfigFile.java:97)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance

Then the OracleAS JAAS Provider is probably not specified as the JAAS policy
provider.

Realm Issues
This section discusses the following troubleshooting issues related to the use of realms:

■ Realm Names Omitted from User Names

■ Specifying Default Realm to Solve Authentication Failure

Realm Names Omitted from User Names
The OC4J property jaas.username.simple determines whether realm names are
prefixed in user names for returned principals from key methods such as
getUserPrincipal() or getRemoteUser() for servlets, or
getCallerPrincipal() for EJBs. With the default "true" setting, realm names are
not prefixed.

If you configure and use custom realms, you must explicitly set this property to
"false" to ensure that OracleAS JAAS Provider authentication and authorization
work properly. See "Omitting the Realm Name When Retrieving an Authenticated
Principal" on page 6-6 for details.

See Also:

■ "The jazn.xml File" on page 4-9

See Also:

■ "Specification of the Oracle Policy Provider" on page 5-16

Logging

Tips and Troubleshooting for OC4J Security A-5

Specifying Default Realm to Solve Authentication Failure
If authentication fails but your configuration seems correct, confirm whether you need
to specify your default realm. You must configure a default realm (in the <jazn>
element of the orion-application.xml file) if you use a default realm other than
what is specified in the instance-level jazn.xml file.

This can apply to either the file-based provider or LDAP-based provider.

Logging
This section discusses logging features to aid in debugging:

■ Using Oracle Diagnostic Logging with the OracleAS JAAS Provider

■ Using Standard JDK Logging with the OracleAS JAAS Provider Admintool

Using Oracle Diagnostic Logging with the OracleAS JAAS Provider
OC4J and the OracleAS JAAS Provider support the Oracle Diagnostic Logging
framework, or ODL, which provides plug-in components that complement the
standard Java logging framework to automatically integrate log data with Oracle log
analysis tools.

As with OC4J in general, change the logging level in
ORACLE_HOME/j2ee/home/config/j2ee-logging.xml from the default
NOTIFICATION:1 to some appropriate error or debug level. Two levels often used
with OracleAS JAAS Provider are FINE and FINER, which correspond to TRACE:1
and TRACE:16, respectively.

OracleAS JAAS Provider logging entries are in
ORACLE_HOME/j2ee/instance_name/logs/oc4j/log.xml, where relevant
entries are the ones with a COMPONENT_ID of j2ee and a MODULE_ID of security,
as in the following sample message:

<MESSAGE>
 <HEADER>
 <TSTZ_ORIGINATING>2005-12-14T11:41:08.974-08:00</TSTZ_ORIGINATING>
 <COMPONENT_ID>j2ee</COMPONENT_ID>
 <MSG_TYPE TYPE="TRACE"></MSG_TYPE>
 <MSG_LEVEL>16</MSG_LEVEL>
 <HOST_ID>www.example.com</HOST_ID>
 <HOST_NWADDR>555.55.5.555</HOST_NWADDR>
 <MODULE_ID>security</MODULE_ID>
 <THREAD_ID>10</THREAD_ID>
 <USER_ID>nmuralid</USER_ID>

See Also:

■ The following location for an overview of standard Java logging:

http://java.sun.com/j2se/1.4.2/docs/guide/util/logging
/overview.html

■ Javadoc for the java.util.logging package:

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logg
ing/package-summary.html

■ Oracle Containers for J2EE Developer’s Guide and Oracle Containers
for J2EE Configuration and Administration Guide for information
about logging features and logging configuration in OC4J

Logging

A-6 Oracle Containers for J2EE Security Guide

 </HEADER>
 <CORRELATION_DATA>
 <EXEC_CONTEXT_ID>
 <UNIQUE_ID>555.55.5.555:30508:1134589268971:0</UNIQUE_ID><SEQ>0</SEQ>
 </EXEC_CONTEXT_ID>
 </CORRELATION_DATA>
 <PAYLOAD>
 <MSG_TEXT>location=system-jazn-data.xml</MSG_TEXT>
 </PAYLOAD>
</MESSAGE>

Alternatively, if you want only OracleAS JAAS Provider messages logged in the first
place, you can add configuration to j2ee-logging.xml to set the logger name to
oracle.j2ee.security, as in the following example:

<logger name="oracle.j2ee.security" level="NOTIFICATION:32"
 useParentHandlers="false">
 <handler name="oc4j-handler"/>
 <handler name="console-handler"/>
</logger>

Using Standard JDK Logging with the OracleAS JAAS Provider Admintool
The OracleAS JAAS Provider Admintool uses standard JDK logging. To run logging
with the Admintool, change the logging level from INFO to FINE, FINER, or FINEST.
(Most log messages from the Admintool are logged at level FINE or FINER.) You can
accomplish this either by editing the JAVA_HOME/jre/lib/logging.properties
file, or by providing an updated copy of the file on the Admintool command line. The
following command executes the Admintool and provides a properties file to set an
appropriate logging level. Messages will be logged according to the configured log
handler.

% java -jar jazn.jar -Djava.util.logging.config.file=modified_logging_properties

Note: The jazn.debug.log.enable flag, used in previous
releases, is no longer supported.

OracleAS JAAS Provider Samples B-1

B
OracleAS JAAS Provider Samples

This appendix shows versions of a sample servlet, first using standard J2EE security
APIs, then adding code to manage policy by granting permissions to a user, and finally
adding code to check permissions of a user (JAAS mode and JAAS authorization):

■ Security Configuration for Sample Servlet

■ Sample Servlet: Invoking J2EE Security APIs

■ Sample Servlet: Granting Permissions

■ Sample Servlet: Checking Permissions

Security Configuration for Sample Servlet
The versions of the sample servlet in this appendix use the file-based provider and
depend on the following configurations:

■ In system-jazn-data.xml, a user developer belonging to a role
developers

■ In web.xml, a role sr_developers and a security constraint for the servlet

■ In orion-application.xml, a role mapping between developers and
sr_developers

These configurations are shown in the subsections that follow.

Configuration in system-jazn-data.xml
The system-jazn-data.xml file defines the developer user and the developers
role to which the user belongs, in the jazn.com realm.

The recommended way to define users and roles for the file-based provider is through
Application Server Control, as described in "Configuring the File-Based Provider in
Application Server Control" on page 7-2. You can also use the OracleAS JAAS Provider
Admintool.

<jazn-data>
 ...
 <jazn-realm>
 <realm>

See Also:

■ The following Web site for OC4J "how-to" examples:

http://www.oracle.com/technology/tech/java/oc4j/1013
/how_to/index.html

Security Configuration for Sample Servlet

B-2 Oracle Containers for J2EE Security Guide

 <name>jazn.com</name>
 <users>
 ...
 <user>
 <name>developer</name>
 <display-name>developer</display-name>
 <credentials>{903}CafGQDjOlPMyMiwJEwUfyjhGLAbQkzhR</credentials>
 </user>
 ...
 </users>

 <roles>
 ...
 <role>
 <name>developers</name>
 <display-name>Developer Role</display-name>
 <members>
 <member>
 <type>user</type>
 <name>developer</name>
 </member>
 </members>
 </role>
 ...
 </roles>
 </realm>
 </jazn-realm>
 ...
</jazn-data>

Configuration in web.xml
The web.xml file sets up the security constraint and defines the role
sr_developers. There is also a setting for the authentication method. (Note that it is
possible to override the authentication method in web.xml with settings in the
<jazn-web-app> element in orion-application.xml.)

<web-app>
 ...
 <security-role>
 <role-name>sr_developers</role-name>
 </security-role>
 ...
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>CallerInfoA</web-resource-name>
 <url-pattern>/callerInfoA</url-pattern>
 </web-resource-collection>
 <!-- authorization -->
 <auth-constraint>
 <role-name>sr_developers</role-name>
 </auth-constraint>
 </security-constraint>
 ...
 <!-- authentication -->
 <login-config>
 <auth-method>BASIC</auth-method>
 </login-config>
 ...
</web-app>

Sample Servlet: Invoking J2EE Security APIs

OracleAS JAAS Provider Samples B-3

Configuration in orion-application.xml
The orion-application.xml file specifies the file-based provider, and maps the
security role sr_developers to the role developers that is defined in the identity
store (in this case, system-jazn-data.xml).

Specify the security provider and security role mappings through Application Server
Control, as described in "Specifying a Security Provider" on page 6-9 and "Mapping
Security Roles" on page 6-10.

<orion-application>
 ...
 <security-role-mapping name="sr_developers">
 <group name="developers" />
 </security-role-mapping>
 ...
 <!-- use JAZN-XML by default -->
 <jazn provider="XML" />
 ...
</orion-application>

Sample Servlet: Invoking J2EE Security APIs
This first version of the servlet uses standard J2EE security APIs to get a user,
determine if the user is in a role, and get a user principal.

import java.io.IOException;
import java.util.Date;
import java.util.Properties;
import javax.naming.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class CallerInfo extends HttpServlet {

 public CallerInfo() {
 super();
 }

 public void init(ServletConfig config)
 throws ServletException {
 super.init(config);
 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 ServletOutputStream out = response.getOutputStream();

 response.setContentType("text/html");
 out.println("<HTML><BODY bgcolor=\"#FFFFFF\">");
 out.println("Time stamp: " + new Date().toString());
 out.println
 ("request.getRemoteUser = " + request.getRemoteUser() + "
");
 out.println("request.isUserInRole('ar_developers') = " +
 request.isUserInRole("sr_developers") + "
");
 out.println
 ("request.getUserPrincipal = " + request.getUserPrincipal() + "
");
 out.println("</BODY>");
 out.println("</HTML>");
 }

Sample Servlet: Granting Permissions

B-4 Oracle Containers for J2EE Security Guide

Sample Servlet: Granting Permissions
This version of the servlet adds code to grant permissions to a user. Alternatively, you
could use the OracleAS JAAS Provider Admintool to grant permissions, as described
in "Granting and Revoking Permissions" on page C-14.

import java.io.*;
import java.util.Date;
import java.util.Properties;
import javax.naming.*;
import javax.servlet.*;
import javax.servlet.http.*;
import oracle.security.jazn.*;
import oracle.security.jazn.realm.*;
import oracle.security.jazn.oc4j.*;
import oracle.security.jazn.spi.Grantee;
import oracle.security.jazn.policy.*;
import javax.security.auth.*;
import java.security.*;

public class CallerInfo extends HttpServlet {

 public CallerInfo() {
 super();
 }

 public void init(ServletConfig config)
 throws ServletException {
 super.init(config);
 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 ServletOutputStream out = response.getOutputStream();
 response.setContentType("text/html");
 out.println("<HTML><BODY bgcolor=\"#FFFFFF\">");
 out.println("Time stamp: " + new Date().toString());
 out.println
 ("request.getRemoteUser = " + request.getRemoteUser() + "
");
 out.println("request.isUserInRole('ar_developers') = " +
 request.isUserInRole("ar_developers") + "
");
 out.println
 ("request.getUserPrincipal = " + request.getUserPrincipal() + "
");

 //Grant Permissions to a user developer

 //get JAZNConfiguration related info
 JAZNConfig jc = JAZNConfig.getJAZNConfig();

 //create a Grantee for "developer"
 RealmManager realmmgr = jc.getRealmManager();
 Realm realm = realmMgr.getRealm("jazn.com");
 UserManager userMgr = realm.getUserManager();
 final RealmUser user = userMgr.getUser("developer");

 //grant scott file permission
 JAZNPolicy policy = jc.getPolicy();
 if (policy != null) {
 Grantee gtee = new Grantee((Principal) user);
 java.io.FilePermission fileperm = new java.io.FilePermission
 ("foo.txt","read");

Sample Servlet: Checking Permissions

OracleAS JAAS Provider Samples B-5

 policy.grant(gtee, fileperm);
 }

out.println("</BODY>");
 out.println("</HTML>");
}

Sample Servlet: Checking Permissions
This version of the servlet adds configuration and code for JAAS mode and JAAS
authorization, to check permissions.

JAAS mode controls whether a J2EE application is executed in a Subject.doAs()
block or a Subject.doAsPrivileged() block. Once this mode is set, the
authenticated subject is associated with the appropriate access control context. After
this, authorization checks may be incorporated into applications using standard JAAS
and J2SE APIs.

JAAS Mode Configuration in orion-application.xml
This example expands the previously shown orion-application.xml
configuration to also set the JAAS mode to "doasprivileged". With this setting,
OC4J will execute the servlet inside a Subject.doAsPrivileged() block.

<orion-application>
 ...
 <security-role-mapping name="sr_developers">
 <group name="developers" />
 </security-role-mapping>
 ...
 <!-- use JAZN-XML by default -->
 <jazn provider="XML" jaas-mode="doasprivileged" />
 ...
</orion-application>

Servlet Code for Authorization
Here is the servlet code, using JAAS policy to check whether the user has permission
to read foo.txt. Due to the preceding configuration, doasprivileged mode is
used.

For purposes of comparison, this example also shows equivalent code using
AccessController to check permissions. Being inside a doAsPrivileged() block
is equivalent to the doasprivileged configuration for the JAAS policy code.

import java.io.*;
import java.util.Date;
import java.util.Properties;
import javax.naming.*;
import javax.servlet.*;
import javax.servlet.http.*;

import oracle.security.jazn.*;
import oracle.security.jazn.realm.*;
import oracle.security.jazn.oc4j.*;
import oracle.security.jazn.spi.Grantee;

See Also:

■ "Introduction to JAAS Mode" on page 5-5

Sample Servlet: Checking Permissions

B-6 Oracle Containers for J2EE Security Guide

import oracle.security.jazn.policy.*;

import javax.security.auth.*;
import java.security.*;

public class CallerInfo extends HttpServlet {

 public CallerInfo() {
 super();
 }

 public void init(ServletConfig config)
 throws ServletException {
 super.init(config);
 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 final ServletOutputStream out = response.getOutputStream();

 response.setContentType("text/html");
 out.println("<HTML><BODY bgcolor=\"#FFFFFF\">");
 out.println("Time stamp: " + new Date().toString());
 out.println
 ("request.getRemoteUser = " + request.getRemoteUser() + "
");
 out.println("request.isUserInRole('ar_developers') = " +
 request.isUserInRole("ar_developers") + "
");
 out.println
 ("request.getUserPrincipal = " + request.getUserPrincipal() + "
");

 //create Permission
 FilePermission perm = new FilePermission("/home/developer/foo.txt","read");

 // CHECK PERMISSION VIA JAAS POLICY
 //get current AccessControlContext
 AccessControlContext acc = AccessController.getContext();
 javax.security.auth.Policy currPolicy =
 javax.security.auth.Policy.getPolicy();
 // Query policy now
 out.println("Policy permissions for this subject are " +
 currPolicy.getPermissions(Subject.getSubject(acc),null));
 //Check Permissions
 out.println("Policy.impiles permission: "+ perm +" ? " +
 currPolicy.getPermissions(Subject.getSubject(acc),null).implies(perm));

 // CHECK USER'S PERMISSION VIA ACCESS CONTROLLER
 Subject.doAsPrivileged(s, new PrivilegedAction() {
 public Object run() {
 try {
 AccessController.checkPermission(perm);
 out.println("
");
 out.println
 ("AccessController checkPermission passed for permission: "
 + perm);
 out.println("
");
 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
 }

Sample Servlet: Checking Permissions

OracleAS JAAS Provider Samples B-7

 }, null);

 out.println("</BODY>");
 out.println("</HTML>");
 }
}

Sample Servlet: Checking Permissions

B-8 Oracle Containers for J2EE Security Guide

OracleAS JAAS Provider Admintool Reference C-1

C
OracleAS JAAS Provider Admintool

Reference

This chapter contains reference information for the OracleAS JAAS Provider
Admintool. It is divided into the following sections:

■ Getting Started with the Admintool

■ Summary of Admintool Command-Line Syntax and Options

■ Admintool Shell

■ Admintool Administrative Functions

Getting Started with the Admintool
This section will help you get started with the OracleAS JAAS Provider Admintool
and covers the following topics:

■ Running the Admintool

■ User Repository Location for the Admintool

■ Authentication for the Admintool

■ Using Custom Principals and Permissions with the Admintool

Notes:

■ The Admintool can be used with either
system-jazn-data.xml or Oracle Internet Directory as the
user repository and policy repository. User and role
information in Oracle Internet Directory is read-only for the
Admintool, however.

■ Changes made by the Admintool when you are using the
file-based provider do not take effect until OC4J is restarted.

See Also:

■ "Overview of the OracleAS JAAS Provider Admintool" on
page 4-3

■ "Using Standard JDK Logging with the OracleAS JAAS Provider
Admintool" on page A-6

Getting Started with the Admintool

C-2 Oracle Containers for J2EE Security Guide

Running the Admintool
Run the Admintool by executing the OracleAS JAAS Provider jazn.jar file using the
java -jar option. Either make your current directory the directory where
jazn.jar is located, or specify the path to jazn.jar on the Java command line, as in
the following example:

% java -jar /myroot/mydir/jazn.jar ...

By default, the Admintool looks for the jazn.xml configuration file in the config
directory under your current directory. You can alter this by directly specifying a
location through the oracle.security.jazn.config system property, or by
specifying an Oracle home or J2EE home location through the oracle.home property
or oracle.j2ee.home property, respectively. The precedence of search locations is
described in "The jazn.xml File" on page 4-9.

The following example specifies the location of the jazn.xml file:

% java -jar -Doracle.security.jazn.config=/tmp/jazn.xml jazn.jar ...

The next example specifies the J2EE home location, where ORACLE_HOME is the path to
the Oracle home directory, and instancename is the name of the OC4J instance (such
as home, for example). Based on this, the Admintool will look for jazn.xml in the
ORACLE_HOME/j2ee/instancename/config directory:

% java -jar -Doracle.j2ee.home=ORACLE_HOME/j2ee/instancename jazn.jar ...

User Repository Location for the Admintool
When you use the file-based security provider, the jazn.xml file specifies the location
of the user repository (system-jazn-data.xml or jazn-data.xml) that the
Admintool will use, through the location attribute of the <jazn> element. By
default, this is the system-jazn-data.xml file, but you can update the location
setting to use an application-specific jazn-data.xml file:

<jazn provider="XML" location="path/jazn-data.xml">
 ...
</jazn>

When you use Oracle Identity Management, the <jazn> location attribute specifies
the Oracle Internet Directory location, such as in the example that follows. However,
do not manually update the location value when you use Oracle Identity
Management; this value is set automatically when you associate the Oracle Internet
Directory instance with OC4J through Application Server Control (as described in
"Associating Oracle Internet Directory with OC4J" on page 8-6). Here is an example:

<jazn provider="LDAP" location="ldap://myoid.oracle.com:389" default-realm="us" >
 ...
</jazn>

Authentication for the Admintool
When you run the Admintool, you must authenticate yourself, optionally using the
-user and -password command-line options. You can authenticate yourself in one
of two ways:

Note: The location of jazn.jar is typically:

ORACLE_HOME/j2ee/home/jazn.jar

Getting Started with the Admintool

OracleAS JAAS Provider Admintool Reference C-3

■ The recommended way is to not supply -user and -password settings on the
command line; Admintool will then prompt you for a user name and password, as
in this example:

% java -jar jazn.jar ...
AbstractLoginModule username: username
AbstractLoginModule password: password
...

In this mode, any options you specify are executed only after you have been
prompted for and have supplied the user name and password. For example:

% java -jar jazn.jar -listrealms

When an example such as this is presented in this appendix, what is left unsaid is
that you will be prompted for the user name and password before the command is
executed (in this example, before the realms are listed).

■ Alternatively, you can use the -user and -password options on the command
line:

% java -jar jazn.jar -user username -password password...

This is generally undesirable, because specifying passwords on command lines
creates security vulnerabilities.

In this mode, a command such as the following would immediately list the realms:

% java -jar jazn.jar -user myname -password mypassword -listrealms

In either of these modes, once the options you specify on the command line have been
executed, you are returned to your system prompt. To execute any further Admintool
commands, you will have to rerun the tool and be authenticated again.

To run multiple commands without reauthenticating, you can use the Admintool shell
mode, where you can repeatedly run commands from the Admintool prompt until you
exit the shell, as described in "Admintool Shell" on page C-6.

Using Custom Principals and Permissions with the Admintool
For the Admintool to work with custom principals and permissions, configure the
property classpath to specify the location of the JAR file containing the custom
classes. Do this with a <property> subelement under the <jazn> element in the
jazn.xml file, as in the following example:

<jazn ... >
 ...
 <property name="classpath" value="/tmp/customPrincipal.jar" />
 ...
</jazn>

Important: If you specify the -user and -password options on
the command line, they must be positioned before all other
command-line options.

Note: In previous versions, the workaround was to put the JAR
file into the jre/lib/ext directory. This will still work, but is not
recommended.

Summary of Admintool Command-Line Syntax and Options

C-4 Oracle Containers for J2EE Security Guide

Summary of Admintool Command-Line Syntax and Options
The Admintool provides a number of command options for administrative functions.
The general syntax is as follows:

% java -jar jazn.jar [-user username -password password] [option1 option2 ...]

This section lists all the Admintool command options, with cross-references for further
information. You can also list all the options and their syntax with the -help option:

% java -jar jazn.jar -help

Command line options are summarized below:

■ Administrative option

-activateadmin

■ Authentication options

-user username -password password

■ Login module options

-addloginmodule application_name login_module_name control_flag [options]
-listloginmodules [application_name] [login_module_class]
-remloginmodule application_name login_module_name

■ Migration option

-convert filename realm

■ Password management options (file-based provider only)

-checkpasswd realm user [-pw password]
-setpasswd realm user old_pwd new_pwd

Important:

■ If you use the -user and -password options (which is not
recommended, as discussed in the preceding section), you must
specify them before all other options on the command line.

■ Restart OC4J for Admintool changes to take effect.

See Also:

■ "Administrative Operations" on page C-13

See Also:

■ "Authentication for the Admintool" on page C-2

See Also:

■ "Adding and Removing Login Modules" on page C-10

■ "Listing Login Modules" on page C-15

See Also:

■ "Converting from the principals.xml File to JAAS" on page C-17

Summary of Admintool Command-Line Syntax and Options

OracleAS JAAS Provider Admintool Reference C-5

■ Policy options

-grantperm {realm {-user user|-role role} | principal_class principal_params}
 permission_class [permission_params]
-listperms {realm {-user user|-role role} | principal_class principal_params}
 permission_class [permission_params]
-revokeperm {realm {-user user|-role role} | principal_class principal_params}
 permission_class [permission_params]

■ Realm manipulation options for file-based provider

-addrealm realm admin {adminpwd adminrole | adminrole
 userbase rolebase realmtype }
-addrole realm role
-adduser realm username password
-remrealm realm
-remrole realm role
-remuser realm user

■ Realm options for general use

-grantrole role realm {user | -role to_role}
-revokerole role realm {user|-role from_role}
-listrealms realm
-listroles [realm [user | -role role]]
-listusers [realm [-role role | -perm permission]]

See Also:

■ "Checking Passwords (File-Based Provider Only)" on page C-13

■ "Setting Passwords (File-Based Provider Only)" on page C-13

See Also:

■ "Granting and Revoking Permissions" on page C-14

■ "Listing Permissions" on page C-15

Important: Do not use the OracleAS JAAS Provider Admintool to
create realms for Oracle Internet Directory. Realms created with this
tool are suitable for the file-based provider only, and would not
include sufficient information for use with Oracle Internet Directory.

See Also:

■ "Adding and Removing Realms (File-Based Provider Only)" on
page C-11

■ "Adding and Removing Roles (File-Based Provider Only)" on
page C-12

■ "Adding and Removing Users (File-Based Provider Only)" on
page C-12

Admintool Shell

C-6 Oracle Containers for J2EE Security Guide

■ Shell option

-shell

Admintool Shell
The Admintool shell provides interactive administration of JAAS principals and
policies through a UNIX-like interface. The -shell option starts the shell. For
example (entering the oc4jadmin user and password when prompted):

% java -jar jazn.jar -shell
AbstractLoginModule username: oc4jadmin
AbstractLoginModule password: password
JAZN:>

The shell responds with the JAZN:> prompt. To leave the interface shell, use the exit
shell command. To see a list of shell commands, use the help command. For
information about a particular shell command, the shell supports the man command:

JAZN:> man admintoolcommand

The rest of this discussion covers the following topics:

■ Shell Support for Admintool Command-Line Options

■ Admintool Shell Directory Structure

■ Summary of Admintool Special Shell Commands

Shell Support for Admintool Command-Line Options
The Admintool shell supports the same options as the Admintool command line, but
you do not have to include the hyphen ("-") in front of the option name. (If you do, it
will be ignored.) Once you have launched the Admintool shell, a shell command line
such as the following:

JAZN:> option1 option2 ... optionN

Is equivalent to an Admintool command line (from your system prompt) such as the
following:

% java -jar jazn.jar -option1 -option2 ... -optionN

See Also:

■ "Granting and Revoking Roles" on page C-14

■ "Listing Realms" on page C-16

■ "Listing Roles" on page C-16

■ "Listing Users" on page C-16

See Also:

■ The next section, "Admintool Shell"

Note: Multiple-word arguments must be enclosed in quotation
marks. For example:

% java -jar jazn.jar -user "Oracle DBA" ...

Admintool Shell

OracleAS JAAS Provider Admintool Reference C-7

Admintool Shell Directory Structure
The Admintool shell is an interactive interface to the OracleAS JAAS Provider API.

The shell directory structure consists of nodes, where nodes contain subnodes that
represent properties of the parent node. Figure C–1 illustrates the node structure.

Figure C–1 Admintool Shell Directory Structure

In this structure, the user and role nodes are linked together. This means that the
roles link under user is the same link as the roles link under realm. In Unix
terms, the role at numeral 1 in the diagram is a symbolic link to role at numeral 2 in
the diagram.

Figure C–2 following shows nodes of a realm abcRealm.

Note: In this release, the policy directory is always empty.

Admintool Shell

C-8 Oracle Containers for J2EE Security Guide

Figure C–2 Sample Shell Directory Structure

Summary of Admintool Special Shell Commands
This section summarizes the following Admintool shell commands:

■ add, mkdir, and mk: Creating Provider Data

■ cd: Navigating Provider Data

■ clear: Clearing the Screen

■ exit: Exiting the Admintool Shell

■ help: Listing Admintool Shell Commands

■ ls: Listing Data

■ man: Viewing Admintool man Pages

■ pwd: Displaying the Working Directory

■ rm: Removing Provider Data

■ set: Updating Values

All the Admintool commands support relative and absolute paths.

add, mkdir, and mk: Creating Provider Data
add name [other_parameter]
mkdir name [other_parameter]
mk name [other_parameter]

The add, mkdir, and mk commands are equivalent; they each create a subdirectory or
node under the current directory. The effect of the command depends on the current
directory location. For example, if the current directory is the root, then the command
creates a realm. If the current directory is /realm/users, then the command creates a
user. Depending on the situation, these commands would be equivalent to Admintool
commands such as -addrealm and -adduser.

Admintool Shell

OracleAS JAAS Provider Admintool Reference C-9

These shell commands may require additional parameters—essentially, the same as
what would be required for the equivalent Admintool commands. For example,
consider the following shell command:

JAZN:> add myrealm myuser mypassword myrole

When executed under the directory /realms, this shell command is equivalent to the
following:

% java -jar jazn.jar -addrealm myrealm myuser mypassword myrole

cd: Navigating Provider Data
cd path

The cd command enables users to navigate the directory tree. Relative and absolute
path names are supported.

The path "/" returns the user to the root node.

An error message is displayed if the specified directory does not exist.

clear: Clearing the Screen
clear

The clear command clears the terminal screen by displaying 80 blank lines.

exit: Exiting the Admintool Shell
exit

The exit command exits the Admintool shell.

help: Listing Admintool Shell Commands
help

The help command displays a list of all valid shell commands.

ls: Listing Data
ls [path]

The ls command lists the contents of the current directory or node. For example, if the
current directory is the root, then ls lists all realms. If the current directory is
/realm/users, then ls lists all users in the realm. The results of the listing depends
on the current directory. The ls command can operate with the * wildcard.

man: Viewing Admintool man Pages
man command_option
man shell_command

The man command displays detailed usage information for the specified shell
command or Admintool command option.

pwd: Displaying the Working Directory
pwd

Admintool Administrative Functions

C-10 Oracle Containers for J2EE Security Guide

The pwd command displays the current location of the user in the directory tree.
Undefined values are left blank in this listing.

rm: Removing Provider Data
rm name

The rm command removes the directory or node in the current directory. The effect of
the command depends on the current directory. For example, if the current directory is
the root, then rm removes the specified realm. If the current directory is
/realm/users, it removes the specified user. An error message is displayed if the
specified name does not exist.

The rm command accepts the * wildcard.

set: Updating Values
set name=value

The set command updates the value of the specified name. For example, use this
command to update the login module class, or a login module control flag, or a login
module class option, depending on the working directory.

Admintool Administrative Functions
This section documents administrative features of the Admintool. The following topics
are covered:

■ Adding and Removing Login Modules

■ Adding and Removing Realms (File-Based Provider Only)

■ Adding and Removing Roles (File-Based Provider Only)

■ Adding and Removing Users (File-Based Provider Only)

■ Setting Passwords (File-Based Provider Only)

■ Checking Passwords (File-Based Provider Only)

■ Administrative Operations

■ Granting and Revoking Permissions

■ Granting and Revoking Roles

■ Listing Login Modules

■ Listing Permissions

■ Listing Realms

■ Listing Roles

■ Listing Users

■ Converting from the principals.xml File to JAAS

Adding and Removing Login Modules
-addloginmodule application_name login_module_name
 control_flag [optionname=value ...]
-remloginmodule application_name login_module_name

Admintool Administrative Functions

OracleAS JAAS Provider Admintool Reference C-11

The -addloginmodule option configures a new login module for the named
application.

The control_flag must be one of required, requisite, sufficient or
optional, as specified in the standard
javax.security.auth.login.Configuration class. The meanings of these flag
values are summarized in Table 9–5, " Login Module Control Flags" on page 9-17.

If the login module accepts its own options, specify each option and its value as an
optionname=value pair. Each login module has its own individual set of options.

For example, to add MyLoginModule to the application myapp as a required module,
and where the login module supports a debug option:

% java -jar jazn.jar -addloginmodule myapp MyLoginModule required debug=true

To delete MyLoginModule from myapp:

% java -jar jazn.jar -remloginmodule myapp MyLoginModule

Admintool shell:

JAZN:> addloginmodule myapp MyLoginModule required debug=true
JAZN:> remloginmodule myapp MyLoginModule

Adding and Removing Realms (File-Based Provider Only)
-addrealm realm admin adminpwd adminrole
-remrealm realm

The -addrealm option creates a realm with the specified name and specified
administrator.

For the file-based provider, specify the name of the realm, the realm administrator, the
administrator password, and the administrator role:

-addrealm realm admin adminpwd adminrole

The -remrealm option deletes a realm.

For example, to create a realm employees with administrator martha, who has
password mypass and is a member of role hr:

% java -jar jazn.jar -addrealm employees martha mypass hr

Delete employees as follows:

% java -jar jazn.jar -remrealm employees

Important: Do not use the OracleAS JAAS Provider Admintool to
create realms for Oracle Internet Directory. Realms created with this
tool are suitable for the file-based provider only, and would not
include sufficient information for use with Oracle Internet Directory.
Instead, use Oracle Delegated Administration Services (DAS).

See Also:

■ "Overview of Delegated Administration Services" on page 4-4

■ Oracle Identity Management Guide to Delegated Administration

Admintool Administrative Functions

C-12 Oracle Containers for J2EE Security Guide

Admintool shell:

JAZN:> addrealm employees martha mypass hr
JAZN:> remrealm employees

Adding and Removing Roles (File-Based Provider Only)
-addrole realm role
-remrole realm role

The -addrole option creates a role in the specified realm; the -remrole option
deletes a role from the realm.

For example, to add the role roleFoo to the realm foo:

% java -jar jazn.jar -addrole foo fooRole

To delete the role from the realm:

% java -jar jazn.jar -remrole foo fooRole

Admintool shell:

JAZN:> addrole foo fooRole
JAZN:> remrole foo fooRole

Adding and Removing Users (File-Based Provider Only)
-adduser realm username password
-remuser realm username

The -adduser option adds a user to a specified realm; the -remuser option deletes a
user from the realm.

It is recommended that you add users through the Admintool shell instead of on the
command line, as in the following example:

% java -jar jazn.jar -shell
AbstractLoginModule username : oc4jadmin
AbstractLoginModule password : adminpassword
JAZN:> adduser jazn.com my_user my_password

Entering a user on the Admintool command line is less secure. For example, on a
UNIX system, any other user on the system could see the password by using the "ps
-ef" command to list all processes. By contrast, commands entered in the Admintool
shell are read only by the Admintool.

However, adding a user on the command line is supported as well. For example, to
add the user martha to the realm foo with the password mypass:

% java -jar jazn.jar -adduser foo martha mypass

To insert a user with no password, end the command line with the -null option:

jazn -jar jazn.jar -adduser foo martha -null

To delete martha from the realm:

% java -jar jazn.jar -remuser foo martha

Admintool shell:

JAZN:> adduser foo martha mypass
JAZN:> remuser foo martha

Admintool Administrative Functions

OracleAS JAAS Provider Admintool Reference C-13

Setting Passwords (File-Based Provider Only)
-setpasswd realm user old_pwd new_pwd

The -setpasswd option enables administrators to reset the password of a user, given
the old password.

For example, to change the user martha in realm foo from password mypass to
password a2d3vn:

% java -jar jazn.jar -setpasswd foo martha mypass a2d3vn

Admintool shell:

JAZN:> setpasswd foo martha mypass a2d3vn

Checking Passwords (File-Based Provider Only)
-checkpasswd realm user [-pw password]

The -checkpasswd option indicates whether the given user requires a password for
authentication.

When you specify -checkpasswd alone, the Admintool responds "A password exists
for this principal" if the user has a password, or "No password exists for tis principal"
if the user has no password.

When you specify -checkpasswd together with a -pw parameter for a password, the
Admintool responds "Successful verification of user/password pair" if the user name
and password pair are correct, or "Unsuccessful verification of user/password pair" if
user name or password is incorrect.

For example, to check whether the user martha in realm foo uses the password
Hello:

% java -jar jazn.jar -checkpasswd foo martha -pw Hello

Admintool shell:

JAZN:> checkpasswd foo martha -pw Hello

Administrative Operations
-activateadmin

Use the -activateadmin option to activate the oc4jadmin account (formerly
admin) in the default realm, and to set its password. (This account is initially
deactivated for the file-based provider in standalone OC4J.)

% java -jar jazn.jar -activateadmin password

Admintool shell:

JAZN:> activateadmin password

Note: The -activateadmin command is a one-time command.
If the administrative account is already active, an error will be
thrown to indicate that.

Admintool Administrative Functions

C-14 Oracle Containers for J2EE Security Guide

Granting and Revoking Permissions
-grantperm {realm {-user user |-role role} | principal_class principal_params}
 permission_class [permission_params]
-revokeperm {realm {-user user|-role role} | principal_class principal_params}
 permission_class [permission_params]

In this syntax, principal_class is the fully qualified name of a class that
implements the java.security.Principal interface, and principal_params is
a string to be interpreted by the principal class.

The -grantperm option grants the specified permission to a user (when called with
-user), a role (when called with -role), or a principal. The -revokeperm option
revokes the specified permission from a user or role or principal.

Always specify a realm when you grant or revoke permissions for a user or role, but
not when you grant or revoke permissions for a principal.

Permission specifications include the explicit class name of a permission, and its action
and target parameters. Note that there may be multiple action and target parameters,
as shown in the examples below.

For example, to grant RuntimePermission to the principal LDAPPrincipal, with
principal parameter hobbes (a value understood by LDAPPrincipal) and
permission parameter getProtectionDomain (a value understood by
RuntimePermission):

% java -jar jazn.jar -grantperm oracle.security.jazn.realm.LDAPPrincipal hobbes
 java.lang.RuntimePermission getProtectionDomain

As another example, to grant FilePermission with target a.txt and actions
"read, write" to user martha in realm foo:

% java -jar jazn.jar -grantperm foo -user martha java.io.FilePermission
 a.txt read,write

To revoke the permission:

% java -jar jazn.jar -revokeperm foo -user martha java.io.FilePermission
 a.txt read,write

Admintool shell:

JAZN:> grantperm foo -user martha java.io.FilePermission a.txt read,write
JAZN:> revokeperm foo -user martha java.io.FilePermission a.txt read,write

Granting and Revoking Roles
-grantrole role realm {user |-role role}
-revokerole role realm {user |-role role}

See Also:

■ "Activation of the oc4jadmin Account (Standalone OC4J)" on
page 4-12

Note: If the Admintool gives the error message "Permission class not
found," it means that the permission you wish to grant is not in the
classpath. See "Using Custom Principals and Permissions with the
Admintool" on page C-3.

Admintool Administrative Functions

OracleAS JAAS Provider Admintool Reference C-15

The -grantrole option grants the specified role to a user (when called with a user
name) or a role (when called with -role). The -revokerole option revokes the
specified role from a user or role.

For example, to grant the role editor to the user martha in realm foo:

% java -jar jazn.jar -grantrole editor foo martha

Or, to grant the role financial to the role finreporter:

% java -jar jazn.jar -grantrole financial foo -role finreporter

Admintool shell:

JAZN:> grantrole editor foo martha
JAZN:> revokerole editor foo martha

Listing Login Modules
-listloginmodules [application_name] [login_module_class]

The -listloginmodules option displays all login modules either in the specified
application_name or, if no application_name is specified, in all applications.
Specifying login_module_class after application_name displays information
on only the specified class within the application.

For example, to display all login modules for the application myapp:

% java -jar jazn.jar -listloginmodules myapp

Admintool shell:

JAZN:> listloginmodules myapp

Listing Permissions
-listperms {realm {-user user | -role role} | principal_class principal_params
 permission_class [permission_params]

The -listperms option displays all permissions that match the list criteria, as
follows:

■ Permissions that are granted to a user when the -user option is used

■ Permissions that are granted to a role when a -role option is used

■ Permissions that are granted to a principal

Always specify a realm when you list permissions for a user or role, but not when you
list permissions for a principal.

For example, to display all permissions for the user martha in realm foo:

% java -jar jazn.jar -listperms foo -user martha

Admintool shell:

Important: PermissionClassManager and related classes and
operations, including -listperms, are deprecated in OC4J 10.1.3.x
implementations and will be desupported in a future release.

Admintool Administrative Functions

C-16 Oracle Containers for J2EE Security Guide

JAZN:> listperms foo -user martha

Listing Realms
-listrealms [realm]

The -listrealms option displays all realms in the current JAAS environment; or, if a
realm argument is specified, the option lists only that realm.

For example, to list all realms:

% java -jar jazn.jar -listrealms

Admintool shell:

JAZN:> listrealms

Listing Roles
-listroles [realm [user | -role role]]

The -listroles option displays a list of roles that match the list criteria. This option
lists:

■ All roles in all realms, when called without any parameters

■ All roles granted to a user, when called with a realm name and user name

■ All roles granted to the specified role, when called with a realm name and the
option -role

For example, to list all roles in realm foo:

% java -jar jazn.jar -listroles foo

Admintool shell:

JAZN:> listroles foo

Listing Users
-listusers [realm [-role role | -perm permission]]

The -listusers option displays a list of users that match the list criteria. This option
lists:

■ All users in all realms, when called without any parameters

■ All users in a realm, when called with a realm name

■ Users that are granted a certain role or permission, when called with a realm name
and the option -role or -perm

For example, to list all users in realm foo:

% java -jar jazn.jar -listusers foo

To list all users in realm foo using permission bar:

% java -jar jazn.jar -listusers foo -perm bar

The Admintool lists users one to a line, such as:

scott
admin

Admintool Administrative Functions

OracleAS JAAS Provider Admintool Reference C-17

anonymous

Admintool shell:

JAZN:> listusers foo

Converting from the principals.xml File to JAAS
-convert filename realm

The -convert option migrates the principals.xml file into the specified realm of
the current OracleAS JAAS Provider. The filename argument specifies the path
name of the input file (typically
ORACLE_HOME/j2ee/home/config/principals.xml). For example:

% java -jar jazn.jar \
 -convert $ORACLE_HOME/j2ee/home/config/principals.xml jazn.com

Admintool shell:

JAZN:> convert ORACLE_HOME/j2ee/home/config/principals.xml jazn.com

See Also:

■ "Migrating Principals from the principals.xml File" on page 7-16
for important additional information

Admintool Administrative Functions

C-18 Oracle Containers for J2EE Security Guide

OracleAS JAAS Provider Configuration Files D-1

D
OracleAS JAAS Provider Configuration Files

This chapter contains reference information for the jazn.xml and
system-jazn-data.xml configuration files for the OracleAS JAAS Provider,
covering the following topics:

■ Hierarchy of jazn.xml

■ Elements and Attributes of jazn.xml

■ Hierarchy of system-jazn-data.xml

■ Elements and Attributes of system-jazn-data.xml

Hierarchy of jazn.xml
The jazn.xml file has a simple hierarchy, as follows:

<jazn>
 <property>

Elements and Attributes of jazn.xml
This section is an alphabetical dictionary of elements of the jazn.xml file.

Note: Elements in system-jazn-data.xml relating to a user and
role repository for the file-based provider also may appear in an
application-specific jazn-data.xml file.

Note: Do not use the <jazn-web-app> subelement of <jazn> in
the jazn.xml file. The <jazn-web-app> element is intended for use
in the orion-application.xml file.

See Also:

■ "The jazn.xml File" on page 4-9 for an overview of this file

Note: Where attributes are discussed, note that attribute values are
always set inside quotes: attribute="value".

See Also:

■ "The jazn.xml File" on page 4-9 for an overview of this file

Elements and Attributes of jazn.xml

D-2 Oracle Containers for J2EE Security Guide

<jazn>

Parent element: n/a (root)

Child elements: <property>

Required? Required; one only

This is the top-level element in the jazn.xml file, for configuration of the OracleAS
JAAS Provider.

Note: This element (optionally with any of its subelements) may also
appear in an orion-application.xml file for application-level
settings.

Table D–1 <jazn> Attributes

Name Description

config Values: n/a

Default: n/a

This attribute is unused in the OC4J 10.1.3.1 implementation.

default-realm Values: String

Default: n/a

This specifies the realm that is used for an authentication or
authorization request if no realm is explicitly specified. If
multiple realms are defined in your repository, you must specify
a default realm.

Note: While there is no default if this attribute is not set, be
aware that jazn.xml as shipped with OC4J sets the default
realm to be jazn.com. (And if there is no default-realm setting
in orion-application.xml, the default realm for the
application defaults to that specified in jazn.xml.)

jaas-mode Values: null|doas|doasprivileged

Default: null

This is used to specify JAAS mode, a fine-grained authorization
feature provided by OC4J that is related to standard
functionality of the Subject class static methods doAs() and
doAsPrivileged(). With the setting jaas-mode="doAs",
application modules (Web modules and EJBs) are executed by
OC4J within a Subject.doAs() block. With the setting
jaas-mode="doAsPrivileged", application modules are
executed within a Subject.doAsPrivileged() block, using
a null access control context. With the setting
jaas-mode="null" (default), modules are executed under
neither method.

See Also: "Introduction to JAAS Mode" on page 5-5

Elements and Attributes of jazn.xml

OracleAS JAAS Provider Configuration Files D-3

location Values: String

Default: n/a

For the file-based provider, this attribute in jazn.xml specifies
the location of the instance-level user repository. In the
jazn.xml file shipped with OC4J, this is specified to be
system-jazn-data.xml. This setting can be an absolute path
or a path relative to the location of the jazn.xml file. (This
attribute in orion-application.xml can specify an
application-specific user repository.)

For Oracle Identity Management (the LDAP-based provider),
this specifies the URL of the Oracle Internet Directory instance
and is set automatically when you associate the Oracle Internet
Directory instance with the OC4J instance through Application
Server Control.

persistence Values: NONE|ALL|VM_EXIT

Default: VM_EXIT

This specifies a persistence mode that governs how often
changes are written to the system-jazn-data.xml file and, if
applicable (for the file-based provider), to an application-level
jazn-data.xml file. With a setting of "NONE", changes are not
written. With a setting of "ALL", changes are written after every
modification. With a setting of "VM_EXIT" (default), changes are
written when the JVM exits.

provider Values: XML|LDAP

Default: XML

Specifies an instance-level security provider setting. At the OC4J
instance level in jazn.xml, the provider attribute specifies
the policy repository—"XML" for system-jazn-data.xml or
"LDAP" for Oracle Internet Directory, as discussed in "Policy
Repository Setting in jazn.xml" on page 5-14.

Note: An application-level security provider is specified by the
provider attribute in the <jazn> element in
orion-application.xml. (By convention, provider="XML"
in orion-application.xml is also used when the security
provider is an external LDAP provider, a custom login module,
or Oracle Access Manager.)

schema-major-version Values: String

Default: No default

The major version number of the jazn.xml XSD. The value of
this attribute is 10 for use with OC4J 10.1.3.x implementations.

Note: This attribute is not defined directly in the XSD for
jazn.xml. It is according to the attributeGroup
specification in the top-level OC4J XSD.

schema-minor-version Values: String

Default: No default

The minor version number of the jazn.xml XSD. The value of
this attribute is 0 for use with OC4J 10.1.3.x implementations.

Note: This attribute is not defined directly in the XSD for
jazn.xml. It is according to the attributeGroup
specification in the top-level OC4J XSD.

Table D–1 (Cont.) <jazn> Attributes

Name Description

Hierarchy of system-jazn-data.xml

D-4 Oracle Containers for J2EE Security Guide

<property>

Parent element: <jazn>

Child elements: None

Required? Optional; zero or more

Specify a property setting as a name/value pair. Each security provider and usage
mode supports its own set of properties. For example, there are properties specific to
the LDAP-based provider (when using Oracle Identity Management), and properties
specific to the identity management framework and Java SSO, as documented in
earlier chapters. For example:

For LDAP:

 <property name="ldap.protocol" value="no-ssl"/>

For the identity management framework:

 <property name="idm.token.asserter.class"
 value="oracle.security.jazn.sso.SSOCookieTokenAsserter" />

For Java SSO (which is an implementation of the identity management framework):

 <property name="idm.authentication.name" value="JavaSSO" />
 <property name="custom.sso.url.login"
 value="http://host:port/jsso/SSOLogin" />

Hierarchy of system-jazn-data.xml
This section shows the element hierarchy of the system-jazn-data.xml file. The
immediate subelements of <jazn-data> are <jazn-policy>, <jazn-realm>,
<jazn-loginconfig>, <jacc-repository>, <jazn-permission-classes>,
and <jazn-principal-classes>, but the latter three are not intended for customer
use in this release.

Table D–2 <property> Attributes

Name Description

name Values: String

Default: n/a

The name of the property.

value Values: String

Default: n/a

The value of the property.

Note: Elements under <jazn-realm> can also be used in an
application-specific jazn-data.xml file.

Hierarchy of system-jazn-data.xml

<jazn-data>

Hierarchy of system-jazn-data.xml

OracleAS JAAS Provider Configuration Files D-5

 <jazn-policy>
 <grant>
 <grantee>
 <display-name>
 <principals>
 <principal>
 <realm-name>
 <type>
 <class>
 <name>
 <codesource>
 <url>
 <permissions>
 <permission>
 <class>
 <name>
 <actions>

 <jazn-realm>
 <realm>
 <name>
 <users>
 <user>
 <name>
 <display-name>
 <description>
 <guid>
 <credentials>
 <roles>
 <role>
 <name>
 <display-name>
 <description>
 <guid>
 <members>
 <member>
 <type>
 <name>
 <jazn-policy> DO NOT USE AS SUBELEMENT OF <realm>

 <jazn-loginconfig>
 <application>
 <name>
 <login-modules>
 <login-module>
 <class>
 <control-flag>
 <options>
 <option>
 <name>
 <value>

 <jacc-repository> NOT INTENDED FOR CUSTOMER USE; SUBHIERARCHY NOT SHOWN

 <jazn-permission-classes> NOT INTENDED FOR CUSTOMER USE; SUBHIERARCHY NOT SHOWN

 <jazn-principal-classes> NOT INTENDED FOR CUSTOMER USE; SUBHIERARCHY NOT SHOWN

Hierarchy of system-jazn-data.xml

Elements and Attributes of system-jazn-data.xml

D-6 Oracle Containers for J2EE Security Guide

Elements and Attributes of system-jazn-data.xml
This section is an alphabetical dictionary of elements of the system-jazn-data.xml
file.

<actions>

Parent element: <permission>

Child elements: None

Required? Optional; zero or one

As applicable, this element can specify the actions that are permitted with respect to
the associated permission class and name. For example:

<permission>
 <class>oracle.security.jazn.realm.RealmPermission</class>
 <name>jazn.com</name>
 <actions>droprealm</actions>
</permission>

<application>

Parent element: <jazn-loginconfig>

Child elements: <name>, <login-modules>

Required? Optional; zero or more

In login module configuration, this element (through its subelements) specifies the
name of an application and configures login modules to be used by that application.

See Also:

■ "The system-jazn-data.xml File" on page 4-7 for an overview of
this file

■ "Application-Specific jazn-data.xml File (Optional)" on page 4-8

Notes:

■ Elements under <jazn-realm> can also be used in an
application-specific jazn-data.xml file.

■ Most settings in system-jazn-data.xml can be made through
Application Server Control, as documented elsewhere in this
document.

■ Where attributes are discussed, note that attribute values are
always set inside quotes: attribute="value".

See Also:

■ "The system-jazn-data.xml File" on page 4-7 for an overview of
this file

■ "Application-Specific jazn-data.xml File (Optional)" on page 4-8

Elements and Attributes of system-jazn-data.xml

OracleAS JAAS Provider Configuration Files D-7

<class>

Parent element: <principal>, <permission>, or <login-module>

Child elements: None

Required? Required within parent element; one only

This element has several uses:

■ Within the <principal> element (for granting permissions to a principal), it
specifies the fully qualified name of the principal class—the class that is
instantiated to represent a principal that is being granted a set of permissions. For
example (for a principal of type "role"):

<class>oracle.security.jazn.spi.xml.XMLRealmRole</class>

■ Within the <permission> element (for granting permissions to a principal), it
specifies the fully qualified name of the permission class. For example (for RMI
permission, used in accessing EJBs):

<class>com.evermind.server.rmi.RMIPermission</class>

■ Within the <login-module> element, it specifies the fully qualified name of the
login module class. For example:

<class>
 oracle.security.jazn.login.module.db.DBTableOraDataSourceLoginModule
</class>

<codesource>

Parent element: <grantee>

Child elements: <url>

Required? Optional; zero or one

For policy configuration, either a <principals> element or a <codesource>
element is used within a <grantee> element to specify what the permissions in
question are being granted to. A <codesource> element specifies a codesource URL,
to grant permissions to that codesource.

<control-flag>

Parent element: <login-module>

Child elements: None

Required? Required within parent element; one only

This element specifies one of the following control settings for a login module:

<control-flag>required</control-flag>

See Also:

■ <jazn-loginconfig> on page D-11 for an example

Elements and Attributes of system-jazn-data.xml

D-8 Oracle Containers for J2EE Security Guide

<control-flag>requisite</control-flag>

<control-flag>sufficient</control-flag>

<control-flag>optional</control-flag>

These are used according to standard functionality of the
javax.security.auth.login.Configuration class. The overall authentication
succeeds only if all "required" and "requisite" login modules succeed, possibly unless a
"sufficient" login module is configured and succeeds—in that case, only the required
and requisite login modules prior to the sufficient login module in the login module
list must succeed.

<credentials>

Parent element: <user>

Child elements: None

Required? Optional; zero or one

This element contains the authentication password for the user.

By default, OC4J uses password obfuscation for passwords specified in
system-jazn-data.xml (or optionally in an application-specific jazn-data.xml
file).

To instead use a cleartext (human-readable) password, set the clear attribute to
"true" or precede the password with "!" (in which case "!" is not considered part of the
password). Using cleartext passwords is discouraged, however.

The following are equivalent:

<credentials clear="true">welcome</credentials>

<credentials>!welcome</credentials>

See Also:

■ Table 9–5, " Login Module Control Flags" on page 9-17 for
additional information about the control flag settings

■ <jazn-loginconfig> on page D-11 for an example

Table D–3 <credentials> Attributes

Name Description

clear Values: true|false

Default: false

Set this to "true" to use a cleartext password instead of an
obfuscated password.

Note: The clear attribute is not specified in the
system-jazn-data.xml schema definition, but is supported by the
OracleAS JAAS Provider runtime implementation.

Elements and Attributes of system-jazn-data.xml

OracleAS JAAS Provider Configuration Files D-9

<description>

Parent element: <user> or <role>

Child elements: None

Required? Optional; zero or one

This contains a text string to describe the item (user or role, depending on the parent
element). For example (for the user oc4jadmin):

<description>The OC4J user with administrative privileges</description>

<display-name>

Parent element: <grantee>, <user>, or <role>

Child elements: None

Required? Optional; zero or one

This contains a text string to specify a display name to be used for the item (grantee,
user, or role, depending on the parent element), such as for display by a GUI tool. For
example (for the user oc4jadmin):

<display-name>OC4J Administrator</display-name>

<grant>

Parent element: <jazn-policy>

Child elements: <grantee>, <permissions>

Required? Optional; zero or more

For policy configuration, this element contains a grant entry that assigns a set of
permissions to a grantee (a codesource or set of principals).

<grantee>

Parent element: <grant>

See Also:

■ <jazn-realm> on page D-14 for an example

■ "Password Obfuscation in OC4J Configuration Files" on page 6-3

Note: Do not use the grantee-names attribute (specified in the
system-jazn-data.xml schema definition). Specify grantees
through <grantee> subelements.

See Also:

■ <jazn-policy> on page D-12 for an example

Elements and Attributes of system-jazn-data.xml

D-10 Oracle Containers for J2EE Security Guide

Child elements: <display-name>, <principals>, <codesource>

Required? Required within parent element; one only

When a policy grant is specified through a <grant> element, the <grantee> element
(used in conjunction with a <permissions> element) specifies who or what the
permissions are granted to—either a set of principals or a codesource.

<guid>

Parent element: <user> or <role>

Child elements: None

Required? Optional; zero or one

This element specifies the globally unique identifier (GUID) of the item (either a user
or role, depending on the parent element). A GUID is sometimes generated and used
internally by the OracleAS JAAS Provider, such as in migrating a user or role to a
different security provider. It is not an item that you would set yourself.

<jacc-repository>

Parent element: <jazn-data>

Child elements: <jacc-policy>

Required? n/a

This element and its subhierarchy (shown here) are not intended for customer use in
the OC4J 10.1.3.1 implementation.

 <jacc-repository>
 <jacc-policy>
 <contextID>
 <excluded-policy> SAME SUBHIERARCHY AS <jazn-policy>
 <unchecked-policy> SAME SUBHIERARCHY AS <jazn-policy>
 <role-policy> SAME SUBHIERARCHY AS <jazn-policy>

<jazn-data>

Parent element: n/a (root)

Child elements: <jazn-policy>, <jazn-realm>, <jazn-loginconfig> (considering only
those intended for customer use)

Required? Required; one only

This is the top-level element in the system-jazn-data.xml file, for configuration of
the OracleAS JAAS Provider.

See Also:

■ <jazn-policy> on page D-12 for an example

Elements and Attributes of system-jazn-data.xml

OracleAS JAAS Provider Configuration Files D-11

<jazn-loginconfig>

Parent element: <jazn-data>

Child elements: <application>

Required? Optional; zero or one

This is the top-level element for configuring login modules associated with the
specified applications (specified as part of the configuration). Here is an example for
the Oracle-supplied DBTableOraDataSourceLoginModule (subelements shown
here are described elsewhere in this appendix):

<jazn-loginconfig>
 <application>
 <name>application_name</name>
 <login-modules>
 <login-module>
 <class>
 oracle.security.jazn.login.module.db.DBTableOraDataSourceLoginModule
 </class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>data_source_name</name>
 <value>jdbc/OracleDS</value>
 </option>
 <option>
 <name>table</name>
 <value>userinfo</value>
 </option>
 <option>
 <name>roles_fk_column</name>
 <value>userName</value>
 </option>
 <option>
 <name>groupMembershipGroupFieldName</name>

Table D–4 <jazn-data> Attributes

Name Description

schema-major-version Values: String

Default: No default

The major version number of the system-jazn-data.xml
XSD. The value of this attribute is 10 for use with OC4J 10.1.3.x
implementations.

Note: This attribute is not defined directly in the XSD for
system-jazn-data.xml. It is according to the
attributeGroup specification in the top-level OC4J XSD.

schema-minor-version Values: String

Default: No default

The minor version number of the system-jazn-data.xml
XSD. The value of this attribute is 0 for use with OC4J 10.1.3.x
implementations.

Note: This attribute is not defined directly in the XSD for
system-jazn-data.xml. It is according to the
attributeGroup specification in the top-level OC4J XSD.

Elements and Attributes of system-jazn-data.xml

D-12 Oracle Containers for J2EE Security Guide

 <value>role</value>
 </option>
 <option>
 <name>user_pk_column</name>
 <value>userName</value>
 </option>
 <option>
 <name>passwordField</name>
 <value>passWord</value>
 </option>
 <option>
 <name>groupMembershipTableName</name>
 <value>groupinfo</value>
 </option>
 <option>
 <name>usernameField</name>
 <value>userName</value>
 </option>
 <option>
 <name>casing</name>
 <value>sensitive</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>
 ...
</jazn-loginconfig>

<jazn-permission-classes>

Parent element: <jazn-data>

Child elements: <permission-class>

Required? n/a

This element and its subhierarchy (shown here) are not intended for customer use in
the OC4J 10.1.3.1 implementation.

 <jazn-permission-classes>
 <permission-class>
 <name>
 <description>
 <type>
 <class>
 <target-descriptors>
 <target-descriptor>
 <name>
 <description>
 <action-descriptors>
 <action-descriptor>
 <name>
 <description>

<jazn-policy>

Parent element: <jazn-data>

Elements and Attributes of system-jazn-data.xml

OracleAS JAAS Provider Configuration Files D-13

Child elements: <grant>

Required? Optional; zero or one

This is the top-level element for policy configuration, specifying policy grants that
associate grantees (principals or codesources) with sets of permissions. Here is an
example (subelements shown here are described elsewhere in this appendix):

<jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <realm-name>jazn.com</realm-name>
 <type>role</type>
 <class>oracle.security.jazn.spi.xml.XMLRealmRole</class>
 <name>jazn.com/oc4j-administrators</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>com.evermind.server.AdministrationPermission</class>
 <name>administration</name>
 <actions>administration</actions>
 </permission>
 <permission>
 <class>oracle.security.jazn.realm.RealmPermission</class>
 <name>jazn.com</name>
 <actions>modifyrealmmetadata</actions>
 </permission>
 <permission>
 <class>oracle.security.jazn.realm.RealmPermission</class>
 <name>jazn.com</name>
 <actions>createrealm</actions>
 </permission>
 <permission>
 <class>oracle.security.jazn.realm.RealmPermission</class>
 <name>jazn.com</name>
 <actions>dropuser</actions>
 </permission>
 <permission>
 <class>oracle.security.jazn.realm.RealmPermission</class>
 <name>jazn.com</name>
 <actions>droprealm</actions>
 </permission>
 <permission>
 <class>com.evermind.server.rmi.RMIPermission</class>
 <name>login</name>
 </permission>
 <permission>
 <class>com.evermind.server.rmi.RMIPermission</class>
 <name>subject.propagation</name>
 </permission>
 <permission>
 <class>oracle.security.jazn.policy.RoleAdminPermission</class>
 <name>jazn.com/*</name>
 </permission>
 </permissions>
 </grant>
 ...

Elements and Attributes of system-jazn-data.xml

D-14 Oracle Containers for J2EE Security Guide

</jazn-policy>

<jazn-principal-classes>

Parent element: <jazn-data>

Child elements: <principal-class>

Required? n/a

This element and its subhierarchy (shown here) are not intended for customer use in
the OC4J 10.1.3.1 implementation.

 <jazn-principal-classes>
 <principal-class>
 <name>
 <description>
 <type>
 <class>
 <name-description-map>
 <name-description-pair>
 <name>
 <description>

<jazn-realm>

Parent element: <jazn-data>

Child elements: <realm>

Required? Optional; zero or one

This is the top-level element for user and role information, specifying security realms
and the users and roles they include. Here is an example (subelements shown here are
described elsewhere in this appendix):

<jazn-realm>
 <realm>
 <name>jazn.com</name>
 <users>
 <user deactivated="true">
 <name>anonymous</name>
 <guid>D3D41721D3E311DABFFC25CB9F57C041</guid>
 <description>The default guest/anonymous user</description>
 </user>
 <user>
 <name>oc4jadmin</name>
 <display-name>OC4J Administrator</display-name>
 <guid>D3DB1C00D3E311DABFFC25CB9F57C041</guid>
 <description>OC4J Administrator</description>
 <credentials>{903}r7VKkMgJqP8fkDZCG7YMo7UZnT/B+HcK</credentials>
 </user>
 ...
 </users>
 <roles>
 <role>

Note: Do not use <jazn-policy> as a subelement of <realm>.

Elements and Attributes of system-jazn-data.xml

OracleAS JAAS Provider Configuration Files D-15

 <name>ascontrol_admin</name>
 <display-name>ASControl Admin Role</display-name>
 <description>Administrative role for ASControl</description>
 <guid>D3DB1C05D3E311DABFFC25CB9F57C041</guid>
 <members>
 <member>
 <type>user</type>
 <name>oc4jadmin</name>
 </member>
 </members>
 </role>
 <role>
 <name>oc4j-administrators</name>
 <display-name>OC4J Admin Role</display-name>
 <description>Administrative role for OC4J</description>
 <guid>D3DB1C02D3E311DABFFC25CB9F57C041</guid>
 <members>
 <member>
 <type>user</type>
 <name>oc4jadmin</name>
 </member>
 ...
 </members>
 </role>
 ...
 </roles>
 </realm>
</jazn-realm>

<login-module>

Parent element: <login-modules>

Child elements: <class>, <control-flag>, <options>

Required? Required within parent element; one or more

This element specifies and configures a login module for a given application, with
subelements specifying the class name, control flag, and option settings for the login
module.

<login-modules>

Parent element: <application>

Child elements: <login-module>

Required? Required within parent element; one only

This element, through one or more <login-module> subelements, configures the set
of login modules for a given application.

See Also:

■ <jazn-loginconfig> on page D-11 for an example

See Also:

■ <jazn-loginconfig> on page D-11 for an example

Elements and Attributes of system-jazn-data.xml

D-16 Oracle Containers for J2EE Security Guide

<member>

Parent element: <members>

Child elements: <type>, <name>

Required? Optional; zero or more

The element specifies the name of a member of the applicable role, and whether the
member is a user or another role (according to the <type> subelement).

<members>

Parent element: <role>

Child elements: <member>

Required? Required within parent element; one only

This element specifies the members of a role. Members can be either users or other
roles.

<name>

Parent element: <principal>, <realm>, <role>, <user>, <member>, <application>, or
<option>

Child elements: None

Required? Required within parent element; one only

This element has several uses:

■ Within the <realm> element, it specifies the name of a realm. For example:

<name>jazn.com</name>

■ Within the <user> element, it specifies the unique name of a user in the
applicable realm. For example:

<name>oc4jadmin</name>

■ Within the <role> element, it specifies the unique name of a role in the applicable
realm. For example:

<name>oc4j-administrators</name>

■ Within the <member> subelement of <role>, it specifies the name of a member of
the role. For example (if the user oc4jadmin is to be a member of the role):

<name>oc4jadmin</name>

See Also:

■ <jazn-realm> on page D-14 for an example

See Also:

■ <jazn-realm> on page D-14 for an example

Elements and Attributes of system-jazn-data.xml

OracleAS JAAS Provider Configuration Files D-17

■ Within the <principal> element (for granting permissions to a principal), it
specifies the unique name of a principal within the given realm. For example:

<name>jazn.com/oc4j-administrators</name>

■ Within the <application> element, it specifies the fully qualified name of the
application whose login modules are being configured. For example:

<name>oracle.security.jazn.tools.Admintool</name>

■ Within the <option> element, it specifies the name of an option for configuration
of a login module. (There is an accompanying <value> element for the option
value.) For example, an option for DBTableOraDataSourceLoginModule:

<option>
 <name>data_source_name</name>
 <value>jdbc/OracleDS</value>
</option>

(This element as a subelement of <permission> is documented separately,
immediately below.)

<name>

Parent element: <permission>

Child elements: None

Required? Optional; zero or one

As applicable, this element can specify the name of a permission that is meaningful to
the permission class. For example:

<permission>
 <class>com.evermind.server.rmi.RMIPermission</class>
 <name>login</name>
</permission>

(This element as a subelement of <principal>, <realm>, <role>, <user>,
<member>, <application>, or <option> is documented separately, immediately
above.)

<option>

Parent element: <options>

Child elements: <name>, <value>

Required? Required within parent element; one or more

Each <option> element, through a <name> subelement and a <value> subelement,
specifies the name and value for an option setting for a login module.

See Also:

■ <jazn-loginconfig> on page D-11 for an example

Elements and Attributes of system-jazn-data.xml

D-18 Oracle Containers for J2EE Security Guide

<options>

Parent element: <login-module>

Child elements: <option>

Required? Optional; zero or one

This element, through its <option> subelements, specifies option settings for a login
module.

<permission>

Parent element: <permissions>

Child elements: <class>, <name>, <actions>

Required? Required within parent element; one or more

When a <permissions> element is used in policy grant configuration, each
<permission> subelement specifies one permission being granted to the principal in
question.

<permissions>

Parent element: <grant>

Child elements: <permission>

Required? Required within parent element; one only

When a policy grant is specified through a <grant> element, the <permissions>
element (used in conjunction with a <grantee> element) specifies the permissions
being granted, through a set of <permission> subelements.

<principal>

Parent element: <principals>

See Also:

■ <jazn-loginconfig> on page D-11 for an example

See Also:

■ <jazn-policy> on page D-12 for an example

Note: The system-jazn-data.xml schema definition does not
specify this as a required element, but the OracleAS JAAS Provider
runtime implementation requires its use within any <grant>
element.

See Also:

■ <jazn-policy> on page D-12 for an example

Elements and Attributes of system-jazn-data.xml

OracleAS JAAS Provider Configuration Files D-19

Child elements: <realm-name>, <class>, <type>, <name>

Required? Optional; zero or more

When a <principals> element is used in policy grant configuration, each
<principal> subelement specifies one principal being granted the permissions in
question.

<principals>

Parent element: <grantee>

Child elements: <principal>

Required? Optional; zero or one

For policy configuration, either a <principals> element or a <codesource>
element is used within a <grantee> element to specify what the permissions in
question are being granted to. A <principals> element specifies a set of principals
being granted the permissions.

For a subject to be granted these permissions, the subject should include all the
specified principals.

<realm>

Parent element: <jazn-realm>

Child elements: <name>, <users>, <roles>

Required? Optional; zero or more

This element specifies a realm and the users and roles that belong to the realm.

<realm-name>

Parent element: <principal>

Child elements: None

Required? Optional; zero or one

See Also:

■ <jazn-policy> on page D-12 for an example

See Also:

■ <jazn-policy> on page D-12 for an example

Note: Do not use <jazn-policy> as a subelement of <realm>.

See Also:

■ <jazn-realm> on page D-14 for an example

Elements and Attributes of system-jazn-data.xml

D-20 Oracle Containers for J2EE Security Guide

For granting permissions to a principal, this element specifies the name of the realm to
which the principal belongs. (Its value would correspond to the value of a <name>
subelement of a <realm> element where the realm is configured.) For example:

<realm-name>jazn.com</realm-name>

If a realm name is not specified, the default realm is assumed.

<role>

Parent element: <roles>

Child elements: <name>, <display-name>, <description>, <guid>, <members>

Required? Optional; zero or more

This element specifies a role and the members of that role.

<roles>

Parent element: <realm>

Child elements: <role>

Required? Optional; zero or one

This element specifies the set of roles that belong to a realm

<type>

Parent element: <member>

Child elements: None

Required? Required, one only

As a subelement of <member>, in specifying the member of a role, this element
specifies the type of member—that is, whether the member is a user or another role.
For example:

<type>user</type>

(This element as a subelement of <principal> is documented separately,
immediately below.)

See Also:

■ <jazn-realm> on page D-14 for an example

See Also:

■ <jazn-realm> on page D-14 for an example

See Also:

■ <jazn-realm> on page D-14 for an example

Elements and Attributes of system-jazn-data.xml

OracleAS JAAS Provider Configuration Files D-21

<type>

Parent element: <principal>

Child elements: None

Required? Optional; zero or one

As a subelement of <principal>, in granting permissions to a principal, this element
can optionally specify the type of principal—that is, whether the principal is a user or
a role. For example:

<type>role</type>

(This element as a subelement of <member> is documented separately, immediately
above.)

<url>

Parent element: <codesource>

Child elements: None

Required? Required within parent element; one only

When a <codesource> element is used in policy grant configuration, the <url>
subelement specifies the URL of the codesource being granted the permissions in
question. For example:

"file:${oracle.home}/j2ee/home/jazn.jar"

(This follows the same format as shown for a java2.policy file in "Creating or
Updating a Java 2 Policy File" on page 5-3.)

<user>

Parent element: <users>

Child elements: <name>, <display-name>, <description>, <guid>, <credentials>

Required? Optional; zero or more

This element specifies a user within a realm.

See Also:

■ <jazn-policy> on page D-12 for an example

Table D–5 <user> Attributes

Name Description

deactivated Values: true|false

Default: false

You can set this attribute to "true" if you want to maintain a
user in the configuration file but not have it be a currently valid
user. This is the initial configuration of the anonymous user in
the jazn.com realm, for example.

Elements and Attributes of system-jazn-data.xml

D-22 Oracle Containers for J2EE Security Guide

<users>

Parent element: <realm>

Child elements: <user>

Required? Optional; zero or one

This element specifies the set of users who belong to a realm.

<value>

Parent element: <option>

Child elements: None

Required? Required within the parent element; one only

The element specifies the value of an option for configuration of a login module.
(There is an accompanying <name> element for the option name.) For example, an
option for DBTableOraDataSourceLoginModule:

<option>
 <name>data_source_name</name>
 <value>jdbc/OracleDS</value>
</option>

See Also:

■ <jazn-realm> on page D-14 for an example

See Also:

■ <jazn-realm> on page D-14 for an example

Third Party Licenses E-1

E
Third Party Licenses

This appendix includes the Third Party License for third party products included with
Oracle Application Server.

Apache
This program contains third-party code from the Apache Software Foundation
("Apache"). Under the terms of the Apache license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the Apache
software, and the terms contained in the following notices do not change those rights.

The Apache license agreements apply to the following included Apache components:

■ Apache HTTP Server

■ Apache JServ

■ mod_jserv

■ Regular Expression package version 1.3

■ Apache Expression Language packaged in commons-el.jar

■ mod_mm 1.1.3

■ Apache XML Signature and Apache XML Encryption v. 1.4 for Java and 1.0 for
C++

■ log4j 1.1.1

■ BCEL v. 5

■ XML-RPC v. 1.1

■ Batik v. 1.5.1

■ ANT 1.6.2 and 1.6.5

■ Crimson v. 1.1.3

■ ant.jar

■ wsif.jar

■ bcel.jar

■ soap.jar

■ Jakarta CLI 1.0

■ jakarta-regexp-1.3.jar

Apache

E-2 Oracle Containers for J2EE Security Guide

■ JSP Standard Tag Library 1.0.6 and 1.1

■ Struts 1.1

■ Velocity 1.3

■ svnClientAdapter

■ commons-logging.jar

■ wsif.jar

■ commons-el.jar

■ standard.jar

■ jstl.jar

The Apache Software License

License for Apache Web Server 1.3.29
/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 2000-2002 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

Apache

Third Party Licenses E-3

 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 * Portions of this software are based upon public domain software
 * originally written at the National Center for Supercomputing
Applications,
 * University of Illinois, Urbana-Champaign.

License for Apache Web Server 2.0
Copyright (c) 1999-2004, The Apache Software Foundation
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Copyright (c) 1999-2004, The Apache Software Foundation
 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,

Apache

E-4 Oracle Containers for J2EE Security Guide

 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

Apache

Third Party Licenses E-5

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

Apache SOAP

E-6 Oracle Containers for J2EE Security Guide

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

Apache SOAP
This program contains third-party code from the Apache Software Foundation
("Apache"). Under the terms of the Apache license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the Apache
software, and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the Apache
software is provided by Oracle "AS IS" and without warranty or support of any kind
from Oracle or Apache.

Apache SOAP License
Apache SOAP license 2.3.1

Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

Apache SOAP

Third Party Licenses E-7

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses

Apache SOAP

E-8 Oracle Containers for J2EE Security Guide

 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,

mod_mm and mod_ssl

Third Party Licenses E-9

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

mod_mm and mod_ssl
This program contains third-party code from Ralf S. Engelschall ("Engelschall"). Under
the terms of the Engelschall license, Oracle is required to provide the following
notices. Note, however, that the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Engelschall software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the mod_mm
software is provided by Oracle "AS IS" and without warranty or support of any kind
from Oracle or Engelschall.

mod_mm
Copyright (c) 1999 - 2000 Ralf S. Engelschall. All rights reserved.
This product includes software developed by Ralf S. Engelschall
<rse@engelschall.com> for use in the mod_ssl project (http://www.modssl.org/).

mod_ssl
Copyright (c) 1998-2001 Ralf S. Engelschall. All rights reserved.
This product includes software developed by Ralf S. Engelschall
<rse@engelschall.com> for use in the mod_ssl project (http://www.modssl.org/).

OpenSSL

E-10 Oracle Containers for J2EE Security Guide

OpenSSL
This program contains third-party code from the OpenSSL Project. Under the terms of
the OpenSSL Project license, Oracle is required to provide the following notices. Note,
however, that the Oracle program license that accompanied this product determines
your right to use the Oracle program, including the OpenSSL software, and the terms
contained in the following notices do not change those rights.

OpenSSL License
/* ==
 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 * software must display the following acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 * endorse or promote products derived from this software without
 * prior written permission. For written permission, please contact
 * openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 * nor may "OpenSSL" appear in their names without prior written
 * permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 * acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS" AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ==
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com). This product includes software written by Tim

OpenSSL

Third Party Licenses E-11

 * Hudson (tjh@cryptsoft.com).
 *
 */

 Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to. The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 * "This product includes cryptographic software written by
 * Eric Young (eay@cryptsoft.com)"
 * The word 'cryptographic' can be left out if the rouines from the library
 * being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 * the apps directory (application code) you must include an acknowledgement:
 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed. i.e. this code cannot simply be

Perl

E-12 Oracle Containers for J2EE Security Guide

 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */

Perl
This program contains third-party code from the Comprehensive Perl Archive
Network ("CPAN"). Under the terms of the CPAN license, Oracle is required to
provide the following notices. Note, however, that the Oracle program license that
accompanied this product determines your right to use the Oracle program, including
the CPAN software, and the terms contained in the following notices do not change
those rights.

Perl Kit Readme
Copyright 1989-2001, Larry Wall

All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms
of either:

1. the GNU General Public License as published by the Free Software Foundation;
either version 1, or (at your option) any later version, or

2. the "Artistic License" which comes with this Kit.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See either the GNU General Public License
or the Artistic License for more details.

You should have received a copy of the Artistic License with this Kit, in the file named
"Artistic". If not, I'll be glad to provide one.

You should also have received a copy of the GNU General Public License along with
this program in the file named "Copying". If not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA or visit their
Web page on the internet at http://www.gnu.org/copyleft/gpl.html.

For those of you that choose to use the GNU General Public License, my interpretation
of the GNU General Public License is that no Perl script falls under the terms of the
GPL unless you explicitly put said script under the terms of the GPL yourself.
Furthermore, any object code linked with perl does not automatically fall under the
terms of the GPL, provided such object code only adds definitions of subroutines and
variables, and does not otherwise impair the resulting interpreter from executing any
standard Perl script. I consider linking in C subroutines in this manner to be the moral
equivalent of defining subroutines in the Perl language itself. You may sell such an
object file as proprietary provided that you provide or offer to provide the Perl source,
as specified by the GNU General Public License. (This is merely an alternate way of
specifying input to the program.) You may also sell a binary produced by the dumping
of a running Perl script that belongs to you, provided that you provide or offer to
provide the Perl source as specified by the GPL. (The fact that a Perl interpreter and
your code are in the same binary file is, in this case, a form of mere aggregation.) This
is my interpretation of the GPL. If you still have concerns or difficulties understanding
my intent, feel free to contact me. Of course, the Artistic License spells all this out for
your protection, so you may prefer to use that.

Perl

Third Party Licenses E-13

mod_perl 1.29 License
/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 1996-2000 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 */

mod_perl 1.99_16 License
Copyright (c) 1999-2004, The Apache Software Foundation
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR

Perl

E-14 Oracle Containers for J2EE Security Guide

CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Copyright (c) 1999-2004, The Apache Software Foundation
 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the

Perl

Third Party Licenses E-15

 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution

Perl

E-16 Oracle Containers for J2EE Security Guide

 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

Perl

Third Party Licenses E-17

Perl Artistic License
The "Artistic License"

Preamble
The intent of this document is to state the conditions under which a Package may be
copied, such that the Copyright Holder maintains some semblance of artistic control
over the development of the package, while giving the users of the package the right
to use and distribute the Package in a more-or-less customary fashion, plus the right to
make reasonable modifications.

Definitions
"Package" refers to the collection of files distributed by the Copyright Holder, and
derivatives of that collection of files created through textual modification.

"Standard Version" refers to such a Package if it has not been modified, or has been
modified in accordance with the wishes of the Copyright Holder as specified below.

"Copyright Holder" is whoever is named in the copyright or copyrights for the
package.

"You" is you, if you're thinking about copying or distributing this Package.

"Reasonable copying fee" is whatever you can justify on the basis of media cost,
duplication charges, time of people involved, and so on. (You will not be required to
justify it to the Copyright Holder, but only to the computing community at large as a
market that must bear the fee.)

"Freely Available" means that no fee is charged for the item itself, though there may be
fees involved in handling the item. It also means that recipients of the item may
redistribute it under the same conditions they received it.

1. You may make and give away verbatim copies of the source form of the Standard
Version of this Package without restriction, provided that you duplicate all of the
original copyright notices and associated disclaimers.

2. You may apply bug fixes, portability fixes and other modifications derived from
the Public Domain or from the Copyright Holder. A Package modified in such a
way shall still be considered the Standard Version.

3. You may otherwise modify your copy of this Package in any way, provided that
you insert a prominent notice in each changed file stating how and when you
changed that file, and provided that you do at least ONE of the following:

a. place your modifications in the Public Domain or otherwise make them Freely
Available, such as by posting said modifications to Usenet or an equivalent
medium, or placing the modifications on a major archive site such as
uunet.uu.net, or by allowing the Copyright Holder to include your
modifications in the Standard Version of the Package.

b. use the modified Package only within your corporation or organization.

c. rename any non-standard executables so the names do not conflict with
standard executables, which must also be provided, and provide a separate
manual page for each non-standard executable that clearly documents how it
differs from the Standard Version.

d. make other distribution arrangements with the Copyright Holder.

4. You may distribute the programs of this Package in object code or executable form,
provided that you do at least ONE of the following:

Perl

E-18 Oracle Containers for J2EE Security Guide

a. distribute a Standard Version of the executables and library files, together with
instructions (in the manual page or equivalent) on where to get the Standard
Version.

b. accompany the distribution with the machine-readable source of the Package
with your modifications.

c. give non-standard executables non-standard names, and clearly document the
differences in manual pages (or equivalent), together with instructions on
where to get the Standard Version.

d. make other distribution arrangements with the Copyright Holder.

5. You may charge a reasonable copying fee for any distribution of this Package. You
may charge any fee you choose for support of this Package. You may not charge a
fee for this Package itself. However, you may distribute this Package in aggregate
with other (possibly commercial) programs as part of a larger (possibly
commercial) software distribution provided that you do not advertise this Package
as a product of your own. You may embed this Package's interpreter within an
executable of yours (by linking); this shall be construed as a mere form of
aggregation, provided that the complete Standard Version of the interpreter is so
embedded.

6. The scripts and library files supplied as input to or produced as output from the
programs of this Package do not automatically fall under the copyright of this
Package, but belong to whoever generated them, and may be sold commercially,
and may be aggregated with this Package. If such scripts or library files are
aggregated with this Package through the so-called "undump" or "unexec"
methods of producing a binary executable image, then distribution of such an
image shall neither be construed as a distribution of this Package nor shall it fall
under the restrictions of Paragraphs 3 and 4, provided that you do not represent
such an executable image as a Standard Version of this Package.

7. C subroutines (or comparably compiled subroutines in other languages) supplied
by you and linked into this Package in order to emulate subroutines and variables
of the language defined by this Package shall not be considered part of this
Package, but are the equivalent of input as in Paragraph 6, provided these
subroutines do not change the language in any way that would cause it to fail the
regression tests for the language.

8. Aggregation of this Package with a commercial distribution is always permitted
provided that the use of this Package is embedded; that is, when no overt attempt
is made to make this Package's interfaces visible to the end user of the commercial
distribution. Such use shall not be construed as a distribution of this Package.

9. The name of the Copyright Holder may not be used to endorse or promote
products derived from this software without specific prior written permission.

10. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

The End

Index-1

Index

A
access control

access control context
(AccessControlContext), 2-11

access control lists and OracleAS JAAS Provider
directory entries, 8-18

access control lists, definition, 1-2
access controller (AccessController), 2-11
capability model, 1-2
defined, 1-2

Access Manager SDK, Oracle Access Manager, 11-15
Access SDK, Oracle Access Manager, 11-14
AccessGate vs. WebGate (Oracle Access

Manager), 11-3
accounts

creating and configuring new administrator
account, 4-13

accounts, OC4J
accounts created in OID, 8-7
predefined and required, 4-11
predefined for file-based provider, 7-12

ACLs--see access control lists
actions element, system-jazn-data.xml, D-6
activateadmin Admintool command, C-13
activated user (file-based provider), 4-12
add command, Admintool shell, C-8
addloginmodule option, Admintool, 9-20, C-10
addrealm option, Admintool, C-11
addrole option, Admintool, C-12
adduser option, Admintool, C-12
administration

Admintool, 4-3
configuation files and key elements, 4-5
creating and configuring new administrator

account, 4-13
Enterprise Manager, Application Server

Control, 4-2
JSR-77 support, 4-1
MBean browser and administration, 4-5
MBeans, definition, 4-1
Oracle Identity Management and Oracle Internet

Directory tools, 4-4
standards for managing applications, 4-1
tools for administration, 4-2

administrator account

activate in Admintool, C-13
creating and configuring new administrator

account, 4-13
oc4jadmin account, 4-12

AdminPermission class, 5-8
Admintool

activate administrator user, C-13
add shell command, C-8
adding and removing login modules, 9-20, C-10
adding and removing realms, C-11
adding and removing roles (file-based

provider), C-12
adding and removing users (file-based

provider), C-12
cd shell command, C-9
checking passwords (file-based provider), C-13
clear shell command, C-9
command-line syntax and options, C-4
exit shell command, C-9
granting and revoking permissions, C-14
granting and revoking roles, C-14
granting permissions, 5-12
granting RMI permission, 9-20
help shell command, C-9
invoking, 4-3, C-4
listing login modules, 9-20, C-15
listing permissions, C-15
listing realms, C-16
listing roles, C-16
listing users, C-16
ls shell command, C-9
man shell command, C-9
migrating from principals.xml, 7-16, C-17
mk shell command, C-8
mkdir shell command, C-8
overview, 4-3
pwd shell command, C-9
rm shell command, C-10
set shell command, C-10
setting passwords (file-based provider), C-13
shell commands, C-8
starting shell, C-6

anonymous lookup, EJBs, 18-11
anonymous user

activating/deactivating (file-based
provider), 4-12

Index-2

configuring, 4-15
application element, system-jazn-data.xml, D-6
application roles, 3-8
Application Server Control

configuring Java SSO, 14-8
configuring security provider, 6-9
configuring security role mappings, 6-11
overview, 4-2

as-context element, orion-ejb-jar.xml, 19-6
authentication

authenticating EJB applications, 18-1
authentication methods for Web

applications, 17-1
basic method, 17-1
client-cert method, 17-5
definition, 1-1
digest method, 17-1
digest method, with Oracle Internet

Directory, 8-15
failure, specify default realm, A-5
form-based method, 17-4
in OC4J, introduction, 3-5
login modules, 2-13
OracleAS Single Sign-On, 3-3
RealmLoginModule class, 3-3
SSL authentication, 1-4
SSO method, 8-14
supported authentication methods, 2-2

authorization
authorization APIs and JAAS mode, 5-4
authorizing EJB applications, 18-1
coarse-grained vs. fine-grained, 2-17
comparing models--overview, 2-17
definition, 1-2
enabling Java Authorization Contract for

Containers, 5-19
J2EE authorization APIs, 5-16
Java 2 code-based policy management, 5-1
obtaining a subject, 5-17
policy configuration, OracleAS JAAS

Provider, 5-14
policy management, OracleAS JAAS

Provider, 5-12
strategies, 5-20
to any authenticated user (PUBLIC role), 6-12
using checkPermission(), 5-17

authorization--also see access control

B
basic authentication

as fallback in digest authentication mode, 17-3
configuring in web.xml, 17-1
definition, 2-2
in Oracle Access Manager, 11-10

best practices for security, A-1
bootstrap accounts, 4-11
bootstrap jazn.xml, 4-9

C
caching, LDAP

caching properties, 8-22
disabling, 8-23

callback handler
identity callback handler interface, identity

management framework, 13-9
identity callback handler, identity management

framework, 13-3
standard definition, 2-14

capability model of access control, 1-2
case-sensitivity for roles

custom login modules, 9-3
external LDAP providers, 10-2
file-based provider, 7-1
LDAP-based provider, 8-2

cd command, Admintool shell, C-9
certificates and certificate authorities (SSL)

introduction, 1-5
trust points, 1-4
truststores, 19-1
using certificates with OC4J and Oracle HTTP

Server, 15-2
checkpasswd option, Admintool, C-13
cipher suites

definition, 16-4
specify in Web site XML file, 15-8
supported by JSSE, 16-4

class element, system-jazn-data.xml, D-7
class loading, sharing libraries, 6-14
clear command, Admintool shell, C-9
client-cert authentication

definition, 2-2
in OC4J, 17-5

Cluster MBean Browser, 7-18
CN (common name), 8-3
coarse-grained authorization, 2-17
codebase, 2-8
code-based security, 2-8
codesource, 2-8
codesource element, system-jazn-data.xml, D-7
common name (CN), 8-3
Common Secure Interoperability version 2--see CSIv2
component-managed sign-on (J2CA)

understanding, 20-6
vs. container-managed sign-on, 20-2

confidentiality element, orion-ejb-jar.xml, 19-5
connection properties, LDAP, 8-21
connector-factory element, oc4j-ra.xml (J2CA), 9-24
container-managed sign-on (J2CA)

authentication, 20-9
declarative, 20-9
programmatic, 20-12
understanding, 20-7
vs. component-managed sign-on, 20-2

control-flag element, system-jazn-data.xml, D-7
convert option, Admintool, 7-16, C-17
cookie domain for shared Web application, 15-8
COREid--see Oracle Access Manager
credential_mapping plug-in, Oracle Access

Index-3

Manager, 11-10, 11-11
credentials element, system-jazn-data.xml, D-8
credentials, specifying in EJB clients, 18-9
CSIv2

ejb_sec.properties settings, 19-3
internal-settings.xml settings, 19-1
introduction, 19-1
properties in orion-ejb-jar.xml, 19-5

custom login modules--see login modules
custom security providers (custom login

modules), 3-4

D
DAS (Delegated Administration Services for

OID), 4-4
database login module, 9-5
DataSourceUserManager (deprecated), 9-11
DBTableOraDataSourceLoginModule (database login

module), 9-5
deactivated user (file-based provider), 4-12
debugging

general SSL debugging, 15-18
logging, A-5
PrintingSecurityManager, 5-3

default realm, file-based or LDAP-based
provider, 6-4

default-method-access element,
orion-ejb-jar.xml, 18-8

Delegated Administration Services (DAS for
OID), 4-4

deployment
configuring the security provider through

Application Server Control, 6-9
deploying an application through Application

Server Control, 6-8
deploying login modules, 9-27
deployment plan, 4-1
deployment plan editor, 4-2
JSR-88 support, 4-1
standards for deploying applications, 4-1
tasks and guidelines, 6-7

deployment roles, 3-8
description element, system-jazn-data.xml, D-9
digest authentication

basic authentication fallback, 17-3
configuring in web.xml, 17-1
definition, 2-2
with Oracle Internet Directory, 8-15

digest.auth.basic.fallback property, 17-3
digital certificates, 1-4
display-name element, system-jazn-data.xml, D-9
distinguished name (DN), 8-3
DN (distinguished name), 8-3
doAs() and doAsPrivileged()

method descriptions, 2-15
with JAAS mode, 5-5

doasprivileged-mode (obsolete setting), 5-6
doPrivileged() method, AccessController, 2-11

E
EJB

anonymous lookup, 18-11
authenticating and authorizing EJB

applications, 18-1
client security properties for CSIv2, 19-3
granting permissions in browser, 18-11
JNDI security providers, 18-9
namespace access, 18-8
RMI client access, 18-10
server security properties for CSIv2, 19-1
troubleshooting, 18-3

ejb_sec.properties, CSIv2 security properties (EJB
client-side), 19-3

ejb-jar.xml
configuring J2EE security roles, 3-8

Enterprise Manager--see Application Server Control
establish-trust-in-client element,

orion-ejb-jar.xml, 19-6
establish-trust-in-target element,

orion-ejb-jar.xml, 19-6
exit command, Admintool shell, C-9
external LDAP providers

administrator user and roles, creating, 10-9
configuring in Application Server Control, after

deployment, 10-5
configuring in Application Server Control, during

deployment, 10-3
granting RMI permission to LDAP principal, 10-9
introduction, 3-4
overview, configuration and administration, 10-2
Sun Java System Directory Server

(example), 10-10
system-jazn-data.xml, login-module element

options, 10-6
troubleshooting, 10-2

external.synchronization property (no longer
supported), xxviii

F
file-based provider

activating/deactivating users, 4-12
administering instance-level security, 7-8
configuring as security provider after

deployment, 7-3
configuring as security provider during

deployment, 7-3
configuring in Application Server Control, 7-2
default realm, 6-4
introduction, 3-3
migrating from principals.xml, 7-16
migration tool, migrating from file-based provider

(to LDAP-based or alternative
file-based), 7-13

policy management, 7-2
realm management, 7-2, 7-11
settings in OC4J configuration files, 7-9

fine-grained authorization, 2-17
form-based authentication

Index-4

configuration in web.xml, 17-4
definition, 2-2
in Oracle Access Manager, 11-8

G
globally unique identifier (GUID), D-10
grant element, system-jazn-data.xml, D-9
grantee element, system-jazn-data.xml, D-9
grantperm option, Admintool, C-14
grantrole option, Admintool, C-14
Group class (deprecated), 5-8, 12-2
groups, OC4J instances

adding, administering, 7-17
J2EEServerGroup MBean, 7-18

GUID (globally unique identifier), D-10
guid element, system-jazn-data.xml, D-10

H
help command, Admintool shell, C-9
host name verifier (HTTPClient), 16-8
HTTPClient

divergence from open source version, 16-2
SSL host name verification, 16-8
using with JSSE, 16-6

HTTPConnection class, 16-2
HTTPS for client connections

HTTPClient example, JSSE, 16-7
Oracle HTTPS features, 16-2
Oracle HTTPS system properties, 16-5

I
identity callback handler interface, identity

management framework, 13-9
identity callback handler, identity management

framework, 13-3
identity management API framework for users and

roles--see user and role APIs
identity management framework

callback types, 13-10
configuration, 13-13
enabling an application to use, 13-15
identity callback handler, 13-3
identity callback handler interface, 13-9
identity token, 13-2
identity token interface, 13-6
multiple OC4J instances, considerations, 13-16
overview, 13-1
packaging implementation classes, 13-12
programmatic interfaces, 13-5
properties, 13-13
sample, header-based ID token, 13-17
subject asserter, 13-3
subject asserter interface, 13-12
summary of how to use, 13-16
token asserter, 13-2
token asserter interface, 13-8
token collector, 13-2
token collector interface, 13-6

identity management realms (OID)
introduction, 8-16
managing, 8-18
relation to JAAS Provider realms, 8-17
using multiple realms, 8-19

identity propagation, 2-7
identity store, 13-4
identity token interface, identity management

framework, 13-6
identity token, identity management

framework, 13-2
indirect passwords, 6-1
instance-level security, file-based provider, 7-8
integrity element, orion-ejb-jar.xml, 19-5
internal-settings.xml

CSIv2 security properties (EJB server-side), 19-1
DTD, 19-3
sep-property element, 19-1

J
J2CA, J2EE Connector Architecture--see resource

adapters
J2EE roles, 3-8
J2EEServerGroup MBean (OC4J groups), 7-18
JAAS (Java Authentication and Authorization

Service), 2-12
JAAS mode

configuring and using, 5-18
introduction, 5-5
required for subject propagation, 18-14

JAAS provider
integration with SSL-enabled applications, 15-2
integration with SSO-enabled applications, 8-4
overview, 3-2

JAAS roles (deployment roles), 3-8
jaas.username.simple property, 6-6
JACC--see Java Authorization Contract for Containers
Java 2 Security Model, 2-7
Java Authentication and Authorization Service

(JAAS), 2-12
Java Authorization Contract for Containers (Java

ACC)
enabling, 5-19
introduction, 5-11
specifying Java ACC provider, 5-20

Java Key Store (JKS), 19-1
Java single sign-on--see Java SSO
Java SSO

configuration and setup, details, 14-7
configuration for 10.1.3.1 patch over

10.1.3.0.0, 14-17
configuration, summary, 14-6
configuring through Application Server

Control, 14-8
deployment scenarios, 14-5
file-based provider and two OC4J

instances, 14-15
logout API, 14-17
multiple OC4J instances, 14-16

Index-5

overview, 14-1
properties, 14-12
summary of how to use, 14-18
troubleshooting, 14-18

java.net.URL framework, 16-3
java.security.manager property, 5-2
java.security.policy property, 5-2
javax.net.ssl.keyStore property, 16-5
javax.net.ssl.keyStorePassword property, 16-5
javax.net.ssl.keyStoreType property, 16-6
javax.net.ssl.trustStore property, 16-6
javax.net.ssl.trustStorePassword property, 16-6
javax.net.ssl.trustStoreType property, 16-6
JAZN (term no longer used), 3-2
jazn element, jazn.xml, D-2
jazn subelement of password-manager element,

system-application.xml, 6-2
jaznadmin user (OID), 8-8, 8-18
JAZNAdminGroup (OID), 8-8, 8-18
jazn-data element, system-jazn-data.xml, D-10
jazn-data.xml

overview, 4-8
persistence mode, 4-7
supplying for deployment, 7-11

jazn-loginconfig element,
system-jazn-data.xml, 9-21, D-11

JAZNPermission class, 5-8
jazn-policy element, system-jazn-data.xml, D-12
jazn-realm element, system-jazn-data.xml, D-14
JAZNUserManager, 3-3
jazn-web-app element, orion-application.xml, 17-2
jazn.xml

bootstrap, 4-9
element hierarchy, D-1
elements and attributes, reference, D-1
file not found, A-4
locations, 4-10
overview, 4-9
samples, 4-10

JCA--see resource adapters
JMX (MBeans), 4-5
JNDI

connection properties, 8-21
EJB JNDI security properties, 18-9
with a custom login module, 9-27

JSR-77 support, 4-1
JSR-88 support, 4-1
JSSE

supported cipher suites, 16-4
using HTTPClient with JSSE, 16-6

K
keys and keystores (SSL)

introduction, 1-5
Java Key Store (JKS), 19-1
javax.net.ssl.keyStore property, 16-5
javax.net.ssl.keyStorePassword property, 16-5
javax.net.ssl.keyStoreType property, 16-6
keystore for CSIv2, 19-1

keystore for ORMIS, 15-23
keystore, definition, 15-2
keytool utility, 15-3
wallet, equivalent to keystore, 15-2

keytool utility
example, 15-5
for keystores, 15-3

L
LDAP

external LDAP providers, 10-1
LDAP-based provider, 8-1

LDAP principal, 10-9
LDAP-based provider

caching properties, 8-22
connection properties, 8-21
creating users with OID DAS, 8-20
default realm, 6-4
Oracle Identity Management with Oracle Internet

Directory, 3-4
Oracle Identity Management, steps to use, 8-5
overview of Oracle Identity Management key

components, 8-2
realm management, 8-15
settings in OC4J configuration files, 8-20
troubleshooting, 8-24
user, password, and SSL properties, 8-20

LDAPLoginModule, 3-4
ldapsearch utility, to retrieve realm names from

OID, 8-25
libraries

importing shared library into application, 6-15
loading library as OC4J shared library, 6-14

Lightweight Directory Access Protocol--see LDAP
listloginmodules option, Admintool, 9-20, C-15
listperms option, Admintool, C-15
listrealms option, Admintool, C-16
listroles option, Admintool, C-16
listusers option, Admintool, C-16
logging, A-5
login configuration provider, specification, 9-1
login module element, system-jazn-data.xml, D-15
login modules

adding and removing in Admintool, 9-20, C-10
configuration in OC4J configuration files, 9-21
configuring as security provider after

deployment, 9-18
configuring as security provider during

deployment, 9-15
configuring in oc4j-ra.xml (J2CA), 9-24
configuring the custom security provider in

Application Server Control, 9-15
configuring with different applications, 2-13
CoreIDLoginModule (Oracle Access

Manager), 11-18
database login module, 9-5
definition, 2-13
deploying, 9-27
EIS connections (J2CA), using for, 20-16

Index-6

granting RMI permission, 9-20
in identity management framework, 13-3, 13-11
introducing custom login modules, usage, 9-12
jazn-loginconfig configuration element, D-11
LDAPLoginModule, 3-4, 10-6
listing in Admintool, 9-20, C-15
login configuration provider, 3-2
login configuration provider, specification, 9-1
login-module configuration element, D-15
login-modules configuration element, D-15
optional packages, deployed as, 9-14
packaging, 9-13
RealmLoginModule, 9-4
sample, 9-28
stacking, 2-14
step by step, 9-24
troubleshooting, 9-3

login modules element, system-jazn-data.xml, D-15
login-config element, web.xml, 17-1
LoginContext class, 2-13
login-module element, system-jazn-data.xml

for external LDAP providers, 10-6
ls command, Admintool shell, C-9

M
man command, Admintool shell, C-9
MBeans

definition, 4-1
MBean browser and administration, 4-5

member element, system-jazn-data.xml, D-16
members element, system-jazn-data.xml, D-16
method-permission element, ejb-jar.xml, 18-5
migration

migrating from principals.xml, 7-16, C-17
migration tool, migrating from file-based provider

(to LDAP-based or alternative
file-based), 7-13

mk command, Admintool shell, C-8
mkdir command, Admintool shell, C-8

N
name element, system-jazn-data.xml, D-16, D-17
namespace access (EJBs), 18-8
needs-client-auth (SSL client authentication), 15-15

O
ObSSOCookie, Oracle Access Manager SSO

cookie, 11-7
oc4jadmin account, 4-12
oc4j-connectors.xml (J2CA), security-permission

element, 20-5
oc4j-ra.xml (J2CA)

login module settings, 9-24
security-config element, 20-4

oidadmin (Oracle Directory Manager), 4-4
OID--see Oracle Internet Directory
omitting realm names from principals, 6-6
OPMN (Oracle Process Manager and Notification

Server), 15-21
option element, system-jazn-data.xml, D-17
optional packages, used for login modules, 9-14
options element, system-jazn-data.xml, D-18
Oracle Access Manager

Access Manager SDK, 11-15
Access SDK, 11-14
action URL, protecting, 11-13
application, protecting, 11-18
architecture, 11-5
auth-method setting, 11-17
basic authentication, 11-10
credential_mapping plug-in, 11-10, 11-11
EJB application, use case, 11-28
form-based authentication, 11-8
granting permissions to Oracle Access Manager

principals, 11-21
granting RMI permission to Oracle Access

Manager principal, 11-22
login module configuration, 11-18
overview, 11-2
plug-ins, overview, 11-6
Policy Manager, introduction, 11-3
Policy Manager, running, 11-6
prerequisites, 11-4
resource types, configuration, 11-12
resource types, overview, 11-6
sample use cases for J2EE applications, 11-25
sample use cases for Web services, 11-29
single sign-on cookie, 11-7
troubleshooting, 11-33
validate_password plug-in, 11-10
Web app using HTTP header variables, use

case, 11-26
Web app using SSO cookie, use case, 11-27
Web service with SAML token, use case, 11-32
Web service with username token, use case, 11-29
Web service with X.509 token, use case, 11-31

Oracle COREid Access and Identity--see Oracle
Access Manager

Oracle Directory Manager (oidadmin), 4-4
Oracle Enterprise Manager--see Application Server

Control
Oracle HTTPS (client-side)

example, JSSE, 16-7
overview, 16-2
system properties, 16-5

Oracle Identity Management
configuring as security provider after

deployment, 8-13
configuring as security provider during

deployment, 8-12
default realm, 6-4
LDAP-based provider (with Oracle Internet

Directory), 3-4
overview, key components, 8-2
troubleshooting, 8-24
using, steps to use, 8-5

Oracle Internet Directory
Delegated Administration Services (DAS), 4-4

Index-7

jaznadmin user, JAZNAdminGroup, 8-8, 8-18
LDAP-based provider (with Oracle Identity

Management), 3-4
Oracle Directory Manager (oidadmin), 4-4
overview, 8-2
ports, with or without SSL, 8-6, 8-21
realm names, retrieving with ldapsearch, 8-25
supported versions, 8-5

Oracle Java SSL (deprecated), 16-13
Oracle Wallet

auto-login wallet, SSO wallet, 15-12
usage by Oracle HTTP Server, 15-2

OracleAS JAAS Provider
introduction, 3-1
permissions, checking, 5-9
permissions, granting, 5-7
policy APIs, 5-6
policy configuration, 5-14
policy management, 5-12
realm APIs, 5-6
specifying as login configuration provider, 9-1
specifying as policy provider, 5-16

OracleAS Single Sign-On
integration, 3-3
overview, 8-3
servlet session synchronization, 8-11
supported versions, 8-5

oracle.home property, 5-4
oracle.j2ee.home property, 4-10
oracle.security.jazn.config property, 4-10
OracleSSLCredential, Oracle Java SSL

package, 16-14
Oracle.ssl.defaultCipherSuites property (Oracle Java

SSL), 16-17
orion-application.xml

configuring SSO, 8-14
jazn and jazn-web-app elements, 4-6
login module settings, 9-22
mapping J2EE roles to deployment roles, 17-9

orion-ejb-jar.xml
CSIv2 properties, 19-5
default security role, 18-8
security role mapping configuration, 18-7

ORMI tunneling over HTTPS, 15-23
ORMIS

configuring access restrictions, 15-21
configuring clients to use ORMIS, 15-22
configuring for OC4J in OAS, 15-21
configuring for standalone OC4J, 15-19

P
packaging

identity management framework implementation
classes, 13-12

login modules, 9-13
password-manager element,

system-application.xml, 6-2
passwords

checking in Admintool (file-based

provider), C-13
clear (human-readable) (file-based provider), 6-3
indirect passwords, 6-1
obfuscated passwords for LDAP user, 8-21
password indirection, 6-1
password obfuscation, 6-1, 6-3
setting in Admintool (file-based provider), C-13

Permission class, subclasses, characteristics, 2-9
permission element, system-jazn-data.xml, D-18
permissions

capability model of access control, 1-2
granting and revoking in Admintool, C-14
granting EJB permissions in browser, 18-11
in Java 2 Security Model, 2-9
listing in Admintool, C-15
OracleAS JAAS Provider APIs for checking, 5-9
OracleAS JAAS Provider APIs for granting, 5-7

permissions element, system-jazn-data.xml, D-18
persistence mode, system-jazn-data.xml or

jazn-data.xml, 4-7
plug-ins (Oracle Access Manager)

credential_mapping, 11-10, 11-11
overview, 11-6
validate_password, 11-10

policies
definition, JAAS policy, 2-15
definition, Java 2 policy, 2-10
file-based provider, policy management, 7-2
grant configuration element, D-9
granting permissions, Admintool, 5-12
Java 2 policy file, creating, 5-3
Java 2 policy file, specifying, 5-1
jazn-policy configuration element, D-12
OracleAS JAAS Provider policy APIs, 5-6
package for policy management, 3-3
policy cache, LDAP, 8-22
policy configuration, OracleAS JAAS

Provider, 5-14
policy management, OracleAS JAAS

Provider, 5-12
policy provider, 3-2
policy provider, specification, 5-16

Policy Manager, Oracle Access Manager
introduction, 11-3
running, 11-6

policy provider, specification, 5-16
ports, for Oracle Internet Directory, with or without

SSL, 8-6, 8-21
principal element, system-jazn-data.xml, D-18
principals

in JAAS, definition, 2-12
Principal interface, 2-12
sample principal class, 9-33

principals element, system-jazn-data.xml, D-19
principals.xml

migrating from, in Admintool, C-17
principals.xml, migrating from, in Admintool, 7-16
PrintingSecurityManager, 5-3
property element, jazn.xml, D-4
PropertyPermission, 18-11

Index-8

protection domains, 2-9
PUBLIC role (for access by any authenticated

user), 6-12
pwd command, Admintool shell, C-9

R
realm element, system-jazn-data.xml, D-19
RealmLoginModule class

configuring, 9-4
introduction, 3-3

realm-name element, system-jazn-data.xml, D-19
RealmPermission class, 5-8
realms

adding and removing in Admintool, C-11
default realm, file-based or LDAP-based

provder, 6-4
file-based provider, realm management, 7-2
hierarchy for OracleAS JAAS Provider, 8-16
jazn-realm configuration element, D-14
listing in Admintool, C-16
managing identity management realms

(OID), 8-18
managing in file-based provider, 7-11
managing in LDAP-based environments, 8-15
multiple realms, 6-6
nondefault realm, 6-5
omitting realm name from principals, 6-6
OracleAS JAAS Provider realm APIs, 5-6
overview, 3-3
package for realm management, 3-3
realm cache, LDAP, 8-22
realm configuration element, D-19
relation of JAAS Provider realms to OID

realms, 8-17
retrieving from OID using ldapsearch, 8-25
tasks and guidelines in OC4J, 6-3
troubleshooting, A-4
using multiple identity management realms

(OID), 8-19
remloginmodule option, Admintool, 9-20, C-10
remrealm option, Admintool, C-11
remrole option, Admintool, C-12
remuser option, Admintool, C-12
resource adapters

authentication in container-managed
sign-on, 20-9

component-managed sign-on, 20-6
component-managed vs. container-managed

sign-on, 20-2
container-managed sign-on, 20-7
declarative container-managed sign-on, 20-9
login modules for EIS connections, 20-16
overview of security and authentication

setup, 20-1
overview of security-related configuration

elements, 20-4
programmatic container-managed sign-on, 20-12
sample, programmatic container-managed

sign-on, 20-14

security contract, 20-1
resource types (Oracle Access Manager)

configuration, 11-12
overview, 11-6

revokeperm option, Admintool, C-14
revokerole option, Admintool, C-14
rm command, Admintool shell, C-10
RMI permission

granting for login modules, 9-20
granting to administrator roles, external LDAP

provider, 10-9
granting to appropriate role for EJB, 18-10
granting to LDAP principal, 10-9
granting to Oracle Access Manager

principal, 11-22
role and user APIs

model/framework, 12-2
overview, 12-1
properties file, 12-8
replacement of UserManager, User, Group

features, 12-2
sample, basic, 12-8
sample, OC4J integration, 12-9
steps and samples, 12-4
summary of classes and interfaces, 12-3

role element, system-jazn-data.xml, D-20
RoleAdminPermission class, 5-8
roles

adding and removing in Admintool (file-based
provider), C-12

application roles, 3-8
case-sensitivity, custom login modules, 9-3
case-sensitivity, external LDAP providers, 10-2
case-sensitivity, file-based provider, 7-1
case-sensitivity, LDAP-based provider, 8-2
creating, editing, deleting (file-based

provider), 7-7
definition, 1-3
deployment roles, 3-8
granting and revoking in Admintool, C-14
J2EE roles, 3-8
listing in Admintool, C-16
mapping J2EE roles to deployment roles, 17-9
mapping logical roles to users and roles,

EJBs, 18-6
mapping, overview, 3-8
methods unchecked for security roles, EJBs, 18-6
role configuration element, D-20
role-based access control, 1-3
roles configuration element, D-20

roles element, system-jazn-data.xml, D-20
run-as element, ejb-jar.xml, 18-6
run-as security identity

for EJBs, 18-6
for Web applications, 17-8

runas-mode (obsolete setting), 5-6
RuntimePermission, 18-11

Index-9

S
samples

identity management framework, header-based ID
token, 13-17

jazn-loginconfig configuration, D-11
jazn-policy configuration, D-12
jazn-realm configuration, D-14
JSSE with HTTPClient, 16-7
login module, 9-28
Oracle Access Manager use cases for J2EE

applications, 11-25
Oracle Access Manager use cases for Web

services, 11-29
programmatic container-managed sign-on

(resource adapters), 20-14
sample servlet, various features, B-1
Sun Java System Directory Server

configuration, 10-10
user and role APIs, basic example, 12-8
user and role APIs, OC4J integration, 12-9

sas-context element, orion-ejb-jar.xml, 19-6
Secure Sockets Layer--see SSL
security managers

overview, 2-11
PrintingSecurityManager for debug, 5-3
specifying, enabling, 5-1

security provider
definition, 1-1
supported providers, 3-3

security-identity element, ejb-jar.xml, 18-6
SecurityManager class, 2-11
security-role element, ejb-jar.xml, 18-4
security-role-mapping element,

orion-ejb-jar.xml, 18-7
security-role-ref element, ejb-jar.xml, 18-3
sep-property element, internal-settings.xml, 19-1
servlet session synchronization (with SSO), 8-11
session cache, LDAP, 8-22
session synchronization for servlets (with SSO), 8-11
session-tracking element, orion-web.xml, 15-8
set command, Admintool shell, C-10
setpasswd option, Admintool, C-13
setSSLEnabledCipherSuites() method, Oracle Java

SSL, 16-17
shared libraries

importing, 6-15
loading, 6-14

shared Web applications, 15-8
shell commands, Admintool, C-8
shell option, Admintool, C-6
single sign-on

alternatives in Oracle Application Server, 3-6
configuring in orion-application.xml, 8-14
definition, 3-6
integration with JAAS provider, 8-4
Java SSO, 14-1
Oracle Access Manager SSO cookie, 11-7
Oracle Access Manager SSO, configure Web

apps, 11-17
OracleAS Single Sign-On overview, 8-3

SocketPermission, 18-11
SSL

authentication in SSL, 1-4
client authentication, 15-15
debugging, 15-18
enabling SSL in OC4J, 15-5
enabling/disabling for LDAP-based

provider, 8-20
host name verification for HTTPClient, 16-8
integration with JAAS provider, 15-2
introduction, 1-4
ORMI over SSL, 15-18
ORMI tunneling over HTTPS, 15-23
port for Oracle Internet Directory with SSL, 8-6,

8-21
troubleshooting, 15-17
truststores, 19-1
using certificates with OC4J and Oracle HTTP

Server, 15-2
ssl-config element, Web site XML file, 15-7
SSO--see single sign-on
stacking login modules, 2-14
subject asserter interface, identity management

framework, 13-12
subject asserter, identity management

framework, 13-3
subject propagation

enabling, 18-14
overview in OC4J, 18-13
removing/configuring restrictions, 18-15
sharing principal classes, 18-15

Subject.doAs() and Subject.doAsPrivileged()
method descriptions, 2-15
with JAAS mode, 5-5

subjects
in JAAS, definition, 2-12
Subject class, 2-12

Sun Java System Directory Server (external LDAP
provider, example), 10-10

system application
overview, 4-10

system-application.xml, 4-7
system-jazn-data.xml

and Admintool, 4-3
element hierarchy, D-4
elements and attributes, reference, D-6
for policy data, 7-12
overview, 4-7
persistence mode, 4-7
settings for login modules, 9-21

T
third-party LDAP providers--see external LDAP

providers
token asserter interface, identity management

framework, 13-8
token asserter, identity management

framework, 13-2
token collector interface, identity management

Index-10

framework, 13-6
token collector, identity management

framework, 13-2
transport-config element, orion-ejb-jar.xml, 19-5
troubleshooting

EJBs, 18-3
external LDAP providers, 10-2
general OC4J security troubleshooting, A-3
Java SSO, 14-18
JAZN not properly configured, A-4
LDAP-based provider, 8-24
logging, A-5
login modules, 9-3
Oracle Access Manager, 11-33
Oracle Identity Management, 8-24
realms, A-4
SSL, 15-17
unable to locate login configuration, A-4

trust points, 1-4
truststores (SSL)

introduction, 1-6
javax.net.ssl.trustStore property, 16-6
javax.net.ssl.trustStorePassword property, 16-6
javax.net.ssl.trustStoreType property, 16-6
truststore for CSIv2, 19-1

tunneling, ORMI over HTTPS, 15-23
type element, system-jazn-data.xml, D-20, D-21

U
unchecked element, ejb-jar.xml, 18-6
url element, system-jazn-data.xml, D-21
use-caller-identity element, ejb-jar.xml, 18-6
user and role APIs

model/framework, 12-2
overview, 12-1
properties file, 12-8
replacement of UserManager, User, Group

features, 12-2
sample, basic, 12-8
sample, OC4J integration, 12-9
steps and samples, 12-4
summary of classes and interfaces, 12-3

User class (deprecated), 9-5, 12-2
user element, system-jazn-data.xml, D-21
user repository, 1-1
UserManager class (deprecated), 12-2
users

activating/deactivating (file-based
provider), 4-12

adding and removing in Admintool (file-based
provider), C-12

creating, editing, deleting (file-based
provider), 7-5

creating, with OID DAS for LDAP-based
provider, 8-20

ldap.user and ldap.password properties for
LDAP, 8-20

listing in Admintool, C-16
user configuration element, D-21

users configuration element, D-22
users element, system-jazn-data.xml, D-22

V
validate_password plug-in, Oracle Access

Manager, 11-10
value element, system-jazn-data.xml, D-22

W
wallet, equivalent to keystore, 15-2
wallets--see Oracle Wallet
Web services, use cases with Oracle Access

Manager, 11-29
web-app element, Web site XML file, 15-8
WebGate vs. AccessGate (Oracle Access

Manager), 11-3
web.xml

configuring authentication method, 17-1
configuring J2EE security roles, 3-8

X
XML-based provider--see file-based provider

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	What’s New
	Changes in Release 10.1.3.1
	Changes in Release 10.1.3.0.0

	1 Basic Security Concepts
	Application-Level Security
	About Authentication
	About Authorization

	Transport-Level Security
	Secure Sockets Layer and HTTPS
	SSL Authentication
	X.509 Certificates
	Key Encryption and Exchange

	2 Java Platform Security
	J2EE Security Model
	Web Application Authentication and Authorization
	Enterprise JavaBeans Authentication and Authorization
	Identity Propagation

	Java 2 Security Model
	Code-Based Security
	Security Permissions
	Protection Domains
	Java 2 Authorization: Java 2 Security Policies
	Java 2 Authorization: Security Managers and Access Controllers

	Java Authentication and Authorization Service
	Principals and Subjects
	JAAS Authentication: Login Modules
	JAAS Authorization: JAAS Security Policies
	JAAS Authorization: Subject Methods doAs() and doAsPrivileged()

	Security Considerations during Development
	Summary: Comparing Security Models for J2EE, Java 2, and JAAS
	Steps to Develop a Secure J2EE Application

	3 Overview of OC4J Security
	Introducing the OracleAS JAAS Provider and Security Providers
	Overview of the OracleAS JAAS Provider
	Summary of JAAS Framework Features
	Security Realms in the OracleAS JAAS Provider
	Supported Security Providers

	Introducing Authentication Features in the OC4J Environment
	Supported Web Application Authentication Methods
	Overview of OC4J Login Modules
	Overview of Oracle Application Server Single Sign-On Alternatives
	JAZNUserManager Delegation (File-Based Provider)

	Introducing Authorization Features in the OC4J Environment
	Overview of Security Role Mapping
	Overview of General-Use Identity Management Frameworks and APIs

	4 Overview of Security Administration
	General OC4J Deployment and Configuration Features
	Tools for Oracle Application Server and OracleAS JAAS Provider
	Overview of Oracle Enterprise Manager 10g Application Server Control
	Overview of the OracleAS JAAS Provider Admintool
	Overview of Oracle Identity Management and Oracle Internet Directory Tools

	JMX and MBeans Administration
	Overview of Configuration Files and Key Elements
	The orion-application.xml File (<jazn> and <jazn-web-app> Elements)
	The system-application.xml File
	The system-jazn-data.xml File
	Application-Specific jazn-data.xml File (Optional)
	The jazn.xml File

	OC4J System Application
	Summary of OC4J Accounts
	Predefined Accounts
	Activation of the oc4jadmin Account (Standalone OC4J)
	Creating and Configuring a New Administrator Account
	Configuring an Anonymous User

	Summary of Configuration Repositories and Security Management Tools

	5 Authorization in OC4J
	Java 2 Security and Code-Based Policy Management
	Specifying a Java 2 Security Manager and Policy File
	Using PrintingSecurityManager to Determine Required Java 2 Permissions
	Creating or Updating a Java 2 Policy File

	Authorization APIs, JAAS Mode, and JACC in the OC4J Environment
	JAAS Authorization and OracleAS JAAS Provider JAAS Mode
	Implementation of Java Authorization Contract for Containers

	OracleAS JAAS Provider Policy Management
	Granting Permissions through the OracleAS JAAS Provider Admintool
	Using OracleAS JAAS Provider Policy Management APIs
	OracleAS JAAS Provider Policy Configuration
	Specification of the Oracle Policy Provider

	Authorization Coding and Configuration
	Using J2EE Authorization APIs
	Obtaining a Subject
	Using the checkPermission() Method
	Configuring and Using JAAS Mode
	Enabling the Java Authorization Contract for Containers

	Authorization Strategies
	Considering J2EE Security
	Considering Java 2 Security
	Considering JAAS Security

	6 General Tasks for OC4J Security
	Tasks for Password Management
	Using Password Indirection
	Specifying a Password Manager in system-application.xml
	Password Obfuscation in OC4J Configuration Files

	Using Security Realms in OC4J
	Default Realm with the File-Based Provider or Oracle Identity Management
	Evaluation of Default Realm for File-Based Provider, Oracle Identity Management
	Using the Default Realm
	Using a Nondefault Realm
	Using Multiple Realms
	Omitting the Realm Name When Retrieving an Authenticated Principal

	Deployment Tasks for Security
	Overview of Deployment Considerations
	Deploying an Application
	Specifying a Security Provider
	Mapping Security Roles

	Post-Deployment Tasks for Security
	Navigating to the Security Provider Page for Your Application

	Tasks to Share a Library
	Loading the Library as an OC4J Shared Library
	Importing the Library into Your Application

	7 File-Based Security Provider
	Tools for File-Based Provider Policy and Realm Management
	Configuring the File-Based Provider in Application Server Control
	Configuring the File-Based Provider during Application Deployment
	Changing to the File-Based Provider after Deployment
	Managing Application Realms through Application Server Control
	Managing Application Users through Application Server Control
	Managing Roles through Application Server Control
	Administering Instance-Level Security through Application Server Control

	File-Based Provider Settings in OC4J Configuration Files
	Settings in the <jazn> Element for the File-Based Provider
	Realm Configuration in the Repository File
	Policy Configuration in the Repository File
	Predefined OC4J Accounts in system-jazn-data.xml

	OracleAS JAAS Provider Migration Tool
	Overview of the Migration Tool
	Migration Tool Command Syntax
	Migration Tool APIs

	Migrating Principals from the principals.xml File
	Using the File-Based Provider Across an OC4J Group
	OC4J Basic Group Features
	Cluster MBean Browser Features and the J2EEServerGroup MBean

	8 Oracle Identity Management
	Initial Considerations for OC4J Support of Oracle Identity Management
	Overview of Oracle Identity Management Key Components
	Overview of Oracle Internet Directory
	About Distinguished Names
	Overview of Oracle Single Sign-On
	SSO-Enabled J2EE Environment: Typical Scenario

	Prerequisite: Oracle Application Server Infrastructure
	Steps to Use the Oracle Identity Management Security Provider
	Associate Oracle Internet Directory with OC4J
	Configure SSO (Optional)
	Configure Oracle Identity Management as the Security Provider

	Settings for Authentication Method with Oracle Identity Management
	OC4J Configuration for Oracle Single Sign-On Authentication
	Using Digest Authentication with Oracle Internet Directory

	Realm Management for the LDAP-Based Provider
	Overview of OracleAS JAAS Provider Realms for Oracle Identity Management
	Realm Management for Oracle Identity Management

	LDAP-Based Provider Settings in OC4J Configuration Files
	Configuring LDAP User and SSL Properties
	Configuring LDAP Connection Properties
	Configuring LDAP Caching Properties

	Tips and Troubleshooting for the LDAP-Based Provider
	Checking Configuration (JAZN-LDAP)
	Using ldapsearch to Retrieve Realm Names from Oracle Internet Directory
	Avoiding OC4J Restart for Oracle Internet Directory Changes to Take Effect
	Accessing the Oracle Single Sign-On Administration Pages

	9 Login Modules
	Initial Login Module Considerations
	Specification of the Oracle Login Configuration Provider
	Login Module Notes and Tips

	Login Modules Supplied with OC4J
	RealmLoginModule
	DBTableOraDataSourceLoginModule

	Introducing Custom JAAS Login Modules
	Summary of Choices for Packaging Login Modules
	Packaging Login Modules within the J2EE Application
	Providing Login Modules as Optional Packages
	Providing Login Modules as OC4J Shared Libraries

	Configuring the Custom Security Provider in Application Server Control
	Specifying and Configuring a Custom Security Provider during Deployment
	Changing to a Custom Security Provider after Deployment
	Adding a Login Module to the Custom Security Provider
	Updating a Login Module in the Custom Security Provider
	Deleting a Login Module in the Custom Security Provider

	Using Admintool to Configure Login Modules and Grant RMI Permission
	Configuring Login Modules through the Admintool
	Granting RMI Permission through the Admintool

	Summary of Login Module Configuration in OC4J Configuration Files
	Login Module Settings in system-jazn-data.xml
	Login Modules Settings in orion-application.xml
	Login Module Settings in oc4j-ra.xml (J2EE Connector Architecture)

	Step by Step: Integrating a Custom Login Module with OC4J
	Develop the Login Module
	Configure and Package the Login Module
	Configure Namespace Access and Role Mappings (as applicable)
	Deploy the Login Module
	Grant RMI Permission (as applicable)
	Set JNDI Properties (as applicable)

	Custom Login Module Example
	SampleLoginModule Code
	SamplePrincipal Code

	10 External LDAP Security Providers
	Overview of External LDAP Provider Configuration and Administration
	Configuring External LDAP Providers in Application Server Control
	Specifying and Configuring an External LDAP Provider during Deployment
	Changing to an External LDAP Provider after Deployment

	External LDAP Provider Settings in system-jazn-data.xml
	Creating Necessary Accounts and Granting Necessary Permissions
	Creating the Administrative User and Roles and Granting RMI Permission
	Granting RMI Permission to an LDAP Principal
	Granting Additional Permissions to External LDAP Principals
	Using JAAS Mode with External LDAP Providers

	Sample Configuration for Sun Java System Directory Server
	Sample LDIF Description
	Sample Entries in OC4J Configuration Files

	Using SSL with External LDAP Providers
	Initial SSL Considerations for External LDAP Providers
	Configuring OC4J to Use SSL with an External LDAP Provider
	Configuring the External LDAP Provider for SSL

	11 Oracle Access Manager
	Getting Started with Oracle Access Manager
	Overview of Oracle Access Manager
	Oracle Access Manager Prerequisites
	Oracle Access Manager Architecture
	Top-Level Summary of Configuration Stages for Oracle Access Manager
	Running the Policy Manager

	Oracle Access Manager Concepts
	About Oracle Access Manager Resource Types
	About Oracle Access Manager Authentication
	About the Oracle Access Manager Single Sign-On Cookie
	About Using HTTP Header Variables for Authentication

	Configuring Oracle Access Manager
	Configure Oracle Access Manager Form-Based Authentication
	Configure Oracle Access Manager Basic Authentication
	Configure the Resource Type
	Protect the Action URL

	Configuring OC4J with the Access Manager SDK
	Create OC4J Instances as Needed
	Configure the Access Manager SDK to Each OC4J Instance
	Configure the Access Manager SDK Library Path for Each OC4J Instance

	Configuring opmn.xml for Oracle Access Manager
	Creating Required Accounts in the LDAP Server
	Configuring the Application
	Protect the Application URLs in web.xml
	Settings for Application Deployment
	Configure Oracle Access Manager SSO in orion-application.xml
	Protect the Application URLs in Oracle Access Manager
	Configure the Oracle Access Manager Login Module
	Test the Application

	Granting Permissions to Oracle Access Manager Principals
	Granting RMI Permission to an Oracle Access Manager Principal
	Granting Required Permissions to Additional Oracle Access Manager Principals
	Confirming Configured Realm Names for Oracle Access Manager Principals

	Considerations for Oracle Application Server SOA Applications
	Configure Logout for Oracle Application Server SOA Applications
	Troubleshooting Login to Oracle Application Server SOA Applications

	Oracle Access Manager Examples for J2EE Applications
	Web Application Using HTTP Header Variables through Oracle Access Manager
	Web Application Using the Oracle Access Manager ObSSOCookie
	EJB Application Using Oracle Access Manager

	Oracle Access Manager Support and Examples for Web Services
	Web Service with Username Token Authentication for Oracle Access Manager
	Web Service with X.509 Token Authentication for Oracle Access Manager
	Web Service with SAML Token Authentication for Oracle Access Manager

	Troubleshooting the Oracle Access Manager Setup

	12 User and Role API Framework
	Overview of User and Role (Identity Management) API Framework
	User and Role API Features to Replace UserManager, User, Group
	User and Role API Framework and Providers
	Summary of User and Role Interfaces and Classes
	User and Role Interface Descriptions
	User and Role Class Descriptions

	User and Role API Usage Models
	Step by Step: Basic Usage Model
	Step by Step: OC4J Integration Usage Model
	Permission Requirements for the OC4J Integration Feature
	User and Role Properties File

	Example: Basic User and Role API Framework
	Example: OC4J Integration with User and Role API Framework

	13 Pluggable Identity Management Framework
	Overview of OracleAS JAAS Provider Identity Management Framework
	Need for a Pluggable Identity Management Framework
	How the Identity Management Framework Works
	Overview of Identity Management Framework Programmatic Implementation
	Overview of Identity Management Framework Configuration
	Use of the Identity Management Framework by OC4J Java Single Sign-On

	Identity Management Framework Programmatic Interfaces
	Identity Token Interface and Oracle Implementations
	Token Collector Interface and Oracle Implementation
	Token Asserter Interface
	Identity Callback Handler Interface
	Oracle Callback Implementations
	Login Module Requirements
	Subject Asserter Interface
	Packaging Your Identity Management Framework Implementation Classes

	Identity Management Framework Configuration
	Configuring Identity Management Framework Properties
	Configuring the Identity Management Framework Login Module
	Configuring an Application to Use the Identity Management Framework
	Considerations for Multiple OC4J Instances

	Summary of How to Use the Identity Management Framework
	Sample Use Case: Using a Header-Based Identity Token
	Sample Token Collector: CollectorImpl.java
	Sample Token Asserter: TokenAsserterImpl.java
	Sample Configuration: jazn.xml

	14 OC4J Java Single Sign-On
	Overview of OC4J Java SSO
	Need for an OC4J Container-Level Java Single Sign-On Solution
	How Java SSO Works
	Java SSO Deployment Scenarios
	Summary of Java SSO Configuration
	About the Java SSO Login Page and Error Page

	Java SSO Setup and Configuration
	Configuring Java SSO through Application Server Control
	Java SSO Configuration Properties
	Configuration for Enabling Partner Applications for Java SSO
	Configuration for Special Scenarios

	Java SSO APIs
	Java SSO Logout API

	Summary of How to Use Java SSO
	Troubleshooting Java SSO

	15 SSL Communication with OC4J
	Integrating the Security Provider with SSL-Enabled Applications
	Using Keys and Certificates with OC4J and Oracle HTTP Server
	Using SSL with Standalone OC4J
	Using SSL in OPMN-Managed OC4J without Oracle HTTP Server
	Configure OC4J with SSL (Scenario without Oracle HTTP Server)
	Configure OPMN to Support HTTPS (Scenario without Oracle HTTP Server)

	Using SSL in OPMN-Managed OC4J with Oracle HTTP Server
	Configure OC4J with SSL (Scenario with Oracle HTTP Server)
	Configure AJP over SSL
	Sample Configuration Files for SSL

	Requesting Client Authentication
	Overview of OC4J Client Authentication Mode
	Client Authentication to OC4J
	Oracle HTTP Server Authentication to OC4J in Oracle Application Server
	Client Authentication to Oracle HTTP Server

	Troubleshooting and Debugging SSL
	Common SSL Errors and Solutions
	General SSL Debugging: javax.net.debug Property

	Enabling ORMIS for OC4J
	Configuring ORMIS for Standalone OC4J
	Configuring ORMIS for OC4J in an Oracle Application Server Environment
	Configuring ORMIS Access Restrictions
	Configuring Clients to Use ORMIS

	Enabling ORMI Tunneling through HTTPS

	16 Oracle HTTPS for Client Connections
	HTTPS and Clients
	Overview of Client-Side HTTPS Features
	Supported Keystore Formats
	Accessing Information for Established SSL Connections
	Support for java.net.URL Framework
	SSL Cipher Suites

	Supported Default System Properties
	Property javax.net.ssl.keyStore
	Property javax.net.ssl.keyStorePassword
	Property javax.net.ssl.keyStoreType
	Property javax.net.ssl.trustStore
	Property javax.net.ssl.trustStorePassword
	Property javax.net.ssl.trustStoreType

	Using HTTPClient with JSSE
	Prerequisites for using JSSE
	Configuring HTTPClient to Use JSSE

	HTTPClient Support for SSL Host Name Verification
	Enabling Host Name Verification through System Property Setting
	Enabling Host Name Verification Programmatically
	Using the Oracle Standard Host Name Verifier
	Verifying Additional Connection Information

	Migrating from Oracle Java SSL to JSSE
	Code Samples for Migration to JSSE
	Additional Changes Relevant for Migration to JSSE

	Features for Oracle Java SSL (Deprecated)
	Specifying Oracle Java SSL as the SSL Implementation for HTTPClient
	OracleSSLCredential Class for Oracle Java SSL
	Security-Aware Applications Support in Oracle Java SSL
	Using HTTPClient with Oracle Java SSL
	System Property Features with Oracle Java SSL
	Specifying Cipher Suites for Oracle Java SSL
	SSL Cipher Suites Supported by Oracle Java SSL

	17 Web Application Security Configuration
	Specifying the Authentication Method (auth-method)
	Specifying auth-method in web.xml
	Specifying auth-method in orion-application.xml
	Using Basic Authentication Fallback in Digest Authentication Mode
	Using Form-Based Authentication
	Using Client-Cert Authentication

	Web Application Security Role and Constraint Configuration
	Configuring J2EE Roles and Security Constraints
	Linking Application Roles to J2EE Roles
	Definition of Deployment Roles and Users
	Specifying a Run-As Security Identity for a Web Application
	OC4J Mapping of J2EE Roles to Deployment Roles

	18 EJB Security Configuration
	Authenticating and Authorizing EJB Applications
	Specifying J2EE Roles and Method Permissions in the EJB Deployment Descriptor
	Specifying Unchecked Security for EJB Methods
	Specifying a Run-As or Caller Security Identity for an EJB
	Mapping J2EE Roles to Deployment Users and Roles
	Configuring Namespace Access
	Specifying a Default Role Mapping for Unidentified Methods

	Specifying Credentials in EJB Clients
	Credentials in JNDI Properties
	Credentials in the InitialContext

	Permitting EJB RMI Client Access
	Granting Permissions in the Browser
	Configuring Anonymous EJB Lookup
	Enabling and Configuring Subject Propagation for ORMI
	Overview of Subject Propagation in OC4J
	Enabling Subject Propagation for ORMI
	Sharing Principal Classes for Subject Propagation
	Removing and Configuring Subject Propagation Restrictions

	19 Common Secure Interoperability Protocol
	CSIv2 Security Properties in internal-settings.xml (EJB Server)
	CSIv2 Security Properties in ejb_sec.properties (EJB Client)
	CSIv2 Security Properties in orion-ejb-jar.xml
	The <transport-config> element
	The <as-context> element
	The <sas-context> element
	Example: <ior-security-config>

	20 Security Support for Resource Adapters
	Overview of Security and Authentication Setup for EIS Connections
	Summary of J2EE Connector Architecture Security Contract
	Summary of Component-Managed Versus Container-Managed Sign-On
	Summary of Security-Related Resource Adapter Configuration Elements

	Understanding Component-Managed Sign-On
	Understanding Container-Managed Sign-On
	Authentication in Container-Managed Sign-On
	Using Declarative Container-Managed Sign-On
	Using Programmatic Container-Managed Sign-On
	Using a Principal Mapping Class
	Using a JAAS Login Module for an EIS Connection

	A Tips and Troubleshooting for OC4J Security
	Best Practices for OC4J Security
	JAAS Best Practices
	HTTPS Best Practices

	General OC4J Security Tips and Troubleshooting
	File jazn.xml Not Found
	Authentication Issues
	Failure to Specify OracleAS JAAS Provider as the JAAS Provider
	Realm Issues

	Logging
	Using Oracle Diagnostic Logging with the OracleAS JAAS Provider
	Using Standard JDK Logging with the OracleAS JAAS Provider Admintool

	B OracleAS JAAS Provider Samples
	Security Configuration for Sample Servlet
	Configuration in system-jazn-data.xml
	Configuration in web.xml
	Configuration in orion-application.xml

	Sample Servlet: Invoking J2EE Security APIs
	Sample Servlet: Granting Permissions
	Sample Servlet: Checking Permissions
	JAAS Mode Configuration in orion-application.xml
	Servlet Code for Authorization

	C OracleAS JAAS Provider Admintool Reference
	Getting Started with the Admintool
	Running the Admintool
	User Repository Location for the Admintool
	Authentication for the Admintool
	Using Custom Principals and Permissions with the Admintool

	Summary of Admintool Command-Line Syntax and Options
	Admintool Shell
	Shell Support for Admintool Command-Line Options
	Admintool Shell Directory Structure
	Summary of Admintool Special Shell Commands

	Admintool Administrative Functions
	Adding and Removing Login Modules
	Adding and Removing Realms (File-Based Provider Only)
	Adding and Removing Roles (File-Based Provider Only)
	Adding and Removing Users (File-Based Provider Only)
	Setting Passwords (File-Based Provider Only)
	Checking Passwords (File-Based Provider Only)
	Administrative Operations
	Granting and Revoking Permissions
	Granting and Revoking Roles
	Listing Login Modules
	Listing Permissions
	Listing Realms
	Listing Roles
	Listing Users
	Converting from the principals.xml File to JAAS

	D OracleAS JAAS Provider Configuration Files
	Hierarchy of jazn.xml
	Elements and Attributes of jazn.xml
	<jazn>
	<property>

	Hierarchy of system-jazn-data.xml
	Elements and Attributes of system-jazn-data.xml
	<actions>
	<application>
	<class>
	<codesource>
	<control-flag>
	<credentials>
	<description>
	<display-name>
	<grant>
	<grantee>
	<guid>
	<jacc-repository>
	<jazn-data>
	<jazn-loginconfig>
	<jazn-permission-classes>
	<jazn-policy>
	<jazn-principal-classes>
	<jazn-realm>
	<login-module>
	<login-modules>
	<member>
	<members>
	<name>
	<name>
	<option>
	<options>
	<permission>
	<permissions>
	<principal>
	<principals>
	<realm>
	<realm-name>
	<role>
	<roles>
	<type>
	<type>
	<url>
	<user>
	<users>
	<value>

	E Third Party Licenses
	Apache
	The Apache Software License

	Apache SOAP
	Apache SOAP License

	mod_mm and mod_ssl
	OpenSSL
	OpenSSL License

	Perl
	Perl Kit Readme
	mod_perl 1.29 License
	mod_perl 1.99_16 License
	Perl Artistic License

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

