
Oracle® Containers for J2EE
Support for JavaServer Pages Developer's Guide

10g (10.1.3.1.0)

B28961-01

October 2006

Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide, 10g (10.1.3.1.0)

B28961-01

Copyright © 2002, 2006, Oracle. All rights reserved.

Primary Author: Alfred Franci

Contributing Authors: Bonnie Vaughan, Brian Wright, Dan Hynes

Contributors: Dana Singleterry, Olaf Heimburger, Sumathi Gopalakrishnan, Jay Swaminathan, Ashok
Banerjee, Ellen Barnes, Julie Basu, Matthieu Devin, Jose Alberto Fernandez, Ralph Gordon, Ping Guo, Hal
Hildebrand, Susan Kraft, Sunil Kunisetty, Clement Lai, Qiang Lin, Song Lin, Jeremy Lizt, Angela Long,
Sharon Malek, Sheryl Maring, Kuassi Mensah, Jasen Minton, Kannan Muthukkaruppan, John O'Duinn,
Robert Pang, Olga Peschansky, Shiva Prasad, Jerry Schwarz, Sanjay Singh, Gael Stevens, Jayaram
Swaminathan, Kenneth Tang, YaQing Wang, Alex Yiu, Shinji Yoshida, Helen Zhao

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

v

Contents

Preface ... xiii

Intended Audience.. xiii
Documentation Accessibility ... xiii
Related Documents ... xiv
Conventions ... xv

1 Getting Started with JSP

A Brief Overview of JavaServer Pages Technology ... 1-1
What is JavaServer Pages Technology? .. 1-1
Key Advantages of JSP .. 1-2
How JSP Works .. 1-2
JSP Translation and Runtime Flow.. 1-3

Overview of JSP Syntax Elements .. 1-4
Directives... 1-5

page directive .. 1-5
include directive.. 1-6
taglib directive... 1-6

Scripting Elements ... 1-6
Declarations ... 1-7
Expressions .. 1-7
Scriptlets ... 1-7
Comments .. 1-8

JSP Objects and Scopes .. 1-8
Explicit Objects .. 1-9
Implicit Objects.. 1-9
Using an Implicit Object ... 1-10
Object Scopes .. 1-10

Standard JSP Action Tags .. 1-11
jsp:useBean tag ... 1-12
jsp:setProperty tag ... 1-13
jsp:getProperty tag... 1-14
jsp:param tag .. 1-14
jsp:include tag... 1-14
jsp:forward tag ... 1-15
jsp:plugin tag .. 1-16

vi

Bean Property Conversions from String Values... 1-16
Typical Property Conversions.. 1-17
Conversions for Property Types with Property Editors .. 1-17

Custom Tag Libraries .. 1-17
Simplified JSP Authoring with the Expression Language.. 1-18

Overview of the Expression Language Syntax ... 1-18
JSP Expression Language Syntax... 1-18
Expression Language Implicit Objects.. 1-19
Additional Features of the Expression Language ... 1-20

Creating and Using Expression Language Functions.. 1-20
Disabling the Expression Language ... 1-21

Disabling EL in All JSPs in a Web Application ... 1-21
Disabling EL in a JSP ... 1-21
Disabling EL in a Tag File ... 1-21

JSP Execution Model .. 1-21
JSP Execution Models ... 1-21

On-Demand Translation Model... 1-22
Pretranslation Model ... 1-22

JSP Pages and On-Demand Translation .. 1-22
Requesting a JSP Page .. 1-23

Directly Requesting a JSP Page .. 1-23
Indirectly Requesting a JSP Page... 1-23

2 The Oracle JSP Implementation

Introduction to OC4J ... 2-1
What's New in OC4J .. 2-1

Support for Web Services .. 2-1
Support for New J2EE 1.4 Application Management and Deployment Specifications.... 2-2
Support for Oracle Application Server TopLink.. 2-2
OracleAS Job Scheduler ... 2-2
New Two-Phase Commit Transaction Coordinator Functionality...................................... 2-2
Generic JMS Resource Adapter Enhancements.. 2-2

Features of OC4J .. 2-3
J2EE Support.. 2-3
OC4J Web Communication ... 2-3
Clustering... 2-3

Oracle Value-Added Features for JSP... 2-3
Supported Specifications... 2-4
Oracle-Specific Features .. 2-4

Configurable JSP Extensions in OC4J .. 2-4
Global Includes.. 2-5
Support for Dynamic Monitoring Service... 2-5

JSP Utilities and Tag Libraries Provided with OC4J ... 2-5
Tags and API for Caching Support.. 2-6
Support for the JavaServer Pages Standard Tag Library (JSTL) ... 2-6

JSP Support in Oracle JDeveloper .. 2-7
Oracle JSP Resource Management Features ... 2-8

vii

Standard Session Resource Management: HttpSessionBindingListener 2-8
The valueBound() and valueUnbound() Methods... 2-8
JDBCQueryBean JavaBean Code .. 2-8
UseJDBCQueryBean JSP Page.. 2-10
Advantages of HttpSessionBindingListener.. 2-11

Overview of Oracle Value-Added Features for Resource Management 2-11

3 Configuring the OC4J JSP Environment

Configuring the OC4J JSP Container ... 3-1
Summary of JSP Configuration Parameters ... 3-1
Setting JSP Parameters in Application Server Control Console.. 3-8

Accessing Application Server Control Console in Standalone OC4J 3-8
Accessing Application Server Control Console in Oracle Application Server 3-8

Setting JSP Parameters in the XML Configuration Files .. 3-9
Setting Servlet Initialization Parameters ... 3-9
Setting JSP Configuration Parameters .. 3-10

Configuring JSP Compilation in OC4J .. 3-11
Configuring Runtime JSP Retranslation and Reloading in OC4J... 3-11
Key JSP-Related Support Files Provided with OC4J ... 3-12

4 Precompiling JSP Pages with ojspc

How the ojspc Utility Works .. 4-1
Overview of Basic ojspc Functionality .. 4-1
Overview of Batch Pretranslation of WAR Files ... 4-2

Using ojspc .. 4-2
Precompiling One or More JSPs.. 4-3
Precompiling JSPs within a WAR File ... 4-4
Using an Ant Task to Precompile a JSP.. 4-4
Summary of ojspc Command Line Options.. 4-5

5 Understanding JSP Translation in OC4J

Features of Generated Code ... 5-1
General Conventions for Output Names... 5-2
Generated Package and Class Names... 5-3
Generated Files and Locations... 5-4
Oracle JSP Global Includes .. 5-6

Global Includes File and Examples ... 5-6
The ojsp-global-include.xml File... 5-6

<ojsp-global-include> ... 5-6
<include ... > ... 5-6
<into ... > ... 5-7

Global Include Examples ... 5-7
Example: Header/Footer.. 5-7
Example: translate_params Equivalent Code.. 5-8

viii

6 Working with JSP

Before You Start .. 6-1
Understanding Application Root Functionality .. 6-1
Understanding OC4J Classpath Functionality .. 6-2
Packages Imported By Default in OC4J .. 6-3
JDK1.4 Issue: Classes Not in Packages Cannot Be Invoked ... 6-4

General JSP Programming Strategies ... 6-4
Creating Traditional Versus Scriptless JSP... 6-5
Using JavaBeans Versus Scriptlets... 6-5
Using Static Includes Versus Dynamic Includes ... 6-6

Logistics of Static Includes ... 6-6
Logistics of Dynamic Includes .. 6-6
Advantages, Disadvantages, and Typical Uses of Dynamic and Static Includes.............. 6-7
Using Annotations in JSP Tag Libraries for Services and Resource References 6-7

Monitoring Your JSP Application .. 6-8
Managing Heavy Static Content or Tag Library Usage ... 6-9
Using Method Variable Declarations Versus Member Variable Declarations....................... 6-10
Working with Page Directives .. 6-11

Page Directives Are Static... 6-11
Example 1 .. 6-11
Example 2... 6-11

Duplicate Settings of Page Directive Attributes Are Disallowed 6-12
Workarounds for the 64K Size Limit for Generated Methods ... 6-13
Following JSP File Naming Conventions .. 6-13
Understanding JSP Preservation of White Space and Use with Binary Data 6-13

White Space Examples .. 6-13
Example 1: No Carriage Returns .. 6-14
Example 2: Carriage Returns... 6-14

Reasons to Avoid Binary Data in JSP Pages... 6-15
JSP Best Practices... 6-15

Beware of HTTP Sessions... 6-15
Avoid Using HTTP Sessions If Not Required.. 6-15
Always Invalidate Sessions When No Longer In Use .. 6-16

Pre-translate JSP Pages Using the ojspc Utility .. 6-16
Ensure Updated Objects Are Re-set on HTTP Sessions .. 6-16
Un-Buffer JSP Pages.. 6-16
Forward to JSP Pages Instead of Using Redirects .. 6-16
Hide JSP Pages from Direct Invocation to Limit Access ... 6-17
Use JSP-Timeout for Efficient Memory Utilization ... 6-17
Package JSP Files In EAR File For Deployment ... 6-18
Disable Dynamic Charset Check for Performance Improvement ... 6-18

Working with Servlets .. 6-18
Invoking a Servlet from a JSP Page .. 6-18
Passing Data to a Servlet Invoked from a JSP Page ... 6-19
Invoking a JSP Page from a Servlet .. 6-19
Passing Data Between a JSP Page and a Servlet ... 6-20
JSP-Servlet Interaction Samples .. 6-20

ix

Code for Jsp2Servlet.jsp .. 6-20
Code for MyServlet.java.. 6-20
Code for welcome.jsp .. 6-21

Migrating JSP Pages from Apache Tomcat to OC4J ... 6-21
Introduction .. 6-21
Migration Approach .. 6-22
Migrating a Simple JSP Page .. 6-22
Precompiling JSP Pages ... 6-22

Processing Runtime Errors .. 6-23
Servlet and JSP Runtime Error Mechanisms... 6-23

General Servlet Runtime Error Mechanism ... 6-23
JSP Error Pages ... 6-23

JSP Error Page Example ... 6-24
Code for nullpointer.jsp .. 6-24
Code for myerror.jsp ... 6-24

7 Working with Custom Tags

What Are Custom Tags? .. 7-1
Available Tag Libraries ... 7-2
When Should You Consider Creating/Using Custom Tag Libraries? 7-2

Eliminating Extensive Java Logic ... 7-3
Providing Convenient JSP Programming Access to API Features 7-3
Manipulating or Redirecting JSP Output .. 7-3

Working with Tag Handlers ... 7-3
What Are Classic Tag Handlers? ... 7-4

Classic Tag Handler Interfaces.. 7-4
Custom Tag Processing, with or without Tag Bodies ... 7-4
Tag Handlers That Access Body Content .. 7-5

What Are Simple Tag Handlers? ... 7-7
The SimpleTag Interface .. 7-7
Using Attributes .. 7-7

Attribute Handling and Conversions from String Values in Tag Handlers 7-8
Using Scripting Variables in Tags .. 7-9

Scripting Variable Scopes .. 7-9
Variable Declaration Through TLD <variable> Elements ... 7-10
Variable Declaration Through Tag-Extra-Info Classes ... 7-11

Access to Outer Tag Handler Instances ... 7-12
Implementing a Tag Handler .. 7-13

Creating the Tag Handler Class... 7-13
Defining the Tag in the TLD... 7-13
Declaring the Tag in a JSP Page ... 7-15
Using the Tag in a JSP ... 7-16

OC4J Tag Handler Features ... 7-16
Disabling or Enabling Tag Handler Reuse (Tag Pooling) ... 7-16

Enabling or Disabling the Compile-Time Model for Tag Handler Reuse 7-17
When Can the Compile-Time Tag Pooling Model Be Used? .. 7-17
Code Pattern for the compiletime Tag Pooling Model... 7-18

x

Code Pattern for the compiletime-with-release Tag Pooling Model................................ 7-18
Tag Handler Code Generation .. 7-18

Working with Tag Files .. 7-18
What Are Tag Files?.. 7-19
Tag Body Processing... 7-19
Using Attributes in Tag Files... 7-20
Exposing Data through Variables in Tag Files ... 7-20
Using JSP Fragments... 7-21

Creating a JSP Fragment ... 7-21
A Tag File Example.. 7-22

Implementing a Tag File .. 7-23
Creating the Tag File ... 7-23
Packaging Tag Files ... 7-23
Declaring the Tag File in a JSP ... 7-24

Sharing Tag Libraries Across Web Applications... 7-24
Packaging Multiple Tag Libraries and TLD Files in a JAR File .. 7-24

Key TLD File Entries.. 7-25
Key web.xml Deployment Descriptor Entries ... 7-25
JSP Page taglib Directives for Multiple-Library Example.. 7-26

Specifying Well-Known Tag Library Locations ... 7-26
Enabling the TLD Caching Feature .. 7-27

Understanding the TLD Cache Features and Files ... 7-28

8 Understanding JSP XML Support in OC4J

Introducing JSP Documents and XML Views .. 8-1
Working with JSP Documents ... 8-3

Specifying a Document Root Element... 8-4
Declaring Tag Libraries with XML Namespaces... 8-4
Using JSP XML Directive Elements ... 8-5

Example: page Directive .. 8-5
Example: include Directive.. 8-5

Using JSP XML Declaration, Expression, and Scriptlet Elements... 8-6
Example: JSP Declaration... 8-6
Example: JSP Expression.. 8-6
Example: JSP Scriptlet .. 8-6

Using JSP XML Standard Action and Custom Action Elements .. 8-6
Including Template and Dynamic Template Content .. 8-7
Sample Comparison: Traditional JSP Page Versus JSP XML Document 8-8

Sample Traditional JSP Page ... 8-8
Sample JSP Document .. 8-9

Understanding the JSP XML View .. 8-10
Transformation from a JSP Page to the XML View.. 8-10
The jsp:id Attribute for Error Reporting During Validation .. 8-11
Example: Transformation from Traditional JSP Page to XML View 8-11

Traditional JSP Page .. 8-11
XML View of JSP Page .. 8-12

xi

9 JSP Globalization Support in Oracle

Content Type Settings ... 9-1
Content Type Settings in the page Directive.. 9-1
Dynamic Content Type Settings .. 9-4
Oracle Extension for the Character Set of the JSP Writer Object... 9-5

JSP Support for Multibyte Parameter Encoding .. 9-5
Standard setCharacterEncoding() Method... 9-5

A Third Party Licenses

Apache ... A-1
The Apache Software License ... A-1

License ... A-1
Notice... A-5

Index

xii

xiii

Preface

This document introduces and explains the Oracle implementation of JavaServer
Pages (JSP) technology, specified by an industry consortium led by Sun Microsystems.
It summarizes standard features but focuses primarily on Oracle implementation
details and value-added features. An overview of standard JSP technology is followed
by discussion of the OC4J implementation, JSP configuration, basic programming
considerations, JSP strategies and tips, translation and deployment, JSP tag libraries,
and globalization support.

JavaServer Pages technology is a component of the standard Java 2 Enterprise Edition
(J2EE). The J2EE component of the Oracle Application Server is known as the Oracle
Containers for J2EE (OC4J).

The OC4J Web container in is a complete implementation of the JavaServer Pages
Specification, Version 2.0 and Servlet Specification, Version 2.4.

This preface contains the following sections:

■ Intended Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Intended Audience
This document is intended for developers interested in creating Web applications
based on JavaServer Pages technology. It assumes that working Web and servlet
environments already exist, and that readers are already familiar with the following:

■ General Web technology

■ General servlet technology

■ How to configure their Web server and servlet environments

■ HTML

■ Java

■ Oracle JDBC (for JSP applications accessing Oracle Database)

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our

xiv

documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see these Oracle resources available from the Oracle Java
Platform Group:

■ Oracle Containers for J2EE Configuration and Administration Guide

This book provides guidelines and instructions on using OC4J in a standalone
development or production environment.

■ Oracle Containers for J2EE Servlet Developer’s Guide

This book provides information for servlet developers regarding use of servlets
and the servlet container in OC4J, including basic servlet development, use of
JDBC and EJBs, building and deploying applications, and servlet and Web site
configuration. Consideration is given to both OC4J in a standalone environment
for development and OC4J in Oracle Application Server for production.

■ Oracle Containers for J2EE JSP Tag Libraries and Utilities Reference

This book provides conceptual information and detailed syntax and usage
information for tag libraries, JavaBeans, and other Java utilities provided with
OC4J. There is also a summary of tag libraries from other Oracle product groups.

■ Oracle Containers for J2EE Services Guide

This book provides information about standards-based Java services supplied
with OC4J, such as JTA, JNDI, JMS, JAAS, and the Oracle Application Server Java
Object Cache.

■ Oracle Containers for J2EE Security Guide

xv

This document (not to be confused with the Oracle Application Server 0g Security
Guide), describes security features and implementations particular to OC4J. This
includes information about using JAAS, the Java Authentication and
Authorization Service, as well as other Java security technologies.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xvi

Getting Started with JSP 1-1

1
Getting Started with JSP

This chapter introduces and reviews standard features and functionality of JavaServer
Pages (JSP) technology, then concludes with a discussion of JSP execution models. For
further general information, consult the JavaServer Pages Specification, Version 2.0
published by Sun Microsystems.

The chapter contains the following sections:

■ A Brief Overview of JavaServer Pages Technology

■ Overview of JSP Syntax Elements

■ Simplified JSP Authoring with the Expression Language

■ JSP Execution Model

A Brief Overview of JavaServer Pages Technology
A quick overview of JSP is provided in the following sections:

■ What is JavaServer Pages Technology?

■ JSP Translation and Runtime Flow

■ Key Advantages of JSP

What is JavaServer Pages Technology?
In simple terms, JavaServer Pages (JSP) technology makes it possible for
dynamically-generated content to be displayed in a Web browser. JSP pages comprise
the presentation layer for any Web-based application running in the Oracle
Application Server environment, providing the interface into the application's
business logic and processing power.

A JSP page is simply a text file containing two types of text markup:

■ HTML or XML, used to format static content such as page layout and template
text; and

Note: The Sample Applications chapter available in previous
releases has been removed.

Sample code and applications are available from the following
location on the Oracle Technology Network:

http://www.oracle.com/technology/sample_
code/index.html

A Brief Overview of JavaServer Pages Technology

1-2 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

■ JSP syntax elements and possibly embedded Java code, which provide the
dynamic content.

Ease of development allows rapid implementation. With the latest release, it is not
even necessary for JSP page authors to have a strong understanding of Java.

JavaServer Pages require a Web container that supports JSP page translation and
execution. This Web container is provided as part of the Oracle Containers for J2EE
(OC4J). See Chapter 2, "The Oracle JSP Implementation" for more on OC4J
functionality.

JSP is a key technology of the Java 2 Platform, Enterprise Edition (J2EE) architecture
specified by Sun Microsystems. The OC4J Web container is fully compliant with Sun's
JSP 2.0 and Servlet 2.4 specifications.

Key Advantages of JSP
For most situations, there are at least three general advantages to using JSP pages
instead of servlets:

■ Ease of coding

JSP syntax provides a shortcut for coding dynamic Web pages, typically requiring
much less code than equivalent servlet code. The JSP translator also automatically
handles some servlet coding overhead for you, such as implementing standard JSP
or servlet interfaces and creating HTTP sessions.

■ Separation of static content and dynamic content

 JSP technology attempts to allow some separation between the HTML code
development for static content, and the Java code development for business logic
and dynamic content. This makes JSP programming accessible and attractive to
Web designers, as it simplifies the division of maintenance responsibilities
between presentation and layout specialists and Java developers.

■ Reuse of business logic components

JSP technology is designed to facilitate the use of reusable components such as
JavaBeans and Enterprise JavaBeans (EJBs). JSP tag libraries, typically supplied
with J2EE applications, provide additional coding convenience.

How JSP Works
The dynamic nature of a JSP page is enabled through JSP elements embedded within
the HTML (or other markup code, such as XML) of your Web pages. These elements
provide access to external Java components, such as JavaBeans and Enterprise
JavaBeans (EJB), that provide a Web application's business logic and processing power.
These components can in turn directly or indirectly access a database or other EIS.

A JSP page is translated into a Java servlet, typically at the time that it is requested
from a client. The JSP translator is triggered by the.jsp file name extension in a URL.
The translated page is then executed, processing HTTP requests and generating
responses similarly to any other servlet. Note that coding a JSP page is dramatically
more convenient than coding the equivalent servlet.

Furthermore, JSP pages are fully interoperable with servlets—JSP pages can include
output from a servlet or forward to a servlet, and servlets can include output from a
JSP page or forward to a JSP page.

Here is the code for a simple JSP page, welcomeuser.jsp:

<%@ page import="java.util.*" %>

A Brief Overview of JavaServer Pages Technology

Getting Started with JSP 1-3

<HTML>
<HEAD><TITLE>The Welcome User JSP</TITLE></HEAD>
<BODY>
<H3>Welcome ${param.user}!</H3>
<P> Today is ${Date}. Have a fabulous day! :-)</P>
Enter name:
<FORM METHOD=GET>
<INPUT TYPE="text" NAME="user" SIZE=5>
<INPUT TYPE="submit" VALUE="Submit name">
</FORM>
</BODY>
</HTML>

This JSP page will produce something like the following output if the user inputs the
name "Amy":

Welcome Amy!

Today is Wed Jun 2 3:42:23 PDT 2000. Have a fabulous day! :-)

JSP Translation and Runtime Flow
Figure 1–1 illustrates a conceptual overview of the flow of execution when a user calls
a JSP page by specifying its URL in the browser. Assume that Hello.jsp accesses a
database.

Because of the.jsp file name extension, the following steps occur automatically:

1. The JSP translator is invoked, translating Hello.jsp and producing the file
Hello.java.

2. The Java compiler is invoked, creating Hello.class.

3. Hello.class is executed as a servlet, using the JSP runtime library.

4. The Hello class accesses the database through JDBC, as appropriate, and sends its
output to the browser.

Figure 1–1 JSP Translation and Runtime Flow

How is a JSP Served?

http://host:port/Hello.jsp

JSP
Translator

Java
Compiler

OC4J Servlet
Runner

Oracle

JDBC

JSP
Source

Hello.jsp

Generated
file

Hello.java

Servlet class
Hello

JSP runtime

Output
of Hello

HTML/XML

O
_1

01
7

Overview of JSP Syntax Elements

1-4 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of JSP Syntax Elements
The example below illustrates how HTML markup and JSP elements are used together
to provide static and dynamic content in a typical JSP. The dynamic content is written
in JSP 2.0 syntax, which is fully supported by the OC4J JSP container.

The JSP displays all of the phone numbers stored in the database for the employee
specified in the HTTP request. The code creates a JavaBean object containing the
employee's phone numbers as a Map of key/value pairs. The JSP iterates over the
phone numbers, displaying each key and its value in an HTML table.

<%@ page contentType="text/html; charset=UTF-8"; import="mypkg.*" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
 prefix="c" %>
<html>
 <head><title>Phone List</title></head>
 <body>

 <jsp:useBean id="employee" scope="application" class="mypkg.Employee"/>
 <jsp:setProperty name="employee" property="empUserId" param="employeeId"/>
 <c:set var="empName" value="${employee.fullName}" />
 <h2>Current Phone Numbers for ${empName}</h2>
 <c:if test ="${!empty employee.phoneNumbers}>
 <table>
 <tr>
 <th>Phone Type:</th><th>Number:</th>
 </tr>
 <c:forEach var="entry" items="{$employee.phoneNumbers}">
 <tr>
 <td>${entry.key}</td>
 <td>${entry.value}></td>
 </tr>
 </c:forEach>
 </table>
 </c:if>
 <c:if test="${empty employee.phoneNumbers}">
 <c:out value="No phone numbers were found for ${empName}">
 </c:if>
 </body>
</html>

The JSP elements used in the example are as follows:

■ Directives provide the OC4J container with instructions specifying how the JSP is
to be processed.

The page directive (<%@ page ... %>) used in this example specifies the
content type returned by the page and imports the mypkg package for use. The
taglib directive (<%@ taglib ... %>) imports a custom tag library for use in
the page; in this case, the JavaServer Pages Standard Tag Library (JSTL) core
library.

Note: The JSP 2.0 specification supports an XML-compatible JSP
syntax as an alternative to the traditional syntax. This allows you to
produce JSP pages that are syntactically valid XML documents. The
XML-compatible syntax is described in Chapter 8, "Understanding
JSP XML Support in OC4J".

Overview of JSP Syntax Elements

Getting Started with JSP 1-5

■ Standard action tags provide easy mechanisms for invoking certain common tasks,
such as forwarding execution to another JSP or creating an object and accessing its
properties.

In this example, the jsp:useBean standard action returns an Employee
JavaBean instance.

The jsp:setProperty tag sets the value of a bean property; in this case, it sets
the empUserId property to the value of the employeeId request parameter.

■ Custom tags are similar to standard action tags, except that they are created and
packaged by software vendors and page authors - such as yourself. Custom tags
allow JSP pages to access logic provided by reusable Java classes, removing the
need to embed Java code directly in pages themselves.

Note how c:forEach tags are used to iterate over the user's phone numbers,
while c:if tags are used to test whether phone numbers are found for the given
user, and to print a message if not.

Every custom tag belongs to a tag library, indicated by the tag prefix. Here, the
prefix c: identifies the tags used as belonging to the JSTL core tag library. See
Chapter 7, "Working with Custom Tags" for details on creating and using custom
tags.

■ JSP expression language (EL) expressions, identifiable by the ${ ... } syntax,
provide easy access to objects such as JavaBeans and their properties.

The EL is an alternative to the Java expressions used in traditional JSP syntax. For
example, the EL expression${employee.fullName} is equivalent to the JSP
scripting expression <% = employee.getFullName() %>.

See "Simplified JSP Authoring with the Expression Language" on page 1-18 for
details.

The following section discusses the basic syntax of JSP, including directives, scripting
elements, and standard action tags, and provide a few examples. There is also
discussion of bean property conversions. For additional information on JSP 2.0 syntax,
see the Sun Microsystems JavaServer Pages Specification, version 2.0.

Directives
Directives provide instruction to the Web container regarding the entire JSP page. This
information is used in translating the page. The basic syntax is as follows:

<%@ directive attribute="value" attribute2="value2"... %>

The JSP specification supports the following directives:

■ page

■ include

■ taglib

page directive
Use this directive to specify any of a number of page-dependent attributes, such as
scripting language, content type, character encoding, class to extend, packages to

Note: This section describes standard JSP syntax. For information
about JSP XML syntax and JSP XML documents, see Chapter 8,
"Understanding JSP XML Support in OC4J".

Overview of JSP Syntax Elements

1-6 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

import, an error page to use, the JSP page output buffer size, and whether to
automatically flush the buffer when it is full. For example:

<%@ page language="java" import="packages.mypackage" errorPage="boof.jsp" %>

Alternatively, to enable auto-flush and set the JSP page output buffer size to 20 KB:

<%@ page autoFlush="true" buffer="20kb" %>

This example un-buffers the page:

<%@ page buffer="none" %>

include directive
Use this directive to specify a resource that contains text or code to be inserted into the
JSP page when it is translated. For example:

<%@ include file="/jsp/userinfopage.jsp" %>

Specify either a page-relative or context-relative path to the resource. See "Requesting
a JSP Page" on page 1-23 for discussion of page-relative and context-relative paths.

taglib directive
Use this directive to specify a library of custom JSP tags that will be used in the JSP
page. Vendors can extend JSP functionality with their own sets of tags. This directive
includes a pointer to a tag library descriptor file and a prefix to distinguish use of tags
from that library. For example:

<%@ taglib uri="/oracustomtags" prefix="oracust" %>

Later in the page, use the oracust prefix whenever you want to use one of the tags in
the library. Presume this library includes a tag dbaseAccess:

<oracust:dbaseAccess ... >
...
</oracust:dbaseAccess>

JSP tag libraries and tag library descriptor files are introduced later in this chapter, in
"Custom Tag Libraries" on page 1-17, and discussed in detail in Chapter 7, "Working
with Custom Tags".

Scripting Elements
JSP scripting elements include the following categories of Java code snippets that can
appear in a JSP page:

■ Declarations

Notes:

■ The include directive, referred to as a static include, is
comparable in nature to the jsp:include action discussed
later in this chapter, but jsp:include takes effect at request
time instead of translation time.

■ The include directive can be used only between files in the
same servlet context (application).

Overview of JSP Syntax Elements

Getting Started with JSP 1-7

■ Expressions

■ Scriptlets

■ Comments

Declarations
These are statements declaring methods or member variables that will be used in the
JSP page.

A JSP declaration uses standard Java syntax within the <%!...%> declaration tags to
declare a member variable or method. This will result in a corresponding declaration
in the generated servlet code. For example:

<%! double f=0.0; %>

This example declares a member variable, f. In the servlet class code generated by the
JSP translator, f will be declared at the class top level.

Expressions
These are Java expressions that are evaluated, converted into string values as
appropriate, and displayed where they are encountered on the page.

A JSP expression does not end in a semicolon, and is contained within <%=...%> tags.
For example:

<P> Today is <%= new java.util.Date() %>. Have a nice day! </P>

Scriptlets
These are portions of Java code intermixed within the markup language of the page.

A scriptlet, or code fragment, can consist of anything from a partial line to multiple
lines of Java code. You can use them within the HTML code of a JSP page to set up
conditional branches or a loop, for example.

A JSP scriptlet is contained within <%...%> scriptlet tags, using normal Java syntax.

The following example assumes the use of a JavaBean instance, pageBean:

<% if (pageBean.getNewName().equals("")) { %>
 I don't know you.
<% } else { %>
 Hello <%= pageBean.getNewName() %>.
<% } %>

Note how the one-line JSP scriptlets are intermixed with two lines of HTML code, one
of which includes a JSP expression (which does not require a semicolon). Note that JSP

Note: Method variables, as opposed to member variables, are
declared within JSP scriptlets as described below. See "Using Static
Includes Versus Dynamic Includes" on page 6-6 for a comparison
between the two.

Note: A JSP expression in a request-time attribute, such as in a
jsp:setProperty statement, need not be converted to a string
value.

Overview of JSP Syntax Elements

1-8 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

syntax allows HTML code to be conditionally executed within the if and else
branches (inside the Java brackets set out in the scriptlets).

This next example adds more Java code to the scriptlets.:

<% if (pageBean.getNewName().equals("")) { %>
 I don't know you.
 <% empmgr.unknownemployee();
 } else { %>
 Hello <%= pageBean.getNewName() %>.
 <% empmgr.knownemployee();
 }%>

It assumes the use of a JavaBean instance, pageBean, and assumes that some object,
empmgr, was previously instantiated and has methods to execute appropriate
functionality for a known employee or an unknown employee.

Comments
These are developer comments embedded within the JSP code, similar to comments
embedded within any Java code.

Comments are contained within <%--...--%> syntax. For example:

<%-- Execute the following branch if no user name is entered. --%>

Unlike HTML comments, JSP comments are not visible when users view the page
source from their browsers.

JSP Objects and Scopes
In this document, the term JSP object refers to a Java class instance declared within or
accessible to a JSP page. JSP objects can be either:

■ Explicit: Explicit objects are declared and created within the code of your JSP page,
accessible to that page and other pages according to the scope setting you choose.

or:

■ Implicit: Implicit objects are created by the underlying JSP mechanism and
accessible to Java scriptlets or expressions in JSP pages according to the inherent
scope setting of the particular object type.

These topics are discussed in the following sections:

■ Explicit Objects

Note: Use a JSP scriptlet to declare method variables, as opposed
to member variables, as in the following example:

<% double f2=0.0; %>

This scriptlet declares a method variable, f2. In the servlet class
code generated by the JSP translator, f2 will be declared as a
variable within the service method of the servlet.

Member variables are declared in JSP declarations as described
above.

For a comparative discussion, see "Using Method Variable
Declarations Versus Member Variable Declarations" on page 6-10.

Overview of JSP Syntax Elements

Getting Started with JSP 1-9

■ Implicit Objects

■ Using an Implicit Object

■ Object Scopes

Explicit Objects
Explicit objects are typically JavaBean instances that are declared and created in
jsp:useBean action statements. The jsp:useBean statement and other action
statements are described in "Standard JSP Action Tags" on page 1-11, but here is an
example:

<jsp:useBean id="pageBean" class="mybeans.NameBean" scope="page" />

This statement defines an instance, pageBean, of the NameBean class that is in the
mybeans package. The scope parameter is discussed in "Object Scopes" on page 1-10.

You can also create objects within Java scriptlets or declarations, just as you would
create Java class instances in any Java program.

Implicit Objects
JSP technology makes available to any JSP page a set of implicit objects. These are Java
objects that are created automatically by the Web container and that allow interaction
with the underlying servlet environment.

The implicit objects listed immediately below are available. For information about
methods available with these objects, refer to the Sun Microsystems Javadoc for the
noted classes and interfaces.

■ page

This is an instance of the JSP page implementation class and is created when the
page is translated. The page implementation class implements the interface
javax.servlet.jsp.HttpJspPage. Note that page is synonymous with this
within a JSP page.

■ request

This represents an HTTP request and is an instance of a class that implements the
javax.servlet.http.HttpServletRequest interface, which extends the
javax.servlet.ServletRequest interface.

■ response

This represents an HTTP response and is an instance of a class that implements the
javax.servlet.http.HttpServletResponse interface, which extends the
javax.servlet.ServletResponse interface.

The response and request objects for a particular request are associated with
each other.

■ pageContext

This represents the page context of a JSP page, which is provided for storage and
access of all page scope objects of a JSP page instance. A pageContext object is
an instance of the javax.servlet.jsp.PageContext class, which extends
javax.servlet.jsp.JspContext as of JSP 2.0.

The pageContext object has page scope, making it accessible only to the JSP
page instance with which it is associated.

■ session

Overview of JSP Syntax Elements

1-10 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

This represents an HTTP session and is an instance of a class that implements the
javax.servlet.http.HttpSession interface.

■ application

This represents the servlet context for the Web application and is an instance of a
class that implements the javax.servlet.ServletContext interface.

The application object is accessible from any JSP page instance running as part
of any instance of the application within a single JVM.

■ out

This is an object that is used to write content to the output stream of a JSP page
instance. It is an instance of the javax.servlet.jsp.JspWriter class, which
extends the java.io.Writer class.

The out object is associated with the response object for a particular request.

■ config

This represents the servlet configuration for a JSP page and is an instance of a class
that implements the javax.servlet.ServletConfig interface. Generally
speaking, servlet containers use ServletConfig instances to provide
information to servlets during initialization. Part of this information is the
appropriate ServletContext instance.

■ exception (JSP error pages only)

This implicit object applies only to JSP error pages, to which processing is
forwarded when an exception is thrown from another JSP page. These error pages
must have the page directive isErrorPage attribute set to true.

The implicit exception object is a java.lang.Throwable instance that
represents the uncaught exception that was thrown from another JSP page and
that resulted in the current error page being invoked.

The exception object is accessible only from the JSP error page instance to which
processing was forwarded when the exception was encountered. For an example
of JSP error processing and use of the exception object, see "Processing Runtime
Errors" on page 6-23.

Using an Implicit Object
Any of the implicit objects discussed in the preceding section might be useful. The
following example uses the request object to retrieve and display the value of the
username parameter from the HTTP request:

<H3> Welcome <%= request.getParameter("username") %> ! <H3>

The request object, like the other implicit objects, is available automatically; it is not
explicitly instantiated.

Object Scopes
Objects in a JSP page, whether explicit or implicit, are accessible within a particular
scope. In the case of explicit objects, such as a JavaBean instance created in a
jsp:useBean action, you can explicitly set the scope with the following syntax, as in
the example in "Explicit Objects" on page 1-9:

scope="scopeValue"

There are four possible scopes:

Overview of JSP Syntax Elements

Getting Started with JSP 1-11

■ scope="page" (default scope): The object is accessible only from within the JSP
page where it was created. A page-scope object is stored in the implicit
pageContext object. The page scope ends when the page stops executing.

Note that when the user refreshes the page while executing a JSP page, new
instances will be created of all page-scope objects.

■ scope="request": The object is accessible from any JSP page servicing the same
HTTP request that is serviced by the JSP page that created the object. A
request-scope object is stored in the implicit request object. The request scope
ends at the conclusion of the HTTP request.

■ scope="session": The object is accessible from any JSP page that is sharing the
same HTTP session as the JSP page that created the object. A session-scope object
is stored in the implicit session object. The session scope ends when the HTTP
session times out or is invalidated.

■ scope="application": The object is accessible from any JSP page that is used
in the same Web application as the JSP page that created the object, within any
single Java virtual machine. The concept is similar to that of a Java static variable.
An application-scope object is stored in the implicit application servlet context
object. The application scope ends when the application itself terminates, or
when the Web container or servlet container shuts down.

You can think of these four scopes as being in the following progression, from
narrowest scope to broadest scope:

page < request < session < application

If you want to share an object between different pages in an application, such as when
forwarding execution from one page to another, or including content from one page in
another, you cannot use page scope for the shared object; in this case, there would be a
separate object instance associated with each page. The narrowest scope you can use to
share an object between pages is request. (For information about including and
forwarding pages, see "Standard JSP Action Tags" below.)

Standard JSP Action Tags
JSP action elements result in some sort of action occurring while the JSP page is being
executed, such as instantiating a Java object and making it available to the page. Such
actions can include the following:

■ Creating a JavaBean instance and accessing its properties

■ Forwarding execution to another HTML page, JSP page or servlet

■ Including an external resource in the JSP page

For standard actions, there is a set of tags defined in the JSP specification. Although
directives and scripting elements described earlier in this chapter are sufficient to code
a JSP page, the standard tags described here provide additional functionality and
convenience.

Here is the general tag syntax for JSP standard actions:

<jsp:tagattr="value" attr2="value2" ... attrN="valueN">
...body...
</jsp:tag>

Note: The request, session, and application scopes also
apply to servlets.

Overview of JSP Syntax Elements

1-12 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Alternatively, if there is no body:

<jsp:tag attr="value", ..., attrN="valueN" />

The most commonly-used JSP standard action tags are introduced and briefly
discussed below:

■ jsp:usebean

■ jsp:setProperty

■ jsp:getProperty

■ jsp:param

■ jsp:include

■ jsp:forward

■ jsp:plugin

jsp:useBean tag
The jsp:useBean tag accesses or creates an instance of a Java type, typically a
JavaBean class, and associates the instance with a specified name, or ID. The instance
is then available by that ID as a scripting variable of specified scope. Scripting
variables are introduced in "Custom Tag Libraries" on page 1-17. Scopes are discussed
in "JSP Objects and Scopes" on page 1-8.

The key attributes are class, type, id, and scope. (There is also a less frequently
used beanName attribute, discussed below.)

Use the id attribute to specify the instance name. The Web container will first search
for an object by the specified ID, of the specified type, in the specified scope. If it does
not exist, the container will attempt to create it.

Use the class attribute to specify a class that can be instantiated, if necessary, by the
Web container. The class cannot be abstract and must have a no-argument constructor.

As an alternative to using the class attribute, you can use the beanName attribute. In
this case, you have the option of specifying a serializable resource instead of a class
name. When you use the beanName attribute, the Web container creates the instance
by using the instantiate() method of the java.beans.Beans class.

Use the type attribute to specify a type that cannot be instantiated by the Web
container—either an interface, an abstract class, or a class without a no-argument
constructor. You would use type in a situation where the instance will already exist,
or where an instance of an instantiable class will be assigned to the type. There are
three typical scenarios:

■ Use type and id to specify an instance that already exists in the target scope.

Note: The following tags are covered elsewhere in this book:

■ The doBody tag is discussed in "Tag Body Processing" on
page 7-19.

■ The attribute and invoke tags are covered in "Using JSP
Fragments" on page 7-21.

■ The body, element and text tags are covered in "Including
Template and Dynamic Template Content" on page 8-7.

Overview of JSP Syntax Elements

Getting Started with JSP 1-13

■ Use class and id to specify the name of an instance of the class—either an
instance that already exists in the target scope or an instance to be newly created
by the Web container.

■ Use class, type, and id to specify a class to instantiate and a type to assign the
instance to. In this case, the class must be legally assignable to the type.

Use the scope attribute to specify the scope of the instance—either page for the
instance to be associated with the page context object, request for it to be associated
with the HTTP request object, session for it to be associated with the HTTP session
object, or application for it to be associated with the servlet context.

The following example uses a request-scope instance reqobj of type MyIntfc.
Because MyIntfc is an interface and cannot be instantiated directly, reqobj would
have to already exist.

<jsp:useBean id="reqobj" type="mypkg.MyIntfc" scope="request" />

This next example uses a page-scope instance pageobj of class PageBean, first
creating it if necessary:

<jsp:useBean id="pageobj" class="mybeans.PageBean" scope="page" />

The following example creates an instance of class SessionBean and assigns the
instance to the variable sessobj of type MyIntfc:

<jsp:useBean id="sessobj" class="mybeans.SessionBean"
 type="mypkg.MyIntfc scope="session" />

jsp:setProperty tag
The jsp:setProperty tag sets one or more bean properties. The bean must have
been previously specified in a jsp:useBean tag. You can directly specify a value for a
specified property, or take the value for a specified property from an associated HTTP
request parameter, or iterate through a series of properties and values from the HTTP
request parameters.

The following example sets the user property of the pageBean instance according to
the value set for a parameter called username in the HTTP request:

<jsp:setProperty name="pageBean" property="user" param="username" />

If the bean property and request parameter have the same name (user), you can
simply set the property as follows:

<jsp:setProperty name="pageBean" property="user" />

The following example results in iteration over the HTTP request parameters,
matching bean property names with request parameter names and setting bean
property values according to the corresponding request parameter values:

<jsp:setProperty name="pageBean" property="*" />

When you use the jsp:setProperty tag, string input can be used to specify the
value of a non-string property through conversions that happen behind the scenes. See
"Bean Property Conversions from String Values" on page 1-16 for additional
information.

Overview of JSP Syntax Elements

1-14 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

jsp:getProperty tag
The jsp:getProperty tag reads a bean property value, converts it to a Java string,
and places the string value into the implicit out object so that it can be displayed as
output. The bean must have been previously specified in a jsp:useBean tag. For the
string conversion, primitive types are converted directly and object types are
converted using the toString() method specified in the java.lang.Object class.

The following example puts the value of the user property of the pageBean bean
into the out object:

<jsp:getProperty name="pageBean" property="user" />

jsp:param tag
You can use jsp:params tags in conjunction with jsp:include, jsp:forward,
and jsp:plugin tags (described below).

Used with jsp:forward and jsp:include tags, a jsp:param tag optionally
provides name/value pairs for parameter values in the HTTP request object. New
parameters and values specified with this action are added to the request object,
with new values taking precedence over old.

The following example sets the request object parameter username to a value of
Smith:

<jsp:param name="username" value="Smith" />

jsp:include tag
The jsp:include tag inserts additional static or dynamic resources into the page at
request time as the page is displayed. Specify the resource with a relative URL (either
page-relative or application-relative). For example:

<jsp:include page="/templates/userinfopage.jsp" flush="true" />

Important: Note the following for property="*":

■ To specify that iteration should continue if an error is
encountered, set the setproperty_onerr_continue
configuration parameter to true. This parameter is described
in "Configuring the OC4J JSP Container" on page 3-1.
(Continuing was the default behavior in previous releases. As
of the OC4J 9.0.4 implementation, however, the default
behavior is to stop on errors.)

The setproperty_onerr_continue parameter is deprecated in
Oracle Containers for J2EE 10g (10.1.3.1.0).

■ The JSP specification does not stipulate the order in which
properties are set. If order matters, and if you want to ensure
that your JSP page is portable, you should use a separate
jsp:setProperty statement for each property. Also, if you
use separate jsp:setProperty statements, the JSP translator
can generate the corresponding setXXX() methods directly. In
this case, introspection occurs only during translation. There
will be no need to introspect the bean during runtime, which is
more costly.

Overview of JSP Syntax Elements

Getting Started with JSP 1-15

A "true" setting of the flush attribute results in the buffer being flushed to the
browser when a jsp:include action is executed. The JSP specification and the OC4J
Web container support either a "true" or "false" setting, with "false" being the
default.

You can also have an action body with jsp:param tags, as shown in the following
example:

<jsp:include page="/templates/userinfopage.jsp" flush="true" >
 <jsp:param name="username" value="Smith" />
 <jsp:param name="userempno" value="9876" />
</jsp:include>

Note that the following syntax would work as an alternative to the preceding example:

<jsp:include page="/templates/userinfopage.jsp?username=Smith&userempno=9876"
flush="true" />

jsp:forward tag
The jsp:forward tag effectively terminates execution of the current page, discards
its output, and dispatches a new page—either an HTML page, a JSP page or a servlet.

The JSP page must be buffered to use a jsp:forward tag; you cannot set
buffer="none" in a page directive. The action will clear the buffer and not output
contents to the browser.

As with jsp:include, you can also have an action body with jsp:param tags, as
shown in the second of the following examples:

<jsp:forward page="/templates/userinfopage.jsp" />

or:

<jsp:forward page="/templates/userinfopage.jsp" >
 <jsp:param name="username" value="Smith" />
 <jsp:param name="userempno" value="9876" />
</jsp:forward>

Notes:

■ The jsp:include tag, known as a "dynamic include", is
similar in nature to the include directive discussed earlier in
this chapter, but takes effect at request time instead of
translation time. See "Using Static Includes Versus Dynamic
Includes" on page 6-6 for a comparison between the two.

■ The jsp:include tag can be used only between pages in the
same servlet context (application).

Overview of JSP Syntax Elements

1-16 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

jsp:plugin tag
The jsp:plugin tag results in the execution of a specified applet or JavaBean in the
client browser, preceded by a download of Java plugin software if necessary.

Specify configuration information, such as the applet to run and the code base, using
jsp:plugin attributes. You can specify attribute nspluginurl="url" (for a
Netscape browser) or iepluginurl="url" (for an Internet Explorer browser).

Use nested jsp:param tags between the jsp:params start-tag and end-tag to
specify parameters to the applet or JavaBean. (Note that the jsp:params start-tag
and end-tag are not included when using jsp:param in a jsp:include or
jsp:forward action.)

Note the use of the jsp:fallback tag to delimit alternative text to execute if the
plugin cannot run.

The following example shows the use of an applet plugin:

<jsp:plugin type=applet code="Sample.class" codebase="/html" >
 <jsp:params>
 <jsp:param name="sample" value="samples/sample01" />
 </jsp:params>
 <jsp:fallback>
 <p>Unable to start the plugin.</p>
 </jsp:fallback>
</jsp:plugin>

Many additional parameters—such as ARCHIVE, HEIGHT, NAME, TITLE, and
WIDTH—are allowed in the jsp:plugin tag as well. Use of these parameters is
according to the general HTML specification.

Bean Property Conversions from String Values
As noted earlier, when you use a JavaBean through a jsp:useBean tag in a JSP page,
and then use a jsp:setProperty tag to set a bean property, string input can be used
to specify the value of a non-string property through conversions that happen behind
the scenes. There are two conversion scenarios, covered in the following sections:

Notes:

■ The difference between the jsp:forward examples here and
the jsp:include examples earlier is that the jsp:include
examples insert userinfopage.jsp within the output of the
current page; the jsp:forward examples stop executing the
current page and display userinfopage.jsp instead.

■ The jsp:forward tag can be used only between pages in the
same servlet context.

■ The jsp:forward tag results in the original request object
being forwarded to the target page. As an alternative, if you do
not want the request object forwarded, you can use the
sendRedirect(String) method specified in the standard
javax.servlet.http.HttpServletResponse interface.
This sends a temporary redirect response to the client using the
specified redirect-location URL. You can specify a relative URL;
the servlet container will convert the relative URL to an
absolute URL.

Overview of JSP Syntax Elements

Getting Started with JSP 1-17

■ Typical Property Conversions

■ Conversions for Property Types with Property Editors

Typical Property Conversions
For a bean property that does not have an associated property editor, Table 1–1 shows
how conversion is accomplished when using a string value to set the property.

Conversions for Property Types with Property Editors
A bean property can have an associated property editor, which is a class that
implements the java.beans.PropertyEditor interface. Such classes can provide
support for GUIs used in editing properties. Generally speaking, there are standard
property editors for standard Java types, and there can be user-defined property
editors for user-defined types. In the OC4J JSP implementation, however, only
user-defined property editors are searched for. Default property editors of the
sun.beans.editors package are not taken into account.

For information about property editors and how to associate a property editor with a
type, you can refer to the Sun Microsystems JavaBeans API Specification.

You can still use a string value to set a property that has an associated property editor,
as specified in the JavaBeans specification. In this situation, the setAsText(String
text) method specified in the PropertyEditor interface is used in converting from
string input to a value of the appropriate type. If the setAsText() method throws an
IllegalArgumentException, the conversion will fail.

Custom Tag Libraries
In addition to the standard JSP tags discussed above, the JSP specification lets vendors
define their own tag libraries, and lets vendors implement a framework that allows
customers to define their own tag libraries as well.

A tag library defines a collection of custom tags and can be thought of as a JSP
sub-language. Developers can use tag libraries directly when manually coding a JSP
page, but they might also be used automatically by Java development tools. A
standard tag library must be portable between different Web container
implementations.

Table 1–1 Attribute Conversion Methods

Property Type Conversion

Boolean or boolean According to valueOf(String) method of Boolean class

Byte or byte According to valueOf(String) method of Byte class

Character or char According to charAt(0) method of String class (inputting an
index value of 0)

Double or double According to valueOf(String) method of Double class

Integer or int According to valueOf(String) method of Integer class

Float or float According to valueOf(String) method of Float class

Long or long According to valueOf(String) method of Long class

Short or short According to valueOf(String) method of Short class

Object As if String constructor is called, using literal string input

The String instance is returned as an Object instance.

Simplified JSP Authoring with the Expression Language

1-18 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Key concepts of standard JavaServer Pages support for JSP tag libraries include the
following:

For information about these topics, see Chapter 7, "Working with Custom Tags".

For complete information about the tag libraries provided with OC4J, see the Oracle
Containers for J2EE JSP Tag Libraries and Utilities Reference.

Simplified JSP Authoring with the Expression Language
The JSP expression language (EL) greatly simplifies JSP authoring by removing the need
to use embedded Java scriptlets and expressions to access request parameters or
application data stored in JavaBeans.

The EL was originally introduced as part of the JavaServer Pages Standard Tag Library
(JSTL) version 1.0. With the JSP 2.0 release, the EL was made an integral part of the JSP
specification, dramatically improving its data-access capabilities.

The JSP 2.0-compliant OC4J container understands EL expressions implemented in the
following manner:

■ As values for attributes in any standard action (such asjsp:useBean) or custom
tag that accept runtime expressions; and

■ In static template text, such as HTML or non-JSP elements. In this usage, the value
of the expression within the text is evaluated and inserted into the current output.
However, it must be noted that an expression will not be evaluated if the body of
the tag is declared to be tagdependent.

As an example, consider the following use of the JSTL c:if tag to pick out
steel-making companies from a company list:

<c:if test="${company.industry == 'steel'}">
 ...
</c:if>

Overview of the Expression Language Syntax
This section summarizes the expression language syntax and documents how to
enable EL evaluation in your OC4J JSP applications.

Note that although the EL has its own syntax, it is not a general purpose programming
language; rather, it is a data access mechanism intended to simplify the lives of JSP
authors.

JSP Expression Language Syntax
The expression language has its own syntax, partially based on JavaScript syntax. The
following list offers a brief summary of key syntax features of the JSP expression
language. This is followed by a few simple examples.

■ Invocation

The expression language is invoked through ${expression} syntax. The most
basic semantic is that invocation of a named variable ${foo} yields the same
result as the method call PageContext.findAttribute(foo).

■ Data structure access

To access named properties within JavaBeans and within collections such as lists,
maps, and arrays, the expression language supports the "." and "[]" operators.

Simplified JSP Authoring with the Expression Language

Getting Started with JSP 1-19

The "." construct allows access to properties whose names are standard Java
identifiers. For example, employee.phones.cell is equivalent to
employee.getPhones().getCell() in Java syntax.

The "[]" construct is for more generalized access, such as for accessing arrays or
lists. However, for valid Java identifiers it is equivalent to the "." construct. For
example, the expressions employee.phoneNumbers and
employee["phoneNumbers"] yield the same result.

■ Relational operators

The expression language supports the relational operators == (or eq), != (or ne), <
(or lt), > (or gt), <= (or le), >= (or ge).

■ Arithmetic operators

The expression language supports the arithmetic operators +, -, *, / (or div), %
(or mod, for remainder or modulo).

■ Logical operators

The expression language supports the logical operators && (or and), || (or or), !
(or not), empty.

Basic Example
The following example shows a basic invocation of the expression language, including
the relational "<=" (less than or equal to) operator.

<c:if test="${auto.price <= customer.priceLimit}">
 The <c:out value="${auto.makemodel}"/> is in your price range.
</c:if>

Accessing Collections Example
The following example shows use of the "." and "[]" constructs. Here, catalogue is
a Map object containing the description of products, while preferences is a Map
object containing a particular user's preferences.

Item:
<c:out value="${catalogue[productId]}"/>
 Delivery preference:
<c:out value="${user.preferences['delivery']}"/>

Expression Language Implicit Objects
The expression language provides the following implicit objects:

■ pageScope: Allows access to page-scope variables.

■ requestScope: Allows access to request-scope variables.

■ sessionScope: Allows access to session-scope variables.

■ applicationScope: Allows access to application-scope variables.

■ pageContext: Allows access to all properties of the page context of a JSP page.

■ param: A Java Map object containing request parameters typically accessed using
the request.getParameter() method. The expression ${param["foo"]} or
the equivalent ${param.foo} both return the first string value associated with
the request parameter foo.

■ paramValues: Use paramValues["foo"], for example, to return an array of all
string values associated with request parameter foo.

Simplified JSP Authoring with the Expression Language

1-20 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

■ header: As with param, you can use this object to access the first string value
associated with a request header.

■ headerValues: Similarly to using paramValues, you can use this to access all
string values associated with a request header.

■ initParam: Allows access to context initialization parameters.

■ cookie: Allows access to cookies received in the request.

Additional Features of the Expression Language
The expression language also offers the following features:

■ It can provide default values where failure to evaluate an expression is considered
to be recoverable.

■ Where application data might not exactly match the type expected by a tag
attribute or expression language operator, there are rules to convert the type of the
resulting value to the expected type.

Creating and Using Expression Language Functions
The expression language allows you to define static methods known as functions that
can be invoked within EL expressions.

Creating or using a function is similar to creating or using a custom tag. In fact, the
JSTL contains six custom tags that are actually expression language functions. See
Chapter 7, "Working with Custom Tags" for details on custom tag implementation.

A function must be implemented as a public static method within a public Java class.
The following example paraphrases the static method for the JSTL fn:length
function available in the Jakarta Taglibs Standard library:

public static int length(Object obj)
throws JspTagException {
...
}

Classes containing function methods are grouped into tag libraries, similar to custom
tags. Each function's signature and the mapping to the public class containing its
corresponding method are added to the library's tag library descriptor (TLD) file. For
example:

<function>
 <description>
 Returns the number of items in a collection or the number of
 characters in a string.
 </description>
 <name>length</name>
 <function-class>
 org.apache.taglibs.standard.functions.Functions
 </function-class>
 <function-signature>
 int length(java.lang.Object)
 </function-signature>
</function>

To use an EL function, a JSP must import the appropriate tag library using a taglib
directive. Here the page imports the JSTL functions library which contains the Java
class implementing the fn:length function:

JSP Execution Model

Getting Started with JSP 1-21

<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

Finally, the function can be invoked within an EL expression in the JSP. Here the
scoped variable employees is a collection of Employee objects.

There are ${fn:length(employees)} employees listed in the
database.

Disabling the Expression Language
It is possible to disable or deactivate the expression language to allow a pattern written
in EL syntax to be passed through a JSP, without being evaluated as an EL expression.
The EL can be disabled at either the Web application or individual JSP level. Tag files
can also be instructed to ignore EL expressions.

Note that when EL is disabled, the pattern \$ will not be recognized as a quote,
whereas it will be recognized as such if EL is enabled.

Disabling EL in All JSPs in a Web Application
To disable EL for all JSPs in an application, add the following <jsp-property-group>
element to the application's web.xml Web application descriptor file.

<jsp-property-group>
 <url-patter>*.jsp</url-pattern>
 <el-ignored>true</el-ignored>
</jsp-property-group>

Disabling EL in a JSP
To disable EL evaluation in a JSP page, set the isELIgnored attribute of the page
directive to true in the JSP.

Disabling EL in a Tag File
To disable EL evaluation in a tag file, set the isELIgnored attribute of the tag
directive to true in the tag file.

JSP Execution Model
This section provides a top-level look at how a JSP page is run, including on-demand
translation (the first time a JSP page is run) and error processing.

JSP Execution Models
There are two distinct execution models for JSP pages:

■ In most implementations and situations, the Web container translates pages on
demand before triggering their execution; that is, at the time they are requested by
the user.

■ In some scenarios, however, the developer might want to translate the pages in
advance and deploy them as working servlets. Command-line tools are available
to translate the pages, load them, and publish them to make them available for
execution. You can have the translation occur either on the client or in the server.
When the user requests the JSP page, it is executed directly, with no translation
necessary.

JSP Execution Model

1-22 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

On-Demand Translation Model
It is typical to run JSP pages in an on-demand translation scenario. When a JSP page is
requested from a Web server that incorporates the Web container, a front-end servlet is
instantiated and invoked, assuming proper Web server configuration. This servlet can
be thought of as the front-end of the Web container. In OC4J, it is
oracle.jsp.runtimev2.JspServlet.

JspServlet locates the JSP page, translates and compiles it if necessary (if the
translated class does not exist or has an earlier timestamp than the JSP page source),
and triggers its execution.

Note that the Web server must be properly configured to map the *.jsp file name
extension (in a URL) to JspServlet.

Pretranslation Model
As an alternative to the typical on-demand scenario, developers might want to
pretranslate their JSP pages before deploying them. This can offer the following
advantages, for example:

■ It can save time for the users when they first request a JSP page, because
translation at execution time is not necessary.

■ It is useful if you want to deploy binary files only, perhaps because the software is
proprietary or you have security concerns and you do not want to expose the
code.

Oracle supplies the ojspc command-line utility for pretranslating JSP pages. This
utility has options that allow you to set an appropriate base directory for the output
files, depending on how you want to deploy the application. The ojspc utility is
documented in Chapter 4, "Precompiling JSP Pages with ojspc".

JSP Pages and On-Demand Translation
Presuming the typical on-demand translation scenario, a JSP page is usually executed
as follows:

1. The user requests the JSP page through a URL ending with a.jsp file name.

2. Upon noting the .jsp file name extension in the URL, the servlet container of the
Web server invokes the Web container.

3. The Web container locates the JSP page and translates it if this is the first time it
has been requested. Translation includes producing servlet code in a .java file
and then compiling the .java file to produce a servlet .class file.

The servlet class generated by the JSP translator extends a class (provided by the
Web container) that implements the javax.servlet.jsp.HttpJspPage
interface. The servlet class is referred to as the page implementation class. This
document will refer to instances of page implementation classes as JSP page
instances.

Translating a JSP page into a servlet automatically incorporates standard servlet
programming overhead into the generated servlet code, such as implementing the
HttpJspPage interface and generating code for its service method.

4. The Web container triggers instantiation and execution of the page
implementation class.

The JSP page instance will then process the HTTP request, generate an HTTP response,
and pass the response back to the client.

JSP Execution Model

Getting Started with JSP 1-23

Requesting a JSP Page
A JSP page can be requested either directly through a URL or indirectly through
another Web page or servlet.

Directly Requesting a JSP Page
As with a servlet or HTML page, the user can request a JSP page directly by URL. For
example, suppose you have a HelloWorld JSP page that is located under a myapp
directory, as follows, where myapp is mapped to the myapproot context path in the
Web server:

myapp/dir/HelloWorld.jsp

You can request it with a URL such as the following:

http://host:port/myapproot/dir/HelloWorld.jsp

The first time the user requests HelloWorld.jsp, the Web container triggers both
translation and execution of the page. With subsequent requests, the Web container
triggers page execution only; the translation step is no longer necessary.

Indirectly Requesting a JSP Page
JSP pages, like servlets, can also be executed indirectly—linked from a regular HTML
page or referenced from another JSP page or from a servlet.

When invoking one JSP page from a JSP statement in another JSP page, the path can be
either relative to the application root—known as context-relative or
application-relative—or relative to the invoking page—known as page-relative. An
application-relative path starts with "/"; a page-relative path does not.

Be aware that, typically, neither of these paths is the same path as used in a URL or
HTML link. Continuing the example in the preceding section, the path in an HTML
link is the same as in the direct URL request, as follows:

The application-relative path in a JSP statement is:

<jsp:include page="/dir/HelloWorld.jsp" flush="true" />

The page-relative path to invoke HelloWorld.jsp from a JSP page in the same
directory is:

Note: The preceding steps are loosely described for purposes of
this discussion. As mentioned earlier, each vendor decides how to
implement its Web container, but it will consist of a servlet or
collection of servlets. For example, there might be a front-end
servlet that locates the JSP page, a translation servlet that handles
translation and compilation, and a wrapper servlet class that is
extended by each page implementation class (because a translated
page is not actually a pure servlet and cannot be run directly by the
servlet container). A servlet container is required to run each of
these components.

Note: General servlet and JSP invocation are discussed in the
Oracle Containers for J2EE Servlet Developer’s Guide.

JSP Execution Model

1-24 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

<jsp:forward page="HelloWorld.jsp" />

("Standard JSP Action Tags" on page 1-11 discusses the jsp:include and
jsp:forward statements.)

The Oracle JSP Implementation 2-1

2
The Oracle JSP Implementation

This chapter provides details on the functionality implemented by the Web container
provided with Oracle Containers for J2EE (OC4J), a component of the Oracle
Application Server. Overviews of the Oracle Application Server, OC4J, the OC4J JSP
implementation and features, and custom tag libraries and utilities that are also
supplied (documented in the Oracle Containers for J2EE JSP Tag Libraries and Utilities
Reference).

The following sections are included:

■ Introduction to OC4J

■ JSP Support in Oracle JDeveloper

■ Oracle Value-Added Features for JSP

Introduction to OC4J
Oracle Containers for J2EE 10g Release 3 (10.1.3), or OC4J, provides a complete Java 2
Enterprise Edition (J2EE) 1.4-compliant environment. OC4J Standalone is for use in
development environments and in small-to-medium scale production environments.

OC4J is written entirely in Java and executes on the Java Virtual Machine (JVM) of the
standard Java Development Kit (JDK). You can run OC4J on the standard JDK that
exists on your operating system.

The OC4J documentation assumes that you have a basic understanding of Java
programming, J2EE technology, and Web and EJB application technology. This
includes deployment conventions such as the /WEB-INF and /META-INF directories.

What's New in OC4J
Release 3 (10.1.3) of Oracle Containers for J2EE includes a number of new features and
enhancements, described below.

Support for Web Services
OC4J provides full support for Web Services in accordance with the J2EE 1.4 standard,
including JAX-RPC 1.1. Web Services interoperability is also supported.

■ EJB 2.1 Web services end point model

■ JSR 109 client and server deployment model

■ CORBA Web services: Support for wrapping existing basic CORBA Servants as
Web services and auto-generating WSDL from IDL

Introduction to OC4J

2-2 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

■ Support for source code annotations to customize Web services behavior such as
invocation and ending styles (RPC/literal, RPC/encoded, Doc/literal);
customizing the Java to XML mapping; enforcing security.

■ Database and JMS Web services

Support for New J2EE 1.4 Application Management and Deployment Specifications
OC4J supports the following specifications defining new standards for deploying and
managing applications in a J2EE environment.

■ The Java Management Extensions (JMX) 1.2 specification, which allows standard
interfaces to be created for managing resources, such as services and applications,
in a J2EE environment. The OC4J implementation of JMX provides a JMX client
that can be used to completely manage an OC4J server and applications running
within it.

■ The J2EE Management Specification (JSR-77), a sub-set of JMX that allows standard
interfaces to be created for managing applications in a J2EE environment.

■ The J2EE Application Deployment API (JSR-88), which defines a standard API for
configuring and deploying J2EE applications and modules into a J2EE-compatible
environment. The OC4J implementation includes the ability to create and/or edit a
deployment plan containing the OC4J-specific configuration data needed to
deploy a component into OC4J.

Support for Oracle Application Server TopLink
Oracle Application Server TopLink is an advanced, object persistence framework for
use with a wide range of Java 2 Enterprise Edition (J2EE) and Java application
architectures. OracleAS TopLink includes support for the OC4J Container Managed
Persistence (CMP) container and base classes that simplify Bean Managed Persistence
(BMP) development.

OracleAS Job Scheduler
The OracleAS Job Scheduler provides asynchronous scheduling services for J2EE
applications. Its key features include capabilities for submitting, controlling and
monitoring jobs, defined as a unit of work that executes when the work is performed.

New Two-Phase Commit Transaction Coordinator Functionality
The new Distributed Transaction Manager in OC4J can coordinate two-phase
transactions between any type of XA resource, including databases from Oracle as well
as other vendors and JMS providers such as IBM WebsphereMQ. Automatic
transaction recovery in the event of a failure is also supported.

Generic JMS Resource Adapter Enhancements
The Generic JMS Resource Adapter can now be used as an OC4J plug-in for OracleAS
JMS that ships with the current version of OC4J as well as for IBM Websphere MQ JMS
version 5.3.

Support for lazy transaction enlistment has been added so that JMS connections can be
cached and still be able to correctly participate in global transactions.

Finally, the Generic JMS Resource Adapter now has better error handling. Endpoints
now automatically retry after provider or system failures, and onMessage() errors
are handled correctly.

Oracle Value-Added Features for JSP

The Oracle JSP Implementation 2-3

Features of OC4J
 The following features are provided with the latest release of OC4J.

J2EE Support
OC4J supports and is certified for the standard J2EE APIs, as listed in Table 2–1

OC4J Web Communication
OC4J supports HTTP and HTTPS communications natively without the use of the
Oracle HTTP Server.

The default Web site is defined in the http-web-site.xml file, which specifies the
default HTTP listener on port 8888. Additional Web sites may be defined on different
ports using variations of this file. See the Oracle Containers for J2EE Configuration and
Administration Guide for instructions on creating additional Web sites in OC4J.

Clustering
OC4J provides support for HTTP session and stateful session Enterprise JavaBean
replication and load balancing across a cluster of OC4J instances. However, cluster
configuration and management is completely manual in this release, through editing
of the OC4J-specific application configuration file. See the Oracle Containers for J2EE
Configuration and Administration Guide for details.

Oracle Value-Added Features for JSP
OC4J value-added features for JSP pages can be grouped into three major categories:

■ Features that are Oracle-specific

■ Features implemented through custom tag libraries, custom JavaBeans, or custom
classes that are generally portable to other JSP environments

■ Features supporting caching technologies

Table 2–1 J2EE APIs Supported by OC4J

J2EE Standard APIs Version Supported By OC4J

JavaServer Pages (JSP) 2.0

Servlets 2.4

Enterprise JavaBeans (EJB) 2.1

Java Transaction API (JTA) 1.0

Java Message Service (JMS) 1.1

Java Naming and Directory Interface (JNDI) 1.2

Java Mail 1.1.2

Java Database Connectivity (JDBC) 2.0 Extension

Oracle Application Server Java Authentication
and Authorization Service (JAAS) Provider

 1.0

J2EE Connector Architecture 1.5

Java API for XML-Based RPC (JAX-RPC) 1.1

SOAP with Attachments API for Java (SAAJ) 1.2

Java API for XML Registries (JAXR) 1.0.5

Oracle Value-Added Features for JSP

2-4 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

The rest of this section provides feature summaries and overviews in these areas, plus
a brief summary of Oracle support for the JavaServer Pages Standard Tag Library
(JSTL). JSTL support is summarized more fully in the Oracle Containers for J2EE JSP Tag
Libraries and Utilities Reference.

Supported Specifications
The JSP container provided with OC4J is in full compliance with the following
specifications published by Sun Microsystems:

■ JavaServer Pages Specification, Version 2.0

■ Java Servlet Specification, Version 2.4

■ JSR-045: Debugging Support for Other Languages

Feel free to consult these specifications for more details.

Oracle-Specific Features
This section provides an overview of Oracle-specific programming extensions
supported by the OC4J Web container.

Configurable JSP Extensions in OC4J
In addition to JSP 2.0 compliance, the OC4J Web container includes the following
notable features.

Also see "Oracle Value-Added Features for JSP" on page 2-3.

■ Separate mode switches for XML validation of web.xml file and TLD files

Validation of web.xml is disabled by default but can be enabled. Validation of
TLD files is disabled by default.

■ Mode flag for extra imports

Use this to automatically import certain Java packages beyond the JSP defaults.

■ "Well-known" location for sharing tag libraries

You can specify a directory where tag library JAR files can be placed for sharing
across multiple Web applications.

■ Configurable JSP timeout

You can specify a timeout value for JSP pages, after which a page is removed from
memory if it has not been requested again.

The following features are also supported:

■ Mode switch for automatic page retranslation and reloading

You have a choice of: 1) running JSP pages without any automatic reloading or
retranslation of JSP pages; 2) automatically reloading any page implementation
classes (but not JavaBeans or other dependency classes); or 3) automatically
retranslating any JSP pages that have changed.

■ Tag handler instance pooling

To save time in tag handler creation and garbage collection, you can optionally
enable pooling of tag handler instances. They are pooled in application scope.
You can use different settings in different pages, or even in different sections of the
same page. See "Disabling or Enabling Tag Handler Reuse (Tag Pooling)" on
page 7-16.

Oracle Value-Added Features for JSP

The Oracle JSP Implementation 2-5

■ Output mode for null output

You can print an empty string instead of the default "null" string for null output
from a JSP page.

Global Includes
The OC4J Web container provides a feature called global includes. You can use this
feature to specify one or more files to statically include into JSP pages in or under a
specified directory, through virtual JSP include directives. During translation, the
Web container looks for a configuration file,
/WEB-INF/ojsp-global-include.xml, that specifies the included files and the
directories for the pages.

This enhancement is particularly useful in migrating applications that had used
globals.jsa or translate_params functionality in previous Oracle JSP releases.
For more information, see "Oracle JSP Global Includes" on page 5-6.

Support for Dynamic Monitoring Service
DMS adds performance-monitoring features to a number of Oracle Application Server
components, including OC4J. The goal of DMS is to provide information about
runtime behavior through built-in performance measurements so that users can
diagnose, analyze, and debug any performance problems. DMS provides this
information in a package that can be used at any time, including during live
deployment. Data are published through HTTP and can be viewed with a browser.

The OC4J Web container supports DMS features, calculating relevant statistics and
providing information to DMS servlets such as the spy servlet and monitoring agent.
Statistics include the following (using averages, maximums, and minimums, as
applicable). Times are in milliseconds.

■ Processing time of HTTP request

■ Processing time of JSP service method

■ Number of JSP instances created or available

Standard configuration for these servlets is in the OC4J application.xml and
default-web-site.xml configuration file. Use the Oracle Enterprise Manager 10g
Application Server Control Console to access DMS, display DMS information, and, if
appropriate, alter DMS configuration.

See the Oracle Application Server Performance Guide for precise definitions of the JSP
metrics and detailed instructions for viewing and analyzing them.

JSP Utilities and Tag Libraries Provided with OC4J
This section provides a brief summary of extended OC4J JSP features that are
implemented through standards-compliant custom tag libraries, custom JavaBeans,
and other classes. These features are documented in the Oracle Containers for J2EE JSP
Tag Libraries and Utilities Reference.

■ Extended types implemented as JavaBeans that can have a specified scope

■ JspScopeListener for event-handling

■ Integration with XML and XSL

■ Data-access tag library (sometimes referred to as "SQL tags") and JavaBeans

■ Web services tag library

Oracle Value-Added Features for JSP

2-6 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

■ Tag libraries and JavaBeans for uploading files, downloading files, and sending
e-mail from within an application

■ EJB tag library

■ Additional utility tags, such as for displaying dates and currency amounts
appropriately for a specified locale

Tags and API for Caching Support
Faced with Web performance challenges, e-businesses must invest in more
cost-effective technologies and services to improve the performance of their Internet
sites. Web caching, the caching of both static and dynamic Web content, is a key
technology in this area. Benefits of Web caching include performance, scalability, high
availability, cost savings, and network traffic reduction.

OC4J provides the following support for Web caching technologies:

■ The JESI tag library for Edge Side Includes (ESI), an XML-style markup language
that allows dynamic content assembly away from the Web server

The Oracle Web Cache provides an ESI engine.

■ A tag library and servlet API for the Web Object Cache, an application-level cache
that is embedded and maintained within a Java Web application

The Web Object Cache uses the Oracle Application Server Java Object Cache as its
default repository.

These features are documented in the Oracle Containers for J2EE JSP Tag Libraries and
Utilities Reference.

Support for the JavaServer Pages Standard Tag Library (JSTL)
The OC4J JSP implementation supports the JavaServer Pages Standard Tag Library
(JSTL), as specified in the Sun Microsystems JavaServer Pages Standard Tag Library
specification.

JSTL is intended as a convenience for JSP page authors who are not familiar or not
comfortable with scripting languages such as Java. Historically, scriptlets have been
used in JSP pages to process dynamic data. With JSTL, the intent is for JSTL tag usage
to replace the need for scriptlets.

Key JSTL features include the following:

■ Core tags for expression language support, conditional logic and flow control,
iterator actions, and access to URL-based resources

■ Tags for XML processing, flow control, and XSLT transformations

■ SQL tags for database access

■ Tags for I8N-capable internationalization and formatting

(The term "I8N" refers to an internationalization standard.)

Note: The JSTL distribution is no longer installed in the ORACLE_
HOME/j2ee/home/jsp/lib/taglib directory within OC4J.

See "Sharing Tag Libraries Across Web Applications" on page 7-24 for
instructions on sharing tag libraries across deployed Web applications.

JSP Support in Oracle JDeveloper

The Oracle JSP Implementation 2-7

Tag support is organized into four JSTL sublibraries according to these functional
areas.

For a more complete summary of JSTL support, refer to the Oracle Containers for J2EE
JSP Tag Libraries and Utilities Reference. For complete information about JSTL, refer to
the specification at the following location:

http://www.jcp.org/aboutJava/communityprocess/first/jsr052/index
.html

JSP Support in Oracle JDeveloper
Visual Java programming tools now typically support JSP coding. In particular, Oracle
JDeveloper supports JSP development and includes the following features:

■ Integration of the OC4J Web container to support the full application development
cycle: editing, debugging, and running JSP pages

■ Debugging of deployed JSP pages

■ An extensive set of data-enabled and Web-enabled JavaBeans, known as
JDeveloper Web beans

■ The JSP Element Wizard, which offers a convenient way to add predefined Web
beans to a page

■ Support for incorporating custom JavaBeans

For debugging, JDeveloper can set breakpoints within JSP page source and can follow
calls from JSP pages into JavaBeans. This is much more convenient than manual
debugging techniques, such as adding print statements within the JSP page to output
state into the response stream (for viewing in your browser) or to the server log
(through the log() method of the implicit application object).

For information about JDeveloper, refer to the JDeveloper online help, or to the
following site on the Oracle Technology Network:

http://otn.oracle.com/products/jdev/content.html

(You will need an Oracle Technology Network membership, which is free of charge.)
For an overview of JSP tag libraries provided with JDeveloper, see the Oracle
Containers for J2EE JSP Tag Libraries and Utilities Reference.

Note: The custom JML, XML, and data-access (SQL) and other tag
libraries provided with OC4J pre-date JSTL and have areas of
duplicate functionality.

For standards compliance, it is generally advisable to use JSTL
instead of the custom libraries.

For features in the custom libraries that are not yet available in
JSTL, where there seems to be general usefulness, Oracle will try to
have the features adopted into the JSTL standard as appropriate.

Note: Other key IDE vendors have built plug-in modules that
allow seamless integration with OC4J. This provides developers
with the capability to build, deploy, and debug J2EE applications
running on OC4J directly from within the IDE.

Oracle JSP Resource Management Features

2-8 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Oracle JSP Resource Management Features
The following sections discuss standard features and Oracle value-added features for
resource management:

■ Standard Session Resource Management: HttpSessionBindingListener

■ Overview of Oracle Value-Added Features for Resource Management

Standard Session Resource Management: HttpSessionBindingListener
A JSP page must appropriately manage resources acquired during its execution, such
as JDBC connection, statement, and result set objects. The standard
javax.servlet.http package provides the HttpSessionBindingListener
interface and HttpSessionBindingEvent class to manage session-scope resources.
Through this mechanism, a session-scope query bean could, for example, acquire a
database cursor when the bean is instantiated and close it when the HTTP session is
terminated.

This section describes use of the HttpSessionBindingListener valueBound()
and valueUnbound() methods.

The valueBound() and valueUnbound() Methods
An object that implements the HttpSessionBindingListener interface can
implement a valueBound() method and a valueUnbound() method, each of which
takes an HttpSessionBindingEvent instance as input. These methods are called by
the servlet container—the valueBound() method when the object is stored in the
session, and the valueUnbound() method when the object is removed from the
session or when the session reaches a timeout or becomes invalid. Usually, a developer
will use valueUnbound() to release resources held by the object (in the example
below, to release the database connection).

"Oracle Value-Added Features for JSP" below provides a sample JavaBean that
implements HttpSessionBindingListener and a sample JSP page that calls the
bean.

JDBCQueryBean JavaBean Code
Following is the sample code for JDBCQueryBean, a JavaBean that implements the
HttpSessionBindingListener interface. It uses the JDBC OCI driver for its
database connection; use an appropriate JDBC driver and connection string if you
want to run this example yourself.

JDBCQueryBean gets a search condition through the HTML request (as described in
"UseJDBCQueryBean JSP Page" on page 2-10), executes a dynamic query based on the
search condition, and outputs the result.

This class also implements a valueUnbound() method, as specified in the
HttpSessionBindingListener interface, that results in the database connection
being closed at the end of the session.

package mybeans;

import java.sql.*;

Note: The bean instance must register itself in the event
notification list of the HTTP session object, but the jsp:useBean
statement takes care of this automatically.

Oracle JSP Resource Management Features

The Oracle JSP Implementation 2-9

import javax.servlet.http.*;

public class JDBCQueryBean implements HttpSessionBindingListener
{
 String searchCond = "";
 String result = null;

 public void JDBCQueryBean() {
 }

 public synchronized String getResult() {
 if (result != null) return result;
 else return runQuery();
 }

 public synchronized void setSearchCond(String cond) {
 result = null;
 this.searchCond = cond;
 }

 private Connection conn = null;

 private String runQuery() {
 StringBuffer sb = new StringBuffer();
 Statement stmt = null;
 ResultSet rset = null;
 try {
 if (conn == null) {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 conn = DriverManager.getConnection("jdbc:oracle:oci8:@",
 "scott", "tiger");

 }

 stmt = conn.createStatement();
 rset = stmt.executeQuery ("SELECT ename, sal FROM scott.emp "+
 (searchCond.equals("") ? "" : "WHERE " + searchCond));
 result = formatResult(rset);
 return result;

 } catch (SQLException e) {
 return ("<P> SQL error: <PRE> " + e + " </PRE> </P>\n");
 }
 finally {
 try {
 if (rset != null) rset.close();
 if (stmt != null) stmt.close();
 }
 catch (SQLException ignored) {}
 }
 }

 private String formatResult(ResultSet rset) throws SQLException {
 StringBuffer sb = new StringBuffer();
 if (!rset.next())
 sb.append("<P> No matching rows.<P>\n");
 else {
 sb.append("");
 do { sb.append("" + rset.getString() +
 " earns $ " + rset.getInt(2) + "\n");

Oracle JSP Resource Management Features

2-10 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

 } while (rset.next());
 sb.append("");
 }
 return sb.toString();
 }

 public void valueBound(HttpSessionBindingEvent event) {
 // do nothing -- the session-scope bean is already bound
 }

 public synchronized void valueUnbound(HttpSessionBindingEvent event) {
 try {
 if (conn != null) conn.close();
 }
 catch (SQLException ignored) {}
 }
}

UseJDBCQueryBean JSP Page
The following JSP page uses the JDBCQueryBean JavaBean defined in "Oracle
Value-Added Features for JSP" above, invoking the bean with session scope. It uses
JDBCQueryBean to display employee names that match a search condition entered by
the user.

JDBCQueryBean gets the search condition through the jsp:setProperty tag in this
JSP page, which sets the searchCond property of the bean according to the value of
the searchCond request parameter input by the user through the HTML form. The
HTML INPUT tag specifies that the search condition entered in the form be named
searchCond.

<jsp:useBean id="queryBean" class="mybeans.JDBCQueryBean" scope="session" />
<jsp:setProperty name="queryBean" property="searchCond" />

<HTML>
<HEAD> <TITLE> The UseJDBCQueryBean JSP </TITLE> </HEAD>
<BODY BGCOLOR="white">

<% String searchCondition = request.getParameter("searchCond");
 if (searchCondition != null) { %>
 <H3> Search results for : <I> <%= searchCondition %> </I> </H3>
 <%= queryBean.getResult() %>
 <HR>

<% } %>

Enter a search condition for the EMP table:

<FORM METHOD="get">
<INPUT TYPE="text" NAME="searchCond" VALUE="ename LIKE 'A%' " SIZE="40">
<INPUT TYPE="submit" VALUE="Ask Oracle">
</FORM>

</BODY>
</HTML>

Note: The preceding code serves as a sample only. This is not
necessarily an advisable way to handle database connection
pooling in a large-scale Web application.

Oracle JSP Resource Management Features

The Oracle JSP Implementation 2-11

Following is sample input and output for this page:

Advantages of HttpSessionBindingListener
In the preceding example, an alternative to the HttpSessionBindingListener
mechanism would be to close the connection in a finalize() method in the
JavaBean. The finalize() method would be called when the bean is
garbage-collected after the session is closed. The HttpSessionBindingListener
interface, however, has more predictable behavior than a finalize() method.
Garbage collection frequency depends on the memory consumption pattern of the
application. By contrast, the valueUnbound() method of the
HttpSessionBindingListener interface is called reliably at session shutdown.

Overview of Oracle Value-Added Features for Resource Management
OC4J JSP provides the JspScopeListener interface for managing application-scope,
session-scope, request-scope, or page-scope resources in OC4J.

This mechanism adheres to servlet and JSP standards in supporting objects of page,
request, session, or application scope. To create a class that supports session
scope as well as other scopes, you can integrate JspScopeListener with
HttpSessionBindingListener by having the class implement both interfaces. For
page scope in OC4J or JServ environments, you also have the option of using an
Oracle-specific runtime implementation.

For information about configuration and how to integrate with
HttpSessionBindingListener, see the Oracle Containers for J2EE JSP Tag Libraries
and Utilities Reference.

Oracle JSP Resource Management Features

2-12 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Configuring the OC4J JSP Environment 3-1

3
Configuring the OC4J JSP Environment

This chapter covers basic issues in your JSP environment, including key support files,
key OC4J configuration files, and configuration of the Web container. It also discusses
initial considerations such as application root functionality, classpath functionality,
security issues, and file naming conventions.

The following sections are included in this chapter:

■ Configuring the OC4J JSP Container

■ Configuring JSP Compilation in OC4J

■ Configuring Runtime JSP Retranslation and Reloading in OC4J

■ Key JSP-Related Support Files Provided with OC4J

Configuring the OC4J JSP Container
This section explains your options for configuring the OC4J JSP container, with a focus
on configuring the container for JSP development. It includes the following topics:

■ Summary of JSP Configuration Parameters

■ Setting JSP Parameters in Application Server Control Console

■ Setting JSP Parameters in the XML Configuration Files

Summary of JSP Configuration Parameters
A number of parameters for configuring the JSP container environment are available
in OC4J. Table 3–1 summarizes the supported configuration parameters.

Parameters that are listed in the Application Server Control Console JSP Property
column of this table can be set through the JSP Container Properties page of the Oracle
Enterprise Manager 10g Application Server Control Console management interface
provided with OC4J. See "Setting JSP Parameters in Application Server Control
Console" on page 3-8 for details.

Parameters that are not exposed through Application Server Control Console can be
set directly in the global-web-application.xml configuration file, which is
located in the ORACLE_HOME/j2ee/home/config directory by default. The JSP

Note: JSP pages will run with any standard browser supporting
HTTP 1.0 or higher. The JDK or other Java environment in the
user's Web browser is irrelevant, as any Java code in a JSP page is
executed within the Web server.

Configuring the OC4J JSP Container

3-2 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

parameters persisted in this file are the default values inherited by all Web modules
running within the OC4J server instance.

You can override any of the global settings for a specific Web application by modifying
the Web module's web.xml or orion-web.xml deployment descriptors. Note that
these files must be edited manually; Application Server Control Console does not
provide any editing capabilities.

See "Setting JSP Parameters in the XML Configuration Files" on page 3-9 for details on
setting parameters in the global-web-application.xml or orion-web.xml file.

Table 3–1 JSP Environment Configuration Parameters

Application Server
Control Console
JSP Property XML Parameter Description

(None) check_page_scope
<init-param>

Set to true to enable page-scope checking by
JspScopeListener within OC4J. The default is false.

See the Oracle Containers for J2EE JSP Tag Libraries and Utilities
Reference for detailed information about the JspScopeListener
utility.

(None) debug
<init-param>

Set to enable JSR-45 debugging support. Valid values are:

■ file: Generates an SMAP file.

■ class: Embeds the debugging in the generated class file.

■ none (default): No debugging information is generated

Debug Mode debug_mode
<init-param>

Set to true to print the stack trace when certain runtime
exceptions occur. The default is false.

When this parameter is false and a file is not found, the full
path of the missing file is not displayed. This is an important
security consideration if you want to suppress the display of the
physical file path when non-existent JSP files are requested.

External Resource for
Static Content

external_
resource
<init-param>

Set to true to instruct the JSP translator to place static content
within a JSP page into a Java resource file instead of into the
generated page implementation class during translation. The
default is false.

The external_resource parameter is deprecated in Oracle
Containers for J2EE 10g (10.1.3.1.0).

The translator places the resource file into the same directory as
generated class files. The resource file name is based on the JSP
page name, with the .res suffix.

The translation of MyPage.jsp, for example, would create _
MyPage.res in addition to normal output. (The exact
implementation might change in future releases.)

If there is a lot of static content in a page, this technique will
speed translation and may speed execution of the page. For more
information, see "Managing Heavy Static Content or Tag Library
Usage" on page 6-9.

Configuring the OC4J JSP Container

Configuring the OC4J JSP Environment 3-3

Extra Import Package
List

extra_imports
<init-param>

Use to import additional packages beyond the JSP defaults
described in "Packages Imported By Default in OC4J" on page 6-3.

The extra_imports parameter is deprecated in Oracle
Containers for J2EE 10g (10.1.3.1.0).

Note that in an XML file, the names can be either
comma-delimited or space-delimited. Either of the following is
valid:

<init-param>
 <param-name>extra_imports</param-name>
 <param-value>java.util.* java.beans.*</param-value>
</init-param>

or:

<init-param>
 <param-name>extra_imports</param-name>
 <param-value>java.util.*,java.beans.*</param-value>
</init-param>

Accept Duplicate
Directive Attributes

forgive_dup_dir_
attr
<init-param>

Set to true to avoid JSP translation errors if you have duplicate
settings with different values for the same directive attribute
within a single JSP translation unit. The default is false.

The forgive_dup_dir_attr parameter is deprecated in Oracle
Containers for J2EE 10g (10.1.3.1.0).

Validate XML xml_validate
<init-param>

Set this boolean to true to perform XML validation of the
web.xml file. The default is false, meaning that validation of
web.xml is not performed.

Oracle plans to remove this parameter in a future release. This is
the only way to implement this behavior in release 10.1.3.1.0. If
you implement this behavior, you will have to modify your code
when you upgrade to a release where this parameter is removed.

(None) iso-8859-1-conve
rt <init-param>

Set this Boolean parameter to false to specify byte truncation,
which provides a performance gain. Oracle recommends this byte
truncation for most of the common use cases where the string
does not contain characters. The default value is true, meaning
that a full conversion of the characters will take place, using an
encoder.

Table 3–1 (Cont.) JSP Environment Configuration Parameters

Application Server
Control Console
JSP Property XML Parameter Description

Configuring the OC4J JSP Container

3-4 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

When a JSP Changes main_mode
<init-param>

Use to specify whether JSP-generated classes are automatically
reloaded or JSP pages are automatically retranslated when
changes are made.

If enabled, this feature allows new or modified JSPs to be loaded
into the OC4J runtime, without requiring the Web application to
be redeployed or restarted. See "Configuring Runtime JSP
Retranslation and Reloading in OC4J" on page 3-11 for additional
information.

Valid settings are:

■ recompile (default): The container will check the
timestamp of the JSP page, retranslate it and reload it if has
been modified since it was last loaded. The functionality
described for reload will also be executed.

■ reload: The container will check the timestamp of classes
generated by the JSP translator, such as page implementation
classes, and reload any that have changed or been
redeployed since they were last loaded. This might be useful,
for example, when you deploy or redeploy compiled classes,
but not JSP pages, from a development environment to a
production environment.

■ justrun: The container will not perform any timestamp
checking, so there is no retranslation of JSP pages or
reloading of JSP-generated Java classes. This is the most
efficient mode for a production environment, where JSP
pages are not expected to change frequently.

(None) no_tld_xml_
validate
<init-param>

Set to true to not perform XML validation of TLD files. The
default is true, meaning validation of the XML structure of TLD
files is not performed.

Oracle plans to remove this parameter in a future release. This is
the only way to implement this behavior in release 10.1.3.1.0. If
you implement this behavior, you will have to modify your code
when you upgrade to a release where this parameter is removed.

(None) old_include_
from_top
<init-param>

Set to true for page locations in nested include directives to be
relative to the top-level page, for backward compatibility with
behavior prior to Oracle9iAS Release 2. The default is false.

The old_include_from_top parameter is deprecated in Oracle
Containers for J2EE 10g (10.1.3.1.0).

Precompile Check precompile_check
<init-param>

Set this Boolean parameter to true to check the HTTP request for
a standard jsp_precompile setting. The default is false.

If precompile_check is true and the request enables jsp_
precompile, then the JSP page will be pretranslated only,
without execution. Setting precompile_check to false
improves performance and ignores any jsp_precompile
setting in the request.

Reduce Code Size for
Custom Tags

reduce_tag_code
<init-param>

Set this Boolean parameter to true for further reduction in the
size of generated code for custom tag usage. The default is
false.

Table 3–1 (Cont.) JSP Environment Configuration Parameters

Application Server
Control Console
JSP Property XML Parameter Description

Configuring the OC4J JSP Container

Configuring the OC4J JSP Environment 3-5

(None) req_time_
introspection
<init-param>

Set this Boolean parameter to true to enable request-time
JavaBean introspection whenever compile-time introspection is
not possible. When compile-time introspection is possible and
succeeds, however, there is no request-time introspection
regardless of the setting of this flag. The default is false.

As an example of a scenario for use of request-time introspection,
assume a tag handler returns a generic java.lang.Object
instance in VariableInfo of the tag-extra-info class during
translation and compilation, but actually generates more specific
objects during runtime. In this case, if req_time_
introspection is enabled, the Web container will delay
introspection until request time.

An additional effect of this flag is to allow a bean to be declared
twice, such as in different branches of an if..then..else loop.
Consider the example that follows. With the default false value
of req_time_introspection, this code would cause a parse
exception. With a true value, the code will work without error:

<% if (cond) { %>
 <jsp:useBean id="foo" class="pkgA.Foo1" />
<% } else { %>
 <jsp:useBean id="foo" class="pkgA.Foo2" />
<% } %>

(None) setproperty_
onerr_continue
<init-param>

Set this Boolean parameter to true to continue iterating over
request parameters and setting corresponding bean properties
when an error is encountered during jsp:setProperty when
property="*". The default is false.

The setproperty_onerr_continue parameter is deprecated
in Oracle Containers for J2EE 10g (10.1.3.1.0).

Generate Static Text as
Chars

static_text_in_
chars
<init-param>

Set this Boolean parameter to true to instruct the JSP translator
to generate static text in JSP pages as characters instead of bytes.
The default is false.

Enable this flag if your application requires the ability to change
the character encoding dynamically during runtime, such as in
the following example:

<% response.setContentType("text/html; charset=UTF-8");
%>

The false default setting improves performance in outputting
static text blocks.

(None) jsp-print-null
<init-param>

Set this flag to false to print an empty string instead of the
string "null" for null output from a JSP page. The default is true.

The jsp-print-null parameter is deprecated in Oracle
Containers for J2EE 10g (10.1.3.1.0).

Table 3–1 (Cont.) JSP Environment Configuration Parameters

Application Server
Control Console
JSP Property XML Parameter Description

Configuring the OC4J JSP Container

3-6 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Tags Reuse Default tags_reuse_
default
<init-param>

Use this parameter to specify the mode for tag handler reuse, also
known as tag pooling.

■ Set to compiletime to enable the compile-time model of tag
handler reuse in its basic mode. This is the default value.

■ Set to compiletime_with_release to enable the
compile-time model of tag handler reuse in its "with release"
mode, where the tag handler release() method is called
between usages of a given tag handler within a given page.

■ Set to none or false to disable tag handler reuse. You can
override this value in any particular JSP page by setting the
JSP page context attribute oracle.jsp.tags.reuse to a
value of true.

■ The runtime option and its equivalent, true, are no longer
supported as of Oracle Containers for J2EE 10g (10.1.3.1.0).

JSP Page Timeout jsp-timeout
attribute of the root
<orion-web-app>
element

Specify an integer value greater than 0 indicating the amount of
time, in seconds, after which a JSP page will be removed from
memory unless it is requested. The default is 0.

Table 3–1 (Cont.) JSP Environment Configuration Parameters

Application Server
Control Console
JSP Property XML Parameter Description

Configuring the OC4J JSP Container

Configuring the OC4J JSP Environment 3-7

Persistent TLD
Caching

jsp-cache-tlds
attribute of the root
<orion-web-app>
element

OC4J provides a persistent caching feature for TLD files, with a
global cache for TLD files in well-known tag library locations, as
well as an application-level cache for any application that uses
TLD caching. See "Enabling the TLD Caching Feature" on
page 7-27 for more information.

By default, applications inherit the TLD caching value set at the
global Web application level. However, if TLD caching is set at
the application level, this value will override the global setting.

■ Set to standard (default) to search the Web application's
/WEB-INF directory for files with the .tld extension. Any
TLD files found will be added to the list of TLD files
inherited from the global Web application.

Note that the /WEB-INF/lib and /WEB-INF/classes
directories will not be searched for files with the .tld
extension.

This is the default value set at both the global and application
levels as of release 10g Release 3 (10.1.3).

■ Set to on to search all directories within the Web application
for TLD files. Any found will be added to the list of TLD files
inherited from the global Web application.

■ Set to off to disable persistent TLD caching. The
/WEB-INF/lib and /WEB-INF/classes directories will
not be searched for files with the .tld extension.

Note that the value of this parameter has implications on the
ability to set multiple well-known tag libraries, as described in
the Tag Lib Locations (jsp-taglib-locations) notation
below.

Tag Libraries Location
List

jsp-taglib-locat
ions attribute of the
root
<orion-web-app>
element

As an extension of standard JSP "well-known URI" functionality
described in the JSP specification, the OC4J JSP container
supports the use of one or more well-known tag libraries -
directories in which you can place tag library JAR files to allow
the libraries to be shared across multiple Web applications. See
"Specifying Well-Known Tag Library Locations" on page 7-26 for
more information.

If TLD caching is disabled (off), the well-known tag library
location is limited to a single directory, which is ORACLE_
HOME/j2ee/home/jsp/lib/taglib by default.

If TLD caching is enabled (standard or on), you can specify one
or more well-known tag librarylocations using a
semicolon-delimited list of directory paths.

Note that the jsp-taglib-locations attribute can be set only
in global-web-application.xml, not in an individual Web
module's orion-web.xml file. Otherwise, the locations will be
ignored.

Note that tag libraries placed in a well-known directory must be
packaged in a JAR file.

Table 3–1 (Cont.) JSP Environment Configuration Parameters

Application Server
Control Console
JSP Property XML Parameter Description

Configuring the OC4J JSP Container

3-8 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Setting JSP Parameters in Application Server Control Console
Oracle Enterprise Manager 10g Application Server Control Console is the
administration console for an Oracle Application Server instance. It is installed by
default with OC4J.

After logging in, access the JSP Container Properties page through
Administration->JSP Properties links.

See the following for instructions on accessing the console:

■ Accessing Application Server Control Console in Standalone OC4J

■ Accessing Application Server Control Console in Oracle Application Server

Accessing Application Server Control Console in Standalone OC4J
The Application Server Control Console is installed and configured automatically
when you install the OC4J software. It is started by default when OC4J is started.

The console is accessed through the default Web site, which is configured to listen
for HTTP requests on port 8888. To access the console, simply type the following URL
in a Web browser:

http://hostname:8888/em

Accessing Application Server Control Console in Oracle Application Server
The Application Server Control Console is installed and configured automatically
when you install OC4J using the Oracle Universal Installer.

The console is started with all other installed Oracle Application Server components
using the OPMN command-line tool, opmnctl, which is installed in the ORACLE_
HOME/opmn/bin directory on each server node. Start all installed components by
issuing the following command:

cd ORACLE_HOME/opmn/bin
opmnctl startall

In a typical Oracle Application Server installation, all Web applications, including
Application Server Control Console, are accessed through Oracle HTTP Server (OHS).
Use the following URL to access the console:

http://ohs_host_address:port/em

■ ohs_host_address is the address of the OHS host machine.; for example,
server07.company.com

(None) simple-jsp-
mapping attribute of
the root
<orion-web-app>
element

Set to true if the "*.jsp" file extension is mapped to only the
oracle.jsp.runtimev2.JspServlet front-end JSP servlet in
the <servlet> elements of any Web descriptors affecting your
application (global-web-application.xml, web.xml, and
orion-web.xml). This will allow performance improvements
for JSP pages. The default setting is true.

If you must map the *.jsp extension to another servlet, set this
parameter to false.

Table 3–1 (Cont.) JSP Environment Configuration Parameters

Application Server
Control Console
JSP Property XML Parameter Description

Configuring the OC4J JSP Container

Configuring the OC4J JSP Environment 3-9

■ port is an HTTP listener port assigned to OHS by OPMN. Run the following
opmnctl command on the OHS host machine to get the list of assigned listener
ports from OPMN:

opmnctl status -l

Supply the port designated as http1 in the OPMN status output as the value for
port:

HTTP_Server | HTTP_Server | 6412 | Alive | 1970872013 | 1
6396 | 0:48:01 | https1:4443,http2:722,http1:7779

Setting JSP Parameters in the XML Configuration Files
In an OC4J development environment, you can set JSP configuration parameters
directly in the global and module-specific configuration files.

For more information about global-web-application.xml and
orion-web.xml, see the Oracle Containers for J2EE Servlet Developer’s Guide.

Setting Servlet Initialization Parameters
An instance of the front-end servlet class - oracle.jsp.runtimev2.JspServlet -
is created for each Web module instantiated within an OC4J instance. Note that this
servlet class is the only servlet supported by OC4J.

The default parameters used to initialize each servlet instance are specified in
<init-param> subelements of the <servlet> element within the
global-web-application.xml configuration file.

Note that you can override any of the default servlet parameters at the Web
application level by specifying corresponding <init-param> elements in the J2EE
standard web.xml deployment descriptor installed with the Web module. The default
location for this file is the ORACLE_HOME/home/j2ee/
appName/webModuleName/WEB-INF directory.

The following example illustrates how to set <init-param> elements containing
servlet initialization parameters within the <servlet> element for the JSP front-end
servlet. This sample enables the precompile_check flag, sets the main_mode flag to
run without checking timestamps, and runs the Java compiler in verbose mode.

<servlet>
 <servlet-name>jsp</servlet-name>
 <servlet-class>oracle.jsp.runtimev2.JspServlet</servlet-class>
 <init-param>
 <param-name>precompile_check</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>main_mode</param-name>
 <param-value>justrun</param-value>
 </init-param>
 <init-param>
 <param-name>javaccmd</param-name>
 <param-value>javac -verbose</param-value>
 </init-param>
</servlet>

Configuring the OC4J JSP Container

3-10 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Setting JSP Configuration Parameters
The parameters that control such functionality as JSP timeout and whether TLD
caching is enabled are set as attributes of the root <orion-web-app> element in
either global-web-application.xml or a Web module's orion-web.xml file. As
with servlet initialization parameters, attributes set in orion-web.xml override the
corresponding global definition in global-web-application.xml. The file for a
deployed Web module is located in the ORACLE_
HOME/j2ee/home/application-deployments/appName/webModuleName
directory by default.

The following example shows how to set attributes of the root <orion-web-app>
element within an XML file:

<orion-web-app development="false" jsp-timeout="30" ... >
 ...
</orion-web-app>

<ojsp-init>
In the orion-web.xml file, you can use the <ojsp-init> element to set the JSP
configuration parameters that Table 3–2 lists.

For descriptions of these parameters, see "Summary of JSP Configuration Parameters"
on page 3-1.

If you specify <ojsp-init> in the orion-web.xml file for a Web application, the
values of these attributes, including default values, override the values of any
corresponding JSP configuration parameters specified in <init-param> elements in
the web.xml deployment descriptor installed with the Web module. Any
corresponding command-line options of the ojspc pretranslation utility override the
<ojsp-init> attributes as well as any corresponding settings in web.xml.

Note: The javaccmd parameter is deprecated in Oracle Containers
for J2EE 10g (10.1.3.1.0).

Table 3–2 JSP Servlet Configuration Parameters

<ojsp-init> Attribute
Equivalent JSP Servlet
<init-param>

ojspc Command-Line
Option

debug-mode debug_mode n/a

iso-8859-1-convert iso-8859-1-convert n/a

jsr45-debug debug -debug

main-mode main_mode n/a

precompile-check precompile_check n/a

reduce-tag-code reduce_tag_code -reduceTagCode

req-time-introspection req_time_instrospection -reqTimeIntrospection

static-text-in-chars static-text-in-chars -staticTextInChars

tags-reuse tags_reuse_default -tagReuse

Configuring Runtime JSP Retranslation and Reloading in OC4J

Configuring the OC4J JSP Environment 3-11

<ojsp-config>
The Oracle-specific <ojsp-config> element is defined in the orion-web.xml file.
The semantics of the <ojsp-config> is parallel to web.xml file <jsp-config>
element that was introduced in JSP 2.0.

The <default-buffer-size> property specifies the default buffer size to be used
by a JSP writer object for the set of JSPs governed by the <url-pattern>. Currently
(release 10.1.3.1) <default-buffer-size> is the only setting you can make in
<ojsp-config>. The <default-buffer-size> setting is not available in the
<jsp-config> element.

You can override this <default-buffer-size> setting for an individual JSP page by using
the page directive buffer attribute.

Here is an example of using the page directive to set buffer size:

 <%@ page buffer="7kb" %>

Here is an example of the syntax of the <ojsp-config> element in the
orion-web.xml file:

<ojsp-config>
 <ojsp-property-group>
 <url-pattern> ...</url-pattern>
 <default-buffer-size>..</default-buffer-size>
 </ojsp-property-group>

 multiple <ojsp-property-group> can exist
</ojsp-config>

Configuring JSP Compilation in OC4J
The Java compiler can be invoked to execute in-process - within in the same JVM
process as OC4J - or out-of-process, within in a separate JVM process.

By default, OC4J uses out-of-process compilation, and the compiler is invoked as a
separate executable. The default compiler used is javac from the Sun Microsystems
JDK.

You can configure OC4J to use a different compiler, or to compile in-process, by
adding a <java-compiler> element with desired settings to the OC4J server.xml
file. See the Oracle Containers for J2EE Configuration and Administration Guide for details.

Configuring Runtime JSP Retranslation and Reloading in OC4J
OC4J allows new JavaServer Pages (JSPs) to be added to an actively running Web
module - as well as existing JSPs to be modified - without requiring an application
redeployment or restart.

To use this feature, simply drop a new or updated JSP into the appropriate directory
within the exploded WAR file structure in the OC4J instance, which is ORACLE_

Note: You cannot use an <ojsp-init> element in
global-web-application.xml.

Key JSP-Related Support Files Provided with OC4J

3-12 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

HOME/j2ee/instance/applications/appName/webModuleName/. OC4J will
translate the page and load (or reload) it into the runtime.

This feature is controlled by the main_mode servlet initialization parameter. Possible
settings are:

■ recompile (default) to retranslate JSP pages that have changed

■ reload to reload classes that were generated by the Web container and have
changed (such as page implementation classes)

■ justrun to run without any retranslation or reloading, which may provide
optimal performance in production environments

 See "Summary of JSP Configuration Parameters" on page 3-1 for additional
information on the main_mode parameter.

For information about classloading behavior at the servlet layer, see the Oracle
Containers for J2EE Servlet Developer’s Guide.

Key JSP-Related Support Files Provided with OC4J
This section summarizes JAR and ZIP files that are used by the Web container or JSP
applications. These files are installed on your system and into your classpath with
OC4J.

■ ojsp.jar: classes for the Web container

■ ojsputil.jar: classes for tag libraries and utilities provided with OC4J

■ xmlparserv2.jar: for XML parsing; required for the web.xml deployment
descriptor and any tag library descriptor files and XML-related tag functionality

■ ojdbc14.jar / classes12.jar / classes111.jar: for the Oracle JDBC
drivers (for JDK 1.4, 1.2 or higher, respectively)

■ runtime12.jar / runtime12ee.jar / runtime11.jar / runtime.jar /
runtime-nonoracle.jar: for the Oracle SQLJ runtime (for JDK 1.2.x or higher
with Oracle9i or higher JDBC, JDK 1.2.x or higher enterprise edition with Oracle9i
or higher JDBC, or any JDK environment with non-Oracle JDBC drivers,
respectively)

■ jndi.jar: for JNDI service for lookup of resources such as JDBC data sources
and Enterprise JavaBeans

Notes:

■ Because of the usage of in-memory values for class file
last-modified times, removing a page implementation class file
from the file system will not by itself cause retranslation of the
associated JSP page source.

■ The page implementation class file will be regenerated when
the memory cache is lost. This happens whenever a request is
directed to this page after the server is restarted or after another
page in this application has been retranslated.

■ In OC4J, if a statically included page is updated (that is, a page
included through an include directive), the page that includes
it will be automatically retranslated the next time it is invoked.

Key JSP-Related Support Files Provided with OC4J

Configuring the OC4J JSP Environment 3-13

■ jta.jar: for the Java Transaction API

There are also files relating to particular areas, such as particular tag libraries. These
include the following:

■ mail.jar: for e-mail functionality within applications (standard javax.mail
package)

■ activation.jar: Java activation files for e-mail functionality

■ cache.jar: for the Oracle Application Server Java Object Cache (which is the
default back-end repository for the OC4J Web Object Cache)

Key JSP-Related Support Files Provided with OC4J

3-14 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Precompiling JSP Pages with ojspc 4-1

4
Precompiling JSP Pages with ojspc

This chapter describes the JSP pretranslation and precompilation capabilities provided
by the ojspc utility packaged with OC4J. The following sections discuss ojspc
functionality:

■ How the ojspc Utility Works

■ Using ojspc

■ Precompiling One or More JSPs

■ Precompiling JSPs within a WAR File

■ Summary of ojspc Command Line Options

How the ojspc Utility Works
This chapter describes the basic precompliation functionality provided by ojspc, as
well as batch precompilation of JSP pages with an archive file. It includes the
following sections:

■ Overview of Basic ojspc Functionality

■ Overview of Batch Pretranslation of WAR Files

Overview of Basic ojspc Functionality
For a simple JSP page, default functionality for ojspc is as follows:

■ Invokes the JSP translator to translate the JSP file into Java page implementation
class code, producing a .java file.

■ Invokes the Java compiler to compile the .java file, which produces a .class
file for the page implementation class.

By default, ojspc generates the same set of files that are generated by the JSP
translator in an on-demand translation scenario and places them in or under the
current working directory from which you ran ojspc .

Output includes the following files:

■ A .java source file (for batch pretranslation, this is discarded after compilation)

■ A .class file for the page implementation class

■ Optionally, a Java resource file (.res) for the static text of the page

Under some circumstances (as is noted in the -extres option description later in this
chapter), ojspc options direct the JSP translator to produce a .res Java resource file

Using ojspc

4-2 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

for static page content, instead of putting this content into the page implementation
class.

Overview of Batch Pretranslation of WAR Files
The ojspc utility accepts not only JSP files for translation, but can also accept WAR or
EAR files for batch pretranslation. The resulting .class files and any Java resource files
are output to a nested JAR file inside the WAR file. The nested JAR file is set in the
WEB-INF\lib path within the WAR, enabling the archive to be deployed as-is into
OC4J.

When the name of an archive file appears on the ojspc command line, ojspc by
default executes the following steps:

1. Opens the archive file.

2. Translates and compiles all .jsp and .java files in the archive.

3. Tag files within the archive are also compiled if they used in a JSP within the
archive.

4. Updates the archive with a new nested JAR file on the WEB-INF\lib path, and
adds the resulting .class files and any Java resource files into this file. Any
.java files that were created in the process are discarded.

The name of the nested JAR file includes the base name of the resulting archive file
and has the .jar extension. For example, if ojspc is run on sample.war, the nested
JAR file name within the WAR would be __oracle_jsp_sample.jar.

File paths within the nested JAR file are according to Java package names and
according to specified file paths of JSP include and forward statements. The
.class and resource files in the nested JAR file are located in the same directory path
as would be the case if the original JSP files were translated after extraction.

Using ojspc
The ojspc utility can be invoked from any directory, provided the location of the
ojspc executable is added to the PATH on the host machine. The general ojspc
command-line syntax is as follows:

ojspc [option_settings] file_list

The source file list can include JSP files and other source files (.java), or archive files
(JAR, WAR, EAR, or ZIP files). To precompile all of the JSP files within a directory,
specify *.jsp as the value for file_list.

See the following sections for specific ojspc usage scenarios:

■ Precompiling One or More JSPs

■ Precompiling JSPs within a WAR File

Important:

■ The location of ojspc.bat must be added to the PATH to
enable ojspc to be invoked from any working directory. The
default path to ojspc.bat is:

ORACLE_HOME/j2ee/home/jsp/bin/ojspc

Precompiling One or More JSPs

Precompiling JSP Pages with ojspc 4-3

The following are the most commonly used ojspc options used to control file
generation and placement. See "Summary of ojspc Command Line Options" on
page 4-5 for the complete list of options.

■ -appRoot to specify an application root directory if the directory containing the
JSP source file(s) is different from the working directory in which ojspc is being
run

■ -srcdir to place source files in a specified location (not relevant for batch
pretranslation)

■ -dir to place binary files—.class files and Java resource files—in a specified
location (not relevant for batch pretranslation)

■ -noCompile to not compile the generated page implementation class source

As a result of this, no .class files are produced.

■ -extres to put static text into a Java resource (.res) file.

Precompiling One or More JSPs
This section provides usage scenarios for precompiling JSPs.

Precompiling a Single JSP
This example illustrates basic ojspc usage, which translates and compiles the
specified JSP.

cd /source
ojspc index.jsp

In this case, the following files will be generated within the /source working
directory:

_index.class
_index.java

Precompiling Multiple JSPs
In the next example, all of the JSPs within the myapp/mysrcdir/ are compiled:

cd /source
ojspc myapp/mysrcdir/*.jsp

By default, the resulting .java and .class files will be generated in a new
subdirectory named _myapp/_mysrcdir within the /source working directory.

Precompiling JSPs in a Different Source Directory
Now presume that you run ojspc from a directory outside of the directory structure
containing the source files. In this case, you must specify the application root using the
-appRoot option, in addition to the absolute path to the files.

cd /stuff
ojspc -appRoot /source D:/source/myapp/mysrcdir/*.jsp

The resulting files will be generated in /stuff/_source/_myapp/_mysrcdir.

Generating Different File Types in Different Directories
The next example will generate Java class and files in the directory specified with the
-dir option, and.java source files in the directory specified using -srcdir. The

Precompiling JSPs within a WAR File

4-4 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

-extres option will place the static text in the JSP into a Java resource file named _
MyPage.res, which is useful when a page contains a lot of static content.

ojspc -dir myapp/mybindir -extres -srcdir myapp/mysrcdir MyPage.jsp

Be aware of the following when using ojspc:

■ Use spaces between JSP file names in the file list to compile specific JSPs. Note that
the path must be specified for each JSP if the files are not in the working directory.

■ Specify *.jsp to compile all JSPs within the target directory.

■ Use spaces as delimiters between option names and option values in the option
list.

■ Option names are not case sensitive but option values usually are (such as package
names, directory paths, class names, and interface names).

■ Enable Boolean options (flags), which are disabled by default, by simply typing
the option name in the command line. For example, type -extres, not -extres
true.

Precompiling JSPs within a WAR File
You can run ojspc on a WAR file, or on an EAR containing one or more nested WAR
files, and precompile the JSPs within. The utility will create a JAR named __oracle_
jspwarFileName.jar containing the compiled Java classes on the WEB-INF\lib
path within the WAR. The resulting WAR can then be deployed as-is.

For example, assume that ojspc is run on sample.ear, which includes a
sample-web.war containing several JSPs. Note that because no output file is
specified, the existing WAR will be updated with the new JAR file.

ojspc sample.ear

The updated sample-web.war will now include the following file on the
WEB-INF\lib path:

__oracle_jsp_sample-web.jar

Additional usage notes:

■ By default, ojspc updates the original archive file with the new JAR. If you want
keep the original archive file unaltered, use the -output option to specify a new
archive file name.

■ Use the -batchMask option to specify file name extensions for pretranslation and
compilation. Whatever you specify is used instead of the defaults (*.jsp and
*.java).

■ Use the -deleteSource option if you do not want processed source files to
appear in the resulting archive file. Be sure to read the description of this option
under "Summary of ojspc Command Line Options" on page 4-5 before using it.

■ Any .java files created during translation are discarded from the updated WAR.

Using an Ant Task to Precompile a JSP
You can use an Ant task to precompile a JSP. If you use the OC4J implementation of
Ant, which is in ORACLE_HOME/ant/, you can set up the Ant task like this:

 <project name="test" default="t1" basedir="." xmlns:oracle="antlib:oracle" >

Summary of ojspc Command Line Options

Precompiling JSP Pages with ojspc 4-5

 <property name="oracle.home" value=ORACLE_HOME/>

 <target name="t1" >
 <oracle:compileJsp file="test/simplest.ear"
 verbose="true"
 output="test/out.ear" />
 </target>
 <target name="t2" >
 <oracle:compileJsp verbose="true"
 appRoot="/scratch/ojspcAntTask/build"
 dir="/scratch/ojspcAntTask/generatedClass"
 srcDir="/scratch/ojspcAntTask/generatedJavaSources"

addClasspath="lib/a.jar;lib/b.jar:${oracle.home}/lib/some.jar">
 <fileset dir="/scratch/ojspcAntTask/build">
 <include name="**/*.jsp"/>
 <exclude name="**/*negativeExample.jsp*"/>
 </fileset>
 </oracle:compileJsp>
 </target>
 </project>

Then you can run "ant t1 t2".

If you are not using the OC4J implementation of Ant, then you must follow the steps
in Oracle Containers for J2EE Deployment Guide

The attributes of this Ant task come from the command-line options of ojspc. Please
see the ojspc options for details. Each name-value option there becomes a string or file
or path attribute of the Ant task. Each Boolean option, an option that consists of name
alone, becomes a Boolean attribute of the Ant task.

There are two ways to specify which files you are going to operate on. One is by the
file attribute as you see in target "t1". The other is by the nested <fileset> element,
the standard Ant fileset element, as you see in target "t2", which gives you much
flexibility in specifying what to compile. In the latter case, it is strongly recommended
that the appRoot attribute is the same as the dir attribute of the nested <fileset>
element.

Summary of ojspc Command Line Options
Table 4–1 summarizes the command-line options that the ojspc pretranslation utility
supports.

Note: The OC4J Ant tasks discussed in this chapter are intended to
be used with Apache Ant version 1.6.5. Click the following link to
access the most recent Apache Ant product documentation:
http://ant.apache.org/manual/

Summary of ojspc Command Line Options

4-6 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Table 4–1 Options for ojspc Pretranslation Utility

Option Description

-addclasspath Use to specify additional classpath entries for javac to use when compiling
generated page implementation class source.

-approot Use to specify an application root directory. This option is used only when
ojspc is run from a different directory other that containing the files to be
translated. The default is the ojspc working directory.

The specified application root directory path is used as follows:

■ For static include directives in the page being translated

The specified directory path is prepended to any application-relative
(context-relative) paths in the include directives of the translated page.

■ In determining the package of the page implementation class

The package will be based on the location of the file being translated
relative to the application root directory. The package, in turn, determines
the placement of output files.

Consider the following example.

■ You want to translate the following file:

/abc/def/ghi/test.jsp

■ You run ojspc from the current directory, /abc, as follows:

cd /abc
ojspc def/ghi/test.jsp

■ The test.jsp page has the following include directive:

<%@ include file="/test2.jsp" %>

■ The test2.jsp page is in the /abc directory, as follows:

/abc/test2.jsp

This example requires no -appRoot setting because the default application
root setting is the current directory, which is the /abc directory. The include
directive uses the application-relative /test2.jsp syntax (note the beginning
"/"), so the included page will be found as /abc/test2.jsp.

The package in this case is _def._ghi, based on the location of test.jsp
relative to the current directory when you ran ojspc. (The current directory is
the default application root.) Output files are placed accordingly.

If, however, you run ojspc from some other directory, suppose
/home/mydir, then you would need an -appRoot setting as in the following
example:

cd /home/mydir
ojspc -appRoot /abc abc/def/ghi/test.jsp

The package is still _def._ghi, based on the location of test.jsp relative to
the specified application root directory.

Summary of ojspc Command Line Options

Precompiling JSP Pages with ojspc 4-7

-batchMask Use to specify source files to process in an archive file during batch
pretranslation. By default, all .jsp and .java files are processed. File masks
specified through the -batchMask option are used instead of (not in addition
to) these defaults.

Place quotes around the list of file masks and use commas or semicolons as
delimiters within the list. White space before or after a file mask is ignored.
You can include directories in the mask. Note that file masks specified in this
option are not case-sensitive.

The -batchMask implementation includes complete support for standard
wildcard pattern-matching.

Given the default setting, the following two examples are equivalent:

ojspc myapp.war

ojspc -batchMask "*.jsp,*.java" myapp.war

This next example drops processing for .java files while adding processing
for.jsph files:

ojspc -batchMask "*.jsph,*.jsp" myapp.war

The following example does not process.java files, and only processes .jsp
files whose names start with "abc" and who are in subdirectories under the top
level of the archive file:

ojspc -batchMask "*/abc*.jsp" myapp.zip

The following example is the same as the preceding example, but also
processes .jsp files whose names start with "abc" in the top level of the
archive file:

ojspc -batchMask "abc*.jsp, */abc*.jsp" myapp.jar

This final example specifically processes the file a.jspc, as well as any .jsp
files that start with "My" and are in a directory that is a subdirectory of
mydir/subdir and matches the pattern "t?st" (any character as the second
character, such as "test", "tast", or "tust"):

ojspc -batchMask "mydir/subdir/t?st/My*.jsp" myapp.ear

-debug Include to generate SMAP debugging data within the generated Java class file.

An optional setting, file, generates debug information in an SMAP file
within the working directory. The filename is the same as the generated Java
class, with the .smap extension. For example, the debug data for foo.jsp will
be output to _foo_jsp.smap.

Table 4–1 (Cont.) Options for ojspc Pretranslation Utility

Option Description

Summary of ojspc Command Line Options

4-8 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

-deleteSource Include if you do not want processed source files to appear in the resulting
archive file during batch pretranslation. This includes .jsp and .java files by
default, or else only the files that match the file mask in the -batchMask
option. Generated .java files are also discarded.

If you do not use the -output option, then the contents of the original archive
file are overwritten to remove any processed source files after processing. If
you do use the -output option, then processed source files will not be copied
to the specified output archive file. (The original archive file is unaltered.)

Usage notes:

■ Files whose names do not match the default file extensions (if you do not
use the -batchMask option), or whose names do not match the name
masks specified using the -batchMask option, will not be discarded
through the -deleteSource option. You must delete these files
manually from the resulting archive file if desired. In particular, this
applies to statically included source files, which are not translatable on
their own and so should not use the .jsp extension or any other
extension that might result in an attempt to translate the files on their
own.

■ As in any situation where JSP source files are not deployed, if you use
-deleteSource, then the target JSP runtime environment must be
configured to operate properly without having source files available.

-dir (or -d) Use to specify a base directory for ojspc placement of generated binary
files—.class files and Java resource files. (The .res files produced for static
content by the -extres option are Java resource files.) As a shortcut, -d is also
accepted.

The specified path is taken as a file system path (not an application-relative or
page-relative path), and the directory must already exist.

Subdirectories under the specified directory are created automatically, as
appropriate, depending on the package.

The default is to use the current directory (your current directory when you
executed ojspc).

It is recommended that you use this option to place generated binary files into
a clean directory so that you easily know what files have been produced.

Notes

■ This option is ignored during batch pretranslation of WAR or EAR files.

■ In environments such as Windows and Unix that allow spaces in directory
names, enclose the directory name in quotes.

-extend Specify the class for the generated page implementation class to extend. Do not
use this option for batch pretranslation.

-extraImports Use to add imports beyond the default JSP packages imported by OC4J.
Specify package names or fully qualified class names for any additional
imports. Be aware that the names must be in quotes, and either
comma-delimited or semicolon-delimited, as in the following example:

ojspc -extraImports "java.util.*,java.io.*" foo.jsp

The -extraImports option is deprecated in Oracle Containers for J2EE 10g
(10.1.3.1.0).

Table 4–1 (Cont.) Options for ojspc Pretranslation Utility

Option Description

Summary of ojspc Command Line Options

Precompiling JSP Pages with ojspc 4-9

-extres Include to place static content of the page into a Java resource file instead of
into the service method of the generated page implementation class. If there is
a lot of static content in a page, this technique will speed translation and might
speed execution of the page. For more information, see "Managing Heavy
Static Content or Tag Library Usage" on page 6-9.

The resource file is placed in the same directory as output .class files.

The file name is based on the JSP page name. In the current OC4J JSP
implementation, it will be the same core name as the JSP name (unless special
characters are included in the JSP name), but with an underscore ("_") prefix
and .res suffix. Translation of MyPage.jsp, for example, would create _
MyPage.res in addition to normal output.

The exact implementation for name generation might change in future releases,
however.

-forgiveDupDirAttr Include to avoid JSP translation errors if you have duplicate settings for the
same directive attribute within a single JSP translation unit.

The -forgiveDupDirAttr option is deprecated in Oracle Containers for
J2EE 10g (10.1.3.1.0).

-help (or -h) Displays ojspc usage information in the console.

-ignoreErrors Include to force ojspc to continue processing if an error is encountered, unless
the error is caused by an issue with one of the XML descriptors packaged with
the JSPs, such as web.xml or orion-web.xml.

-implement Specify an interface for the generated page implementation class to implement.
Do not use this option for batch pretranslation.

-noCompile Include to direct ojspc to not compile the generated page implementation
class. This is in case you want to compile it later for some reason, such as with
an alternative Java compiler.

-oldIncludeFromTop Include to specify that page locations in nested include directives are relative
to the top-level page. Otherwise, page locations are relative to the immediate
parent page, which complies with the JSP specification.

This option provides backward compatibility with OC4J versions prior to
Oracle9iAS Release 2.

The -oldIncludeFromTop option is deprecated in Oracle Containers for
J2EE 10g (10.1.3.1.0).

-output Use specify the name of the output archive file during batch pretranslation. All
contents of the original archive file are copied into the specified archive file.
The output .class files and any resource files from pretranslation are then
placed into a nested JAR file within the specified file (and source files are
deleted from the specified file if -deleteSource is enabled).

The original archive file is unaltered and you would use the new file instead of
the original file for deployment. (See "Overview of Batch Pretranslation of
WAR Files" on page 4-2 for information about the nested JAR file.)

Without the -output option, the original archive file is updated; no new
archive file is created.

The following is an example of -output usage:

ojspc -output myappout.war myapp.war

Table 4–1 (Cont.) Options for ojspc Pretranslation Utility

Option Description

Summary of ojspc Command Line Options

4-10 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

-packageName Specify the package name for the generated page implementation class. If not
specified, the package name is determined according to the location of the
.jsp file relative to your current directory when you ran ojspc.

Consider an example where you run ojspc from the /myapproot directory,
while the .jsp file is in the /myapproot/src/jspsrc directory (where % is
a UNIX prompt):

% cd /myapproot
% ojspc -packageName myroot.mypackage src/jspsrc/Foo.jsp

This results in myroot.mypackage being used as the package name.

If this example did not use the -packageName option, the JSP translator (in its
current implementation) would use _src._jspsrc as the package name by
default. (Be aware that such implementation details are subject to change in
future releases.)

-reduceTagCode Include to direct further reduction in the size of generated code for custom tag
usage. The default is false.

-reqTimeIntrospection Include to allow request-time JavaBean introspection whenever compile-time
introspection is not possible. When compile-time introspection is possible and
succeeds, however, there is no request-time introspection regardless of the
setting of this flag. The default is false.

As a sample scenario for request-time introspection, assume a tag handler
returns a generic java.lang.Object instance in the VariableInfo
instance of the tag-extra-info class during translation and compilation, but
actually generates more specific objects during request time (runtime). In this
case, if -reqTimeIntrospection is enabled, the Web container will delay
introspection until request time.

An additional effect of this flag is to allow a bean to be declared twice, such as
in different branches of an if..then..else loop. Consider the example that
follows. Without -reqTimeIntrospection being enabled, this code would
cause a parse exception. With it enabled, the code will work without error:

<% if (cond) { %>
 <jsp:useBean id="foo" class="pkgA.Foo" />
<% } else { %>
 <jsp:useBean id="foo" class="pkgA.Foo2" />
<% } %>

-setpropertyOnErrContinue Include to continue iterating over request parameters and setting
corresponding bean properties when an error is encountered during
jsp:setProperty when property="*".

The -setpropertyOnErrContinue option is deprecated in Oracle
Containers for J2EE 10g (10.1.3.1.0).

-srcdir Use this option to place generated source files into a clean directory so that you
conveniently know what files have been produced. Do not use this option for
batch pretranslation.

Specify the location where ojspc will place the generated (.java) source
files. The specified directory must already exist. The specified path is taken
simply as a file system path, not an application-relative or page-relative path.

Subdirectories under the specified directory are created automatically, as
appropriate, depending on the package.

The default is to use the current directory (your current directory when you
executed ojspc).

Table 4–1 (Cont.) Options for ojspc Pretranslation Utility

Option Description

Summary of ojspc Command Line Options

Precompiling JSP Pages with ojspc 4-11

-staticTextInChars Include to instruct the JSP translator to generate static text in JSP pages as
characters instead of bytes. The default is false, which improves performance
in outputting static text blocks.

Enable this flag if your application requires the ability to change the character
encoding dynamically during runtime, such as in the following example:

<% response.setContentType("text/html; charset=UTF-8"); %>

-tagReuse Use this option to specify the mode of tag handler reuse (tag handler instance
pooling). Values are as follows:

■ runtime: Enables the runtime model of tag handler reuse. You can
override this in any particular JSP page by setting the JSP page context
attribute oracle.jsp.tags.reuse to a value of false. Note that this
option is deprecated in the current release.

■ none: Disables tag handler reuse. You can override this in any particular
JSP page by setting the JSP page context attribute
oracle.jsp.tags.reuse to a value of true.

■ compiletime (default): Enables the compile-time model of tag handler
reuse in its basic mode.

■ compiletime_with_release: Enables the compile-time model of tag
handler reuse in its "with release" mode, where the tag handler
release() method is called between usages of a given tag handler
within a given page.

-validateXML Include to request XML validation of the web.xml file. By default, validation
of web.xml is not performed.

This option disables XML validation of TLD files. By default, validation of TLD
files is performed.

-verbose Include to direct ojspc to print status information as it executes.

The following example shows -verbose output for the translation of
myerror.jsp. (In this example, ojspc is run from the directory where
myerror.jsp is located.)

> ojspc -verbose myerror.jsp
Translating file: myerror.jsp
 JSP files translated successfully.
Compiling Java file: ./_myerror.java

-version Include to display the JSP version number.

Table 4–1 (Cont.) Options for ojspc Pretranslation Utility

Option Description

Summary of ojspc Command Line Options

4-12 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Understanding JSP Translation in OC4J 5-1

5
Understanding JSP Translation in OC4J

This chapter describes the operation of the internal OC4J JSP translator, which
translates JSP pages into Java servlet code. The following sections discuss general
functionality of the JSP translator, focusing on its behavior in on-demand translation
scenarios within the Oracle Application Server:

■ Features of Generated Code

■ General Conventions for Output Names

■ Generated Package and Class Names

■ Generated Files and Locations

■ Oracle JSP Global Includes

Features of Generated Code
The OC4J JSP translator generates standard Java code for a JSP page implementation
class. This class is essentially a servlet class wrapped with features for JSP
functionality.

This section discusses general features of the page implementation class code that is
produced by the JSP translator from JSP source (typically .jsp or .jspx files).

Features of Page Implementation Class Code
When the JSP translator generates servlet code in the page implementation class, it
automatically handles some of the standard programming overhead. For both the
on-demand translation model and the pretranslation model, generated code
automatically includes the following features:

■ It extends a wrapper class provided by the Web container that implements the
javax.servlet.jsp.HttpJspPage interface, which extends the more generic
javax.servlet.jsp.JspPage interface, which in turn extends the
javax.servlet.Servlet interface.

■ It implements the _jspService() method specified by the HttpJspPage
interface. This method, often referred to as the "service" method, is the central
method of the page implementation class. Code from any Java scriptlets,

Important: Implementation details in this section regarding
package and class naming, file and directory naming, output file
locations, and generated code are for illustrative purposes. The
exact details are subject to change from release to release.

General Conventions for Output Names

5-2 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

expressions, and JSP tags in the JSP page is incorporated into this method
implementation.

■ It includes code to request an HTTP session unless your JSP source code
specifically sets session="false" in a page directive.

Member Variables for Static Text
The service method, _jspService(), of the page implementation class includes
print statements—out.print() or equivalent calls on the implicit out object—to
print any static text in the JSP page. The JSP translator places the static text itself in a
series of member variables in the page implementation class. The service method
out.print() statements reference these member variables to print the text.

General Conventions for Output Names
The JSP translator follows a consistent set of conventions in naming output classes,
packages, files, and directories. However, this set of conventions and other implementation
details may change from release to release.

One fact that is not subject to change, however, is that the base name of a JSP page will
be included intact in output class and file names as long as it does not include special
characters. For example, translating MyPage23.jsp will always result in the string
"MyPage23" being part of the page implementation class name, Java source file name,
and class file name.

The base name is preceded by an underscore ("_"). Translating MyPage23.jsp results
in the page implementation class _MyPage23 in the source file _MyPage23.java,
which is compiled into _MyPage23.class.

Similarly, where path names are used in creating Java package names, each component
of the path is preceded by an underscore. Translating
/jspdir/myapp/MyPage23.jsp, for example, results in class _MyPage23 being in
the following package:

_jspdir._myapp

The package name is used in creating directories for output .java and .class files,
so the underscores are also evident in output directory names. For example, in
translating a JSP page in a directory such as webapp/test, the JSP translator by
default will create a directory such as webappdeployment/_pages/_test for the
page implementation class source. All output directories are created under the
standard _pages directory, as described in "Generated Files and Locations" on
page 5-4.

Notes:

■ The OC4J JSP translator can optionally place the static text in a
Java resource file, which is advantageous for pages with large
amounts of static text. See "Managing Heavy Static Content or
Tag Library Usage" on page 6-9. You can request this feature
through the JSP external_resource configuration
parameter for on-demand translation, or the ojspc -extres
flag for pretranslation.

■ The external_resource parameter is deprecated in Oracle
Containers for J2EE 10g (10.1.3.1.0).

Generated Package and Class Names

Understanding JSP Translation in OC4J 5-3

If you include special characters in a JSP page name or path name, the JSP translator
takes steps to ensure that no illegal Java characters appear in the output class, package,
and file names.

For example, translating My-name_foo2.jsp results in _My_2d_name__foo2 being
the class name, in source file _My_2d_name__foo2.java. The hyphen is converted
to a string of alpha-numeric characters. (An extra underscore is also inserted before
"foo2".)

In this case, you can only be assured that alphanumeric components of the JSP page
name will be included intact in the output class and file names. For example, you
could search for "My", "name", or "foo2".

The generated source and class file names for a .jspx file are similar, except that _jspx
is added to the name. For example, translating MyPage.jspx results in the source file
_MyPage_jspx.java, which is compiled into _MyPage_jspx.class.

These conventions are demonstrated in examples provided later in this chapter.

Generated Package and Class Names
Although the JSP specification defines a uniform process for parsing and translating
JSP text, it does not describe how the generated classes should be named. That is up to
each JSP implementation.

This section describes how the OC4J JSP translator creates package and class names
when it generates code during translation.

Package Naming
In an on-demand translation scenario, the URL path that is specified when the user
requests a JSP page—specifically, the path relative to the document root or application
root—determines the package name for the generated page implementation class.
Each directory in the URL path represents a level of the package hierarchy.

It is important to note, however, that generated package names are always lowercase,
regardless of the case in the URL.

Consider the following URL as an example:

http://host:port/HR/expenses/login.jsp

In the current OC4J JSP implementation, this results in the following package
specification in the generated code:

package _hr._expenses;

(Implementation details are subject to change in future releases.)

No package name is generated if the JSP page is at the application root directory,
where the URL is as follows:

http://host:port/login.jsp

Class Naming
The base name of the .jsp file determines the class name in the generated code.

Note: For information about general conventions that the OC4J
JSP translator uses in naming output classes, packages, and files,
see "General Conventions for Output Names" on page 5-2.

Generated Files and Locations

5-4 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Consider the following URL example:

http://host:port/HR/expenses/UserLogin.jsp

In the current OC4J JSP implementation, this yields the following class name in the
generated code:

public class _UserLogin extends ...

(Implementation details are subject to change in future releases.)

Be aware that the case (lowercase/uppercase) that users specify in the URL must
match the case of the actual .jsp file name. For example, they can specify
UserLogin.jsp if that is the actual file name, or userlogin.jsp if that is the actual
file name, but not userlogin.jsp if UserLogin.jsp is the actual file name.

Currently, the translator determines the case of the class name according to the case of
the file name. For example:

■ The file name UserLogin.jsp results in the class _UserLogin.

■ The file name Userlogin.jsp results in the class _Userlogin.

■ The file name userlogin.jsp results in the class _userlogin.

If you care about the case of the class name, then you must name the .jsp file
accordingly. However, because the page implementation class is invisible to the end
user, this is usually not a concern.

Generated Files and Locations
This section describes files that are generated by the JSP translator and where they are
placed in on-demand translation scenarios. (For precompilation scenarios, ojspc
places files differently and has its own set of relevant options. See Chapter 4,
"Precompiling JSP Pages with ojspc".)

Files Generated by the JSP Translator
For the file name examples, presume a file Foo.jsp is being translated.

Source files:

■ A .java file (for example, _Foo.java) is produced for the page implementation
class by the JSP translator.

Binary files:

■ A .class file is produced by the Java compiler for the page implementation class.
The Java compiler is the JDK javac by default, but you can specify an alternative
compiler using the JSP javaccmd configuration parameter.

The javaccmd parameter is deprecated in Oracle Containers for J2EE 10g
(10.1.3.1.0).

■ A .res Java resource file (for example, _Foo.res) is optionally produced for the
static page content if the external_resource JSP configuration parameter is
enabled.

Note: For information about general conventions used in naming
output classes, packages, and files, see "General Conventions for
Output Names" on page 5-2.

Generated Files and Locations

Understanding JSP Translation in OC4J 5-5

JSP Translator Output File Locations
The JSP translator places generated output files under a _pages directory that is
created under the JSP cache directory, which is specified in the
jsp-cache-directory attribute of the <orion-web-app> element in either the
global-web-application.xml file or the application orion-web.xml file. Here
is the general base location if you assume the default "./persistence" value of
jsp-cache-directory:

ORACLE_HOME/j2ee/home/app-deployment/app-name/web-app-name/persistence/_pages/...

In OC4J standalone, here is the location relative to where OC4J is installed:

j2ee/home/app-deployment/app-name/web-app-name/persistence/pages/...

Note the following:

■ The app-deployment directory is the OC4J deployment directory specified in
the OC4J server.xml file. (In OC4J standalone, this is typically the
application-deployments directory.)

■ Also, app-name is the application name, according to an <application>
element in server.xml.

■ And web-app-name is the corresponding "Web application name", mapped to the
application name in a <web-app> element in the OC4J Web site XML file
(typically default-web-site.xml file in Oracle Application Server or
http-web-site.xml in OC4J standalone).

The path under the _pages directory depends on the path of the .jsp file under the
application root directory.

As an example, in OC4J standalone, consider the page welcome.jsp in the
examples/jsp subdirectory under the OC4J standalone default Web application
directory. The path to this page would be as follows, relative to where OC4J is
installed:

j2ee/home/default-web-app/examples/jsp/welcome.jsp

Assuming the default application deployment directory, the JSP translator would place
the output files (_welcome.java and _welcome.class) in the following directory:

j2ee/home/application-deployments/default/defaultWebApp/persistence/_pages/_
examples/_jsp

Because the .jsp source file is in the examples/jsp subdirectory under the
application root directory, the JSP translator generates _examples._jsp as the
package name and places the output files into an _examples/_jsp subdirectory
under the _pages directory.

Notes: ■The exact names of generated files for the page
implementation class might change in future releases, but will
still have the same general form. The names would always
include the base name, such as "Foo" in these examples, but
might include variations beyond that.

■ The external_resource parameter is deprecated in
Oracle Containers for J2EE 10g (10.1.3.1.0).

Oracle JSP Global Includes

5-6 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Oracle JSP Global Includes
The OC4J Web container provides a feature called global includes. You can use this
feature to specify one or more files to statically include into JSP pages in or under a
specified directory, through virtual JSP include directives. During translation, the
Web container looks for a configuration file,
/WEB-INF/ojsp-global-include.xml, that specifies the included files and the
directories for the pages.

This feature is particularly convenient for migrating applications that used
globals.jsa or translate_params functionality in previous Oracle JSP releases.

Oracle global includes functionality pre-dates the JSP 2.0 specification. Now that this
functionality has been included into the specification, for portability it is strongly
recommended that you use the JSP specification mechanism in all new development.

The Oracle global includes functionality may be deprecated in a future release.

Globally included files can be used for the following, for example:

■ Global bean declarations (formerly supported through globals.jsa)

■ Common page headers or footers

■ Code with functionality that is equivalent to that of translate_params

Global Includes File and Examples
This section provides an overview of the ojsp-global-include.xml file as well as
some examples.

The ojsp-global-include.xml File
The ojsp-global-include.xml file specifies the names of files to include, whether
they should be included at the tops or bottoms of JSP pages, and the locations of JSP
pages to which the global includes should apply. This section describes the elements of
ojsp-global-include.xml.

<ojsp-global-include>

This is the root element of the ojsp-global-include.xml file. It has no attributes.

Subelement of <ojsp-global-include>:

<include>

<include ... >

Use the <include> subelement of <ojsp-global-include> to specify a file to be
included and whether it should be included at the top or bottom of JSP pages.

Subelement of <include>:

<into>

Attributes of <include>:

Important: Implementation details, such as the location of
generated output files and use of "_" in output file names, are
subject to change in future releases.

Oracle JSP Global Includes

Understanding JSP Translation in OC4J 5-7

■ file: Specify the file to be included, such as "/header.html" or
"/WEB-INF/globalbeandeclarations.jsph". The file name setting must
start with a slash ("/"). In other words, it must be application-relative, not
page-relative.

■ position: Specify whether the file is to be included at the top or bottom of JSP
pages. Supported values are "top" (default) and "bottom".

<into ... >

Use this subelement of <include> to specify a location (a directory, and possibly
subdirectories) of JSP pages into which the specified file is to be included. This element
has no subelements.

Attributes of <into>:

■ directory: Specify a directory. Any JSP pages in this directory, and optionally its
subdirectories, will statically include the file specified in the file attribute of the
<include> element. The directory setting must start with a slash ("/"), such as
"/dir". The setting can also include a slash after the directory name, such as
"/dir/", or a slash will be appended internally during translation.

■ subdir: Use this to specify whether JSP pages in all subdirectories of the
directory should also have the file statically include. Supported values are
"true" (default) and "false".

Global Include Examples
This section provides examples of global includes.

Example: Header/Footer Assume the following ojsp-global-include.xml file:

<?xml version="1.0" standalone='no'?>
<!DOCTYPE ojsp-global-include SYSTEM 'ojsp-global-include.dtd'>

<ojsp-global-include>
 <include file="/header.html">
 <into directory="/dir" />
 </include>
 <include file="/footer.html" position="bottom">
 <into directory="/dir" subdir="false" />
 <into directory="/dir/part/" subdir="false" />
 </include>
 <include file="/footer2.html" position="bottom">
 <into directory="/dir/part2/" subdir="false" />
 </include>
</ojsp-global-include>

This example accomplishes three objectives:

■ The header.html file is included at the top of any JSP page in or under the dir
directory. The result would be the same as if each .jsp file in or under this
directory had the following include directive at the top of the page:

<%@ include file="/header.html" %>

■ The footer.html file is included at the bottom of any JSP page in the dir
directory or its part subdirectory. The result would be the same as if each .jsp
file in those directories had the following include directive at the bottom of the
page:

<%@ include file="/footer.html" %>

Oracle JSP Global Includes

5-8 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

■ The footer2.html file is included at the bottom of any JSP page in the part2
subdirectory of dir. The result would be the same as if each .jsp file in that
directory had the following include directive at the bottom of the page:

<%@ include file="/footer2.html" %>

Example: translate_params Equivalent Code Assume the following
ojsp-global-include.xml file:

<?xml version=".0" standalone='yes'?>
<!DOCTYPE ojsp-global-include SYSTEM 'ojsp-global-include.dtd'>

<ojsp-global-include>
 <include file="/WEB-INF/nls/params.jsf">
 <into directory="/" />
 </include>
</ojsp-global-include>

And assume params.jsf contains the following:

<% request.setCharacterEncoding(response.getCharacterEncoding()); %>

The params.jsf file (essentially, the setCharacterEncoding() method call) is
included at the top of any JSP page in or under the application root directory. In other
words, it is included in any JSP page in the application. The result would be the same
as if each .jsp file in or under this directory had the following include directive at
the top of the page:

<%@ include file="/WEB-INF/nls/parms.jsf" %>

Note: If multiple header or multiple footer files are included into
a single JSP page, the order of inclusion is according to the order of
<include> elements in the ojsp-global-include.xml file.

Working with JSP 6-1

6
Working with JSP

This chapter discusses basic programming considerations for JSP pages, including
JSP-servlet interaction and database access, with examples provided.

The following sections are included:

■ Before You Start

■ General JSP Programming Strategies

■ JSP Best Practices

■ Working with Servlets

■ Migrating JSP Pages from Apache Tomcat to OC4J

■ Processing Runtime Errors

Before You Start
The following sections discuss some considerations you should be aware of before you
begin coding or using JSP pages in the OC4J environment:

■ Understanding Application Root Functionality

■ Understanding OC4J Classpath Functionality

■ Packages Imported By Default in OC4J

■ Following JSP File Naming Conventions

■ JDK1.4 Issue: Classes Not in Packages Cannot Be Invoked

Understanding Application Root Functionality
The servlet specification (since Servlet 2.2) provides for each Web application to have
its own servlet context. Each servlet context is associated with a directory path in the
server file system, which is the base path for modules of the Web application. This is
the application root.

Each Web application has its own application root. For a Web application in a standard
servlet environment, servlets, JSP pages, and static files such as HTML files are all
based out of this application root. (By contrast, in servlet 2.0 environments the
application root for servlets and JSP pages is distinct from the document root for static
files.)

Note that a servlet URL has the following general form:

http://host:port/contextpath/servletpath

Before You Start

6-2 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

When a servlet context is created, a mapping is specified between the application root
and the context path portion of a URL. The servlet path is defined in the application
web.xml file. The <servlet> element within web.xml associates a servlet class with
a servlet name. The <servlet-mapping> element within web.xml associates a URL
pattern with a named servlet. When a servlet is executed, the servlet container will
compare a specified URL pattern with known servlet paths, and pick the servlet path
that matches. See the Oracle Containers for J2EE Servlet Developer’s Guide for more
information.

For example, consider an application with the application root
/home/dir/mybankapp/mybankwebapp, which is mapped to the context path
/mybank. Further assume the application includes a servlet whose servlet path is
loginservlet. You can invoke this servlet as follows:

http://host:port/mybank/loginservlet

The application root directory name itself is not visible to the user.

To continue this example for an HTML page in this application, the following URL
points to the file /home/dir/mybankapp/mybankwebapp/dir/abc.html:

http://host:port/mybank/dir/abc.html

For each servlet environment there is also a default servlet context. For this context, the
context path is simply "/", which is mapped to the default servlet context application
root. For example, assume the application root for the default context is
/home/dir/defaultapp/defaultwebapp, and a servlet with the servlet path
myservlet uses the default context. Its URL would be as follows:

http://host:port/myservlet

The default context is also used if there is no match for the context path specified in a
URL.

Continuing this example for an HTML file, the following URL points to the file
/home/dir/defaultapp/defaultwebapp/dir2/def.html:

http://host:port/dir2/def.html

Understanding OC4J Classpath Functionality
The OC4J Web container uses standard locations on the Web server to look for
translated JSP pages, as well as.class files and .jar files for any required classes
such as JavaBeans. The container will find files in these locations without any Web
server classpath configuration.

The locations for dependency classes are as follows and are relative to the application
root:

/WEB-INF/classes/...
/WEB-INF/lib

The location for JSP page implementation classes (translated pages) is as follows:

.../_pages/...

The /WEB-INF/classes directory is for individual Java .class files. You should
store these classes in subdirectories under the classes directory, according to Java
package naming conventions. For example, consider a JavaBean called LottoBean
whose code defines it to be in the oracle.jsp.sample.lottery package. The Web

Before You Start

Working with JSP 6-3

container will look for LottoBean.class in the following location relative to the
application root:

/WEB-INF/classes/oracle/jsp/sample/lottery/LottoBean.class

The lib directory is for JAR (.jar) files. Because Java package structure is specified
in the JAR file structure, the JAR files are all directly in the lib directory, not in
subdirectories. As an example, LottoBean.class might be stored in lottery.jar,
located as follows relative to the application root:

/WEB-INF/lib/lottery.jar

The _pages directory is under the J2EE home directory in OC4J and depends on the
value of the jsp-cache-directory configuration parameter. See "Generated Files
and Locations" on page 5-4 for information.

Packages Imported By Default in OC4J
The OC4J Web container by default imports the following packages into any JSP page,
in accordance with the JSP specification. No page directive import settings are
required to use these packages in a JSP:

javax.servlet.*
javax.servlet.http.*
javax.servlet.jsp.*

In previous releases, the following packages were also imported by default:

java.io.*
java.util.*
java.lang.reflect.*
java.beans.*

The default list of packages to import was reduced to minimize the chance of a conflict
between any unqualified class name you might use and a class by the same name in
any of the imported packages.

However, this might result in migration problems for applications you have used with
previous versions of OC4J. Such applications might no longer compile successfully. If
you need imports beyond the default list, you have two choices:

■ Specify additional package names or fully qualified class names in one or more
page directive import settings. For more information, see the page directive
under "Directives" on page 1-5.

For multiple pages, you can accomplish this through global includes functionality.
See "Oracle JSP Global Includes" on page 5-6.

■ Specify additional package names or fully qualified class names through the JSP
extra_imports configuration parameter, or by using the ojspc
-extraImports option for pretranslation. Syntax varies between OC4J
configuration parameter settings and ojspc option settings, so refer to the
following sections as appropriate:

– "Summary of JSP Configuration Parameters" on page 3-1

– "Summary of ojspc Command Line Options" on page 4-5

Important: Implementation details, such as the default location of
the _pages directory, are subject to change in future releases.

General JSP Programming Strategies

6-4 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

JDK1.4 Issue: Classes Not in Packages Cannot Be Invoked
The Sun Microsystems JDK1.4 and JDK 1.5 ship with OC4J. As such, the following is
something to consider if migrating from an earlier JDK.

As stated by Sun Microsystems, "The compiler now rejects import statements that
import a type from the unnamed namespace." This was to address security concerns
and ambiguities with previous JDK versions. Essentially, this means that you cannot
invoke a class (a method of a class) that is not within a package. Any attempt to do so
will result in a fatal error at compilation time.

This especially affects JSP developers who invoke JavaBeans from their JSP pages, as
such beans are often outside of any package (although the JSP 2.0 specification now
requires beans to be within packages, in order to satisfy the new compiler
requirements).

For more information about JDK1.4 compatibility issues, refer to the following Web
site:

http://java.sun.com/j2se/1.4/compatibility.html

In particular, click the link "Incompatibilities Between Java 2 Platform, Standard
Edition, v.4.0 and v.3".

General JSP Programming Strategies
This portion discusses issues you should consider when programming JSP pages,
regardless of the particular target environment. The following sections are included:

■ Using JavaBeans Versus Scriptlets

■ Using Static Includes Versus Dynamic Includes

Note: The extra_imports parameter and -extraImports option
are deprecated in Oracle Containers for J2EE 10g (10.1.3.1.0).

Notes:

■ The javac -source compiler option is intended to allow
JDK1.3. code to be processed seamlessly by the JDK1.4
compiler, but this option does not account for the "classes not in
packages" issue.

■ Only the JDK1.4 and JDK1.5 compilers are supported and
certified by OC4J. It is possible to specify an alternative
compiler by adding a <java-compiler> element to the
server.xml file, and this might provide a workaround for the
"classes not in packages" issue, but no other compilers are
certified or supported by Oracle for use with OC4J.
(Furthermore, do not update the server.xml file directly in an
Oracle Application Server environment. Use the Oracle
Enterprise Manager 10g.)

General JSP Programming Strategies

Working with JSP 6-5

Creating Traditional Versus Scriptless JSP
A major focus in JSP development has been on the creation of "scriptless" JSPs - pages
that do not include embedded Java scripting elements such as scriptlets or runtime
expressions. Scriptless JSPs offer a number of advantages over traditional script-based
JSP development:

■ Removal of JSP scriptlets and expressions from JSP pages

■ Division of labor between JSP authors and Java developers. core philosophy of JSP
has always been the division of labor and skills between JSP page authors, who are
responsible for creating the HTML and JSP markup that comprises a JSP page, and
Java developers, who are responsible for implementing the Java components that
provide the processing logic.

■ Cleaner, more readable JSP

■ Ease of maintenance

The sample JSP code on page 1-4 is an example of a scriptless JSP.

Since JSP 1.1, page authors have been able to create largely Java-free pages that utilize
standard action tags and custom tags to access the Java functionality provided through
JavaBeans and tag handler instances. However, creating truly scriptless pages
presented a number of challenges, including limits on data access and the complexity
of creating custom tag handler classes.

The JSP 2.0 release dramatically simplifies scriptless page authoring with a number of
major enhancements. Among these is the full integration of the expression language
(EL) functionality into the JSP specification, giving the EL access to all JSP page context
objects, variables and request parameters, as well as JavaBean properties and
collection elements. With the EL, you can access and manipulate application data
without having to use Java scriptlets or expressions. See "Simplified JSP Authoring
with the Expression Language" on page 1-18 for more on the expression language.

It is also now much easier to create and use custom tags in your JSP pages. The
JavaServer Pages Standard Tag Library (JSTL) provides a number of tag libraries that
encapsulate much of the functionality most often needed by JSP authors. Creating
custom tag handlers has been greatly simplified with the new SimpleTag interface. In
fact, JSP authors can now create completely Java-free tag libraries using tag files,
which are written completely in JSP syntax.

Note that JSP 2.0 provides backward compatibility with JSP 1.x, meaning that Java
scripting elements can be used in pages written in JSP 2.0 syntax.

Using JavaBeans Versus Scriptlets
A key advantage of JavaServer Pages technology is the ability to separate the Java
code containing the business logic and determining the dynamic content from the
HTML code containing the request processing, presentation logic, and static content.
This separation allows HTML experts to focus on presentation, while Java experts
focus on business logic in JavaBeans that are called from the JSP page.

A typical JSP page will have only brief snippets of Java code, usually for Java
functionality for request processing or presentation. Data access, such as in the

Note: In addition to being aware of what is discussed in this
section, you should be aware of JSP translation issues and behavior.
See Chapter 5, "Understanding JSP Translation in OC4J".

General JSP Programming Strategies

6-6 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

runQuery() method in the sample, is usually more appropriate in a JavaBean.
However, the formatResult() method in the sample, which formats the output, is
more appropriate for the JSP page itself.

Using Static Includes Versus Dynamic Includes
You have two options for including JSP pages in a JSP page.

The include directive, described in "Directives" on page 1-5, makes a copy of the
included page and copies it into a JSP page (the "including page") during translation.
This is known as a static include (or translate-time include) and uses the following
syntax:

<%@ include file="/jsp/userinfopage.jsp" %>

The <jsp:include> tag, described in "Standard JSP Action Tags" on page 1-11,
dynamically includes output from the included page within the output of the
including page during execution. This is known as a dynamic include (or runtime
include) and uses the following syntax:

<jsp:include page="/jsp/userinfopage.jsp" flush="true" />

For those familiar with C syntax, a static include is comparable to a #include
statement. A dynamic include is similar to a function call. They are both useful, but
serve different purposes.

Logistics of Static Includes
A static include increases the size of the generated code for the including JSP page. It is
as though the text of the included page is physically copied into the including page, at
the point of the include directive, during translation. If a page is included multiple
times within an including page, multiple copies are made.

A JSP page that is statically included is not required to be an independent, translatable
entity. It simply consists of text that will be copied into the including page. The
including page, with the included text copied in, must then be translatable. And, in
fact, the including page does not have to be translatable prior to having the included
page copied into it. A sequence of statically included pages can be fragments unable to
stand on their own.

Logistics of Dynamic Includes
A dynamic include does not significantly increase the size of the generated code for
the including page, although method calls, such as to the request dispatcher, will be
added. The dynamic include results in runtime processing being switched from the
including page to the included page, as opposed to the text of the included page being
physically copied into the including page.

A dynamic include does increase processing overhead, with t of the additional call to
the request dispatcher.

A page that is dynamically included must be an independent entity, able to be
translated and executed on its own. Likewise, the including page must be independent
as well, able to be translated and executed without the dynamic include.

Note: You can use static includes and dynamic includes only
between pages in the same servlet context.

General JSP Programming Strategies

Working with JSP 6-7

Advantages, Disadvantages, and Typical Uses of Dynamic and Static Includes
Static includes affect page size; dynamic includes affect processing overhead. Static
includes avoid the overhead of the request dispatcher that a dynamic include
necessitates, but may be problematic where large files are involved. (The service
method of the generated page implementation class has a 64 KB size limit.)

Overuse of static includes can also make debugging your JSP pages difficult, making it
harder to trace program execution. Avoid subtle interdependencies between your
statically included pages.

Static includes are typically used to include small files whose content is used
repeatedly in multiple JSP pages. For example:

■ Statically include a logo or copyright message at the top or bottom of each page in
your application.

■ Statically include a page with declarations or directives, such as imports of Java
classes, that are required in multiple pages.

■ Statically include a central "status checker" page from each page of your
application. (See "Monitoring Your JSP Application" on page 6-8.)

Dynamic includes are useful for modular programming. You may have a page that
sometimes executes on its own but sometimes is used to generate some of the output
of other pages. Dynamically included pages can be reused in multiple including pages
without increasing the size of the including pages

Using Annotations in JSP Tag Libraries for Services and Resource References
Starting with release 10.1.3.1, OC4J supports annotations in JSP tag libraries, as defined
in the J2EE 5.0 specification and the JSP 2.1 specification.

In J2SE 5.0 or greater, you can specify configuration data and dependency on external
resources in Java code as metadata, also referred to as annotations. You can define
such data in configuration files or in annotations for services, such as EJBs or Web
services, and for resource references, such as data sources and JMS destinations.

Note the following constraints:

■ Annotations can be used and resources injected only when the J2EE container is
running in JVM 1.5 or later. Previous JVM versions do not support resource
injection.

■ The runtime value of the tags_reuse_default parameter is deprecated.
Therefore, if the deprecated value of runtime is used for the tags_reuse_
default parameter, annotations is not supported.

■ Injection is not supported on JSP pages or tag files.

■ Annotation is not supported in global tag libraries (that is, tag libraries placed in
the well-known location or defined in jsp-taglib-locates with TLD cache
enabled). Only tag libraries used within the application support annotation.

■ The set of annotations supported in JavaServer Pages is a subset of those
supported in servlets.

The following annotations ARE supported in JavaServer Pages:

– EJB Annotation

– EJBs Annotation

– PersistenceContext Annotation

General JSP Programming Strategies

6-8 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

– PersistenceContexts Annotation

– PersistenceUnit Annotation

– PersistenceUnits Annotation

– PostConstruct Annotation

– PreDestroy Annotation

– Resource Annotation

– Resources Annotation

– WebServiceRef Annotation

– WebServiceRefs Annotation

The following annotations, which are supported in servlets, are NOT supported in
JavaServer Pages,:

– DeclaresRoles Annotation

– RunAs Annotation

With the exceptions noted above, annotation support in JavaServer Pages is the same
as that for servlets, as described in Chapter 7, "Using Annotations for Services and
Resource References", in the Oracle Containers for J2EE Servlet Developer’s Guide.

Monitoring Your JSP Application
For general management or monitoring of your JSP application, it might be useful to
use a central "checker" page that you include from each page in your application. A
central checker page could accomplish tasks such as the following during execution of
each page:

■ Check session status.

■ Check login status, such as checking the cookie to see if a valid login has been
accomplished.

■ Check usage profile if a logging mechanism has been implemented to tally events
of interest, such as mouse clicks or page visits.

There are many more possible uses as well.

As an example, consider a session checker class, MySessionChecker, that
implements the HttpSessionBindingListener interface.

public class MySessionChecker implements HttpSessionBindingListener
{
 ...

 valueBound(HttpSessionBindingEvent event)
 {...}

 valueUnbound(HttpSessionBindingEvent event)
 {...}

 ...
}

General JSP Programming Strategies

Working with JSP 6-9

You can create a checker page, suppose centralcheck.jsp, that contains something
like the following:

<jsp:useBean id="sessioncheck" class="MySessionChecker" scope="session" />

In any page that includes centralcheck.jsp, the servlet container will call the
valueUnbound() method implemented in the MySessionChecker class as soon as
sessioncheck goes out of scope at the end of the session. Presumably this is to
manage session resources. You could include centralcheck.jsp at the end of each
JSP page in your application.

Managing Heavy Static Content or Tag Library Usage
JSP pages with large amounts of static content (essentially, large amounts of HTML
code without content that changes at runtime) might result in slow translation and
execution.

There are two primary workarounds for this, either of which will speed translation:

■ Put the static HTML into a separate file and use a jsp:include tag to include its
output in the JSP page output at runtime. See "Standard JSP Action Tags" on
page 1-11 for information about the jsp:include tag.

■ Put the static HTML into a Java resource file.

The JSP translator will do this for you if you enable the external_resource
configuration parameter. This parameter is documented in "Summary of JSP
Configuration Parameters" on page 3-1.

For pretranslation, the -extres option of the ojspc tool offers equivalent
functionality.

Another possible problem with JSP pages that have large static content, or more
commonly with JSP pages that have a great deal of tag library usage, is that most (if
not all) JVMs impose a 64 KB size limit on the code within any single method.
Although javac would be able to compile it, the JVM would be unable to execute it.
Depending on the implementation of the JSP translator, this might become an issue for
a JSP page because generated Java code from essentially the entire JSP page source file
goes into the service method of the page implementation class. Java code is generated

Important: A static include directive would not work. It would
result in the included file being included at translation-time, with
its code being effectively copied back into the including page. This
would not solve the problem.

Note: The external_resource parameter is deprecated in
Oracle Containers for J2EE 10g (10.1.3.1.0).

Note: Putting static HTML into a resource file might result in a
larger memory footprint than the jsp:include workaround
mentioned above, because the page implementation class must load
the resource file whenever the class is loaded.

General JSP Programming Strategies

6-10 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

to output the static HTML to the browser, and Java code from any scriptlets is copied
directly.

Similarly, it is possible for the Java scriptlets in a JSP page to be large enough to create
a size limit problem in the service method. If there is enough Java code in a page to
create a problem, however, then the code should be moved into JavaBeans.

If a large amount of tag library usage results in a size limit problem for a JSP page, a
common solution is to break the page into multiple pages and use jsp:include tags
as appropriate.

Using Method Variable Declarations Versus Member Variable Declarations
In "Scripting Elements" on page 1-6, it is noted that JSP <%! ... %> declarations are
used to declare member variables, while method variables must be declared in <%
... %> scriptlets.

Be careful to use the appropriate mechanism for each of your declarations, depending
on how you want to use the variables:

■ A variable that is declared in <%! ... %> JSP declaration syntax is declared at
the class level in the page implementation class that is generated by the JSP
translator. In this case, if declaring an object instance, the object can be accessed
simultaneously from multiple requests. Therefore, the object must be thread-safe,
unless isThreadSafe="false" is declared in a page directive.

■ A variable that is declared in <% ... %> JSP scriptlet syntax is local to the service
method of the page implementation class. Each time the method is called, a
separate instance of the variable or object is created, so there is no need for thread
safety.

Consider the following example, decltest.jsp:

<HTML>
<BODY>
<% double f2=0.0; %>
<%! double f=0.0; %>
Variable declaration test.
</BODY>
</HTML>

This results in something like the following code in the page implementation class:

package ...;
import ...;

public class decltest extends ... {
 ...

 // ** Begin Declarations
 double f=0.0; // *** f declaration is generated here ***
 // ** End Declarations

 public void _jspService
 (HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 ...

 try {
 out.println("<HTML>");
 out.println("<BODY>");

General JSP Programming Strategies

Working with JSP 6-11

 double f2=0.0; // *** f2 declaration is generated here ***
 out.println("");
 out.println("");
 out.println("Variable declaration test.");
 out.println("</BODY>");
 out.println("</HTML>");
 out.flush();
 }
 catch(Exception e) {
 try {
 if (out != null) out.clear();
 }
 catch(Exception clearException) {
 }
 finally {
 if (out != null) out.close();
 }
 }
}

Working with Page Directives
This section discusses the following page directive characteristics:

■ A page directive is static and takes effect during translation. You cannot specify
parameter settings to be evaluated at runtime.

■ Java import settings in page directives are cumulative within a JSP page or
translation unit.

Page Directives Are Static
A page directive is static; it is interpreted during translation. You cannot specify
dynamic settings to be interpreted at runtime. Consider the following examples.

Example 1 The following page directive is valid.

<%@ page contentType="text/html; charset=EUCJIS" %>

Example 2 The following page directive is not valid and will result in an error.
(EUCJIS is hard-coded here, but the example also holds true for any character set
determined dynamically at runtime.)

<% String s="EUCJIS"; %>
<%@ page contentType="text/html; charset=<%=s%>" %>

For some page directive settings there are workarounds. Reconsidering the second
example, there is a setContentType() method that allows dynamic setting of the
content type.

Note: This code is provided for conceptual purposes only. Most of
the class is deleted for simplicity, and the actual code of a page
implementation class generated by the JSP translator would differ
somewhat.

General JSP Programming Strategies

6-12 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Duplicate Settings of Page Directive Attributes Are Disallowed
The JSP specification states that a Web container must verify that directive attributes,
with the exception of the page directive import attribute, are not re-set with different
values within a single JSP translation unit (a JSP page plus anything it includes
through include directives).

For backward compatibility to the JSP standard, where duplicate settings of directive
attributes are allowed, OC4J provides the forgive_dup_dir_attr configuration
parameter. In JSP 2.0, you only need to set this parameter when the different attributes
have different values. See "Summary of JSP Configuration Parameters" on page 3-1 for
information about this parameter. You might have previously coded a page with
multiple included segments that all set the page directive language attribute to
"java", for example.

For clarity, be aware of the following points.

■ The JSP specification allows multiple page directives, as long as they set different
attributes.

This example is valid:

<%@ page buffer="none" %>
<%@ page session="true" %>

or:

<%@ page buffer="0kb" %>
<%@ include file="b.jsp" %>

b.jsp
<%@ page session="false" %>

However, this example would require that the forgive_dup_dir_attr
parameter be set.

<%@ page buffer="none" %>
<%@ page buffer="0kb" %>

or:

<%@ page buffer="none" buffer="0kb" %>

or:

<%@ page buffer="0kb" %>
<%@ include file="b.jsp" %>

b.jsp
<%@ page buffer="3kb" %>

Note: The forgive_dup_dir_attr parameter is deprecated in
Oracle Containers for J2EE 10g (10.1.3.1.0).

General JSP Programming Strategies

Working with JSP 6-13

■ A translation unit consists of a JSP page plus anything it includes through
include directives, but not pages it includes through jsp:include tags. Pages
included through jsp:include tags are dynamically included at runtime, not
statically included during translation. See "Using Static Includes Versus Dynamic
Includes" on page 6-6 for more information.

Therefore, the following is okay:

<%@ page buffer="0kb" %>
<jsp:include page="b.jsp" />

b.jsp
<%@ page buffer="3kb" %>

■ As noted in the opening paragraph above, the page directive import attribute is
exempt from the limitation against duplicate attribute settings.

Workarounds for the 64K Size Limit for Generated Methods
The Java Virtual Machine (JVM) limits the amount of code to 64K (65536 bytes) per
Java method. If your application uses large JSPs, it is possible to exceed this limit
during runtime. As a general rule, keep the file size of JSPs to a minimum.

If your JSP uses tag libraries heavily, enable the Applications->JSP Container
Properties->Reduce Code Size for Custom Tags property (or the reduce_tag_code
configuration parameter in global-web-application.xml) to reduce the size of
generated code for custom tag usage. Note that this may impact JSP compilation
performance.

Following JSP File Naming Conventions
The file name extension .jsp for JSP pages is required by the servlet specification. The
servlet 2.3 specification does not, however, distinguish between complete pages that
are independently translatable and page segments that are not (such as files brought in
through an include directive).

The JSP 2.0 specification recommends the following:

■ Use the .jsp extension for top-level pages, dynamically included pages, and
pages that are forwarded to—pages that are translatable on their own.

■ Do not use .jsp for page segments brought in through include directives—files
that are not translatable on their own. No particular extension is mandated for
such files, but .jsph, .jspf, or .jsf is recommended.

Understanding JSP Preservation of White Space and Use with Binary Data
Web containers generally preserve source code white space, including carriage returns
and linefeeds, in what is output to the browser. Insertion of such white space might
not be what the developer intended, and typically makes JSP technology a poor choice
for generating binary data.

White Space Examples
The following two JSP pages produce different HTML output, due to the use of
carriage returns in the source code.

General JSP Programming Strategies

6-14 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Example 1: No Carriage Returns

The following JSP page does not have carriage returns after the Date() and
getParameter() calls. (The third and fourth lines, starting with the Date() call,
actually form a single wraparound line of code.)

nowhitsp.jsp:

<HTML>
<BODY>
<%= new java.util.Date() %> <% String user=request.getParameter("user"); %> <%=
(user==null) ? "" : user %>
Enter name:
<FORM METHOD=get>
<INPUT TYPE="text" NAME="user" SIZE=5>
<INPUT TYPE="submit" VALUE="Submit name">
</FORM>
</BODY>
</HTML>

This code results in the following HTML output to the browser. Note that there are no
blank lines after the date.

<HTML>
<BODY>
Tue May 30 20:07:04 PDT 2000
Enter name:
<FORM METHOD=get>
<INPUT TYPE="text" NAME="user" SIZE=5>
<INPUT TYPE="submit" VALUE="Submit name">
</FORM>
</BODY>
</HTML>

Example 2: Carriage Returns

The following JSP page does include carriage returns after the Date() and
getParameter() calls.

whitesp.jsp:

<HTML>
<BODY>
<%= new java.util.Date() %>
<% String user=request.getParameter("user"); %>
<%= (user==null) ? "" : user %>
Enter name:
<FORM METHOD=get>
<INPUT TYPE="text" NAME="user" SIZE=5>
<INPUT TYPE="submit" VALUE="Submit name">
</FORM>
</BODY>
</HTML>

This code results in the following HTML output to the browser.

<HTML>
<BODY>
Tue May 30 20:9:20 PDT 2000

Enter name:
<FORM METHOD=get>

JSP Best Practices

Working with JSP 6-15

<INPUT TYPE="text" NAME="user" SIZE=5>
<INPUT TYPE="submit" VALUE="Submit name">
</FORM>
</BODY>
</HTML>

Reasons to Avoid Binary Data in JSP Pages
For the following reasons, JSP pages are a poor choice for generating binary data.
Generally, you should use servlets instead.

■ JSP implementations are not designed to handle binary data. There are no
methods in the JspWriter class for writing raw bytes.

■ During execution, the Web container preserves white space. White space is
sometimes unwanted, making JSP pages a poor choice for generating binary
output (a .gif file, for example) to the browser or for other uses where white
space is significant.

Consider the following general example:

...
<% response.getOutputStream().write(...binary data...) %>
<% response.getOutputStream().write(...more binary data...) %>

In this case, the browser will receive an unwanted newline character in the middle
of the binary data or at the end, depending on the buffering of your output buffer.
You can avoid this problem by not using a carriage return between the lines of
code, but this is an undesirable programming style.

Trying to generate binary data in JSP pages largely misses the point of JSP technology
anyway, which is intended to simplify the programming of dynamic textual content.

JSP Best Practices
The following sections discuss best practices to consider when developing JSP pages
for deployment into OC4J.

Beware of HTTP Sessions
HTTP sessions add performance overhead to your Web applications due to the
amount of memory used. Sessions are enabled in JSP by default.

Avoid Using HTTP Sessions If Not Required
Avoid using HTTP session objects if they are not required. If a JSP page does not
require an HTTP session (essentially, does not require storage or retrieval of session
attributes), then you can specify that no session is to be used. Specify this with a page
directive such as the following:

<%@ page session="false" %>

Note: The preceding example is for illustrative purposes only and
might not be portable to future Oracle JSP versions or other Web
containers.

JSP Best Practices

6-16 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

This will improve the performance of the page by eliminating the overhead of session
creation or retrieval.

Note that although servlets by default do not use a session, JSP pages by default do use
a session.

Always Invalidate Sessions When No Longer In Use
 If your JSPs do use HTTP sessions, ensure that you explicitly cancel each session using
the javax.servlet.http.HttpSession.invalidate() method to release the
memory occupied.

The default session timeout for OC4J is 30 minutes. You can change this for a specific
application by setting the <session-timeout> parameter in the
<session-config> element of the application's web.xml file.

Pre-translate JSP Pages Using the ojspc Utility
You might consider using the ojspc utility to pretranslate JSP pages before
deployment. This avoids the performance cost of translating pages as they are first
accessed by users. See Chapter 4, "Precompiling JSP Pages with ojspc" for details on
using this utility.

Ensure Updated Objects Are Re-set on HTTP Sessions
When creating JSPs for distributable Web applications, ensure that updates to session
objects are replicated in a clustered environment by coding your pages to re-set
changed objects on the HTTP session.

OC4J will serialize session objects that are saved in the session; however, session
objects are not re-serialized when changes are made to an object's data members,
meaning that the updated session state will not be replicated. Note that this issue is
not unique to JSP; for example, servlets must also re-set changed objects on the
session.

Your JSPs should include scriplets that call setAttribute() on the HttpSession
for each modifiable session attribute to ensure that the session state is replicated.

If using <jsp:useBean> tags to create session-scope beans, call setAttribute() to
re-set updated beans on the session. Properties set on the bean when the bean is
created are set in the session; however, updates to bean property values are not.

Un-Buffer JSP Pages
Unbuffer JSP pages. By default, a JSP page uses an area of memory known as a page
buffer. This buffer (8 KB by default) is required if the page uses dynamic globalization
support content type settings, forwards, or error pages. If it does not use any of these
features, you can disable the buffer in a page directive:

<%@ page buffer="none" %>

This will improve the performance of the page by reducing memory usage and saving
the output step of copying the buffer.

Forward to JSP Pages Instead of Using Redirects
You can pass control from one JSP page to another using one of two options: Including
a <jsp:forward> standard action tag or passing the redirect URL to
response.sendRedirect() in a scriptlet.

JSP Best Practices

Working with JSP 6-17

The <jsp:forward> option is faster and more efficient. When you use this standard
action, the forwarded target page is invoked internally by the JSP runtime, which
continues to process the request. The browser is totally unaware that the forward has
taken place, and the entire process appears to be seamless to the user.

When you use sendRedirect(), the browser actually has to make a new request to
the redirected page. The URL shown in the browser is changed to the URL of the
redirected page. In addition, all request scope objects are unavailable to the redirected
page because redirect involves a new request.

Use a redirect only if you want the URL to reflect the actual page that is being
executed in case the user wants to reload the page.

Hide JSP Pages from Direct Invocation to Limit Access
There are situations, particularly in an architecture such as Model-View-Controller
(MVC), where you would want to ensure that some JSP pages are accessible only to
the application itself and cannot be invoked directly by users.

As an example, assume that the front-end or "view" page is index.jsp. The user
starts the application through a URL request that goes directly to that page. Further
assume that index.jsp includes a second page, included.jsp, and forwards to a
third page, forwarded.jsp, and that you do not want users to be able to invoke
these directly through a URL request.

A mechanism for this is to place included.jsp and forwarded.jsp in the
application /WEB-INF directory. When located there, the pages cannot be directly
invoked through URL request. Any attempt would result in an error report from the
browser.

The page index.jsp would have the following statements:

<jsp:include page="WEB-INF/included.jsp"/>
...
<jsp:forward page="WEB-INF/forwarded.jsp"/>

The application structure would be as follows, including the standard classes
directory for any servlets, JavaBeans, or other classes, and including the standard lib
directory for any JAR files:

index.jsp
WEB-INF/
 web.xml
 included.jsp
 forwarded.jsp
 classes/
 lib/

Use JSP-Timeout for Efficient Memory Utilization
Set the jsp-timeout attribute of the <orion-web-app> element to an integer
value, in seconds, after which any JSP page will be removed from memory if it has not
been requested. This frees up resources in situations where some pages are called
infrequently. The default value is 0, indicating no timeout.

The <orion-web-app> element is found in the OC4J
global-web-application.xml and orion-web.xml files. Modify the
global-web-application.xml file to apply the timeout to all applications in an
OC4J instance. To set configuration values to a specific application, set the file in the
application-specific orion-web.xml file.

Working with Servlets

6-18 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Package JSP Files In EAR File For Deployment
OC4J supports deployment of JSP pages by copying the files directly to the
appropriate location. This is very useful when developing and testing the pages.

However, this practice is not recommended for releasing your JSP-based application
for production. Always package JSP files in an Enterprise Archive (EAR) file to allow
deployment in a standard manner and to allow deployment across multiple
application servers.

Disable Dynamic Charset Check for Performance Improvement
By default, JspWriter checks the dynamic charset at every print/write. To realize a
performance improvement, disable this check by setting the OC4J-wide system
property to
-Dcheck.dynamic.charset="false"

This causes the charset check to be done once per request and not every print/write on
JspWriter.

Working with Servlets
Although coding JSP pages is convenient in many ways, some situations call for
servlets. One example is when you are outputting binary data.

As such, it is sometimes necessary to go back and forth between servlets and JSP pages
in an application. The following sections discuss how to accomplish this:

■ Invoking a Servlet from a JSP Page

■ Passing Data to a Servlet Invoked from a JSP Page

■ Invoking a JSP Page from a Servlet

■ Passing Data Between a JSP Page and a Servlet

■ JSP-Servlet Interaction Samples

Invoking a Servlet from a JSP Page
As when invoking one JSP page from another, you can invoke a servlet from a JSP
page through the jsp:include and jsp:forward action tags. (See "Standard JSP
Action Tags" on page 1-11.) Following is an example:

<jsp:include page="/servlet/MyServlet" flush="true" />

When this statement is encountered during page execution, the page buffer is output
to the browser and the servlet is executed. When the servlet has finished executing,
control is transferred back to the JSP page and the page continues executing. This is the
same functionality as for jsp:include actions from one JSP page to another.

And as with jsp:forward actions from one JSP page to another, the following
statement would clear the page buffer, terminate the execution of the JSP page, and
execute the servlet:

<jsp:forward page="/servlet/MyServlet" />

Working with Servlets

Working with JSP 6-19

Passing Data to a Servlet Invoked from a JSP Page
When dynamically including or forwarding to a servlet from a JSP page, you can use a
jsp:param tag to pass data to the servlet (the same as when including or forwarding
to another JSP page).

You can use a jsp:param tag within a jsp:include or jsp:forward tag. Consider
the following example:

<jsp:include page="/servlet/MyServlet" flush="true" >
 <jsp:param name="username" value="Smith" />
 <jsp:param name="userempno" value="9876" />
</jsp:include>

For more information about the jsp:param tag, see "Standard JSP Action Tags" on
page 1-11.

Alternatively, you can pass data between a JSP page and a servlet through a JavaBean
of appropriate scope or through attributes of the HTTP request object. Using attributes
of the request object is discussed later, in "Passing Data Between a JSP Page and a
Servlet" on page 6-20.

Invoking a JSP Page from a Servlet
You can invoke a JSP page from a servlet through functionality of the standard
javax.servlet.RequestDispatcher interface. Complete the following steps in
your code to use this mechanism:

1. Get a servlet context instance from the servlet instance:

ServletContext sc = this.getServletContext();

2. Get a request dispatcher from the servlet context instance, specifying the
page-relative or application-relative path of the target JSP page as input to the
getRequestDispatcher() method:

RequestDispatcher rd = sc.getRequestDispatcher("/jsp/mypage.jsp");

Prior to or during this step, you can optionally make data available to the JSP page
through attributes of the HTTP request object. See "Passing Data Between a JSP
Page and a Servlet" below for information.

3. Invoke the include() or forward() method of the request dispatcher,
specifying the HTTP request and response objects as arguments. For example:

rd.include(request, response);

or:

rd.forward(request, response);

The functionality of these methods is similar to that of jsp:include and
jsp:forward tags. The include() method only temporarily transfers control;
execution returns to the invoking servlet afterward.

Note that the forward() method clears the output buffer.

Note: The request and response objects would have been obtained
earlier, using standard servlet functionality such as the doGet()
method specified in the javax.servlet.http.HttpServlet
class.

Working with Servlets

6-20 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Passing Data Between a JSP Page and a Servlet
The preceding section, "Invoking a JSP Page from a Servlet", notes that when you
invoke a JSP page from a servlet through the request dispatcher, you can optionally
pass data through the HTTP request object. You can accomplish this using either of the
following approaches:

■ You can append a query string to the URL when you obtain the request dispatcher,
using "?" syntax with name=value pairs. For example:

RequestDispatcher rd =
 sc.getRequestDispatcher("/jsp/mypage.jsp?username=Smith");

In the target JSP page (or servlet), you can use the getParameter() method of
the implicit request object to obtain the value of a parameter set in this way.

■ You can use the setAttribute() method of the HTTP request object. For
example:

request.setAttribute("username", "Smith");
RequestDispatcher rd = sc.getRequestDispatcher("/jsp/mypage.jsp");

In the target JSP page or servlet, you can use the getAttribute() method of the
implicit request object to obtain the value of a parameter set in this way.

JSP-Servlet Interaction Samples
This section provides a JSP page and a servlet that use functionality described in the
preceding sections. The JSP page Jsp2Servlet.jsp includes the servlet
MyServlet, which includes another JSP page, welcome.jsp.

Code for Jsp2Servlet.jsp
<HTML>
<HEAD> <TITLE> JSP Calling Servlet Demo </TITLE> </HEAD>
<BODY>

<!-- Forward processing to a servlet -->
<% request.setAttribute("empid", "234"); %>
<jsp:include page="/servlet/MyServlet?user=Smith" flush="true"/>

</BODY>
</HTML>

Code for MyServlet.java
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.PrintWriter;
import java.io.IOException;

public class MyServlet extends HttpServlet {

 public void doGet (HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

Note: You can use the mechanisms discussed in this section
instead of the jsp:param tag to pass data from a JSP page to a
servlet.

Migrating JSP Pages from Apache Tomcat to OC4J

Working with JSP 6-21

 PrintWriter out= response.getWriter();
 out.println("
User:" + request.getParameter("user"));
 out.println
 (", Employee number:" + request.getAttribute("empid") + "");
 this.getServletContext().getRequestDispatcher
 ("/jsp/welcome.jsp").include(request, response);
 }
}

Code for welcome.jsp
<HTML>
<HEAD> <TITLE> The Welcome JSP </TITLE> </HEAD>
<BODY>

<H3> Welcome! </H3>
<P> Today is <%= new java.util.Date() %>. Have a nice day! </P>
</BODY>
</HTML>

Migrating JSP Pages from Apache Tomcat to OC4J
This section provides JSP-specific pointers to use when you migrate an application
containing JavaServer pages from Tomcat to Oracle Application Server (OC4J). The
main discussion of Tomcat-to-OC4J migration is in the "Migrating an Application from
Apache Tomcat to OC4J" section in Chapter 6 of the Oracle Containers for J2EE Servlet
Developer’s Guide, which also includes a section on Tomcat-to-OC4J JSP Compilation
Issues.

Introduction
Migrating JSP pages from Tomcat to Oracle Application Server is straight forward and
requires little or no code changes, depending on some of the choices made in the
Tomcat environment.

Oracle Application Server 10g Release 3 (10.1.3.1) is compliant with Sun Microsystem's
JavaServer Page specifications version 2.0. Tomcat 5.5 is also compatible with version
2.0. Since both Tomcat and Oracle Application Server Containers for J2EE (OC4J) have
implemented the same versions of the Java Server Pages specifications, there are no
differences between the two in the core JSP specification areas.

In addition, Oracle Application Server 10g Release 3 (10.1.3.1) is backward compatible
to version 1.2. Hence, JSP pages written to the standard version 1.2 specification
should work correctly in Oracle Application Server and require minimal migration
effort.

The primary tasks involved in migrating JSP pages to a new environment are
configuration and deployment. The use of proprietary extensions will require
additional tasks and complicate the migration effort.

The tasks involved in migrating JSP pages also depend on how the JSP pages have
been packaged and deployed. JSP pages can be deployed as a simple JSP page, as a
Web application packaged with other resources in a standard directory structure (WAR
file), or as a enterprise application archive (EAR) file.

Migrating JSP Pages from Apache Tomcat to OC4J

6-22 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Migration Approach
Migrating a JSP from Tomcat to OC4J is straightforward and involves configuration,
packaging (into a WAR file), and deployment tasks (to appropriate deployment
directory). These tasks can be performed manually or by using Oracle JDeveloper.

Migrating a Simple JSP Page
JSP pages do not require specific mappings as do HTTP servlets. To deploy a simple
JSP page, you can copy the JSP page and any files required by the JSP page to the
appropriate directories. No additional registrations are required.

The deployment process has been simplified in OC4J by providing a J2EE Web
application and various configuration files by default.

The typical steps for migrating a simple JSP page from Tomcat to OC4J are as follows:

1. Start an instance of OC4J, if none are currently running.

Use the Oracle Enterprise Manager 10g Application Server Control Console
administration Web pages or the following opmnctl command (executed locally):

opmnctl @instance startproc ias-component=OC4J

2. Copy the JSP page from its directory in your Tomcat installation to the appropriate
directory in OC4J.

3. Request the JSP page from a Web browser, using the URL. For example:

 http://<hostname>:7777/j2ee/MyJspPage.jsp

where <hostname> is the Oracle Application Server host you copied the JSP file
to.

See also the Oracle Containers for J2EE Configuration and Administration Guide for
additional information on configuring and deploying JSP pages.

Precompiling JSP Pages
JSP pages are compiled automatically by the JSP compiler. However, when testing and
debugging JSP pages, you may want to access the JSP compiler directly.

The JSP compiler parses a .jsp file into a .java file. The standard Java compiler is then
used to compile the .java file into a .class file.

You can precompile JSP pages using either of the following tools:

■ The standard jsp_precompile mechanism, described in the JSP specification.

■ The OC4J command line utility called ojspc, described in Chapter 4,
"Precompiling JSP Pages with ojspc".

Note: The Application Server Control Console is the recommended
method for deploying any type of application including JSPs. But for
the purpose of illustration, the following example shows how to
migrate JSP pages manually without using Application Server Control
Console.

Processing Runtime Errors

Working with JSP 6-23

Processing Runtime Errors
While a JSP page is executing and processing client requests, runtime errors can occur
either inside the page or outside the page, such as in a called JavaBean. This section
describes error processing mechanisms and provides an elementary example.

Servlet and JSP Runtime Error Mechanisms
This section describes mechanisms for handling runtime exceptions, including the use
of JSP error pages.

General Servlet Runtime Error Mechanism
Any runtime error encountered during execution of a JSP page is handled through the
standard Java exception mechanism in one of two ways:

■ You can catch and handle exceptions in a Java scriptlet within the JSP page itself,
using standard Java exception-handling code.

■ Exceptions that you do not catch in the JSP page will result in forwarding of the
request and uncaught exception, a java.lang.Throwable instance, to an error
resource. This is the preferred way to handle JSP errors. In this case, the exception
instance describing the error is stored in the request object through a
setAttribute() call, using javax.servlet.jsp.jspException as the
name.

You can specify the URL of an error resource by setting the errorPage attribute in a
page directive in the originating JSP page. (For an overview of JSP directives,
including the page directive, see "Directives" on page 1-5.)

See the Sun Microsystems Java Servlet Specification, Version 2.4 for more information
about default error resources.

JSP Error Pages
You have the option of using another JSP page as the error resource for runtime
exceptions from an originating JSP page. A JSP error page must have a page directive
setting isErrorPage="true". An error page defined in this way takes precedence
over an error page declared in the web.xml file.

The java.lang.Throwable instance describing the error is accessible in the error
page through the JSP implicit exception object. Only an error page can access this
object. For information about JSP implicit objects, including the exception object, see
"Implicit Objects" on page 1-9.

Be aware that if an originating JSP page has a page directive with
autoFlush="true" (the default setting), and the contents of the JspWriter object
from that page have already been flushed to the response output stream, then any
further attempt to forward an uncaught exception to any error page might not be able
to clear the response. Some of the response might have already been received by the
browser.

Note: You can avoid compilation problems by replacing custom
Tomcat JSP tags with standard JSP tags before you deploy a JSP page
on OC4J.

Processing Runtime Errors

6-24 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

See "JSP Error Page Example" below for an example of error page usage.

JSP Error Page Example
The following example, nullpointer.jsp, generates an error and uses an error
page, myerror.jsp, to output contents of the implicit exception object.

Code for nullpointer.jsp
<HTML>
<BODY>
<%@ page errorPage="myerror.jsp" %>
Null pointer is generated below:
<%
 String s=null;
 s.length();
%>
</BODY>
</HTML>

Code for myerror.jsp
<HTML>
<BODY>
<%@ page isErrorPage="true" %>
Here is your error:
<%= exception %>
</BODY>
</HTML>

This example results in the following output:

Note: The line "Null pointer is generated below:" in
nullpointer.jsp is not output when processing is forwarded to
the error page. This shows the difference between jsp:include
and jsp:forward functionality. With jsp:forward, the output
from the "forward-to" page replaces the output from the
"forward-from" page.

Working with Custom Tags 7-1

7
Working with Custom Tags

This chapter discusses custom tags and tag libraries, covering the basic framework
that vendors can use to provide their own libraries. There is also discussion of Oracle
extensions and a comparison of standard runtime tags versus vendor-specific
compile-time tags. The chapter consists of the following sections:

■ What Are Custom Tags?

■ Working with Tag Handlers

■ OC4J Tag Handler Features

■ Working with Tag Files

■ Sharing Tag Libraries Across Web Applications

The chapter offers a detailed overview of tag library functionality. For complete
information, refer to the Sun Microsystems JavaServer Pages Specification. For
information about the tag libraries provided with OC4J, see the Oracle Containers for
J2EE JSP Tag Libraries and Utilities Reference.

A multitude of resources are available for learning how to write and implement
custom tags. For information beyond what is provided here, refer to the following
resources:

■ JavaServer Pages Specification, version 2.0 from Sun Microsystems

■ Sun Microsystems Javadoc for the javax.servlet.jsp.tagext package, at the
following Web site:

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/tagext/package-summary.html

What Are Custom Tags?
Custom tags, also known as tag extensions, are JSP elements that allow custom logic
and output provided by other Java components to be inserted into JSP pages. The logic
provided through a custom tag is implemented by a Java object known as a tag handler.
When OC4J encounters a custom tag in a JSP during translation, it generates code to
obtain and interact with the tag handler.

Custom tags are included in a JSP page using XML syntax. Tags may or may not
contain a body. Tags can also contain XML attributes that match properties in the
corresponding tag handler.

With the advent of JSP 2.0, you now have two options for creating custom tags:

■ Tag handlers

What Are Custom Tags?

7-2 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Tags that require the creation of tag handler classes come in two types: Classic and
simple.

Classic tag handlers have been available since JSP 1.1. Classic tags are considered
somewhat cumbersome to write, in part because of the complexity of the Java
interfaces used to implement each tag's corresponding tag handler class. They are
also dependent on Java expressions for dynamic attribute values. However, these
tag handlers are the only option if Java scriplets or expressions must be used in the
tag body

Simple tag handlers are new in JSP 2.0, and offer a much simpler lifecycle and
interface than classic tag handlers. Tag bodies accept JSP expression language (EL)
expressions, allowing completely script-free tag development.

■ Tag files

Also new in JSP 2.0, tag files are revolutionary in that they allow tag libraries to be
implemented completely in JSP or XML syntax, without the need to create and
compile tag handler classes. Instead, tag files are translated into simple tag
handlers by the OC4J JSP container and then compiled. Because of their ease of
implementation, tag files offer an attractive alternative to writing tag handlers.

Related tag handlers or tag files can be packaged together in a tag library. Libraries
developed as tag handlers must include an XML document known as a tag library
descriptor (TLD) that describes the syntax of each tag and maps the tag to its
corresponding handler class. Tag file libraries do not technically require a TLD,
although descriptors are required if the library will be packaged as an archive for
deployment.

The types of custom tags you create will depend on your needs. Tags that use either a
classic or a simple tag handler are ideal when the flexibility of the Java language is
required. Tag files are useful when creating tags that are presentation-centric or that
take advantage of existing tag libraries, such as the JSTL.

Available Tag Libraries
Oracle provides extensive tag libraries with OC4J and other components. See the
Oracle Containers for J2EE JSP Tag Libraries and Utilities Reference for details on available
Oracle tag libraries.

Additional tag libraries are available from vendors and organizations. For example,
the Jakarta Taglibs includes a wide selection of libraries available for download from
http://jakarta.apache.org/taglibs/.

When Should You Consider Creating/Using Custom Tag Libraries?
Custom tags offer a number of benefits, including cleaner JSP code and code
reusability. Some situations make creating and/or using custom tags almost
mandatory. In particular, consider the following situations:

■ JSP pages would otherwise have to include a significant amount of Java logic
regarding presentation and format of output.

Note: The JSTL distribution is no longer installed in the ORACLE_
HOME/j2ee/home/jsp/lib/taglib directory within OC4J.

See "Sharing Tag Libraries Across Web Applications" on page 7-24 for
instructions on sharing tag libraries across deployed Web applications.

Working with Tag Handlers

Working with Custom Tags 7-3

■ Convenient JSP programming access to functionality that would otherwise require
the use of a Java API is needed.

■ Special manipulation or redirection of JSP output is required.

Eliminating Extensive Java Logic
Because JSP developers might not be experienced in Java programming, they might
not be ideal candidates for coding Java logic in the page—logic that dictates
presentation and format of the JSP output, for example.

This is a situation where JSP tag libraries might be helpful. If many of your JSP pages
will require such logic in generating their output, a tag library to replace Java logic
would be a great convenience for JSP developers.

Providing Convenient JSP Programming Access to API Features
Instead of having Web application programmers rely on Java APIs for using product
functionality or extensions from servlets or JSP scriptlets, you can provide a tag library.
A tag library can make the programmer's task much more convenient, with
appropriate API calls being handled automatically by the tag handlers.

For example, tags as well as JavaBeans are provided with OC4J for e-mail and file
access functionality. There is also a tag library as well as a Java API provided with the
OC4J Web Object Cache. Similarly, while Oracle Application Server Personalization
provides a Java API, OC4J also provides a tag library that you can use instead if you
want to program a personalization application.

Manipulating or Redirecting JSP Output
Another common situation for custom tags is if special runtime processing of the
response output is required. Perhaps the desired functionality requires an extra
processing step, or redirection of the output to somewhere other than the browser.

For example, you can create a custom tag - <cust:log> - that will redirect the tag text
into a log file instead of to a browser:

<cust:log>
 Text to log.
 More text to log.
 Yet more text to log.
</cust:log>

Working with Tag Handlers
The following sections describe tag handlers, which define the semantics of actions that
result from the use of custom tags:

■ What Are Classic Tag Handlers?

■ What Are Simple Tag Handlers?

■ Attribute Handling and Conversions from String Values in Tag Handlers

■ Implementing a Tag Handler

■ Disabling or Enabling Tag Handler Reuse (Tag Pooling)

■ Tag Handler Code Generation

Working with Tag Handlers

7-4 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

What Are Classic Tag Handlers?
A classic tag handler is an instance of a Java class that directly or indirectly
implements the standard javax.servlet.jsp.tagext.Tag interface. Although
often regarded as somewhat complicated to write, classic tag handlers are your only
option if Java scriplets or expressions must be used in the tag body or attribute values.

Classic Tag Handler Interfaces
Depending on whether there is a tag body and how that body is to be processed, the
tag handler implements one of the following interfaces, in the
javax.servlet.jsp.tagext package:

■ Tag: This interface defines the basic methods for all tag processing, but does not
include tag body processing.

■ IterationTag: This interface extends Tag and is for iterating through a tag
body.

■ BodyTag: This interface extends IterationTag and is for accessing the tag body
content itself.

A classic tag handler class might implement one of these interfaces directly, or might
extend a class (such as one of the support classes provided by Sun Microsystems) that
implements one of them.

A tag handler, as applicable, supports parameter-passing, evaluation of the tag body,
and access to other objects in the JSP page, including other tag handlers.

Custom Tag Processing, with or without Tag Bodies
A custom tag, as with a standard JSP tag, might or might not have a body. In the case
of a custom tag, even when there is a body, its content might not have to be accessed
by the tag handler.

There are four scenarios:

1. There is no body.

In this case you need only a single tag, not a start-tag and end-tag. Following is a
general example:

<oracust:mytag attr="...", attr2="..." />

This is equivalent to the following, which is also permissible:

<oracust:mytag attr="...", attr2="..." ></oracust:abcdef>

In this case, the tag handler should implement the Tag interface or extend
TagSupport.

The <body-content> setting for this tag in the TLD file should be empty.

2. There is a body; access to the body content by the tag handler is not required; the
body is executed no more than once.

Note: The JSP specification does not mandate whether multiple
uses of the same custom tag within a JSP page should use the same
tag handler instance or different instances. This is left to the
discretion of JSP vendors. See "OC4J Tag Handler Features" on
page 7-16 for information about the Oracle implementation.

Working with Tag Handlers

Working with Custom Tags 7-5

In this case, there is a start-tag and an end-tag with a body of statements in
between, but the tag handler does not process the body. Body statements are
passed through for normal JSP processing only. Following is a general example of
this scenario:

<foo:if cond="<%= ... %>" >
...body executed if cond is true, but body content not accessed by tag
handler...
</foo:if>

In this case, the tag handler should implement the Tag interface.

The <body-content> setting for this tag in the TLD file should be JSP (the
default) or tagdependent, depending on whether the body content should be
translated or treated as template data, respectively.

3. There is a body; access of the body content by the tag handler is not required; the
body is executed multiple times (iterated).

This is the same as the second scenario, except there is iterative processing of the
tag body.

<foo:myiteratetag ... >
...body executed multiple times, according to attribute or other settings, but
body content not accessed by tag handler...
</foo:myiteratetag>

In this case, the tag handler should implement the IterationTag interface.

The <body-content> setting for this tag in the TLD file should be JSP (the
default) or tagdependent, depending on whether the body content should be
translated or treated as template data, respectively.

4. There is a body that must be processed by the tag handler.

Again, there is a start-tag and an end-tag with a body of statements in between;
however, the tag handler must access the body content.

<oracust:mybodytag attr="...", attr2="..." >
...body accessed and processed by tag handler...
</oracust:mybodytag>

In this case, the tag handler should implement the BodyTag interface.

The <body-content> setting for this tag in the TLD file should be JSP (the
default) or tagdependent, depending on whether the body content should be
translated or treated as template data, respectively.

Tag Handlers That Access Body Content
For a custom tag with body content that the tag handler must be able to access, the tag
handler class can implement the following standard interface:

■ javax.servlet.jsp.tagext.BodyTag

The following standard support class implements the BodyTag interface, as well as
the java.io.Serializable interface, and can be used as a base class:

■ javax.servlet.jsp.tagext.BodyTagSupport

This class implements appropriate methods from the Tag, IterationTag, and
BodyTag interfaces.

Working with Tag Handlers

7-6 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

The BodyTag interface inherits basic tag-handling functionality from the Tag
interface, including the doStartTag() and doEndTag() methods and their defined
return values. It also inherits functionality from the IterationTag interface,
including the doAfterBody() method and its defined return values.

Along with its inherited features, the BodyTag interface adds functionality to capture
execution results from the tag body. Evaluation of a tag body is encapsulated in an
instance of the javax.servlet.jsp.tagext.BodyContent class. The page
implementation object creates this instance as appropriate.

As with the Tag interface, the doStartTag() method specified in the BodyTag
interface supports int return values of SKIP_BODY and EVAL_BODY_INCLUDE. For
BodyTag, this method also supports an int return value of EVAL_BODY_BUFFERED.
To summarize the meanings:

■ SKIP_BODY: Do not evaluate the body.

■ EVAL_BODY_INCLUDE: Evaluate the body and pass it through to the JSP out
object without the body content being made available to the tag handler. This is
essentially the same behavior as in an EVAL_BODY_INCLUDE scenario with a tag
handler that implements the IterationTag interface.

■ EVAL_BODY_BUFFERED: Create a BodyContent object for processing of the tag
body content.

The BodyTag interface also adds definitions for the following methods:

■ setBodyContent(): Set the bodyContent property (a BodyContent instance)
of the tag handler.

■ doInitBody(): Prepare to evaluate the tag body.

These steps occur before the tag body is evaluated. While the body is evaluated, the
JSP out object will be bound to the BodyContent object.

After each evaluation of the body, as for tag handlers implementing the
IterationTag interface, the page implementation instance calls the tag handler
doAfterBody() method. This involves the following possible return values:

■ SKIP_BODY: Stop iterating; do not reevaluate the tag body. Call doEndTag()
instead. The JSP out object is restored from the page context.

■ EVAL_BODY_AGAIN: Continue iterating; reevaluate the tag body. When the body
is evaluated, it is passed through to the current JSP out object. After the body is
evaluated, the doAfterBody() method is called again.

Once evaluation of the body is complete, for however many iterations are appropriate,
the page implementation instance invokes the tag handler doEndTag() method.

For tag handlers implementing the BodyTag interface, evaluation results from the tag
body are made accessible to the tag handler through an instance of the
javax.servlet.jsp.tagext.BodyContent class. This class extends the
javax.servlet.jsp.JspWriter class.

Note: In most cases, you should not use the BodyTag interface (or
BodyTagSupport class) if your tag handler does not actually
require access to the body content. This would result in the needless
overhead of creating and maintaining a BodyContent object.
Depending on whether iteration through the body is required, use
the Tag interface or the IterationTag interface (or TagSupport
class) instead.

Working with Tag Handlers

Working with Custom Tags 7-7

A BodyContent instance is created through the pushBody() method of the JSP page
context.

Typical uses for a BodyContent object include the following:

■ Convert its contents into a String instance and then use the string as a value for
an operation.

■ Write its contents into the JSP out object that was active as of when the start-tag
was encountered.

What Are Simple Tag Handlers?
A new feature of JSP 2.0, simple tag handlers provide as much power as classic tag
handlers, but are much easier to implement due to a much simpler Java interface and a
more straightforward lifecycle.

Unlike classic tag handlers, simple tag handler objects are never cached and reused by
the OC4J JSP container. Instead, an object is instantiated, executed and then discarded.
There are no complicated caching semantics when using this interface since nothing is
cached or reused. This simplified lifecycle helps make writing tag handlers easier and
less prone to error.

Note that while this discussion focuses on implementing simple tag handlers as Java
classes, simple tags can also be implemented completely in JSP syntax using tag files.
See "Working with Tag Files" on page 7-18 for details. However, this option is only
viable if the flexibility of Java is not required.

The SimpleTag Interface
Simple tag handler classes implement a single interface,
javax.servlet.jsp.tagext.SimpleTag. The interface includes only one
lifecycle method, doTag(). All iteration, body evaluation and other tag processing is
performed within this method.

Ideally, your simple tag handler classes should extend the
javax.servlet.jsp.tagext.SimpleTagSupport utility class, which
implements the SimpleTag interface and provides a default implementation for the
interface's methods. For example, this class provides getJspBody(), which returns
the tag body passed to the handler.

Evaluation of the tag body is performed by the setJspBody() method, which is
invoked by the OC4J JSP container with a JspFragment object encapsulating the
body of the tag invocation. (See "Using JSP Fragments" on page 7-21 for a discussion
on JSP fragments.) The tag handler can call the invoke() method on the
JspFragment to evaluate the body as many times as needed. This ability to be
invoked and evaluated multiple times is a key feature of fragments.

Unlike classic tags, simple tag extensions do not rely on the PageContext of the
calling JSP page's underlying servlet, but instead rely on JspContext, which
PageContext now extends. JspContext provides generic services such as storing
the JspWriter and keeping track of scoped attributes, while PageContext has
functionality specific to serving JSPs in the context of servlets. Through these objects, a
simple tag handler can retrieve the other implicit objects (request, session and
application) available from a JSP page.

Using Attributes
As with classic tags, the behavior of simple tags can be controlled through attributes
that correspond to properties of the tag handler class.

Working with Tag Handlers

7-8 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

There are three types of attributes: simple, fragment and dynamic.

Simple attributes are first evaluated by the OC4J JSP container when the tag is invoked,
before being passed to the simple tag handler. Attributes are defined within the start
tag using the syntax attr="value". You can set the value as a String constant or an
EL expression.

You can also define an attribute value within the body of a custom tag using the
<jsp:attribute> element, a new element introduced in JSP 2.0. The following
example uses <jsp:attribute> to use the output of the <my:helloWorld>
custom tag to set the value of the bar property in a bean object:

<jsp:setProperty name="foo" property="bar">
 <jsp:attribute name="value">
 <my:helloWorld/>
 </jsp:attribute>
</jsp:setProperty>

Fragment attributes are used to create named fragments. See "Using JSP Fragments" on
page 7-21 for an overview on JSP fragments.

As its name implies, a dynamic attribute is an attribute not specified in the tag
definition. The ability of a tag to dynamically specify attributes is a new feature of JSP
2.0 that is applicable to both simple and classic tag handlers. Dynamic attributes are
especially useful in tags that have a number of attributes that are all processed in a
similar manner.

Tag handlers that support dynamic attributes must declare that they do so in the tag
element of the TLD. For example:

<tag>
 <description>
 Tag that echoes all its attributes and body content
 </description>
 <name>echoAttributes</name>
 <tag-class>jsp2.examples.simpletag.EchoAttributesTag</tag-class>
 <body-content>empty</body-content>
 <dynamic-attributes>true</dynamic-attributes>
</tag>

Attribute Handling and Conversions from String Values in Tag Handlers
A tag handler class has an underlying property for each attribute of the custom tag.
These properties are analogous to JavaBean properties, with at least a setter method.

Recall that there are two approaches in setting a tag attribute:

■ The first approach is where the attribute is a non-request-time attribute, set using a
string literal value:

nrtattr="string"

For a non-request-time attribute, if the underlying tag handler property is not of
type String, the Web container will try to convert the string value to a value of
the appropriate type.

Because tag attributes correspond to bean-like properties, their processing, such as
for these type conversions from string values, is similar to that of bean properties.
See "Bean Property Conversions from String Values" on page 1-16.

■ The second approach is where the attribute is a request-time attribute that is set
using a request-time expression, in either of these formats:

Working with Tag Handlers

Working with Custom Tags 7-9

rtattr="<%=expression%>"

rtattr="${ELexpression}"

For request-time attributes, there is no conversion. A request-time expression can
be assigned to the attribute, and to its corresponding tag handler property, for any
property type. This would apply to a tag attribute whose type is user-defined, for
example.

Using Scripting Variables in Tags
Objects that are defined explicitly in a custom tag can be referenced in other actions
through the JSP page context, using the object ID as a handle. Consider the following
example:

<oracust:foo id="myobj" attr="..." attr2="..." />

This statement results in the object myobj being available to scripting elements in the
page, according to the declared scope of myobj. The id attribute is a translation-time
attribute. You can specify a variable in one of two ways:

■ Provide a <variable> element for the variable in the TLD file, to specify the
name and type of the variable along with additional information. See "Variable
Declaration Through TLD <variable> Elements" on page 7-10.

■ Create a tag-extra-info class, to specify the name and type of the variable along
with additional information and related logic. Specify the tag-extra-info class
name in a <tei-class> element in the TLD file. See "Variable Declaration
Through Tag-Extra-Info Classes" on page 7-11.

Generally, the more convenient <variable> mechanism will suffice.

The Web container enters myobj into the page context, where it can later be obtained
by other tags or scripting elements using syntax such as the following:

<oracust:bar ref="myobj" />

The myobj object is passed through the tag handler instances for the foo and bar
tags. All that is required is knowledge of the name of the object (myobj).

Scripting Variable Scopes
Specify the scope of a scripting variable in the <variable> element or tag-extra-info
class of the tag that creates the variable. It can be one of the following int constants:

■ NESTED: Use this setting for the scripting variable to be available between the
start-tag and end-tag of the action that defines it.

■ AT_BEGIN: Use this setting for the scripting variable to be available from the
start-tag to the end of the page.

■ AT_END: Use this setting for the scripting variable to be available from the end-tag
to the end of the page

Note: In the example, id and ref are merely sample attribute
names; there are no special predefined semantics for these attribute
names. It is up to the tag handler to define attribute names and
create and retrieve objects in the page context.

Working with Tag Handlers

7-10 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Variable Declaration Through TLD <variable> Elements
The JSP 1.1 specification mandated that use of a scripting variable for a custom tag
requires the creation of a tag-extra-info (TEI) class. See "Variable Declaration
Through Tag-Extra-Info Classes" on page 7-11. The JSP1.2 specification, however,
introduced a simpler mechanism—a <variable> element in the TLD file where the
associated tag is defined. This is sufficient for most cases, where logic related to the
variable is simple enough to not require use of a TEI class.

The <variable> element is a subelement under the <tag> element that defines the
tag that uses the variable.

You can specify the name of the variable in one of two ways:

■ Use a <name-given> subelement under <variable> to specify the variable
name directly.

or:

■ Use a <name-from-attribute> subelement under <variable> to specify a
tag attribute whose value, at translation-time, will specify the variable name.

Along with <name-given> and <name-from-attribute>, the <variable>
element has the following subelements:

■ The <variable-class> element specifies the class of the variable. The default is
java.lang.String.

■ The <declare> element specifies whether the variable is to be a newly declared
variable, in which case the JSP translator will declare it. The default is true. If
false, then the variable is assumed to have been declared earlier in the JSP page
through a standard mechanism such as a jsp:useBean action, a JSP scriptlet, a
JSP declaration, or some custom action.

■ The <scope> element specifies the scope of the variable: NESTED, AT_BEGIN, or
AT_END, as described in "Scripting Variable Scopes" on page 7-9. The default is
NESTED.

Here is an example that declares two scripting variables for a tag myaction. Note that
details within the <tag> element that are not directly relevant to this discussion are
omitted:

<tag>
 <name>myaction</name>
 ...
 <attribute>
 <name>attr2</name>
 <required>true</required>
 </attribute>
 <variable>
 <name-given>foo_given</name-given>
 <declare>false</declare>
 <scope>AT_BEGIN</scope>
 </variable>
 <variable>
 <name-from-attribute>attr2</name-from-attribute>
 <variable-class>java.lang.Integer</variable-class>
 </variable>
</tag>

The name of the first variable is hard-coded as foo_given. By default, it is of type
String. It is not to be newly declared, so is assumed to exist already, and its scope is
from the start-tag to the end of the page.

Working with Tag Handlers

Working with Custom Tags 7-11

The name of the second variable is according to the setting of the required attr2
attribute. It is of type Integer. By default, it is to be newly declared and its scope is
NESTED, between the myaction start-tag and end-tag.

Variable Declaration Through Tag-Extra-Info Classes
For a scripting variable with associated logic that is at least somewhat complicated, the
use of a <variable> element in the TLD file to declare the variable might be
insufficient. In this case, you can specify details regarding the scripting variable in a
subclass of the javax.servlet.jsp.tagext.TagExtraInfo abstract class. This
manual refers to such a subclass as a tag-extra-info class. Tag-extra-info classes support
additional validation of tag attributes and provide additional information about
scripting variables to the JSP runtime.

The Web container uses tag-extra-info instances during translation. The TLD file
specifies any tag-extra-info classes to use for scripting variables of a given tag. Use
<tei-class> elements, as in the following example:

<tag>
 <name>loop</name>
 <tag-class>examples.ExampleLoopTag</tag-class>
 <tei-class>examples.ExampleLoopTagTEI</tei-class>
 <body-content>JSP</body-content>
 <description>for loop</description>
 <attribute>
 ...
 </attribute>
 ...
</tag>

The following are related classes, also in the javax.servlet.jsp.tagext package:

■ TagData: An instance of this class contains translation-time attribute value
information for a tag instance.

■ VariableInfo: Each instance of this class contains information about a scripting
variable that is declared, created, or modified by a tag at runtime.

■ TagInfo: An instance of this class contains information about the relevant tag.
The class is instantiated from the TLD file and is available only at translation time.
TagInfo has methods such as getTagName(), getTagClassName(),
getBodyContent(), getDisplayName(), and getInfoString().

You can refer to the following location for further information:

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/tagext/p
ackage-summary.html

The following methods of the TagExtraInfo class are related:

■ boolean isValid(TagData data)

Note: It is uncommon to use TagInfo instances in a
tag-extra-info implementation, although it might be useful if you
want to map a single tag-extra-info class to multiple tag libraries
and TLD files, for example.

Working with Tag Handlers

7-12 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

The JSP translator calls this method for translation-time validation of the tag
attributes, passing it a TagData instance.

■ VariableInfo[] getVariableInfo(TagData data)

The JSP translator calls this method during translation, passing it a TagData
instance. This method returns an array of VariableInfo instances, with one
instance for each scripting variable the tag creates.

■ void setTagInfo(TagInfo info)

Calling this method sets a TagInfo instance as an attribute of the tag-extra-info
class. This method is typically called by the Web container.

■ TagInfo getTagInfo()

Use this method to retrieve the TagInfo attribute of the tag-extra-info class,
assuming the TagInfo attribute was previously set.

The tag-extra-info class constructs each VariableInfo instance with the following
information regarding the scripting variable:

■ Variable name

■ Java type (not a primitive type)

■ A Boolean value indicating whether the variable is to be newly declared, in which
case the JSP translator will declare it

■ Variable scope

Access to Outer Tag Handler Instances
Where nested custom tags are used, the tag handler instance of the nested tag has
access to the tag handler instance of the outer tag, which might be useful in any
processing and state management performed by the nested tag.

This functionality is supported through the static findAncestorWithClass()
method of the javax.servlet.jsp.tagext.TagSupport class. Even though the
outer tag handler instance is not named in the JSP page context, it is accessible because
it is the closest enclosing instance of a given tag handler class.

Consider the following JSP code example:

<foo:bar attr="abc" >
 <foo:bar2 />
</foo:bar>

Within the code of the bar2 tag handler class (class Bar2Tag, by convention), you can
have a statement such as the following:

Tag bartag = TagSupport.findAncestorWithClass(this, BarTag.class);

The findAncestorWithClass() method takes the following as input:

Important: As of the OC4J 9.0.4 implementation, you can have the
getVariableInfo() method return either a fully qualified class
name (FQCN) or a partially qualified class name (PQCN) for the
Java type of the scripting variable. FQCNs were required in
previous releases, and are still preferred to avoid confusion in case
there are duplicate class names between packages. Primitive types
are not supported.

Working with Tag Handlers

Working with Custom Tags 7-13

■ The this object that is the class handler instance from which
findAncestorWithClass() was called (a Bar2Tag instance in the example)

■ The name of the bar tag handler class (presumed to be BarTag in the example),
as a java.lang.Class instance

The findAncestorWithClass() method returns an instance of the appropriate tag
handler class, in this case BarTag, as a javax.servlet.jsp.tagext.Tag instance.

It is useful for a Bar2Tag instance to have access to the outer BarTag instance in case
the Bar2Tag needs the value of a bar tag attribute or needs to call a method on the
BarTag instance.

Implementing a Tag Handler
Creating either a classic or simple tag handler implemented in Java consists of the
following key steps:

■ Write and compile the tag handler class

■ Package the tag handler in a tag library

■ Define the tag in the tag library descriptor (TLD)

Several examples of simple tag handler implementations are provided with the sample
applications that you can download from the Oracle Technology Network (OTN) Web
site. After downloading and deploying the sample applications on OC4J, open the tag
handler Java source files to see how each is implemented.

Creating the Tag Handler Class
Each custom tag has its own handler class. By convention, the name of the tag handler
class for a tag abc, for example, is AbcTag.

Note that a tag handler class must have a public no-arguments constructor.

A tag handler instance is typically created by the JSP page implementation instance, by
use of a zero-argument constructor, and is a server-side object used at request time.
The tag handler has properties that are set by the Web container, including the page
context object for the JSP page that uses the custom tag, and a parent tag handler
object if the use of this tag is nested within an outer tag.

Defining the Tag in the TLD
Each tag that your tag handler implements must be defined in the tag library
descriptor file packaged with the tag library containing the handler class. The tag
definition in the TLD fulfills two roles:

■ Defines the syntax of the tag

■ Provides the mapping between the tag and its corresponding tag handler class

The following snippet is based on the definition for the <my:shuffle> tag from
shuffle.tld, the descriptor for the library containing the ShuffleSimpleTag
handler class. This handler is included with the "Random Tic-Tac-Toe" sample
application, which illustrates simple tag handler features. You can download this
application from the Oracle Technology Network Web site.

The format for the TLD is shown in the following example. All TLD files are required
to begin with a root <taglib> element that specifies the XML schema used to
describe the TLD and the JSP version:

<taglib xmlns="http://java.sun.com/xml/ns/j2ee"

Working with Tag Handlers

7-14 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee web-jsptaglibrary_2_0.xsd"
 version="2.0">
 <tlib-version>1.0</tlib-version>
 <short-name>SimpleTagLibrary</short-name>
 <uri>/SimpleTagLibrary</uri>
 <tag>
 ...
 </tag>
</taglib>

Next is the definition for the <my:shuffle> tag, contained within a <tag> element:

<tag>
 <name>shuffle</name>
 <tag-class>oracle.otnsamples.jsp20.simpletag.ShuffleSimpleTag</tag-class>
 <body-content>empty</body-content>
 <attribute>
 <name>fragment1</name>
 <required>true</required>
 <fragment>true</fragment>
 </attribute>
 <attribute>
 <name>fragment2</name>
 <required>true</required>
 <fragment>true</fragment>
 </attribute>
 <attribute>
 <name>fragment3</name>
 <required>true</required>
 <fragment>true</fragment>
 </attribute>
</tag>

The subelements of a <tag> element define the tag, as follows:

■ The required <name> subelement specifies the name of the tag.

■ The required <tag-class> subelement specifies the name of the corresponding
tag handler class. See "Working with Tag Handlers" on page 7-3 for information
about tag handler classes.

■ The <body-content> subelement indicates how the tag body (if any) should be
processed.

■ Each <variable> subelement (if any), with its further subelements, defines a
scripting variable. See "Using Scripting Variables in Tags" on page 7-9 for
information about scripting variables. The <variable> element is for relatively
uncomplicated situations, where the logic for the scripting variable does not
require a tag-extra-info class. The variable name is specified through either the
<name-given> subelement, to specify the name directly, or the
<name-from-attribute> subelement, to specify the name of a tag attribute that
specifies the variable name. There is also a <variable-class> subelement to
specify the class of the variable, a <scope> subelement to specify the scope of the
variable, and a <declare> subelement to specify whether the variable is to be
newly defined. See "Variable Declaration Through TLD <variable> Elements" on
page 7-10 for more information. Another subelement under <variable> is an
optional <description> element.

■ Each <tei-class> subelement (if any) specifies the name of a
tag-extra-info class that defines a scripting variable. This is for situations

Working with Tag Handlers

Working with Custom Tags 7-15

where declaring the variable through a <variable> element is not sufficient. See
"Variable Declaration Through Tag-Extra-Info Classes" on page 7-11 for more
information.

■ Each <attribute> subelement (if any), with its further subelements, provides
information about a parameter that you can pass in when you use the custom tag -
in this example, a named fragment. Subelements of <attribute> include the
<name> element to specify the attribute name, the <type> element to optionally
note the Java type of the attribute value, the <required> element to specify
whether the attribute is required (default false), and the <rtexprvalue>
element to specify whether the attribute can accept runtime expressions as values
(default false). See the example and accompanying discussion below. Another
subelement under <attribute> is an optional <description> element.

Declaring the Tag in a JSP Page
The tag library containing the tag handler is referenced in the file using a <taglib>
directive. Note the prefix <my:...> which indicates that any tag including this prefix
is defined in the corresponding TLD.

<%@ taglib uri="/WEB-INF/shuffle.tld" prefix="my" %>

As first defined in the JSP 1.1 specification, the taglib directive of a JSP page can
fully specify the name and physical location, within a WAR file structure, of the TLD
file that defines a particular tag library, as in the following example:

<%@ taglib uri="/WEB-INF/oracustomtags/tlds/mytld.tld" prefix="oracust" %>

Specify the location as application-relative by starting with "/" as in this example. See
"Requesting a JSP Page" on page 1-23 for discussion of application-relative syntax.

Be aware that the TLD file should be in the /WEB-INF directory or a subdirectory.

Alternatively, as also defined since the JSP 1.1 specification, the taglib directive can
specify the name and application-relative physical location of a JAR file instead of a
TLD file, where the JAR file contains a single tag library and the TLD file that defines
it. In this scenario, the JSP 1.1 specification mandated that the TLD file must be located
and named as follows in the JAR file:

META-INF/taglib.tld

The JSP 1.1 specification also mandated that the JAR file must be located in the
/WEB-INF/lib directory.

Here is an example of a taglib directive that specifies a tag library JAR file:

<%@ taglib uri="/WEB-INF/lib/mytaglib.jar" prefix="oracust" %>

Notes: As of Oracle Application Server 10g (9.0.4), the OC4J JSP
container ignores the <type> element. It is for informational use
only, for anyone examining the TLD file. Additionally, note the
following:

■ For literal attribute values, where <rtexprvalue> specifies
false, the <type> value (if any) should always be
java.lang.String.

■ When <rtexprvalue> specifies true, then the type of the tag
handler property corresponding to this tag attribute determines
what you should specify for the <type> value (if any).

OC4J Tag Handler Features

7-16 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Also see "Packaging Multiple Tag Libraries and TLD Files in a JAR File" which
describes a scenario for packaging tag libraries to be shared by multiple Web
applications.

Using the Tag in a JSP
The <my:shuffle> tag is used in the TictactoeManual.jsp page, which draws a
"tic-tac-toe" table of three rows and three columns. Each column has a tile of a
particular color, achieved by calling the <my:tile> tag with three different colored
tiles, or images. The <my:shuffle> tag is used to wrap these calls. The tag handler
randomly executes the three tile fragments, causing the colored tiles within each row
to be shuffled each time the page is loaded.

<my:shuffle>
 <jsp:attribute name="fragment1">
 <tr>
 <my:shuffle>
 <jsp:attribute name="fragment1">
 <my:tile imageVal="../images/blue_plain.gif" />
 </jsp:attribute>
 <jsp:attribute name="fragment2">
 <my:tile imageVal="../images/yellow_plain.gif" />
 </jsp:attribute>
 <jsp:attribute name="fragment3">
 <my:tile imageVal="../images/pink_plain.gif" />
 </jsp:attribute>
 </my:shuffle>
 </tr>
 </jsp:attribute>
 ...
</my:shuffle>

OC4J Tag Handler Features
This section describes OC4J JSP extended features for tag handler pooling and code
generation size reduction. It covers the following topics:

■ Disabling or Enabling Tag Handler Reuse (Tag Pooling)

■ Tag Handler Code Generation

Disabling or Enabling Tag Handler Reuse (Tag Pooling)
To improve performance, you can specify that tag instances be reused within each JSP
page. This functionality is often referred to as tag pooling.

As of Oracle Containers for J2EE Release 3 (10.1.3), a compile-time tag pooling model is
supported. The logic and patterns of tag handler reuse is determined at compile-time,
during translation of the JSP pages. This is an effective way to improve performance
for an application with very large numbers of tags within the same page (hundreds of
tags, for example).

Tag pooling in the OC4J JSP container is configured using the tags_reuse_default
parameter. See "Summary of JSP Configuration Parameters" on page 3-1 for further
information on setting this parameter.

OC4J Tag Handler Features

Working with Custom Tags 7-17

Enabling or Disabling the Compile-Time Model for Tag Handler Reuse
You can switch to the compile-time model for tag-handler reuse in one of two ways:

■ Set the tags_reuse_default configuration parameter to compiletime.

■ Set the tags_reuse_default configuration parameter to compiletime_
with_release.

A compiletime_with_release setting results in the tag handler release()
method being called between uses of the same tag handler within the same page. This
method releases state information, with details according to the tag handler
implementation.

If the tag handler is coded in such a way as to assume a release of state information
between tag usages, for example, then a compiletime_with_release setting
would be appropriate. If you are unsure about the implementation of the tag handler
and about which compile-time setting to use, you might consider experimentation.

When Can the Compile-Time Tag Pooling Model Be Used?
In conformance with the JSP 2.0 specification, a tag instance can only be reused when
the set of attributes defined for the tag is identical from usage to usage. This restriction
is applicable to both the compiletime and compiletime-with-release tag
pooling models.

The following example uses the tags from the JSTL core library to illustrate tag
instance reuse.

<%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>

// New instance of c:forEach tag is created.
// Note the inclusion of the "var" attribute.
<c:forEach var='item' begin='2' end='10'>

// New instance of c:out tag is created.
<c:out value="foo"/>

</c:forEach>

<%out.println("****");%>

// The first c:forEach tag instance cannot be reused, since the "var"
// attribute does not exist. A new tag instance is therefore created.
<c:forEach begin='1' end='10'>

Note: The runtime tag pooling model - previously the default
mechanism used - is no longer supported as of Oracle Containers for
J2EE 10g (10.1.3.1.0).

Notes:

■ Remember to retranslate your JSP pages when switching
between the compiletime, compiletime_with_release
or runtime models for tag handler reuse.

■ The page context oracle.jsp.tags.reuse attribute is
ignored with a tags_reuse_default setting of
compiletime or compiletime_with_release.

Working with Tag Files

7-18 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

// The existing c:out tag instance is reused, as
// the set of attributes is identical in both usages.
<c:out value="bar"/>

Code Pattern for the compiletime Tag Pooling Model
The following illustrates the code pattern for the default compiletime model for tag
pooling.

 try {
 tag01.doStartTag();
 ...
 tag01.doEndTag();
 // reuse tag01 without calling release()
 tag01.doStartTag();
 ...
 tag01.doEndTag();
 }
 catch (Throwable e) {
 tag01.release();
 }

Code Pattern for the compiletime-with-release Tag Pooling Model
The following illustrates the code pattern for the compiletime-with-release
option, which calls the release() method on the tag handler object between uses of
the same tag handler within the same JSP.

 try {
 tag01.setPageContext(pageContext);
 tag01.doStartTag();
 ...
 tag01.doEndTag();
 tag01.release();
 // reuse tag01 with calling release()
 tag01.doStartTag();
 ...
 tag01.doEndTag();
 tag01.release();
 }
 catch (Throwable e) {
 tag01.release();
 }

Tag Handler Code Generation
The Oracle JSP implementation reduces the code generation size for custom tag usage.
In addition, there is a JSP configuration flag, reduce_tag_code, that you can set to
true for even further size reduction.

Be aware, however, that when this flag is enabled, the code generation pattern does
not maximize tag handler reuse.

Working with Tag Files
The following sections provide an overview and understanding of tag files:

■ What Are Tag Files?

■ Tag Body Processing

Working with Tag Files

Working with Custom Tags 7-19

■ Using Attributes in Tag Files

■ Exposing Data through Variables in Tag Files

■ Using JSP Fragments

■ Implementing a Tag File

What Are Tag Files?
Introduced with JSP 2.0, tag files allow JSP authors to create custom tag libraries
completely using JSP syntax, without requiring any knowledge of Java. In fact, writing
a tag file is just like writing a JSP, with a few differences. Because of their ease of
implementation, tag files offer an attractive alternative to traditional custom tag
handlers.

The source for a tag file is simply a text file containing a reusable fragment of JSP code.
Valid content that can be used in a tag file include:

■ Standard JSP actions (such as <jsp:useBean>)

■ Custom tags

■ JSTL tags

■ EL expressions or functions

■ Template text

Unlike traditional custom tags, tag files do not require a corresponding tag handler
class; instead each file is translated and compiled into a simple tag handler by the
OC4J JSP container. Tag files effectively remove the need for Java programming,
opening tag library creation to JSP authors who do not possess a strong working
knowledge of Java.

Standard JSP directives are used in a tag file to provide processing instructions, just as
in a JSP page. The one exception is the page directive, which cannot be used. Instead,
tag files use the tag directive, which includes attributes specific to tag file processing.

Additional directives, such as attribute and variable, can only be used in tag
files. "Using Attributes in Tag Files" on page 7-20 and "Exposing Data through
Variables in Tag Files" on page 7-20 for details.

Tag Body Processing
How the body of a custom tag is processed is defined in the body-content attribute
of the corresponding tag file's tag directive. The default value is scriptless,
indicating that any of the JSP or static text elements listed above can be used in the tag
body - although as the value infers, Java scripting elements are not allowed. Tags that
do not accept a tag body should be declared as empty, as shown below:

<%@ tag body-content="empty" %>

The tag's body is evaluated by the <jsp:doBody> standard action, which can only be
used within tag files. Any dynamic JSP elements in the tag body are called, and the
output they produce is mixed with template text in the body in the evaluation result.

The result is saved in a variable, which can be named using either the var or
varReader attributes of the <jsp:doBody> tag. The var attribute captures the result
as a String and should be sufficient for most usage scenarios.

The varReader attribute is used to capture the result as a java.io.Reader object,
which may be more efficient when combined with a standard or custom tag, or with

Working with Tag Files

7-20 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

an EL function that reads its input from a Reader. If no variable is specified, the
output is sent to the implicit JspWriter object.

As noted in the discussion of the SimpleTag interface, the body of the tag invocation is
translated to a JspFragment object, which is then passed to the tag handler for
processing. In this case, the value of text is displayed in bold and italic fonts in a Web
browser. Fragments are very useful in the context of tag files, as discussed in "Using
Attributes in Tag Files" below.

Using Attributes in Tag Files
Attributes are declared directly within tag files using attribute directives. In the
example below, the required attribute is set to true, meaning that the page author
must specify a value for this attribute when a tag element body passed in, or an error
will be returned. The default value is false.

<%@ attribute name="category" required="true" %>

As with classic and simple tag handlers, it is also possible to use undeclared dynamic
attributes in a tag file. This is done by setting the dynamic-attributes attribute of
the tag directive to the name of a Map containing the names and values of the dynamic
attributes passed during tag invocation. The Map must contain each dynamic attribute
name and value as a key/value pair.

<%@ tag body-content="scriptless" dynamic-attributes="dynattrs" %>

Exposing Data through Variables in Tag Files
Variables are also declared directly within the tag file using the variable directive,
which is analogous to the <variable> element used to declare variables used by a
tag handler in a TLD. The name-given attribute specifies the variable's name and the
variable-class attribute defines its type.

<%@ variable name-given="current" variable-class="java.lang.Object"
scope="NESTED" %>

As with tag handlers, the variable directive's scope attribute accepts one of three
values, which control where the calling JSP sees the variable: AT_BEGIN, AT_END, or
NESTED.

Tag files have access to a local page scope, which is distinct from the page scope of the
calling JSP. The use of different scopes prevents confusion between the calling page
and the tag file if they use the same names for page scope variables. In many cases,
you may want to allow variable names to be specified by the calling JSP using an
attribute supplied in a tag body, rather than hard-coding names in the tag file.

<%@ variable name-from-attribute="var" alias="current"
variable-class="java.lang.Object" scope="NESTED" %>

Here, the name-from-attribute and alias attributes are used instead of the
name-given attribute used in the previous example. The name-from-attribute
value is the name of the tag attribute providing the variable name.

The alias attribute value declares the name of the tag file's local page scope variable,
which the OC4J JSP container copies to the calling JSP's page scope. This attribute is
needed because the page author can assign any name for the variable in a custom tag,
but a fixed name - the alias - must be used when developing the tag file.

Working with Tag Files

Working with Custom Tags 7-21

Using JSP Fragments
A JSP fragment can be thought of as a template used to produce customized content.
Introduced with JSP 2.0, JSP fragments are a new option for use with simple tag
extensions, and as such are relevant for both tag files simple tag handlers. However,
creating a fragment is typically done within the context of a tag file.

Like a tag file, a fragment is an encapsulation of dynamic JSP elements - such as
standard JSP action tags, custom tags or EL expressions - and optionally static
template text that is passed to a simple tag handler through a tag invocation.

A fragment can be invoked and evaluated by the tag handler zero or more times, as
needed. Because the JSP elements within the fragment have access to the current
values of all scoped variables, the result will typically be different from invocation to
invocation. These qualities make fragments ideal for:

■ Displaying conditional data or template text

■ Displaying a set of data in an iteration

Creating a JSP Fragment
Creating a named fragment for use in a tag file can be thought of as a two step process:
You must declare the fragment within the tag file, then define its body within a
<jsp:attribute> standard action tag inside the body of a custom tag.

You declare the fragment in the tag file using an attribute directive. Setting the
directive's fragment attribute to true will cause the fragment to be evaluated by the
tag handler. The default setting of false forces the attribute to be evaluated by the
OC4J JSP container before being passed to the tag handler; hence the fragment's ability
to be evaluated "zero or more times".

<%@ attribute name="frag1" fragment="true" %>
<%@ attribute name="frag2" fragment="true" %>

You then define the associated logic within the tag file using JSP syntax. The following
snippet from a tag file illustrates conditional logic implemented using JSTL tags. If the
test evaluates true, frag1 is invoked:

<c:when test="${empRow[2] >= 10000}">
 <c:set var="name" value="${empRow[0]}"/>
 <c:set var="phone" value="${empRow[1]}"/>
 <c:set var="salary" value="${empRow[2]}"/>
 <jsp:invoke fragment="frag1"/>
</c:when>

The fragment is invoked by name using the <jsp:invoke> standard action tag
within the tag file. Like <jsp:doBody>, this action can only be used within tag files.
The scoped variables within the tag body - in this case EL constructs - are set by the tag
file, allowing the tag file code to customize the fragment each time it is invoked.

The fragment content, which as noted previously can consist of JSP elements and static
HTML, is defined within the body of a <jsp:attribute> standard action tag within
the body of a custom tag.

<tags:EmpDetails deptNum="80">
 <jsp:attribute name="fragment1">
 <tr bgcolor="#FFFF99" align="center">
 <td>${name}</td>
 <td>${phone}</td>
 <td>${salary}</td>
 </tr>

Working with Tag Files

7-22 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

 </jsp:attribute>
</tags:EmpDetails>

A Tag File Example
The following is a simple example illustrating the use of the var attribute to store the
result of a tag body evaluation.

The sample doBodyVarTest.tag file defines a variable named text that will store
the result of evaluating the body of the <tags:doBodyVarTest> tag in
Example.jsp. It also defines two fragment attributes—frag1 and frag2—that will
store the result of an EL variable evaluation.

When a tag file is executed, the Web container passes it two types of fragments:
fragment attributes and the tag body. Within the tag file, the <jsp:invoke> element
is used to evaluate a fragment attribute, while the <jsp:doBody> element is used to
evaluate a tag file body. The result of evaluating either type of fragment is sent to the
response or is stored in an EL variable for later manipulation.

<%@ attribute name="frag1" required="true" fragment="true" %>
<%@ attribute name="frag2" required="true" fragment="true" %>
<%@ variable name-given="text" scope="NESTED" %>
 <jsp:doBody var="text" />
 <TABLE border="0">
 <TR>
 <TD>
 <jsp:invoke fragment="frag1"/>
 </TD>
 </TR>
 <TR>
 <TD>
 <i><jsp:invoke fragment="frag2"/></i>
 </TD>
 </TR>
 </TABLE>

The Example.jsp code creates an instance of the doBodyVarTest tag. Note the
<jsp:body> tag, which contains a string that will be set by the tag handler into the
text variable. The <jsp:body> tag is used to explicitly specify the body of a simple
tag, and is the only option for specifying a tag body when one or more
<jsp:attribute> elements appear in the body of a tag invocation.

<%@ taglib tagdir="/WEB-INF/tags" prefix="tags" %>

<html>
 <body>
 <tags:doBodyVarTest>
 <jsp:attribute name="frag1">
 ${text}
 </jsp:attribute>
 <jsp:attribute name="frag2">
 ${text}
 </jsp:attribute>
 <jsp:body>
 Have a great day!
 </jsp:body>
 </tags:doBodyVarTest>
 </body>
</html>

Working with Tag Files

Working with Custom Tags 7-23

Implementing a Tag File
The process for implementing a tag library as tag files is straightforward: You need
only to write the tag files as outlined in this chapter.

Creating the Tag File
As noted earlier in this chapter, writing a tag file is very similar to writing a JSP. See
"What Are Tag Files?" on page 7-19 for a summary of elements that can be included in
a tag file.

Be aware that tag files in your JAR file remain as uncompiled tag files, meaning that
your code can be viewed by anyone with a text editor.

Packaging Tag Files
Tag files can be deployed in one of two ways:

■ Drop the tags directly into a /WEB-INF/tags directory within an application's
directory structure

When deployed in this manner, tag files do not require a tag library descriptor.
However, the tags will only be accessible to the single application, unless you copy
the tags to the /WEB-INF/tags directory for each application.

■ They can be packaged in a JAR file

Packaging tag files in this manner requires a TLD. Any tag files within the JAR
that are not defined in the TLD are ignored by the OC4J JSP container.

When packaged in a JAR, tag files are added under the /META-INF/tags within the
JAR. The JAR will then be installed in the /WEB-INF/lib/ directory of a Web
application.

Each tag file in the JAR is defined in the TLD within a <tag-file> element, as
opposed to the <tag> element used to define classic or simple tag handlers. Each
<tag-file> element takes two sub-elements:

■ The <name> element defines the tag name and must be unique

■ The <path> element specifies the full path of the tag file and must therefore begin
with /META-INF/tags

The example below shows a TLD defining two tag files packaged in a JAR for
distribution:

<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee web-jsptaglibrary_2_0.xsd"
 version="2.0">
 <tlib-version>1.0</tlib-version>
 <short-name>MyTagFiles</short-name
 <uri>/MyTagFiles</uri>
 <description>JSP 2.0 tag files</description>
 <tlib-version>1.0</tlib-version>
 <short-name>My Tag Files</short-name>
 <tag-file>
 <name>EmpDetails</name>
 <path>/META-INF/tags/mytags/EmpDetails.tag</path>
 </tag-file>
 <tag-file>
 <name>ProductDetails</name>
 <path>/META-INF/tags/mytags/ProductDetails.tag</path>
 </tag-file>

Sharing Tag Libraries Across Web Applications

7-24 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

</taglib

Declaring the Tag File in a JSP
A JSP page imports a tag library implemented with tag files using the taglib
directive. The tag library prefix is specified using the prefix attribute. However, the
other attributes included vary depending on how the tag files are deployed.

If the tag files are not packaged in a JAR, the value of the tagdir attribute must be set
to the context-relative path to the directory that contains the tag files.

<%@ taglib tagdir="/WEB-INF/tags/mytags" prefix="mytags" %>

If the tag files are packaged in a JAR, the uri attribute is used, and is set to the content
of the <uri> element in the TLD.

<%@ taglib uri="/MyTagFiles" prefix="mytags" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

Sharing Tag Libraries Across Web Applications
The following sections discuss the packaging, placement, and access of tag libraries
and their TLD files:

■ Packaging Multiple Tag Libraries and TLD Files in a JAR File

■ Specifying Well-Known Tag Library Locations

■ Enabling the TLD Caching Feature

Packaging Multiple Tag Libraries and TLD Files in a JAR File
The JSP specification allows the packaging of multiple tag libraries, and the TLD files
that define them, in a single JAR file.

This section presents an example of multiple tag libraries packaged in a single JAR file.
The JAR file includes tag handler classes, tag-library-validator (TLV) classes,
and TLD files for multiple libraries.

The following lists the contents and structure of the JAR file. Note that in a JAR file
with multiple TLD files, the TLD files must be located under the /META-INF directory
or a subdirectory.

examples/BasicTagParent.class
examples/ExampleLoopTag.class
examples/BasicTagChild.class
examples/BasicTagTLV.class
examples/TagElemFilter.class
examples/TagFilter.class
examples/XMLViewTag.class
examples/XMLViewTagTLV.class
META-INF/xmlview.tld
META-INF/exampletag.tld
META-INF/basic.tld
META-INF/MANIFEST.MF

A JAR file with multiple TLD files must be placed in the /WEB-INF/lib directory or
in an OC4J "well-known" tag library location as described in "Specifying Well-Known
Tag Library Locations" on page 7-26. During translation, the JSP container searches
these two locations for JAR files, searches each JAR file for TLD files, and accesses each
TLD file to find its <uri> element.

Sharing Tag Libraries Across Web Applications

Working with Custom Tags 7-25

Key TLD File Entries
In each TLD file, there is a <uri> element under the root <taglib> element. Use this
feature as follows:

■ The <uri> element must specify a value that is to be matched by the uri setting
of a taglib directive in any JSP page that wants to use the corresponding tag
library.

■ To avoid unintended results, each <uri> value should be unique across all <uri>
values in all TLD files on the server.

The value of the <uri> element can be arbitrary; however, it must follow the XML
namespace convention.I t is simply used as a key and does not indicate a physical
location. By convention, however, its value is of the form of a physical location.

The basic.tld file includes the following:

<taglib>

 <tlib-version>1.0</tlib-version>
 <jsp-version>2.0</jsp-version>
 <short-name>basic</short-name>
 <uri>http://xmlns.oracle.com/j2ee/jsp/tld/demos/basic.tld</uri>

 ...

</taglib>

The exampletag.tld file includes the following:

<taglib>

 <tlib-version>1.0</tlib-version>
 <jsp-version>2.0</jsp-version>
 <short-name>example</short-name>
 <uri>http://xmlns.oracle.com/j2ee/jsp/tld/demos/exampletag.tld</uri>

 ...

</taglib>

The xmlview.tld file includes the following:

<taglib>
 ...
 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>demo</short-name>
 <uri>http://xmlns.oracle.com/j2ee/jsp/tld/demos/xmlview.tld</uri>
 ...
</taglib

Key web.xml Deployment Descriptor Entries
This section shows the <taglib> elements of the web.xml deployment descriptor.
These map the full URI values, as seen in the <uri> elements of the TLD files in the
previous section, to shortcut URI values used in the JSP pages that access these
libraries.

The <taglib> element can include two subelements:

■ <taglib-uri>

Sharing Tag Libraries Across Web Applications

7-26 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Contains the shortcut URI that will be used as the value of the uri attribute in the
taglib directive in JSP pages that use the tag.

■ <taglib-location>

Contains the unique identifier for the tag library. In this case, the
<taglib-location> value actually indicates a key, not a location, and
corresponds to the <uri> value in the TLD file of the desired tag library.

For the scenario of an individual TLD file, or the scenario of a JAR file that contains a
single tag library and its TLD file, the <taglib-location> subelement indicates the
application-relative physical location (by starting with "/") of the TLD file or tag
library JAR file. See "Specifying Well-Known Tag Library Locations" on page 7-26 for
related information.

For the scenario of a JAR file that contains multiple tag libraries and their TLD files, a
<taglib-location> subelement indicates the unique identifier of a tag library. In
this case, the <taglib-location> value actually indicates a key, not a location, and
corresponds to the <uri> value in the TLD file of the desired tag library. See
"Packaging Multiple Tag Libraries and TLD Files in a JAR File" on page 7-24 for related
information.

<taglib>
 <taglib-uri>/oraloop</taglib-uri>
 <taglib-location>http://xmlns.oracle.com/j2ee/jsp/tld/demos/exampletag.tld
 </taglib-location>
</taglib>
<taglib>
 <taglib-uri>/orabasic</taglib-uri>
 <taglib-location>
 http://xmlns.oracle.com/j2ee/jsp/tld/demos/basic.tld
 </taglib-location>
</taglib>
<taglib>
 <taglib-uri>/oraxmlview</taglib-uri>
 <taglib-location>
 http://xmlns.oracle.com/j2ee/jsp/tld/demos/xmlview.tld
 </taglib-location>
</taglib>

JSP Page taglib Directives for Multiple-Library Example
This section shows the appropriate taglib directives, which reference the shortcut
URI values defined in the web.xml elements listed in the preceding section.

The page basic1.jsp includes the following directive:

<%@ taglib prefix="basic" uri="/orabasic" %>

The page exampletag.jsp includes the following directive:

<%@ taglib prefix="example" uri="/oraloop" %>

The page xmlview.jsp includes the following directive:

<%@ taglib prefix="demo" uri="/oraxmlview" %>

Specifying Well-Known Tag Library Locations
As an extension of the standard "well-known URI" functionality described in the JSP
specification, OC4J supports the use of one or more directories, known as well-known

Sharing Tag Libraries Across Web Applications

Working with Custom Tags 7-27

tag library locations, where you can place tag library JAR files that will be shared across
multiple Web applications.

The default well-known tag library location is the ORACLE_
HOME/j2ee/home/jsp/lib/taglib/ directory. A tag library installed in this
location will be available by default to all Web applications deployed to the OC4J
instance.

You can also define additional shared tag library locations, and install tag library JAR
files to be shared across applications in these directories. Defining a well-known tag
library location is a two-step process:

1. Define each directory in the jsp-taglib-locations attribute of the of the
<orion-web-app> element in the ORACLE_
HOME/j2ee/home/config/global-web-application.xml file. Separate
each location with a semicolon.

2. Add a <library> element for each directory to ORACLE_
HOME/j2ee/home/config/application.xml, the configuration file for the
default application. Set the path attribute to the directory containing the tag
library JAR file.

Enabling the TLD Caching Feature
As part of its support for sharing tag libraries, OC4J provides a persistent caching
feature for TLD files. This includes a global cache for TLD files in any well-known tag
library locations, as well as an application-level cache for any application that uses
TLD caching.

The use of TLD caching speeds performance at application startup and during JSP
page translation. You might turn it off, however, if either of the following
circumstances are true:

■ Your application does not use tag libraries.

■ You have pre-translated the JSP pages and none of the TLD files use <listener>
elements for tag library event listeners.

TLD caching is enabled or disabled through the jsp-cache-tlds attribute of the
<orion-web-app> element.

■ At the global level, TLD caching is set through this attribute in the
global-web-application.xml file, the Web configuration file for the global
Web application. The value set in this file is the default inherited by all other Web
applications deployed to the OC4J instance.

■ At the application level, caching is set in the application-specific orion-web.xml
file. The setting in this file overrides the default setting in
global-web-application.xml.

The following table summarizes the values for the jsp-cache-tlds attribute.

Important: The ability to specify and utilize multiple shared tag
library locations is determined by the value of the
jsp-cache-tlds attribute of the <orion-web-app> element.
See Table 7–1, " TLD Caching Parameters" on page 7-28 for details.

Sharing Tag Libraries Across Web Applications

7-28 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Understanding the TLD Cache Features and Files
For any application that uses TLD caching, whether it is enabled at the global or
application level, there are two levels of caching, and two aspects of caching at each
level.

Caching levels:

■ There is a global cache for TLD files that are in JAR files in any well-known tag
library locations.

■ There is an application-level cache for TLD files under the application /WEB-INF
directory.

At the application level, tag library JAR files, which include TLD files, must be in
the /WEB-INF/lib directory.

Table 7–1 TLD Caching Parameters

Value of
jsp-cache-
tlds Value set in global-web-application.xml

standard TLD caching is enabled. This is the default setting at the global and application level.

Add tag library JARs to the default well-known tag library location, which is ORACLE_
HOME/j2ee/home/jsp/lib/taglib. The tag libraries will be available to all Web applications.

Note that TLD (*.tld) files must be placed in the /WEB-INF directory. Do NOT put TLD files in
the /classes or /lib subdirectories.

on TLD caching is enabled.

Add JAR files containing tag libraries to one of the following:

■ The default well-known tag library location, which is ORACLE_
HOME/j2ee/home/jsp/lib/taglib.

■ An additional location specified in the jsp-taglib-locations attribute of the
<orion-web-app> element in global-web-application.xml.

See "Specifying Well-Known Tag Library Locations" on page 7-26 for details on specifying
additional locations.

off TLD caching is disabled.

Add tag library JARs to the default well-known tag library location only, which is ORACLE_
HOME/j2ee/home/jsp/lib/taglib.

A different location can be specified as the value of the well_known_taglib_loc initialization
parameter in ORACLE_HOME/j2ee/home/config/global-web-application.xml.

Initialization parameters are specified within <init-param> subelements of
<servlet>jsp</servlet> notation in this file. See "Setting JSP Parameters in the XML
Configuration Files" on page 3-9 for details.

Important:

■ If a TLD file is present both in the well-known location and
under the /WEB-INF directory of an application, the
/WEB-INF copy takes precedence and is used.

■ If TLD files with the same URI value are present in or under the
/WEB-INF directory and also in a JAR file in the
/WEB-INF/lib directory, the decision of which one to use is
indeterminate. Avoid this situation.

Sharing Tag Libraries Across Web Applications

Working with Custom Tags 7-29

Individual TLD files can be directly in /WEB-INF or in any subdirectory, but
preferably not in /WEB-INF/lib or /WEB-INF/classes. If the
jsp-cache-tlds attribute of the <orion-web-app> element is set to
standard, TLDs must NOT be placed in either /WEB-INF/lib or
/WEB-INF/classes.

Caching aspects at each level:

■ There is a file containing resource information for the relevant location—the
well-known location for the global cache, or /WEB-INF or /WEB-INF/lib for the
application-level cache. Because of this feature, JAR files do not have to be scanned
more than once. The file contains two types of entries:

– There is a list of all resources (tag library JAR files) that includes a timestamp
for each resource so that any change to any resource can be detected. There is
also an indication ("true" or "false") of whether each resource includes a
TLD file.

– There is a list of TLD files, where each entry consists of a TLD name, TLD URI
value if present, and tag library listeners if present.

■ There is a serialized DOM representation of each TLD file. Because of this feature,
TLD files do not have to be parsed more than once.

The global cache is always located in a directory called tldcache, parallel to the
configuration directory. The tldcache directory contains the following:

■ A file, _GlobalTldCache, that contains resource information, as described
above, for any well-known locations.

■ DOM representations of the TLD files that are in well-known locations. For each
TLD file that is in a JAR file in a well-known location, the DOM representation is
in a subdirectory according to the name of the JAR file, with a file name according
to the name of the TLD file. For example, if email.tld is found in
ojsputil.jar in a well-known location, then its DOM representation would be
in the following file (file name email in directory ojsputil_jar):

ORACLE_HOME/j2ee/home/jsp/lib/taglib/persistence/ojsputil_jar/email

This is for an Oracle Application Server environment, where ORACLE_HOME is
defined. In OC4J standalone, the j2ee directory is relative to where OC4J is
installed.

The application-level cache is in the directory indicated by the
jsp-cache-directory setting in either global-web-application.xml or
orion-web.xml. This directory contains the following:

■ There is a file, _TldCache, that contains resource information, as described above,
for TLD files under the /WEB-INF directory—either in JAR files in
/WEB-INF/lib, or individually in /WEB-INF or any subdirectory, but preferably
not /WEB-INF/lib or /WEB-INF/classes.

If the jsp-cache-tlds attribute of the <orion-web-app> element is set to
standard, TLDs must NOT be placed in either /WEB-INF/lib or
/WEB-INF/classes.

■ There are DOM representations of the TLD files under /WEB-INF. For TLD files
that are in JAR files in the /WEB-INF/lib directory, the DOM representations go
into subdirectories under the directory indicated by jsp-cache-directory, in
the same type of scheme as described for the global cache. For individual TLD files
under /WEB-INF, the DOM representations go directly in the
jsp-cache-directory location.

Sharing Tag Libraries Across Web Applications

7-30 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Notes:

■ TLD changes at the global level are reflected only after OC4J is
restarted.

■ TLD changes at the application level are reflected immediately
in an OC4J standalone environment, but only after the
application is restarted in an Oracle Application Server
environment.

■ You can increase the OC4J verbosity level to see information
regarding construction of TLD caches and regarding any TLD
URIs that are duplicated. Level 4 provides some information;
level 5 provides additional information. The default level is 3.

Understanding JSP XML Support in OC4J 8-1

8
Understanding JSP XML Support in OC4J

JavaServer Pages technology is increasingly seen as an effective model for producing
XML documents. New enhancements released with JSP 2.0, including an improved
XML syntax, make JSP even more complementary to XML technology and more
accessible to XML tools.

The OC4J JSP container fully implements JavaServer Pages support for XML as
described in the JavaServer Pages 2.0 specification. This includes support for:

■ XML-style equivalents to JSP syntactical elements

■ The concept of the "XML view" of a JSP page

■ Allowing any XML element to be used as the document root (the <jsp:root>
element is no longer required)

■ Support for the new <jsp:element> and <jsp:attribute> standard tag
elements

The chapter includes the following sections:

■ Introducing JSP Documents and XML Views

■ Working with JSP Documents

■ Understanding the JSP XML View

For information about additional JSP support for XML and XSL, furnished in OC4J
through custom tags, refer to the Oracle Containers for J2EE JSP Tag Libraries and Utilities
Reference.

For general information about XML, refer to the XML specification at the following
Web site:

http://www.w3.org/XML/

Introducing JSP Documents and XML Views
The term JSP document refers to a JSP page written in XML syntax. A JSP document is
well formed in pure XML syntax and is namespace-aware. It uses XML namespaces to
specify the JSP XML core syntax and the syntaxes of any standard action tags and
custom tag libraries used. A traditional JSP page, by contrast, is typically not an XML
document.

What advantages do JSP documents offer?

■ You can create dynamic documents that can be passed directly to the OC4J JSP
container in a pure XML syntax compatible with existing XML tools

Introducing JSP Documents and XML Views

8-2 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

■ You can output content written in XML-based languages like XHTML or SVG in
JSP pages

■ You can generate a JSP document from a textual representation by applying an
XML transformation, like XSLT

■ You can use a JSP document for data-interchange between different Web
applications

Many JSP syntax elements, such as standard action tags and custom tags, are already
written in XML syntax. For JSP elements that are not compliant, equivalent XML
elements are provided. See "Working with JSP Documents" on page 8-3 for details.

Any of the following identify a file as a JSP document to the OC4J JSP container:

■ An <is-xml> element within the Web module's web.xml deployment descriptor

The <is-xml> is a subelement of the <jsp-property-group> element used to
identify files as JSP documents. For example, this web.xml snippet identifies files
with an.svg extension - specified in the <url-pattern> subelelement - as JSP
documents:

<web-app ...>
 <jsp-config>
 <jsp-property-group>
 <description>Define files with SVG extension as JSP documents</description>
 <url-pattern>*.svg</url-pattern>
 <is-xml>true</is-xml>
 </jsp-property-group>
 </jsp-config>
</web-app>

Note that the <is-xml> definition overrides any of the other indicators listed
below.

■ A.jspx file extension

Support for this extension is new in JSP 2.0, and explicity defines the file as a JSP
document. Note that tag files can also be written in XML syntax, and are identified
to the container by the .tagx extension. See "What Are Tag Files?" on page 7-19
for more on tag files.

■ A <jsp:root> element as the top element within the document body

This element includes a namespace specification for the JSP XML core syntax and
namespace specifications for any custom tag libraries that are used. Note that this
element was mandatory in JSP 1.2, but is optional in JSP 2.0, which enables you to
specify your own root element.

The semantic model for JSP documents is the same as for traditional pages. A JSP
document dictates the same set of actions and results as a traditional page with
equivalent syntax. Processing of white space follows XSLT conventions. Once the
nodes of a JSP document have been identified, textual nodes that have only white
space are dropped from the document, except within <jsp:text> elements for
template data. The content of <jsp:text> elements is kept exactly as is.

The XML view is an XML document derived from a JSP page that is used to validate
the page. The OC4J JSP container generates the XML view during JSP translation. The

Note: Template data consists of any text that is not interpreted by
the JSP translator.

Working with JSP Documents

Understanding JSP XML Support in OC4J 8-3

JSP 2.0 specification defines the view as "the mapping between a JSP page, written in
either XML syntax or traditional syntax, and an XML document describing it".

Beginning with the JSP1.2 specification, any tag library can have a <validator>
element in its TLD file to specify a class that can perform validation. Such classes are
referred to as tag-library-validator (TLV) classes. The purpose of a TLV class is to
validate any JSP page that uses the tag library, verifying that the page adheres to any
desired constraints that you have implemented. A validator class uses the JSP XML
view as the source for its validation.

In the case of a JSP document, the JSP XML view is similar to the page source. One
difference is that the XML view is expanded according to any include directives.
Another difference is that ID attributes for improved error reporting are added to all
XML elements.

In the case of a traditional JSP page, the Web container performs a series of
transformations to create the XML view from the page. See "Understanding the JSP
XML View" on page 8-10 for details.

In summary, you can optionally use JSP XML syntax to create a JSP page that is
XML-compatible. The JSP XML view, in contrast, is a function of the Web container, for
use in page validation.

Working with JSP Documents
This section describes the syntax of JSP documents in further detail. For a complete
description, refer to the Sun Microsystems JavaServer Pages Specification.

JSP XML syntax includes the following elements. Note that the syntax includes an
XML equivalent or replacement element for every JSP element except for <%--
comment --%>.

■ An optional <jsp:root> element, which includes a namespace specification for
the JSP XML core syntax and namespace specifications for any custom tag libraries
that are used. Note that this element is optional in JSP 2.0, which allows you to
specify your own root element.

■ JSP page and include directives

■ JSP declaration elements

■ JSP expression elements

■ JSP scriptlet elements

■ JSP standard action elements

■ JSP custom action elements, including JavaServer Pages Standard Tag Library
(JSTL) tag elements

■ New <jsp:attribute> and <jsp:element> elements, which may include
expression language (EL) expressions in element bodies and attribute values

■ A text element, <jsp:text>, for static template data

Important: You cannot intermix JSP traditional syntax and JSP
XML syntax in a single file. You can, however, make use of both
syntaxes together in a single translation unit through the use of
include directives. For example, a traditional JSP page can
include a JSP document.

Working with JSP Documents

8-4 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

■ Other XML elements, if desired, pertaining to template data

As noted previously, most of the standard JSP syntax is already XML-compliant, and
can be used in a JSP document in XML element format. For the JSP elements that are
not compliant, a set of equivalent XML elements are provided, as summarized in
Table 8–1below.

Specifying a Document Root Element
A JSP document must have a root element. Prior to the release of JSP 2.0, the
<jsp:root> element had to be used as the root. While this element can still be used,
it is no longer required, meaning that you can specify your own root element. This
flexibility allows you to take any XML document and use it as a JSP document.

The root element in the example shown below document is html. You can also declare
tag libraries to be used in the document within the root, as discussed in the next
section.

Note that neither a JSP document nor its request output is required to include an XML
declaration. In fact, if the JSP document is not producing XML output, the document
should not include an XML declaration.

Declaring Tag Libraries with XML Namespaces
In JSP documents, XML namespaces are used to include both standard actions and
custom tags in the document. An XML namespace is a collection of XML element
types and attribute names.

Unlike in JSP pages, standard action tags such as <jsp:useBean> are not implicitly
available; instead, you must include these elements with the following namespace,
which identifies the namespace of the core JSP XML syntax:

xmlns:jsp="http://java.sun.com/JSP/Page"

You must also include an xmlns attribute for each custom tag library you use,
specifying the tag library prefix and namespace—that is, pointing to the corresponding
TLD file or tag file library for use in validating your tag usage. These xmlns settings
are equivalent to taglib directives in a traditional JSP page.

You can use either a URN or a URI to point to the tag library. The following example
declares namespaces for the JSTL prefix c and the custom tag prefix my in the html
root element:

<html xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core"
 xmlns:my="urn:jsptagdir:/WEB-INF/tlds/mylib"

Table 8–1 Standard JSP Syntax Versus XML Syntax

Syntax Element JSP Syntax XML Syntax

Comments <%--.. --%> <!-- .. -->

Declarations <%! ..%> <jsp:declaration> .. </jsp:declaration>

Include Directives <%@ include .. %> <jsp:directive.include .. />

Page Directives <%@ page .. %> <jsp:directive.page .. />

Tag Library Directives <%@ taglib .. %> xmlns:prefix="tag library URL"

Expressions <%= .. %> <jsp:expression> .. </jsp:expression>

Scriplets <% .. %> <jsp:scriplet> .. </jsp:scriplet>

Working with JSP Documents

Understanding JSP XML Support in OC4J 8-5

>

...body of document...

</html>

A URN indicates an application-relative path and must be of one of the following
forms:

■ "urn:jsptld:path", where the path points to a single tag library, in the same
way as the uri attribute in a taglib directive.

■ "urn:jsptagdir:path", where the path must start with /WEB-INF/tags/ and
points to tag extensions implemented as tag files installed in the WEB-INF/tags/
directory or one of its subdirectories

A URI can be a complete URL or it can be according to mapping in the <taglib>
element of the web.xml file or the <uri> element of a TLDs in JAR files in
WEB-INF/lib or TLDs under WEB-INF. See "Key web.xml Deployment Descriptor
Entries" on page 7-25 and "Packaging Multiple Tag Libraries and TLD Files in a JAR
File" on page 7-24.

Declaring tag libraries as xmlns attributes of the root element, as shown in the above
example, gives all elements within the document access to those libraries. However,
this is not required; tag libraries can also be referenced at the point of usage within the
document, allowing you to scope a tag library for use with a particular element.

For example, the following example restricts usage of the tag library referenced by the
c prefix to the <c:forEach element:

<c:forEach xmlns:c="http://java.sun.com/jsp/jstl/core"
var="counter" begin="0" end=${4}>
...
</c:forEach>

Using JSP XML Directive Elements
There are JSP XML elements that are equivalent to page and include directives.
Transforming a page or include directive to the equivalent JSP XML element is
straightforward, as shown in the following examples.

Example: page Directive
Consider the following page directive:

<%@ page language="java"
 import="com.tks.ourpackage" %>

This is equivalent to the following JSP XML element:

<jsp:directive.page language="java"
 import="com.tks.ourpackage" />

Example: include Directive
Consider the following include directive:

<%@ include file="/jsp/userinfopage.jsp" %>

This is equivalent to the following JSP XML element:

<jsp:directive.include file="/jsp/userinfopage.jsp" />

Working with JSP Documents

8-6 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Using JSP XML Declaration, Expression, and Scriptlet Elements
There are JSP XML elements that are equivalent to JSP declarations, expressions, and
scriptlets. Transforming any of these constructs to the equivalent JSP XML element is
straightforward, as shown in the following examples.

Example: JSP Declaration
Consider the following JSP declaration:

<%! public String func(int myint) { if (myint<0) return("..."); } %>

This is equivalent to the following JSP XML element:

<jsp:declaration>
 <![CDATA[public String func(int myint) { if (myint<0) return("..."); }]]>
</jsp:declaration>

The XML CDATA (character data) designation is used because the declaration includes
a "<" character, which has special meaning to an XML parser. (If you use an XML
editor to create your JSP XML pages, this would presumably be handled
automatically.) Alternatively, you could write the following, using the "<" escape
character instead of "<":

<jsp:declaration>
 public String func(int myint) { if (myint < 0) return("..."); }
</jsp:declaration>

Example: JSP Expression
Consider the following JSP expression:

<%= (user==null) ? "" : user %>

This is equivalent to the following JSP XML element:

<jsp:expression> (user==null) ? "" : user </jsp:expression>

Example: JSP Scriptlet
Consider the following JSP scriptlet:

<% if (pageBean.getNewName().equals("")) { %>
 ...

This is equivalent to the following JSP XML element:

<jsp:scriptlet> if (pageBean.getNewName().equals("")) { </jsp:scriptlet>
 ...

Using JSP XML Standard Action and Custom Action Elements
Traditional syntax for JSP standard actions (such as jsp:include, jsp:forward,
and jsp:useBean) and custom actions is already XML-compatible. In using standard
actions or custom actions in JSP XML syntax, however, be aware of the following
issues.

Note: The XML view of a page does not contain include
elements, because statically included segments are copied directly
into the view.

Working with JSP Documents

Understanding JSP XML Support in OC4J 8-7

■ A standard action or custom action element with an attribute that can accept a
request-time expression value can take that value through the following syntax:

"%=expression%"

Note that there are no angle brackets, "<" and ">", around this syntax and that
white space around expression is not necessary. Evaluation of expression,
after any applicable quoting as in any XML document, is the same as for any JSP
request-time expression.

■ Any quoting must be according to the XML specification.

■ You can introduce template data through <jsp:text> elements or through
chosen XML elements that are neither standard nor custom. See "Including
Template and Dynamic Template Content", which follows.

Including Template and Dynamic Template Content
You can include static template text in a JSP document using either uninterpreted XML
tags, which do not preserve whitespace, or with the <jsp:text> element. denotes
template data in a JSP document:

When the OC4J JSP container encounters a <jsp:text> element, it passes the
contents to the current JSP out object (similar to the processing of an XSLT
<xsl:text> element).

The JSP specification also allows the use of arbitrary elements (neither standard action
elements nor custom action elements) for template data wherever a <jsp:text>
element can appear. These arbitrary elements are processed in the same way as
<jsp:text> elements, with content being sent to the current JSP out object.

Consider the following JSP document source text:

<hello><jsp:declaration>String n="Alfred";</jsp:declaration>
<morning>
<jsp:text> Good Morning
</jsp:text>${n}
</morning>
</hello>

This source text results in the following output from the OC4J JSP container. Note how
the whitespace is preserved:

<hello> <morning> Good Morning
Alfred </morning></hello>

You can also use <jsp:text> to output template data that is not well-formed XML.
For example, if the ${list} EL expression below was not wrapped in a <jsp:text>
tag, it would be illegal in a JSP document:

<c:forEach var="list" begin="1" end="${4}">
 <jsp:text>${list}</jsp:text>
</c:forEach>

Dynamic template content can also be generated by a JSP document using EL
expression, Java scripting elements (declarations, scriptlets, or expressions), standard
action tags and custom tags - just as with a standard JSP page.

You can generate tags dynamically rather than hard coding them in your JSP
document using EL expressions with the <jsp:element> standard action. This
action takes one String attribute, which is used as the name of the generated
element.

Working with JSP Documents

8-8 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

The tag element can optionally include a body, which can consist of:

■ A body that does not define attributes

■ One or more <jsp:attribute> elements, which are set as attributes of the new
element

■ If <jsp:attribute> is used, a tag body can be included within a <jsp:body>
element

For example, the following code in a JSP document:

<jsp:element name="${searchRequest.type}">
 <jsp:attribute name="language">${searchRequest.language}</jsp:attribute>
 <jsp:body>${searchRequest.content}</jsp:body>
</jsp:element>

Could generate the following:

<standardSearch language="English">What is an attribute?</standardSearch>

Sample Comparison: Traditional JSP Page Versus JSP XML Document
This section shows two versions of a JSP page, one in traditional syntax and one in
XML syntax.

For information about deploying and running this example, refer to the following Web
site:

http://otn.oracle.com/tech/java/oc4j/htdocs/how-to-jsp-xmlview.h
tml

(You must register for an Oracle Technology Network membership, but it is free of
charge.)

Sample Traditional JSP Page
Here is the sample page in traditional syntax:

<%@ taglib prefix="tags" tagdir="/WEB-INF/tags" %>
<html>
<head>
<title>An eStore for all occasions</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body>
<table align="center" width="100%" height="100%" border="4" bgcolor="#FFFFFF"
 bordercolor="#FF0000">
 <tr>
 <td width="64%" valign="middle" align="center" bgcolor="#FFCCCC">
 <div align="center"></div>
 <tags:ProductDetails occasion="Christmas" category="Cards" thBgColor="#FF3366"
 thFontColor="#FFFFFF">
 <jsp:attribute name="normalPrice">
 <td width="50%" align="center">${name}</td>
 <td width="30%" align="center">${price}</td>
 <td width="20%" align="center"></td>
 </tr>
 </jsp:attribute>

Working with JSP Documents

Understanding JSP XML Support in OC4J 8-9

 <jsp:attribute name="onSale">
 <tr>
 <td width="50%" align="center">${name}<img
 src="gifs/main/discount.gif"></td>
 <td width="30%" align="center">
 <strike>Was: ${price}</strike>

 Now: ${saleprice}
 </td>
 <td width="20%" align="center"><img src=${image} width="100"
 height="40"></td>
 </tr>
 </jsp:attribute>
 </tags:ProductDetails>

 </td>
 </tr>
</table>
</body>
</html>

Sample JSP Document
Here is the same page in XML syntax. Note how HTML to be passed to the browser is
enclosed in <jsp:text> tags.

<html xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:tags="/WEB-INF/tags">
<jsp:directive.page contentType="text/html" />
<jsp:text>
<![CDATA[
<head><title>An eStore for all occasions</title></head>
<body>
<table align="center" width="100%" height="100%" border="4" bgcolor="#FFFFFF"
 bordercolor="#FF0000">
 <tr>
 <td width="64%" valign="middle" align="center" bgcolor="#FFCCCC">
 <div align="center"></div>
]]>
 </jsp:text>
 <tags:ProductDetails occasion="Christmas" category="Cards" thBgColor="#FF3366"
 thFontColor="#FFFFFF">
 <jsp:attribute name="normalPrice">
 <jsp:text>
 <![CDATA[<tr>
 <td width="50%" align="center">${name}</td>
 <td width="30%" align="center">${price}</td>
 <td width="20%" align="center"></td>
 </tr>]]>
 </jsp:text>
 </jsp:attribute>
 <jsp:attribute name="onSale">
 <jsp:text>
 <![CDATA[<tr>
 <td width="50%" align="center">${name}<img
 src="gifs/main/discount.gif"></td>
 <td width="30%" align="center">
 <strike>Was: ${price}</strike>

 Now: ${saleprice}
 </td>

Understanding the JSP XML View

8-10 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

 <td width="20%" align="center"><img src=${image} width="100"
 height="40"></td>
 </tr>]]>
 </jsp:text>
 </jsp:attribute>
 </tags:ProductDetails>
 <jsp:text>
 <![CDATA[

 </td>
 </tr>
</table>
</body>]]>
</jsp:text>
</html>

Understanding the JSP XML View
When OC4J translates a JSP page, it creates an XML version, known as the XML view,
of the parsing result. The JSP specification defines the XML view as being a mapping
of a JSP page—either a traditional page or a JSP document—into an XML document
that describes it.

The XML view of a page looks mostly like the page as you would write it yourself if
you were using JSP XML syntax, with a couple of key differences, as described shortly.

These topics are covered in the following sections:

■ Transformation from a JSP Page to the XML View

■ The jsp:id Attribute for Error Reporting During Validation

■ Example: Transformation from Traditional JSP Page to XML View

Refer to the Sun Microsystems JavaServer Pages Specification for further details.

Transformation from a JSP Page to the XML View
When translating a JSP page, the Web container executes the following
transformations in creating the XML view, both for traditional JSP pages and for JSP
documents:

■ The container expands the XML view to include files brought in through include
directives.

■ A Web container that supports the optional jsp:id attribute, for improved error
reporting, inserts that attribute into each XML element in the page. See "The jsp:id
Attribute for Error Reporting During Validation" on page 8-11.

For a JSP document, these points constitute the key differences between the XML view
and the original page.

The Web container executes the following additional transformations for traditional
JSP pages:

■ It adds the <jsp:root> element, with the standard xmlns attribute setting for
JSP XML syntax and the version attribute for the JSP version. See "Declaring Tag
Libraries with XML Namespaces" on page 8-4.

■ It converts each taglib directive into an additional xmlns attribute in the
<jsp:root> element. See "Declaring Tag Libraries with XML Namespaces" on
page 8-4.

Understanding the JSP XML View

Understanding JSP XML Support in OC4J 8-11

■ It converts each page directive into the equivalent element in JSP XML syntax. See
"Using JSP XML Directive Elements" on page 8-5.

■ It converts each declaration, expression, and scriptlet into the equivalent element
in JSP XML syntax. See "Using JSP XML Declaration, Expression, and Scriptlet
Elements" on page 8-6.

■ It converts request-time expressions into XML syntax. See "Using JSP XML
Standard Action and Custom Action Elements" on page 8-6.

■ It creates <jsp:text> elements for template data. See "Including Template and
Dynamic Template Content" on page 8-7.

■ It converts JSP quotations into XML quotations.

■ It ignores JSP comments: <%-- comment --%>. They do not appear in the XML
view.

The jsp:id Attribute for Error Reporting During Validation
The JSP specification describes a jsp:id attribute that the Web container can add to
each XML element in the XML view. The jsp:id attributes are used by
tag-library-validator classes during page validation. The purpose of these attributes is
to provide improved error reporting, possibly helping developers pinpoint where
errors occur (depending on how the Web container implements jsp:id support).

The jsp:id attribute values must be generated by the container in a way that ensures
that each value, or ID, is unique across all elements in the XML view.

A tag-library-validator object can use these IDs in the ValidationMessage objects
that it returns. In the OC4J JSP implementation, when a ValidationMessage object
with IDs is returned, each ID is transformed to reflect the tag name and source location
of the matching element.

Example: Transformation from Traditional JSP Page to XML View
This example shows traditional page source, followed by the XML view of the page as
generated by the OC4J JSP translator. The code displays the Oracle JSP version number
and configuration parameter values.

Traditional JSP Page
Here is the traditional JSP page:

<%@ page import="java.util.*" %>
<HTML>
 <HEAD>
 <TITLE>JSP Information </TITLE>
 </HEAD>
 <BODY BGCOLOR="#FFFFFF">
 JSP Version:

 <%= application.getAttribute("oracle.jsp.versionNumber") %>

Notes:

■ The XML view has no DOCTYPE statement.

■ No "other XML elements", as described in "Including Template
and Dynamic Template Content" on page 8-7, appear in the
XML view. Only <jsp:text> elements are used for template
data.

Understanding the JSP XML View

8-12 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

 JSP Init Parameters:

 <%
 for (Enumeration paraNames = config.getInitParameterNames();
 paraNames.hasMoreElements() ;) {
 String paraName = (String)paraNames.nextElement();
 %>
 <%=paraName%> = <%=config.getInitParameter(paraName)%>

 <%
 }
 %>
 </BODY>
</HTML>

XML View of JSP Page
Here is the corresponding XML view:

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" jsp:id="0" version="1.2">
 <jsp:text jsp:id=""><![CDATA[<HTML>
 <HEAD>
 <TITLE>JSP Information </TITLE>
 </HEAD>
 <BODY BGCOLOR="#FFFFFF">
 JSP Version:
]]></jsp:text>
 <jsp:expression jsp:id="2">
 <![CDATA[application.getAttribute("oracle.jsp.versionNumber")]]>
 </jsp:expression>
 <jsp:text jsp:id="3"><![CDATA[

 JSP Init Parameters:

]]>
 </jsp:text>
 <jsp:scriptlet jsp:id="4"><![CDATA[
 for (Enumeration paraNames = config.getInitParameterNames();
 paraNames.hasMoreElements() ;) {
 String paraName = (String)paraNames.nextElement();
]]></jsp:scriptlet>
 <jsp:text jsp:id="5"><![CDATA[
]]></jsp:text>
 <jsp:expression jsp:id="6"><![CDATA[paraName]]></jsp:expression>
 <jsp:text jsp:id="7"><![CDATA[=]]></jsp:text>
 <jsp:expression jsp:id="8">
 <![CDATA[config.getInitParameter(paraName)]]>
 </jsp:expression>
 <jsp:text jsp:id="9"><![CDATA[

]]></jsp:text>
 <jsp:scriptlet jsp:id="0"><![CDATA[
 }
]]></jsp:scriptlet>
 <jsp:text jsp:id=""><![CDATA[
 </BODY>
 </HTML>

]]></jsp:text>
</jsp:root>

JSP Globalization Support in Oracle 9-1

9
JSP Globalization Support in Oracle

The Web container in OC4J provides standard globalization support (also known as
National Language Support, or NLS) according to the JSP specification, and also offers
extended support for servlet environments that do not support multibyte parameter
encoding.

Standard Java support for localized content depends on the use of Unicode for
uniform internal representation of text. Unicode is used as the base character set for
conversion to alternative character sets. (The Unicode version depends on the JDK
version. You can find the Unicode version through the Sun Microsystems Javadoc for
the java.lang.Character class.)

This chapter describes key aspects of JSP support for globalization and
internationalization. The following sections are included:

■ Content Type Settings

■ JSP Support for Multibyte Parameter Encoding

Content Type Settings
The following sections cover standard ways to statically or dynamically specify the
content type for a JSP page. There is also discussion of an Oracle extension method
that enables you to specify a non-IANA (Internet Assigned Numbers Authority)
character set for the JSP writer object.

■ Content Type Settings in the page Directive

■ Dynamic Content Type Settings

■ Oracle Extension for the Character Set of the JSP Writer Object

Content Type Settings in the page Directive
The page directive has two attributes, pageEncoding and contentType, that affect
the character encoding of the JSP page source (during translation) or response (during
runtime). The contentType attribute also affects the MIME type of the response. The
function of each attribute is as follows:

■ You can use contentType to set the character encoding of the page source and
response, and the MIME type of the response.

Note: For detailed information about Oracle Application Server
Globalization Support, see the Oracle Application Server Globalization
Guide.

Content Type Settings

9-2 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

■ You can use pageEncoding to set the character encoding of the page source. The
main purpose of this attribute is to allow you to set a page source character
encoding that is different than the response character encoding. However, this
setting also acts as a default for the response character encoding if there is no
contentType attribute that specifies a character set.

There is more information about the relationship between contentType and
pageEncoding later in this section.

Use the following syntax for contentType:

contentType="TYPE; charset=character_set"

Alternatively, to set the MIME type while using the default character set:

contentType="TYPE"

Use the following syntax for pageEncoding:

pageEncoding="character_set"

Use the following syntax to set everything:

<%@ page ... contentType="TYPE; charset=character_set"
 pageEncoding="character_set" ... %>

TYPE is an IANA MIME type; character_set is an IANA character set. When
specifying a character set through the contentType attribute, the space after the
semicolon is optional.

Here are some examples of contentType and pageEncoding settings:

<%@ page language="java" contentType="text/html" %>

or:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" %>

or:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
 pageEncoding="US-ASCII" %>

Without any page directive settings, default settings are as follows:

■ The default MIME type is text/html for traditional JSP pages; it is text/xml for
JSP XML documents.

■ The default for the page source character encoding (for translation) is
ISO-8859-1 (also known as Latin-) for traditional JSP pages; it is UTF-8 or
UTF-16 for JSP XML documents.

■ The default for the response character encoding is ISO-8859-1 for traditional JSP
pages; it is UTF-8 or UTF-16 for JSP XML documents.

The determination of UTF-8 versus UTF-16 is according to "Autodetection of
Character Encodings" in the XML specification, at
http://www.w3.org/TR/REC-xml.html.

Be aware, however, that there is a relationship between pageEncoding and
contentType regarding character encodings, as documented in the following table.

Content Type Settings

JSP Globalization Support in Oracle 9-3

Be aware of the following important usage notes.

■ A page directive that sets contentType or pageEncoding should appear as
early as possible in the JSP page.

■ When a page is a JSP XML document, any pageEncoding setting is ignored. The
Web container will instead use the XML encoding declaration of the document.
Consider the following example:

<?xml version="1.0" encoding="EUC-JP">
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0">
<jsp:directive.page contentType="text/html;charset=Shift_Jis" />
<jsp:directive.page pageEncoding="UTF-8" />
...

The effective page encoding would be EUC-JP, not UTF-8.

■ You should use pageEncoding only for pages where the byte sequence
represents legal characters in the target character set.

■ You should use contentType only for pages or response output where the byte
sequence represents legal characters in the target character set.

■ The target character set of the response output (as specified by contentType, for
example) should be a superset of the character set of the page source. For example,
UTF-8 is the superset of Big5, but ISO-8859- is not.

■ The parameters of a page directive are static. If a page discovers during execution
that a different character set specification is necessary for the response, it can do
one of the following:

– Use the servlet response object API to set the content type during execution, as
described in "Dynamic Content Type Settings" on page 9-4.

or:

– Forward the request to another JSP page or to a servlet.

■ A traditional JSP page source (not a JSP XML document) written in a character set
other than ISO-8859- must set the appropriate character set in a page directive
(through the contentType or pageEncoding attribute). The character set for the
page encoding cannot be set dynamically, because the Web container has to be
aware of the setting during translation.

■ This manual, for simplicity, assumes the typical case that the page text, request
parameters, and response parameters all use the same encoding (although other
scenarios are technically possible). Request parameter encoding is controlled by
the browser, although Netscape and Internet Explorer browsers follow the setting
you specify for the response parameters.

contentType Encoding Is
Specified

contentType Encoding Is
Not Specified

pageEncoding Is Specified Page source encoding is according to
pageEncoding.

Response encoding is according to
contentType.

Page source encoding is according
to pageEncoding.

Response encoding is according to
pageEncoding.

pageEncoding Is Not
Specified

Page source encoding is according to
contentType.

Response encoding is according to
contentType.

Page source encoding is according
to the default.

Response encoding is according to
the default.

Content Type Settings

9-4 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

The IANA maintains a registry of MIME types at the following site:

ftp://www.isi.edu/in-notes/iana/assignments/media-types/media-ty
pes

The IANA maintains a registry of character encodings at the following site. Use the
indicated "preferred MIME name" if one is listed:

http://www.iana.org/assignments/character-sets

You should use only character sets from the IANA list, except for any additional
Oracle extensions as described in "Oracle Extension for the Character Set of the JSP
Writer Object" on page 9-5.

Dynamic Content Type Settings
For situations where the appropriate content type for the HTTP response is not known
until runtime, you can set it dynamically in the JSP page. The standard
javax.servlet.ServletResponse interface specifies the following method for
this purpose:

void setContentType(java.lang.String contenttype)

The implicit response object of a JSP page is a
javax.servlet.http.HttpServletResponse instance, where the
HttpServletResponse interface extends the ServletResponse interface.

The setContentType() method input, like the contentType setting in a page
directive, can include a MIME type only, or both a character set and a MIME type. For
example:

response.setContentType("text/html; charset=UTF-8");

or:

response.setContentType("text/html");

As with a page directive, the default MIME type is text/html for traditional JSP
pages or text/xml for JSP XML documents, and the default character encoding is
ISO-8859-1.

Set the content type as early as possible in the page, before writing any output to the
JspWriter object.

The setContentType() method has no effect on interpreting the text of the JSP page
during translation. If a particular character set is required during translation, that must
be specified in a page directive, as described in "Content Type Settings in the page
Directive" on page 9-1.

Important: To use dynamic content type settings in an OC4J
environment, you must enable the JSP static_text_in_chars
configuration parameter.

JSP Support for Multibyte Parameter Encoding

JSP Globalization Support in Oracle 9-5

Oracle Extension for the Character Set of the JSP Writer Object
In standard usage, the character set of the content type of the response object, as
determined by the page directive contentType parameter or the
response.setContentType() method, automatically becomes the character set of
the JSP writer object as well. The JSP writer object is a
javax.servlet.jsp.JspWriter instance.

There are some character sets, however, that are not recognized by IANA and therefore
cannot be used in a standard content type setting. For this reason, OC4J provides the
static setWriterEncoding() method of the oracle.jsp.util.PublicUtil
class:

static void setWriterEncoding(JspWriter out, String encoding)

You can use this method to specify the character set of the JSP writer directly,
overriding the character set of the response object. The following example uses Big5
as the character set of the content type, but specifies MS950, a non-IANA Hong Kong
dialect of Big5, as the character set of the JSP writer:

<%@ page contentType="text/html; charset=Big5" %>
<% oracle.jsp.util.PublicUtil.setWriterEncoding(out, "MS950"); %>

JSP Support for Multibyte Parameter Encoding
The servlet specification has a method, setCharacterEncoding(), in the
javax.servlet.ServletRequest interface. This method is useful in case the
default encoding of the servlet container is not suitable for multibyte request
parameters and bean property settings, such as for a getParameter() call in Java
code or a jsp:setProperty tag to set a bean property in JSP code.

The setCharacterEncoding() method and equivalent Oracle extensions affect
parameter names and values, specifically:

■ Request object getParameter() method output

■ Request object getParameterValues() method output

■ Request object getParameterNames() method output

■ jsp:setProperty settings for bean property values

These topics are covered in the following sections:

■ Standard setCharacterEncoding() Method

Standard setCharacterEncoding() Method
Beginning with the servlet 2.3 specification, the setCharacterEncoding() method
is specified in the javax.servlet.ServletRequest interface as the standard
mechanism for specifying a nondefault character encoding for reading HTTP requests.
The signature of this method is as follows:

void setCharacterEncoding(java.lang.String enc)
 throws java.io.UnsupportedEncodingException

Note: Use the setWriterEncoding() method as early as
possible in the JSP page.

JSP Support for Multibyte Parameter Encoding

9-6 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

The enc parameter is a string specifying the name of the desired character encoding
and overrides the default character encoding. Call this method before reading request
parameters or reading input through the getReader() method, which is also
specified in the ServletRequest interface.

There is also a corresponding getter method:

String getCharacterEncoding()

Third Party Licenses A-1

A
Third Party Licenses

This appendix includes the Third Party License for third party products included with
Oracle Application Server and discussed in this manual. Topics include:

■ Apache

Apache
Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software, and
the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the Apache
software is provided by Oracle "AS IS" and without warranty or support of any kind
from Oracle or Apache.

The Apache Software License
Copyright (c) 2000-2004 The Apache Software Foundation.

License
 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity

Apache

A-2 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work

Apache

Third Party Licenses A-3

 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or

Apache

A-4 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Apache

Third Party Licenses A-5

Notice
This product includes software developed by
The Apache Software Foundation (http://www.apache.org/).

Portions of this software were developed at the National Center
for Supercomputing Applications (NCSA) at the University of
Illinois at Urbana-Champaign.

This software contains code derived from the RSA Data Security
Inc. MD5 Message-Digest Algorithm, including various
modifications by Spyglass Inc., Carnegie Mellon University, and
Bell Communications Research, Inc (Bellcore).

Regular expression support is provided by the PCRE library package,
which is open source software, written by Philip Hazel, and copyright
by the University of Cambridge, England. The original software is
available from
 ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/

Apache

A-6 Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

Index-1

Index

Symbols
<init-param>, 3-9

A
action tags

forward tag, 1-15
getProperty tag, 1-14
in JSP XML pages, 8-6
include tag, 1-14
overview of standard actions, 1-11
param tag, 1-14
plugin tag, 1-16
setProperty tag, 1-13
useBean tag, 1-12

activation.jar, Java activation files for e-mail, 3-13
addclasspath, ojspc option, 4-6
annotations, 6-7
application object (implicit), 1-10
application root functionality, 6-1
application scope (JSP objects), 1-11
Application Server Control Console

using to configure the JSP container, 3-8
application-relative path, 1-23
appRoot, ojspc option, 4-6
archives

batch pretranslation of, 4-1

B
batch pretranslation

ojspc -batchMask option, 4-7
ojspc -deleteSource option, 4-8
overview of ojspc batch features, 4-2

batchMask, ojspc option, 4-7
binary data, reasons to avoid in JSP, 6-15

C
cache.jar, for Java Object Cache, 3-13
caching support, overview, 2-6
caching TLDs, 3-7
call servlet from JSP, JSP from servlet, 6-18
checker pages, 6-8
class naming, translator, 5-3
classesXX.zip, for JDBC, 3-12

classpath
JSP classpath functionality, 6-2

code, generated by translator, 5-1
comments (in JSP code), 1-8
compilation

default settings, related options, 3-11
in-process vs. out-of-process, 3-11

config object (implicit), 1-10
configuration

key JAR and ZIP files, 3-12
setting JSP configuration parameters, 3-9

content type settings
dynamic (setContentType method), 9-4
static (page directive), 9-1

context path, 6-1
context-relative path, 1-23
custom tags--see tag libraries

D
debugging

through JDeveloper, 2-7
declarations

member variables, 1-7
method variable vs. member variable, 6-10
XML declaration elements, 8-6

deleteSource, ojspc option, 4-8
demo location, OTN, 1-1
directives

include directive, 1-6
overview, 1-5
page directive, 1-5
taglib directive, 1-6
XML directive elements, 8-5

DMS support, 2-5
dynamic include

action tag, 1-14
for large static content, 6-9
logistics, 6-6
vs. static include, 6-6

Dynamic Monitoring Service--see DMS

E
EJB

interact with JSPs, 1-2

Index-2

error processing (runtime), 6-23
event-handling

with HttpSessionBindingListener, 2-8
exception object (implicit), 1-10
execution models for JSP pages, 1-21
execution of a JSP page, 1-21
explicit JSP objects, 1-9
expression language

disabling in JSPs, 1-21
functions, 1-20
overview, 1-18
syntax, 1-18

expressions
expression syntax, 1-7
XML expression elements, 8-6

extensions
DMS support, 2-5
overview of caching support, 2-6
overview of global includes, 2-5
overview of Oracle-specific extensions, 2-4
overview of programmatic extensions, 2-3
summary of portable extensions, 2-5

external resource file
for static text, 6-9

F
fallback tag (with plugin tag), 1-16
file naming conventions, JSP files, 6-13
files

generated by translator, 5-4
key JAR and ZIP files, 3-12
locations, translator output, 5-5

forward tag, 1-15

G
generated code, by translator, 5-1
generated output names, by translator, 5-2
getProperty tag, 1-14
global includes (Oracle extension)

general use, 5-6
globalization support

charset settings of JSP writer, 9-5
content type settings (dynamic), 9-4
content type settings (static), 9-1
multibyte parameter encoding, 9-5
overview, 9-1

H
hiding JSP pages (e.g., MVC architecture), 6-17
HttpSessionBindingListener, 2-8

I
id attribute (XML view), 8-11
implicit JSP objects

overview, 1-9
using implicit objects, 1-10

imports, default packages, 6-3

include directive, 1-6
include tag, 1-14
interaction, JSP-servlet, 6-18
invoke servlet from JSP, JSP from servlet, 6-18

J
J2EE

definition, 2-1
JavaBeans

use with useBean tag, 1-12
vs. scriptlets, 6-5

JDeveloper
JSP support, 2-7

JDK, 2-1
JDK 1.4 considerations, 6-4
jndi.jar, for data sources and EJBs, 3-12
JSP container

configuration parameters, 3-1
configuring through Application Server Control

Console, 3-8
configuring through XML files, 3-9
setting initialization parameters, 3-9

jsp fallback tag (with plugin tag), 1-16
jsp forward tag, 1-15
jsp getProperty tag, 1-14
jsp id attribute (XML view), 8-11
jsp include tag, 1-14
JSP pages

interact with EJBs, 1-2
overview, 1-1
pretranslating using ojspc, 4-1
simple example code, 1-2

jsp param tag, 1-14
jsp plugin tag, 1-16
jsp setProperty tag, 1-13
JSP technology

overview, 1-1
jsp text element (XML syntax), 8-7
jsp useBean tag

syntax, 1-12
JSP XML document, 8-1
JSP XML syntax--see XML syntax
JSP XML view--see XML view
jsp-cache-directory setting, 5-5
jsp-cache-tlds flag, 7-27
JSPs

adding to a deployed application, 3-11
modifying in a deployed application, 3-11

JSP-servlet interaction
invoking JSP from servlet, request

dispatcher, 6-19
invoking servlet from JSP, 6-18
passing data, JSP to servlet, 6-19
passing data, servlet to JSP, 6-20
sample code, 6-20

JspWriter object, 1-10
JSTL, overview of support, 2-6
jta.jar, for Java Transaction API, 3-13
justrun mode, 3-4

Index-3

JVM, 2-1

M
mail.jar, for e-mail from applications, 3-13
member variable declarations, 6-10
method variable declarations, 6-10
Model-View-Controller, hiding JSP pages, 6-17
multibyte parameter encoding

general/standard, 9-5
MVC architecture, hiding JSP pages, 6-17

N
naming conventions, JSP files, 6-13
National Language Support--see Globalization

Support
NLS--see Globalization Support

O
objects and scopes (JSP objects), 1-8
ojspc pretranslation tool

command-line syntax, 4-2
option summary table, 4-5
overview, 4-1
overview of basic functionality, 4-1
overview of batch pretranslation, 4-2

ojsp.jar, for JSP container, 3-12
ojsputil.jar, for JSP tag libraries and utilities, 3-12
on-demand translation (runtime), 1-22
Oracle platforms supporting JSP

JDeveloper, 2-7
out object (implicit), 1-10
output files

generated by translator, 5-4
locations, 5-5

output names, conventions, 5-2

P
package imports, default, 6-3
package naming

by translator, 5-3
page directive

characteristics, 6-11
contentType setting for globalization support, 9-1
overview, 1-5

page implementation class
generated code, 5-1
overview, 1-22

page object (implicit), 1-9
page scope (JSP objects), 1-11
pageContext object (implicit), 1-9
page-relative path, 1-23
param tag, 1-14
performance

disable dynamic charset check, 6-18
use of pretranslation, 6-16

persistent caching for TLD files, 7-26
plugin tag, 1-16

pretranslation
ojspc utility, 4-1

programming considerations
general strategies, 6-4

R
recompile mode, 3-4
reducing generated tag code, 3-4
reloading JSP-generated classes, 3-4
request dispatcher (JSP-servlet interaction), 6-19
request objects

JSP implicit request object, 1-9
request scope (JSP objects), 1-11
RequestDispatcher interface, 6-19
requesting a JSP page, 1-23
resource management

overview of JSP extensions, 2-11
standard session management, 2-8

response objects
JSP implicit response object, 1-9

retranslating JSP pages, 3-4
retranslation or reloading at runtime, 3-11

S
sample applications

demo location, OTN, 1-1
HttpSessionBindingListener sample, 2-8
JSP-servlet interaction, 6-20
traditional vs. XML syntax, 8-8
transformation to XML view, 8-11

scopes (JSP objects), 1-10
scripting elements

comments, 1-8
declarations, 1-7
expressions, 1-7
overview, 1-6
scriptlets, 1-7

scripting variables (tag libraries)
declaration through TEI class, 7-11
declaration through TLD, 7-10
scopes, 7-9
using, 7-9

scriptlets
scriptlet syntax, 1-7
vs. JavaBeans, 6-5
XML scriptlet elements, 8-6

servlet path, 6-1
servlet-JSP interaction

invoking JSP from servlet, request
dispatcher, 6-19

invoking servlet from JSP, 6-18
passing data, JSP to servlet, 6-19
passing data, servlet to JSP, 6-20
sample code, 6-20

session events
with HttpSessionBindingListener, 2-8

session objects
JSP implicit session object, 1-9

Index-4

session scope (JSP objects), 1-11
setCharacterEncoding() method, 9-5
setContentType() method, globalization support, 9-4
setProperty tag, 1-13
setting initialization parameters, 3-9
setWriterEncoding() method, globalization

support, 9-5
sharing tag libraries, 3-7
simple tag handlers, 7-7
SimpleTag interface, 7-7
static include

directive, 1-6
logistics, 6-6
vs. dynamic include, 6-6

static text
external resource file, 6-9
in member variables, 5-2
workaround for large static content, 6-9

syntax (overview), 1-4

T
tag files, 7-18
tag handler reuse, 3-6
tag handlers (tag libraries)

access to outer tag handlers, 7-12
accessing body content, 7-5
body processing, 7-4
OC4J tag handler code generation, 7-18
OC4J tag handler instance reuse / pooling, 7-16
overview, 7-4

tag libraries
multiple tag libraries in a JAR file, 7-24
overview of functionality, 1-17
persistent caching for TLD files, 7-26
sharing across applications, 7-26
strategy, when to create, 7-2
tag handlers, 7-3
well-known location, 7-26

tag library descriptor files
persistent caching, 7-26
specifying TLDs for multiple tag libraries in a JAR

file, 7-24
tag pooling, 7-16
tag-extra-info classes (tag libraries)

general use, getVariableInfo() method, 7-11
taglib directive

syntax, 1-6
template data, 8-2
text element (XML syntax), 8-7
tips

avoid JSP use with binary data, 6-15
JavaBeans vs. scriptlets, 6-5
JSP preservation of white space, 6-13
method vs. member variable declaration, 6-10
page directive characteristics, 6-11
static vs. dynamic includes, 6-6
using a "checker" page, 6-8
when to create tag libraries, 7-2
workaround, large static content, 6-9

TLD caching, 3-7
TLD validation, 3-4
translation, on-demand (runtime), 1-22
translator

generated class names, 5-3
generated code features, 5-1
generated files, 5-4
generated member variables, static text, 5-2
generated names, general conventions, 5-2
generated package names, 5-3
Oracle JSP global includes, 5-6
output file locations, 5-5
pretranslation using ojspc, 4-1

U
useBean tag, 1-12

V
variable element (tag libraries), 7-10

W
Web module

adding JSPs to a, 3-11
modifying JSPs in a, 3-11

well-known location (tag libraries), 7-26
well-known tag libraries, 3-7

X
XML support

JSP XML document, 8-1
JSP XML documents and JSP XML view,

overview, 8-1
JSP XML syntax, 8-3
XML view, 8-10

XML syntax
custom action elements, 8-6
declaration elements, 8-6
directive elements, 8-5
expression elements, 8-6
sample, traditional vs. XML syntax, 8-8
scriptlet elements, 8-6
standard action elements, 8-6
text element and other elements, 8-7

XML view
jsp id attribute for validation, 8-11
sample transformation, 8-11
transformation from JSP page to XML view, 8-10

xmlparserv2.jar, for XML validation, 3-12

	Contents
	Preface
	Intended Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Getting Started with JSP
	A Brief Overview of JavaServer Pages Technology
	What is JavaServer Pages Technology?
	Key Advantages of JSP
	How JSP Works
	JSP Translation and Runtime Flow

	Overview of JSP Syntax Elements
	Directives
	page directive
	include directive
	taglib directive

	Scripting Elements
	Declarations
	Expressions
	Scriptlets
	Comments

	JSP Objects and Scopes
	Explicit Objects
	Implicit Objects
	Using an Implicit Object
	Object Scopes

	Standard JSP Action Tags
	jsp:useBean tag
	jsp:setProperty tag
	jsp:getProperty tag
	jsp:param tag
	jsp:include tag
	jsp:forward tag
	jsp:plugin tag

	Bean Property Conversions from String Values
	Typical Property Conversions
	Conversions for Property Types with Property Editors

	Custom Tag Libraries

	Simplified JSP Authoring with the Expression Language
	Overview of the Expression Language Syntax
	JSP Expression Language Syntax
	Expression Language Implicit Objects
	Additional Features of the Expression Language

	Creating and Using Expression Language Functions
	Disabling the Expression Language
	Disabling EL in All JSPs in a Web Application
	Disabling EL in a JSP
	Disabling EL in a Tag File

	JSP Execution Model
	JSP Execution Models
	On-Demand Translation Model
	Pretranslation Model

	JSP Pages and On-Demand Translation
	Requesting a JSP Page
	Directly Requesting a JSP Page
	Indirectly Requesting a JSP Page

	2 The Oracle JSP Implementation
	Introduction to OC4J
	What's New in OC4J
	Support for Web Services
	Support for New J2EE 1.4 Application Management and Deployment Specifications
	Support for Oracle Application Server TopLink
	OracleAS Job Scheduler
	New Two-Phase Commit Transaction Coordinator Functionality
	Generic JMS Resource Adapter Enhancements

	Features of OC4J
	J2EE Support
	OC4J Web Communication
	Clustering

	Oracle Value-Added Features for JSP
	Supported Specifications
	Oracle-Specific Features
	Configurable JSP Extensions in OC4J
	Global Includes
	Support for Dynamic Monitoring Service

	JSP Utilities and Tag Libraries Provided with OC4J
	Tags and API for Caching Support
	Support for the JavaServer Pages Standard Tag Library (JSTL)

	JSP Support in Oracle JDeveloper
	Oracle JSP Resource Management Features
	Standard Session Resource Management: HttpSessionBindingListener
	The valueBound() and valueUnbound() Methods
	JDBCQueryBean JavaBean Code
	UseJDBCQueryBean JSP Page
	Advantages of HttpSessionBindingListener

	Overview of Oracle Value-Added Features for Resource Management

	3 Configuring the OC4J JSP Environment
	Configuring the OC4J JSP Container
	Summary of JSP Configuration Parameters
	Setting JSP Parameters in Application Server Control Console
	Accessing Application Server Control Console in Standalone OC4J
	Accessing Application Server Control Console in Oracle Application Server

	Setting JSP Parameters in the XML Configuration Files
	Setting Servlet Initialization Parameters
	Setting JSP Configuration Parameters

	Configuring JSP Compilation in OC4J
	Configuring Runtime JSP Retranslation and Reloading in OC4J
	Key JSP-Related Support Files Provided with OC4J

	4 Precompiling JSP Pages with ojspc
	How the ojspc Utility Works
	Overview of Basic ojspc Functionality
	Overview of Batch Pretranslation of WAR Files

	Using ojspc
	Precompiling One or More JSPs
	Precompiling JSPs within a WAR File
	Using an Ant Task to Precompile a JSP
	Summary of ojspc Command Line Options

	5 Understanding JSP Translation in OC4J
	Features of Generated Code
	General Conventions for Output Names
	Generated Package and Class Names
	Generated Files and Locations
	Oracle JSP Global Includes
	Global Includes File and Examples
	The ojsp-global-include.xml File
	<ojsp-global-include>
	<include ... >
	<into ... >

	Global Include Examples
	Example: Header/Footer
	Example: translate_params Equivalent Code

	6 Working with JSP
	Before You Start
	Understanding Application Root Functionality
	Understanding OC4J Classpath Functionality
	Packages Imported By Default in OC4J
	JDK1.4 Issue: Classes Not in Packages Cannot Be Invoked

	General JSP Programming Strategies
	Creating Traditional Versus Scriptless JSP
	Using JavaBeans Versus Scriptlets
	Using Static Includes Versus Dynamic Includes
	Logistics of Static Includes
	Logistics of Dynamic Includes
	Advantages, Disadvantages, and Typical Uses of Dynamic and Static Includes
	Using Annotations in JSP Tag Libraries for Services and Resource References

	Monitoring Your JSP Application
	Managing Heavy Static Content or Tag Library Usage
	Using Method Variable Declarations Versus Member Variable Declarations
	Working with Page Directives
	Page Directives Are Static
	Example 1
	Example 2

	Duplicate Settings of Page Directive Attributes Are Disallowed

	Workarounds for the 64K Size Limit for Generated Methods
	Following JSP File Naming Conventions
	Understanding JSP Preservation of White Space and Use with Binary Data
	White Space Examples
	Example 1: No Carriage Returns
	Example 2: Carriage Returns

	Reasons to Avoid Binary Data in JSP Pages

	JSP Best Practices
	Beware of HTTP Sessions
	Avoid Using HTTP Sessions If Not Required
	Always Invalidate Sessions When No Longer In Use

	Pre-translate JSP Pages Using the ojspc Utility
	Ensure Updated Objects Are Re-set on HTTP Sessions
	Un-Buffer JSP Pages
	Forward to JSP Pages Instead of Using Redirects
	Hide JSP Pages from Direct Invocation to Limit Access
	Use JSP-Timeout for Efficient Memory Utilization
	Package JSP Files In EAR File For Deployment
	Disable Dynamic Charset Check for Performance Improvement

	Working with Servlets
	Invoking a Servlet from a JSP Page
	Passing Data to a Servlet Invoked from a JSP Page
	Invoking a JSP Page from a Servlet
	Passing Data Between a JSP Page and a Servlet
	JSP-Servlet Interaction Samples
	Code for Jsp2Servlet.jsp
	Code for MyServlet.java
	Code for welcome.jsp

	Migrating JSP Pages from Apache Tomcat to OC4J
	Introduction
	Migration Approach
	Migrating a Simple JSP Page
	Precompiling JSP Pages

	Processing Runtime Errors
	Servlet and JSP Runtime Error Mechanisms
	General Servlet Runtime Error Mechanism
	JSP Error Pages

	JSP Error Page Example
	Code for nullpointer.jsp
	Code for myerror.jsp

	7 Working with Custom Tags
	What Are Custom Tags?
	Available Tag Libraries
	When Should You Consider Creating/Using Custom Tag Libraries?
	Eliminating Extensive Java Logic
	Providing Convenient JSP Programming Access to API Features
	Manipulating or Redirecting JSP Output

	Working with Tag Handlers
	What Are Classic Tag Handlers?
	Classic Tag Handler Interfaces
	Custom Tag Processing, with or without Tag Bodies
	Tag Handlers That Access Body Content

	What Are Simple Tag Handlers?
	The SimpleTag Interface
	Using Attributes

	Attribute Handling and Conversions from String Values in Tag Handlers
	Using Scripting Variables in Tags
	Scripting Variable Scopes
	Variable Declaration Through TLD <variable> Elements
	Variable Declaration Through Tag-Extra-Info Classes

	Access to Outer Tag Handler Instances
	Implementing a Tag Handler
	Creating the Tag Handler Class
	Defining the Tag in the TLD
	Declaring the Tag in a JSP Page
	Using the Tag in a JSP

	OC4J Tag Handler Features
	Disabling or Enabling Tag Handler Reuse (Tag Pooling)
	Enabling or Disabling the Compile-Time Model for Tag Handler Reuse
	When Can the Compile-Time Tag Pooling Model Be Used?
	Code Pattern for the compiletime Tag Pooling Model
	Code Pattern for the compiletime-with-release Tag Pooling Model

	Tag Handler Code Generation

	Working with Tag Files
	What Are Tag Files?
	Tag Body Processing
	Using Attributes in Tag Files
	Exposing Data through Variables in Tag Files
	Using JSP Fragments
	Creating a JSP Fragment
	A Tag File Example

	Implementing a Tag File
	Creating the Tag File
	Packaging Tag Files
	Declaring the Tag File in a JSP

	Sharing Tag Libraries Across Web Applications
	Packaging Multiple Tag Libraries and TLD Files in a JAR File
	Key TLD File Entries
	Key web.xml Deployment Descriptor Entries
	JSP Page taglib Directives for Multiple-Library Example

	Specifying Well-Known Tag Library Locations
	Enabling the TLD Caching Feature
	Understanding the TLD Cache Features and Files

	8 Understanding JSP XML Support in OC4J
	Introducing JSP Documents and XML Views
	Working with JSP Documents
	Specifying a Document Root Element
	Declaring Tag Libraries with XML Namespaces
	Using JSP XML Directive Elements
	Example: page Directive
	Example: include Directive

	Using JSP XML Declaration, Expression, and Scriptlet Elements
	Example: JSP Declaration
	Example: JSP Expression
	Example: JSP Scriptlet

	Using JSP XML Standard Action and Custom Action Elements
	Including Template and Dynamic Template Content
	Sample Comparison: Traditional JSP Page Versus JSP XML Document
	Sample Traditional JSP Page
	Sample JSP Document

	Understanding the JSP XML View
	Transformation from a JSP Page to the XML View
	The jsp:id Attribute for Error Reporting During Validation
	Example: Transformation from Traditional JSP Page to XML View
	Traditional JSP Page
	XML View of JSP Page

	9 JSP Globalization Support in Oracle
	Content Type Settings
	Content Type Settings in the page Directive
	Dynamic Content Type Settings
	Oracle Extension for the Character Set of the JSP Writer Object

	JSP Support for Multibyte Parameter Encoding
	Standard setCharacterEncoding() Method

	A Third Party Licenses
	Apache
	The Apache Software License
	License
	Notice

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

