ORACLE

Oracle® Application Server
Web Services Developer's Guide

109 (10.1.3.1.0)
B28974-01

September 2006

Oracle Application Server Web Services Developer's Guide, 10g (10.1.3.1.0)
B28974-01

Copyright © 2006, Oracle. All rights reserved.

Primary Author: Thomas Pfaeffle

Contributing Author: Simeon M. Greene, Sumit Gupta, Bill Jones, Tim Julien, Gigi Lee, Mike Lehmann,
Jon Maron, Kevin Minder, Bob Naugle, Eric Rajkovic, Ekkehard Rohwedder, Shih-Chang Chen, Quan Wang

Contributor: Ellen Siegal, editor

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PUOIACE ... et s et s e e XiX
| gk rs) gl (< e MU AN B s A1) a Lol <R ROSOPRRRRTRT XiX
Documentation AcCesSIDILitycccoiiiiiiiiiiiiiiiii e XiX
Related DOCUITIEIESveovieieiiecieeeeeeeeeeeeee ettt ettt e et e e et e eaaeeaeeenaeeseesssseseesseseseeesesenseensessnseeseeans XX
COMVEILIONS ..oeiieiitieeeeeeiteee e e ettt e ettt e e ee ettt e e e eesaateeeeeeeataeeeesessaaseesseesaaaeesesesssasesesssnteesessnsstaseeesnnnsarees XXiv

1 Web Services Overview

Understanding Web Services ... 1-1
Web Services Standardsocoociiiiiiiiininecieeteee et 1-2
Java 2 Enterprise EAItIONccoviiiiiiiiiiiiii e 1-2
Simple Object Access Protocol 1.1 and 1.2........c..coiiiiiiiiiiieecc e 1-2
Web Service Description Language 1.1.........ccocoiiiiiiiiiiiicciecce s 1-3
Web Service-Interoperability Basic Profile 1.1cccccooiiiiiiiiiiiieicceeeeeeereeenenenes 1-3
Web Service Inspection Language 1.0.........cocuouoiiriiiiiiicccec e 1-3
New and Enhanced FEaturescccoeuiiiniiiiiinniiiiiiieccreeetcetse et 1-4
Web Service Security for Authentication, Integrity, and Confidentiality..........c.cccccceceeennnnes 1-4
Web Services Management Framework and Application Server Control..........cc.ccccoeeueinnine. 1-4
Web Services Metadata for the Java Platform (J2SE 5.0 Web Service Annotations) 1-5
REST WED SEIVICESoovviiiiiiciciiciciccc s 1-5
Enhanced Web Service Test Pagecccoooeriiiiriiii 1-5
Ant Tasks for Configuration and Scripting.........cccccceveeeiiiiiiiiiiinniicn, 1-6
Custom Type Mapping Framework for Serialization..........c.cccocovviinnninnnnni, 1-6
Database Web ServiCes.........ccccoviiiiiiiiiiiiiiiiiiiiiii s 1-6
SOAP Header SUPPOTLcceuiiiiiiiiiiriiiiiiiiiiccr s 1-6
MIME and DIME Document SUPPOTt.......ccccoeiviiiiiiiiniiiiiiiiiin e, 1-7
MTOM Binary Content as Attachments ..o, 1-7
Message Delivery Quality of Serviceocooviiiiiiieiniiiiiccc e, 1-7
JMS Transport as an Alternative to HTTP........cccoooiiiiiiiiiiic 1-8
Web Services Provider SUPPOItccouiiiiiiiiice e 1-8
Web Services Invocation Framework for Describing WSDL Programming Artifacts............. 1-8
SOAP Message Auditing and LOZZINGccoviriiiiiiiiiiiiiieie e 1-8
Oracle BPEL ..o 1-9
Oracle Web Services Managercccccuiiuiiiiiiiiiiiiiiiiiiiieiiitessss s 1-9
Compeatibility with Previous Versions of OracleAS Web Servicesccccoevviiiiinininnnnnn 1-9
Redeploying Applications on OracleAS Web Services 10.1.3.1coooruiiriiriiiiiiiiic 1-10

Deprecated FEAtUIesccovuiiiiiiiiiiiiiiiiiicccc s 1-10
Clustered Environments and High Availability ..o 1-10
OC4] in a Standalone Versus Oracle Application Server Environment............c.c.cccoeencnnacne 1-11

Development and Documentation Roadmap

OracleAS Web Services Architecture and Life Cycle

ATChIEECHUTE ... 3-1
Processing COMPONENLEScciuiuiiiiiiiiiiiieiieee e 3-1
Protocol HAnNdIerscccoiiiiiiiiiiiiicicicie e s 3-2

XML PIOCESSING.....ocuiiiiiiiiiiiiiiiic s 3-2

Policy ENforcement ..o e 3-2
JAX-RPC HANAIETS.ccuteieieiietieieeieetese ettt ettt sttt ettt s et eb bbbt e e et s enes 3-3

Data BINAINgccovoviiiiiiiiccc e 3-3
Endpoint Implementationcccceeiiiiiiininiiniicc 3-3

Java Management Extensions (JMX)ccccccoceiiiiiiniiiiiiiss 3-4
Development TOOILSc.cccciiiiiiiiiccere e 3-4
Web Services Development Life Cycle ..., 3-4
Create the Implementation ... 3-5
Assemble the WeD SErvice ... 3-5
Assemble the CHENt ..o 3-5
Deploy the Web Service ..o 3-6
Test the WED SEIVICEcvviiiiiiiiccrc e 3-6
Perform Post Deployment Taskscccocoviiiiiiiiiiiiiiii 3-6

Getting Started

Supported PIatfOrms............cocoiiiiiiiiiii 4-1
HOW t0 INSEAll OCA] ...c.viiiiiiiiicierte ettt sttt ettt sttt sa et sttt sbenees 4-1
How to Set Up Your Environment for OracleAS Web Servicescocccveerecinecncnnecnccnennns 4-1
How to Set Up Ant for WebServicesAssembler ... 4-3
How to Set Up Ant 1.6.5 Distributed with Oracle Application Serverc.cccooveviiiieininne. 4-3
How to Set Up Ant 1.6.5 Using a Previous Installation of Ant ..o 4-4
How to Set Up Ant 1.5.2 Using a Previous Installation of Ant ..o, 4-5
How to Set Up the "oracle:" Namespace Prefix for Ant Tasksccccoooeuiiiiriiniiiniincnnnn, 4-6
Database REQUITEIMENLESc..ccoovvuiiiiniiiieiiccereee ettt 4-6

OracleAS Web Services Messages

OracleAS Web Services Message Formats.............ccoocoiiviniiiiiniiiccccces 5-1
Understanding Message FOrmatscooooiiiiiiiiioiiiici 5-2
RPC and Document StYLes..........ccccvviriiiiiiiiiniiiiiiiicnirsensss e 5-2

Literal and Encoded USESccoovviiiiiiiiiiimiiiiiicc s 5-2
Supported Message FOIMAtsccccvuiiiiiiiiiiiniiiiii e 5-2
Document-Literal Message Format...........cccccoceviiiiiiiiiiiiiiniiiiiiincincnnccneescene 5-3

Sample Request Message with the Document-Literal Message Format...................... 5-3
RPC-Encoded Message FOrmat..........ccocueuiiuiiiiiiiicicc e 5-4

Sample Messages with the RPC-Encoded Message Format.............cccccvvvvininininininnee. 5-4

The xsi:type Attribute in RPC-Encoded Message Formatsccoooovevirciiiinnnnan. 5-5

Oracle Specific Type SUPPOTt.......cooueiiiiieiiicic 5-6
Restrictions on RPC-Encoded FOormatcccooviiiiininiiiicccccecne 5-8
RPC-Literal Message FOrmat............oooiueiiiiiiiiiiiicic s 5-8

Sample Request Message with the RPC-Literal Message Formatccccccceveuneee. 5-9

How to Select Message Formats for a Web Service ..., 5-9
Changing Message Formats in a Service Implementation...........c.ccccoooiiiiiiiiniiccnne, 5-11
Message Format Recommendations.............coocueioiiiiiiiiiiciice e 5-11
Working with SOAP MeSSages............ccooiiiiiiiiiiiiiiiiii s 5-11
Understanding the OraSAA]J APISccouoiiiiiiiiiiic e 5-12
How to Use the OraSAA]J APIs to Manipulate SOAP Messagesccccooeeucueiricucieieecnnnnne. 5-13
How to Work with Messages with Attachments Containing Binary Data..........c.cccccccueuunee. 5-14
How to Convert XML Elements to SOAP Elements ..o 5-14
How to Use SOAP 1.2 Formatted Messages in Bottom Up Web Service Assembly 5-14
How to Use SOAP 1.2 Formatted Messages in Top Down Web Service Assembly.............. 5-15
LAMItationscooiiiiiii et 5-16
Additional INformation.............ccccoeviviiiiiiii 5-16

Assembling a Web Service from WSDL

Understanding Top Down Assembly ..o 6-1
How to Assemble a Web Service TOP DOWIN.........ccoeciriiiiiniinieieireciceneeeneereesree e 6-2
Prere@qUISITES.....cuouiuiiiicei et 6-2
Steps for Assembling the Web Service TOp DOWN.........cooiiiiiiiiii 6-3
LIMItations.....c.ccooviiiiiiiii e 6-7
Additional INformation..............coccoiiiiiiiiiiii e 6-7

Assembling a Web Service with Java Classes

Requirements for Writing Java Classes for Web Services.............ccoviiivniiiiininiiiniccnns 7-1
Java Classes and Stateless Web ServViCescccoccuveiriririniniiniiinieineeenteeneeseeeieeere e 7-2
Exposing Java Classes as a Stateless Web Service.........cccocceciiiiiiiiiieinicicniccececeeeeceeeeeenas 7-3
How to Assemble A Stateless Web Service with Java Classescccoceeevenenenienienieneenencncnnens 7-3
PIrerequiSites ... s 7-3

Steps for Assembling a Stateless Web Service with Java Classescccoovvrrenecnincnccnee. 7-4

How to Write Java Implementations for Stateless Web Servicescccccovviiniinnnnninee. 7-7
How to Define a Java INtEIfaceccocvvieierierieieieeeeeteeet ettt 7-7

HOW t0 Define @ Java Classccvevevierieierieieieieeeisestestesiessestesaeseseessesassessessessessessessessessessesens 7-8

Java Classes and Stateful Web Services...........ccccoevireinieineinieinieineineeectereseeeseevesev e senesnenes 7-9
Exposing Java Classes as a Stateful Web Serviceccccceiiiiiiiiiiiniiiiiiciciccicns 7-9
How to Assemble a Stateful Web Service..........cccoovvrviniiininiiiiirnnrnreeee e 7-9
PIereqUiSItescoooviviiiiiiieietcce s 7-9

Steps for Assembling a Stateful Web Service..........cccooveriiiiiiiiiiiccce 7-9

How to Write Java Implementations for Stateful Web Servicesccccccoovuvvvvvninnnnene. 7-13
How to Define a Java INterfacecocooererieiieiiiiiiiieeeeseseee ettt 7-13

HoW t0 Define @ Java Classccevuerierierieieieieeeieetesie ettt ete st esessestessessessessensensenseneesessens 7-14
Packaging and Deploying Web Servicesccccoviiiiiiiiiininiiic 7-14
Tool Support for Exposing Java Classes as Web Servicescccocoeviiniiinniiiinniniicnne, 7-14

10

vi

LI (=X 0 10 4 1< TR 7-14
AddItional INFOrmMAatioN.........oocvoiiiiiiiieie ettt ettt e et e et e e s teeesaaeessaaeesnneeeennns 7-15

Assembling a Web Service with EJBs

Exposing EJBs as Web Services............ccccoooiiiiiiiiiii s 8-1
Working with Version 2.0 EJBS ..o 8-2
Working with Version 3.0 EJBsccoiiiiiii i 8-2

How to Assemble a Web Service With EJBScccocoiiniiniininincncncrceeseceeeesieeeieees 8-2
PIrereqUiSItes. ...t 8-2
Steps for Assembling a Web Service from an E]Bcoooiiii 8-3

How to Write EJBs fOr WeDb SEIVICESccoeviriiiriiiriiiniinieiieeieente sttt sttt 8-6
How to Write an E]JB Service Endpoint Interfacecocoovvvvinnnnnnnnnnenceeerecnene 8-6
How to Implement an EJB Interface for Web Services ..., 8-7

Packaging and Deploying Web Services that Expose EJBs............cccccccoceiniiiniiiiiiiiiinn, 8-8

How to Secure EJB-Based Web Services at the Transport-Levelcccccoocniiniininninnen. 8-9

Tool Support for Exposing EJBs as a Web Service..............cccccoiiiiiiniiiinniiiicccccs 8-9

Limitations.......coooiiiiiiiii s 8-9

Additional INformation..............ccccccoiiiiiiiiiiii 8-9

Assembling Web Services with JMS Destinations

Understanding JMS Endpoint Web Services..............ccccooiiiiniiiiniiiiiicccs 9-1
Steps for Assembling a JMS Endpoint Web Service ..., 9-3
Message Processing and Reply MeSSagescooeueueiiiicieiniiiicieieiicice i 9-7

LAMItationSoooviviiiiii s 9-7

Additional INformation.............ccccocoeiiiiiiiiiii s 9-8

Assembling Database Web Services

Understanding Database Web Servicescccooviiiiiiiiiiiiiiiiicccccs 10-1
Type Mapping Between SQL and XMLcccccccoviiniiiiniiins 10-3
SQL to XML Type Mappings for Web Service Call-Ins........cccccceeuvvuvirrrrnnnnnnnnrerecenes 10-4
Changing the SQL to XML Mapping for Numeric Types........cccccoviiriiiiiicieiiinicienes 10-6

XML to SQL Type Mapping for Web Service Call-Outsccccevuvevviiinnninnnniinnne 10-6
Developing Web Services that Expose Database Resources.............cccccoooviiiiiinniiininnnicnnnn, 10-6
How to Use Life Cycle for Web Service Call-in.........cccouiiiiiiiiiiice, 10-7
WebServicesAssembler Support for Web Service Call-in..........cccooviiiiiiiiiiiiciiinnen 10-7
How to Assemble a Web Service from a PL/SQL Packagecccccoceueueueurnniinnrnnrnnnes 10-9
PrerequiSites ... s 10-9

Steps for Assembling a Web Service from a PL/SQL Package..........cccccoeuevirriininicnnnnns 10-9

Sample PL/SQL PaCKage.......c.cccvuiiriiiiiiiiiiciiirecer e 10-12

How PL/SQL Function Names are Mapped to Web Service Operation Names 10-13

How to Access PL/SQL IN and IN OUT Parameters from Client Codec.......... 10-13

How to Access SQL XMLType Types from Client Codecccceueuvuvrvinnnnnvnrnenes 10-15

How to Assemble a Web Service from a SQL Query or DML Statementcccceoeeenene. 10-15
PrerequiSitescoviuiiiiiiiiiiiiic s 10-15

Steps for Assembling a Web Service from a SQL Statement or Queryccccocvveneee. 10-16

Sample SQL Statements ..o 10-18

How SQL Queries are Mapped to Web Service Operations............cccccoevvvviniiiiiniiinenne 10-18

How DML Operations are Mapped to Web Service Operations............cccccevuvvviririnnnnes 10-22

How to Assemble a Web Service from an Oracle Streams AQccovveveereeeeeeeeeieereecreeneens 10-22
PIrerequiSites ...t 10-23

Steps for Assembling a Web Service from an Oracle AQcccccvviviiininiinninnnne 10-23

Sample AQ Queue and Topic Declaration..........cccccccoceecicennninennnccrreeerreees 10-26

Sample Web Service for a Queue Generated by WebServicesAssembler 10-26

Sample Web Service for a Topic Generated by WebServicesAssembler 10-28

How to Access an AQ Queue Exposed as a Web Service from Client Code 10-31

How to Access an Oracle AQ Queue With JMS.......ccoociiiiiiiiiceeeeeee e 10-31

How to Assemble a Server-Side Java Class as a Web Serviceccccevueeveveecieniecvenreereenene, 10-32
PIerequUiSitesccoviiiiiiiiiiiiiiicc s 10-32

Steps for Assembling a Web Service from a Server-Side Java Class...........cccccevvrvreinne 10-32

Sample Server-Side Java Class.........ccoeorueieiiiieieiiicieec s 10-35

Sample Web Service Operations Generated from a Server-Side Java Class 10-35
Developing a Web Service Client in the Database.................ccoooii, 10-36
Understanding Web Service Call-Out..........c.ccouoioiiiiiiiiiic 10-36
How to Call Web Services from the Databasec.cccccoceueurueiiiniirniiinnrrnnrreeeeeeeenes 10-38
How to Perform Web Services Call-Out using Static Proxy and JPublisher................. 10-38

How to Perform Web Services Call-Out using DII and the SYS.UTL_DBWS Utility . 10-40

Tool Support for Web Services that Expose Database Resources.............cocccoeeeneineccncccnnencns 10-40
LIMItationScocviiiiiii e 10-41
Additional INformation.............coooiiiiiiiiii 10-41

11 Assembling Web Services with Annotations

OracleAS Web Services and J2SE 5.0 Web Service Annotations...........ccccoeevenieininenencncnennens 11-1
Supported ANNOLAtIONS.......c.ccoiriiiiiiiiiiecec et s 11-2
Supported J2SE 5.0 JDK ANNOtatioNS........cccvviviiiiiiiiiiiiiiiiciiiniiccc s 11-2
Using WebServiceRef within OracleAS Web Services ..o, 11-3

How the WebServiceRef Annotation Determines the Mapping File Name............. 11-4

Specifying WSDLs with Multiple Ports in the WebServiceRef Annotation............. 11-4
WebServiceRef Annotation Examples...........ccccooiiiiiiiiniccee 11-5

Oracle Additions to J2SE 5.0 JDK ANNOtationsS.......ccecceeveieierinieniesierieieeeceeeeseessessessessessessesnes 11-6
Deployment ANNOtAtioNc.c.oviiiiiiiiicicic s 11-7
Schema ANNOATION.c.cccoiviiiiiiriiecee ettt 11-8
WSIFE]BBIinding ANNOtationccociiiiuiiiimieeiiieciceeeeeeeie e sesesesenesenenens 11-9

How to Use ANNOtations...........ccccovviiiiiiiiiiiiiiiiiiii s 11-11
Steps to Use Annotations to Assemble a Web Service from Java Classesc.ccccceeuuuce. 11-11
Steps to Use Annotations to Assemble a Web Service from a Version 3.0 EJB.................... 11-12
How to Override ANNOtatioNscccovvviiieiiiiiiiiiii s 11-13
How to Override Annotation Values with WebServicesAssemblerccccecevunce 11-13

How to Override Deployment Annotation Values with Deployment Descriptors..... 11-13

Sample Java File with ANNOtationscccoviiiiiiiiiiiiiiiii 11-14
LAMItationscooooiiiiiiiii e 11-16
Additional INformation..............cocooooiiiiiiiii 11-16

vii

12 Assembling REST Web Services

Understanding REST Web Services............ccccocovviiiiiininiiniiiccss 12-1
WebServicesAssembler Support for REST Web Servicesc.cocoveeirecnenncnnieeeneeneenenes 12-1
Commands that Can Assemble REST Web Services..........ccouviuiiiniiiiiininiiiiinicccceenns 12-2
Annotations that Support REST Web Servicescoomieiiiiieiiiccecee 12-2
How to Assemble REST Web Services..........ccccoviiiiniiiiiinniiiiiccnes 12-2
Steps to Assemble a REST Web Service Top DOWNcovviiiiniiiiiiiiiiciiciccccce 12-2
How to Access REST Web Service Operations.........c.c.ccoecueueioicciciniicieeiceeeicis 12-4

Steps to Assemble a REST Web Service Bottom Up........ccccccciiiiiciiiiiieccccecccenenee 12-6
How to Access REST Web Service Operations..........c.ccceeeeieiniiiciciiicciceeceeenens 12-8

How to Test REST Web S@IVICeSccociiiiiiiiiiiiiiiiiciicec e 12-9
REST Additions to Deployment Descriptors ... 12-9
How REST Builds Requests and ReSponses..............ccococuiiiniiiininiiiininiicciccccccnes 12-9
HTTP GET REQUESLS ..ottt 12-9
HTTP POST REQUESLScoviiiiiiiiiiiiiiitsc s 12-11
REST RESPONSES......cvcviviviiiiiiiiiiiiiiicieiciccs s s s aeaes 12-11
Tool Support for REST Web Services..........cccccooiiiiiiiiiiiiiicccccnnas 12-12
Limitations........cooooiiiiiiiiiii e 12-12
Additional INformation............c.cccccoiiiiiiiiiiiii s 12-12

13 Testing Web Service Deployment

Steps to Access and Test Web Service Operations..............cccccccviiiiinininiiiiniciicccce 13-1
How to Access the Web Services Test Pageccccoovviviiiinniiiiiis 13-2
Accessing the Web Services Test Page through a Web Browser...........cccccccoceciiccccccnnee. 13-2
Accessing the Web Services Test Page through Application Server Control......................... 13-3
Accessing a Web Services Test Page Protected with SSL.........ccooooviii, 13-3
Accessing the SSL-Protected Test Page when OracleAS Web Services Runs as Standalone...

13-4

Accessing the SSL-Protected Test Page when OracleAS Web Services runs on Oracle HTTP
Server 13-5

How to Use the Web Services Test Page.............ccccooviiiiiiiiiniiiiiiiniiiiiicccccccs 13-6
Viewing the Web Service WSDL........ccocoiiiiiiiiiiiiicceeceee et 13-7
Editing Values in the Test Page...........ccoouoviiiiiiiiiii 13-9

How to Edit the Test Page as XML SOUICE..........cccouimiieiniiieiiiiceeicie e 13-9

Testing WS-Security and Reliable Messaging Features............ccccccevueeiennvinnnnnirnene 13-10
Reliable Messaging Parameterscooceicieiiiiicieiici s 13-10
WS-Security Parameters............ccooviiiiiiiiiiiicc e 13-11
Enabling HTTP Authentication for the Web Service Test.........ccccooceiiiiiiiiiinciiiccnnes 13-11
Stress Testing the Web Service Operation ..o 13-12
Invoking the Web Service TeSt ..o 13-13
Invoking the Test for a JAX-RPC Web Serviceccccoovueuievvivnnrniirrnccerececnes 13-13
Invoking the Test for a REST Web Service...........cccoouruiiminiiiiiciiiecccc s 13-14

INVOKE .t 13-15

Invoke REST POST ... 13-16

Invoke REST GET ..o s 13-16

How to Disable the Web Services Test Pagecccccooiiiiiiiiiiiiiiiccccccccccne, 13-17
How to Obtain a Web Service WSDL Directlyccccoooeiiniiiiniiiiiice 13-18

viii

14

15

I I8 (b =X 0 L0 1 TSRO 13-18

Additional INformation..............coooiiiiiiiii e 13-18
Assembling a J2EE Web Service Client

Understanding J2EE Web Service Clientscccccoovvvviiiiiiniiinnns 14-1
How to Assemble a J2EE Web Service Clientcccoeoveviirieniinieneeeeeeeeeeeeieeee e 14-1
Prere@qUISITeS.....coviiiciiiietctc s 14-2
Steps to Assemble a J2EE Web Service CLentccoovieioiiiiiiicce, 14-2
How to Add J2EE Web Service Client Information to Deployment Descriptors 14-4
Steps to Deploy and Run an Application Client Module...........ccccccocvvviiiiiiiinniiiine, 14-5
How to Access a Web Service from a Client in the Same Module............cccooooiiiiinnn. 14-6
How to Add a Port Component Link to a J2EE Client Deployment Descriptor 14-6
How to Add OC4J-Specific Platform Information for Deployment and Runtime................ 14-7
How to Add JAX-RPC Handlers for Message Processing to Deployment Descriptors 14-12
Writing J2EE Web Service Client Code.............ccooiiiiniiiiiiiiiiie 14-12
Steps for Writing a J2EE Web Service Client............cccoooieiiiiiiiiiiccc 14-12
How to Configure a J2EE Web Service Client for a Stateful Web Servicec.ccoevveencne 14-13
How to Configure a J2EE Client with Deployment Descriptor Files...........cccccccoceneee. 14-14
How to Configure a J2EE Client Programmaticallycccoooviieiiiiiiiiiic 14-14
How to Configure a J2EE Web Service Client to Make JMS Transport Calls 14-15
How to Enable Chunked Data Transfer for HTTP 1.1.....c.cccccooviiiiininiicie, 14-15
How to Set a Character Encoding for a SOAP MeSsage..........ccccouovuviuruninininnininisieiseees 14-16
Understanding the Packaging Structure for J2EE Clients.............ccoooiiiiiiiiiiiiiiiinn. 14-17
Understanding the Packaging Structure for a Servlet or Web Application Client.............. 14-17
Packaging Structure for Servlet or Web Application Clients..........cccccovviriiiiiiinenne. 14-17
Relationship Between Deployment Descriptors for Servlet or Web Application Clients........

14-18
Understanding the Packaging Structure for an EJB Clientc.cccccoceeiiiiiiincnicnnne. 14-19
Package Structure for E]JB Application CHENts..........ccccovevvviiiiiiiiiiiicnns 14-19
Relationship Between Deployment Descriptors for EJB Application Clients............... 14-20
LAMItationsoouiiiiic et 14-21
Additional INformation..............cocooviiiiiiiiii 14-21

Assembling a J2SE Web Service Client

Understanding J2SE Web Service Clientscccccoovviiiiiiiiiiiiiiicccs 15-1
Understanding Static Stub CHents...........ccoooiiiiiiiiieicc e, 15-1
Understanding JAX-RPC Dynamic Invocation Interface...........c.cccceeevevenvninnnnnnrnenes 15-2
How to Assemble a J2SE Web Service CLientc.ccccoeivieiinieineinineinctneeececeeseneeneneenes 15-2
PrerequUiSItes. ...t s 15-2
Steps to Assemble a J2SE Web Service Client with a Static Stubc.ccccceeeiniinncnne 15-2
Sample WSDL FIlecoviiiiiiiiiiiiiiciciic s 15-3
Writing Web Service Client Applications.............cccocooviviiiiiiiiiniiiiiinicccsscs 15-5
Understanding the Client Utility Class File ..o 15-5
Steps to Create a Service FaCtOTy ..o 15-6
How to Enable Chunked Data Transfer for HTTP 1.1.......cccccccooiiiiiiiiiiiiiiciccccee 15-8
How to Set a Character Encoding for a SOAP Message on a J2SE Client..........cccccccceueueunnee. 15-8

16

17

18

How to Set Cookies in a Web Service CHEent Stubocveveviiieeiiiieeeeeeeeee e 15-8

How to Use Dynamic Invocation Interface to Invoke Web Services ..o 15-9
BaSic CallS....uouimiiiiiiciicicce et 15-9
Configured Callscoueiiiiiiei 15-10
Examples of Web Service Clients that use DIL...........ccooooiiiiiiiiiiii e, 15-12

Tool Support for Assembling J2SE Web Service Clients.............cccovviiiiniiiiiniiiinniine, 15-15

Additional INformation.............ccccccoiiiiiiiiiiiiii s 15-15

Using JAX-RPC Handlers

Understanding Message Handlers ..o 16-1
How to Write a JAX-RPC HandIer..........c.cccoeniiiniiiniiiicinicincte ettt saenes 16-2
How to Configure and Register a Server-Side Handler with Ant Tasks................ccccccccoenin. 16-2
Ant Tasks that can Configure and Register Handlersccccoooeiiiiiiiinnn 16-3
How to Edit webservices.xml to Register a Server-Side Handler.................cccccevvvnnnnnnnn 16-3
Client-Side JAX-RPC HaNAIETScccccveieriieieriieieeeeieseetestete st et e saesseessestessesssenseessessesnsensesnes 16-4
How to Register a JAX-RPC Handler for J2EE Web Service Client...........cccccoeuveviiiiiniennnn. 16-4
Using the handler Element in a J2EE Web Service Client...........cccccceiviiiiiiiiinnnnnnn, 16-5

How to Register a JAX-RPC Handler for a J2SE Web Service Clientc.cccccccuccucreucnenne. 16-6
LAMTEAtIONS ...ttt bbbt b ettt et e a et e he et besaen 16-6
Additional INfOrmMation.........cocoiiiiiiiii ettt ettt sttt et et ea e st eaeebeebesbeseenean 16-6

Processing SOAP Headers

How to Process SOAP Headers with Parameter Mapping.............ccccovvvvnininininiinnnn, 17-1
Ant Tasks and Commands that can Map Headers to Parametersc.cccocovvvevnnnncncnnee 17-3
How to Process SOAP Headers by Using Handlers................cccocooviiiniiiiiniii 17-3
How to Process SOAP Headers by Using the ServiceLifecycle Interface................ccccceevnnnnn 17-4
How to Get HTTP Response and Request Headersc.cccoecciiiiiiiinccicciccceene 17-4
How Stub Clients Can Get Headers with the ServiceLifecycle Interface 17-5

How DII Clients Can Get Headers with the OracleCall Interfacec.cccccevvvivinnininnn 17-6

How DII Clients of WSIF Services Can Get Message Headerscccccccccueniunncncnnee. 17-6
LiMItationscooiiiiiii et 17-6
Additional INFOrmMation..........cooeuiiiiiiiiiiiiiicicc et 17-6

Using WebServicesAssembler

About the WebServicesAssembler ToOl..............cccocoviiiiiiniiiiiiiiii s 18-1
Command LINe SYNEAXc.cccueuiuiuiiiieiiiciieeeeeeeeee et seeeees 18-3
Setting Up Ant for WebServicesAssembler ... 18-3
WebServicesAssembler COmMmMmMAandSccceeiriiiiiininieieiiinineeinee et 18-3
Web Service Assembly COMMANS.........cccoiiuiiiiiiimiiieeeieieeeeere e seseneaeseseneaenees 18-4
AQASSEINDLE ..o s 18-5
ASSEINDLE ...t 18-7
COTDAASSEIMDIE. ...ttt 18-10
ADJAVAASSEMDIE ...ttt 18-12
EJDASSEINDIE ... 18-14
JINSASSEIMDIE ... e 18-16
PISQLASSEMDIE ... s 18-17

SQLASSEIMDIE ... 18-19

tOPDOWINASSEMDIE. ... 18-22
WSDL Management COMMANScceiiurmiimiiiimiiiiceeeiceeceeeesese e esesesesesesesenenenens 18-24
ANALYZE evtite e 18-24
FEECRWSAL...o e 18-25
GENCONCIELEWSAL ...t 18-26
ENQOSWSAL.....oiiiii 18-27
GENWSAL..o e 18-28
Java Generation COMMANAS.........ecevierieieieiiietieirestestebetete e aesteee e e ssessessessessessesseseeseesenses 18-31
GENINEEITACE......oviiiee 18-31
GENPTOXY ..ottt 18-34
GENVAIUETYPES ..o 18-36
Deployment Descriptor Generation Commands............cccocvvvininininiinininine 18-38
geNAppPlicatioNDeSCIIPLOT «.....vvieieciii 18-38
GENDIDIS ..o 18-38
Maintenance COMMANSccoeueviiiieiiiiiiiiiii 18-40
RELP o 18-40
R3304SR 18-41
WebServicesAssembler ArgUMENtScccoooviiiiiiiiiii s 18-41
General Web Services Assembly Arguments............oooceueieiicieiiiiiiciceeceeece s 18-41
APPNAIMIE ..ot 18-42
bINAINGNAME......ooiieiii e 18-42
ClassFIlENAIMEccoiiiiiiii s 18-42
ClASSINAIME ... s 18-43
ClassPath ... 18-43
AEDUG oo 18-43

T OO 18-44
EJDINAINE.......viiiiiiic s 18-45
eMPtYSOAPACHON. ...ocviiiii s 18-45
LD e 18-46
NitialCONteXtFACLOTY ...ovieecei s 18-46
TP UL ot 18-46
interfaceFileNamMe...........cccooiiiiiiiiiic s 18-47
INEEITACENAIMNE ..o 18-47
JAAINAINE ..o 18-47
JNAIPTOVIAErURL ... 18-47
MapPINGFIlENAMEc.ccoviiiii 18-47
OUEPUL ot 18-48
PACKAGEINAINIE ...ttt aes 18-48
POTENAIINE «..ovtct ettt 18-48
POItTYPENAIMNE ...t 18-49
TESESUPPOTIL ...ttt 18-49
SCHEIMA ... 18-49
SEATCRSCREIMIA. ...t 18-50
SEIVICEINAIIIE ...t 18-50
strictfaxrpcValidation ... 18-50
USEDIMEENCOAINGcviiiiiiiiiiii e 18-50

xi

Xii

SeSSI0N ATGUMENESvviiiiiiiitc st 18-51
CALISCOPE ... e 18-52
FECOVETADIE ...t 18-52
TS 10 o OO 18-52
EIMEOUL ...t 18-52

CORBA Assembly Arguments...........cccceueiirieiiicicieice s s 18-52
corbanameURL.........cccocoviiiiiiiiiii 18-53
COrbAODTECIPAtI ... 18-53
IALFILE oo 18-53
idlINterfacelNAIMEcovviiiiiiiiiii e 18-53
IALPAtN ..ot 18-53
ORBINItIAIHOSEoovviiieiiciiiccccc 18-53
ORBINIAIPOTTovviiiiiiiiicc e 18-53
ORBINIERES ..o s 18-53

Database Assembly Argumentsccccooiiueiiiiiiiiiiice 18-53
aqConnectionFactoryLoCation ..ot 18-54
aqConnectioNLOCAtION.........civiiiiiiiiic s 18-54
AAtASOUICE......oviiiiic e 18-54
ADBCONNECHON ...t 18-54
ADJAVACTASSINAITNIEc.viieieiesieieteeteetett ettt e e saesaeseeseesaesessessessessessessessesseseessasensenes 18-55
ADUSET....oviiiiiccc s 18-55
JOUDPIOP oo 18-55
S e 18-55
SUIStALEMENTvviiii s 18-56
SQUTIMEOUL .ot 18-57
SYSUSET .ttt 18-57
USEDAtASOUICE ... 18-57
WSIEDDBINAING...cvviiei e 18-57
WSIEDDPOT ¢ttt 18-57

JMS Assembly ArgUMENtS........ccoueiiiiiiiiiici s 18-58
AElIVEIYMOME ... 18-58
eNJMSPTOPErtyHEAdET ... 18-59
JNSTYPEHEAAET ... 18-59
linkReceiveWIthREPLYTOc.cucviiiiiiiiiiiiiiii e 18-59
payloadBindingClassIName..........cccccucuiiiiiiiiiiiiicceeeeee e 18-59
PIIOTIEY 1ottt bbb bbb 18-59
receiveConnectionFactoryLocation.........c.cocoe 18-59
1eCeIVEQUEUELOCATIONccctiiciieciieite ettt ettt et e e b e e beesaae e veesaseeaseessseesaeseeans 18-59
1eCIVETIMEOUL ...t 18-60
receiveToPIiCLOCAtiON.cciviiiiicc 18-60
replyToConnectionFactoryLocation...........cccueueuririciiirininiiiicreccereece s 18-60
replyToQueteLocation ... 18-60
rePlyTOTOPICLOCALION ...t 18-60
sendConnectionFactoryLocationccccceuciiiiriiiiiininiiicreccce s 18-60
SENAQUEUELOCALIONeeeuiieeeeiiceiee ettt ettt sae st et e b e sseesseesaessesnnassenneas 18-61
SENATOPICLOCAION.......coviiiiiiiiicic e 18-61

BIINIETOLAVE ettt ee e e e ee e e e seeabab e e e eesataaeeeseesateeeeeesassaeeeeennses 18-61

topicDurableSubscriptionName ..o 18-61
ProXy ATGUIMENEScccviviiiiiiiiiiiiiicic s 18-61
eNAPOINLAAAIESS.......coviviiiiiiiicc s 18-61
GENJUNITEST .o 18-61
Deployment Descriptor ATGUIMENTS........c.couvveuieuririririeirieerrreeerirereeie s 18-62
appendToEXistingDIDSccccviviiiiiiiiici s 18-62
COMUEOXE 1ttt 18-62
AAFIENAINEoviiiiiiiiii e 18-63
L o OO OO OO 18-63
WSDL Access ATZUMENTSc.cooviiiiiiiii sttt 18-64
fetChWSALIMPOTLS ... 18-64
httpNONPTOXYHOSES. ..ottt e 18-64
RHPPIOXYHOSEceeie e 18-64
REEPPIOXYTPOTE ... 18-64
IMPOrtAbStractWsdl.........covviiiiiiiiiiiiii 18-64
WL s 18-65
WSDL Management ATGUMENTS..........ccooiiiiiniiiiiiin s 18-65
createONeWayOperations. ... 18-65
GENQJOS ..ttt sttt ets 18-65
qualified ElementFOrm..........ccccoiiiiiiiiiiiicc s 18-65
SINGLESEIVICE .eviiiiiieiiiitt e 18-66
SOAP VETSION ..ottt 18-66
targetNAMESPACE.ocviviiiiic 18-66
tYPENAIMESPACE ...ttt 18-67
WSAITIMEOUL ..ot s 18-67
Message Format Arguments............ccoeiiiiiiiiiiiniiiiiic e 18-67
INEOMSUPPOT . cvviiiiiiici st 18-68
SEYLE o et 18-68
L0 USROS 18-68
Java Generation ArgUmentsccoooiiiiiiiiiiieiic s 18-68
dataBinding.......coovviiiiiiiiii e 18-69
mapHeadersTOParameterscccccciiiiiiiiiinieecceeeee s 18-69
OVEIWTItEBEANS ...t 18-69
UNWTAPPArameterscoooiiiiiiiiiiic e 18-69
ValueTYPeCIaSSINAIIIE.ociiiii e e 18-69
valueTypePackagePrefiX..........cocoviiiiiiiiiiii s 18-70
WSITEJDBINAING ..o s 18-70
WSIJaVABINAING ..o 18-71
Resolving Name COlIliSiONS...........cccoiiiiiiiiiiic s 18-71
Default Algorithms to Map Between Target WSDL Namespaces and Java Package Names............
18-72
Java Package Name to WSDL Namespace Mapping Algorithmc.cccocevvvnnnincnnennnce. 18-72
Mapping Java Artifacts to WSDL Artifacts........cccoccvviviiiiiiiniiicccinns 18-73
Mapping Java Types to XML Schema Typesccccoeeiviiiieiniiceieiccceecce s 18-73
WSDL Namespace to Java Package Name Mapping Algorithm ... 18-73

xiii

Mapping the WSDL Service Endpoint Interface and Related Endpoint Artifacts to Java
Package and Class Names 18-74

Mapping WSDL Value Types and Related Artifacts to Java Names and Types.......... 18-75

How t0 Specify @ NamMESPACEc.c.cueuiurireiiiiciciriecieirirercee et 18-75
How to Specify a Root Package Name...........ccccooviiiiiiiiiiiiiccc 18-75
How to Establish a Database Connection.................ccooooiiii e 18-75
Additional Ant Support for WebServicesAssembler............c.cccocveiniinecneinennenneenenenenens 18-76
How to Use Multiple Instances of an Argument in Antc.cccoooiiiiiiiiiiccie 18-76
How to Configure Proxy Generation in an Ant Taskcoooiiiiiiiic 18-77
How to Generate Handler and Port Information into a Proxycccccceceevvvvvrnecnes 18-78

How to Configure a Port in an Ant TasK.........c.couiiiiiiiiii e, 18-78
How to Configure a Port Type in an Ant Task........cccooriiiii, 18-80
How to Configure Handlers in an Ant Task........c.ccccccciiiiiiiiiccncceeceeecne 18-81
Attributes and Child Tags for handler Tagscocooocueviiiiieiiiiicic 18-81

Sample Handler Configuration............coooeuoiiiiioiiiiiiice s 18-83

Ant Tasks that Can Configure Handlersccccccceiviiiiinniiiiccrencerrecnes 18-83
Configuring Multiple Handlers in an Ant TasK...........cooooiiiiiii 18-84

How to Add Files to an AIChivVecccccociiiiiiiiiiiiiniiii s 18-84
How to Control a WebServicesAssembler Build..........ccccoevviiiiiiiiniiiccne, 18-84
How to Assemble Support for MTOM Encoded Attachemnts into a Web Service 18-85
How to Assign Multiple Web Services to an EAR or WAR Archive...........ccooiiiiiinnnn. 18-85
Limitations on Assigning Multiple Web Services to a WAR Filecccccccoeiiiiiiiicnna. 18-87
How to Represent Java Method Parameter Names in the WSDL...............cccccoiiiinninne 18-87
Limitations.......cooooiiiiiii e 18-88
Additional INformation..............cocoooiiiiiiiiiii 18-88

19 Packaging and Deploying Web Services

Understanding Web Service Packaging.............cccooooviviiiiiniiiniiiiiccces 19-1
Packaging Structure for Web Service Applicationsccccoiiiiiiiiiiiiiics 19-2
Packaging for a Web Service Based on Java Classes..........ccccceeueeurieiniiiniciniiicceccece, 19-2
Packaging for a Web Service Based on EJBs ... 19-3
Descriptions of Packaged Files.............ccccccooiiiiiiiiiiiic s 19-3
Relationships Between Deployment Descriptor Files............cccooooiiviiiiiiiiiieiccccn, 19-5
Relationships Between webservices.xml and ejb-jar.xml..........cccccccoeiiiiiiicnincnnnne. 19-5
Relationships Between webservices.xml and oracle-webservices.xml............cccceveunennn. 19-5
Relationships Between webservices.xml and web.xmlccccooviiniini 19-6

Tool Support for Packaging.............cccooiiiiiiiiiiiiii s 19-7
Packaging Support with WebServicesAssembler ..o, 19-7
WebServicesAssembler Commands that Perform Packaging...........ccccoooevvviniiiiieinnnnnes 19-7
Managing Deployment Descriptors.........ccccoccuiuicuiieiiiciiieieicciccieieieeeeeeeeee s 19-8
Commands that Create Deployment Descriptorscccoveiiieiniiiiniiciiieieennen, 19-8

Arguments that Affect Deployment Descriptor Contents...........ccccceeuvuvivinininnennne. 19-9

Packaging Support with Oracle JDeVeloperccccccciiiiiiicirireeccereeeeeeese e 19-10
Understanding Web Service Deployment ..o 19-10
Tool Support for Deployment.............cooviiiiiiiiiiiii e 19-11
Command Line Support for Deploymentcccoeeevriinirnnnnrreeeeeree e 19-11

A Sample Deployment Using admin_clientjarcccocooviviiiinininiiiiiicinns 19-11

Xiv

Ant Task Support for Deploymentcccceviiiiiiiniiiiiii s 19-11

Deployment Support with Oracle JDeveloper...........ccoreiiiiiiiiiiiicc e, 19-12
Deployment Support with Application Server Control............cccocoeiiiinciinicccccecenenes 19-13
LAMItationsoooiiiiii e 19-13
Additional INformation..............coooiiiiiiiii e 19-13

Web Service Client APIs and JARs

Web Services API Packages............ccccovuviiiiiiiiiiiiiiiiiiiiiii s A-1
Setting the Classpath for a Web Service Proxy........ccccooviiiiiniiiiniiiiiccccccns A-2
Simplifying the Classpath with wsclient_extended.jarcccccooviiiiiiiiii A-2
Classpath Components for Clients using a Client-Side ProXycccooeueimeiiiiicieiciicee A-3
OC4J Security-Related Client JAR FIleSccccociiiiiiiiiiiciciiccreecrereeee s A-4
WS-Security-Related Client JAR Files ..o A-4
Reliability-Related Client JAR File ..o A-5
JMS Transport-Related Client JAR File.......ccccoioiiiiiiiiiiiiiccreereresee e A-5
Database Web Services-Related Client JAR Filescccccoieriiiiiiininiinineneeeeeeeeeeeeeee A-5
Sample Classpath Commands...........cceuouiiiiiiiiiii s A-6

Oracle Implementation of the WSDL 1.1 API
Understanding the OraWSDL APISs..........ccccccoiiiiiiiiiiiiiiiii s B-1

oracle-webservices.xml Deployment Descriptor Schema

Hierarchy of XML Elements in oracle-webservices.xml..............cc.coooiiii, C-1
Elements and Attributes of oracle-webservices.xmlc.cccooooiiiiiiiiis C-3
<AUth-MEthod> ... C-3
CCOMEEXE-TOOT> . C-3
<download-external-IMPOTItS >ccovoiiiiiiiiiiiicce e C-3
<ejb-transport-login-Configs>ccccoviiiiiiiiiiiiiii C-4
<ejb-transport-security-CoNStraint>..........coooviiiiiiiiiiicic s C-4
<eNAPOINt-addIESS-UIT> ... C-4
CEXPOSE-ESEPAGE S ... s C-5
LEXPOSE-WSAL> ... C-5
<IMPlemMentationN-ClASS> ... C-5
SIMPLEIMEIIEOT™ ...ttt bbb nennen C-5
GMS-AAATESS > ...t C-6
CINAX-TEQUEST-SIZE> ...t nenne C-6
COPETALIOTIS ...ttt ne b nenennen C-7
COPETALIONIS ...ttt s bbb s et C-7
<OTACE-WEDSEIVICESS ...t s C-7
CPATAIILD .ottt e a s b bbb bbb bbbt b b en s st et nenenennen C-8
CPOLICY ™ ot C-8
CPOTE-COMPOINEIIES ... n e se s nenenennen C-8
CPTOPEILYS ot C-9
<Provider-desCriPtion> ... C-9
<provider-descriptionN-Names>ccooiiiiiininiiiiccccce e C-9
CPTOVIAET-TNAINES ... C-9

XV

XVi

CPTOVIAET-POTES w.oviiiiiiii s C-10

<TEAIMANAIMES .. C-10
<resolve-relative-IMPOTtS > ..o C-10
CLESE-SUPPOTES .ottt nenenen C-10
STOLEMAIMES ...t C-10
SIUNHINES oot C-11
<SETVIEE-LINK> .o C-11
CSOAP-POTE> 1ottt ettt C-11
<HaNSPOTt-GUATANEEE Soviiiiiiiic e C-12
<use-dime-enCOdING >cccviiiiiiiiiiiii s C-12
CIWED-SIEES .t C-12
<WEDSEIVICE-AESCIIPHION ... C-13
SWSAIHALES . C-13
SWSALPOTE> o s C-14
<WSAL-PUDLISh-10CAtION ... C-14
<WSAI-SETVICE-NAMEDS ...t s C-14
SWSAIFUIL> (o C-14
Securing E]B-Based Web Services at the Transport Level.............ccccoeiiinniinininin C-15
oracle-webservices.xml File LiSting............c.ccccooiiiiiiiiiiiiicc e C-16

service-ref-mapping Schema

Hierarchy of service-ref-mapping Schema..............cccocooiiiiiiiiii D-1
Elements and Attributes of service-ref-mapping Schema.............cccocoeiiiiiiiii, D-2
CCALI-PTOPEILY S . D-2
S 1= 41OOOOOOOOOOOOOROROOOOORRRROIRE D-2
COPETALIOTIS ..ttt s st b ettt b bttt et sttt ettt ettt bbbttt D-3
COPETALIONIS ..o D-3
SPOTE-INFOD> oo D-4
SIUNEIINIE S ettt et s b s s e ne st nens e D-4
<service-eNdpPOoint-INTEITACE™ ... D-4
<8erVICe-IMPL-ClaSS> ..o D-4
CSETVICE-QIIAINIEDSvoeiiiitciieciete ettt s s s st s et s s st s e a b s s se s n s st ensas e D-5
<SETVICE-TEf-TNAPPING ... D-5
SSEUD-PIOPEITY™ ottt D-5
CVALUEDS .ttt st D-6
SWSAI-ILE> o D-6
SWSAILOCAION 1. D-6
SWSALPOTES e D-7
service-ref-mapping File LiSting ... D-7

Error Message Prefixes

Troubleshooting

OracleAS Web Services MESSaBES..........cocoeuiiiiiiiiiiiiiiiiiiiiic s F-1

Assembling Web Services from a WSDL...........c.ccoooiiiiiii s F-5
Schema Features Limitations.cccooieiiriiiiiiininccicccee e F-6

Schema Features that are Mapped to a SOAPElement...........cccccoovviiiiiiininininnnn F-6

RPC Encoded Does Not Support Complex Types With Attributes ..o, F-6
Assembling Web Services from Java Classescccccooiiinniiiininiiiiies F-6
Assembling Web Services From EJBs............ccccccoiiiiiiiiicccees F-7
Assembling Web Services with JMS Destinations.............ccccocovviiiniinin F-7
Developing Web Services From Database Resourcesccccooiiiiiniinniiinnicn F-7
Assembling Web Services with Annotations...............ccccocooiiiiiiii F-8
Assembling REST Web Servicescccoooviiiiiniiiniiiiiiiiiiiiicss s F-8
Testing Web Service Deployment ..o F-9
Assembling a J2EE Web Service Client............ccocooiiiiiiiiiiiiiiiiccs F-9
Understanding JAX-RPC Handlers............cccccoovviiiiiiiiniiiiiisssns F-9
Processing SOAP Headers............ccooiiiiiiiiiiiiiii s F-9
Using WebServicesAssembler ..o F-10
Packaging and Deploying Web Services ... F-12
Ensuring Interoperable Web Services ... F-13
Working with Message Attachments...............ccccoooiiiiiiies F-14
Managing Web Servicescccccovviiiiiiiiiiiiiiiiiic s F-14
Ensuring Web Service Reliabilitycccccoiiiiiiiiiiiiic, F-14
Auditing and Logging MeSSages..............cccovuiviiiiiiiiiiiiiiiiiiiiies s F-15
Custom Serialization of Java Value Types...........ccccccoiiiiiiiiiiiiii e F-15
Using JMS as a Web Service Transportcccccoiiiiiiiiiiiiiniiiicccnnns F-16
Using the Web Service Invocation Framework ..o F-16
Using Web Service Providers ..o F-16

G Third Party Licenses

APACNE ...t G-1
The Apache Software LICENSEccccccuiuiiiiiiiiiiiiiiiicicecccceee s G-2
APAChe SOAP ... s G-6
Apache SOAP LICENSEcovuiiiiiiiiiiiiiiiiiiicicc s G-6
TSR TT0 ..ottt ettt ettt b et bt sttt s e st st st st et bttt b et et et b ettt et et et e ne G-9
JAXEIL ... G-9
THE JAXEIN LICEIISE «..ueeeeeeeieeietietieteteete ettt et et sttt te st e st et e sesse st esseneeneeseeseesessessesessessensan G-10
SAXPALR ...ttt b et bttt et b et b et b et et et stenea G-10
The SAXPath LICENSEcutiuieuiiiieiiriieitet ettt ettt ettt sttt sttt et et b st be b sae b eaes G-10
TW3C DIOM ...ttt ettt ettt ettt sttt et s et et et essesa s ese s ese s ese s ase s aseebantesansesenseseasesessesensans G-11
THE W3 LICEISE ...cnveneteneiiietete ettt ettt ettt ettt sttt be b e e b e e ene G-11
Index

xvii

xviii

Preface

This guide describes how to use Oracle Application Server Web Services and the
Oracle WebServicesAssembler tool to assemble Web services from a variety of
resources: Java classes, E]Bs, database resources, JMS destinations and J2SE 5.0
Annotations. You can also assemble REST-style Web services. The Developers Guide also
describes how to assemble J2SE and J2EE clients to access these services. This book
includes descriptions of the message formats and datatypes supported by OracleAS
Web Services.

This preface contains these topics:
» Intended Audience

= Documentation Accessibility
= Related Documents

s Conventions

Intended Audience

Oracle Application Server Web Services Developer’s Guide is intended for application
programmers, system administrators, and other users who perform the following
tasks:

s Assemble Web services from Java classes, E]Bs, Database Resources, and JMS
queues

s Assemble J2SE and J2EE Web service clients

s Work with SOAP messages in RPC-literal, RPC-encoded and document-literal
formats

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Xix

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services

within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents

XX

For more information, see these Oracle resources:
» Oracle Application Server Advanced Web Services Developer’s Guide

This book describes topics beyond basic Web service assembly. For example, it
describes how to diagnose common interoperability problems, how to enable Web
service management features (such as reliability, auditing, and logging), and how
to use custom serialization of Java value types.

This book also describes how to employ the Web Service Invocation Framework
(WSIE), the Web Service Provider API, message attachments, and management
features (reliability, logging, and auditing). It also describes alternative Web
service strategies, such as using JMS as a transport mechanism.

For your convenience, "Contents of the Oracle Application Server Advanced Web
Services Developer’s Guide" on page xxi lists the contents of the Oracle Application
Server Advanced Web Services Developer’s Guide.

» Oracle Application Server Web Services Java API Reference

The Reference provides the output of the Javadoc tool for the OracleAS Web
Services Java APL

» Oracle Application Server Web Services Security Guide

This book describes the different security strategies that can be applied to a Web
service in Oracle Application Server Web Services. The strategies that can be
employed are username token, X.509 token, SAML token, XML encryption, and
XML signature. The book describes the configuration options available for the
client and the service, for inbound messages and outbound messages. It also
describes how to configure these options for a number of different scenarios.

» Oracle Containers for [2EE Security Guide

This book describes security features and implementations particular to OC4J.
This includes information about using JAAS, the Java Authentication and
Authorization Service, as well as other Java security technologies.

» Oracle Containers for J2EE Services Guide

This book provides information about standards-based Java services supplied
with OC4J, such as JTA, JNDI, JMS, JAAS, and the Oracle Application Server Java
Object Cache.

» Oracle Containers for J2EE Configuration and Administration Guide

This book describes how to configure and administer applications for OC4],
including use of the Oracle Enterprise Manager 10g Application Server Control
Console, use of standards-compliant MBeans provided with OC4], and, where
appropriate, direct use of OC4]J-specific XML configuration files.

» Oracle Containers for [2EE Deployment Guide

This book covers information and procedures for deploying an application to an
OC4]J environment. This includes discussion of the deployment plan editor that
comes with Oracle Enterprise Manager 10g.

» Oracle Containers for J2EE Developer’s Guide

This discusses items of general interest to developers writing an application to run
on OC4J—issues that are not specific to a particular container such as the servlet,
EJB, or JSP container. (An example is class loading.)

From the Oracle Application Server core documentation group:

» Oracle Application Server Security Guide

» Oracle Application Server Administrator’s Guide

» Oracle Application Server Certificate Authority Administrator’s Guide
» Oracle Application Server Single Sign-On Administrator’s Guide

» Oracle Application Server Enterprise Deployment Guide

Oracle Web Services Manager is a comprehensive solution for managing service
oriented architectures. It allows IT managements to centrally define policies that
govern Web services operations such as access policy, logging policy, and content
validation, and then wrap these policies around services, with no modification to
existing web services required.

» Oracle Web Services Manager Quick Start Guide

» Oracle Web Services Manager Installation Guide

» Oracle Web Services Manager Administrator’s Guide

» Oracle Web Services Manager Deployment Guide

» Oracle Web Services Manager Extensibility Guide

Printed documentation is available for sale in the Oracle Store at:

http://oraclestore.oracle.com/

Contents of the Oracle Application Server Advanced Web Services
Developer’s Guide

This book is designed to be used with the Oracle Application Server Advanced Web
Services Developer’s Guide. The "Advanced" book describes topics beyond basic Web
service assembly.

For your convenience, the contents of the Oracle Application Server Advanced Web
Services Developer’s Guide. are listed here.

s Chapter 1, "Ensuring Interoperable Web Services"

XXi

XXii

Chapter 2, "Working with Message Attachments"

Chapter 3, "Managing Web Services"

Chapter 4, "Ensuring Web Services Security"

Chapter 5, "Ensuring Web Service Reliability"

Chapter 6, "Auditing and Tracing Messages"

Chapter 7, "Implementing Custom Serialization of Java Value Types"
Chapter 8, "Using JMS as a Web Service Transport"

Chapter 9, "Using Web Services Invocation Framework"

Chapter 10, "Using Web Service Providers"

Appendix A, "Understanding the Web Services Management Schema"
Appendix B, ""Oracle Web Services Client Schema"

Appendix C, "OracleAS Web Services Reliability Schema"

Appendix D, ""OracleAS Web Services Auditing Schema"

Appendix E, "OracleAS Web Services Tracing Schema"

Appendix F, "JAX-RPC Mapping File Descriptor"

Appendix G, "Web Service MBeans"

Appendix H, "Mapping Java Types to XML and WSDL Types"
Appendix I, "Troubleshooting”

Appendix J, "Third Party Licenses"

Links to Related Specifications

The following sections collate references to documentation that appear in the text of
this manual:

Java Technology Documents
0OC4]J-Related Documents
SOAP-Related Documents
WSDL-Related Documents
UDDI-Related Documents

Encryption-Related Documents

Java Technology Documents

Java 2 Platform Enterprise Edition (J2EE), version 5 (1.5) API specification:
http://java.sun.com/javaee/5/docs/api

Java 2 Platform Enterprise Edition (J2EE), version 1.4 API specification:
http://java.sun.com/j2ee/1.4/docs/api

XML Schemas for J2EE Deployment Descriptors lists the document formats used
by the Java 2 Platform, Enterprise Edition (J2EE) deployment descriptors which
are described by J2EE 1.4 and later specifications:

http://java.sun.com/xml/ns/j2ee/

= J2EE client schema provides the XSD for a J2EE Web service client:

http://java.sun.com/xml/ns/j2ee/j2ee_web_services_client_1_
1.xsd

= Java API for XML-based RPC (JAX-RPC) to build Web applications and Web
services. This functionality incorporates XML-based RPC functionality according
to the SOAP 1.1 specification.

http://java.sun.com/webservices/jaxrpc/index. jsp
= Java Servlet 2.4 specification:

http://www.jcp.org/aboutdJava/communityprocess/final/jsrl54/in
dex.html

0OC4J-Related Documents
= Alist of OC4] schemas, including proprietary deployment descriptors:

http://www.oracle.com/technology/oracleas/schema/index.html
s Oracle UDDI v2.0 server implementation:

http://www.oracle.com/technology/tech/webservices/htdocs/uddi
/index.html

» Oracle Database JPublisher User’'s Guide

SOAP-Related Documents
s SOAP 1.1 and 1.2 specifications (main page):

http://www.w3.org/TR/SOAP
s SOAP 1.1 specifications:

- specification:
http://www.w3.0org/TR/2000/NOTE-SOAP-20000508/

- SOAP 1.1 message encoding:
http://schemas.xmlsoap.org/soap/encoding/

- SOAP 1.1 binding schema:
http://schemas.xmlsoap.org/wsdl/soap/2003-02-11.xsd

The SOAP 1.2 binding schema is identical to the SOAP 1.1 binding schema,
except that the target namespace is:

http://schemas.xmlsoap.org/wsdl/soapl2/
= SOAP 1.2 specification:

— SOAP 1.2 Part 1: Primer:
http://www.w3.0org/TR/soapl2-part0/

— SOAP 1.2 Part 1: Messaging Format:
http://www.w3.0org/TR/soapl2-partl/

- SOAP 1.2 Part 2 Recommendation (Adjuncts):
http://www.w3.0org/TR/soapl2-part2/

- HTTP transport for SOAP 1.2:

xXiii

http://www.w3.0rg/2003/05/soap/bindings/HTTP

SOAP binding schema:
http://schemas.xmlsoap.org/wsdl/soap/2003-02-11.xsd
Definition of the fault code element in the SOAP schema:

http://schemas.xmlsoap.org/soap/envelope/2004-01-21.xsd

WSDL-Related Documents
Web Services Description Language (WSDL) specifications:

http://www.w3.0org/TR/wsdl

UDDI-Related Documents
Universal Description, Discovery and Integration specifications:

http://www.uddi.org/

Encryption-Related Documents
= Key Transport algorithms:

RSA-1_5:
http://www.w3.0rg/2001/04/xmlenc#rsa-1_5
RSA-OAEP-MGF1P:

http://www.w3.0rg/2001/04/xmlenc#rsa-ocaep-mgflp

= Signature keys:

Conventions

The following text conventions are used in this document:

XXiv

RSA-SHAT1:
http://www.w3.0rg/2000/09/xmldsig#rsa-shal
RSA-MD5:
http://www.w3.0rg/2001/04/xmldsig-more#rsa-md5
HMAC-SHAI:
http://www.w3.0rg/2000/09/xmldsig#hmac-shal
DSA-SHAT1:
http://www.w3.0rg/2000/09/xmldsig#dsa-shal

Convention Meaning

boldface

Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.
monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

1

Web Services Overview

This chapter provides an overview of Oracle Application Server Web Services for the
10.1.3.1 release. Chapter 3, "OracleAS Web Services Architecture and Life Cycle",
describes the architecture of Oracle Application Server Web Services.

s Understanding Web Services

= Web Services Standards

= New and Enhanced Features

s Compatibility with Previous Versions of OracleAS Web Services
s Clustered Environments and High Availability

s OC4J in a Standalone Versus Oracle Application Server Environment

Understanding Web Services

Web services comprise a set of messaging protocols, programming standards, and
network registration and discovery facilities. When they are used together, these
features enable the publication of business functions to authorized parties over the
Internet from any device connected to the Web.

A Web service is a software application identified by a Universal Resource Identifier
(URI), whose interfaces and binding are capable of being defined, described, and
discovered by XML artifacts. A Web service supports direct interactions with other
software applications using XML-based messages and Internet-based products.

A Web service:

= Exposes and describes itself—A Web service defines its functionality and
attributes so that other applications can understand it. By providing a Web Service
Description Language (WSDL) file, a Web service makes its functionality available
to other applications.

= Enables other services to locate it on the Web—A Web service can be registered in
a Universal Description, Discover, and Integration (UDDI) Registry so that
applications can locate it.

s Can be invoked—Once a Web service has been located and examined, the remote
application can invoke the service using an Internet standard protocol.

= A Web service style is either two-way request and response, or one-way. It can use
either synchronous or asynchronous communication. However, the fundamental
unit of exchange between a Web service client and a Web service, of either style or
type of communication, is a message.

Web Services Overview 1-1

Web Services Standards

Web services offer a standards-based infrastructure through which any business can
do the following:

s Offer appropriate internal business processes as value-added services that can be
used by other organizations

= Integrate its internal business processes and dynamically link them with those of
its business partners

Web Services Standards

With the current release, Oracle has extended the Web services infrastructure to
implement versions 1.4 and 5 (1.5) of the Java 2 Enterprise Edition (J2EE) specification
for Web services. This section lists the standards that this release of Web services
complies with.

= Java 2 Enterprise Edition

= Simple Object Access Protocol 1.1 and 1.2

= Web Service Description Language 1.1

= Web Service-Interoperability Basic Profile 1.1

= Web Service Inspection Language 1.0

Java 2 Enterprise Edition

The current release of Web services is compatible with these Java J2EE standards:

s JAX-RPC 1.1—defines client APIs, support for message handlers, and ways to
implement service endpoints

= EJB 2.1—defines the EJB API. The standard JAX-RPC 1.1 specifies how to expose
an EJB as a Web service endpoint

s SAAJ 1.2—defines how to process SOAP messages with attachments

» Enterprise Web Services 1.1 specification—(also known as JSRs 109 and 921)
specifies how to deploy and execute Web services

Simple Object Access Protocol 1.1 and 1.2

The Simple Object Access Protocol (SOAP) is a lightweight, XML-based protocol for
exchanging information in a decentralized distributed environment. SOAP supports
different styles of information exchange, including Remote Procedure Call style (RPC)
and message-oriented exchange. RPC style information exchange allows for
synchronous request and response processing, where an endpoint receives a procedure
oriented message and replies with a correlated response message. Message-oriented
information exchange supports organizations and applications that must exchange
business or other styles of documents in which a message is sent but the sender may
not expect or wait for an immediate response (asynchronous). Message-oriented
information exchange is also called document-style exchange.

SOAP has these features:

= Protocol independence

= Language independence

= Platform and operating system independence

= Support for RPC/Encoded and Document/Literal message formats

1-2 Web Services Developer's Guide

Web Services Standards

= Support for SOAP XML messages incorporating attachments (using the multipart
MIME structure)

The current release of Oracle Application Server Web services supports the SOAP 1.2
protocol and is backward compatible with SOAP 1.1.

See Also:

http://www.w3.org/TR/SOAP for more detailed information on
the SOAP 1.1 and 1.2 specifications.

Web Service Description Language 1.1

Web Services Description Language (WSDL) is an XML format for describing network
services containing RPC-oriented and message-oriented information. Programmers or
automated development tools can create WSDL files to describe a service and can
make this description available over the Internet. Client-side programmers and
development tools can use published WSDL descriptions to obtain information about
available Web services and to build and create client proxies or program templates that
access available services.

See Also:

http://www.w3.org/TR/wsdl for information on the WSDL
format.

Web Service-Interoperability Basic Profile 1.1

Web Service-Interoperability (WS-I) is an organization that promotes Web services
interoperability across platforms, applications, and programming languages. The
current release conforms to the WS-1 Basic Profile 1.1.

Web Service Inspection Language 1.0

Web Services Inspection Language (WS-Inspection or WSIL) is a lightweight Web
services directory protocol that provides an extensible schema for a single document
catalog of services. The document lists services with some metadata (including
extensible data) and links to other directories.

Typically, a WSIL document lists services deployed on a particular server or cluster. It
includes anything that is exposed as a provider, including BPEL processes. WSIL
allows tighter integration between SOA components in that it provides BPEL and
OWSM users with a simple way to browse services deployed to OC4J.

The WSIL document can be viewed and managed as a Web application by Application
Server Control and by BPEL and OWSM tools. This application relies on MBeans
registered with Oracle’s Web services stack to generate its list of services.

The Web application is typically located at the server root or under the services
context:

http://yourdomain.com /inspection.wsil, or
http://yourdomain.com /services/inspection.wsil

To move the Web application, you can redeploy it and map it to a different context
path.

To increase security, you can disable WSIL by removing the Web application. This will
prevent information about other services deployed on the server from being exposed.

Web Services Overview 1-3

New and Enhanced Features

New and Enhanced Features

In addition to the preceding standards, the current release of OracleAS Web Services
contains these new and enhanced features:

= Web Service Security for Authentication, Integrity, and Confidentiality

= Web Services Management Framework and Application Server Control

s Web Services Metadata for the Java Platform (J2SE 5.0 Web Service Annotations)
= REST Web Services

= Enhanced Web Service Test Page

= Ant Tasks for Configuration and Scripting

» Custom Type Mapping Framework for Serialization

= Database Web Services

= SOAP Header Support

= MIME and DIME Document Support

= Message Delivery Quality of Service

= JMS Transport as an Alternative to HTTP

= Web Services Provider Support

= Web Services Invocation Framework for Describing WSDL Programming Artifacts
s SOAP Message Auditing and Logging

= Oracle BPEL

Web Service Security for Authentication, Integrity, and Confidentiality

The WS-Security standard, published and maintained by the Organization of the
Advancement of Structure Information Standards (OASIS), provides profiles for Web
services authentication, message encryption, and digital signatures. The current
release provides an implementation of WS-Security with the following capabilities:

= XML Signature

= XML Encryption
= Username Token
= X.509 Token

= SAML Token

See Also:

Oracle Application Server Web Services Security Guide for more
information on Web service security.

Web Services Management Framework and Application Server Control

The management framework provides configuration and monitoring capabilities for
security, reliability, logging, and auditing through the Web-based Application Server
Control. These features are exposed through a series of Java Management Extensions
(JMX) Management beans (Mbeans).

1-4 Web Services Developer's Guide

New and Enhanced Features

See Also:

= "Managing Web Services" in the Oracle Application Server Advanced
Web Services Developer’s Guide for more information on Web
services management.

» "Web Service MBeans" in the Oracle Application Server Advanced
Web Services Developer’s Guide for more information on the Web
service features that you can control through MBeans.

Web Services Metadata for the Java Platform (J2SE 5.0 Web Service Annotations)

The current release provides support for J25E 5.0 Web Service annotations (also known
as the Web Services Metadata for the Java Platform (JSR-181) specification). The
specification defines an annotated Java syntax for programming Web services.

See Also:

Chapter 11, "Assembling Web Services with Annotations" for a
description of how annotations are supported and of Oracle
extensions to the specification.

REST Web Services

The current release provides support for Representational State Transfer (REST)
services. This architecture leverages the architectural principles of the Web. It uses the
semantics of HTTP whenever possible.

Unlike SOAP Web Services, REST is a "style" and has no standards or tools support
from vendors. Also, REST Web services use XML documents, not SOAP envelopes, for
sending messages.

You can assemble REST Web services with the WebServicesAssembler tool or by
adding J2SE 5.0 Web Service annotations to your source files. You can then use the Web
Service Test Page to see if they deployed successfully and to test their functionality.

See Also:

Chapter 12, "Assembling REST Web Services" for more information on
assembling REST Web services.

Enhanced Web Service Test Page

The functionality of the Web Service Test Page has been expanded beyond testing
whether the Web Service deployed correctly. The Test Page lets you exercise Web
service operations with different input values. You can display and edit the SOAP
request that will be sent to the service. It also displays the response returned by the
service. If your Web service defines security and reliability features, then editors in the
Test Page allow you to exercise the service with different security and reliability
values.

The Test Page also enables you to exercise Web Service Providers and REST Web
Services. For a REST Web service, the Test Page provides the same functionality as for
JAX-RPC Web Services, however, it also lets you invoke the REST POST and REST
GET operations.

See Also:

Chapter 13, "Testing Web Service Deployment" for more information
on how to use the Web Service Test Page.

Web Services Overview 1-5

New and Enhanced Features

Ant Tasks for Configuration and Scripting

The current release provides Ant tasks for Web services development, with a focus on
enabling the scripting and automation of Web service client and server development.
Sample Ant tasks are provided throughout this manual.

See Also:

= "How to Set Up Ant for WebServicesAssembler" on page 4-3
provides many of the details for setting up Ant for your
environment.

» Chapter 18, "Using WebServicesAssembler” provides examples of
how to write Ant tasks for Web service assembly commands.

Custom Type Mapping Framework for Serialization

Web services in complex systems are often required to map data types beyond the
native types automatically serialized into XML by the Web services runtime. The
current release offers a custom type-mapping framework for mapping custom data

types.
See Also:
"Custom Serialization of Java Value Types" in the Oracle Application
Server Advanced Web Services Developer’s Guide. for more information
on working with nonstandard data types in your Web service.
Database Web Services

The current release continues to support publishing PL/SQL as a Web service and
using OracleAS Web Services as the Java runtime in the Oracle Database 10g for
call-outs to Web services.

The current release extends the runtime and tool support to declaratively define the
following database artifacts as Web services:

s PL/SQL stored procedures

s SQL queries

s DML statements

» Java classes loaded within the database virtual Java machine

s Oracle Streams AQ (Advanced Queues)

See Also:

Chapter 10, "Assembling Database Web Services" for more
information on implementing database artifacts as a Web service.

SOAP Header Support

The current release facilitates advanced manipulation of SOAP headers using two
JAX-RPC-compliant mechanisms:

= A mechanism to programmatically intercept SOAP headers using JAX-RPC
handlers. This mechanism allows processing SOAP headers out-of-band from the
processing of the main SOAP message.

= A mechanism to automatically map SOAP headers to member variables in Java
classes. This mechanism enables you to treat SOAP headers as variables in the

1-6 Web Services Developer's Guide

New and Enhanced Features

Web service implementation through a declarative mapping process instead of a
programmatic process.

See Also:

» Chapter 16, "Using JAX-RPC Handlers" for more information on
SOAP headers.

s Chapter 17, "Processing SOAP Headers" for more information on
processing SOAP headers.

MIME and DIME Document Support

To facilitate efficient transfer of binary documents and large XML documents, the
current release supports MIME and DIME attachments:

= Multipurpose Internet Mail Extensions (MIME) attachments conform to the WS-I
Attachment Profile for both WSDL to Java consumption, and Java to WSDL
publication of Web services requiring SOAP with MIME attachments.

s Direct Internet Message Encapsulation (DIME) attachments conforming to the
Microsoft Corporation analog to MIME. Oracle offers DIME support for backward
compatibility with other implementations, because Microsoft no longer
encourages DIME for attachments.

See Also:

"Working with Message Attachments" in the Oracle Application Server
Advanced Web Services Developer’s Guide for more information on how
OracleAS Web Services supports MIME and DIME attachments.

MTOM Binary Content as Attachments

The current release enables you to send binary content between the client and server in
MTOM (SOAP Message Transmission Optimization Mechanism) format. Using
MTOM, binary content can be sent as a MIME attachment, which reduces the
transmission size on the wire. The binary is semantically part of the XML document.
This is an advantage over SWA (SOAP Messages with Attachments), in that it enables
you to apply operations such as WS-Security signature on the message.

See Also:

"Working with Attachments containing Binary Data" in the Oracle
Application Server Advanced Web Services Developer’s Guide for more
information on how OracleAS Web Services supports MIME and
DIME attachments.

Message Delivery Quality of Service

The current release provides an OASIS Web Service Reliability (WS-Reliability)
implementation with guaranteed at-least-once message delivery, duplicate message
elimination (at most once delivery), exactly once message delivery (guaranteed
delivery and duplicate elimination), and message ordering within groups of messages.

See Also:

"Ensuring Web Service Reliability" in the Oracle Application Server
Advanced Web Services Developer’s Guide for more information on
reliability.

Web Services Overview 1-7

New and Enhanced Features

JMS Transport as an Alternative to HTTP

As an alternative to HTTP, the current release enables the use of JMS queues as a
transport for SOAP messages. JMS provides a higher level of reliable message delivery
for SOAP messages.

Where HTTP is required as the transport, the current release continues to support the
ability to put and get SOAP messages from JMS queues and topics, and adds the
functionality of correlating messages processed in this manner.

See Also:

s Chapter 9, "Assembling Web Services with J]MS Destinations" for
more information on using JMS to develop Web services.

= "Using JMS as a Web Service Transport" in the Oracle Application
Server Advanced Web Services Developer’s Guide for more
information on using JMS as a transport mechanism for Web
services.

Web Services Provider Support

The Provider API lets you define custom processing logic for a Web services endpoint
that is not tied to any particular service endpoint implementation strategy, such as
JAX-RPC. The Provider model can be used to provide common functionality to a
number of endpoints. Rather than incorporating the same functions into many Web
services, the Provider model enables you to add the logic into the runtime directly.

See Also:

"Using Web Service Providers" in the Oracle Application Server
Advanced Web Services Developer’s Guide for more information on Web
service providers.

Web Services Invocation Framework for Describing WSDL Programming Artifacts

The Web Services Invocation Framework (WSIF) provides a general purpose,
extensible mechanism to describe programmatic artifacts using WSDL and a
framework to invoke those artifacts using their native protocols. The current release
supports an initial implementation of WSIF.

See Also:

"Using Web Services Invocation Framework" in the Oracle Application
Server Advanced Web Services Developer’s Guide for more information on
WESIFE.

SOAP Message Auditing and Logging

The current release provides the ability to record inbound and outbound SOAP
messages into logging and auditing files. Entire messages or parts of messages can be
logged by subquerying through the use of Xpath statements.

See Also:

"Auditing and Logging Messages" in the Oracle Application Server
Advanced Web Services Developer’s Guide for more information on
logging and auditing messages.

1-8 Web Services Developer's Guide

Compatibility with Previous Versions of OracleAS Web Services

Oracle BPEL

BPEL (Business Process Execution Language) is a standard published by the
Organization of the Advancement of Structure Information Standards (OASIS) and
backed by major vendors including Oracle. BPEL describes an XML syntax for
describing a business process through a "composition of invocations of (other)
Business Processes—typically Web services". A BPEL process definition, therefore, is
an XML document composed according to an XSD that is maintained by OASIS.

A business process, in BPEL terms, is composed of invocations (call-outs to Web
services), receptions (call-ins from external services), decision points with simple
conditional logic and parallel flows or sequences, that in turn consist of invocations,
decision points, and so on. Variables can be defined as part of a business process. They
can be assigned values from parameters passed to the business process at startup,
passed along in invocations, given values from the results of invocations, and returned
as the final result of the business process. A business process itself is also implemented
as a Web service—in the BPEL (runtime) engine.

The Oracle implementation of BPEL uses WSIF technology to directly invoke business
processes. In certain cases, the actual invocation from BPEL can be a direct call to a
Java class without the Web service overhead of marshalling and unmarshalling SOAP
messages.

See Also:
The following Web site provides more information on Oracle BPEL:

http://www.oracle.com/technology/products/ias/bpel/i
ndex.html

Oracle Web Services Manager

Oracle Web Services Manager is a comprehensive solution for managing service
oriented architectures. It allows IT managements to centrally define policies that
govern Web services operations such as access policy, logging policy, and content
validation, and then wrap these policies around services, with no modification to
existing web services required. Also, Oracle Web Services Manager collects monitoring
statistics to ensure service levels and security, and displays them in a web dashboard.
As a result, Oracle Web Services Manager brings enterprises better control and
visibility over their web services.

See Also:

The following Web site provides more information on Oracle Web
Services Manager:

http://www.oracle.com/technology/products/webservice
s_manager/index.html

Compatibility with Previous Versions of OracleAS Web Services

The 10.1.3.1 release of OracleAS Web Services is fully compatible with the 10.1.3
release.

Applications designed to run with versions 9.0.4 or 10.1.2 of the Oracle Application
Server can be used with version 10.1.3.1. While you can still deploy your 9.0.4 or 10.1.2
Web Services in the 10.1.3.1 Application Server, you will not be able to see them in the
management console.

Web Services Overview 1-9

Clustered Environments and High Availability

Redeploying Applications on OracleAS Web Services 10.1.3.1

For backward compatibility, Oracle Application Server 10g Release 3 (10.1.3.1) includes
the underlying software required to run 10g Release 2 (10.1.2) Web services. As a
result, Web services applications designed to run with Oracle Application Server 10g
(9.0.4) and 10g Release 2 (10.1.2) can be used without modification with Release 3.

However, there are significant advantages to re-creating your Web services for 10g
Release 3 (10.1.3.1). For example, you can take advantage of the all the new features
such as quality of service (QOS), a standard-based development model (JAX-RPC),
and JMX-based management.

See Also:

Oracle Application Server Upgrade Guide provides more information on
redeploying your existing Web service applications to OracleAS Web
Services 10.1.3.1.

Deprecated Features

» The version 10.1.2 Web services stack is being deprecated. However, it is still
supported in version 10.1.3.1.

s The ws.debug system property and its related behavior have been deprecated.

s Theoracle.webservices.ClientConstants.WSM_INTERCEPTOR_
PIPELINE_CONFIG property has been deprecated and replaced by
oracle.webservices.ClientConstants.CLIENT_CONFIG. For more
information on this property, see "How to Pass a Management Configuration to a
Client Programmatically” in the Oracle Application Server Advanced Web Services
Developer’s Guide.

s Theoracle.webservices.OracleStub properties ENCODING_STYLE_
PROPERTY and OPERATION_STYLE_PROPERTY have been deprecated.

Clustered Environments and High Availability

1-10

To use OracleAS Web Services in a clustered environment, you must install the service
on every machine in the cluster. Application Server Control enables you to easily
deploy a service to a group of instances within an Oracle Application Server cluster.

If you install a standard, stateless Web service, then a clustered deployment will result
in multiple instances that can process requests, but cannot share state.

If you install a stateful Web service, then those instances will share state. If the service
is not installed on all machines in a cluster, then the cluster dispatcher might dispatch
a service request to a machine that does not have the service, resulting in an error on
the service invocation.

To support a clustered environment, for stateful Java Web services with serializable
Java classes, the WebServicesAssembler adds a <distributable> tag in the
web . xml of the Web service's generated J2EE EAR file.

See Also:

= "Deploying to OC4J Instances Within a Cluster" in the Oracle
Containers for J2EE Deployment Guide for more information on
deploying to a group of instances.

= "Java Classes and Stateful Web Services" on page 7-9 for
information on assembling stateful Web services.

Web Services Developer's Guide

0OC4J in a Standalone Versus Oracle Application Server Environment

OC4J in a Standalone Versus Oracle Application Server Environment

During development, it is typical to use OC4] by itself, outside an OracleAS Web
Services environment. We refer to this as standalone OC4]J (or, sometimes, as
unmanaged OC4J). In this scenario, OC4] can use its own Web listener and is not
managed by any external Oracle Application Server processes.

In contrast, a full Oracle Application Server environment (sometimes referred to as
managed OC4J), includes the use of Oracle HTTP Server as the Web listener, and the
Oracle Process Manager and Notification Server (OPMN) to manage the environment.

See Also:

» Oracle Containers for J2EE Configuration and Administration Guide
for additional information about Oracle Application Server versus
standalone environments and about the use of Oracle HTTP
Server and OPMN with OC4]J.

s Oracle HTTP Server Administrator’s Guide for general information
about the Oracle HTTP Server and the related mod_0C4J module.
(Connection to the OC4J servlet container from Oracle HTTP
Server is through this module.)

» Oracle Process Manager and Notification Server Administrator’s Guide
for general information about OPMN.

Web Services Overview 1-11

0OC4J in a Standalone Versus Oracle Application Server Environment

1-12 Web Services Developer's Guide

2

Development and Documentation Roadmap

The following sections provide a suggested roadmap through the documentation that
takes you through the steps of developing a Web service.

= Setting Up Your Environment

= Best Coding Practices

= Assembling Web Service Artifacts

= Deploying the Web Service

s Testing the Deployed Web Service

= Assembling a Web Service Client

= Adding Quality of Service Features to a Web Service
» Adding Advanced Functionality to a Web Service

= Alternative Web Service Strategies

= Reference Chapters and Appendixes

Setting Up Your Environment
The following chapter describes how to set up your environment to use the
functionality provided by OracleAS Web Services.

s Chapter 4, "Getting Started"

Best Coding Practices
The chapters in this section describe issues that you should consider as you design
your Web service.

The following chapter describes the varieties of message formats that you can employ
in OracleAS Web Services. It describes the advantages and disadvantages of each
message format and suggests which format to use based on the client functionality.

s Chapter 5, "OracleAS Web Services Messages"

The following chapter in the Oracle Application Server Advanced Web Services Developer’s
Guide identifies some of the common areas where interoperability problems can occur.
It provides design suggestions and programming guidelines that increase the
interoperability of your Web service with applications on different platforms.

= "Ensuring Interoperable Web Services"

Development and Documentation Roadmap 2-1

Assembling Web Service Artifacts

OracleAS Web Services enables you to assemble Web service artifacts bottom up
starting from Java classes, EJBs, JMS destinations, database resources, or source files
which employ J2SE 5.0 JDK Web Service Annotations. You can also assemble the
artifacts top down starting from a WSDL. In OracleAS Web Services, you use the
WebServicesAssembler tool to perform the assembly. Chapter 18, "Using
WebServicesAssembler” provides a reference guide to the tool.

The following chapters describe how to use the WebServicesAssembler tool to perform
the different types of Web Service assembly supported by OracleAS Web Services.

» Chapter 6, "Assembling a Web Service from WSDL"

= Chapter 7, "Assembling a Web Service with Java Classes"

s Chapter 8, "Assembling a Web Service with EJBs"

s Chapter 9, "Assembling Web Services with JMS Destinations"
s Chapter 10, "Assembling Database Web Services"

s Chapter 11, "Assembling Web Services with Annotations"

Deploying the Web Service

While the WebServicesAssembler tool does not perform deployment, it does package
the Web service into a deployable EAR or WAR file. Deploying this file is very similar
to deploying any other EAR or WAR file into a running instance of OC4]J. OC4]
provides a separate book that describes how to perform deployment.

» Oracle Containers for [2EE Deployment Guide

The following chapter provides additional information about the packaging format
and the files required for deployment. The chapter also briefly describes the
deployment support offered by the Oracle JDeveloper and Application Server Control
tools.

s Chapter 19, "Packaging and Deploying Web Services"

Testing the Deployed Web Service
The following chapter describes the Web Service Test Page. This page lets you test
whether deployment was successful without the need to write any code.

» Chapter 13, "Testing Web Service Deployment"

Assembling a Web Service Client

The following chapters describe how to use WebServicesAssembler to assemble a Web
service client for the J2SE and J2EE platforms.

s Chapter 14, "Assembling a J2EE Web Service Client"

s Chapter 15, "Assembling a J2S5E Web Service Client"

Adding Quality of Service Features to a Web Service

OracleAS Web Services support quality of service features, such as security, reliability,
message logging, and auditing. The following chapters describe how to implement
these features; they can be managed by other tools such as Oracle JDeveloper and
Application Server Control. The following chapters appear in the Oracle Application
Server Advanced Web Services Developer’s Guide.

= "Managing Web Services"

2-2 Web Services Developer's Guide

= "Ensuring Web Services Security"

This chapter provides only an overview of the contents of the Oracle Application
Server Web Services Security Guide. The Security Guide describes the Web Services
implementation of message-level security.

= "Ensuring Web Service Reliability"
= "Auditing and Logging Messages"

Adding Advanced Functionality to a Web Service

The following chapters describe additional features that can enhance the performance
and functionality of your Web service.

» Chapter 16, "Using JAX-RPC Handlers"
» Chapter 17, "Processing SOAP Headers"

See also the following chapters in the Oracle Application Server Advanced Web Services
Developer’s Guide.

= "Working with Message Attachments"

s "Custom Serialization of Java Value Types"

Alternative Web Service Strategies
The following chapters describe alternative modes of Web service implementation.

For example, you can write your own infrastructure to make Web service calls, create a
client for non-SOAP protocols, or use a non-HTTP transport mechanism.

s Chapter 12, "Assembling REST Web Services"

See also the following chapters in the Oracle Application Server Advanced Web Services
Developer’s Guide.

= "Using JMS as a Web Service Transport”
= "Using Web Service Invocation Framework"

= "Using Web Service Providers"

Reference Chapters and Appendixes

The following chapters and appendixes provide information to supplement the
implementation and development tasks described in this book.

n Chapter 1, "Web Services Overview"

s Chapter 3, "OracleAS Web Services Architecture and Life Cycle"

s Chapter 18, "Using WebServicesAssembler"

s Appendix A, "Web Service Client APIs and JARs"

= Appendix B, "Oracle Implementation of the WSDL 1.1 API"

s Appendix C, "oracle-webservices.xml Deployment Descriptor Schema"
s Appendix D, "service-ref-mapping Schema"

= Appendix E, "Error Message Prefixes"

See also the following reference chapters and appendixes in the Oracle Application
Server Advanced Web Services Developer’s Guide.

s "Understanding the WSMGMT Schema"

Development and Documentation Roadmap 2-3

= "OracleAS Web Services Client Schema"

s "OracleAS Web Services Reliability Schema"
= "OracleAS Web Services Auditing Schema"
= "OracleAS Web Services Tracing Schema"

s "JAX-RPC Mapping File Descriptor"

= "Web Service MBeans"

= "Mapping Java Types to XML and WSDL Types"

2-4 Web Services Developer's Guide

3

OracleAS Web Services Architecture and Life

Architecture

Cycle

This chapter provides an overview of the components that comprise Oracle
Application Server Web Services and publishable service artifacts. These components
are defined by the Java API for XML-Based RPC (JAX-RPC). This API enables Java
technology developers to build Web applications and Web services incorporating
XML-based RPC functionality according to the SOAP (Simple Object Access Protocol)
1.1 specification.

The OracleAS Web Services stack is designed with three primary goals in mind:
performance, interoperability, and manageability. This section describes how the Web
services runtime is structured to provide enterprise-quality infrastructure for
SOAP-based communication endpoints.

Processing Components

Each step in the processing of a Web services request is represented by a logical
component in the runtime infrastructure. As an XML message is delivered to the
system, it flows through the following layers before being delivered to an endpoint
implementation: protocol handlers, XML processor, policy enforcement pipeline,
JAX-RPC handlers, data binding, and the endpoint implementation. Response
messages flow through the same infrastructure following a reverse path.

Figure 3-1 How XML Messages Flow From Client to Service

XML
Message
Request

@ Protocol =t

Handlers, XML =
y4

Processor Policy ==t

Web Service %;

Client

[Enforcement || JAX-RPC =
Handlers || Data =mp| Web Service

Binding Endpoint
Implementation

!

XML
Message
Response

OracleAS Web Services Architecture and Life Cycle 3-1

Architecture

This section describes the purpose of each of these processing layers. Where
appropriate, pointers to other sections are provided for more detailed information on
system functionality and configuration.

Protocol Handlers

A protocol handler provides the entry point to the Web services infrastructure. The
protocol handler is used to send and receive SOAP messages over a transport protocol.
The Web services infrastructure can be configured to send and receive messages over
HTTP or JMS.

If the messages are sent over HT'TP, the OracleAS Web Services stack uses the Oracle
HTTP Client libraries for sending Web services messages to services and the OC4]J
Servlet engine for receiving Web services messages sent by clients. All of the
capabilities and management infrastructure of the Oracle servlet environment are
available to Web services. For example, a Web service can be accessed with an
encrypted data stream using HTTP or HTTPS.

JMS transport may be configured to work with different JMS providers. It is integrated
into the application server by using the JMS infrastructure provided with the Oracle
Application Server. JMS is often used to gain the full quality of service features of a
message bus during a SOAP message exchange.

XML Processing

Once the SOAP message is retrieved from the transport layer, it is converted into an
XML message representation that is compatible with the SOAP with Attachments API
for Java (SAAJ). The SAA] message is constructed using Oracle's optimized XML
parsing technologies for performance and efficient memory utilization. This message
is the basis for the JAX-RPC compliant SOAP processing infrastructure provided with
OC4J. Once instantiated, the SAA] message is delivered to the next layer of the
processing stack.

Some portions of the SOAP request may not be XML. For example, a SOAP message
may be sent with attachments, which are used to package non-XML content along
with a SOAP message. The SAA] implementation also deals with these attachments.

Though the default processing of XML messages assumes the message payload is
encoded in a SOAP 1.1 or SOAP 1.2 compliant envelope, the OracleAS Web Services
stack can also be configured to accept and dispatch XML messages over HTTP directly
without using SOAP. This allows developers to create applications that integrate
directly with existing HTTP infrastructure that is not aware of the SOAP protocol.
Applications can be built to conform to the REST architecture style, using HTTP and
URLs to define the messages that describe the system.

When configured to use XML-over-HTTP messaging, the infrastructure determines if a
message contains an application message directly or a SOAP envelope as the top level
element of the payload. If the message is "raw" XML, the processing layer will wrap
the message in a SOAP envelope with no headers. This SOAP envelope can then be
processed through the rest of the Web services processing elements and delivered to
the endpoint implementation for processing.

The XML message is next processed by the policy enforcement mechanisms of the Web
services stack.

Policy Enforcement

The OracleAS Web Services stack can be configured with additional information to
enable a management chain that is responsible for enforcing runtime management
policies. These policies include Web services management features like WS-Reliability,

3-2 Web Services Developer's Guide

Architecture

WS-Security, auditing, and logging capabilities."Managing Web Services" in the Oracle
Application Server Advanced Web Services Developer’s Guide provides more information
on the setup of these features. The Oracle Application Server Web Services Security Guide
provides more information on setting up security. Enabled policies can be included in
the WSDL document associated with a service to support automated configuration of
client interceptor pipelines.

One of the protocols that the OracleAS Web Services stack supports is the
WS-Reliability standard, which provides delivery guarantees for SOAP messages. The
reliability infrastructure supports additional capabilities that allow the system
infrastructure to send and receive asynchronous acknowledgment messages that
conform to the WS-Reliability protocol. This is supported as an extension to the Oracle
client infrastructure, which is available when using a JAX-RPC Stub or Call object.

The interceptor chain can also be configured to delegate to the OracleAS Web Services
Management agent pipeline. This provides pre-integrated support for the OracleAS
Web Services Management product and capabilities that support management of
policies for Web services across a data center.

The management interceptors provide a runtime infrastructure for systems services
that are provided in OC4]J. Application-specific interceptors are supported in
conformance with the JAX-RPC 1.1 Handler APL

JAX-RPC Handlers

Handlers are configured to process application-specific SOAP headers according to
specific roles or actor attributes. The handlers have access to a SAA]J representation of
the SOAP message and can perform operations on any level of the SOAP message.

Together, the interceptors and the handlers are used to enforce the SOAP processing

model. This allows Web services endpoints to selectively process SOAP headers that

are intended for a particular node. SOAP messages can then be passed along to other
nodes in the system and SOAP headers are processed as required.

See Also:

Chapter 16, "Using JAX-RPC Handlers" and Chapter 17, "Processing
SOAP Headers" for information on how to use the Handler APIL

Data Binding

In many applications, portions of the XML payload are converted to Java objects that
are used by the application framework. This capability is often called data binding,
where portions of XML data are bound to members of a Java class hierarchy. The
process of data binding is driven through the serialization framework, which manages
the conversion from XML to Java. The serialization framework is extensible and allows
developers to define custom type mapping from XML data to Java objects.

The OC4]J runtime features a special "provider” implementation that is optimized for
processing SAA] messages. When the provider is used, no data binding is performed.
Providers can be used to implement applications that work directly with XML payload
in a SOAP message.

Endpoint Implementation

After passing through the preceding four layers of the Web services stack, the
endpoint implementation containing the application business logic is invoked. The
endpoint can be a regular Java class, an Enterprise Java Bean, or a provider. The
endpoint can also be a JMS queue when a JMS endpoint configuration is enabled.

OracleAS Web Services Architecture and Life Cycle 3-3

Web Services Development Life Cycle

In the OracleAS Web Services container, there are very few requirements that a Java
class must conform to in order to be exposed as a Web service. If the endpoint
implementation requires more complex interaction with the container throughout its
life cycle, it can implement a JAX-RPC ServiceLifecycle interface, which provides
more information about the Web services requests to the endpoint during initialization
of the service and while handling requests.

Java classes may also be augmented with Web services specific annotations. These
annotations can be used to provide additional configuration information specifying
what methods are exposed as Web services operations, what protocols can be used to
access the service, and so on.

See Also:

Chapter 11, "Assembling Web Services with Annotations" for more
information about OracleAS Web Services support for J2SE 5.0 JDK
Web Service Annotations.

Java Management Extensions (JMX)

While the interceptor pipeline is used to enforce management policies, systems
management capabilities are exposed in the OracleAS Web Services stack by using the
Java Management Extensions (JMX) standard. J]MX allows administrators to gather
important metrics on the health of a running OC4J system and to change the
configuration of a running system. JMX metrics and operations are available in the
Web services console in the Application Server Control tool.

Development Tools

Another key feature of the OracleAS Web Services implementation is the development
tools that allow for the development and deployment of endpoint implementations.
Web services can be developed using either command line tools or a Java Integrated
Development Environment (IDE).

WebServicesAssembler (WSA), the command line tool, is used to generate artifacts
required to deploy a Web service from WSDL or endpoint implementation classes. It is
useful for automating the creation of Web services in a scripted environment since, in
addition to command line, it exposes its functionality as Ant tasks.

Oracle JDeveloper, Oracle's full-featured Java IDE, can be used for end-to-end
development of Web services. Developers can build Java classes or E]Bs, expose them
as Web services, automatically deploy them to an instance of the Oracle Application
Server, and immediately test the running Web service. Alternatively, Oracle
JDeveloper can be used to drive the creation of Web services from WSDL descriptions.
Like WebServicesAssembler, Oracle JDeveloper also is Ant-aware. You can use this
tool to build and run Ant scripts for assembling the client and for assembling and
deploying the service.

See Also:

Chapter 18, "Using WebServicesAssembler" for more information on
how to use the webServicesAssembler tool to assemble web service
artifacts.

Web Services Development Life Cycle
This section describes the stages of Web service development.

1. Create the Implementation

3-4 Web Services Developer's Guide

Web Services Development Life Cycle

Assemble the Web Service
Assemble the Client
Deploy the Web Service
Test the Web Service

o g & 0D

Perform Post Deployment Tasks

Create the Implementation

Create the implementation that you want to expose as a Web service. OracleAS Web
Services allows a variety of artifacts to be exposed as a Web service, including:

= Java classes

» Enterprise Java Beans (E]Bs)
= JMS queues or topics

s PL/SQL procedures

s SQL Statements

s Oracle Advanced Queues

= Java classes in the database
= CORBA servant objects

You can develop these artifacts using any tool or IDE. Oracle Oracle JDeveloper
enables you to create Java classes, J]MS queues and topics, PL/SQL procedures,
CORBA servant objects, and E]Bs.

Assemble the Web Service

OracleAS Web Services provides a variety of commands that let you assemble a Web
service by using either a top down (starting with a WSDL) or a bottom up (starting
with Java classes, E]Bs, database artifacts, or JMS queues) approach. These commands
can be issued on the command line or they can be written as tasks in an Ant script.

Since Oracle JDeveloper is fully Ant-aware, you can use this tool to build and run the
Ant scripts. Oracle JDeveloper also has design-time wizards which symmetrically
mirror several of the Web service generation commands. Using these wizards can
speed your development process and save you the steps of creating the build scripts.

Most current Java IDEs (such as Eclipse) are also Ant-aware. You can use any of these
IDEs to run the Ant scripts if you choose not to use Oracle JDeveloper.

If you need to invoke other OracleAS Web Services commands, for example, to
generate a WSDL or to add quality of service features, you can invoke them on the
command line or with Ant tasks. While there are no design-time wizards to support
these commands, the Ant tasks can be run directly in Oracle JDeveloper.

See Also:

"Web Service Assembly Commands" on page 18-4 for more
information on the commands that assemble Web services.

Assemble the Client

OracleAS Web Services provides commands that can be used to assemble J2SE and
J2EE client code.

OracleAS Web Services Architecture and Life Cycle 3-5

Web Services Development Life Cycle

Oracle JDeveloper supports OC4J J2SE Web service clients by allowing developers to
create Java stubs from Web service WSDL descriptions. These stubs can then be used
to access existing Web services.

Deploy the Web Service

Web services deployment can be performed either with Java-language commands or
with Ant tasks. The Ant tasks can reside in a build file or they can be issued directly
from Oracle JDeveloper. Oracle JDeveloper also has a deployment wizard which
configures the deployable EAR file and deploys it.

Deployment can also be performed with Application Server Control. However, this
tool cannot be used to configure the EAR file or change its contents.

Test the Web Service

The OracleAS Web Services stack provides a Web Service Test Page for each deployed
Web service. By entering a service endpoint address in a Web browser, you can access
the operations that the Web service exposes. Interactive pages let you invoke the
operations for values that you enter.

The WebServicesAssembler command line tool can generate tests suitable for the JUnit
framework for every method in the Web service. If you use the WebServicesAssembler
tool to generate JUnit tests for the assemble, plsglAssemble, and genProxy
commands, then Oracle JDeveloper can import them by default.

Perform Post Deployment Tasks

There are a number of tasks you can perform post-deployment. Some of these involve
fine-tuning the performance of the Web service, such as changing security and logging
policies. Others involve larger changes to the Web service, such as changing a key
store configuration. You can make some of these changes dynamically; for others, you
must redeploy the Web service. To perform these tasks, use Oracle Application Server
Control. For more information on these tasks, see the Application Server Control
on-line help.

3-6 Web Services Developer's Guide

4

Getting Started

The README. txt file that is included at the top level of the OC4J distribution
provides instructions for setting up and running OC4]. This chapter serves as an
addendum to the README. It provides information that is specific to setting up Oracle
Application Server Web Services in your environment.

This chapter provides the following sections.

Supported Platforms

How to Install OC4]J

How to Set Up Your Environment for OracleAS Web Services
How to Set Up Ant for WebServicesAssembler

Database Requirements

Supported Platforms

OracleAS Web Services is supported on the following platforms.

Redhat Linux
Solaris Sparc 32- and 64-bit
Microsoft Windows: Windows XP, Windows 2000, Windows Server 2003

How to Install 0C44J

Follow the instructions in the README . txt file for installing and running OC4J. The
README . txt file can be found at the top-level of the OC4J distribution.

How to Set Up Your Environment for OracleAS Web Services

This section lists the software you must install and environment variables you must
define to use OracleAS Web Services.

Java2 Standard Edition (J2SE) JDK version 1.4.1 or later

Java2 Standard Edition (J2SE) JDK version 5.0 or later, if you are using the JDK 5.0
Web Service Annotations feature

Jakarta Ant 1.5.x or 1.6.5 (recommended) is required if you will be using Ant tasks
to assemble Web services. Jakarta Ant 1.6.5 is included in the OracleAS Web
Services distribution.

Getting Started 4-1

How to Set Up Your Environment for OracleAS Web Services

- If you want to have your own installation, you can obtain Ant from the
following Web address.

http://jakarta.apache.org/ant/index.html

- If you are using your own installation of Ant, see "How to Set Up Ant for
WebServicesAssembler" on page 4-3 for instructions on setting up Ant to
assemble Web services.

- If youinstalled the version of Ant that is distributed with Oracle Application
Server, then Ant tasks for OracleAS Web Services will already be configured.
Follow the instructions under "How to Set Up Ant 1.6.5 Distributed with
Oracle Application Server" to appropriately modify your environment and
build files.

s Define the following environment variables:
- ORACLE_HOME—define this variable to point to the OC4J installation directory.

- JAVA_HOME—define this variable to point to the J2SE SDK installation
directory. OracleAS Web Services expects JAVA_HOME/bin/java to point to
the Java VM and JAVA_HOME/bin/javac to point to the Java compiler
executables.

= Add the following files or paths to the classpath:

- To make assembly of Web services and the processing of XML files more
convenient, add the paths to the WebServicesAssembler JAR, ORACLE_
HOME/webservices/lib/wsa.jar, and the XML parser JAR, ORACLE_
HOME/lib/xmlparserv2. jar, to the classpath.

- If you want to assemble and compile your Web Services programs using Ant,
appropriate CLASSPATH settings can be found in the Ant scripts
accompanying the Web Services example code. If you want to invoke the
WebServicesAssembler and compile generated code on the command line, you
may want to add the full complement of libraries to your CLASSPATH.

See "Sample Classpath Commands" on page A-6 for a sample Windows
platform set CLASSPATH command for all of the OracleAS Web Services
client JAR files. The classpath on the UNIX platform would be set in a similar
manner.

— OracleAS Web Services provides a separate library, wsclient_
extended. jar, for running Web services clients in a J2SE environment. This
library includes everything that would be required by OracleAS Web Services
clients in a J2SE environment and should simplify the packaging and
distribution of your J2SE client applications. You can find the wsclient_
extended. jar file at the following address on the Oracle Technology
Network Web site.

http://download.oracle.com/otn/java/oc4j/10131/wsclient_
extended. zip

If you installed the OC4] companion CD, then the wsclient_extended. jar
file can also be found in the ORACLE_HOME/webservices/1lib directory.

See "Simplifying the Classpath with wsclient_extended.jar" on page A-2 for
more information on wsclient_extended. jar file.

= If you will be enabling reliable messaging between the client and server, you must
run SQL scripts that will install tables for both the client and server.

4-2 Web Services Developer's Guide

How to Set Up Ant for WebServicesAssembler

"Installing SQL Tables for the Client and Server" in the Oracle Application Server
Advanced Web Services Developer’s Guide for more information on how to find and
run the SQL scripts.

= You will need an installed, running Oracle database if you are using reliable
messaging or assembling database Web services.

See "Database Requirements" on page 4-6 for more information on this topic.

How to Set Up Ant for WebServicesAssembler

The WebServicesAssembler tool assists in assembling OracleAS Web Services. It
enables you to generate the artifacts required to develop and deploy Web services,
regardless of whether you are creating the service using the top down or bottom up
approach. WebServicesAssembler commands can be called either from the command
line or from Ant tasks.

This section describes how to set up your environment and build script files to call
WebServicesAssembler commands from Ant tasks.You can use an Ant installation you
have previously installed or use the Ant that is found in ORACLE_HOME/ant. The
following sections describe how to set up Ant, depending on the version you have
installed.

Note: All of the Ant task examples in this book assume that you are
using Ant version 1.6.5 or later. These versions let you use task
namespaces. Hence, all of the Ant tags and subtags corresponding to
WebServicesAssembler commands are prefixed with the oracle:
namespace.

= How to Set Up Ant 1.6.5 Distributed with Oracle Application Server
= How to Set Up Ant 1.6.5 Using a Previous Installation of Ant
= How to Set Up Ant 1.5.2 Using a Previous Installation of Ant

= How to Set Up the "oracle:" Namespace Prefix for Ant Tasks

How to Set Up Ant 1.6.5 Distributed with Oracle Application Server

The following steps describe how to set up your environment and build files to use
WebServicesAssembler with the Ant 1.6.5 installation found in ORACLE_HOME/ant.
This is the version of Ant distributed with the Oracle Application Server.

1. Enter ORACLE_HOME/ant/bin at the front of your PATH variable.

2. Edit your build script (build.xml). Add the ant1ib:oracle namespace
declaration for the imported Ant tasks. In the following example, bot tomup is the
name of your project.

<project name="bottomup" default="all" basedir="."
xmlns:oracle="antlib:oracle">

3. Add the oracle: namespace as a prefix to all WebServicesAssembler tags. For

example:

<oracle:assemble>
<oracle:port ... />

</oracle:assemble>

<oracle:genProxy/>

Getting Started 4-3

How to Set Up Ant for WebServicesAssembler

4. (Optional) Copy the ant-oracle.properties files to the same directory as
your build script.

Although you can modify the properties file in the j2ee/utilities directory
and reference it from your build scripts, it is better to maintain this file as a
template.

5. (Optional) Edit the ant-oracle.properties file to reflect your installation
environment.

6. (Optional) Edit the build script (build.xml). Reference the
ant-oracle.properties file in the build script. For example:

<property file="ant-oracle.properties"/>

7. (Optional) If you will be using the junit Ant task for reports, set the ANT_OPTS
system property to the Xalan TransformerFactoryImpl class.

= If you are using the JDK 1.5, set the ANT_OPTS property for
TransformerFactory to
com.sun.org.apache.xalan.internal .xsltc.trax.TransformerFa
ctoryImpl. For example:

set ANT_
OPTS=-Djavax.xml.transform.TransformerFactory=com.sun.org.apache.xalan.inte
rnal.xsltc.trax.TransformerFactoryImpl

s If you are using the JDK 1.4, set the ANT_OPTS property for
TransformerFactory to
org.apache.xalan.processor.TransformerFactoryImpl. For
example:

set ANT
OPTS=-Djavax.xml.transform.TransformerFactory=org.apache.xalan.processor.Tr
ansformerFactoryImpl

How to Set Up Ant 1.6.5 Using a Previous Installation of Ant

The following steps describe how to set up your environment and build files to use
WebServicesAssembler with a previous installation of Ant 1.6.5 (or later).

1. Navigate to the directory ORACLE_HOME/j2ee/utilities and ensure that the
following files are present:

s ant-oracle.properties—this file enables you to designate the key
properties for the execution of the Oracle Ant tasks.

s ant-oracle.xml—this file enables you to use Oracle Ant tasks.

2. Copy the ant-oracle.properties and ant-oracle.xmnl files to the same
directory as your build script (build.xml).

Although you can modify the files in the j2ee/utilities directory and
reference them from your build scripts, it is better to maintain the source files as
templates. Also, if you leave the ant-oracle.xml file in its original location,
then the import reference must be hard coded to specify the full path to the file
(for example, c: /oc4j/j2ee/utilities/ant-oracle.xml).

3. Edit the ant-oracle.properties file to reflect your installation environment.
4, Edit the build script (build.xml).

s Import the ant-oracle.xml file into the build script.

4-4 Web Services Developer's Guide

How to Set Up Ant for WebServicesAssembler

<!-- Import for OC4J ant integration. -->
<import file="ant-oracle.xml"/>

s Add the antlib:oracle namespace reference for the imported Ant tasks. In
the following example, bot tomup is the name of your project.

<project name="bottomup" default="all" basedir="."
xmlns:oracle="antlib:oracle">

Include the oracle namespace as a prefix to all WebServicesAssembler
commands. For example:

<oracle:deploy/>
<oracle:genProxy/>

(Optional) If you will be using the junit Ant task for reports, set the ANT_OPTS
system property to the Xalan TransformerFactoryImpl class.

= If you are using the JDK 1.5, set the ANT_OPTS property for
TransformerFactory to
com.sun.org.apache.xalan.internal .xsltc.trax.TransformerFa
ctoryImpl. For example:

set ANT_
OPTS=-Djavax.xml.transform.TransformerFactory=com.sun.org.apache.xalan.inte
rnal.xsltc.trax.TransformerFactoryImpl

s If you are using the JDK 1.4, set the ANT_OPTS property for
TransformerFactory to
org.apache.xalan.processor.TransformerFactoryImpl. For
example:

set ANT
OPTS=-Djavax.xml.transform.TransformerFactory=org.apache.xalan.processor.Tr
ansformerFactoryImpl

How to Set Up Ant 1.5.2 Using a Previous Installation of Ant

The following steps describe how to set up your environment and build files to use
WebServicesAssembler with a previous installation of Ant 1.5.2.

1.

Ensure that your installations of Ant and the Java JDK are already included in the
classpath environment variable.

Add the path to wsa . jar to the CLASSPATH environment variable. The path will
typically be:

0C4J_Home/webservices/lib/wsa.jar
In this example, 0OC4J_Home is the directory where you installed OC4J.

Add the following lines to any Ant build file that will invoke the Ant tasks.

<taskdef resource="orawsa.tasks" />
<typedef resource="orawsa.types" />

These lines can appear anywhere in the build file before the first
WebServicesAssembler task is called.

(Optional) If you will be using the junit Ant task for reports, set the ANT_OPTS
system property to the Xalan TransformerFactoryImpl class.

Getting Started 4-5

Database Requirements

s If you are using the JDK 1.5, set the ANT_OPTS property for
TransformerFactory to
com.sun.org.apache.xalan.internal.xsltc.trax.TransformerFa
ctoryImpl. For example:

set ANT_
OPTS=-Djavax.xml.transform.TransformerFactory=com.sun.org.apache.xalan.inte
rnal.xsltc.trax.TransformerFactoryImpl

s If you are using the JDK 1.4, set the ANT_OPTS property for
TransformerFactory to
org.apache.xalan.processor.TransformerFactoryImpl. For
example:

set ANT
OPTS=-Djavax.xml.transform.TransformerFactory=org.apache.xalan.processor.Tr
ansformerFactoryImpl

How to Set Up the "oracle:" Namespace Prefix for Ant Tasks

Ant version 1.6.5 and higher requires the oracle: prefix at the beginning of all Ant
tags and subtags for WebServicesAssembler commands. This prefix informs the Ant
interpreter that this is an Oracle Ant task.

The oracle: prefix corresponds to the prefix that is found in the project tag at the
beginning of the Ant build.xml file.

<project name="myproject" default="all" basedir="." xmlns:oracle="antlib:oracle">
If you do not want to use oracle as a prefix, you can change it to any valid XML

OName prefix. For example, if you want to use oracletags as a prefix, then you must
change the value of the project tag.

<project name="myproject" default="all" basedir="."
xmlns:oracletags="antlib:oracle">
If you make this change, then all Ant tags and subtags for WebServicesAssembler

commands must start with oracletags:. For example:

<oracletags:assemble ...>

Database Requirements

You will need an installed running Oracle database (local or remote) if you will be
performing any of the following tasks:

= assembling any of the database Web Services. Chapter 10, "Assembling Database
Web Services" provides more information on the database Web services that can be
run on OracleAS Web Services.

= enabling reliable messaging between the client and server. "Ensuring Web Service
Reliability" in the Oracle Application Server Advanced Web Services Developer’s Guide
provides more information on reliable messaging.

4-6 Web Services Developer's Guide

O

OracleAS Web Services Messages

Oracle Application Server Web Services supports SOAP 1.1 and 1.2 messages. The
format of the messages can be document or RPC style and literal or encoded use.

This chapter contains these sections:

» OracleAS Web Services Message Formats

= Working with SOAP Messages

= How to Convert XML Elements to SOAP Elements

OracleAS Web Services Message Formats

This section describes the message formats supported by the current release of
OracleAS Web Services. It includes these topics:

s Understanding Message Formats

= Supported Message Formats

= How to Select Message Formats for a Web Service

s Changing Message Formats in a Service Implementation
s Message Format Recommendations

To understand the message formats supported by OracleAS Web Services, it is useful
to understand the relationship between the Web Service Description Language
(WSDL) 1.1 and the wire format. The wire format is the physical representation of a
Simple Object Access Protocol (SOAP) message, or payload, for transmission. The
message format is determined by the use and style attributes from the binding defined
in the WSDL. The type of XML schema that defines the message part enhances the
message format. The WSDL, then, can be thought of as a contract. By defining the
various attributes in the WSDL, you affect the format of the message on the wire.

Any interoperability issues that arise are usually noticed at runtime in the wire format.
Often, you can fix these by adjusting the WSDL and regenerating the Web service
artifacts.

The relationship between the message format and the wire format is not one-to-one.
For example, you can define a document-literal style Web service, Service A, with an
XML schema that makes runtime SOAP messages look identical to messages produced
by an RPC-literal style Web service, Service B. If you change the style and use (that is,
the message format) of Service A to be "RPC" and "literal", then Service A will not be
the same as Service B. The runtime SOAP messages would look completely different
after the change, unless you also change the schema used in Service A.

OracleAS Web Services Messages 5-1

OracleAS Web Services Message Formats

Understanding Message Formats

The following sections briefly describe the message formats supported by OracleAS
Web Services.

See Also:

The SOAP and WSDL specifications listed in "SOAP-Related
Documents" on page xxiii and "WSDL-Related Documents" on
page xxiv describe the full implications of using the use and style
WSDL binding attributes.

RPC and Document Styles

A SOAP payload can be either RPC or document style. An RPC-style payload is
usually used if there is a need to invoke a remote procedure or method call. With RPC
style, the name of the top-most XML element in the SOAP body of the request is
always the name of the WSDL operation. There is no ambiguity, because the names are
unique in a given binding. The SOAP XML message typically consists of a method
name and parameters, all represented in XML.

If the WSDL operation is overloaded, there must be a unique SOAPAction specified
in the corresponding operation binding. Section 7 of the SOAP 1.1 specification
describes the structure of an RPC-style SOAP body element (<body>).

The SOAP body of a document-style payload contains XML that does not have to
conform to Section 7 of the SOAP 1.1 specification, but it uses an XML schema global
element to define the payload of the message. That schema is defined within or
imported into the WSDL's type section.

Literal and Encoded Uses

The SOAP client and server interprets the XML contents of the SOAP payload <body>
element according to the rules specified by the use attribute of the WSDL's binding
section. The client and server must agree on the same encoding rule to ensure that they
can each correctly interpret the data.

For a literal use, the rules for encoding and interpreting the SOAP body of input and
output messages are described entirely in terms of the schema.

For the encoded use, the encodingStyle attribute in the SOAP body identifies the
rules for encoding and interpreting the message according to the SOAP specification:

s For SOAP 1.1, see "SOAP Encoding", Section 5 of the SOAP 1.1 specification:
http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508/#_Toc478383512

s For SOAP 1.2, see "SOAP Encoding", Section 3 of the SOAP 1.2 specification:
http://www.w3.0rg/TR/2003 /REC-soapl2-part2-20030624/#soapenc

You can also use types defined in the SOAP encoding schema extension.

Supported Message Formats

The following sections describe the message formats supported by OracleAS Web
Services.

s Document-Literal Message Format
s RPC-Encoded Message Format
s RPC-Literal Message Format

5-2 Web Services Developer's Guide

OracleAS Web Services Message Formats

Note: Multiple message formats, such as RPC-encoded and
document-literal, are not supported in a single Web application.

Document-Literal Message Format

Document-literal is the default message format for OracleAS Web Services. The two
common styles of document-literal operations are wrapped and bare.

= For a wrapped style, a schema definition of a wrapper element wraps the
parameters belonging to a method. The messages are not SOAP encoded and do
not use SOAP RPC conventions.

» For a bare style, the method must have only one parameter mapped to a SOAP
body. If the method has multiple parameters, then only one can be mapped to the
body part. The other parameters must be mapped to SOAP headers.

Document-literal complies with WS-I Basic Profile 1.0 and 1.1.

Each document-literal operation is uniquely identified from the QName of the top
element of the input message. Document-literal with the wrapped style has the best
interoperability with NET Web services and is the preferred default message format
for OracleAS Web Services.

See Also:

"Ensuring Interoperable Web Services" in the Oracle Application Server
Advanced Web Services Developer’s Guide for information on
interoperability and message formats.

Advantages:
s Complies with WS-1.

= Provides support for interoperability.
= Natural format for SOAP fault handling.
= Format of the message part is described by the standard XML schema.

Disadvantages:
= Not fully backward compatible with older stacks.

= Does not support object graphs.

Sample Request Message with the Document-Literal Message Format Example 5-1 illustrates
a request message in the document-literal message format. Note that the XML element
part (payloadDocument) under the SOAP body (env: Body) must be a document
instance of a global element defined in the WSDL's schema.

The example applies to SOAP 1.1 messages. To change the example to apply to SOAP
1.2 messages, change the value of xmlns:env to
http://www.w3.0rg/2003/05/soap-envelope.

Example 5-1 Request Message with the Document-Literal Message Format

<env:Envelope
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns0="http://ws.oracle.com/doc-1it">
<env:Body>
<ns0:payloadDocument>
<ns0:name>Scott</ns0:name>

OracleAS Web Services Messages 5-3

OracleAS Web Services Message Formats

<ns0:data>Hello</ns0:data>
</ns0:payloadDocument >
</env:Body>
</env:Envelope>

RPC-Encoded Message Format

The RPC-encoded message format uses the encoding rules defined in the SOAP

specification:

= For SOAP 1.1, see "SOAP Encoding", Section 5 of the SOAP 1.1 specification.
http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508/#_Toc478383512

The encodingStyle attribute for the SOAP 1.1 RPC-encoded message format is
expressed with the following value.

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
= For SOAP 1.2, see "SOAP Encoding", Section 3 of the SOAP 1.2 specification.
http://www.w3.0rg/TR/2003 /REC-soapl2-part2-20030624/#soapenc

The encodingStyle attribute for the SOAP 1.2 RPC-encoded message format is
expressed with the following value.

encodingStyle="http://www.w3.0rg/2003/05/soap-encoding"

See Also:

"Ensuring Interoperable Web Services" in the Oracle Application Server
Advanced Web Services Developer’s Guide for information about the
issues of interoperability and message formats.

Advantages:

s SOAP 1.1 encoding is backward compatible with older stacks, because this was
one of the most common message formats for Web services.

= Supports object graphs (through id and href attributes).

= Provides additional Java type mapping support indicated by the namespace
http://www.oracle.com/webservices/internal. For a list of supported
data types, see Table 5-1 on page 5-7.

Disadvantages:
= Does not comply with the WS-I Basic Profile.

= More difficult to perform schema validation of the entire message payload.

Sample Messages with the RPC-Encoded Message Format Example 5-2 illustrates a request
message that uses the RPC-encoded message format. Note that the tag name of the
XML element part (echoString) sent under the SOAP body (env: Body) must be the
same as the name of the corresponding WSDL operation. The env:encodingStyle
attribute indicates the SOAP encoding style being used. Each XML element part
(stringParam) under the operation element corresponds to a parameter. It must be
an instance of simpleType or a global type definition. If it is a global type definition,
it must be in the WSDL's schema or one of the SOAP encoding extension types.

RPC-encoded request messages to OracleAS Web Services (or RPC-encoded response
messages to OracleAS Web Services-generated stubs) can be consumed without
xsi: type attributes.

5-4 Web Services Developer's Guide

OracleAS Web Services Message Formats

Example 5-2 and Example 5-3 apply to SOAP 1.1 messages. To change the examples to
apply to SOAP 1.2 messages:

s Change the value of xmlns:env to
http://www.w3.0rg/2003/05/soap-envelope

s Change the value of env:encodingStyle to
http://www.w3.0rg/2003/05/soap-encoding

Example 5-2 RPC-Encoded Request Message

<env:Envelope
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:nsO0="http://ws.oracle.com/rpc-enc">
<env:Body>
<ns0:echoString

env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<stringParam>Hello</stringParam>
</ns0:echoString>
</env:Body>
</env:Envelope>

Example 5-3 illustrates a response message that uses the RPC-encoded message
format. RPC-encoded response messages from OracleAS Web Services (or the
RPC-encoded request messages from an OracleAS Web Services-generated stub)
always contain xs1i: type attributes.

Example 5-3 RPC-Encoded Response Message

<env:Envelope
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:nsO0="http://ws.oracle.com/rpc-enc">
<env:Body>
<ns0:echoStringResponse

env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<stringParam xsi:type="xsd:string">Hello</stringParam>
</ns0:echoStringResponse>
</env:Body>
</env:Envelope>

The xsi:type Attribute in RPC-Encoded Message Formats In many SOAP implementations,
messages that use the RPC-encoded message format usually use the xsi: type
attribute on each element in the message payload. This attribute helps object
serialization and deserialization. The xs1i : type attribute is optional in most cases.
The xs1i : type attribute is required only if the element is an instance of a derived type
of an element type defined in the schema. For inbound SOAP messages, OracleAS Web
Services accepts messages with or without the xsi : type attribute. For outbound
SOAP messages in RPC-Encoded format, OracleAS Web Services always emits the
xsi: type attribute.

Example 54 and Example 5-5 apply to SOAP 1.1 messages. To change the examples to
apply to SOAP 1.2 messages:

s Change the value of xmIns:env to
http://www.w3.0rg/2003/05/soap-envelope

OracleAS Web Services Messages 5-5

OracleAS Web Services Message Formats

s Change the value of env:encodingStyle to
http://www.w3.0rg/2003/05/soap-encoding

Example 54 illustrates a request message for the echo operation in RPC-encoded
message format. Note that the code sample does not contain the
xsi:type="xsd:string" attribute.

Example 5-4 RPC-Encoded Request Message Without the xsi:type Attribute

<env:Envelope
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:nsO0="http://ws.oracle.com/rpc-enc">
<env:Body>
<ns0:echo env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<param>some string</param>
</ns0:echo>
</env:Body>
</env:Envelope>

Example 5-5 illustrates the same request message in RPC-encoded format with the
xsi: type attribute.

Example 5-5 RPC-Encoded Request Message With the xsi:type Attribute

<env:Envelope
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:nsO0="http://ws.oracle.com/rpc-enc">
<env:Body>
<ns0:echo env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<param xsi:type="xsd:string">some string</param>
</ns0:echo>
</env:Body>
</env:Envelope>

Oracle Specific Type Support For a complete list of the supported types, see Chapters 4
and 5 of the JAX-RPC 1.1 specification. The JAX-RPC 1.1 specification is available
from:

http://java.sun.com/webservices/jaxrpc/index.jsp

For completeness, Table 5-1 describes all of the Java types and Oracle proprietary
types supported by the OracleAS Web Services RPC-encoded message format. The
Java type mapping support for the types is indicated by the following OracleAS Web
Services-specific namespace:

http://www.oracle.com/webservices/internal

This namespace accommodates nonstandard XML schema definitions for some
standard Java types, such as Collection, that are not supported by JAX-RPC 1.1.

Note: The java.util.Collection family and java.util.Map
family are also supported for the literal use (that is, document-literal
and RPC-literal). The schema types for these Java types are defined
under a different namespace. See "Mapping Java Types to XML and
WSDL Types" in the Oracle Application Server Advanced Web Services
Developer’s Guide for more information on how these Java types are
supported.

5-6 Web Services Developer's Guide

OracleAS Web Services Message Formats

Table 5-1

Java Types Supported by RPC-Encoded Proprietary Message Format

Java Type

Java Classes

Mapping Details

Java primitive types

java.lang Object
types

basic Java types

Java array types

Java value types

attachments

Note: attachments
are not interoperable

java.util.Collection

boolean, byte, double, float, int, long,

short

Boolean, Byte, Double, Float, Integer,

Long, Short, String

java.math.BigDecimal
java.math.BigInteger
java.xml.QName
java.util.Calendar
java.util.Date

java.net.URI

One-dimensional arrays with elements

of supported type

Java Beans with properties of
supported types

java.awt.Image
javax.mail.internet. MimeMultipart
javax.xml.transform.Source

javax.activation.DataHandler

java.util.Collection
java.util.List
java.util.Set
java.util.Vector
java.util.Stack
java.util.LinkedList
java.util. ArrayList
java.util. HashSet

java.util. TreeSet

OracleAS Web Services Messages 5-7

See "How OracleAS Web
Services Maps Java
Primitive Types to XML
Types" in the Oracle
Application Server Advanced
Web Services Developer’s
Guide

See "How OracleAS Web
Services Maps Java Types to
XML Types" in the Oracle
Application Server Advanced
Web Services Developer’s
Guide

See "How OracleAS Web
Services Maps Java Types to
XML Types" in the Oracle
Application Server Advanced
Web Services Developer’s
Guide

See "How OracleAS Web
Services Maps Java Types to
XML Types" and "How
OracleAS Web Services
Maps Java Collection
Classes to XML Types" in
the Oracle Application Server
Advanced Web Services
Developer’s Guide

See "How OracleAS Web
Services Supports Java
Value Types" in the Oracle
Application Server Advanced
Web Services Developer’s
Guide

See "Working with Message
Attachments" in the Oracle
Application Server Advanced
Web Services Developer’s
Guide

See "How OracleAS Web
Services Maps Java
Collection Classes to XML
Types" and "Additional
Information about Oracle
Proprietary XML Types" in
the Oracle Application Server
Advanced Web Services
Developer’s Guide

OracleAS Web Services Message Formats

5-8

Table 5-1 (Cont.) Java Types Supported by RPC-Encoded Proprietary Message Format

Java Type Java Classes Mapping Details
java.util. Map java.util. Map See "How OracleAS Web
. . Services Maps Java
java.util. HashMap Collection Classes to XML
java.util. TreeMap Types" and "Additional

. . Information about Oracle

java.util. Hashtable Proprietary XML Types” in

java.util. Properties the Oracle Application Server
Advanced Web Services
Developer’s Guide

If you want to use any value types which are not built-in (for example, a user-defined
MyBean type) as items in a Map or Collection, then you must use the value of the
valueTypeClassName argument to declare these types to the WebServicesAssembler
tool when generating the WSDL.

java -jar wsa.jar -genWsdl
-valueTypeClassName hello.MyBean
-valueTypeClassName hello.MyFoo...

In this command:

» genWsdl—Generates a WSDL based on a Java interface. See "genWsdl" on
page 18-28.

s valueTypeClassName—Specifies the fully-qualified class name of the JAX-RPC
value type which is used for java.util.Collectionand java.util.Map.
See "valueTypeClassName" on page 18-69.

This allows the generated WSDL to include the schema definitions for these value
types. The runtime can then correctly generate the corresponding serialized values. All
WebServicesAssembler commands and Ant tasks that assemble Web services bottom
up (from Java classes, E]Bs, database resources, and so on) support the
valueTypeClassName argument.

See Also:

"Custom Serialization of Java Value Types" in the Oracle Application
Server Advanced Web Services Developer’s Guide for more information on
using value type classes that do not conform to the JAX-RPC value
type requirements, or that cannot be handled by the default JAX-RPC
serialization mechanism.

Restrictions on RPC-Encoded Format OracleAS Web Services does not support the
combination of RPC-encoded message formats and databinding=false.

RPC-Literal Message Format

RPC-literal message format complies with WS-I Basic Profile 1.0 and 1.1. This format
uses the RPC style of message payload structure but supports the literal way of
describing the types passed by a procedure. In this case, literal means that there exists
a schema for every parameter type but not for the payload of the message body itself.

See Also:

"Ensuring Interoperable Web Services" in the Oracle Application Server
Advanced Web Services Developer’s Guide for information on
interoperability and message formats.

Web Services Developer's Guide

OracleAS Web Services Message Formats

Advantages:
s Complies with WS-1.

» Format of the message part is described by the standard XML schema.

Disadvantages:
= Support for RPC-literal is not consistent across all vendors.

= Does not support object graphs.
s Is not backward compatible with older stacks.

s Itis not possible to represent null values for Java method parameters when
mapping to WSDL message parts.

Sample Request Message with the RPC-Literal Message Format Example 5-6 illustrates a
request message coded for the RPC-literal message format. Note that the tag name of
the XML element part (echoString) under the SOAP body (env:Body) must be
identical to the name of the corresponding WSDL operation. Each XML element part
(stringParam) under the operation element corresponds to a parameter and must be
an instance of simpleType or a global type definition. If it is a global type definition,
then it must be in the WSDL's schema.

The example applies to SOAP 1.1 messages. For SOAP 1.2 messages, change the value
of xmlns:envtohttp://www.w3.0rg/2003/05/soap-envelope.

Example 5-6 RPC-Literal Request Message

<env:Envelope
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:nsO0="http://ws.oracle.com/rpc-1lit">
<env:Body>
<ns0:echoString>
<stringParam>Hello</stringParam>
</ns0:echoString>
</env:Body>
</env:Envelope>

How to Select Message Formats for a Web Service

The WebServicesAssembler tool provides arguments that let you control the message
format used by a Web service. These arguments let you specify whether the message
format is RPC or document (wrapped or bare), encoded or literal.

= style
= use

The following WebServicesAssembler commands allow you to use the use and style
arguments to specify the message format for your Web service. You can find more
information on these commands in Chapter 18, "Using WebServicesAssembler".

= agAssemble

= assemble

= corbaAssemble

s dbJavaAssemble
= ejbAssemble

s genWsdl

OracleAS Web Services Messages 5-9

OracleAS Web Services Message Formats

5-10

= plsqlAssemble
= sqlAssemble

The following example uses the assemble command to assemble the Web service
server components. The style and use arguments specify that the message format
used is RPC-literal:

java -jar wsa.jar -assemble
-appName $ (app.name)
-serviceName HelloServiceWSIF
-uri $(app.name)
-interfaceName oracle.demo.hello.HelloInterface
-className oracle.demo.helllo.HelloImpl
-input $(service.classes.dir)
-output build
-ear dist/$ (app.name) .ear
-style rpc
-use literal

In this command:

= assemble—Generates a Web service from Java files bottom up. The command
creates all of the files required to create a deployable archive. See "assemble" on
page 18-7.

= appName—Specifies the name of an application. Usually, this name is used as a
base value for other arguments like context and uri. See "appName" on
page 18-42.

s serviceName—Specifies the service name. See "serviceName" on page 18-50.
s uri—Specifies the URI to use for the Web service. See "uri" on page 18-63.

s interfaceName—Specifies the name of a Java class (including the package
name) that contains the service endpoint interface (SEI). See "interfaceName" on
page 18-47.

» classname—Specifies the name of the class (including the package name) that is
the implementation class for the Web service. See "className" on page 18-43.

= input—Specifies the directory or JAR containing the classes that should be copied
to WEB-INF/classes. This argument will be added to the classpath used by the
WebServicesAssembler. See "input" on page 18-46

= output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created. See "output” on page 18-48.

= ear—Specifies the name and location of the generated EAR. See "ear" on
page 18-44.

s style—For bottom up Web service assembly, this argument specifies the style
attribute of the message format in the generated WSDL. See "style" on page 18-68.

= use—For bottom up Web service assembly, this argument specifies the use
attribute of the message format in the generated WSDL. See "use" on page 18-68.
See Also:

Chapter 18, "Using WebServicesAssembler" for more information on
the WebServicesAssembler tool and its functionality.

Web Services Developer's Guide

Working with SOAP Messages

Changing Message Formats in a Service Implementation

You can expose Java service endpoint implementations in RPC-encoded, RPC-literal,
or document-literal format. However, if the service endpoint implementation uses the
attachment data types listed in the Table 5-1, then you can use only RPC-encoded. If
none of the attachment types are used, then you can use RPC-literal or
document-literal format to achieve better interoperability. Each of the formats display
similar performance in marshaling between Java objects and XML.

Message Format Recommendations

This section provides some general guidelines for choosing a message format when
designing your Web service. When choosing a message format, consider the
functionality requirements of the client you want to support. Table 5-2 describes some
possible client functionality requirements and suggested message formats.

Table 5-2 Message Format Suggestions, Based on Client Functionality

Client Functionality

Suggested Message Format

Axis 1.2 client

BPEL processes

call-out from an Oracle release
10.1 database

call-out from an Oracle release
9.2 database

expose graph and preserve
object identity

OmniPortlet

Oracle XML Query Service
(XQS) integration

WS-T compliance

XML Schema integration

Use either RPC-encoded or document-literal message
formats

Use document style with the literal use.

JAX-RPC supports all formats. You may want to avoid
RPC-literal database call-out if you need to represent NULL
values.

Callout is based on soap . jar; use RPC-encoded.

Use RPC-encoded. Although RPC-encoded is the easiest
way, it can be achieved in document-literal if the model
(schema) is well-designed.

Use either RPC-encoded or document-literal. The
Omniportlet APIs (wizard) does not support RPC-literal.

Use either RPC or document style with the literal use. Oracle
XML Query Service does not support SOAP encoding.

Use either RPC or document style with the literal use.

Reuse the schema definition to describe the SOAP message
part of the WSDL operation. This integration can be
achieved with either RPC or document style with the literal
use.

Working with SOAP Messages

OracleAS Web Services supports SOAP 1.1 and 1.2 messages both programmatically
and by using the WebServicesAssembler tool to assemble Web services bottom up and

top down.

s Understanding the OraSAA] APIs
= How to Use the OraSAA] APIs to Manipulate SOAP Messages
= How to Convert XML Elements to SOAP Elements

= How to Use SOAP 1.2 Formatted Messages in Bottom Up Web Service Assembly

= How to Use SOAP 1.2 Formatted Messages in Top Down Web Service Assembly

OracleAS Web Services Messages 5-11

Working with SOAP Messages

The SOAP with Attachments API for Java (SAA]) version 1.2 is the programmatic
model for representing and working with a SOAP message. The standard SAA]J APIs
support SOAP 1.1. You can find more information on SAA]J at the following Web
address:

http://java.sun.com/webservices/saaj/index.jsp

The Oracle extension of the SAAJ 1.2 API (OraSAAJ) allows a Web service to work
with SOAP 1.2 messages.

Understanding the OraSAAJ APIs
OracleAS Web Services support SAAJ 1.2, which is a specification for modeling SOAP

messages with attachments in Java objects. However, the standard SAAJ 1.2 APIs
support only SOAP 1.1 messages. To provide programmatic support for SOAP 1.2
messages, OracleAS Web Services includes the oracle.webservices. soap
package. The interfaces in this package allow you to work with and add information to

SOAP 1.2 message objects.

The classes in this package, VersionedMessageFactory and
VersionedSOAPFactory, are extensions to standard SAA] classes
MessageFactory and SOAPFactory. The methods in the
VersionedMessageFactory and VersionedSOAPFactory classes contain an
extra parameter that lets you specify a SOAP message version when using the

standard SAAJ APIs.

Table 5-3 Interfaces and Classes in the OraSAAJ API

Interface/Class Name

Description

Body12 Represents a SOAP 1.2 message Body object.

interface

Fault12 Provides methods to add SOAP 1.2 FaultCode and

interface FaultReason elements to a SOAP 1.2 Fault element.

FaultCode12 Provides methods to add SOAP 1.2 FaultValue and

interface FaultSubcode elements to a SOAP 1.2 FaultCode
element.

FaultReason12 Provides methods to add a SOAP 1.2 FaultText element to

interface a SOAP 1.2 Faul tReason element.

FaultSubcodel2 This interface is an extension to the FaultCodel?2 interface.

interface It is a marker interface for compiler-enforced strong typing.

FaultText12 Provides methods for adding the text node content and locale

interface information to a FaultText element.

FaultValuel2 Provides methods to set the fault code on a FaultValuel2

interface element.

OracleSOAPElement An extension of the java.xml .soap.SOAPElement

interface interface. Provides methods for working with the data
handlers for messages with attachments.

SOAPVersion Provides constants representing the SOAP versions that are

interface available to the platform.

VersionedMessageFactory
class

5-12 Web Services Developer's Guide

Provides methods for creating a SOAP message. These
methods mimic the standard SAAJ MessageFactory class,
except that they contain an extra parameter for specifying a
SOAP message version. One method creates an empty
message with standard MIME headers. The other method
creates a message based on an input stream and a specified
MIME header.

Working with SOAP Messages

Table 5-3 (Cont.) Interfaces and Classes in the OraSAAJ API

Interface/Class Name Description
VersionedSOAPFactory Provides methods for creating SOAP elements. These
class methods mimic the standard SAAJ] SOAPFactory class,

except that they contain an extra parameter for specifying a
SOAP message version.

See Also:

The Oracle Application Server Web Services Java API Reference for more
information on the classes and methods in the
oracle.webservices. soap package.

How to Use the OraSAAJ APIs to Manipulate SOAP Messages

The OraSAA] extensions can be used from a javax.xml.rpc.handler.Handler.
In most cases, the standard javax.xml.soap. * classes can be used to manipulate
SOAP 1.2 SAA] messages. However, if you want to use the functionality provided by
SOAP 1.2, you must use the OraSAA]J APIs.

Example 5-7 illustrates how the standard javax.xml.soap. * classes and the
OraSAA]J classes can be used together. The example code creates a SOAP 1.2 message
from scratch. The VersionedMessageFactory method returns a
javax.xml.soap.SoapMessage object. This enables you to use the standard
javax.xml.soap. * methods such as getBody and getEnvelope on the message.

The addFault method adds a SOAP 1.2 fault to the message. To send SOAP 1.2 faults,
you must use the OraSAAJ Faultl2, FaultCodel2, FaultValuel2, and
FaultReasonl2 APIs. This is because SOAP 1.2 faults contain more information than
SOAP 1.1 faults.

Example 5-7 Working with the SAAJ and OraSAAJ APIs

public boolean handleResponse (MessageContext context) {

// create a SOAP 1.2 message from scratch.
// Note the use of VersionedMessageFactory to get a SOAPMessage
// for a specific version of soap
SOAPMessage message =
((VersionedMessageFactory)MessageFactory.newInstance()).createVersionedMessage (ora
cle.webservices.soap.SOAPVersion.SOAP 1_2);
// Now standard APIs can be used.
SOAPBody body = message.getSOAPPart () .getEnvelope().getBody () ;
// However, if you need to send a fault, you must
// use Oracle specific APIs, because SOAP 1.2
// faults contain more information than SOAP 1.1 faults.
// Note the use of Faultl2, FaultCodel2, and FaultReasonl?2
SOAPFault fault = body.addFault();
Faultl2 soapFault = (Faultl2) fault;
FaultCodel2 faultCode = soapFault.addCode();
FaultValuel2 faultValue = faultCode.addFaultValue();
QNameAdapter faultCodeQName = new QNameAdapter ("http://my.foo.com/",
"myFaultCode",
"foo");
faultValue.setFaultCode (faultCodeQName) ;
FaultReasonl2 faultReason = soapFault.addReason();
faultReason.addFaultText () .setValue ("An unknown error occurred");

OracleAS Web Services Messages 5-13

Working with SOAP Messages

How to Work with Messages with Attachments Containing Binary Data

The oracle.webservices package provides an OracleSOAPElement interface
that contains methods that enable you to work with messages with attachments.

See Also:

"Working with Attachments Containing Binary Data" in the Oracle
Application Server Advanced Web Services Developer’s Guide provides
more information on the OracleSOAPElement interface and how to
use its methods to get and set attachments with binary data.

How to Convert XML Elements to SOAP Elements

The oracle.webservices package provides a toSOAPElement method in the
SOAPUt11 class to convert XML elements (org.w3c.dom.Element) to SOAP
elements (javax.xml.soap.SOAPElement). Note that SOAPElement implements
dom.Element, and not vice versa.

Example 5-8 illustrates a code sample that creates an XML document, converts it to a
SOAP element, and prints it to the standard output.

Example 5-8 Converting an XML Element to a SOAP Element

try {
DOMParser parser = new DOMParser();
parser.parse (new StringReader (
"<Flds:CustomerGroup xmlns:Flds=\"http://foo.com/foo.xsd\">
"<Flds:Customer>xyz</Flds:Customer>
"</Flds:CustomerGroup>")) ;

SOAPElement se = SOAPUtil.toSOAPElement (
parser.getDocument () .getDocumentElement ()) ;
((XMLElement)se) .print (System.out) ;
} catch (Exception ex) ({
ex.printStackTrace();

}

How to Use SOAP 1.2 Formatted Messages in Bottom Up Web Service Assembly

5-14

To support SOAP version 1.2 messages in bottom up Web service generation,
WebServicesAssembler provides a soapVersion argument. Values can be "1.1",
"1.2",0or"1.1,1.2". Default valueis "1.1".

The"1.1,1.2" value means that WebServicesAssembler will create two ports with
two bindings. One port and binding will support version 1.1; the other port and
binding will support version 1.2. Each port must be bound to a different URL. That is,
you cannot support both versions concurrently with the same URL address.

See Also:

"soapVersion" on page 18-66 for more information on the
WebServicesAssembler soapVersion argument.

Web Services Developer's Guide

Working with SOAP Messages

How to Use SOAP 1.2 Formatted Messages in Top Down Web Service Assembly

To support SOAP 1.2 messages in top down Web services development, you must
supply a WSDL with a SOAP 1.2 binding. A WSDL with a SOAP 1.2 binding contains
a set of URISs specific to SOAP 1.2. These URIs are listed in Table 5-4.

Table 5-4 URIs for SOAP 1.2 Messages

URI Description

http://schemas.xmlsoap.org/wsdl/soapl?2 The namespace of the SOAP 1.2 binding element that goes
into the WSDL binding element.

http://www.w3.0rg/2003/05/soap-encoding For a SOAP 1.2 message, indicates the encoding rules that
the contents of the containing element follows.
For more information, see the SOAP Version 1.2 Part 2
Recommendation at:
http://www.w3.0rg/TR/2003/REC-soapl2-part2-
20030624/

http://www.w3.0rg/2003/05/soap/bindings/ Describes HTTP transport for SOAP 1.2. Both URIs are

HTTP accepted by the OracleAS Web Services stack, but the

and schemas.xmlsoap.org URI is more interoperable than

http://schemas.xmlsoap.org/soap/http

the www . w3 . org URI. Therefore, the
schemas .xmlsoap.org URI is used when the WSDL is
generated for bottom up Web Service assembly.

Example 5-9 displays a WSDL that supports SOAP 1.2 messages. The URIs and
elements that are needed to support SOAP 1.2 are displayed in bold font.

Example 5-9 Sample WSDL with SOAP 1.2 Binding

<?xml version="1.0" encoding="UTF-8"?>

<definitions
name="Rpclitbottomup"
targetNamespace="http://www.oracle.ws/rpcliteral"
xmlns="http://schemas.xmlsoap.org/wsdl/"
tns="http://www.oracle.ws/rpcliteral"
mime="http://schemas.xmlsoap.org/wsdl/mime/"
soapl2="http://schemas.xmlsoap.org/wsdl/soapl2/"
tnsO0="http://www.oracle.ws/rpcliteral/schema"
xsd="http://www.w3.0rg/2001/XMLSchema"
soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:
xmlns:
xmlns:
xmlns:
xmlns:
xmlns:

>

<types>
<schema xmlns="http://www.w3.o0rg/2001/XMLSchema"

targetNamespace="http://www.oracle.ws/rpcliteral/schema"
elementFormDefault="qualified"
xmlns:tns="http://www.oracle.ws/rpcliteral/schema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<complexType name="HelloMessage">

<sequence>
<element
<element
<element
<element
<element
</sequence>
</complexType>
</schema>

</types>

name="longValue" type="long"/>

name="age" type="int"/>

name="greeting" type="string" nillable="true"/>
name="name" type="string" nillable="true"/>
name="1id" type="decimal" nillable="true"/>

OracleAS Web Services Messages 5-15

Limitations

<message name="HelloInterface_hello">
<part name="msg" type="tns0:HelloMessage"/>
</message>
<message name="HelloInterface_helloResponse">
<part name="result" type="tns0:HelloMessage"/>
</message>
<portType name="HelloInterface">
<operation name="hello" parameterOrder="msg">
<input message="tns:HelloInterface_hello"/>
<output message="tns:HelloInterface_helloResponse"/>
</operation>
</portType>
<binding name="HelloInterfacePortBinding" type="tns:HelloInterface">
<soapl2:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http" />
<operation name="hello">
<soapl2:operation soapAction="http://www.oracle.ws/rpcliteral/hello"
soapActionRequired="false"/>
<input>
<soapl2:body use="literal"
namespace="http://www.oracle.ws/rpcliteral" parts="msg"/>
</input>
<output>
<soapl2:body use="literal"
namespace="http://www.oracle.ws/rpcliteral" parts="result"/>
</output>
</operation>
</binding>
<service name="Rpclitbottomup">
<port name="HelloInterfacePort" binding="tns:HelloInterfacePortBinding">
<soap:address location="REPLACE_WITH_ACTUAL_URL"/>
</port>
</service>
</definitions>

Limitations

See "OracleAS Web Services Messages" on page F-1.

Additional Information

5-16

For more information on:

= using the WebServicesAssembler tool to assemble Web services, see Chapter 18,
"Using WebServicesAssembler".

= Web services interoperability, see "Ensuring Interoperable Web Services" in the
Oracle Application Server Advanced Web Services Developer’s Guide.

= message attachments, and using attachments in your Web service, see "Working
with Message Attachments" in the Oracle Application Server Advanced Web Services
Developer’s Guide

= processing nonstandard data types, see "Custom Serialization of Java Value Types"
in the Oracle Application Server Advanced Web Services Developer’s Guide.

s the JAX-RPC mapping file, see "JAX-RPC Mapping File Descriptor" in the Oracle
Application Server Advanced Web Services Developer’s Guide.

Web Services Developer's Guide

Additional Information

= data types supported by OracleAS Web Services, see "Mapping Java Types to XML
and WSDL Types" in the Oracle Application Server Advanced Web Services Developer’s
Guide.

OracleAS Web Services Messages 5-17

Additional Information

5-18 Web Services Developer's Guide

6

Assembling a Web Service from WSDL

This chapter describes how to assemble a Web service, starting with a Web Service
Description Language (WSDL) file. This is also known as top down Web service
generation.

Understanding Top Down Assembly

In top down Web service assembly, you generate a service from an existing WSDL file
that models the business processes you want to expose.

A development tool, such as WebServiceAssembler, uses the WSDL to generate the
service endpoint interface for the service. You can then implement the service for any
supported architecture, such as Java classes. After compiling the implementation, you
generate the service and deploy it to the application server.

Assembling a Web service requires the WebServiceAssembler tool, and Java platform
tools such as the javac compiler, that are found in the J2SE 1.4 SDK distribution.

These are the general steps for generating a Web service top down:
1. Generate the service endpoint interface.
WebServicesAssembler can perform this step.
2. Implement and compile the services.
The developer performs this step.
3. Assemble the services.

WebServicesAssembler can perform this step. "Steps for Assembling the Web
Service Top Down" on page 6-3 provides more detail on each of these steps.

See Also:

Chapter 5, "OracleAS Web Services Messages" for information about
the message formats you can assign to a Web service.

Note: If you are assembling Web Services top down,
WebServicesAssembler cannot consume WSDLs that contain the
xsd:choice or xsd:group XML types. If you want to consume a
WSDL that contains these XML types, set the WebServicesAssembler
dataBinding argument to false and code the SOAPElement so
that the payload conforms to the schema definition in the WSDL file.

Assembling a Web Service from WSDL 6-1

How to Assemble a Web Service Top Down

How to Assemble a Web Service Top Down

This section contains the following subsections:

m Prerequisites

= Steps for Assembling the Web Service Top Down

Prerequisites

Generating a Web service top down with WebServiceAssembler requires you to specify
only the WSDL and an output directory.

Before you generate Web services, consider these issues:

s WebServicesAssembler places some restrictions on the WSDL that you specify:

The WSDL should comply with Web Services-Interoperability (WS-I) Basic
Profile 1.0. If it does not, WebServiceAssembler provides command-line
arguments that enable you to work around many limitations in the WSDL.

Only one service element can be implemented. WebServicesAssembler enables
you to generate the artifacts for only one service at a time. If more than one
service is described in the WSDL, a command line argument, serviceName,
enables you to specify the service you want to use.

The message format is specified in the WSDL. You cannot use
WebServicesAssembler to change the message format in top down Web service
development.

The WSDL cannot contain multiple message formats. Remove any ports from
the WSDL that reference a binding with a message format that you do not
want to use.

National Language Support (also known as "NLS" or "Globalization Support")
characters that occur in names in the WSDL, such as in the name of a service,
port type, operation, binding or port, are not supported. This may also result
in errors during code generation or in the Web Services Test Page.

s Decide whether you want to use wrapped or unwrapped parameters. To control
this, WebServicesAssembler provides the unwrapParameters command-line
option.

= If you use nonstandard data types, ensure that the oracle-webservices.xml
deployment descriptor defines how they will be handled. This file can be used to
identify the name of the serialization class that converts the data between XML
and Java, the name of the Java class that describes the Java representation of the
data, and so on.

6-2 Web Services Developer's Guide

How to Assemble a Web Service Top Down

See Also:

s Chapter 18, "Using WebServicesAssembler" provides descriptions
of WebServicesAssembler commands and arguments.

= "Mapping Java Types to XML and WSDL Types" in the Oracle
Application Server Advanced Web Services Developer’s Guide and
Table 5-1 on page 5-7 for more information on using non-standard
data types.

s Appendix C, "oracle-webservices.xml Deployment Descriptor
Schema" provides more information on this file.

s "Custom Serialization of Java Value Types" in the Oracle
Application Server Advanced Web Services Developer’s Guide for more
information on working with nonstandard data types

Steps for Assembling the Web Service Top Down

The following steps illustrate how to assemble a Web service top down. The Web
service will provide a logging facility that is defined by the WSDL stored at
wsdl/LoggingFacility.wsdl.

1.

Provide a WSDL from which the Web service will be generated as input to the
WebServiceAssembler genInterface command.

Command line:

java -jar wsa.jar -genlnterface
-output build/src/service
-wsdl wsdl/LoggingFacility.wsdl
-unwrapParameters false
-packageName oracle.demo.topdowndoclit.service
-mappingFileName type-mapping.xml

Ant task:

<oracle:genInterface wsdl="wsdl/LoggingFacility.wsdl"
output= "build/src/service"
packageName= "oracle.demo.topdowndoclit.service"
mappingFileName="type-mapping.xml"
dataBinding="true"
unwrapParameters="false"

/>

In this command line and Ant task:

s genInterface—Creates a service endpoint interface for each port type and a
Java value type class (beans) for any complex type defined in a WSDL. It also
creates a JAX-RPC mapping file that describes the mapping between the XML
schema types and the Java value type classes. See "genInterface" on
page 18-31.

= output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created. See"output" on page 18-48.

» wsdl—Specifies the absolute file path, relative file path, or URL to a WSDL
document. See "wsdl" on page 18-65.

» unwrapParameters—When set to false the generated service endpoint
interface will be generated with wrappers around the input parameter and the
return type. See "unwrapParameters" on page 18-69.

Assembling a Web Service from WSDL 6-3

How to Assemble a Web Service Top Down

» packageName—Specifies the package name that will be used for generated
classes if no package name is declared in the JAX-RPC mapping file. See
"packageName" on page 18-48.

» mappingFileName—Specifies a file location that points to a JAX-RPC
mapping file. See "mappingFileName" on page 18-47.

s dataBinding—If true, WebServicesAssembler will attempt to generate Java
value types that follow the JAX-RPC default type mapping rules for every
element in the schema. See "dataBinding" on page 18-69.

At a minimum, specify the name of the WSDL. For more information on the
required and optional arguments to genInterface see"genlnterface" on
page 18-31.

The WebServiceAssembler tool generates a Java interface for every port type
specified in the WSDL, and a Java Bean for each complex type. The name of the
directory that stores the generated interface is based on the values of the output
and packageName arguments. For this example, the generated interface is stored
inbuild/src/service/oracle/demo/topdowndoclit/service. The value
types are stored in the specified output directory, but the package name is based
on the type namespace or values in the JAX-RPC mapping file,
type-mapping.xml.

2. Compile the generated interface and type classes. For example:

javac build/src/service/*.java -destdir build/classes

3. Create the service endpoint implementation for your Web service.

The Java service endpoint must have a method signature that matches every
method in the generated Java interface. This example assumes that you are
creating the service in the file DocLitLoggerImpl. java.

4. Compile the Java service endpoint.

For example, you can use the same command as in Step 2 if the Java service
endpoint interface source was generated in the same directory where the Impl
class was saved. If it was not, then you must change the value of the classpath
argument.

5. Assemble the service by running the WebServiceAssembler tool with the
topDownAssemble command. In this example, doclit_topdown is an
application name for the generated Web service. For example:

Command line:

java -jar wsa.jar -topDownAssemble
-appName doclit_topdown
-wsdl ./wsdl/LoggingFacility.wsdl
-unwrapParameters false
-className oracle.demo.topdowndoclit.service.DocLitLoggerImpl
-input build/classes/service
-output build
-ear dist/doclit_topdown.ear
-mappingFileName type-mapping.xml
-packageName oracle.demo.topdowndoclit.service
-fetchWsdlImports true
-classpath ./build/classes/client

Ant task:

<oracle:topDownAssemble

6-4 Web Services Developer's Guide

How to Assemble a Web Service Top Down

appName="doclit_topdown"
wsdl="./wsdl/LoggingFacility.wsdl"
unwrapParameters="false"
input="build/classes/service "
output="build"
ear="dist/doclit_topdown.ear"
mappingFileName="type-mapping.xml"
packageName="oracle.demo.topdowndoclit.service"
fetchWsdlImports="true"
>

<oracle:portType

className="oracle.demo.topdowndoclit.service.DocLitLoggerImpl" />

</oracle:topDownAssemble>

In this command and Ant task:

topDownAssemble—Creates the required classes and deployment
descriptors for a Web service based on a WSDL description. The files can be
stored in either an EAR file, a WAR file, or a directory. See
"topDownAssemble" on page 18-22.

appName—Specifies the name of an application. Usually, this name is used as
a base value for other arguments like context and uri. See "appName" on
page 18-42.

wsd1l—Specifies the absolute file path, relative file path, or URL to a WSDL
document. See "wsdl" on page 18-65.

unwrapParameters—When set to false the generated service endpoint
interface will be generated with wrappers around the input parameter and the
return type. See "unwrapParameters" on page 18-69.

input—Specifies the directory or JAR containing the classes that should be
copied to WEB-INF/classes. This argument will be added to the classpath
used by the WebServicesAssembler. See "input" on page 18-46.

output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created. See "output” on page 18-48.

ear—Specifies the name and location of the generated EAR. See "ear" on
page 18-44.

mappingFileName—Specifies a file location that points to a JAX-RPC
mapping file. See "mappingFileName" on page 18-47.

packageName—Specifies the package name that will be used for generated
classes if no package name is declared in the JAX-RPC mapping file. See
"packageName" on page 18-48.

fetchwWsdlImports—Indicates if you want to make a local copy of the
WSDL and everything it imports. See "fetchWsdlImports" on page 18-64.

At a minimum, specify the name of the WSDL, the class name that implements the
service, and the name of the output directory. The WebServiceAssembler tool
outputs an EAR file, and a WAR file within the EAR. The WAR file contains the
service artifacts, the implementation classes, the Web deployment descriptor
(web.xml) and the JAX-RPC deployment descriptor (webservices.xml). For
more information on the required and optional arguments to topDownAssemble,
see "topDownAssemble" on page 18-22.

Deploy the service.

Assembling a Web Service from WSDL 6-5

How to Assemble a Web Service Top Down

Deploy the EAR file in the standard manner into a running instance of OC4]J. For
more information on deploying EAR files, see the Oracle Containers for J2EE
Deployment Guide. The following is a sample deployment command.

java -jar <oc4jHome>/j2ee/home/admin_client.jar deployer:oc4j:localhost:port
<user> <password>

-deploy

-file dist/doclit_topdown.ear

-deploymentName doclit_topdown

-bindWebApp default-web-site

The following list describes the parameters in this code example:
= <oc4j_Home>—the directory containing the OC4J installation.

= <user>—the user name for the OC4] instance. The user name is assigned at
installation time.

s <password>—the password for the OC4] instance. The password is assigned
at installation time.

s doclit_topdown—the name of the application.

s default-web-site—the Web site to which the application will be bound.
This is usually default-web-site. To configure Web sites, see the
server.xml filein <oc4j_home>/j2ee/home/config.

7. (Optional) Check that deployment succeeded. OracleAS Web Services provides a
Web Service Test Page for each deployed Web service. See "How to Use the Web
Services Test Page" on page 13-6 for information on accessing and using the Web
Service Test Page.

8. Generate the client code:

» For the J2SE environment, generate stubs (client proxies) for a J2SE Web
service client by running the WebServicesAssembler tool with the genProxy
command. For more information on generating and assembling client-side
code for a J2SE Web service, see Chapter 15, "Assembling a J2SE Web Service
Client".

» For the J2EE environment, generate a service endpoint interface and a
JAX-RPC mapping file for a J2EE Web service client by running the
WebServicesAssembler tool with the genInterface command. For more
information on generating and assembling client-side code for a J2EE Web
service, see Chapter 14, "Assembling a J2EE Web Service Client".

For example, the following command assembles client proxies (stubs) that can be
used for a J2SE client. In this example, doclit_topdown is an application name
for the generated Web service.

Command line:

java -jar wsa.jar -genProxy
-wsdl http://localhost:8888/doclit_topdown/doclit_topdown?WSDL
-unwrapParameters false
-output build/src/client
-packageName oracle.demo.topdowndoclit.stubs
-mappingFileName type-mapping.xml

Ant task:

<oracle:genProxy
wsdl="http://localhost:8888/doclit_topdown/doclit_topdown?WSDL"
unwrapParameters="false"

6-6 Web Services Developer's Guide

Additional Information

Limitations

output="build/src/client"
packageName="oracle.demo. topdowndoclit.stubs"
mappingFileName="type-mapping.xml"

/>

In this command and Ant task:

= genProxy—Creates a static proxy stub that can be used by a J25E Web service
client. See "genProxy" on page 18-34.

s wsdl—Specifies the absolute file path, relative file path, or URL to a WSDL
document. See "wsdl" on page 18-65.

» unwrapParameters—When set to false the generated service endpoint
interface will be generated with wrappers around the input parameter and the
return type. See "unwrapParameters" on page 18-69.

= output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created. See "output” on page 18-48.

» packageName—Specifies the package name that will be used for generated
classes if no package name is declared in the JAX-RPC mapping file. See
"packageName" on page 18-48.

» mappingFileName—Specifies a file location that points to a JAX-RPC
mapping file. See "mappingFileName" on page 18-47.

At a minimum, specify the name of the WSDL and the name of the output
directory. The WebServiceAssembler tool generates a stub. A client application
uses the stub to invoke operations on a remote service. For more information on
the required and optional arguments to genProxy, see "genProxy" on page 18-34.

Compile and run the client.

List the appropriate JARs on the classpath before compiling the client. Table A-2,
" Classpath Components for a Client Using a Client-Side Proxy" lists all of the JAR
files that can possibly be used on the client classpath. As an alternative to listing
individual JARs, you can include the client-side JAR, wsclient_extended.jar
on the client classpath. This JAR file contains all the classes necessary to compile
and run a Web service client. The classes are from the individual JAR files listed in
Table A-2. See "Setting the Classpath for a Web Service Proxy" on page A-2 for
more information on wsclient_extended. jar and the client classpath.

See "Assembling Web Services from a WSDL" on page F-5.

Additional Information

For more information on:

using the Test Page to test Web service deployment, see Chapter 13, "Testing Web
Service Deployment".

building a J2EE client, see Chapter 14, "Assembling a J2EE Web Service Client".
building a]J2SE client, see Chapter 15, "Assembling a J2SE Web Service Client".
JAX-RPC handlers, see Chapter 16, "Using JAX-RPC Handlers".

using the WebServicesAssembler tool to assemble Web services, see Chapter 18,
"Using WebServicesAssembler".

Assembling a Web Service from WSDL 6-7

Additional Information

= packaging and deploying Web services, see Chapter 19, "Packaging and Deploying
Web Services".

= Web services interoperability, see "Ensuring interoperable Web Services" in the
Oracle Application Server Advanced Web Services Developer’s Guide.

= using quality of service features in Web service clients, see "Managing Web
Service" in the Oracle Application Server Advanced Web Services Developer’s Guide.

» adding security to a Web service, see the Oracle Application Server Web Services
Security Guide.

= adding reliability to a Web service, see "Ensuring Web Service Reliability" in the
Oracle Application Server Advanced Web Services Developer’s Guide.

= adding an auditing and logging configuration to a Web service, see "Auditing and
Logging Messages" in the Oracle Application Server Advanced Web Services
Developer’s Guide.

» processing nonstandard data types, see "Custom Serialization of Java Value Types"
in the Oracle Application Server Advanced Web Services Developer’s Guide.

s the JAX-RPC mapping file, see "JAX-RPC Mapping File Descriptor" in the Oracle
Application Server Advanced Web Services Developer’s Guide.

= data types supported by OracleAS Web Services, see "Mapping Java Types to XML
and WSDL Types" in the Oracle Application Server Advanced Web Services Developer’s
Guide.

= Oracle JDeveloper tool support for Web service development, see the Oracle
JDeveloper on-line help.

6-8 Web Services Developer's Guide

7

Assembling a Web Service with Java Classes

This chapter describes how to assemble stateless and stateful Web services based on
Java classes. The assembly is performed bottom up by WebServicesAssembler.

A stateless Web service does not carry any local state across calls. Stateless Web
services interoperate with .NET or any vendor's Web services. The service can use
either HTTP or JMS as the transport mechanism.

In contrast, a stateful Web service may carry state across calls, and the results of
method invocations depend on the scope. The stateful Web services supported by
Oracle Application Server Web Services is HTTP-based. Stateful OracleAS Web
Services based on Java classes contain Oracle proprietary extensions and may not
operate with other services unless the service provider makes available scopes with
the same semantics.

This chapter has the following sections:
= Requirements for Writing Java Classes for Web Services
= Java Classes and Stateless Web Services

= Java Classes and Stateful Web Services

Requirements for Writing Java Classes for Web Services

To use JAX-RPC to create a Web service with Java files, you must provide a public
interface that defines the remote methods that you want to expose as a service. The
interface definition must also extend java.rmi .Remote, and its methods must throw
a java.rmi.RemoteException object. The interface must also reside in a package.

You can also use the public interface to list the signatures for the public methods, or
public methods with supported data types, that you want to make available to the
Web service. That is, you can employ the interface to filter the methods that you want
to expose.

The implementation of the interface must satisfy other requirements:

= The class must contain a default public constructor.

s The class methods must implement the methods of the service endpoint interface.
s Class methods must not be final.

» For stateful Web services, the class must implement java.io.Serializable.

s The class must reside in a package.

s All methods in the interface must throw java.rmi.RemoteException.In
addition, methods can declare other, specific exceptions. These must extend

Assembling a Web Service with Java Classes 7-1

Java Classes and Stateless Web Services

java.lang.Exception directly or indirectly but must not be a
RuntimeException.

s Method parameters and return types must be JAX-RPC supported Java types.

See "Mapping Java Types to XML and WSDL Types" in the Oracle Application Server
Advanced Web Services Developer’s Guide provides a list of supported Java types.

= Holder classes can be used as method parameters. These holder classes are either
generated or derived from the javax.xml.rpc.holders package.

s The implementation class must not include public final static declarations.

= A service endpoint interface must not include a remote reference (a class that
implements RemoteInterface) as either a parameter or a return type. A Java
array or JAX-RPC value type must not include a remote reference as a contained
element.

For a description of all of the requirements on the interface, see the Enterprise Web
Services 1.1 specification at the following Web address:
http://www.jcp.org/aboutdJava/communityprocess/final/jsrl109/in
dex.html

When a Web service client makes a service request, OC4J runs the corresponding
method in that class. There are very few restrictions on what actions the Web service
can perform. At a minimum, the Web services generate some data that is sent to the
client or perform an action specified by a Web service request.

Note: OracleAS Web Services may be able to expose a Java class
directly as a Web service even if you do not provide a service interface
and if your class does not meet some of the conditions for a compliant
class. To expose a Java class as a Web service in this case, you must use
J2SE 5.0 Annotations such as @WebService. For more information,
see Chapter 11, "Assembling Web Services with Annotations".

Also note that a Web service assembled under these conditions will
not be conformant or portable as defined by the JAX-RPC
specification.

See Also:

"How to Write Java Implementations for Stateless Web Services" on
page 7-7 for information on writing Java classes for stateless Web
services and "How to Write Java Implementations for Stateful Web
Services" on page 7-13 for information on writing Java classes for
stateful Web services.

Java Classes and Stateless Web Services
This section has the following subsections:
= Exposing Java Classes as a Stateless Web Service
s How to Assemble A Stateless Web Service with Java Classes

= How to Write Java Implementations for Stateless Web Services

7-2 Web Services Developer's Guide

Java Classes and Stateless Web Services

Exposing Java Classes as a Stateless Web Service

You can use WebServicesAssembler to assemble Web services from Java classes that
conform to the JAX-RPC 1.1 specification. Exposing Java classes as a Web service is
convenient if you want a lightweight system and do not need the transactional
capabilities that an E]JB container offers.

WebServicesAssembler assembles the service bottom up. It starts with the Java classes
you want to expose and generates a deployable EAR file containing the WSDL, the
mapping files, the implementation files, and the deployment descriptors.

JAX-RPC requires you to provide a Java class that contains the methods you want to
expose as a service and its interface.

A Web service based on Java classes can be invoked by a client written in Java, .NET,
or any other programming language. The Web service can use either HTTP or JMS as
the transport mechanism. The client can be based on static stub or Dynamic Invocation
Interface (DII).

See Also:

"Requirements for Writing Java Classes for Web Services" on page 7-1
for more information on the requirements on the class and interface.

How to Assemble A Stateless Web Service with Java Classes

This section contains the following subsections:
m Prerequisites

= Steps for Assembling a Stateless Web Service with Java Classes

Prerequisites
Before you begin, provide the following files and information.

= Supply a compiled Java class and interface that contains the methods that you

want to expose as a service. The class and its interface must conform to the
JAX-RPC standards for a Web service.

See "How to Write Java Implementations for Stateless Web Services" on page 7-7 if
you are exposing Java classes as a stateless Web service. See "Exposing Java
Classes as a Stateful Web Service" on page 7-9 if you are exposing Java classes as a
stateful Web service.

= Decide whether you want WebServicesAssembler to only generate the service files
or if you want it to package the files into a deployable archive. The ear argument
packages the files into an archive. If you do not specify ear, then the files are
stored in the directory specified by the output argument.

See "ear" on page 18-44, "output" on page 18-48, and "war" on page 18-51 for more
information on these arguments.

= If your Java classes need to work with any additional message processing
components, for example to provide reliability and security features, you can
specify message handlers.

See Chapter 17, "Processing SOAP Headers" and "How to Configure Handlers in
an Ant Task" on page 18-81 for more information on these topics.

» If the methods in the Java class use nonstandard data types, you must specify a
custom serializer to process them.

Assembling a Web Service with Java Classes 7-3

Java Classes and Stateless Web Services

If you are working with non-supported data types, see "Mapping Java Types to
XML and WSDL Types" in the Oracle Application Server Advanced Web Services
Developer’s Guide and Table 5-1, " Java Types Supported by RPC-Encoded
Proprietary Message Format" on page 5-7.

For information on custom serialization, see "Custom Serialization of Java Value
Types" in the Oracle Application Server Advanced Web Services Developer’s Guide.

For a list of supported data types, see the JAX-RPC 1.1 specification available from
the following Web site:

http://java.sun.com/webservices/jaxrpc/index. jsp.

Steps for Assembling a Stateless Web Service with Java Classes

The following steps describe how to use WebServicesAssembler to expose a stateless
Web service from a Java class:

1. Provide the compiled Java class that you want to expose as a Web service and its
compiled interface.

This example uses the HelloInterface interface and the HelloImpl class. You
can find code listings of these files "Steps for Assembling a Stateless Web Service
with Java Classes" on page 7-4.

2. Generate the service artifacts by running the WebServicesAssembler with the
assemble command. This example assumes that the interface and
implementation classes are compiled to the . /build/classes/service
directory.

Command line:

java -jar wsa.jar -assemble
-appName hello
-serviceName HelloService
-interfaceName oracle.demo.hello.HelloInterface
-className oracle.demo.hello.HelloImpl
-input ./build/classes/service
-output build
-ear dist/hello.ear
-uri HelloService
-targetNamespace http://hello.demo.oracle
-classpath ./build/classes/service

Ant task:

<oracle:assemble appName="hello"
serviceName="HelloService"
input="./build/classes/service"
output="build"
ear="dist/hello.ear"
targetNamespace="http://hello.demo.oracle"
>
<oracle:porttype
interfaceName="oracle.demo.hello.HelloInterface"
className="oracle.demo.hello.HelloImpl">
<oracle:port uri="HelloService" />
</oracle:porttype>
<oracle:classpath>
<pathelement location="build/classes/service"/>
</oracle:classpath>
</oracle:assemble>

7-4 Web Services Developer's Guide

Java Classes and Stateless Web Services

In this command and Ant task:

= assemble—Generates a Web service from Java files bottom up. The
command creates all of the files required to create a deployable archive. See
"assemble" on page 18-7.

» appName—Specifies the name of an application. Usually, this name is used as
a base value for other arguments like context and uri. See "appName" on
page 18-42.

» serviceName—Specifies the service name. See "serviceName" on page 18-50.

s interfaceName—Specifies the name of a Java class (including the package
name) that contains the service endpoint interface (SEI). See "interfaceName"
on page 18-47.

= className—Specifies the name of the class (including the package name)
that is the implementation class for the Web service. See "className" on
page 18-43.

= input—Specifies the directory or JAR containing the classes that should be
copied to WEB-INF/classes. This argument will be added to the classpath
used by the WebServicesAssembler. See "input" on page 18-46.

= output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created. See "output” on page 18-48.

= ear—Specifies the name and location of the generated EAR. See "ear" on
page 18-44.

s uri—Specifies the URI to use for the Web service. See "uri" on page 18-63.

s targetNamespace—Specifies the target namespace to be used in the
generated WSDL. The value can be either a conforming HTTP URL, a
non-conforming HTTP URL, or even a URI. See "targetNamespace" on
page 18-66.

= classpath—Specifies the classpath that contains any user-created classes
given to WebServicesAssembler. One reason to specify this argument is if you
have already created some value type classes or exceptions and you do not
want WebServicesAssembler to overwrite them. See "classpath” on page 18-43.

The output of this command is an EAR file that contains the contents of a WAR file
that can be deployed to an OC4]J instance. The dist directory contains the J2EE
Web services-compliant application EAR file, hello.ear. For more information
on the required and optional arguments to assemble, see "assemble” on

page 18-7.

Deploy the service and bind the application.
Deploy EAR files in the standard manner into a running instance of OC4]J. For

more information on deploying EAR files, see the Oracle Containers for [2EE
Deployment Guide. The following is a sample deployment command:

java -jar <0C4J_HOME>/j2ee/home/admin_client.jar deployer:océ4j:localhost:port
<user> <password>

-deploy

-file dist/hello.ear

-deploymentName hello

-bindWebApp default-web-site

The following list describes the variables used in this code example.

s <0C4J_Home>—The directory containing the OC4J installation.

Assembling a Web Service with Java Classes 7-5

Java Classes and Stateless Web Services

7-6

s <user>—The user name for the OC4] instance. The user name is assigned at
installation time

s <password>—The password for the OC4]J instance. The password is assigned
at installation time

s default-web-site—The Web site to which the application will be bound.
This is usually default-web-site. To configure Web sites, see the
server .xml file in <OC4J_HOME>/j2ee/home/config.

(Optional) Check that deployment succeeded. OracleAS Web Services provides a
Web Service Test Page for each deployed Web service. See "How to Use the Web
Services Test Page" on page 13-6 for information on accessing and using the Web
Service Test Page.

Generate the client-side code:

= For the J2SE environment, generate stubs (client proxies) for a J2SE Web
service client by running the WebServicesAssembler tool with the genProxy
command. For more information on generating and assembling client-side
code for the J2SE environment, see Chapter 15, "Assembling a J2SE Web
Service Client".

= For the J2EE environment, generate a Service Endpoint Interface and a
mapping file for a J2EE Web service client by running the
WebServicesAssembler tool with the genInterface command. For more
information on generating and assembling client-side code, see Chapter 14,
"Assembling a J2EE Web Service Client".

For example, the following command generates stubs that can be used for a J2SE
client:

Command line:

java -jar wsa.jar -genProxy
-output build/src/client/
-wsdl http://localhost:8888/hello/HelloService?WSDL
-packageName oracle.demo.hello

Ant task:

<oracle:genProxy wsdl="http://localhost:8888/hello/HelloService?WSDL"
output="build/src/client"
packageName="oracle.demo.hello"

/>

In this command line and Ant task:

= genProxy—Creates a static proxy stub that can be used by a J25E Web service
client. See "genProxy" on page 18-34.

= output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created. See "output” on page 18-48.

» wsdl—Specifies the absolute file path, relative file path, or URL to a WSDL
document. See "wsdl" on page 18-65.

» packageName—Specifies the package name that will be used for generated
classes if no package name is declared in the JAX-RPC mapping file. See
"packageName" on page 18-48.

This command generates the client proxies and stores them in the directory
build/src/client. The client application uses the stub to invoke operations on

Web Services Developer's Guide

Java Classes and Stateless Web Services

a remote service. For more information on the required and optional arguments to
genProxy, see "genProxy" on page 18-34.

6. Write the client application.
7. Compile and run the client.

List the appropriate JARs on the classpath before compiling the client. Table A-2,
" Classpath Components for a Client Using a Client-Side Proxy" lists all of the JAR
files that can possibly be used on the client classpath. As an alternative to listing
individual JARs, you can include the client-side JAR, wsclient_extended.jar
on the client classpath. This JAR file contains all the classes necessary to compile
and run a Web service client. The classes are from the individual JAR files listed in
Table A-2. See "Setting the Classpath for a Web Service Proxy" on page A-2 for
more information on wsclient_extended. jar and the client classpath.

How to Write Java Implementations for Stateless Web Services

OracleAS Web Services supports stateless implementations for Java classes running as
Web services. For a stateless Java implementation, OracleAS Web Services creates
multiple instances of the Java class in a pool; any one of the instances can be used to
service a request. After servicing the request, the object is returned to the pool for use
by a subsequent request.

You can assemble Java classes for stateless Web services only for SOAP/HTTP
endpoints and not for SOAP/JMS endpoints.

To develop a stateless Java Web service, define the Java interface and its
implementation. This is described in the following sections:

s How to Define a Java Interface

s How to Define a Java Class

Note: OracleAS Web Services may be able to expose a Java class
directly as a Web service even if you do not provide a service interface
and if your class does not meet some of the conditions for a compliant
class. To expose a Java class as a Web service in this case, you must use
J2SE 5.0 Annotations such as @WebService. For more information,
see Chapter 11, "Assembling Web Services with Annotations".

Also note that a Web service assembled under these conditions will
not be conformant or portable as per the JAX-RPC specification.

How to Define a Java Interface

Example 7-1 displays the HelloInterface. java interface for the stateless Web
service. To comply with the JAX-RPC 1.1 specification, the interface must reside in a
package. It must also extend java.rmi.Remote, and its methods must throw a
java.rmi.RemoteException object.

Example 7-1 Defining an Interface for a Stateless Web Service

package oracle.demo.hello;

import java.rmi.RemoteException;
import java.rmi.Remote;

public interface HelloInterface extends Remote {
public String sayHello(String name) throws RemoteException;

Assembling a Web Service with Java Classes 7-7

Java Classes and Stateless Web Services

7-8

How to Define a Java Class

Create a Java class by implementing the methods in the interface that you want to
expose as a Web service. A Java class for a Web service usually defines one or more
public methods. To comply with the JAX-RPC 1.1 specification, the implementation
class must reside in a package. It must also import java.rmi.Remote and
java.rmi.RemoteException.

Example 7-2 displays the public class, Hel1loImpl. This class defines a public method,
sayHello, that returns the string "Hello name!" where name is an input value.

Example 7-2 Defining a Public Class for a Stateless Web Service

package oracle.demo.hello;

import java.rmi.RemoteException;
import java.rmi.Remote;

public class HelloImpl {
public HelloImpl () {
}
public String sayHello(String name) {
return ("Hello " + name + "!");
}
}

Notice that Java class Web service implementations must include a public constructor
that takes no arguments.

When an error occurs while running a method on the Java class, it throws a
RemoteException. In response to the exception, OracleAS Web Services returns a
Web service (SOAP) fault. Use standard J2EE and OC4J administration facilities to
view errors for a Web service that uses Java classes for its implementation.

When you create a Java class containing methods that implement a Web service, the
methods, parameters, and return values must use supported types or nonstandard
types supported by OracleAS Web Services. For a list of the supported data types, see
the JAX-RPC 1.1 specification available from the following Web site:

http://java.sun.com/webservices/jaxrpc/index. jsp

See Also:

"Mapping Java Types to XML and WSDL Types" in the Oracle
Application Server Advanced Web Services Developer’s Guide and

Table 5-1 on page 5-7 for lists of supported data types and supported
nonstandard types.

If methods, parameters, and return values use unsupported types, then you must
handle them in either of the following ways.

= Use the interface class to limit the exposed methods to only those using JAX-RPC
supported types and the supported non-standard types.

= Use the custom serializer to map unsupported types.

Web Services Developer's Guide

Java Classes and Stateful Web Services

See Also:

"Custom Serialization of Java Value Types" in the Oracle Application
Server Advanced Web Services Developer’s Guide for more information on
working with unsupported types.

Java Classes and Stateful Web Services
This section has the following subsections:
= Exposing Java Classes as a Stateful Web Service
= How to Assemble a Stateful Web Service

= How to Write Java Implementations for Stateful Web Services

Exposing Java Classes as a Stateful Web Service

OC4] supports stateful Web services based on Java classes. The Java object that
implements the service persists for the duration of the HTTP session. To maintain
state, these services contain Oracle proprietary extensions. Because of these extensions,
you should not consider stateful OracleAS Web Services to be interoperable unless the
service provider makes available scopes with the same semantics.

The stateful Web services supported by OracleAS Web Services is HTTP session-based.

How to Assemble a Stateful Web Service

This section contains the following subsections:
m Prerequisites

» Steps for Assembling a Stateful Web Service

Prerequisites

The prerequisites for generating a stateful Web service from Java classes are identical
to those described for a stateless Web service. For a description of the information and
files you must provide, see "Prerequisites" on page 7-3.

Steps for Assembling a Stateful Web Service

The following instructions describe how to use WebServicesAssembler to create a
stateful Web service from a Java class. The Java object that implements the service
persists for the duration of the HTTP session.

1. Provide the Java class that you want to expose as a Web service and its interface.

2. Generate the service artifacts by running the WebServicesAssembler with the
assemble command. For more information on the required and optional
arguments to assemble, see "assemble" on page 18-7.

For example:
Command line:

java -jar wsa.jar -assemble
-appName counter
-serviceName counterService
-interfaceName oracle.demo.count.CounterInterface
-className oracle.demo.count.CounterImpl
-input build/classes/service

Assembling a Web Service with Java Classes 7-9

Java Classes and Stateful Web Services

7-10

-output build

-ear dist/counter.ear
-recoverable true
-timeout 30

-uri counterService

Ant task:

<oracle:assemble appName="counter"

serviceName="counterService"
input="build/classes/service"
output="build"
ear="dist/service.ear"
recoverable="true"
timeout="30"

>

<oracle:porttype
interfaceName="oracle.demo.count.CounterInterface"
className="oracle.demo.count.CounterImpl">
<oracle:port uri="counterService" />

</oracle:porttype>

<oracle:classpath>
<pathelement path="${wsdemo.common.class.path}"/>
<pathelement location="build/classes/client"/>

</oracle:classpath>

</oracle:assemble>

In this command and Ant task:

= assemble—Generates a Web service from Java files bottom up. The
command creates all of the files required to create a deployable archive. See
"assemble" on page 18-7.

» appName—Specifies the name of an application. Usually, this name is used as
a base value for other arguments like context and uri. See "appName" on
page 18-42.

= serviceName—Specifies the service name. See "serviceName" on page 18-50.

s interfaceName—Specifies the name of a Java class (including the package
name) that contains the service endpoint interface (SEI). See "interfaceName"
on page 18-47.

= className—Specifies the name of the class (including the package name)
that is the implementation class for the Web service. See "className" on
page 18-43.

= input—Specifies the directory or JAR containing the classes that should be
copied to WEB-INF/classes. This argument will be added to the classpath
used by the WebServicesAssembler. See "input" on page 18-46.

= output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created. See "output” on page 18-48.

= ear—Specifies the name and location of the generated EAR. See "ear" on
page 18-44.

s recoverable—Indicates whether applications with session state are
recoverable. This argument can be used only when the service is exposed as a
stateful Web service with session scope. See "recoverable" on page 18-52.

= timeout—Specifies the number of seconds a session should last before it
times out. See "timeout" on page 18-52.

Web Services Developer's Guide

Java Classes and Stateful Web Services

s uri—Specifies the URI to use for the Web service. See "uri" on page 18-63.

This command generates all the files required to create a deployable archive. The
output build directory contains separate directories for the EAR file and the Java
classes. The dist directory contains the J2EE Web services-compliant application
EAR file, counter.ear.

Note the timeout argument on the command line. In addition to indicating the
number of seconds an HTTP session should last before it times out, it also
implicitly sets the session argument to true. When session is true, the
service instance is stored in an HTTP session.

The recoverable argument indicates that this stateful application needs to be
distributable. Recoverable means that you want the service to be able to recover in
a distributed environment if the node that you are interacting with goes down.
This means that the Web service state must be also be distributable.

Deploy the service and bind the application.

Deploy the EAR file in the standard manner into a running instance of OC4]J. For
more information on deploying EAR files, see the Oracle Containers for [2EE
Deployment Guide. The following is a sample deployment command.

java -jar <0C4J_HOME>/j2ee/home/admin_client.jar deployer:océ4j:localhost:port
<user> <password>

-deploy

-file dist/counter.ear

-deploymentName counter

-bindWebApp default-web-site

The following list describes the parameters used in this code example.
s <0C4J_HOME>—The directory containing the OC4] installation.

= <user>—the user name for the OC4] instance. The user name is assigned at
installation time.

» <password>—the password for the OC4] instance. The password is assigned
at installation time.

s default-web-site— the Web site to which the application will be bound.
This is usually default-web-site. To configure Web sites, see the
server .xml file in <OC4J_HOME>/j2ee/home/config.

(Optional) Check that deployment succeeded.

OracleAS Web Services provides a Web Service Test Page for each deployed Web
service. See "How to Use the Web Services Test Page" on page 13-6 for information
on accessing and using the Web Service Test Page.

Generate the client code:

= For the J2SE environment, generate stubs (client proxies) by running the
WebServicesAssembler tool with the genProxy command. For more
information on generating and assembling client-side code for the J2SE
environment, see Chapter 15, "Assembling a J2SE Web Service Client".

= For the J2EE environment, generate a Service Endpoint Interface and a
mapping file for a J2EE Web service client by running the
WebServicesAssembler tool with the genInterface command. For more
information on generating and assembling client-side code, see Chapter 14,
"Assembling a J2EE Web Service Client".

Assembling a Web Service with Java Classes 7-11

Java Classes and Stateful Web Services

For example, the following command generates client proxies (stubs) that can be
used for a J2SE client:

Command line:

java -jar wsa.jar -genProxy
-output build/src/client/
-wsdl http://localhost:8888/counter/counterService?WSDL
-packageName oracle.demo.count

Ant task:

<oracle:genProxy wsdl="http://stadp54.us.oracle.com:8888/counter/counter?WSDL"
output="build/src/client"
packageName="oracle.demo.count"/>

In this command and Ant task:

= genProxy—Creates a static proxy stub that can be used by a J25E Web service
client. See "genProxy" on page 18-34.

= output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created. See "output” on page 18-48.

» wsdl—Specifies the absolute file path, relative file path, or URL to a WSDL
document. See "wsdl" on page 18-65.

» packageName—Specifies the package name that will be used for generated
classes if no package name is declared in the JAX-RPC mapping file. See
"packageName" on page 18-48.

This command generates the client proxies and stores them in the directory
build/src/client. The client application uses the stub to invoke operations on
a remote service. For more information on the required and optional arguments to
genProxy, see "genProxy" on page 18-34.

Note: On systems such as Unix or Linux, the URL might need to be
quoted (" ") on the command line.

6. Write the client application.

Ensure that the client participates in the session by setting the
javax.xml.rpc.Call.SESSION_MAINTAIN_PROPERTY runtime property to
true either on the stub, the DII call, or the endpoint client instance.

Instead of setting this property directly, OracleAS Web Services provides a helpful
wrapper class with a setMaintainSession (boolean) method. Set this
method to true to maintain sessions. The wrapper takes care of setting the
property inside of the client. For example, in the client code, enter:

CounterServicePortClient ¢ = new CounterServicePortClient();
//sets Maintain Session to true, as the endpoint is stateful.
c.setMaintainSession(true) ;

7. Compile and run the client.

List the appropriate JARs on the classpath before compiling the client. Table A-2,
" Classpath Components for a Client Using a Client-Side Proxy" lists all of the JAR
files that can possibly be used on the client classpath. As an alternative to listing
individual JARs, you can include the client-side JAR, wsclient_extended.jar
on the client classpath. This JAR file contains all the classes necessary to compile

7-12 Web Services Developer's Guide

Java Classes and Stateful Web Services

and run a Web service client. The classes are from the individual JAR files listed in
Table A-2. See "Setting the Classpath for a Web Service Proxy" on page A-2 for
more information on wsclient_extended. jar and the client classpath.

How to Write Java Implementations for Stateful Web Services

Java implementations for a stateful Web service must meet the same requirements as
implementations for a stateless service.

See Also:

"Requirements for Writing Java Classes for Web Services", on page 7-1
for a description of the requirements for a Java implementation.

WebServicesAssembler enables you to define call, session, and endpoint scopes for a
stateful Java implementation:

s call scope—When the WebServicesAssembler callScope argument is set to true,
a new class instance is created for each call. The instance is garbage collected after
each call. The default value of callScopeis false.

= session scope—When the WebServicesAssembler session argument is set to true,
the class instance is stored in an HTTP session. This applies only for HTTP
transport. Session timeout can be tuned by the timeout argument.

The default value for sessionis false. However, if the timeout argument is
set with WebServicesAssembler, then session will automatically be set to true.

= endpoint scope—This is the default behavior and scope for a Web service
application. The service endpoint implementation class instance is a singleton
instance for each endpoint.

Developing a stateful Java Web service consists steps described in the following
sections:

s How to Define a Java Interface

s How to Define a Java Class

How to Define a Java Interface

Example 7-3 displays the CountInterface. java interface for the stateful Web
service. This example also shows that the service class does not have to implement the
service endpoint interface directly. To comply with the JAX-RPC 1.1 specification, the
interface must reside in a package. It must also extend java.rmi.Remote and its
methods must throw a java.rmi.RemoteException object.

Example 7-3 Defining an Interface for a Stateful Web Service

package oracle.demo.count;

import java.rmi.RemoteException;
import java.rmi.Remote;

public interface CounterInterface extends Remote {

// gets the current counter value
public int getCurrentCounter () throws RemoteException;

Assembling a Web Service with Java Classes 7-13

Packaging and Deploying Web Services

How to Define a Java Class

Create a Java class by implementing the methods in the interface that you want to
expose as a Web service. A Java class for a Web service usually defines one or more
public methods. To comply with the JAX-RPC 1.1 specification, the implementation
class must reside in a package. It must also import java.rmi.Remote and
java.rmi.RemoteException.

Example 7—4 displays the public class, CounterImpl. The class initializes the count
and defines the public method, getCurrentCounter.

Example 7-4 Defining a Public Class for a Stateful Web Service

package oracle.demo.count;

import java.rmi.RemoteException;
import java.rmi.Remote;

public class CounterImpl implements java.io.Serializable {
private int counter = 0;

public CounterImpl () {
}

public int getCurrentCounter () {
System.out.println("Current counter value is: " + (++counter));
return (counter);

Packaging and Deploying Web Services

The packaging of Web services that expose Java classes is described in "Packaging for a
Web Service Based on Java Classes" on page 19-2.

See Also:

Oracle Containers for J2EE Deployment Guide for a detailed description
of Web module deployment.

Tool Support for Exposing Java Classes as Web Services

With Oracle JDeveloper, you can create, modify, and deploy J2EE-compliant Java class
files as Web services. When you create Java classes in Oracle JDeveloper, you use
modeling tools and wizards. The wizards can perform the following tasks.

= Import or create Java classes and interfaces in a project.

= Package and deploy the Java classes exposed as Web services.

See Also:

Oracle JDeveloper on-line help for more information on using Oracle
JDeveloper to create Java classes and expose them as Web services.

Limitations

See "Assembling Web Services from Java Classes" on page F-6.

7-14 Web Services Developer's Guide

Additional Information

Additional Information

For more information on:

using the Test Page to test Web service deployment, see Chapter 13, "Testing Web
Service Deployment".

building a J2EE client, see Chapter 14, "Assembling a J2EE Web Service Client".
building a]J2SE client, see Chapter 15, "Assembling a J2SE Web Service Client".
JAX-RPC handlers, see Chapter 16, "Using JAX-RPC Handlers".

using the WebServicesAssembler tool to assemble Web services, see Chapter 18,
"Using WebServicesAssembler".

packaging and deploying Web services, see Chapter 19, "Packaging and Deploying
Web Services".

JAR files that are needed to assemble a client, see Appendix A, "Web Service Client
APIs and JARs".

Web services interoperability, see "Ensuring Interoperable Web Services" in the
Oracle Application Server Advanced Web Services Developer’s Guide.

using quality of service features in Web service clients, see "Managing Web
Service" in the Oracle Application Server Advanced Web Services Developer’s Guide.

adding security to a Web service, see the Oracle Application Server Web Services
Security Guide.

adding reliability to a Web service, see "Ensuring Web Service Reliability" in the
Oracle Application Server Advanced Web Services Developer’s Guide.

adding an auditing and logging configuration to a Web service, see "Auditing and
Logging Messages" in the Oracle Application Server Advanced Web Services
Developer’s Guide.

processing nonstandard data types, see "Custom Serialization of Java Value Types"
in the Oracle Application Server Advanced Web Services Developer’s Guide.

the JAX-RPC mapping file, see "JAX-RPC Mapping File Descriptor" in the Oracle
Application Server Advanced Web Services Developer’s Guide.

data types supported by OracleAS Web Services, see "Mapping Java Types to XML
and WSDL Types" in the Oracle Application Server Advanced Web Services Developer’s
Guide.

Oracle JDeveloper tool support for Web service development, see the Oracle
JDeveloper on-line help.

Assembling a Web Service with Java Classes 7-15

Additional Information

7-16 Web Services Developer's Guide

8

Assembling a Web Service with EJBs

This chapter describes how to use the WebServicesAssembler tool to expose version
2.1 Enterprise Java Beans (E]Bs) as Web services.

This chapter has the following sections.

= Exposing E]Bs as Web Services

s How to Assemble a Web Service with E]Bs

s How to Write E]Bs for Web Services

» Packaging and Deploying Web Services that Expose E]Bs

s How to Secure E]B-Based Web Services at the Transport-Level

= Tool Support for Exposing E]Bs as a Web Service

Exposing EJBs as Web Services

You can use WebServicesAssembler to expose version 2.1 EJBs as Web services that
conform to J2EE 1.4 standards. Many EJBs have been written to encapsulate business
functions in the middle tier. If you use EJBs in your enterprise applications, you can
expose them as Web services.

Note: WebServicesAssembler cannot be used to expose version 3.0
E]JBs as a Web service.

EJB components, by design, are meant for distributed computing and are well-suited
for exposure as Web services. The EJB specification supports declarative transactions,
thread management, and role-based security. You can leverage these benefits if you
decide to use EJB components as Web services. E]Bs exposed as Web services can still
be accessed by traditional RMI E]B clients as well as by SOAP protocols. J2EE 1.4
allows exposing only stateless session beans as Web services.

By their nature, SOAP and Web services are stateless. Therefore, stateless session beans
are an ideal medium for exposure as Web services. Stateless session beans can be used
for checking someone's credit, charging a bank account, or placing an order. Session
beans that implement a business function to be used by other remote applications are a
perfect fit for exposure as Web services.

Writing an EJB Web service using JAX-RPC involves writing an EJB that implements a
service and provides an interface for it. The EJB should contain the business logic that
a client can invoke when it makes a Web service request.

Assembling a Web Service with EJBs 8-1

How to Assemble a Web Service with EJBs

An EJB Web service does not differ from any other Web service and can be invoked by
a client written in Java, .NET, or any other programming language. The client of an EJB
Web service can leverage static stubs, dynamic proxies, or Dynamic Invocation
Interfaces (DII).

These are the general steps for exposing an EJB as a Web service.
1. Create the service endpoint interface for the stateless EJB component.
The developer performs this step.

2. Assemble the service artifacts. This includes generating the WSDL and mapping
files, and packaging the application into a deployable archive.

WebServicesAssembler can be used to perform this step.

See Also:

"Steps for Assembling a Web Service from an EJB" for more detailed
information on each of these steps.

Working with Version 2.0 EJBs

Although this chapter focuses on exposing version 2.1 E]Bs as Web services, version
2.0 E]Bs can also be exposed. All the functionality in Oracle Application Server Web
Services for working with version 2.1 EJBs is also available for version 2.0 E]Bs.
OracleAS Web Services and WebServicesAssembler can detect version 2.0 EJBs and
ensure that they are processed correctly. Its remote interface methods must define the
methods to be exposed as a Web service.

See Also:

"How to Write E]Bs for Web Services" on page 8-6 for more
information on the J2EE Web Services requirements for E]Bs.

Working with Version 3.0 EJBs

You cannot use the WebServicesAssembler tool to expose version 3.0 E]Bs as a Web
service. However, you can expose these E]Bs by using the J2SE 5.0 Web Service
Annotations, which is supported by OracleAS Web Services.

See Also:

Chapter 11, "Assembling Web Services with Annotations" and "Steps
to Use Annotations to Assemble a Web Service from a Version 3.0 EJB"
provides more information on using annotations to expose version 3.0
E]Bs as Web services.

How to Assemble a Web Service with EJBs
This section contains the following subsections:
» Prerequisites

= Steps for Assembling a Web Service from an EJB

Prerequisites

Before you begin, provide the following files and information.

8-2 Web Services Developer's Guide

How to Assemble a Web Service with EJBs

Write an Enterprise Java Bean that contains the business functions that you want
to expose and its interface. The E]B and its interface must conform to EJB 2.1
standards and the J2EE 1.4 standard for a Web service.

See "How to Write E]Bs for Web Services" on page 8-6 for more information on
these requirements.

Decide whether you want WebServicesAssembler to only generate the service files
or generate and package the files into a deployable archive. The ear argument
packages the files into an archive. If you do not specify ear, then the files are
stored in a directory specified by the output argument.

See "ear" on page 18-44, "output"” on page 18-48, and "war" on page 18-48 for more
information on output and packaging arguments.

If the methods in the EJB use nonstandard data types, you must specify a custom
serializer to process them.

See "Mapping Java Types to XML and WSDL Types" in the Oracle Application Server
Advanced Web Services Developer’s Guide and in Table 5-1 on page 5-7 for more
information on non-standard data types.

See "Custom Serialization of Java Value Types" in the Oracle Application Server
Advanced Web Services Developer’s Guide for more information on writing custom
serializers.

If your EJB needs to work with any additional message processing components,
for example to process SOAP header information, you can specify message
handlers.

See Chapter 17, "Processing SOAP Headers" and "How to Configure Handlers in
an Ant Task" on page 18-81 for more information on these topics.

Steps for Assembling a Web Service from an EJB

The following steps describe how to use WebServicesAssembler to expose a session
bean as a Web service.

1.

Write the E]B that you want to expose as a Web service and its service endpoint
interface.

Inspect the ejb-jar.xml deployment descriptor.

Enter a <service-endpoint> element and a value if it is not already in the file.
This element identifies the service endpoint interface for this Web service. In the
following ejb-jar.xml fragment the <service-endpoint> element is
highlighted in bold.

<enterprise-beans>
<gsession>
<ejb-name>HelloServiceBean</ejb-name>
<service-endpoint>oracle.demo.ejb.HelloServiceIntf</service-endpoint>
<ejb-class>oracle.demo.ejb.HelloserviceBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
</session>
</enterprise-beans>

Generate the service artifacts by running the WebServicesAssembler tool with the
ejbAssemble command. For example:

Command line:

Assembling a Web Service with EJBs 8-3

How to Assemble a Web Service with EJBs

java -jar wsa.jar -ejbAssemble
-appName helloServices-ejb
-ear dist/helloServices-ejb.ear
-output build
-targetNamespace http://oracle.j2ee.ws/ejb/Hello
-typeNamespace http://oracle.j2ee.ws/ejb/Hello/types
-input dist/HelloServiceejb.jar
-ejbName HelloServiceBean

Ant task:

<oracle:ejbAssemble appName="ejbApp"
targetNamespace="http://oracle.j2ee.ws/ejb/Hello"
ear="dist/ejbApp.ear"
output="build"
typeNamespace="http://oracle.j2ee.ws/ejb/Hello/types"
input dist/HelloServiceejb.jar
ejbName HelloServiceBean

/>

In this command and Ant task:

s ejbAssemble—Creates an EAR or EJB JAR that can expose an EJB as a Web
service. You must specify a valid version 2.1 EJB JAR as input; the system will
create a WSDL and the proprietary oracle-webservices.xml deployment
descriptor. See "ejpAssemble" on page 18-14.

» appName—Specifies the name of an application. Usually, this name is used as
a base value for other arguments like context and uri. See "appName" on
page 18-42.

= ear—Specifies the name and location of the generated EAR. See "ear" on
page 18-44.

= output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created. See "output” on page 18-48.

s targetNamespace—Specifies the target namespace to be used in the
generated WSDL. The value can be either a conforming HTTP URL, a
non-conforming HTTP URL, or even a URI See "targetNamespace" on
page 18-66.

= typeNamespace—Specifies the type namespace to be used in the schema
types in the generated WSDL. The name that you specify will always be used
and it will not be reversed. See "typeNamespace" on page 18-67.

= input—Specifies the directory or JAR containing the classes that should be
copied to WEB-INF/classes. This argument will be added to the classpath
used by the WebServicesAssembler. See "input" on page 18-46.

= ejbName—Specifies the name of the EJB to be exposed as a Web service. Note
that this is not a class name; it is the unique name of the E]B that is specified in
the <ejb-name> tag in the ejb-jar.xml file. See "ejpName" on page 18-45.

This command assembles the E]JB 2.1 Web service by generating the WSDL and
mapping files, and packaging the application into a deployable archive,
dist/helloServices-ejb.ear. This archive contains the
helloService-ejb.jar, which stores all of the service artifacts, such as the E]B
implementation classes, the generated WSDL and mapping file, standard Web
service descriptor file, webservices.xml, and the Oracle proprietary
deployment descriptor file oracle-webservices.xml. For more information
on the ejbAssemble command, see "ejpAssemble" on page 18-14.

8-4 Web Services Developer's Guide

How to Assemble a Web Service with EJBs

Deploy the service and bind the application.

EAR files are deployed into a running instance of OC4]J. For more information on
deployment, see the Oracle Containers for J2EE Deployment Guide. The following is a
sample deployment command.

java -jar <0C4J_HOME>/j2ee/home/admin_client.jar deployer:océ4j:localhost:port
<user> <password>

-deploy

-file dist/ejbApp.ear

-deploymentName ejbApp

-bindWebApp default-web-site

The following list describes the parameters in this code example.
» <0C4J_HOME>—the directory containing the OC4J installation.

= <user>—the user name for the OC4] instance. The user name is assigned at
installation time.

s <password>—the password for the OC4] instance. The password is assigned
at installation time.

= ejbApp—the name of the application.

s default-web-site—the Web site to which the application will be bound.
This is usually default-web-site. To configure Web sites, see the
server.xml file in <OC4J_HOME>/j2ee/home/config.

After deployment, this Web service's WSDL will be available at the following Web
address. The values for context-root and endpoint-address-uri can be found in the
META-INF/oracle-webservices.xmnl file.

http://host:port/context-root/endpoint-address-uri

(Optional) Check that deployment succeeded.

OracleAS Web Services provides a Web Service Test Page for each deployed Web
service. See "How to Use the Web Services Test Page" on page 13-6 for information
on accessing and using the Web Service Test Page.

Generate the client-side code:

» For the J2SE environment, generate stubs (client proxies) for a J2SE Web
service client by running the WebServicesAssembler tool with the genProxy
command. For more information on generating and assembling a stub, see
Chapter 15, "Assembling a J2SE Web Service Client".

= For the J2EE environment, generate a service endpoint interface and a
JAX-RPC mapping file for a J2EE Web service client by running the
WebServicesAssembler tool with the genInterface command. For more
information on generating and assembling a client for a J2EE Web service, see
Chapter 14, "Assembling a J2EE Web Service Client".

For example, the following command and Ant task generates stubs that can be
used for a J2SE client. The client proxies are stored them in the directory
build/src/client. The client application will use the stub to invoke operations
on a remote service. For more information on the required and optional arguments
to genProxy, see "genProxy" on page 18-34.

Command line:

java -jar wsa.jar -genProxy
-output build/src/client/

Assembling a Web Service with EJBs 8-5

How to Write EJBs for Web Services

-wsdl http://localhost:8888/hello/HelloService?WSDL
-packageName oracle.demo.hello

Ant task:

<oracle:genProxy
wsdl="http://localhost:8888/hello/HelloService?WSDL"
output="build/src/client"
packageName="oracle.demo.hello"

/>

In this command line and Ant task:

= genProxy—Creates a static proxy stub that can be used by a J2SE Web service
client. See "genProxy" on page 18-34.

= output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created. See "output” on page 18-48.

» wsdl—Specifies the absolute file path, relative file path, or URL to a WSDL
document. See "wsdl" on page 18-65.

» packageName—Specifies the package name that will be used for generated
classes if no package name is declared in the JAX-RPC mapping file. See
"packageName" on page 18-48.

7. Compile and run the client.

List the appropriate JARs on the classpath before compiling the client. Table A-2,
" Classpath Components for a Client Using a Client-Side Proxy" lists all of the JAR
files that can possibly be used on the client classpath. As an alternative to listing
individual JARs, you can include the client-side JAR, wsclient_extended.jar
on the client classpath. This JAR file contains all the classes necessary to compile
and run a Web service client. The classes are from the individual JAR files listed in
Table A-2. See "Setting the Classpath for a Web Service Proxy" on page A-2 for
more information on wsclient_extended. jar and the client classpath.

How to Write EJBs for Web Services

Writing EJB-based Web services using JAX-RPC involves writing an EJB that
implements a service and providing an interface for it. The EJB should contain the
business functions that OracleAS Web Services can invoke when a client makes a Web
service request.

This section provides information on how to write an EJB Web service that returns a
string, "HELLO! ! You just said:phrase", where phrase is input from a client. The
EJB Web service receives a client request with a single St ring parameter and
generates a response that it returns to the Web service client.

Writing a J2EE 1.4-compliant EJB implementation for Web services consists of these
tasks.

s How to Write an EJB Service Endpoint Interface

= How to Implement an EJB Interface for Web Services

How to Write an EJB Service Endpoint Interface

To use JAX-RPC to create a Web service with EJBs, you must write a public service
endpoint interface to which the EJB must conform. The requirements for creating a
service endpoint interface for a stateless session bean are summarized in Section 5.3.2.1

8-6 Web Services Developer's Guide

How to Write EJBs for Web Services

of the Enterprise Web Services 1.1 specification. The specification is available from the
following Web site.

http://www.jcp.org/en/jsr/detail?id=921

The interface must extend java.rmi.Remote, and all methods must throw a
java.rmi.RemoteException. You can use only Java primitives and classes that are
JAX-RPC value types and nonstandard data types as parameters or return types for
the EJB methods defined in the service endpoint interface.

Some examples of JAX-RPC value types are non-primitives such as
java.lang.String or java.lang.Double and Java mappings of Multipurpose
Internet Mail Extensions (MIME) types such as java.awt . Image or
javax.xml.transform. Source.

You can use custom Java data types in the service endpoint interface, but you must
also provide a serializer to process them.

See Also:

= "Mapping Java Types to XML and WSDL Types" in the Oracle
Application Server Advanced Web Services Developer’s Guide and in
Table 5-1 on page 5-7 for descriptions of nonstandard data types.

» "Custom Serialization of Java Value Types" in the Oracle
Application Server Advanced Web Services Developer’s Guide for more
information on using custom data types and their serialization.

Example 8-1 illustrates a sample service endpoint interface.

Example 8-1 Sample Service Endpoint Interface

package oracle.demo.ejb;

import java.rmi.Remote;
import java.rmi.RemoteException;
/**
* This is an Enterprise Java Bean Service Endpoint Interface
*/
public interface HelloServiceInf extends java.rmi.Remote {
/**
* @param phrase java.lang.String
* @return java.lang.String
* @throws String The exception description.
*/
java.lang.String sayHello(java.lang.String phrase)
throws java.rmi.RemoteException;

How to Implement an EJB Interface for Web Services

Create an Enterprise Java Bean by implementing the business functions that you want
the Web service to expose.

The HelloServiceBean described in Example 8-2 is a sample session bean. The
class defines a public method, sayHello, that returns HELLO! ! You just said:
phrase, where phrase was input from a client. In general, a Java bean for a Web service
defines one or more public methods.

An Enterprise Java Bean, for the purposes of Web services, is any Java class that
conforms to the following requirements:

Assembling a Web Service with EJBs 8-7

Packaging and Deploying Web Services that Expose EJBs

s It must have a constructor that takes no arguments.

= All properties that you want to use must be exposed through accessors.

See Also:

"Mapping Java Types to XML and WSDL Types" in the Oracle
Application Server Advanced Web Services Developer’s Guide and in
Table 5-1 on page 5-7 for descriptions of JAX-RPC supported data
types for E]Bs parameters and return types.

To comply with the JAX-RPC standard, all the methods in HelloServiceBean throw
a java.rmi.RemoteException. They must also follow all the requirements of the
version 2.1 E]B specification and Enterprise Web Services 1.1 specification.

Example 8-2 Sample HelloService Session Bean

package oracle.demo.ejb;

import java.rmi.Remote;
import java.rmi.RemoteException;
import java.util.Properties;
import javax.ejb.*;
/**
* This is a Session Bean Class.
*/
public class HelloServiceBean implements SessionBean {
public String sayHello(String phrase) ({

return "HELLO!! You just said :" + phrase;

}
public void setSessionContext (javax.ejb.SessionContext ctx)
throws java.rmi.RemoteException {
}
public void ejbActivate() throws java.rmi.RemoteException {
public void ejbCreate()
throws javax.ejb.CreateException,

java.rmi.RemoteException {

public void ejbPassivate() throws java.rmi.RemoteException {

public void ejbRemove() throws java.rmi.RemoteException {

Packaging and Deploying Web Services that Expose EJBs

The packaging structure of Web services that expose E]Bs is described in "Packaging
for a Web Service Based on EJBs" on page 19-3.

See Also:

Oracle Containers for [2EE Deployment Guide for a detailed description
of the deployment of EJBs.

8-8 Web Services Developer's Guide

Additional Information

Note: WebServicesAssembler cannot detect whether the
configuration of the 2.1 EJB is correct. This can be detected only
during deployment and server-side code generation of the 2.1 EJB
Web service.

How to Secure EJB-Based Web Services at the Transport-Level

You can use the <ejb-transport-security-constraint> and
<ejb-transport-login-config> elementsin the oracle-webservices.xml
deployment descriptor to configure transport-level security constraints for a version
2.1 or 3.0 EJB. These elements are described in "Securing EJB-Based Web Services at the
Transport Level" on page C-15.

See Also:

"Adding Transport-level Security for Web Services Based on E]Bs" and
"Accessing Web Services Secured on the Transport Level" in the Oracle
Application Server Web Services Security Guide for more information on
providing transport-level security for EJBs, and how to write clients to
access Web services secured on the transport level.

Tool Support for Exposing EJBs as a Web Service

With Oracle JDeveloper, you can use modeling tools and wizards to create, modify,
and deploy J2EE-compliant EJBs. The EJB wizards can be used to perform the
following tasks.

Create the Enterprise Bean class for several types of Enterprise JavaBeans,
including stateless session beans.

Generate the home interface needed to create an EJB object. The inclusion of the
ejbCreate () method enables you to deploy the EJB to Oracle Applications
Server immediately, without having to manually code the method.

Enable a selection of home interface methods (and create a default method).
Generate the remote interface.
Enable a selection of remote interface methods.

Deploy the EJB exposed as a Web service.

For more information on using Oracle JDeveloper to create EJBs and expose them as a
Web service, see the Oracle JDeveloper on-line help.

Limitations

See "Assembling Web Services From E]Bs" on page F-7.

Additional Information

For more information on:

using the Test Page to test Web service deployment, see Chapter 13, "Testing Web
Service Deployment".

building a J2EE client, see Chapter 14, "Assembling a J2EE Web Service Client".
building a J2SE client, see Chapter 15, "Assembling a J2SE Web Service Client".

Assembling a Web Service with EJBs 8-9

Additional Information

using JAX-RPC handlers, see Chapter 16, "Using JAX-RPC Handlers".

using the WebServicesAssembler tool to assemble Web services, see Chapter 18,
"Using WebServicesAssembler".

packaging and deploying Web services, see Chapter 19, "Packaging and Deploying
Web Services".

JAR files that are needed to assemble a client, see Appendix A, "Web Service Client
APIs and JARs".

Web services interoperability, see "Ensuring Interoperable Web Services" in the
Oracle Application Server Advanced Web Services Developer’s Guide.

using quality of service features in Web service clients, see "Managing Web
Services" in the Oracle Application Server Advanced Web Services Developer’s Guide.

adding security to a Web service, see the Oracle Application Server Web Services
Security Guide.

adding transport-level security to Web services based on EJBs, see "Securing
EJB-Based Web Services at the Transport Level" on page C-15.

See also "Adding Transport-level Security to a Web Service" and "Accessing Web
Services Secured on the Transport Level" in the Oracle Application Server Web
Services Security Guide.

adding reliability to a Web service, see "Ensuring Web Service Reliability" in the
Oracle Application Server Advanced Web Services Developer’s Guide.

adding an auditing and logging configuration to a Web service, see "Auditing and
Logging Messages" in the Oracle Application Server Advanced Web Services
Developer’s Guide.

processing nonstandard data types, see "Custom Serialization of Java Value Types"
in the Oracle Application Server Advanced Web Services Developer’s Guide.

the JAX-RPC mapping file, see "JAX-RPC Mapping File Descriptor" in the Oracle
Application Server Advanced Web Services Developer’s Guide.

data types supported by OracleAS Web Services, see "Mapping Java Types to XML
and WSDL Types" in the Oracle Application Server Advanced Web Services Developer’s
Guide.

Oracle JDeveloper tool support for Web service development, see the Oracle
JDeveloper on-line help.

8-10 Web Services Developer's Guide

9

Assembling Web Services with JMS
Destinations

This chapter describes how to expose a JMS destination as a Web service. A J]MS
endpoint Web service exposes JMS destinations, either queues or topics, as
document-literal style operations in the WSDL. The operation can be in either send or
receive mode.

A JMS endpoint Web service can be considered to be a special case of the Java
endpoint Web service. In a JMS endpoint Web service, the JMS endpoint implements
Web service operations by sending and receiving JMS message objects.

Note: There are differences between a Web service based on queues
(or Oracle Streams Advanced Queuing (AQ)) in the database and a
Web service based on a JMS destination. The AQ Web service is based
on a configuration of queues that reside in the database. The JMS
destination Web service is based on the configuration of a JMS
provider in the middle tier. The JMS queues reside in a backend data
source. This data source could be a database, a file-based system, or
some other data repository.

If you want to construct a Web service from a queue or an AQ in the
database, see "How to Assemble a Web Service from an Oracle
Streams AQ" on page 10-22.

If you want to use JMS as the transport mechanism to communicate
with a Web service, see "Using JMS as a Web Service Transport"” in the
Oracle Application Server Advanced Web Services Developer’s Guide.

Understanding JMS Endpoint Web Services

OracleAS Web Services enables you to create Web service endpoints that let you put
messages on and take messages off JMS destinations. A JMS Web service endpoint is
configured to transfer messages to and from a specific JMS destination or pair of
destinations.

A JMS endpoint Web service can have the following operations.

s send—the XML payload (SOAP body element) is sent to the corresponding JMS
destination. A send operation can be configured so that JMS message properties
can be set on each sent message to indicate the JMS reply-to destination, priority,
expiration, and so on.

Assembling Web Services with JMS Destinations 9-1

Understanding JMS Endpoint Web Services

s receive—a message is retrieved from the corresponding JMS destination, the
content of the J]MS message is used to create the SOAP response message body
payload.

= both—a service can offer both operations.

A JMS endpoint Web service can be configured so that message-ID, correlation-ID, and
reply-to-destination JMS message properties can be transmitted as SOAP headers.
With this configuration, the message property headers and their types are explicitly
declared on the generated WSDL and schema so that the Web service client can use
them.

= If the destination is a JMS queue, then invoking the send operation means
enqueue. Invoking the receive operation means dequeue.

» If the destination is a topic, then the send operation means publish and the
receive operation means subscribe.

An individual JMS endpoint Web service can support just the send operation, just the
receive operation, or both operations, as determined by the service developer.

JMS endpoint Web services use javax.jms.ObjectMessage as the J]MS message
type. As content, it can carry an instance of javax.xml .soap.SOAPElement or a
String representation of an XML fragment.

The WSDL generated for a send JMS endpoint Web service follows the Web
Service-Interoperability (WS-I) Basic Profile 1.0 and is interoperable.

Figure 9-1 shows an MDB-based JMS endpoint Web service application that, from the
JMS endpoint Web service's view, handles both the message send and the message
receive operations. The figure also includes an MDB that is configured to listen to a
JMS destination.

Figure 9-1 MDB-Based JMS Endpoint Web Service

0C4J

EJB Container
MDB

JMS JMS
Destination 2 Destination 1

l | Send |L7 o SOAP on HTTP
et l—t— @ sompentirre 3
: >

JMS Endpoint %
Web Service Web Service

Client

The following steps describe how the MDB-based JMS endpoint Web service
application illustrated in Figure 9-1 works.

9-2 Web Services Developer's Guide

Understanding JMS Endpoint Web Services

A Web service client sends a SOAP request to invoke the send operation on the
JMS endpoint Web service.

The JMS endpoint Web service processes the incoming message and directs it to a
JMS destination, JMS Destination 1.

The EJB container invokes the MDB listening on JMS Destination 1.

After processing the message an MDB produces a new message on JMS
Destination 2.Producing and consuming messages could involve one or more
MDBs. For example, a single MDB could be listing on JMS Destination 1 and
the same MDB could also send the message to J]MS Destination 2.

(Arrows 5 and 6) A Web service client sends a SOAP request to perform a
receive operation on the JMS endpoint Web service to retrieve a message. The
JMS endpoint Web service consumes a message from the JMS destination, encloses
it in a SOAP response message, and passes the outgoing SOAP response message
to the client.

Steps for Assembling a JMS Endpoint Web Service

The following steps describe how to assemble a J]MS Endpoint Web service with the
WebServicesAssembler tool.

1.

Generate the Web service EAR file by running the WebServicesAssembler with the
jmsAssemble command or Ant task.

For the jmsAssemble command, you must specify either the JNDI name of the
JMS connection factory used to obtain a connection for the JMS send operation
(sendConnectionFactoryLocation) or the JNDI name of the JMS connection
factory to be used as the default reply-to of all send operation J]MS messages
(replyToConnectionFactoryLocation). For more information on the
jmsAssemble command and its required and optional arguments, see
"jmsAssemble" on page 18-16.

In the following example, jms/ws/mdb/theQueueConnectionFactory is the
JNDI name of the JMS connection factory used to produce connections to the JMS
queue for the JMS send operation.

s jms/ws/mdb/theQueue—the INDI name of the J]MS queue to which the
send operation sends the SOAP message payload.

s Jms/ws/mdb/logQueueConnectionFactory—the JNDI name of the JMS
connection factory to be used for the reply-to queue.

s jms/ws/mdb/logQueue—the INDI name of the JMS queue that will be set to
each send message as the default reply-to destination. Because the
linkReceiveWithReplyTo argument is enabled in this example, this
reply-to destination is also used by the receive operation of the JMS
endpoint Web service to retrieve messages.

The J2EE EAR file produced by this command includes the J]MS endpoint Web
service configuration information, including the WSDL and the generated
web . xml file.

Command line:

java -jar wsa.jar -jmsAssemble
-sendConnectionFactoryLocation jms/ws/mdb/theQueueConnectionFactory
-sendQueuelocation jms/ws/mdb/theQueue
-replyToConnectionFactoryLocation jms/ws/mdb/logQueueConnectionFactory
-replyToQueueLocation jms/ws/mdb/logQueue

Assembling Web Services with JMS Destinations 9-3

Understanding JMS Endpoint Web Services

-linkReceiveWithReplyTo true

-targetNamespace http://oracle.j2ee.ws/jms-doc
-typeNamespace http://oracle.j2ee.ws/jms-doc/types
-serviceName JmsService

-appName jms_service

-context jms_service

-input ./build/mdb_service.jar

-uri JmsService

-output ./dist

Ant task:

<oracle:jmsAssemble

linkReceiveWithReplyTo="true"
targetNamespace="http://oracle.j2ee.ws/jms-doc"
typeNamespace="http://oracle.j2ee.ws/jms-doc/types"
serviceName="JmsService"

appName="7jms_service"

context="jms_service"
input="./build/mdb_service.jar"

uri="JmsService"

output="./dist"
sendConnectionFactoryLocation="jms/ws/mdb/theQueueConnectionFactory"
sendQueuelLocation="jms/ws/mdb/theQueue"

replyToConnectionFactoryLocation="jms/ws/mdb/logQueueConnectionFactory"

replyToQueueLocation="jms/ws/mdb/logQueue" />

In this command and Ant task:

jmsAssemble—Exposes a JMS destination (queue or topic) as a Web service.
See "jmsAssemble" on page 18-16.

sendConnectionFactoryLocation—Specifies the JNDI name of the JMS
ConnectionFactory used to obtain a connection for the J]MS send
operation. The type of ConnectionFactory must be consistent with the
send destination. See "sendConnectionFactoryLocation" on page 18-60.

sendQueueLocation—Specifies the JNDI name of the JMS queue to be used
for the JMS send operation. No default value is provided. See
"sendQueueLocation” on page 18-61.

replyToConnectionFactoryLocation—Specifies the JNDI name of the
JMS connection factory to be used as the default reply-to of all send operation
JMS messages. The type of ConnectionFactory must be consistent with the
reply-to destination. See "replyToConnectionFactoryLocation" on page 18-60.

replyToQueueLocation—Specifies the JNDI name of the JMS queue to be
used as the default reply-to of all send operation JMS messages. See
"replyToQueueLocation" on page 18-60.

linkReceivedWithReplyTo—Determines whether the receive operation
will be linked to the reply-to destination. See "linkReceiveWithReplyTo" on
page 18-59.

targetNamepace—Specifies the target namespace to be used in the
generated WSDL. The value can be either a conforming HTTP URL, a

non-conforming HTTP URL, or even a URI. See "targetNamespace" on
page 18-66.

9-4 Web Services Developer's Guide

Understanding JMS Endpoint Web Services

= typeNamespace—Specifies the type namespace to be used in the schema
types in the generated WSDL. The name that you specify will always be used
and it will not be reversed. See "typeNamespace" on page 18-67.

» serviceName—Specifies the service name. See "serviceName" on page 18-50.

» appName—Specifies the name of an application. Usually, this name is used as
a base value for other arguments like context and uri. See "appName" on
page 18-42.

» context—Specifies the root context for the web application. See "context"” on
page 18-62.

= input—Specifies the directory or JAR containing the classes that should be
copied to WEB-INF/classes. This argument will be added to the classpath
used by the WebServicesAssembler. See "input" on page 18-46.

s uri—Specifies the URI to use for the Web service. See "uri" on page 18-63.

= output— Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created. See "output” on page 18-48.

Deploy all of the JMS destinations.
Deploy the service and bind the application.

Deploy the EAR file in the standard manner into a running instance of OC4]J. For
more information on deploying EAR files, see Chapter 19, "Packaging and
Deploying Web Services" and the Oracle Containers for J2EE Deployment Guide. The
following is a sample deployment command:

java -jar <0C4J_HOME>/j2ee/home/admin_client.jar deployer:oc4j:localhost:port
<user> <password>

-deploy

-file dist/jms_service.ear

-deploymentName jms_service

-bindWebApp default-web-site

The following list describes the parameters in this code example.
= <oc4jHome>—The directory containing the OC4] installation.

s <user>—The user name for the OC4] instance. The user name is assigned at
installation time.

s <password>—The password for the OC4J instance. The password is assigned
at installation time.

s default-web-site —The Web site to which the application will be bound.
This is usually default-web-site. To configure Web sites, see the
server .xml file in <OC4J_HOME>/j2ee/home/config.

(Optional) Check that deployment succeeded.

OracleAS Web Services provides a Web Service Test Page for each deployed Web
service. See "How to Use the Web Services Test Page" on page 13-6 for information
on accessing and using the Web Service Test Page.

Generate the client-side code.

Generating a client-side proxy from a JMS endpoint Web service WSDL is the
same as generating the proxy from any other WSDL. The JMS endpoint Web
service WSDL is interoperable, in that it should be consumed by WS-I Basic Profile
1.0-compliant WSDL tools. For example, you can use a .NET WSDL tool to

Assembling Web Services with JMS Destinations 9-5

Understanding JMS Endpoint Web Services

9-6

generate C# client stubs to communicate with an Oracle JMS endpoint Web
service.

= For the J2SE environment, generate stubs (client proxies) for a J2SE Web
service client by running the WebServicesAssembler tool with the genProxy
command. For more information on generating and assembling client-side
code for the J2SE environment, see Chapter 15, "Assembling a J2SE Web
Service Client".

= For the J2EE environment, generate a service endpoint interface and a
mapping file for a J2EE Web service client by running the
WebServicesAssembler tool with the genInterface command. For more
information on generating and assembling client-side code, see Chapter 14,
"Assembling a J2EE Web Service Client".

For example, the following command generates stubs that can be used for a J2SE
client:

Command line:

java -jar wsa.jar -genProxy
-output build/src/client/
-wsdl http://localhost:8888/hello/JmsService?WSDL
-packageName oracle.demo.jms_service

Ant task:

<oracle:genProxy wsdl="http://localhost:8888/hello/JIJmsService?WSDL"
output="build/src/client"
packageName="oracle.demo.jms_service"

/>

In this command line and Ant task:

» genProxy—Creates a static proxy stub that can be used by a J25E Web service
client. See "genProxy" on page 18-34.

= output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created. See "output” on page 18-48.

» wsdl—Specifies the absolute file path, relative file path, or URL to a WSDL
document. See "wsdl" on page 18-65.

» packageName—Specifies the package name that will be used for generated
classes if no package name is declared in the JAX-RPC mapping file. See
"packageName" on page 18-48.

This command generates the client proxies and stores them in the directory
build/src/client. The client application uses the stub to invoke operations on
a remote service. For more information on the required and optional arguments to
genProxy, see "genProxy" on page 18-34.

Compile and run the client.

List the appropriate JARs on the classpath before compiling the client. Table A-2,
" Classpath Components for a Client Using a Client-Side Proxy" lists all of the JAR
files that can possibly be used on the client classpath. As an alternative to listing
individual JARs, you can include the client-side JAR, wsclient_extended.jar
on the client classpath. This JAR file contains all the classes necessary to compile
and run a Web service client. The classes are from the individual JAR files listed in
Table A-2. See "Setting the Classpath for a Web Service Proxy" on page A-2 for
more information on wsclient_extended. jar and the client classpath.

Web Services Developer's Guide

Limitations

Message Processing and Reply Messages

The JMS endpoint Web service processes an incoming SOAP message and places the
payload (the body element of the SOAP message) on a JMS destination. This section
covers details that a developer needs to know to consume and process the JMS
messages that originate from a JMS endpoint Web service.

The JMS message content associated with a JMS endpoint Web service can be either an
instance of javax.xml.soap.SOAPElement (which is also a subclass of
org.w3c.dom.Element), or java.lang.String which is the string representation
of the XML payload. The JMS endpoint Web service may set certain JMS message
header values before it places the message on a JMS destination. Depending on the
values of optional configuration arguments specified when the JMS endpoint Web
service is assembled, the JMS endpoint Web service sets the following JMS message
headers.

JMSType
JMSReplyTo
JMSExpiration
JMSPriority
JMSDeliveryMode

The JMS endpoint Web service sets the JMSReplyTo header with the value specified
by the replyToTopicLocation or the replyToQueueLocation argument (only
one of these should be configured for any given JMS endpoint Web service). The value
specified with the replyToConnectionFactoryLocation argument is set on the
message as a standard string property. The property name is 0C4J_REPLY_TO_
FACTORY_NAME.

Example 9-1 provides a code segment that shows where the onMessage () method
gets the reply-to information for a message generated from a JMS endpoint Web
service send operation:

Example 9-1 Getting Reply-To Information for a Message Generated by a Send
Operation

public void onMessage (Message inMessage) {

// Do some processing

ObjectMessage msg = null;

String factoryName;

Destination dest;

Element el;

try {
// Message should be of type objectMessage
if (inMessage instanceof ObjectMessage) {

// retrieve the object

msg = (ObjectMessage) inMessage;
el = (Element)msg.getObject();
System.out.println("MessageBean2::onMessage() => Message received: ");

((XMLElement)el) .print (System.out) ;

processElement (el) ;

factoryName = inMessage.getStringProperty ("0C4J_REPLY_TO_FACTORY_NAME") ;
dest = inMessage.getJIMSReplyTo() ;

Limitations
See "Assembling Web Services with JMS Destinations" on page F-7.

Assembling Web Services with JMS Destinations 9-7

Additional Information

Additional Information

For more information on:

9-8

using the Test Page to test Web service deployment, see Chapter 13, "Testing Web
Service Deployment".

building J2EE Web service clients, see Chapter 14, "Assembling a J2EE Web Service
Client".

building J2SE Web service clients, see Chapter 15, "Assembling a J2SE Web Service
Client".

JAX-RPC handlers, see Chapter 16, "Using JAX-RPC Handlers".

using the WebServicesAssembler tool to assemble Web services, see Chapter 18,
"Using WebServicesAssembler".

packaging and deploying Web services, see Chapter 19, "Packaging and Deploying
Web Services".

JAR files that are needed to assemble a client, see Appendix A, "Web Service Client
APIs and JARs".

Web services interoperability, see "Ensuring Interoperable Web Services" in the
Oracle Application Server Advanced Web Services Developer’s Guide.

using quality of service features in Web service clients, see "Managing Web
Services" in the Oracle Application Server Advanced Web Services Developer’s Guide.

adding security to a Web service, see the Oracle Application Server Web Services
Security Guide.

adding reliability to a Web service, see "Ensuring Web Service Reliability" in the
Oracle Application Server Advanced Web Services Developer’s Guide.

adding an auditing and logging configuration to a Web service, see "Auditing and
Logging Messages" in the Oracle Application Server Advanced Web Services
Developer’s Guide.

processing nonstandard data types, see "Custom Serialization of Java Value Types"
in the Oracle Application Server Advanced Web Services Developer’s Guide.

the JAX-RPC mapping file, see "JAX-RPC Mapping File Descriptor" in the Oracle
Application Server Advanced Web Services Developer’s Guide.

data types supported by OracleAS Web Services, see "Mapping Java Types to XML
and WSDL Types" in the Oracle Application Server Advanced Web Services Developer’s
Guide.

Oracle JDeveloper tool support for Web service development, see the Oracle
JDeveloper on-line help.

Web Services Developer's Guide

10

Assembling Database Web Services

This chapter describes how you can develop Oracle Application Server Web Services
that interact with an Oracle database. There are two ways in which OracleAS Web
Services can interact with a database: call-in and call-out. Web service call-in refers to
providing a Web service that provides access to a database resource. The Web service
runs in an OC4J instance and accesses the database resource through JDBC.

Web services call-out refers to invoking an external Web service from inside the
database. The invocation can be performed by SQL, PL/SQL, or Java code running in
the database.

This chapter contains these sections.

s Understanding Database Web Services

s Type Mapping Between SQL and XML

= Developing Web Services that Expose Database Resources
= Developing a Web Service Client in the Database

s Tool Support for Web Services that Expose Database Resources

Understanding Database Web Services

Web service technology enables application-to-application interaction over the
Web—regardless of platform, language, or data formats. The key ingredients,
including XML, SOAP, WSDL, UDDI, WS-Security, and WS-Reliability have been
adopted across the entire software industry. Web service technology usually refers to
services implemented and deployed in middle-tier application servers. However, in
heterogeneous and disconnected environments, there is an increasing need to access
stored procedures, data and metadata, through Web service interfaces. Database Web
service technology is a database approach to Web services. It works in two directions:

= accessing database resources as a Web service (database call-in)

= consuming external Web services from the database itself (database call-out)

Database Call-In

Turning the Oracle database into a Web service provider takes advantage of your
investment in Java stored procedures, PL/SQL packages, Advanced Queues,
pre-defined SQL queries and DML. Client applications can query and retrieve data
from Oracle databases and invoke stored procedures using standard Web service
protocols. There is no dependency on Oracle specific database connectivity protocols.
Applications can employ any cached OC4] connection. This approach is very beneficial
in heterogeneous, distributed, and non-connected environments.

Assembling Database Web Services 10-1

Understanding Database Web Services

Since database Web services are a part of OracleAS Web Services, they can participate
in a consistent and uniform development and deployment environment. Messages
exchanged between the Web service exposed database and the Web service client can
take advantage of all of the management features provided by OracleAS Web Services,
such as security, reliability, auditing and logging.

Figure 10-1 illustrates Web service call-in. The following steps describe the process.

1. A request for a type of database service arrives at the application server. The
service endpoint implicitly specifies the type of service requested.

2, The OC4J JAX-RPC processing servlet references the SOAP libraries and XML
parser to decode the request.

3. The servlet passes the request to the WebServicesAssembler-generated classes that
correspond to the exposed database operations. WebServicesAssembler generates
these classes by silently calling Oracle JPublisher. The generated classes can
represent PL/SQL packages, queries, DML, AQ Streams, or Java classes in the
database.

4. The database passes the response to the OC4J] JAX-RPC processing servlet, which
references the SOAP libraries and XML parser to encode it.

5. A SOAP response formed in accordance with the WSDL is returned to the client.

See Also:

"Developing Web Services that Expose Database Resources” on
page 10-6 for more information on exposing PL/SQL packages, SQL
queries, DML statements, Oracle AQ Streams, or server-side Java
classes database operations as a Web service.

Figure 10-1 Web Service Calling-In to the Database

Endpoint implicity

Oracle Application Server

0C4J JAX-RPC

specifies the type Processing Oracle
of service Servlet Database
provided by

the server

"l Decoding l_'> WebServicesAssembler
Generated Java —p | PL/SQL | | Query |

SOAP response <
per WSDL

II Encoding |4_ Classes

Soap XML

Libraries Parser

Database Call Out

You can extend a relational database's storage, indexing, and searching capabilities to
include Web Services. By calling a Web service, the database can track, aggregate,
refresh, and query dynamic data produced on-demand, such as stock prices, currency
exchange rates, or weather information.

An example of using the database as a service consumer would be to call an external
Web service from a predefined database job to obtain inventory information from
multiple suppliers, then update your local inventory database. Another example is
that of a Web Crawler: a database job can be scheduled to collate product and price
information from a number of sources.

10-2 Web Services Developer's Guide

Type Mapping Between SQL and XML

Figure 10-2 illustrates database call out.

s SQL and PL/SQL call specs—Invoke a Web service through a user-defined
function call (generated through Oracle JPublisher) either directly within a SQL
statement or view or through a variable.

= Dynamic Web service invocation using the UTL_DBWS PL/SQL package. A Call
object can be dynamically created based on a WSDL and subsequently, Web
services operations can be invoked.

Oracle Database PL/SQL Packages and Types Reference provides more information on
using the UTL_DBWS PL/SQL package.

s Pure Java static proxy class—Use Oracle JPublisher to pre-generate a client proxy
class which uses JAX-RPC. This method simplifies the Web service invocation as
the location of the service is already known without needing to look up the service
in the UDDI registry. The client proxy class does all of the work to construct the
SOAP request, including marshalling and unmarshalling parameters.

s Pure Java using DII (dynamic invocation interface) over JAX-RPC—Dynamic
invocation provides the ability to construct the SOAP request and access the
service without the client proxy.

Which method to use depends on whether you want to execute from SQL or PL/SQL,
from Java classes, or whether the service is known ahead of time (static invocation) or
only at runtime (DII).

See Also:

"Developing a Web Service Client in the Database" on page 10-36 for
more information about the support OracleAS Web Services offers for
PL/SQL and Java call-outs from the database.

Figure 10-2 Calling Web Services From Within the Database

m
Web Database
Services [P WSDL w

pL/saL | PL/SQL
Operations | _ Table Database
PL/SQL Functions | module as
SOAP ol Static Java Wrapper a Web
Service
Java Proxy Class Requestor

Type Mapping Between SQL and XML

The following sections describe the type mappings between SQL and XML for call-ins
and call-outs when the Web service is known ahead of time (static invocation).

= SQL to XML Type Mappings for Web Service Call-Ins
= XML to SQL Type Mapping for Web Service Call-Outs

Assembling Database Web Services 10-3

Type Mapping Between SQL and XML

When the Web service is known at runtime you can use only the Dynamic Invocation
Interface (DII) or the UTL_DBWS PL/SQL package. For more information on using the
JAX-RPC DII, see the API at the following Web address.

http://java.sun.com/j2ee/1.4/docs/#api

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information on using the UTL._DBWS package.

SQL to XML Type Mappings for Web Service Call-Ins

10-4

In a database Web service call-in, a SQL operation, such as a PL/SQL stored procedure
or a SQL statement, is mapped into one or more Web service operations. The
parameters to the SQL operation are mapped from SQL types into XML types.

Note: The reason there may be more than one operation is because
OracleAS Web Services may be providing additional data
representation choices for the SQL values in XML, such as different
representations of SQL result sets.

Table 10-1 illustrates the SQL to XML mappings for Web service call-ins. The first
column lists the SQL types. The second column of the table, XML Type (Literal),
shows SQL-to-XML type mappings for the default 1iteral value of the use
attribute. The third column, XML Type (Encoded), shows the mappings for the
encoded value of the use attribute. The 1iteral and encoded values refer to the
rules for encoding the body of a SOAP message.

See Also:

"Literal and Encoded Uses" on page 5-2 for more information on the
rules for encoding the body of a SOAP message.

Table 10-1 SQL-to-XML Type Mappings for Web Services Call-Ins

SQL Type XML Type (Literal) XML Type (Encoded)
INT int int
INTEGER int int
FLOAT double double
NUMBER decimal decimal
VARCHAR?2 string string
DATE dateTime dateTime
TIMESTAMP dateTime dateTime
BLOB byte[] byte[]
CLOB String String
LONG String String
RAW byte[] byte[]
Primitive PL/SQL Array Array
indexby table

PL/SQL Boolean boolean boolean

Web Services Developer's Guide

Type Mapping Between SQL and XML

Table 10-1 (Cont.) SQL-to-XML Type Mappings for Web Services Call-Ins

SQL Type XML Type (Literal) XML Type (Encoded)
PL/SQL indexby table complexType complexType
PL/SQL record complexType complexType
REF CURSOR Array Array
(nameBeans)

REF CURSOR any text_xml
(nameXML)

REF CURSOR swaRef text_xml
(nameXMLRowSet)

SQL object complexType complexType
SQL table complexType complexType
SYS.XMLTYPE any text_xml

Note: If National Language Support (also known as "NLS" or
"Globalization Support") characters are used in a SQL. SYS.XMLTYPE
value, they may not be properly handled.

A query or a PL/SQL function returning REF CURSOR will be mapped into three
methods, nameBeans, nameXMLRowSet, and namexXML, where name is the name of the
query or the PL/SQL function.

» nameBeans—this method returns an array, where each element is an instance of
an XSD complex type that represents one row in the cursor. A complex type
subelement corresponds to a column in that row.

s nameXMLRowSet—this method returns a swaRef or text_xml response that
contains an OracleWebRowSet instance in XML format. "Working with MIME
Attachments" in the Oracle Application Server Advanced Web Services Developer’s
Guide provides more information on the swaRef MIME format.

» nameXML—this method returns an XML any or text_xml response that contains
an Oracle XDB row set.

Both oUT and IN OUT PL/SQL parameters are mapped to IN OUT parameters in the
WSDL file.

See Also:

= "How to Assemble a Web Service from a SQL Query or DML
Statement" on page 10-15 for examples of returning a result set
which is similar to REF CURSOR.

s "How to Access PL/SQL IN and IN OUT Parameters from Client
Code" on page 10-13 for an example of how PL/SQL parameters
are generated into the WSDL and then accessed from client code.

Note that Table 10-1 provides two different mappings: one for literal and another for
encoded use. The default mapping is literal. From a database Web service's
perspective, there is no special reason why encoded should be used. The mapping for
encoded is provided in case you encounter scenarios which call for the encoded use

Assembling Database Web Services 10-5

Developing Web Services that Expose Database Resources

setting. All of the descriptions in this chapter assume that you will be using the literal
use setting unless otherwise specified.

Changing the SQL to XML Mapping for Numeric Types

Table 10-1 defines SQL to XML type mappings used for call-ins. The mappings for the
numeric types is determined by how Oracle JPublisher maps SQL types to Java types.
By default, the WebServicesAssembler tool uses the Oracle JPublisher option
-numbertypes=objectjdbc. As a result, the XML types corresponding to the SQL
numeric types are all declared nillable in the generated WSDL file.

To change the Oracle JPublisher mappings, and hence change the XML types, you can
use the WebServicesAssembler jpubProp argument. For example, if you specify the
following argument in the database WebServicesAssembler Ant task, then the XML
types generated for SQL numeric types will not be declared nillable.

jpubProp="numbertypes=jdbc"
On the other hand, if you specify either oracle or bigdecimal as the target of the

numbertypes option, then the XML types generated for SQL numeric types will all
be decimal and nillable.

XML to SQL Type Mapping for Web Service Call-Outs

In database Web services call-outs, XML types are mapped into SQL types. Table 10-2
lists the XML-to-SQL type mappings used in call-outs.

Table 10-2 XML-to-SQL Type Mappings for Web Services Call-Outs

XML Type SQL Type
int NUMBER
float NUMBER
double NUMBER
decimal NUMBER
dateTime DATE
String VARCHAR?2
byte[] RAW
complexType SQL OBJECT
Array SQL TABLE
text_xml XMLType

Developing Web Services that Expose Database Resources

10-6

This section describes how to develop Web services implemented as PL/SQL stored
procedures, SQL statements, Oracle Streams AQ queues, and server-side Java classes.

= How to Use Life Cycle for Web Service Call-in

» WebServicesAssembler Support for Web Service Call-in

= How to Assemble a Web Service from a PL/SQL Package

= How to Assemble a Web Service from a SQL Query or DML Statement

s How to Assemble a Web Service from an Oracle Streams AQ

Web Services Developer's Guide

Developing Web Services that Expose Database Resources

s How to Assemble a Server-Side Java Class as a Web Service

How to Use Life Cycle for Web Service Call-in

Creating a database Web service call-in application is a bottom up process. In many
cases, you will want to reuse existing database applications (such as PL/SQL packages
or Java applications) or operational scripts (such as SQL query, DML, or AQ). You can
also populate the database with the resources to be exposed as a Web service. Web
service call-ins typically follow these steps:

1. Determine which database resources to expose and make them available.
For example, you can provide the resources in any of the following ways.
= load the PL/SQL package into the database
= create the schema used by SQL query or DML statement Web service

= load the Java class into the database, for a database server-side Java Web
service

2. Run the WebServicesAssembler tool to assemble the Web service, based on the
specified resources.

Note that you could also use Oracle JDeveloper to assemble the Web service.

3. If the Web service assembly generates a PL/SQL wrapper, load it into the
database.

PL/SQL Web service assembly may generate a wrapper if a PL/SQL record or
INDEX BY table type is included in the PL/SQL package. You must load the
wrapper into the database. Server-side Java call-in assembly always generates a
PL/SQL wrapper. WebServicesAssembler will load the wrapper automatically if
the sysUser argument is set. For more information, see sysUser on page 18-57.

Note that you could also use Oracle JDeveloper to load the PL/SQL wrapper into
the database.

4. Configure the OC4] data sources to ensure that the Oracle JPublisher-generated
Java classes that constitute the Web service implementation can connect to the
database and the resource it is exposing.

Add a data source entry in the J2EE data source file, so that the Web service
application can connect to the database.

5. Deploy the Web service application into a running instance of OC4J.

6. (Optional) Check that deployment succeeded. OracleAS Web Services provides a
Web Service Test Page for each deployed Web service.

See "How to Use the Web Services Test Page" on page 13-6 for information on
accessing and using the Web Service Test Page.

7. Use the WebServicesAssembler tool to generate the Web services client proxy and
incorporate it into your client application.

8. Invoke the Web service using the client proxy.

WebServicesAssembler Support for Web Service Call-in

For all Web service call-in types, the WebServicesAssembler tool requires the following
arguments.

= appName—the application name

Assembling Database Web Services 10-7

Developing Web Services that Expose Database Resources

10-8

» dataSource—the data source JNDI name; used at runtime
s dbConnection—the database connection URL; used at code generation time
s dbUser—the database user and password; used at code generation time

The appName argument specifies the Web service application name. The dataSource
argument defines the data source's JNDI location for the database being accessed. At
runtime, the Web service code accesses the database through that data source.

The WebServicesAssembler tool uses the dbConnection and dbUser arguments to
define the connection to the database during Web service creation. The values of these
arguments are used at code generation time, not at runtime. The dbConnection
argument is used to access the information on the resource that is to be exposed. For
example, it accesses information about the PL/SQL package, the schema, or the query.

The database used at Web service creation time and the one used at runtime do not
have to be the same database. However, both should include the schema that contains
the database resources being exposed.

At runtime, database Web services obtain the database connection from the data
source. The database Web service deals with connection loss by reconnecting to the
database. When the connection is in an invalid state, the Web service will attempt to
reestablish the connection. If the Web service fails to re-connect, it will return a fault.
The next time the client invokes the Web service, the Web service will attempt to
connect to the database. Therefore, it is possible for the Web service to return a fault at
one moment, but succeed later, due to connection failure handling.

The following arguments are optional and can be used in all Web service call-in
scenarios.

= context—root context for the web application
s debug—displays detailed diagnostic messages
= ear—name and location of the generated EAR

= jpubProp—specifies Oracle JPublisher options to fine-tune Oracle JPublisher code
generation

= output—location for storing generated files

= portName—the name of the port in the generated WSDL

= serviceName—local part of the service name in the generated WSDL

s style—the style part of the message format used in the generated WSDL
s uri—URI to use for the Web service in the deployment descriptors

= use—the use part of the message format used in the generated WSDL

The common prerequisite for all call-in types is that the database is populated with the
resource to be exposed. The WebServicesAssembler employs Oracle JPublisher to
generate Java code to access database resources. The jpubProp argument, which can
appear more than once on the command line or in an Ant task, lets you pass options to
Oracle JPublisher.

See Also:

Oracle Database [Publisher User’s Guide for the list of Oracle JPublisher
options and for information on how it maps PL/SQL, SQL types, SQL
statements, and server-side Java into client-side Java wrappers.

Web Services Developer's Guide

Developing Web Services that Expose Database Resources

How to Assemble a Web Service from a PL/SQL Package

Use the plsglAssemble command to assemble Web services from a PL/SQL stored
procedure. In the generated Web service, each Web service operation corresponds to a
PL/SQL stored procedure.

This section has the following subsections:

Prerequisites

Steps for Assembling a Web Service from a PL/SQL Package

Sample PL/SQL Package

How PL/SQL Function Names are Mapped to Web Service Operation Names
How to Access PL/SQL IN and IN OUT Parameters from Client Code

How to Access SQL XMLIype Types from Client Code

Prerequisites
Before you begin, provide the following files and information.

The PL/SQL package that you want to expose as a Web service

See Also:
"Sample PL/SQL Package" on page 10-12 for the stored procedure that
is used in this example.

A name for the Web service application

A JNDI location for the JDBC data source

The JDBC database connection URL, and the username and password

Steps for Assembling a Web Service from a PL/SQL Package

The following steps describe how to assemble a Web service for the PL/SQL package
echo_plsqgl.

1.

Provide the PL/SQL package and the information described in the Prerequisites
section as input to the WebServicesAssembler plsglAssemble command.

Command line:

java -jar wsa.jar
-plsqglAssemble
-appName Echo
-sgl echo_plsqgl
-dataSource jdbc/OracleManagedDS
-dbConnection jdbc:oracle:thin:@stacdl5:1521:1sqlj
-dbUser scott/tiger
-style rpc
-use encoded

Ant task:

<oracle:plsglAssemble
dbUser="scott/tiger"
sgl="echo_plsqgl"
dbConnection="jdbc:oracle:thin:@stacdl5:1521:1sqglj"
dataSource="jdbc/OracleManagedDS"
appName="EchoPlsqgl"

Assembling Database Web Services 10-9

Developing Web Services that Expose Database Resources

style="rpc"
use="encoded"
/>

In this command and Ant task:

» plsglAssemble—Generates Web services from a PL/SQL package
containing stored procedures and functions. To use this command, you must
connect to a database. See "plsqlAssemble" on page 18-17.

» appName—Specifies the name of an application. Usually, this name is used as
a base value for other arguments like context and uri. See "appName" on
page 18-42.

s sgl—Specifies a PL/SQL package name. See "sql" on page 18-55.

» dataSource—Specifies the JNDI location of the data source used by the Web
services at runtime. See "dataSource" on page 18-54.

= dbConnection—Specifies the JDBC URL for the database. See
"dbConnection" on page 18-54.

» dbUser—Specifies the database schema and password in the form of
user / password. See "dbUser" on page 18-55.

= style—For bottom up Web service assembly, this argument specifies the
style attribute of the message format in the generated WSDL. See "style" on
page 18-68.

= use—For bottom up Web service assembly, this argument specifies the use
attribute of the message format in the generated WSDL. See "use" on
page 18-68.

The arguments that can be used with the plsglAssemble command are
described in "plsqlAssemble" on page 18-17.

By default, WebServicesAssembler generates services using document-wrapped
style. However, JAX-RPC clients that use document-wrapped style do not support
IN OUT parameters directly. Instead, WebServicesAssembler packages IN and IN
OUT parameters separately. Since the PL/SQL package used in this example
contains IN OUT parameters, the plsglAssemble command includes the -style
rpc argument. For more information on parameters and different document
styles, see "How to Access PL/SQL IN and IN OUT Parameters from Client Code"
on page 10-13.

The command generates a Web service application, EchoPlsql . ear, and
optionally, the following PL/SQL scripts.

s Echo_plsqgl_wrapper.sgl—the PL/SQL wrapper generated to support
PL/SQL record and INDEX BY table.

s Echo_plsgl_dropper.sgl—the PL/SQL script to tear down the types and
packages created by the wrapper script.

2. Install any PL/SQL wrappers created during Web service generation into the
database.

Not all PL/SQL Web services assembly generates PL/SQL wrappers. If it does,
you must load them into the appropriate user schema in the database before
running the Web service.

The wrappers can be loaded automatically or manually. To load the wrappers
automatically, add the following line to the plsglAssemble command:

10-10 Web Services Developer's Guide

Developing Web Services that Expose Database Resources

-jpubProp plsgload (for the command line), or
jpubprop="plsglload" (for an Ant task)

To manually load the wrapper package after Web service assembly, use
SQL*PLUS. The following command line provides a sample SQL*PLUS command
to load a wrapper package.

SQL>@Echo_plsgl_wrapper.sqgl

Deploy the service into a running instance of OC4] and bind the application.

The data source referenced by the -~dataSource argument in Step 1 must be set
up in this OC4] instance.

The following command lines provide sample deployment and bind commands.

% java -jar <J2EE_HOME>/admin_client.jar deployer:oc4j:localhost:port admin
welcome -deploy -file dist/echo.ear -deploymentName echo

% java -jar <J2EE_HOME>/admin_client.jar deployer:oc4j:localhost:port admin
welcome -bindWebApp plsgl plsgl-web default-web-site /plsgl

In this example, <J2EE_HOME> is the directory where J2EE is installed.

For more information on deploying EAR files, see the Oracle Containers for J2EE
Deployment Guide.

(Optional) Check that deployment succeeded.

OracleAS Web Services provides a Web Service Test Page for each deployed Web
service. See "How to Use the Web Services Test Page" on page 13-6 for information
on accessing and using the Web Service Test Page.

Generate the client-side code.

= For the J2SE environment, generate stubs (client proxies) for a J2SE Web
service client by running the WebServicesAssembler tool with the genProxy
command. See Chapter 15, "Assembling a J2SE Web Service Client" for more
information on generating and assembling client-side code for the J2SE
environment.

» For the J2EE environment, generate a service endpoint interface and a
JAX-RPC mapping file for a J2EE Web service client by running the
WebServicesAssembler tool with the genInterface command. See
Chapter 14, "Assembling a J2EE Web Service Client" for more information on
generating and assembling client-side code.

For example, the following command uses the genProxy command to generate a
J2SE client in the build/classes/client directory.

% java -jar wsa.jar -genProxy
-wsdl http://locahost:8888/plsqgl/echo?WSDL
-output build/src/client
-mappingFileName ./mapping.xml
-packageName oracle.demo.db.plsqgl.stub
-unwrapParameters true

In this command:

= genProxy—Creates a static proxy stub that can be used by a J25E Web service
client. See "genProxy" on page 18-34.

Assembling Database Web Services 10-11

Developing Web Services that Expose Database Resources

s wsdl—Specifies the absolute file path, relative file path, or URL to a WSDL
document. See "wsdl" on page 18-65.

= output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created. See "output” on page 18-48.

» mappingFileName—Specifies a file location that points to a JAX-RPC
mapping file. See "mappingFileName" on page 18-47.

» packageName—Specifies the package name that will be used for generated
classes if no package name is declared in the JAX-RPC mapping file. See
"packageName" on page 18-48.

» unwrapParameters—This argument can be set only for document-literal
operations and will be ignored for other message formats. When
unwrapParameters is set to true, which is the default, the return type and
response type will be unwrapped. This is usually easier to use, especially if the
types are simple. See "unwrapParameters" on page 18-69.

6. Compile and run the client.

List the appropriate JARs on the classpath before compiling the client. Table A-2,
" Classpath Components for a Client Using a Client-Side Proxy" lists all of the JAR
files that can possibly be used on the client classpath. As an alternative to listing
individual JARs, you can include the client-side JAR, wsclient_extended.jar
on the client classpath. This JAR file contains all the classes necessary to compile
and run a Web service client. The classes are from the individual JAR files listed in
Table A-2. See "Setting the Classpath for a Web Service Proxy" on page A-2 for
more information on wsclient_extended. jar and the client classpath.

The following command line provides sample compile and run commands.

% javac -classpath path:
<ORACLE_HOME>/webservices/lib/wsclient_extended.jar:
:<ORACLE_HOME>/webservices/lib/jaxrpc-api.jar EchoClient.java

% java -classpath path:
<ORACLE_HOME>/webservices/lib/wsclient_extended. jar:
<ORACLE_HOME>/webservices/lib/jaxrpc-api.jar:
<J2EE_HOME>/1ib/jax-gname-namespace.jar:
<J2EE_HOME>/lib/activation.jar:
<J2EE_HOME>/1lib/mail.jar:
<J2EE_HOME>/lib/http_client.jar:
<ORACLE_HOME>/1ib/xmlparserv2.jar EchoClient

In this example, <J2EE_HOME> is the directory where J2EE is installed, <ORACLE_
HOME> is the directory where OracleAS Web Services is installed.

Sample PL/SQL Package

Example 10-1 illustrates a PL/SQL package in the database that can be exposed as a
Web service. The package contains procedures and functions that exercise various SQL
and PL/SQL data types.

Example 10-1 Sample PL/SQL Package

create or replace type address as object(
street varchar2(30), city varchar2(30), state varchar2(2), zip varchar2(5));
create or replace type employee as object (eid int, efirstname varchar (30),
elastname varchar(30), addr address, salary float);
create table employees (eid int, emp employee);
create table employee_espp (eid int, status int);

10-12 Web Services Developer's Guide

Developing Web Services that Expose Database Resources

create table employee_accounts (eid int, accounts sys.xmltype);
create table employee_biodata (eid int, biodata CLOB);

create table employee_image (eid int, image BLOB) ;

create table employee_hiredate(eid int, hiredate TIMESTAMP) ;

create or replace package echo_plsgl as

procedure set_object (emp IN employee);

function get_objectl(id IN int) return employee;

function get_object2(id IN int) return address;

function hold_varchar (id IN int, firstname OUT varchar2, lastname OUT varchar?)
return float;

procedure set_boolean(id IN int , status IN boolean);
function get_boolean(id IN int) return boolean;

procedure hold_float_inout(id IN int, newsalary IN OUT float);
procedure clear_object (id IN int);

procedure set_clob (id int, biodata IN CLOB);

function get_clob(id IN int) return CLOB;

procedure set_blob(id int, image IN BLOB);

function get_blob(id IN int) return BLOB;

procedure set_xmltype(id IN number, accounts sys.xmltype);
function get_xmltype(id IN number) return sys.xmltype;
procedure set_date(id IN int, hiredate IN TIMESTAMP) ;
function get_date(id IN int) return TIMESTAMP;

TYPE rec is RECORD (emp_id int, manager_id int);

TYPE index_tbl is TABLE OF rec INDEX BY BINARY INTEGER;
function echo_rec(mrec rec) return rec;

function echo_index_tbl (mtbl index_tbl) return index_tbl;
end echo_plsql;

How PL/SQL Function Names are Mapped to Web Service Operation Names

WebServicesAssembler maps PL/SQL functions or procedures into Web service
operations, often with adjusted names. Typically, the underscore in a PL/SQL name is
removed and the letter following the underscore is capitalized. For example, notice the
PL/SQL function echo_index_tbl in Example 10-1. This function is mapped into
the Web service operation echoIndexTbl. The WSDL fragment in Example 10-2
shows how the PL/SQL function echo_index_tbl is expressed as the
echoIndexTbl Web service operation.

Example 10-2 WSDL Fragment, lllustrating the Mapping of a PL/SQL Function

<operation name="echoIndexTbl" parameterOrder="EchobaseIndexTblBase_1">
<input message="tns:Echo_echoIndexTbl"/>

<output message="tns:Echo_echoIndexTblResponse" />

</operation>

How to Access PL/SQL IN and IN OUT Parameters from Client Code

The PL/SQL parameters OUT and IN OUT in Example 10-1 on page 10-12 are
represented as XML IN OUT parameters, as shown by the holder parameters of
holdvarchar. The entries in the WSDL fragment in Example 10-3 illustrate the
holdvarchar operation. The second and third parameters appear in both the input
and output messages, which indicates that both parameters are IN OUT parameters.

Example 10-3 WSDL Fragment, lllustrating IN OUT Parameters

<operation name="holdVarchar"
parameterOrder="Integer_1 String 2 String_3">
<input message="tns:Echo_holdvarchar"/>
<output message="tns:Echo_holdVarcharResponse"/>

Assembling Database Web Services 10-13

Developing Web Services that Expose Database Resources

</operation>

<message name="Echo_holdVarchar">

<part name="Integer_ 1" type="xsd:int"/>
<part name="String 2" type="xsd:string"/>
<part name="String 3" type="xsd:string"/>
</message>

<message name="Echo_holdVarcharResponse">
<part name="result" type="nsl:double"/>
<part name="String_2" type="xsd:string"/>
<part name="String 3" type="xsd:string"/>
</message>

To access the IN OUT parameters in JAX-RPC client code, you must use JAX-RPC
holders. For example, the code in Example 10—4 retrieves the returned values as
firstName.value and lastName.value, where firstName and lastName are
both String holders. The actual values in the holders are accessed by the member
value, as shown in the println statement.

Example 10-4 Accessing IN OUT Parameters in Client Code by Using JAX-RPC Holders

System.out.println("holdvVarchar") ;

StringHolder firstName = new StringHolder ("Tom") ;
StringHolder lastName = new StringHolder ("Gordon");
System.out.println("Holder returned: empid="

+ ci.holdVarchar (id, firstName, lastName)

, hame="
firstName.value

n
n
+ ",
+ lastName.value);

Note that the plsglAssemble command line specified -style rpc. The RPC style
supports holders. The default document-wrapped style does not support holders.

If the Web service had been created with the default document-wrapped style, then a
different holdvarchar signature would have been generated. The OUT arguments
would be captured as attributes on the return value.

The following WSDL segment shows the holdvarchar operation in the
document-wrapped style. In the return type, EchoUser_holdvarchar_Out, the
attributes 1astnameOut and firstnameOut record the OUT value of the PL/SQL
parameters firstname and lastname.

Example 10-5 WSDL Fragment, lllustrating IN OUT Parameters Handled in
Document-Wrapped Style

<operation name="holdVarchar" parameterOrder="Integer_ 1">
<input message="tns:Echo_holdVarchar"/>
<output message="tns:Echo_holdVarcharResponse" />
</operation>

<message name="Echo_holdVarchar">
<part name="Integer_ 1" type="xsd:int"/>
</message>
<message name="Echo_holdVarcharResponse">
<part name="result" type="tns:Echo_holdvarchar_Out"/>
</message>

<complexType name="Echo_holdVarchar_Out">

<sequence>
<element name="return" type="double" nillable="true"/>

10-14 Web Services Developer's Guide

Developing Web Services that Expose Database Resources

<element name="lastnameOut" type="string" nillable="true"/>
<element name="firstnameOut" type="string" nillable="true"/>
</sequence>
</complexType>

How to Access SQL XMLType Types from Client Code

The SQL XMLType in Example 10-1 on page 10-12 is mapped into the XML any type.
The getXmltype operation in the WSDL fragment in Example 10-6 illustrates this

mapping.

Example 10-6 WSDL Fragment, lllustrating the Mapping of SQL XMLType into text_xml

<message name="Echo_getXmltypeResponse">

<part name="result" type="ns2:any"/>

</message>

<operation name="getXmltype" parameterOrder="BigDecimal_ 1">
<input message="tns:Echo_getXmltype"/>

<output message="tns:Echo_getXmltypeResponse" />
</operation>

WebServicesAssembler generates a proxy that maps XML any to the Java type
org.w3c.org.dom.Element. Therefore, a Java client accesses a SQL XMLType
instance as an Element instance.

How to Assemble a Web Service from a SQL Query or DML Statement

Use the sglAssemble command to generate Web services from a SQL statement. The
statement can include SQL queries and DML (Data Manipulation Language)
statements.

Unlike PL/SQL Web services generation, SQL statement assembly does not generate
PL/SQL wrappers. PL/SQL wrappers are generated only to handle PL/SQL record
or INDEX BY table types. These types cannot be used in a SQL statement.

This section contains the following subsections:

m Prerequisites

= Steps for Assembling a Web Service from a SQL Statement or Query
= Sample SQL Statements

s How SQL Queries are Mapped to Web Service Operations

= How DML Operations are Mapped to Web Service Operations

Prerequisites
Before you begin, provide the following files and information.

» The SQL statements or queries. Example 10-7, "Sample SQL Statements" on
page 10-18 illustrates the SQL statements used in the following example.

Multiple sglstatement arguments can be specified on the command line or Ant
task. For information on the format of the sglstatement argument, see
"sqlstatement” on page 18-56.

= A name for the Web service application.
s The JNDI location of the JDBC data source. This information is used at runtime.

s The JDBC database connection URL. This information is used at compile time.

Assembling Database Web Services 10-15

Developing Web Services that Expose Database Resources

10-16

= The name and password of the schema which the query or statement is based on.
This information is used at compile time.

Steps for Assembling a Web Service from a SQL Statement or Query

The following steps use the sglAssemble command to assemble a Web service for
the queries and statements on the SCOTT schema.

1. Provide the SQL statements or query, the name and password for the database that
they are based on, and the other information described in the Prerequisites section
as input to the WebServicesAssembler sgqlAssemble command.

For example, the following command generates the Web service application
query.ear.

Command line:

java -jar wsa.jar -sglAssemble

-appName query

-dataSource jdbc/OracleManagedDS

-sglstatement "getEmpCount=select ename, sal from emp where
sal>:{mysal NUMBER}"

-sglstatement "getEmpBySal=select ename, sal from emp where
sal>: {mysal NUMBER}"

-sglstatement "updateEmp=update emp SET sal=sal+500 where
ename=: {myname VARCHAR}"

-dbConnection jdbc:oracle:thin:@stacdl5:1521:1sglj

-dbUser scott/tiger

Ant task:

<oracle:sglAssemble
appName="query"
dataSource="jdbc/OracleManagedDS"
dbConnection="jdbc:oracle:thin:@dsunrde22:1521:sqlj"
dbUser="scott/tiger">
<sglstatement="getEmpCount=select ename, sal from emp where sal>:{mysal
NUMBER} " />
<sglstatement="getEmpBySal=select ename, sal from emp where sal>:{mysal
NUMBER} " />
<sglstatement="updateEmp=update emp SET sal=sal+500 where
ename=: {myname VARCHAR}"/>
/>

In this command and Ant task:

s sglAssemble—Generates Web services from SQL statements, including SQL
queries and DMLs (Data Manipulation Language). To use this command, you
must connect to a database. See "sqlAssemble" on page 18-19.

= appName—Specifies the name of an application. Usually, this name is used as
a base value for other arguments like context and uri. See "appName" on
page 18-42.

s dataSource—Specifies the JNDI location of the data source used by the Web
services at runtime. See "dataSource" on page 18-54.

s dbConnection—Specifies the JDBC URL for the database. See
"dbConnection" on page 18-54.

s dbUser—Specifies the database schema and password in the form of
user /password. See "dbUser" on page 18-55.

Web Services Developer's Guide

Developing Web Services that Expose Database Resources

s sglStatement—Specifies the DML statement or SQL query to be published
as a Web service. See "sqlstatement” on page 18-56.

Deploy the service into a running instance of OC4] and bind the application.

The data source referenced in the dataSource argument must have been set up
for this OC4]J instance.

The following command lines provide sample deployment and bind commands.

% java -jar <J2EE_HOME>/admin_client.jar deployer:ocdj:localhost:port admin
welcome -deploy -file dist/query.ear -deploymentName query

o)

% java -jar <J2EE_HOME>/admin_client.jar deployer:ocdj:localhost:port admin
welcome -bindWebApp plsgl plsgl-web default-web-site /query

In these sample command lines, <J2EE_HOME> is the directory where J2EE is
installed.

For more information on deploying EAR files, see the Oracle Containers for J2EE
Deployment Guide.

(Optional) Check that deployment succeeded. OracleAS Web Services provides a
Web Service Test Page for each deployed Web service. See "How to Use the Web
Services Test Page" on page 13-6 for information on accessing and using the Web
Service Test Page.

Generate the client-side code.

= For the J2SE environment, generate stubs (client proxies) for a J2SE Web
service client by running the WebServicesAssembler tool with the genProxy
command. For more information on generating and assembling client-side
code for the J2SE environment, see Chapter 15, "Assembling a J2SE Web
Service Client".

= For the J2EE environment, generate a service endpoint interface and a
JAX-RPC mapping file for a J2EE Web service client by running the
WebServicesAssembler tool with the genInterface command. For more
information on generating and assembling client-side code, see Chapter 14,
"Assembling a J2EE Web Service Client".

For example, the following command uses genProxy to generate code for a J2SE
client.

% java -jar wsa.jar -genProxy
-wsdl http://locahost:8888/query/query?WSDL
-output build/src/client
-mappingFileName ./mapping.xml
-packageName oracle.demo.db.query.stub
-unwrapParameters true

The command generates the client in the build/src/client directory.
In this command:

s genProxy—Creates a static proxy stub that can be used by a J25E Web service
client. See "genProxy" on page 18-34.

s wsdl—Specifies the absolute file path, relative file path, or URL to a WSDL
document. See "wsdl" on page 18-65.

= output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created. See "output” on page 18-48.

Assembling Database Web Services 10-17

Developing Web Services that Expose Database Resources

10-18

» mappingFileName—Specifies a file location that points to a JAX-RPC
mapping file. See "mappingFileName" on page 18-47.

» packageName—Specifies the package name that will be used for generated
classes if no package name is declared in the JAX-RPC mapping file. See
"packageName" on page 18-48.

s unwrapParameters—This argument can be set only for document-literal
operations and will be ignored for other message formats. When
unwrapParameters is set to true, which is the default, the return type and
response type will be unwrapped. This is usually easier to use, especially if the
types are simple. See "unwrapParameters" on page 18-69.

5. Compile and run the client.

List the appropriate JARs on the classpath before compiling the client. Table A-2,
" Classpath Components for a Client Using a Client-Side Proxy" lists all of the JAR
files that can possibly be used on the client classpath. As an alternative to listing
individual JARs, you can include the client-side JAR, wsclient_extended.jar
on the client classpath. This JAR file contains all the classes necessary to compile
and run a Web service client. The classes are from the individual JAR files listed in
Table A-2. See "Setting the Classpath for a Web Service Proxy" on page A-2 for
more information on wsclient_extended. jar and the client classpath.

The following command lines provide sample compile and run commands.

% javac -classpath path:
<ORACLE_HOME>/webservices/lib/wsclient_extended. jar:
:<ORACLE_HOME>/webservices/lib/jaxrpc-api.jar QueryClient.java

% java -classpath path
<ORACLE_HOME>/webservices/lib/wsclient_extended. jar:
<ORACLE_HOME>/webservices/lib/jaxrpc-api.jar:
<J2EE_HOME>/1ib/jax-gname-namespace. jar:
<J2EE_HOME>/lib/activation.jar:
<J2EE_HOME>/1lib/mail.jar:
<J2EE_HOME>/lib/http_client.jar:
<ORACLE_HOME>/webservices/1lib/commons-logging. jar:
<ORACLE_HOME>/lib/xmlparserv2.jar QueryClient

In this example, <T2EE_HOME> is the directory where J2EE is installed; <ORACLE_
HOME> is the directory where the OC4] is installed.

Sample SQL Statements

Example 10-7 illustrates the definitions of the SQL statements that are exposed as a
Web service.

Example 10-7 Sample SQL Statements

getEmpCount=select ename, sal from emp where sal>:{mysal NUMBER}
getEmpBySal=select ename, sal from emp where sal>:{mysal NUMBER}
updateEmp=update emp SET sal=sal+500 where ename=:{myname VARCHAR}

How SQL Queries are Mapped to Web Service Operations

A SQL query, when exposed as a Web service, is mapped to three service operations.
For example, the getEmpBySal query in Example 10-7 generates these service
operations.

Web Services Developer's Guide

Developing Web Services that Expose Database Resources

= getEmpBySalBeans—returns an array. The array element is an object type with
attributes corresponding to the columns in the row of the query result.

» getEmpBySalXMLRowSet—returns an XML document with the query result in
the WebRowSet format.

= getEmpBySalXML—returns an XML document with the query result in Oracle
XDB rowset format.

Providing three operations from one query is a convenience. The return values differ
only in format. Note the naming convention is to attach Beans, XMLRowSet, and XML
to the original query name.

The WSDL fragment in Example 10-8 describes the return types of the three
operations in the WSDL file.

Example 10-8 WSDL Fragment, lllustrating Service Operations for a SQL Query

<complexType name="getEmpBySalBeansResponse">

<sequence>

<element name="result" type="tns:Query_ getEmpBySalRowUser" nillable="true"
minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

<complexType name="Query_getEmpBySalRowUser">

<sequence>

<element name="ename" type="string" nillable="true"/>

<element name="sal" type="decimal" nillable="true"/>

</sequence>

</complexType>

<complexType name="getEmpBySalXMLRowSetResponse">
<sequence>

<element name="result" type="nsl:swaRef" nillable="true"/>
</sequence>

</complexType>

<complexType name="getEmpBySalXMLResponse">

<sequence>

<element name="result" type="xsd:any" nillable="true"/>
</sequence>

</complexType>

Two of the methods, getEmpBySalXMLRowSetResponse and
getEmpBySalXMLResponse, have parameters of swaRef type. For this type, the
assembler generates javax.xml.soap.AttachmentPart in the client proxy.
Example 10-9 illustrates the client code to access the returned query result.

Example 10-9 Accessing Returned Query Results from a swaRef Type in Client Code

import oracle.jdbc.pool.OracleDataSource;
import oracle.jdbc.rowset.OracleWebRowSet;
import javax.xml.soap.AttachmentPart;
import org.w3c.org.Element;

import javax.xml.transform.dom.*;

import java.io.*;

/* Access the query result as Oracle XDB RowSet */
Element element = eme.getEmpBySalXML (new BigDecimal (500));
DOMSource doms = new javax.xml.transform.doc.DOMSource (element) ;

Assembling Database Web Services 10-19

Developing Web Services that Expose Database Resources

buf = new jav.io.ByteArrayOutputStream() ;
StreamResult streamr = new StreamResult (buf);
trnas.transform(doms, streamr);
System.out.println(buf, toString());

/* Access the query result as Oracle WebRowSet */
ap = eme.getEmpBySalXMLRowSet (new BigDecimal (500));
source = (Source) ap.getContent();
trans = TransformerFactory.newInstance () .newTransformer () ;
buf = new ByteArrayOutputStream();
streamr = new StreamResult (buf);
trans.transform(source, streamr);
InputStream istream = new ByteArrayInputStream(buf.toString().getBytes());
OracleWebRowSet rowset = new OracleWebRowSet () ;
System.setProperty ("http.proxyHost", "www-proxy.us.oracle.com");
System.setProperty ("http.proxyPort", "80");
System.setProperty ("javax.xml.parsers.DocumentBuilderFactory",
"oracle.xml.jaxp.JXDocumentBuilderFactory") ;
rowset.readXml (new InputStreamReader (istream));
rowset.writeXml (new PrintWriter (System.out));

The code in Example 10-9 emits the query result in two formats: Oracle XDB row set
(ROWSET) and Oracle Web row set (OracleWebRowSet). Example 10-10 shows the
query result as an Oracle XDB row set. Example 10-11 prints the result in WebRowSet
format. In practice, you can access the variable rowset OracleWebRowSet instance in
Example 10-9 using oracle.jdbc.rowset.OracleWebRowSet APIs.

See Also:

Oracle Database JDBC Developer’s Guide and Reference for more
information on these data types.

Example 10-10 Query Results as an Oracle XDB Row Set

<ROWSET>

<ROW num="1">
<ENAME>SMITH</ENAME><SAL>800</SAL>
</ROW>

<ROW num="2">
<ENAME>ALLEN</ENAME><SAL>1600</SAL>
</ROW>

<ROW num="3">
<ENAME>WARD</ENAME><SAL>1250</SAL>
</ROW>

</ROWSET>

Example 10-11 Query Results as a JDBC Web Row Set

<?xml version="1.0" encoding="UTF-8"?>

<webRowSet xmlns="http://java.sun.com/xml/ns/jdbc"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/jdbc

http://java.sun.com/xml/ns/jdbc/webrowset.xsd">
<properties>

<command></command>

<concurrency>1007</concurrency>

<datasource></datasource>

<escape-processing>true</escape-processing>

<fetch-direction>1002</fetch-direction>

<fetch-size>10</fetch-size>

10-20 Web Services Developer's Guide

Developing Web Services that Expose Database Resources

<isolation-level>2</isolation-level>
<key-columns>

</key-columns>

<map>

</map>

<max-field-size>0</max-field-size>
<max-rows>0</max-rows>
<query-timeout>0</query-timeout>
<read-only>false</read-only><rowset-type>1005</rowset-type>
<show-deleted>false</show-deleted>
<table-name></table-name>
<url>jdbc:oracle:thin:@stacdl5:1521:1sqgljl</url>
<sync-provider>

<sync-provider-name>com. sun.rowset.providers.RIOptimisticProvider</sync-provider-n

ame>
<sync-provider-vendor>Sun Microsystems Inc.</sync-provider-vendor>
<sync-provider-version>1.0</sync-provider-version>
<sync-provider-grade>2</sync-provider-grade>
<data-source-lock>1</data-source-lock>

</sync-provider>

</properties>
<metadata>

<column-count>2</column-count>

<column-definition>
<column-index>1</column-index>
<auto-increment>false</auto-increment>
<case-sensitive>true</case-sensitive>
<currency>false</currency>
<nullable>l</nullable>
<signed>true</signed>
<searchable>true</searchable>
<column-display-size>10</column-display-size>
<column-label>ENAME</column-label>
<column-name>ENAME< /column-name>
<schema-name></schema-name>
<column-precision>0</column-precision>
<column-scale>0</column-scale>
<table-name></table-name>
<catalog-name></catalog-name>
<column-type>12</column-type>
<column-type-name>VARCHAR2</column-type-name>

</column-definition>

<column-definition>
<column-index>2</column-index>
<auto-increment>false</auto-increment>
<case-sensitive>true</case-sensitive>
<currency>false</currency>
<nullable>l</nullable>
<signed>true</signed>
<searchable>true</searchable>
<column-display-size>10</column-display-size>
<column-label>SAL</column-label>
<column-name>SAL</column-name>
<schema-name></schema-name>
<column-precision>0</column-precision>
<column-scale>0</column-scale>
<table-name></table-name>
<catalog-name></catalog-name>

Assembling Database Web Services 10-21

Developing Web Services that Expose Database Resources

<column-type>2</column-type>
<column-type-name>NUMBER</column-type-name>
</column-definition>
</metadata>
<data>
<currentRow>
<columnValue>SMITH</columnValue>
<columnValue>800</columnValue>
</currentRow>
<currentRow>
<columnValue>ALLEN</columnValue>
<columnValue>1600</columnvValue>
</currentRow>
<currentRow>
<columnValue>WARD</columnValue>
<columnValue>1250</columnvValue>
</currentRow>
</data>
</webRowSet>

How DML Operations are Mapped to Web Service Operations

A DML statement is an UPDATE, DELETE, or INSERT SQL statement. The
sglAssemble command can expose DML statements into operations in a Web
Service. DML operations are automatically committed when successful and
automatically rolled back when they are not.

Example 10-12 illustrates a WSDL fragment that exposes the DML statement in
Example 10-7:

updateEmp=update emp SET sal=sal+500 where ename=:{myname
VARCHAR}

The DML statement is exposed as two operations. In this example, updateEmp
executes the statement; updateEmpisS executes it in batch mode. The batched
operation takes an array for each original DML argument. Each element in the array is
used for one execution in the batch. The result of a batched operation reflects the total
number of rows updated by the batch.

Example 10-12 WSDL Fragment, lllustrating the Response Type of a DML Operation

<message name="SglStmts_updateEmp">
<part name="salary" type="xsd:string"/>
</message>
<message name="SqglStmts_updateSchemaResponse">
<part name="result" type="xsd:int"/>
</message>
<message name="SglStmts_updateEmpiS">
<part name="salary" type="tns:ArrayOfstring"/>
</message>
<message name="SqglStmts_updateEmpiSResponse">
<part name="result" type="xsd:int"/>
</message>

How to Assemble a Web Service from an Oracle Streams AQ

Oracle Streams Advanced Queuing is an asynchronous messaging system provided by
Oracle databases. By exposing an Advanced Queue (AQ) as a Web service, the client
can send a message to a receiver inside the database, or eventually, to another client of
the same Web service.

10-22 Web Services Developer's Guide

Developing Web Services that Expose Database Resources

The WebServicesAssembler tool can generate a Web service from an AQ existing in a
database. An AQ can have a single consumer or multiple consumers. A single
consumer is often referred to as a queue. A multiple consumer AQ is often referred to
as a topic. Each Oracle Streams AQ belongs to a queue table, which defines the
payload type of all its AQs, and whether the AQs support only queues or topics. The
generated Java code employs the Oracle Streams AQ JMS APls.

Example 10-14 on page 10-27 and Example 10-15 on page 10-29 illustrate the Web
service operations that the WebServicesAssembler exposes for a queue and a topic,
respectively. The assembler creates the operations based on Oracle Streams AQ and
AQ JMS APIs.

This section has the following subsections:

» Prerequisites

= Steps for Assembling a Web Service from an Oracle AQ

s How to Access an AQ Queue Exposed as a Web Service from Client Code
s How to Access an Oracle AQ Queue with J]MS

s Sample AQ Queue and Topic Declaration

= Sample Web Service for a Queue Generated by WebServicesAssembler

= Sample Web Service for a Topic Generated by WebServicesAssembler

See Also:

Oracle Streams Advanced Queuing Java API Reference for information
regarding Oracle Streams AQ and AQ JMS APIs.

Prerequisites

Before you begin, provide the following files and information.

s A database connection URL to the database where the AQ resides. As an
alternative to JDBC, WebServicesAssembler gives you the flexibility of using a JMS

queue instance to access an Oracle AQ. For more information, see "How to Access
an Oracle AQ Queue with JMS" on page 10-31.

s The name of the schema where the AQ resides and the user name and password to
access it. This is used at compile time.

= The name of the queue or topic that you want to expose as a Web service. You can
publish only a single queue or topic to be exposed by a Web service. See "Sample
AQ Queue and Topic Declaration” on page 10-26 for a sample queue and topic.

= A name for the Web service application.

s The data source JNDI name. This information is used at runtime.

Steps for Assembling a Web Service from an Oracle AQ

The following steps describe how to use WebServicesAssembler to assemble a Web
service from an Oracle AQ queue.

1. Provide the files and other information described in the Prerequisites section as
input to WebServicesAssembler -agAssemble command.

For example, the following command creates a Web service application with the
queue. ear file generated in the current directory. The WebServicesAssembler
tool generates Java files to access the queue at runtime. "Sample AQ Queue and
Topic Declaration” on page 10-26 illustrates the AQ sample_qgueue declaration.

Assembling Database Web Services 10-23

Developing Web Services that Expose Database Resources

10-24

Command line:

java -jar $SORACLE_HOME/webservices/lib/wsa.jar
-agAssemble
-appName queue
-dataSource jdbc/OracleManagedDS
-portName assembleQueuePort
-sgl sample_queue
-dbConnection jdbc:oracle:thin:@stacdl5:1521:1sqlj
-dbUser scott/tiger

Ant task:

<agAssemble

appName="queue"

dataSource="jdbc/OracleManagedDS"

sgl="sample_queue"

portName="assembleQueuePort"

dbConnection="jdbc:oracle:thin:@stacdl5:1521:1sqglj"

dbUser="scott/tiger"
/>
You can publish the sample topic in the declaration, sample_topic, in the same
way as sample_queue (but in a different WebServicesAssembler invocation). The
only difference would be the values for sql and appName arguments in the
agAssemble command.

In this command and Ant task:

= agAssemble—Generate Web services from an advanced queue in the
database. To use this command, you must connect to a database. See
"aqAssemble" on page 18-5.

= appName—Specifies the name of an application. Usually, this name is used as
a base value for other arguments like context and uri. See "appName" on
page 18-42.

» dataSource—Specifies the JNDI location of the data source used by the Web
services at runtime. See "dataSource" on page 18-54.

= portName—See "portName" on page 18-48.
s sgl—Specifies a PL/SQL package name. See "sql" on page 18-55.

= dbConnection—Specifies the JDBC URL for the database. See
"dbConnection" on page 18-54.

= dbUser—Specifies the database schema and password in the form of
user / password. See "dbUser" on page 18-55.

Deploy the service into a running instance of OC4] and bind the application.

This step assumes that the AQ has been set up as a data source in the OC4]
instance.

The following command lines provide sample deployment and bind commands.

% java -jar <J2EE_HOME>/admin_client.jar deployer:oc4j:localhost:port admin
welcome -deploy -file dist/queue.ear -deploymentName queue

% java -jar <J2EE_HOME>/admin_client.jar deployer:oc4j:localhost:port admin
welcome -bindWebApp queue queue-web default-web-site /queue

In this example, <J2EE_HOME> is the directory where J2EE is installed.

Web Services Developer's Guide

Developing Web Services that Expose Database Resources

For more information on deploying EAR files, see the Oracle Containers for J2EE
Deployment Guide.

(Optional) Check that deployment succeeded.

OracleAS Web Services provides a Web Service Test Page for each deployed Web
service. See "How to Use the Web Services Test Page" on page 13-6 for information
on accessing and using the Web Service Test Page.

Generate the client-side code.

= For the J2SE environment, generate stubs (client proxies) for a J2SE Web
service client by running the WebServicesAssembler tool with the genProxy
command. For more information on generating and assembling client-side
code for the J2SE environment, see Chapter 15, "Assembling a J2SE Web
Service Client".

= For the J2EE environment, generate a service endpoint interface and a
JAX-RPC mapping file for a J2EE Web service client by running the
WebServicesAssembler tool with the genInterface command. For more
information on generating and assembling client-side code, see Chapter 14,
"Assembling a J2EE Web Service Client".

For example, the following command uses genProxy to generate code for a J2SE
client.

% java -jar wsa.jar -genProxy
-wsdl http://locahost:8888/queue/queue?WSDL
-output build/src/client
-mappingFileName ./mapping.xml
-packageName oracle.demo.db.queue.stub
-unwrapParameters true

In this command:

= genProxy—Creates a static proxy stub that can be used by a J2SE Web service
client. See "genProxy" on page 18-34.

» wsdl—Specifies the absolute file path, relative file path, or URL to a WSDL
document. See "wsdl" on page 18-65.

= output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created. See"output" on page 18-48.

» mappingFileName—Specifies a file location that points to a JAX-RPC
mapping file. See "mappingFileName" on page 18-47.

» packageName—Specifies the package name that will be used for generated
classes if no package name is declared in the JAX-RPC mapping file. See
"packageName" on page 18-48.

s unwrapParameters—This argument can be set only for document-literal
operations and will be ignored for other message formats. When
unwrapParameters is set to true, which is the default, the return type and
response type will be unwrapped. This is usually easier to use, especially if the
types are simple. See "unwrapParameters" on page 18-69.

Compile and run the client.

List the appropriate JARs on the classpath before compiling the client. Table A-2,
" Classpath Components for a Client Using a Client-Side Proxy" lists all of the JAR
files that can possibly be used on the client classpath. As an alternative to listing
individual JARs, you can include the client-side JAR, wsclient_extended.jar

Assembling Database Web Services 10-25

Developing Web Services that Expose Database Resources

10-26

on the client classpath. This JAR file contains all the classes necessary to compile
and run a Web service client. The classes are from the individual JAR files listed in
Table A-2. See "Setting the Classpath for a Web Service Proxy" on page A-2 for
more information on wsclient_extended. jar and the client classpath.

The following command lines provide sample compile and run commands.

)

% javac -classpath path
<ORACLE_HOME>/webservices/lib/wsclient_extended.jar:
:<ORACLE_HOME>/webservices/lib/jaxrpc-api.jar QueueClient.java

% java -classpath path
<ORACLE_HOME>/webservices/lib/wsclient_extended. jar:
<ORACLE_HOME> /webservices/lib/jaxrpc-api.jar:
<J2EE_HOME>/1ib/jax-gname-namespace.jar:
<J2EE_HOME>/lib/activation.jar:<J2EE_HOME>/lib/mail.jar:
<J2EE_HOME>/1lib/http_client.jar:
<ORACLE_HOME>/webservices/lib/commons-logging.jar:
<ORACLE_HOME>/lib/xmlparserv2.jar QueueClient

In this example, <J2EE_HOME> is the directory where J2EE is installed; <ORACLE_
HOME> is the directory where OracleAS Web Services is installed.

Sample AQ Queue and Topic Declaration

The PL/SQL script in Example 10-13 defines a queue, sample_gueue, and a topic,
sample_topic. The queue payload type is queue_message, a SQL object type. The
topic payload type is topic_message, also a SQL object type.

Example 10-13 Sample Queue and Topic Declaration

create type scott.queue_message as object (

Subject VARCHAR2 (30)
Text VARCHAR2 (80)) ;
create type scott.topic_message as object (
Subject VARCHAR2 (30),
Text VARCHAR2 (80)) ;
BEGIN
dbms_agadm.create_queue_table (
Queue_table => 'scott.queue_queue_table"',
Queue_payload_type => 'scott.queue_message');

dbms_agadm. create_queue (
queue_name => 'scott.sample_gueue',
queue_table => 'scott.queue_gueue_table');
dbms_agadm. start_queue (queue_name => 'scott.sample_queue');

dbms_agadm.create_queue_table (

Queue_table => 'scott.topic_queue_table',
Multiple_consumers => TRUE,
Queue_payload_type => 'scott.topic_message');

dbms_agadm.create_queue (
queue_name => 'scott.sample_topic',
queue_table => 'scott.topic_queue_table');
dbms_agadm. start_queue (queue_name => 'scott.sample_topic');
END;
/

Sample Web Service for a Queue Generated by WebServicesAssembler

For the queue described in "Sample AQ Queue and Topic Declaration”, Example 10-14
lists the Web service operations exposed by WebServicesAssembler.

Web Services Developer's Guide

Developing Web Services that Expose Database Resources

In this example, the send operation enqueues a payload to the queue. The payload
type is the complex type tns:QueueMessageUser, which corresponds to the SQL
type QUEUE_MESSAGE, as shown by <send/> element.

The receive operation returns a payload from the queue. The
<receiveResponse/> element shows that the type of the returned payload is
tns:QueueMessage. The operation blocks until a message becomes available.

The receiveNoWait operation returns a payload from the queue. If no message is
available in the queue, the operation returns null without waiting.

The receive2 operation has two arguments.
s selector of type xsd:string
= noWait of type xsd:boolean

The selector is a filter condition specified in the AQ convention. It allows the
receive operation to return only messages that satisfies that condition. For example,
the JMSPriority < 3 AND PRICE < 300 selector exposes only messages with
priority 3 or higher, and the attribute PRICE is lower than 300. If the parameter
noWait is true, the operation does not block.

Example 10-14 Web Service Operations Exposed for a Queue

<operation name="receive">
<input message="tns:SampleQueue_receive" />
<output message="tns:SampleQueue_receiveResponse" />
</operation>

<operation name="receive2">
<input message="tns:SampleQueue_receivel" />
<output message="tns:SampleQueue_receive2Response" />
</operation>

<operation name="receiveNoWait">
<input message="tns:SampleQueue_receiveNoWait" />
<output message="tns:SampleQueue_receiveNoWaitResponse" />
</operation>

<operation name="send">
<input message="tns:SampleQueue_send" />
<output message="tns:SampleQueue_sendResponse" />
</operation>

<complexType name="receive">
<sequence />
</complexType>

<complexType name="receiveResponse">

<sequence>
<element name="result" type="tns:QueueMessageUser" nillable="true" />
</sequence>
</complexType>

<complexType name="QueueMessageUser">

<sequence>
<element name="text" type="string" nillable="true" />
<element name="subject" type="string" nillable="true" />
</sequence>
</complexType>

<complexType name="receive2">

<sequence>
<element name="String 1" type="string" nillable="true" />
<element name="boolean_ 2" type="boolean" />
</sequence>
</complexType>

Assembling Database Web Services 10-27

Developing Web Services that Expose Database Resources

10-28

<complexType name="receive2Response">
<sequence>
<element name="result" type="tns:QueueMessageUser" nillable="true" />
</sequence>
</complexType>
<complexType name="receiveNoWait">
<sequence />
</complexType>
<complexType name="receiveNoWaitResponse">
<sequence>
<element name="result" type="tns:QueueMessageUser" nillable="true" />
</sequence>
</complexType>
<complexType name="send">
<sequence>
<element name="QueueMessageUser_1" type="tns:QueueMessageUser" nillable="true"
/>
</sequence>
</complexType>
<complexType name="sendResponse">
<sequence />
</complexType>

Sample Web Service for a Topic Generated by WebServicesAssembler

For the topic described in "Sample AQ Queue and Topic Declaration” on page 10-26,
Example 10-15 lists the Web service operations exposed by WebServicesAssembler.

In this example, the publish operation enters a payload to the topic. The argument is
a payload type, for instance, tns: TopicMessageUser, as shown in Example 10-15.
The message will be received by all topic subscribers.

The publish2 operation sends the payload to all the subscribers in the recipients list.
This operation takes the following arguments.

= payloadof type tns:TopicMessageUser
s recipients of String array type

The publish3 operation broadcasts the payload to the topic. This operation takes the
following arguments.

= payload, the message to be sent

s deliveryMode, of type xsd: int—can be either
javax.jms.DeliveryMode.PERSISTENT or
javax.jms.DeliveryMode.NON_PERSISTENT. However, only
DeliveryMode.PERSISTENT is supported in this release. The interface
javax.jms.DeliveryMode is from the J]MS APIs

s priority, of type xsd: int—specifies the priority of the message. Values can be
from 0 to 9, with 0 as lowest priority and 9 as highest.

= timeToLive, of type xsd: long—indicates the life span of the message in
milliseconds. Zero means no limit.

The receive operation returns a message sent to the receiver. This operation takes
one argument: receiver.

The receiveNoWait operation returns a message sent to the specified recipient
without waiting.

Web Services Developer's Guide

Developing Web Services that Expose Database Resources

The receive2 operation returns a filtered message sent to the specified recipient. This
operation takes the following arguments.

m receilver, of type xsd: string—recipient of the filtered message.

s selector, of type xsd: string—a filter condition specified in the AQ
convention.

The receive3 operation returns filtered payload for the specified recipient. This
operation takes the following arguments.

m receilver, of type xsd: string—recipient of the filtered message.

s selector, of type xsd: string—a filter condition specified in the AQ
convention.

= timeout, of type xsd: long—specifies the timeout for the operation in
milliseconds. Zero means no timeout.

The subscribe operation subscribes a user to the topic. The underlying connection
supporting the Web service must have appropriate privileges to subscribe a consumer.
Otherwise, this operation has no effect.

The unsubscribe operation unsubscribes a user from the topic. Again, the
underlying connection supporting the Web service must have appropriate privileges to
unsubscribe a consumer. Otherwise, this operation has no effect.

See Also:

Oracle Streams Advanced Queuing Java API Reference for information on
the privileges needed for subscribing and unsubscribing consumers.

Example 10-15 Web Service Operations Exposed for a Topic

<operation name="publish">
<input message="tns:SampleTopic_publish" />
<output message="tns:SampleTopic_publishResponse" />
</operation>

<operation name="publish2">
<input message="tns:SampleTopic_publish2" />
<output message="tns:SampleTopic_publish2Response" />
</operation>

<operation name="publish3">
<input message="tns:SampleTopic_publish3" />
<output message="tns:SampleTopic_publish3Response" />
</operation>

<operation name="receive">
<input message="tns:SampleTopic_receive" />
<output message="tns:SampleTopic_receiveResponse" />
</operation>

<operation name="receive2">
<input message="tns:SampleTopic_receive2" />
<output message="tns:SampleTopic_receive2Response" />
</operation>

<operation name="receive3">
<input message="tns:SampleTopic_receive3" />
<output message="tns:SampleTopic_receive3Response" />
</operation>

<operation name="receiveNoWait">
<input message="tns:SampleTopic_receiveNoWait" />
<output message="tns:SampleTopic_receiveNoWaitResponse" />
</operation>

<complexType name="publish">

Assembling Database Web Services 10-29

Developing Web Services that Expose Database Resources

<sequence>
<element name="TopicMessageUser_1" type="tns:TopicMessageUser" nillable="true"
/>
</sequence>
</complexType>
<complexType name="TopicMessageUser">
<sequence>
<element name="text" type="string" nillable="true" />
<element name="subject" type="string" nillable="true" />
</sequence>
</complexType>
<complexType name="publishResponse">
<sequence />

</complexType>
<complexType name="publish2">
<sequence>

<element name="TopicMessageUser_1" type="tns:TopicMessageUser" nillable="true"
/>

<element name="arrayOfString_2" type="string" nillable="true" minOccurs="0"
maxOccurs="unbounded" />

</sequence>

</complexType>
<complexType name="publish2Response">

<sequence />

</complexType>
<complexType name="publish3">
<sequence>

<element name="TopicMessageUser_1" type="tns:TopicMessageUser" nillable="true"
/>

<element name="int_ 2" type="int" />
<element name="int_3" type="int" />
<element name="long_ 4" type="long" />
</sequence>
</complexType>
<complexType name="publish3Response">
<sequence />
</complexType>
<complexType name="receive">
<sequence>
<element name="String 1" type="string" nillable="true" />
</sequence>
</complexType>
<complexType name="receiveResponse">
<sequence>
<element name="result" type="tns:TopicMessageUser" nillable="true" />
</sequence>
</complexType>
<complexType name="receive2">
<sequence>
<element name="String 1" type="string" nillable="true" />
<element name="String 2" type="string" nillable="true" />
</sequence>
</complexType>
<complexType name="receive2Response">
<sequence>
<element name="result" type="tns:TopicMessageUser" nillable="true" />
</sequence>
</complexType>
<complexType name="receive3">
<sequence>

10-30 Web Services Developer's Guide

Developing Web Services that Expose Database Resources

<element name="String 1" type="string" nillable="true" />
<element name="String 2" type="string" nillable="true" />
<element name="long_ 3" type="long" />
</sequence>
</complexType>
<complexType name="receive3Response">
<sequence>
<element name="result" type="tns:TopicMessageUser" nillable="true" />
</sequence>
</complexType>
<complexType name="receiveNoWait">
<sequence>
<element name="String 1" type="string" nillable="true" />
</sequence>
</complexType>
<complexType name="receiveNoWaitResponse">
<sequence>
<element name="result" type="tns:TopicMessageUser" nillable="true" />
</sequence>
</complexType>

How to Access an AQ Queue Exposed as a Web Service from Client Code

Example 10-16 illustrates a sample JAX-RPC Web service client that accesses the
published Web service. "Sample Web Service for a Topic Generated by
WebServicesAssembler” on page 10-28 illustrates the operations exposed by the
queues and topics.

Example 10-16 Client Code to Access an AQ Queue Exposed as a Web Service

SampleQueuePortClient queue = new SampleQueuePortClient();
QueueMessageUser m;

queue.send (new QueueMessageUser("star chopper", "sample 1"));
queue.send (new QueueMessageUser ("easy blocks", "sample 2"));
queue.send (new QueueMessageUser ("back to future", "sample 3"));
m = queue.receive();
while (m != null) {
System.out.println("Message received from SampleQueue: " + m.getSubject()
+ ": " + m.getText());

m = queue.receiveNoWait () ;

}

This client returns the following responses.

Message received from SampleQueue: sample 1: star chopper
Message received from SampleQueue: sample 2: easy blocks
Message received from SampleQueue: sample 3: back to future

How to Access an Oracle AQ Queue with JMS
By default, the Web service interface code uses the data source to get a JDBC
connection. It then uses the connection to access the queue inside the database.

As an alternative to JDBC, you can use JMS to access the queue. The
WebServicesAssembler tool provides these specialized arguments to the agAssemble
command that let you access the exposed Oracle AQ with a JMS queue instance.

= agConnectionLocation—the JDNI location of the Oracle Streams AQ JMS queue
connection connecting to the exposed AQ.

Assembling Database Web Services 10-31

Developing Web Services that Expose Database Resources

s aqConnectionFactoryLocation—the JNDI location of the Oracle Streams AQ JMS
queue connection factory for the exposed AQ.

Instead of specifying the dataSource argument in the agAssemble command, you
can specify either of the preceding parameters. The Web service will use a JMS queue
at runtime instead of a JDBC-based queue.

How to Assemble a Server-Side Java Class as a Web Service

Use the dbJavaAssemble command to generate Web services that invoke a Java class
inside the Java VM in an Oracle database. You can expose either static or instance
methods as Web service operations. An instance method can be invoked through
either a default or singleton instance in the session.

The Java class that you want to expose can contain any of the following parameters
and return types.

= primitive types (except char)

= serializable types (that is, classes that implement java.io.Serializable)
= Java Beans whose attributes are supported types

= JDBC types; thatis, oracle.sql. * types

= arrays of supported types

This section contains the following subsections:

» Prerequisites

» Steps for Assembling a Web Service from a Server-Side Java Class

= Sample Server-Side Java Class

= Sample Web Service Operations Generated from a Server-Side Java Class

Prerequisites

Before you begin, supply the following information.

s The fully-qualified class name of the server-side Java class
= A database connection URL; used at code generation time

s The name and password of the schema which contains the Java class; used at code
generation time

= A name for the Web service application

» The data source JNDI name; used at runtime

Steps for Assembling a Web Service from a Server-Side Java Class

The following steps describe how to use WebServicesAssembler to assemble a Web
service from a server-side Java class.

1. Supply the information described in the Prerequisites section as input to
WebServicesAssembler dbJavaAssemble command.

For example, in the following dbAssemble command, the server-side class,
oracle.sqglj.checker.JdbcVersion, is part of the SQL]J server-side
translator. This command assembles a Web service application for the class,
javacallin.ear. It also generates a PL/SQL wrapper and a Java stored
procedure wrapper. The purpose of the Java stored procedure wrapper is to
convert signature types in the server-side Java class into types can be exposed to

10-32 Web Services Developer's Guide

Developing Web Services that Expose Database Resources

PL/SQL stored procedures. Since the sysUser argument is declared, the
WebServicesAssembler automatically loads the generated wrappers into the
database.

Command line:

java -jar wsa.jar
-dbJavaAssemble
-appName javacallin
-dbJavaClassName oracle.sqlj.checker.JdbcVersion
-dbConnection jdbc:oracle:thin:@stacdl5:1521:1sqlj
-dataSource jdbc/OracleManagedDS
-dbUser scott/tiger
-sysUser sys/knl_test7

Ant task:

<oracle:dbJavaAssemble
appName="javacallin"
dbJavaClassName="oracle.sqlj.checker.JdbcVersion"
dbConnection="jdbc:oracle:thin:@stacdl5:1521:1sqglj"
dataSource="jdbc/OracleManagedDS"
dbUser="scott/tiger"
sysUser="sys/knl_test7"

/>

In this command and Ant task:

s dbJavaAssemble—Generates Web services from a Java class inside the Java
VM in an Oracle database. To use this command, you must connect to a
database. See "dbJavaAssemble" on page 18-12.

= appName—Specifies the name of an application. Usually, this name is used as
a base value for other arguments like context and uri. See "appName" on
page 18-42.

s dbJavaClassName—Specifies the name of the server-side Java class to be
published as a Web service. See "dbJavaClassName" on page 18-55.

= dbConnection—Specifies the JDBC URL for the database. See
"dbConnection" on page 18-54.

s dataSource—Specifies the JNDI location of the data source used by the Web
services at runtime. See "dataSource" on page 18-54.

s dbUser—Specifies the database schema and password in the form of
user /password. See "dbUser" on page 18-55.

» sysUser—Specifies the name and password of a user with SYS privileges in
the form of dbSysUser/syspassword. Using this argument allows PL/SQL
and Java wrapper code to be installed automatically into the database at
code-generation time.See "sysUser" on page 18-57.

At run time, the Web service code uses JDBC to invoke the PL/SQL wrapper,
which in turns calls the Java stored procedure wrapper, which eventually calls the
server-side class. Example 10-18 on page 10-35 illustrates some Web service
operations generated by this command.

Deploy the service into a running instance of OC4] and bind the application.

This step assumes that the data source specified in Step 1 has been installed in this
instance of OC4]J.

The following command lines provide sample deployment and bind commands.

Assembling Database Web Services 10-33

Developing Web Services that Expose Database Resources

% java -jar <J2EE_HOME>/admin_client.jar deployer:ocdj:localhost:port admin
welcome -deploy -file dist/javacallin.ear -deploymentName javacallin

o)

% java -jar <J2EE_HOME>/admin_client.jar deployer:ocdj:localhost:port admin
welcome -bindWebApp javacallin javacallin-web default-web-site /javacallin

In this example, <J2EE_HOME> is the directory where J2EE is installed.

For more information on deploying EAR files, see the Oracle Containers for J2EE
Deployment Guide.

3. (Optional) Check that deployment succeeded.

OracleAS Web Services provides a Web Service Test Page for each deployed Web
service. See "How to Use the Web Services Test Page" on page 13-6 for information
on accessing and using the Web Service Test Page.

4. Generate the client-side code.

= For the J2SE environment, generate stubs (client proxies) for a J2SE Web
service client by running the WebServicesAssembler tool with the genProxy
command. See Chapter 15, "Assembling a J2SE Web Service Client" for more
information on generating and assembling client-side code for the J2SE
environment.

= For the J2EE environment, generate a service endpoint interface and a
JAX-RPC mapping file for a J2EE Web service client by running the
WebServicesAssembler tool with the genInterface command. See
Chapter 14, "Assembling a J2EE Web Service Client" for more information on
generating and assembling client-side code.

For example, the following command uses genProxy to generate code for a J2SE
client.

% java -jar wsa.jar -genProxy
-wsdl http://locahost:8888/javacallin/javacallin?WSDL
-output build/src/client
-mappingFileName ./mapping.xml
-packageName oracle.demo.db.queue.stub
-unwrapParameters true

In this command:

s genProxy—Creates a static proxy stub that can be used by a J25E Web service
client. See "genProxy" on page 18-34.

s wsdl—Specifies the absolute file path, relative file path, or URL to a WSDL
document. See "wsdl" on page 18-65.

= output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created. See "output” on page 18-48.

» mappingFileName—Specifies a file location that points to a JAX-RPC
mapping file. See "mappingFileName" on page 18-47.

» packageName—Specifies the package name that will be used for generated
classes if no package name is declared in the JAX-RPC mapping file. See
"packageName" on page 18-48.

» unwrapParameters—This argument can be set only for document-literal
operations and will be ignored for other message formats. When
unwrapParameters is set to true, which is the default, the return type and

10-34 Web Services Developer's Guide

Developing Web Services that Expose Database Resources

response type will be unwrapped. This is usually easier to use, especially if the
types are simple. See "unwrapParameters" on page 18-69.

5. Compile and run the client.

List the appropriate JARs on the classpath before compiling the client. Table A-2,
" Classpath Components for a Client Using a Client-Side Proxy" lists all of the JAR
files that can possibly be used on the client classpath. As an alternative to listing
individual JARs, you can include the client-side JAR, wsclient_extended.jar
on the client classpath. This JAR file contains all the classes necessary to compile
and run a Web service client. The classes are from the individual JAR files listed in
Table A-2. See "Setting the Classpath for a Web Service Proxy" on page A-2 for
more information on wsclient_extended. jar and the client classpath.

The following command lines provide sample compile and run commands.

% javac -classpath path
<ORACLE_HOME>/webservices/lib/wsclient_extended.jar:
:<ORACLE_HOME>/webservices/lib/jaxrpc-api.jar JavacallinClient.java

% java -classpath path
<ORACLE_HOME>/webservices/lib/wsclient_extended. jar:
<ORACLE_HOME>/webservices/lib/jaxrpc-api.jar:
<J2EE_HOME>/1ib/jax-gname-namespace.jar:
<J2EE_HOME>/lib/activation.jar:<J2EE_HOME>/lib/mail.jar:
<J2EE_HOME>/1lib/http_client.jar:
<ORACLE_HOME>/webservices/lib/commons-logging.jar:
<ORACLE_HOME>/lib/xmlparserv2.jar JavacallinClient

In this example, <J2EE_HOME> is the directory where J2EE is installed; <ORACLE_
HOME> is the directory where the OC4] is installed.

Sample Server-Side Java Class

Example 10-17 illustrates two APIs in oracle.sqglj.checker.JdbcVersion, a
server-side Java class distributed with Oracle9i and 10g databases. The
dbJavaAssemble command exposes these APIs as a Web service.

Example 10-17 Sample Server-Side Java Class

public class oracle.sglj.checker.JdbcVersion extends java.lang.Object {
public static int getDriverMajorVersion();
public static int getDriverMinorVersion();

Sample Web Service Operations Generated from a Server-Side Java Class

The WSDL fragment in Example 10-18 illustrates the Web service operations
generated for the JdbcVersion APIs getDriverMajorVersion and
getDriverMinorVersion in Example 10-17.

Example 10-18 WSDL Fragment, lllustrating Operations Generated for a Server-Side
Java Class

<complexType name="getDriverMajorVersion">

<sequence />

</complexType>
<complexType name="getDriverMajorVersionResponse">
<sequence>

<element name="result" type="decimal" nillable="true" />

Assembling Database Web Services 10-35

Developing a Web Service Client in the Database

</sequence>
</complexType>
<complexType name="getDriverMinorVersion">
<sequence />
</complexType>
<complexType name="getDriverMinorVersionResponse">
<sequence>
<element name="result" type="decimal" nillable="true" />
</sequence>
</complexType>

<portType name="JdbcVersion">
<operation name="getDriverMajorVersion">
<input message="tns:JdbcVersion_getDriverMajorVersion" />
<output message="tns:JdbcVersion_getDriverMajorVersionResponse" />
</operation>
<operation name="getDriverMinorVersion">
<input message="tns:JdbcVersion_getDriverMinorVersion" />
<output message="tns:JdbcVersion_getDriverMinorVersionResponse" />
</operation>
</portType>

Note: A server-side Java class can also be invoked through JDBC
(rather than through Web services). If this is the case, refer to the
Oracle Database JPublisher User's Guide to find out how to generate a
proxy class for invoking database server-side Java.

Developing a Web Service Client in the Database

This section contains the following subsections:
= Understanding Web Service Call-Out
= How to Call Web Services from the Database

Understanding Web Service Call-Out

Oracle JPublisher supports PL/SQL and Java Web service call-outs by creating the
appropriate stub code. This enables you to use PL/SQL or Java to invoke a Web
service client from inside the database. For a Web service call-out, you supply a WSDL
file or location to Oracle JPublisher. Oracle JPublisher generates a PL/SQL wrapper
and the necessary database server-side Java classes that implement the PL/SQL
wrapper. The generated PL/SQL wrapper contains a PL/SQL procedure or function
for each Web service operation.

As an alternative, Oracle JPublisher has the ability to generate Java client proxies only.
These Java client proxies can be used for Web service call-outs by Java code in the
database.

Figure 10-3 illustrates the stub code that Oracle JPublisher can generate.

10-36 Web Services Developer's Guide

Developing a Web Service Client in the Database

Figure 10-3 Creating Web Service Call Out Stubs

Web
Services

‘ | PUsaL call spec |

WSDL e JPublisher —}l Java Wrapper Classesl

| Static Java Proxy |

Note: If you must dynamically construct invocations of external
Web services based on a WSDL which is available only at runtime, use
the JAX-RPC Dynamic Invocation Interface API for Java or the
PL/SQL UTL_DBWS package.

The client proxy which Oracle JPublisher generates is based on the simplified client
code generated for Java proxies in OracleAS Web Services 10.1.3. Therefore, the Java
and PL/SQL client which Oracle JPublisher generates is fully supported by OracleAS
Web Services 10.1.3.1. In addition, Oracle JPublisher can also generate OracleAS Web
Services 9.0.4-style Web service clients.

Web service call-out requires these utilities and tools.
s Database Release 9.2 or later
s Database Web Service call-out Utilities

Load the JAR and SQL files into the database as instructed. These utilities are
available from the Oracle Database Web Services Web site.

http://www.oracle.com/technology/tech/webservices/database.ht
ml

= Oracle JPublisher 10g

If you do not have Oracle JPublisher installed, you can obtain it from the JDBC,
SQLJ, and Oracle JPublisher download Web site.

http://www.oracle.com/technology/tech/java/java_db/index.html
These are the required Oracle JPublisher options for Web service call-outs.
s proxywsdl—the URL of the WSDL file for the Web service to be invoked

= user—the database schema (and password) for which the PL/SQL wrapper is
generated

These are the optional Oracle JPublisher parameters.

» httpproxy—the HTTP proxy host and port for accessing the WSDL file
= sysuser—the database user (and password) with SYSDBA privileges

s proxyopts—a list of options specific to proxywsdl

= dir—the directory storing all the generated files

Assembling Database Web Services 10-37

Developing a Web Service Client in the Database

The sysUser argument allows Oracle JPublisher to load the generated file into the
database. If this argument is not declared, you must manually load the generated file
into the database to invoke the Web service from PL/SQL.

See Also:

Oracle Database [Publisher User’s Guide for examples and options
related to Web service call-out, such as proxywsdl, proxyopts, and
httpproxy.

How to Call Web Services from the Database

The Web services call-out utility allows a client to access Web services from the
database. Web services call-out can be employed by PL/SQL clients, SQL statements
and Java in the database. This utility is based on Oracle JPublisher 10g Release 2 (10.2)
and OracleAS Web Services 10g Release 3 (10.1.3.1).

Two versions of the utility are available, based on whether your target is the Oracle
Database 10g (Release 10.1 or 10.2), or a pre-10g Oracle Database.

The call-out utility is available at the following Web site under the heading "Database as
Web Services consumer: Calling-out external Web services".

http://www.oracle.com/technology/sample_
code/tech/java/jsp/dbwebservices.html

The following sections describe how a client in the database can perform Web services
call-out:

= How to Perform Web Services Call-Out using Static Proxy and JPublisher
= How to Perform Web Services Call-Out using DII and the SYS.UTL_DBWS Utility

How to Perform Web Services Call-Out using Static Proxy and JPublisher

The Oracle JPublisher command line option -proxywsdl can be used to generate
database-side Java and PL/SQL wrappers from the WSDL file of a Web service. To
allow JPublisher to generate and load wrappers for Web service clients into the
database, the dbwsa . jar and dbwsclient. jar files must be present in the
classpath and inside the database respectively.

The following procedure sets up the environment and the database for Oracle
JPublisher-supported Web service call-out. This procedure needs to be performed only
once.

1. Download and install the Oracle JPublisher 10g Release 2 (10.2) if it is not already
on your system.

You can obtain the Oracle JPublisher release from the following Web site:

http://www.oracle.com/technology/software/tech/java/sqglj_
jdbc/index.html

2. Add the dbwsa. jar to the directory ORACLE_HOME\sqglj\1lib (Windows) or
ORACLE_HOME/sglj/1ib (Solaris).

3. Set up the appropriate JDK as the Java VM and Java compiler.
The version of the JDK must be the same as the Java VM in the target database:
= use the JDK 1.4 for the Oracle Database 10g (Release 10.1 or 10.2)
s use the JDK 1.3 for the Oracle Database 9.2

4. Add dbwsa. jar file to the classpath environment variable.

10-38 Web Services Developer's Guide

Developing a Web Service Client in the Database

5. Load the dbwsclient. jar file either into the SYS schema or into the schema
where the Web service client will be invoked.
For example, the following loadjava command will load the dbwsclient.jar
file into the SYS schema.
%loadjava -u sys/change_on_install -r -v -f -s -grant public -noverify
-genmissing dbwsclient.jar
The following 1oadjava command illustrates how to load the dbwsclient. jar
file into a specific schema.
% loadjava -u scott/tiger -r -v -f -noverify -genmissing dbwsclient.jar
Example

The following example illustrates how to generate Java and PL/SQL wrappers for a
Web service client and then invoke it by using SQL statements. The example follows
these general steps:

1.
2.

Identify the Web service you want to invoke.

Call Oracle JPublisher with the appropriate options to generate the client proxy,
the PL/SQL and Java wrappers, and load them into the database.

An Oracle JPublisher command to do this would include the required
-proxywsdl and -user options. The command could also include the optional
-endpoint, -httpproxy, -sysuser, -dir, and -proxyopts options. For
example:

Q

% jpub -user=username/password -sysuser=superuser_name/superuser_password
-proxywsdl=WSDL_URL -endpoint=Web_services_endpoint

It is assumed that the Web service has been previously deployed at
http://localhost:8888/javacallout/javacallout

The following command creates the Web service client and its Java and PL/SQL
wrappers in the subdirectory tmp, then loads the wrappers into the database.

o)

% jpub -user scott/tiger -sysuser sys/change_on_install
-proxywsdl=sample/javacallout.wsdl
-endpoint=http://localhost:8888/javacallout/javacallout -dir=tmp

This command produces the following output:

tmp/HelloServiceEJBJPub. java
tmp/plsqgl_wrapper.sql
tmp/plsgl_dropper.sql
tmp/plsgl_grant.sqgl
tmp/plsqgl_revoke.sql

Executing tmp/plsqgl_dropper.sqgl
Executing tmp/plsgl_wrapper.sql
Executing tmp/plsql_grant.sql
Loading tmp/plsgl_proxy.jar

Invoke the Web service from inside the database.

You can invoke the PL/SQL functions provided in tmp/plsgl_wrapper.sql.
Each PL/SQL function corresponds to an operation in the Web service. For
example, if your Web service is available at the following endpoint:

http://localhost:8888/javacallout/javacallout

Then you can issue the following SQL command.

Assembling Database Web Services 10-39

Tool Support for Web Services that Expose Database Resources

SQL> select jpub_plsqgl_wrapper.sayhello('hello') from dual;

The command will return the following output.

JPUB_PLSQL_WRAPPER.SAYHELLO ('HELLO')

HELLO!! You just said :hello

For more information about Oracle JPublisher call-out support, see "Web service
Call-out using Dynamic Invocation Interface and the SYS.UTL_DBWS Utility" in
Oracle Database [Publisher User’s Guide. This is available from the following Web site.

http://www.oracle.com/technology/software/tech/java/sqglj_
jdbc/index.html

How to Perform Web Services Call-Out using DIl and the SYS.UTL_DBWS Utility

A PL/SQL user can invoke Web services using the PL/SQL package SYS.UTL_DBWS.
This package provides wrapper functions for the JAX-RPC Dynamic Invocation
Interface (DII) APIs.

The following procedure applies to Oracle Database 10g Release 1 or later. The
procedure sets up the database for Web service call-out using SYS . UTL_DBWS, and
refreshes the utility with more recent features provided in by the download.

1. Load the dbwsclient. jar file into the database, as described in "How to
Perform Web Services Call-Out using Static Proxy and JPublisher".

2. Execute utl_dbws_decl.sqgl and utl_dbws_body.sgl SQL scripts as SYS.

You can now use SYS.UTL_DBWS to call Web services.

Example

The call-out utilities download includes the SQL scripts
samples/test-plsgl-dii.sqgl and samples/test-plsgl-dii2.sqgl. Both
scripts invoke the sayHello operation defined in javacallout.wsdl. Examine the
two scripts for their correspondences with the WSDL file. Both scripts produce the
following output; the phrase PL./SQL DII client return is produced by the
client code.

PL/SQL DII client return HELLO!! You just said :hello

For more information on the SYS.UTL_DBWS utility, see Oracle Database PL/SQL
Packages and Types Reference available from the following Web site.

http://www.oracle.com/technology/documentation/databaselOg.html

Tool Support for Web Services that Expose Database Resources

With Oracle JDeveloper, you can create a Web service based on program units in a
PL/SQL package that is stored in an Oracle database. You can use the wizards in
Oracle JDeveloper to perform the following tasks.

» Create the PL/SQL Package in the Database
s Create the PL/SQL Web service
= Deploy the PL/SQL Web service

s Create a stub to use the Web service

10-40 Web Services Developer's Guide

Additional Information

For more information on using Oracle JDeveloper to create PL/SQL package units and
expose them as a Web service, see the Oracle JDeveloper on-line help.

Limitations

See "Developing Web Services From Database Resources" on page F-7.

Additional Information

For more information on:

using the Test Page to test Web service deployment, see Chapter 13, "Testing Web
Service Deployment".

building J2SE clients, see Chapter 15, "Assembling a J2SE Web Service Client".
building J2EE clients, see Chapter 14, "Assembling a J2EE Web Service Client".
JAX-RPC handlers, see Chapter 16, "Using JAX-RPC Handlers".

using the WebServicesAssembler tool to assemble Web services, see Chapter 18,
"Using WebServicesAssembler".

packaging and deploying Web services, see Chapter 19, "Packaging and Deploying
Web Services"

JAR files that are needed to assemble a client, see Appendix A, "Web Service Client
APIs and JARs".

Web services interoperability, see "Ensuring Interoperable Web Services" in the
Oracle Application Server Advanced Web Services Developer’s Guide.

using quality of service features in Web service clients, see "Managing Web
Services" in the Oracle Application Server Advanced Web Services Developer’s Guide.

adding security to a Web service, see the Oracle Application Server Web Services
Security Guide.

adding reliability to a Web service, see "Ensuring Web Service Reliability" in the
Oracle Application Server Advanced Web Services Developer’s Guide.

adding an auditing and logging configuration to a Web service, see "Auditing and
Logging Messages" in the Oracle Application Server Advanced Web Services
Developer’s Guide.

processing nonstandard data types, see "Custom Serialization of Java Value Types"
in the Oracle Application Server Advanced Web Services Developer’s Guide.

the JAX-RPC mapping file, see "JAX-RPC Mapping File Descriptor" in the Oracle
Application Server Advanced Web Services Developer’s Guide.

data types supported by OracleAS Web Services, see "Mapping Java Types to XML
and WSDL Types" in the Oracle Application Server Advanced Web Services Developer’s
Guide.

Oracle JDeveloper tool support for Web service development, see the Oracle
JDeveloper on-line help.

Assembling Database Web Services 10-41

Additional Information

10-42 Web Services Developer's Guide

11

Assembling Web Services with Annotations

This chapter describes how to use annotations to quickly develop Web services from
Java classes. The Web service can use either HTTP or JMS as the transport mechanism.
You can use the annotations feature only when you are performing bottom up
development of a Web service from Java classes.

This chapter contains the following sections:
s OracleAS Web Services and J2SE 5.0 Web Service Annotations

= Supported Annotations

OracleAS Web Services and J2SE 5.0 Web Service Annotations

The standard Java mechanisms for the design, development, and deployment of Web
services require you to supply a substantial amount of information. For example, to
deploy a service based on a Java class you must provide the class itself, an associated
service endpoint interface, and potentially, additional metadata files.

See Also:

Chapter 7, "Assembling a Web Service with Java Classes" for more
information on generating a Web service with Java classes.

Oracle Application Server Web Services provides support for J2SE 5.0 Web Service
annotations (also known as the Web Services Metadata for the Java Platform (JSR-181)
specification). The specification, available from the following Web site, defines an
annotated Java syntax for programming Web services.

http://www.jcp.org/en/jsr/detail?id=181

The following lists describe the advantages and disadvantages of using the J2SE 5.0
Web Services annotations.

J2SE 5.0 Web Services Annotations Advantages
= Based on a community standard.

= Supported by the J2SE 5.0 JDK. The metadata is stored directly in the class file,
making them portable.

» Language-level IDE support. IDEs that support the J2SE 5.0 JDK will recognize
J25E 5.0 Web Service annotations and be able to provide things like
auto-completion and syntax checking.

J2SE 5.0 Web Services Annotations Disadvantages
= Requires you to use the J2SE 5.0 JDK.

Assembling Web Services with Annotations 11-1

Supported Annotations

= See the limitations described in "Assembling Web Services with Annotations" on
page F-8.

Using the annotated Java syntax requires the J2SE 5.0 JDK. The J2SE 5.0 JDK also
provides documentation on the language-level support for annotations, such as how to
define them, their syntax, and how to create new annotations. The J2SE 5.0 JDK is
available from the following Web site.

http://java.sun.com/j2se/1.5.0/download. jsp

Java Metadata Annotations is a J2SE 5.0 JDK feature that enables you to add special
tags to your Java classes. These tags are then compiled into the class byte code and
made accessible to third party annotation processors. The Web Services Metadata for
the Java Platform specification further extends this feature with metadata tags for Web
services. OracleAS Web Services supports this specification and allows developers to
customize the Web services generation process through the use of annotations.

You must have the JVM from the J2SE 5.0 JDK to use Web service annotations in
OracleAS Web Services. The WebServicesAssembler tool can generate Web services
from Java classes that have J2SE 5.0 annotations. When the tool is used in a J2SE 5.0
JDK JVM, the assemble and genwWsdl commands will process annotations in a given
Java class.

The EJB 3.0 specification has extended the Web Services Metadata for the Java
Platform specification by adding metadata tags for EJBs. The specification supports the
Web Services Metadata for the Java Platform tags, allowing EJBs to be exposed as Web
services. EJB 3.0 annotations are processed when an EAR file containing E]JBs is
deployed to a running Oracle Application Server. Any interfaces with J2SE 5.0 JDK
annotations that are implemented by session beans will be processed. Note that you
cannot use the WebServicesAssembler tool to process E]JB 3.0 annotations.

Supported Annotations

The following sections describe the annotations that are supported by OracleAS Web
Services.

= Supported J2SE 5.0 JDK Annotations
s Oracle Additions to J2SE 5.0 JDK Annotations

Supported J2SE 5.0 JDK Annotations

OracleAS Web Services enables you to use the entire set of annotations described in the
Web Services Metadata for the Java Platform specification. Table 11-1 provides a brief
description of these annotations. The Web Services Metadata for the Java Platform
specification provides more information on these annotations.

Also included in Table 11-1 is a brief description of the @WebServiceRef annotation.
The OracleAS Web Services enables you to use the @WebServiceRef annotation to
reference a Web service endpoint from within a version 3.0 E]B, a servlet, or a Java
class in an application client container. Support for the @webServiceRef annotation
also includes support for the injection of the service-ref target in the ejb-jar.
xml deployment descriptor. For more information on this annotation, see the Java API
for XML-based Web Services 2.0 (JSR-224) specification:

http://www.jcp.org/en/jsr/detail?id=224

11-2 Web Services Developer's Guide

Supported Annotations

Table 11-1

J2SE 5.0 JDK Annotations Supported by OracleAS Web Services

J2SE 5.0 JDK Annotation

Description

javax.jws.HandlerChain
javax.jws.Oneway
javax.jws.WebMethod
javax.jws.WebParam
javax.jws.WebResult
javax.jws.WebService
javax.jws.soap.SOAPBinding
javax.jws.soap.

SOAPMessageHandlers

javax.xml.ws.WebServiceRef

Associates the Web service with an externally defined
handler chain.

Indicates that the given Web method has only an input
message, but no output.

Indicates that the method will be exposed as a Web
service operation.

Customizes the mapping of an individual parameter to a
Web service message part and XML element.

Customizes the mapping of the return value to a WSDL
part and XML part.

Marks a Java class as implementing a Web service, or a
Java interface as defining a Web Service Interface.

Specifies the mapping of the Web service onto the SOAP
message protocol.

Specifies a list of SOAP protocol handlers that run
before and after business methods on the Web service.

Declares a reference to a Web service endpoint from
within a version 3.0 EJB, a Java class, or a servlet in the
application client container.

The properties for the WebServiceRef annotation can
play a role in how WebServicesAssembler generates the
name of the JAX-RPC mapping file. See "How the
WebServiceRef Annotation Determines the Mapping File
Name" for more information.

Using WebServiceRef within OracleAS Web Services

The Java API for XML-based Web Services 2.0 (JSR-224) specification defines the
@WebServiceRef annotation for referencing a Web service endpoint from within a
version 3.0 E]B, a servlet, or a Java class in an application client container. Table 11-2
describes the properties that can be used with the @WebServiceRef annotation.

Table 11-2 WebServiceRef Annotation Properties

Property Description

mappedName A proprietary name for JNDI lookups.

name The JNDI lookup name of the Web service. This value can be
found in the java: comp/env namespace.

type The resource type as a Java class object. By default, this value is
javax.xml.rpc.Service.

value The service type as a Java class object. By default, this is the class
of the injection target.

wsdlLocation The URL for the WSDL description of this Web service. If this

annotation is present, it overrides the WSDL URL specified by
the @WebService annotation of the referenced generated
service interface.

The following sections provide more information about using the @WebServiceRef
annotation in OracleAS Web Services.

Assembling Web Services with Annotations 11-3

Supported Annotations

s How the WebServiceRef Annotation Determines the Mapping File Name
Specifying WSDLs with Multiple Ports in the WebServiceRef Annotation

» WebServiceRef Annotation Examples

How the WebServiceRef Annotation Determines the Mapping File Name For each
@WebServiceRef that occurs in a Java class or version 3.0 EJB, a JAX-RPC mapping
file must be included in the deployed archive. WebServicesAssembler will generate the
mapping file, but you must ensure that it appears in the appropriate location for your
Web service. If the mapping file does not appear in these locations, then you must
copy it manually.

» If the Web service is based on a version 3.0 E]B, then the generated JAX-RPC
mapping file must appear directly under the META-INF directory.

= If the Web service is based on Java classes, then the generated JAX-RPC mapping
file must appear directly under the WEB-INF directory.

The following steps describe how WebServicesAssembler determines the name of the
mapping file. These steps are followed in order until a name can be successfully
assigned. If the last step fails, then the process fails and a name is not assigned.

1. If the injection target class is a service endpoint interface (SEI) and the
@WebService annotation and the serviceName property is specified, then the
deployment system will try to load the mapping file with the following name:

[@WebService.serviceName] Service-java-wsdl-mapping.xml

In this example, [@WebService. serviceName] represents the value of the
serviceName property.

2, If the injection target class is a service endpoint interface with the
@WebServiceRef annotation and the serviceName property is specified, the
deployment system will try to load the mapping file with the following name:

[@WebServiceRef.name] Service-java-wsdl-mapping.xml

In this example, [@WWebServiceRef . name] represents the value of the name
property.

3. If the injection target class is a service endpoint interface with the
@WebServiceRef annotation and the wsdlLocation property is specified, then
the mapping file will have the same base name as the WSDL file referenced by the
wsdlLocation property.

[base name of WSDL file]Service-java-wsdl-mapping.xml

For example, if the WSDL file is named MyService.wsdl, then the mapping file
for that service must be MyServiceService-java-wsdl-mapping.xml. This
is consistent with what WebServicesAssembler generates when you issue a
genWSDL or genInterface command. So, copying a mapping file that
WebServicesAssembler generates should work naturally.

Note: ThewsdlLocation property cannot point to a remote WSDL.
The WSDL file must be located in the same archive as the mapping
file.

Specifying WSDLs with Multiple Ports in the WebServiceRef Annotation According to the Java
API for XML-based Web Services 2.0 specification, if the WSDL specified for the
@WebServiceRef has multiple ports, then the injection target for the annotation must

11-4 Web Services Developer's Guide

Supported Annotations

be of type javax.xml.rpc.Service. When the service is injected to this target, a
call to getPort (QName portName, Class serviceEndpointInterface) can
be made to get the exact port for invocation. In this signature, portname is the name
of the specific port you want to work with and serviceEndpointInterface is the
name of the service endpoint interface class file.

WebServiceRef Annotation Examples This section provides examples of using the
@WebServiceRef annotation.

In Example 11-1, the reference to the service endpoint interface is being injected into a
field and into a setter method. In this case the mapping file would be named
SimpleService-java-wsdl-mapping.xml.

Example 11-1 Injecting the Reference into a Field and a Setter Method

@Stateless (name="WSRefBean")
public class StatelessEJBClient implements StatelessEJBClientInterface{

@WebServiceRef (name="Simple",wsdlLocation="META-INF/SimpleEJBServiceService.wsdl")
private SimpleEJBService svc;

private SimpleEJBService svc2;

public String echoString(String str) throws RemoteException {
if (sve == null){
return "faill";
}
if (sve2 == null){
return "fail2";
}
String test = svc.echoString("Success");
test = svc2.echoString(test);
return str + test;

@WebServiceRef (name="Simple",wsdlLocation="META-INF/SimpleEJBServiceService.wsdl")
public void setSvc2 (SimpleEJBService service) {
svc2 = service;

}

Example 11-2 is similar to the previous example, the only difference is that the
injection is into a javax.xml . Service object instead of an actual service endpoint
interface. Again, based on the wsdlLocation, the mapping file is expected to be in
META-INF (because this is an EJB) and its name should be
SimpleService-java-wsdl-mapping.xml.

Example 11-2 Injecting the Reference into javax.xml.Service Object

@Stateless (name="WSRefBean3")
public class StatelessEJBClient3 implements StatelessEJBClientInterface3{

@WebServiceRef (name="Simple",wsdlLocation="META-INF/SimpleEJBServiceService.wsdl")
private Service svc;

public String echoString(String test) throws RemoteException {
if (sve == null){

Assembling Web Services with Annotations 11-5

Supported Annotations

return "fail";
}
try{
SimpleEJBService port =
(SimpleEJBService) svc.getPort (SimpleEJBService.class) ;
return port.echoString(test);
}catch (Exception ex) {
ex.printStackTrace() ;
throw new RemoteException (ex.getMessage(),ex);

Example 11-3 uses the ejb-jar.xml deployment descriptor for injection. When
using this technique, you must specify the version="3.0" on the ejb-jar.xml.
This deployment descriptor can work in conjunction with @WebServiceRef.

When you use the ejb-jar.xml deployment descriptor for injection, you can also
directly specify the mapping file in the <jaxrpc-mapping-file> element. In this
case, the mapping file is CustomSessionBeanService-java-wsdl-mapping.
xml.

Example 11-3 Injecting a Reference by Using the ejb-jar.xml Deployment Descriptor

<ejb-jar version="3.0">
<enterprise-beans>
<gsession>
<ejb-name>WSRefBean2</ejb-name>
<ejb-class>oracle.j2ee.tests.ejb.impl.StatelessEJBClient2</ejb-class>
<session-type>Stateless</session-type>
<service-ref>
<service-ref-name>CustomSessionEJB</service-ref-name>
<service-interface>javax.xml.rpc.Service</service-interface>

<service-ref-type>oracle.j2ee.tests.ejb.impl.CustomSession</service-ref-type>
<wsdl-file>META-INF/CustomSessionBeanService.wsdl</wsdl-file>

<jaxrpc-mapping-£file>META-INF/CustomSessionBeanService-java-wsdl-mapping.
xml</jaxrpc-mapping-file>

<injection-target>

<injection-target-class>oracle.j2ee.tests.ejb.impl.
StatelessEJBClient2</injection-target-class>
<injection-target-name>svc</injection-target-name>
</injection-target>
</service-ref>
</session>
</enterprise-beans>
</ejb-jar>

Oracle Additions to J2SE 5.0 JDK Annotations

This section describes the Oracle proprietary annotations that can be read and
processed by the Java Metadata Annotations feature in the J2SE 5.0 JDK.

s Deployment Annotation
= Schema Annotation

s WSIFE]BBinding Annotation

11-6 Web Services Developer's Guide

Supported Annotations

Deployment Annotation

The @Deployment annotation (oracle.webservices.annotations.
Deployment) can be used to supply the deployment attributes to an endpoint
implementation or to a service endpoint interface.

Table 11-3 describes the @Deployment annotation’s properties. All of the properties
are optional.

Note: The properties in the following table could potentially be
overridden by the deployment descriptor or by argument values
passed by WebServicesAssembler. For more information, see "How to
Override Annotation Values with WebServicesAssembler" on

page 11-13.

Table 11-3 Deployment Annotation Properties

Properties

Data Type Description

contextPath

String This value specifies the default context for the Web service. If you want
to package multiple Web services in a WAR file and each endpoint class
has an @Deployment annotation, then the value of the contextPath
property must be the same for all of the services. This is because
contextPath is global to a Web service deployment. If the Web services
have differing contextPath values, then their behavior will be
unpredictable. If only one contextPath property is set, then that will
be the root context for all Web services in the same EAR or WAR file.

You can override the value of this property by providing a valid value
for the <context-root> element in the oracle-webservices.xml
deployment descriptor that is deployed with the EAR file. Setting
<context-root> in the deployment descriptor overrides all
contextPath properties in all Web services that have the Deployment
annotation.

Default: the name of the EAR file.

Assembling Web Services with Annotations 11-7

Supported Annotations

Table 11-3 (Cont.) Deployment Annotation Properties

Properties

Data Type Description

portName

restSupport

uriPath

String This value specifies the portName element in the generated WSDL. Each
Web service can have a different portName value.

You can override the value of the portName property by entering a
value for the <port-component [name] > attribute in the
oracle-webservices.xml deployment descriptor deployed with the
EAR file.

Default: For version 3.0 E]JBs, this value is taken from the name of the
EJB. This name can be specified by the @Stateless.name property on
the EJB. If the @Stateless.name property is not set, then the default
value for portName is will be the simple name of the EJB.

For all other Web services, the default value for por tName will be
generated with the following pattern:

[protocol] [binding and_version]

For example, Ht tpSoapll or HttpSoapl2.

Boolean This Boolean value identifies whether the service is a REST Web service.
If true, the port will supports REST-style GET and POST requests and
responses.

Default: false.

String This value is appended to the value of the contextPath property. Each
Web service can have a different uriPath value.

You can override the value of this property by providing a URI in the
<endpoint-address-uri> element for the corresponding
<port-component [name] >. These elements must appear in the same
service element in the oracle-webservices.xml deployment
descriptor deployed with the EAR file.

Note: if there is a conflict in between the values of <url-pattern>in
the web . xml deployment descriptor and the value of uriPath, then the
value of <url-pattern> will take precedence.

Default: For version 3.0 E]Bs, the default for uriPath is the
@Stateless.name property. For other Web services, the default is the
simple (unqualified) class name.

The following example illustrates an interface that uses the @Deployment annotation.
In this example, the Web service will be accessed by the URL
http://$HOST:S$SPORT/ejb30/ejb30-simple after it is deployed.

@WebService (name="CustomSession",
targetNamespace="http://ejb.oracle.com/targetNamespace",
serviceName="CustomSessionBeanService")

@Deployment (contextPath="ejb30",
uriPath="ejb30-simple",
portName="Custom")

public interface CustomSessionIntf extends Remote({

Schema Annotation

The @Schema annotation (oracle.webservices.annotations.Schema) can be
used to configure how schema elements are generated in the WSDL. This is an
optional annotation that has only optional properties: elementFormDefault and
targetNamespace.

11-8 Web Services Developer's Guide

Supported Annotations

The elementFormbDefault property enables you to change the value of the
elementFormDefault attribute in the WSDL. The value of this attribute indicates
whether locally declared elements must be qualified by the target namespace in an
instance document. If the value of this attribute is unqualified, then locally declared
elements should not be qualified by the target namespace. If the value of this attribute
is qualified, then locally declared elements must be qualified by the target
namespace.

The @Schema . elementFormbefault property is an enumeration of two possible
values: @Schema . ElementFormDefault.QUALIFIED and @Schema .
ElementFormDefault.UNQUALIFIED. By default, OracleAS Web Services tools set
the elementFormDefault attribute in all schemas in the WSDL to qualified. By
using the @Schema . elementFormDefault property, you can change this behavior.

The targetNamespace property can be used to set the targetNamespace attribute
of the generated schema. This namespace will become the default for all types.

Table 11-4 provides a summary of the @Schema annotation’s properties.

Note: The properties in the following table could potentially be
overridden by the deployment descriptor or by argument values
passed by WebServicesAssembler. For more information, see "How to
Override Annotation Values with WebServicesAssembler"” on

page 11-13.

Table 11-4 Schema Annotation Properties

Property Data Type Description
elementFormDefault enum, with values Enables you to change the value of the elementFormbefault
QUALIFIED and attribute in the WSDL. This property can have the following
UNQUALIFIED values:
= QUALIFIED—Changes the value of the
elementFormDefault attribute in the WSDL to
qualified. Locally declared elements will be qualified by
the target namespace.
= UNQUALIFIED—Changes the value of the
elementFormDefault attribute in the WSDL to
ungualified. All locally declared elements will not be
qualified by the target namespace.
Default: QUALIFIED
targetNamespace String Sets the targetNamespace attribute of the generated schema.

This namespace will become the default for types.

Default: An empty string, however, this will result in the same
targetNamespace of the WSDL becoming the default.

WSIFEJBBinding Annotation

The @WSIFEJBBinding annotation (oracle.webservices.annotations.
@WSIFEJBBinding) generates a Web Services Invocation Framework (WSIF) binding
in the WSDL for a version 3.0 EJB. The WSIF bindings are applied only to a single port.
The annotation and its associated properties add extensions to the WSDL that allow a
WSIEF client to access a 3.0 EJB exposed as a Web service.

Assembling Web Services with Annotations 11-9

Supported Annotations

Note: In OracleAS Web Services you cannot use a WSDL document
which defines only WSIF bindings; it must also define a SOAP
binding.

When you assemble a Web Service with the WSIFEJBBinding
annotation, always include the SoapBinding annotation, set to the
appropriate style and use, to ensure that you get the message
encoding you want.

See Also:

The following sections in the Oracle Application Server Advanced Web
Services Developer’s Guide provide more information on WSIF, E]Bs and
WHSIF clients.

= "WSIF and EJBs" provides information on using WSIF
functionality in Web services based on E]JBs and WSIF extensions
to the WSDL.

= "Writing a WSIF Client" provides information on how to write a

client for a service that has WSIF bindings.

Table 11-5 describes the properties that can be specified for the @WSIFEJBBinding
annotation. The className and jndiName properties are required.

Note: The properties in the following table could potentially be
overridden by the deployment descriptor or by argument values
passed by WebServicesAssembler. For more information, see "How to
Override Annotation Values with WebServicesAssembler"” on

page 11-13.

Table 11-5 WSIFEJBBinding Annotation Properties

Property Data Type Description

className String (required) Specifies the class name of the E]JB's home interface.

Default: WebServicesAssembler will use the class name of the parent Ant
task, if it was specified.

initialContextFactory ~ String Specifies the name of the factory that will provide the initial context.

Default: The value defaults to com. evermind.server.rmi.
RMIInitialContextFactory.

jndiName String (required) Specifies the JNDI name for the EJB.

Default: The name of the E]JB that is found by querying @Stateless.
name or the simple name of the EJB class.

jndiProviderURL String Specifies the URL for the JNDI Provider.
Default: The value defaults to the empty string.

name String Specifies the name of the WSIF Port in the Web service. This name will be
used to identify the WSIF port in the WSDL's port element.

Default:n/a

The following example illustrates the @ISIFEIBBinding annotation being used in an
interface file for a version 3.0 EJB.

11-10 Web Services Developer's Guide

How to Use Annotations

@WebService (name="Hello",
targetNamespace="http://ejb.oracle.com/targetNamespace",
serviceName="CustomHelloBeanService")

@WSIFEJBBinding (

className="oracle.demo.hello.HelloBean",

jndiName="Hello",
initialContextFactory="com.evermind.server.rmi.RMIInitialContextFactory",
jndiProviderUrl="ormi://localhost:23791/ejb30wsif")

public interface CustomHelloBeanIntf extends Remote {

When the file is compiled, it generates an EJB WSIF binding in the WSDL, and an EJB
port with the following values.

<port name="WsifEJBPort" binding="tns:WsifEjbBinding">
<ejb:address className="oracle.demo.hello.HelloBean"
jndiName="Hello"
initialContextFactory="com.evermind.server.rmi.RMIInitialContextFactory"
jndiProviderURL="ormi://localhost:23791/ejb30wsif"/>
</port>

How to Use Annotations
This section contains the following subsections:
= Steps to Use Annotations to Assemble a Web Service from Java Classes
= Steps to Use Annotations to Assemble a Web Service from a Version 3.0 EJB
= How to Override Annotations

= Sample Java File with Annotations

Steps to Use Annotations to Assemble a Web Service from Java Classes

To assemble a Web service from a Java class with J2SE 5.0 annotations, follow these
steps.

1. Add Web service metadata annotations to the implementation class.
Example 11-4 illustrates a sample annotated Java file.
a. Ataminimum, the @WebService annotation must be present in the class.

b. Add the endpointInterface property to the @WebService annotation in
the implementation class if you want to reference a service endpoint interface.
Note that if the service endpoint interface also has an @WebService
annotation, the annotations will be processed at that starting point instead.

c. Add the @WwebMethod annotation to each method you want to expose in the
Web service. Note that if your annotations are in the service endpoint
interface, then all of the methods will be exposed, regardless of whether they
have the @wWebMethod annotation

Assembling Web Services with Annotations 11-11

How to Use Annotations

Note: If you enter an @WebService annotation on a service
endpoint interface and no @wWwebMethod annotations, then all of the
methods will be exposed regardless of the number of @WebMethod
annotations you enter.

If you enter an @WebService annotation on an implementation bean
and no @WebMethod annotations, then you should get a verification
exception, because you must have at least one method exposed. See
Sections 4.1 and 4.2 of the Web Services Metadata for the Java
Platform specification.

2. Compile the annotated classes.
The classes must be compiled with a JDK 5.0-compliant compiler.

3. Generate the Web service artifacts (such as the WSDL, the deployment descriptors,
and so on) by using the WebServicesAssembler assemble command.

a. You must specify the implementation class as the value of the assemble
command's className argument. This is true even if all of your annotations
are in the service endpoint interface. The implementation class must have an
@WebService annotation.

b. If you only want to generate a WSDL from an annotated Java class, use the
genWsdl command and supply the implementation class as the value of the
className argument.

Steps to Use Annotations to Assemble a Web Service from a Version 3.0 EJB

Web services can be assembled from EJB 3.0-compliant beans at deployment time. To
generate a Web service endpoint from an EJB 3.0 bean, follow these steps.

1. Addan @Stateless annotation to the bean.
Only stateless E]JB session beans are supported.

The name property of the @Stateless annotation provides the name of the Web
service endpoint. If this property is not specified, then the default endpoint name
will be the unqualified class name of the E]JB bean class.

2. Add the @WebService annotation to the interface that the bean implements.
a. [Enter the annotation in the interface. Do not enter it in the actual bean class.
b. Ata minimum, the interface must contain the @WebService annotation.

c. Add an @webMethod annotation to each method in the bean implementation
that you want to expose in the Web service.

Note: If you enter an @WebService annotation on a service
endpoint interface and no @WebMethod annotations, then all of the
methods will be exposed regardless of the number of @WwebMethod
annotations you enter.

If you enter an @WebService annotation on an implementation bean
and no @WebMethod annotations, then you should get a verification
exception, because you must have at least one method exposed. See
Sections 4.1 and 4.2 of the Web Services Metadata for the Java
Platform specification.

11-12 Web Services Developer's Guide

How to Use Annotations

d. The interface must be implemented by the EJB bean class.

3. (Optional) Add the @Deployment annotation to the interface with values for the
uriPath and portName properties.

By default, the port name and default URI for an EJB 3.0 bean is the EJB name.
This name is found in the @Stateless annotation of the bean. If the name of the
bean is not specified in the @Stateless annotation, the short class name of the
bean will be used instead. You can override this by providing values for the
uriPath and portName properties of the @Deployment annotation.

4. Compile the EJB classes and package them into an EAR file. Deploy the EAR file to
a running instance of OC4J.

How to Override Annotations

This section describes how you can override annotation values in a Java file by using
deployment descriptors or WebServicesAssembler.

s How to Override Annotation Values with WebServicesAssembler

s How to Override Deployment Annotation Values with Deployment Descriptors

How to Override Annotation Values with WebServicesAssembler

Command line arguments passed to the WebServicesAssembler assemble and
genWsdl commands will override any annotations in the Java class file that perform
the same function. For example, if you pass the portName argument to the assemble
or genWsdl command, then its value will override the value of the @Deployment.
portName annotation.

Table 11-6 WebServicesAssembler Arguments that can Override Annotation Values

This WebServicesAssembler argument Will override this annotation

context @Deployment.contextPath
portName @Deployment .portName
portTypeName @WebService.name (the @WebService.

name annotation is used to derive the
portType name in the WSDL. See section 5.11
of the Web Services Metadata for the Java
Platform specification.

qualifiedElementForm @Schema.elementFormDefault
restSupport @Deployment .restSupport
serviceName @WebService.serviceName
targetNamespace @WebService. targetNamespace
typeNamespace @Schema . targetNamespace

uri @Deployment.uriPath

How to Override Deployment Annotation Values with Deployment Descriptors

If you want to override any of the properties specified by the Oracle proprietary
@Deployment annotation, you can package a deployment descriptor that provides an
override in the EAR file in META-INF/oracle-webservices.xml (or
WEB-INF/oracle-webservices.xml for Web modules).

When you use an oracle-webservices.xml deployment descriptor to override
@Deployment annotation properties, each <webservice-description> element

Assembling Web Services with Annotations 11-13

How to Use Annotations

in the descriptor must match a Web service being deployed based on the
serviceName of the Web service. The serviceName is specified by @WebService.
serviceName annotation.

Note that if you are assembling multiple Web services that use the @>eployment
annotation and you specify a deployment descriptor that overrides the properties for
only one of the services, then the other services will not be affected. In the deployment
descriptor, you should specify only those properties you want to override.

For example, the values in the following XML fragment from an
oracle-webservices.xml deployment descriptor override the @Deployment
annotation properties. Since this fragment provides values for the <port-component
name> attribute and the <endpoint-address-uri> element, the annotation's
portName and uriPath properties will be overridden. The <context-root>
element was not specified in this example, so the annotation's contextPath property
will not be overridden.

<webservice-description name="CustomSessionBeanService">
<port-component name="CustomSession">
<endpoint-address-uri>/custom-session</endpoint-address-uri>
</port-component>
</webservice>

Of course, instead of annotating the class you could just provide an
oracle-webservices.xml deployment descriptor to specify the deployment
properties.

Sample Java File with Annotations

11-14

To generate Web services from Java classes, you can enter J2SE 5.0 annotations in either
of these files.

= the endpoint class only
= the endpoint class and the service endpoint interface

If you choose to enter the annotations in both the endpoint class and the service
endpoint interface, then you need to enter only minimal annotations in the endpoint
class.

Example 114 illustrates an example of an implementation class with Web service
metadata annotations. Note how the @WebService, @WebMethod, and @WebParam
annotations are used in the example.

s The @WebService annotation enables you to provide values for the
serviceName and targetNamespace properties. These properties are used to
populate the wsdl:service name and wsdl: targetNamespace elements in
the generated WSDL file. The targetNamespace property provides the default
namespace for the WSDL and the schema types.

Web Services Developer's Guide

How to Use Annotations

Note: The target namespace for schema elements and types will be
the same as that specified in @WebService. targetNamespace or
the generated namespace of the WSDL. For a document-literal Web
service, you can assign operation parameters to different namespaces
by using the @WebParam. targetNamespace annotation property.
For example:

@WebParam (name="param", targetNamespace="http://mytns")
Note that in this case, you must set the @WebParam.name property.

For document-literal wrapped services, the wrapper element will
always be created in the same target namespace as the WSDL.

Optionally, you can specify the endpointInterface property with the
fully-qualified class name of an service endpoint interface. In this case, provide the
following annotations.

— Enter only the @WebService annotations in the endpoint class, and enter the
correct value for endpointInterface. In the case where
endpointInterface is used, all Web service-related annotations are
ignored, except for the @WebService annotation on the endpoint class.

— Enter the @WebMethod and @WebParam annotations in the service endpoint
interface.

The @wWwebMethod annotations identify the methods that should be present in the
Web service. These annotated methods will be assembled into wsdl : operation
elements in the generated WSDL. If a value for the operationName property is
specified in the @WebMethod annotation, then it will be used as the operation
name for the wsdl : operation. If a value is not provided, then the name of the
method is used by default.

The @WebParam annotations identify message parts or parameters to

wsdl : operations. An optional Mode can be specified for each parameter. The
INOUT or OUT modes can be specified only for parameters that implement the
javax.xml.rpc.holders.Holder interface. By default, a parameter that
implements the Holder interface becomes an INOUT parameter, unless Mode . OUT
is explicitly specified by an annotation. All other parameters must be IN
parameters.

Example 11-4 Sample Java File with J2SE 5.0 Web Service Metadata Annotations

package oracle.webservices.examples.annotations;

import java.rmi.RemoteException;
import javax.Jjws.*;
import javax.jws.WebParam.Mode;

@WebService (
serviceName = "annotatedBank",
targetNamespace = "http://service.annotatedBank"

public class BankServiceImpl {

@WebMethod (operationName="create-account")
public String createAccount (@WebParam(name="accountName") String acctName,
float initBalance)
throws RemoteException, AccountException {
return m_bank.addNewAccount (acctName, initBalance) ;

Assembling Web Services with Annotations 11-15

Limitations

Limitations

}

@WebMethod
public void deposit(@WebParam(name="accountID", mode=Mode.IN) String acctID,
float amount)
throws RemoteException, AccountException {
Account theAccount = m_bank.getAccount (acctID);
if (theAccount == null) {
throw new AccountException("No account found for " + acctID);
}
theAccount.deposit (amount) ;
}
//class truncated..

See "Assembling Web Services with Annotations" on page F-8.

Additional Information

For more information on:

11-16

using the Test Page to test Web service deployment, see Chapter 13, "Testing Web
Service Deployment".

building J2SE clients, see Chapter 15, "Assembling a J2SE Web Service Client".
building J2EE clients, see Chapter 14, "Assembling a J2EE Web Service Client".
JAX-RPC handlers, see Chapter 16, "Using JAX-RPC Handlers".

JAR files that are needed to assemble a client, see Appendix A, "Web Service Client
APIs and JARs".

Web services interoperability, see "Ensuring Interoperable Web Services" in the
Oracle Application Server Advanced Web Services Developer’s Guide.

using quality of service features in Web service clients, see "Managing Web
Services" in the Oracle Application Server Advanced Web Services Developer’s Guide.

adding security to a Web service, see the Oracle Application Server Web Services
Security Guide.

adding reliability to a Web service, see "Ensuring Web Service Reliability" in the
Oracle Application Server Advanced Web Services Developer’s Guide.

adding an auditing and logging configuration to a Web service, see "Auditing and
Logging Messages" in the Oracle Application Server Advanced Web Services
Developer’s Guide.

processing nonstandard data types, see "Custom Serialization of Java Value Types"
in the Oracle Application Server Advanced Web Services Developer’s Guide.

the JAX-RPC mapping file, see "JAX-RPC Mapping File Descriptor" in the Oracle
Application Server Advanced Web Services Developer’s Guide.

data types supported by OracleAS Web Services, see "Mapping Java Types to XML
and WSDL Types" in the Oracle Application Server Advanced Web Services Developer’s
Guide.

Oracle JDeveloper tool support for Web service development, see the Oracle
JDeveloper on-line help.

Web Services Developer's Guide

Additional Information

Assembling Web Services with Annotations 11-17

Additional Information

11-18 Web Services Developer's Guide

12

Assembling REST Web Services

This chapter describes how Oracle Application Server Web Services supports the
generation and use of REST Web Services. This chapter contains the following sections:

s Understanding REST Web Services

s WebServicesAssembler Support for REST Web Services
= How to Assemble REST Web Services

= How to Test REST Web Services

= REST Additions to Deployment Descriptors

= How REST Builds Requests and Responses

= Tool Support for REST Web Services

Understanding REST Web Services

REST (Representational State Transfer) Web services architecture conforms to the Web
architecture defined by the World Wide Web Consortium (W3C), and uses its
architectural principles. It employs the semantics of HTTP whenever possible. REST
Web services use XML documents, not SOAP envelopes, for sending messages. Unlike
SOAP Web Services, REST is a "style" and has no standards or tools support from
vendors.

When you use Oracle Application Server Web Services to expose an endpoint by using
REST, that endpoint is also exposed as a SOAP port. OracleAS Web Services limits the
support of HTTP commands to GET and POST. REST Web services deploy like any
other OracleAS Web Services.

Note: OracleAS Web Services can assemble REST Web services only
where the use, or encoding mechanism, is literal (use=1iteral). It
does not support REST Web services where the message format is
encoded.

Web service management features, such as security and reliability, are not available
with REST Web service invocations (either REST or SOAP). This is because SOAP
headers, which are typically used to carry this information, cannot be used with REST
Web service invocations.

WebServicesAssembler Support for REST Web Services

This section contains the following subsections:

Assembling REST Web Services 12-1

How to Assemble REST Web Services

s Commands that Can Assemble REST Web Services
= Annotations that Support REST Web Services

Commands that Can Assemble REST Web Services

You can use WebServicesAssembler to add REST Web service capabilities to any Web
application that can use HTTP as a protocol. This includes Web service applications
built on Java classes, E]Bs, and database resources. WebServicesAssembler provides a
boolean restSupport argument that will allow any of the following commands to
assemble a REST Web service.

= agAssemble

= assemble

= corbaAssemble

s dbJavaAssemble
= ejbAssemble

= plsqlAssemble

= sqlAssemble

= topDownAssemble

Annotations that Support REST Web Services

An optional boolean restSupport attribute can be applied to the Oracle proprietary
@Deployment annotation. If the value of the attribute is true, then the port to which
the annotation is applied will support REST-style GET and POST requests and
responses.

See Also:

"Oracle Additions to J2SE 5.0 JDK Annotations" on page 11-6 for more
information on the restSupport attribute and the Deploy tag.

How to Assemble REST Web Services
This section contains the following subsections:
= Steps to Assemble a REST Web Service Top Down
= Steps to Assemble a REST Web Service Bottom Up

Steps to Assemble a REST Web Service Top Down

The following steps illustrate assembling a REST Web service from a WSDL. This
example provides only an outline of the steps required for top down Web service
assembly.

See Also:

Chapter 6, "Assembling a Web Service from WSDL" for a detailed
description of each of the steps for assembling a Web service from a
WSDL (top down).

1. Provide a WSDL from which the Web service will be generated as input to the
WebServicesAssembler genInter face command.

12-2 Web Services Developer's Guide

How to Assemble REST Web Services

a » w0 Db

The WSDL used in this example is illustrated in Example 12-1. The following is a
sample genInterface command.

java -jar wsa.jar -genlInterface
-output build/src/service
-wsdl wsdl/MovieFacility.wsdl
-unwrapParameters false

In this command:

s genInterface—Creates a service endpoint interface for each port type and a
Java value type class (beans) for any complex type defined in a WSDL. It also
creates a JAX-RPC mapping file that describes the mapping between the XML
schema types and the Java value type classes. See "genInterface" on
page 18-31.

= output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created. See"output" on page 18-48.

= wsdl—Specifies the absolute file path, relative file path, or URL to a WSDL
document. See "wsdl" on page 18-65.

= unwrapParameters—This argument can be set only for document-literal
operations and will be ignored for other message formats. When set to false
the generated service endpoint interface will be generated with wrappers
around the input parameter and the return type. See "unwrapParameters" on
page 18-69.

Compile the generated interface and type classes.
Implement the Java service endpoint for the Web service you want to provide.
Compile the Java service endpoint.

Generate the service by running the WebServicesAssembler tool with the
topDownAssemble command.

Set the restSupport argument to true. For example:

java -jar wsa.jar -topDownAssemble
-wsdl ./wsdl/MovieFacility.wsdl
-unwrapParameters false
-className oracle.webservices.examples.rest.RpcLitMovieImpl
-input build/classes/service
-output build
-ear dist/rpclit_topdown.ear
-restSupport true

In this command:

» topDownAssemble—Creates the required classes and deployment
descriptors for a Web service based on a WSDL description. The files can be
stored in either an EAR file, a WAR file, or a directory. See
"topDownAssemble" on page 18-22.

» wsdl—Specifies the absolute file path, relative file path, or URL to a WSDL
document. See "wsdl" on page 18-65.

» unwrapParameters—This argument can be set only for document-literal
operations and will be ignored for other message formats. When set to false
the generated service endpoint interface will be generated with wrappers
around the input parameter and the return type. See "unwrapParameters" on
page 18-69.

Assembling REST Web Services 12-3

How to Assemble REST Web Services

12-4

= className—Specifies the name of the class (including the package name)
that is the implementation class for the Web service. See "className" on
page 18-43.

= input—Specifies the directory or JAR containing the classes that should be
copied to WEB-INF/classes. This argument will be added to the classpath
used by the WebServicesAssembler. See "input" on page 18-46.

= output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created. See "output” on page 18-48.

= ear—Specifies the name and location of the generated EAR. See "ear" on
page 18-44.
s restSupport—Specifies whether REST (Representational State Transfer)
support will be enabled for this Web service. See "restSupport" on page 18-49.
6. Deploy the service.

Deploy the EAR file in the standard manner into a running instance of OC4]J. For
more information on deploying EAR files, see the Oracle Containers for J2EE
Deployment Guide.

7. (Optional) Check that deployment succeeded.

OracleAS Web Services provides a Web Service Test Page for each deployed Web
service. The Test Page enables you to generate and invoke any REST POST or GET
requests. See "How to Use the Web Services Test Page" on page 13-6 for
information on accessing and using the Web Service Test Page.

Note: REST Web services do not use J2EE or J2SE clients. However,
since every REST endpoint is also a SOAP endpoint, you can assemble
J2SE or J2EE clients for those endpoints. For examples of how to create
GET or POST REST messages, use the Web Services Test Page.

How to Access REST Web Service Operations

Example 12-1 illustrates a fragment of the WSDL used to assemble the RPC-literal
service in "Steps to Assemble a REST Web Service Top Down".

Example 12-1 WSDL Fragment for an RPC-Literal Web Service

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tnsO="http://www.oracle.com/rest/doc/types"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:tns="http://www.oracle.com/rest" name="rest-service"
targetNamespace="http://www.oracle.com/rest"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/">
<types>
<schema xmlns="http://www.w3.o0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:soapll-enc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="http://www.oracle.com/rest/doc/types" elementFormDefault="qualified"
targetNamespace="http://www.oracle.com/rest/doc/types">
<complexType name="Movie">
<sequence>
<element name="Title" type="xsd:string"/>
<element name="Director" type="xsd:string"/>

Web Services Developer's Guide

How to Assemble REST Web Services

<element name="Year" type="xsd:int" />
</sequence>
</complexType>
<complexType name="ArrayOfMovie">
<sequence>
<element name="Movie" type="tns:Movie"
maxOccurs="unbounded" />
</sequence>
</complexType>
</schema>
</types>
<message name="FindMoviesRequest">
<part name="TitleWords" type="xsd:string" />
<part name="Year" type="xsd:int" />
</message>
<message name="FindMoviesResponse">
<part name="Movies" type="tns0:ArrayOfMovie" />
</message>
<message name="AddMovieRequest">
<part name="Movie" type="tns0:Movie" />
</message>
<message name="AddMovieResponse">
<part name="Added" type="xsd:boolean" />
</message>
<portType name="MovieDB">
<operation name="findMovies">
<input message="tns:FindMoviesRequest" />
<output message="tns:FindMoviesResponse" />
</operation>
<operation name="addMovie">
<input message="tns:AddMovieRequest" />
<output message="tns:AddMovieResponse" />
</operation>
</portType>

<binding name="HttpSoapllBinding" type="tns:MovieDB">
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http" />
<operation name="findMovies">
<soap:operation soapAction="http://www.oracle.com/rest/findMovies" />
<input>
<soap:body use="literal" parts="TitleWords Year"
namespace="http://www.oracle.com/rest"/>
</input>
<output>
<soap:body use="literal" parts="Movies"
namespace="http://www.oracle.com/rest"/>
</output>
</operation>
<operation name="addMovie">
<soap:operation soapAction="http://www.oracle.com/rest/addMovie"/>
<input>
<soap:body use="literal" parts="Movie"
namespace="http://www.oracle.com/rest"/>
</input>
<output>
<soap:body use="literal" parts="Added"
namespace="http://www.oracle.com/rest"/>
</output>
</operation>

Assembling REST Web Services 12-5

How to Assemble REST Web Services

</binding>
<service name='"rest-service">
<port name="HttpSoapll" binding="tns:HttpSoapllBinding">
<soap:address
location="http://localhost:8888/webservice/webservice/" />
</port>
</service>
</definitions>

Using the preceding WSDL, the procedure described in "Steps to Assemble a REST
Web Service Top Down" produces the following generated interface:

interface MovieDb {
public Movie[] findMovies (String titleWords, int year);
public boolean addMovie (Movie movie);

}

The first method in the generated interface has only simple parameters. This method
can be invoked with an HTTP GET. For example:

http://{yourhost}/{context-path}/{service-url}/findMovies?TitleWords=Star+Wars&Yea
r=1977

This query string returns the following XML response:

<ns0: findMoviesResponse xmlns:nsO="http://www.oracle.com/rest">
<Movies>
<nsl:Movie xmlns:nsl="http://www.oracle.com/rest/doc/types">
<nsl:Title>tim</nsl:Title>
<nsl:Director>tim</nsl:Director>
<nsl:Year>1978</nsl:Year>
</nsl:Movie>
</Movies>

</ns0:findMoviesResponse>

The addMovie method in the generated interface takes a complex parameter; it can
only be invoked with an HTTP POST. For example, you can POST the following XML
message to the URL of your Web service,
http://{yourhost}/{context-path}/{service-url}.

<ns0:addMovie xmlns:nsO="http://www.oracle.com/rest">
<Movies>
<nsl:Movie xmlns:nsl="http://www.oracle.com/rest/doc/types">
<nsl:Title>tim</nsl:Title>
<nsl:Director>tim</nsl:Director>
<nsl:Year>1978</nsl:Year>
</nsl:Movie>
</Movies>
</ns0:addMovie>

Steps to Assemble a REST Web Service Bottom Up

The following steps illustrate assembling a REST Web service from Java classes. This
example provides only an outline of the steps required for bottom up Web service
assembly.

12-6 Web Services Developer's Guide

How to Assemble REST Web Services

See Also:

Chapter 7, "Assembling a Web Service with Java Classes" for a
detailed description of each of the steps for assembling a Web service
with Java classes.

Provide the compiled Java class that you want to expose as a Web service and its
compiled interface.

Example 12-2 illustrates the StringTools interface that is used in this example.

Generate the service artifacts by specifying the assemble command with the
restSupport argument to true.

java -jar wsa.jar -assemble
-appName tools
-serviceName StringTools
-interfaceName oracle.webservices.examples.rest.StringTools
-className oracle.webservices.examples.StringToolsImpl
-input ./build/classes/service
-output build
-use literal
-ear dist/tools.ear
-uri StringToolsService
-restSupport true

In this command:

= assemble—Generates a Web service from Java files bottom up. The
command creates all of the files required to create a deployable archive. See
"assemble" on page 18-7.

= appName—Specifies the name of an application. Usually, this name is used as
a base value for other arguments like context and uri. See "appName" on
page 18-42.

= serviceName—Specifies the service name. See "serviceName" on page 18-50.
» interfaceName—Specifies the name of a Java class (including the package

name) that contains the service endpoint interface (SEI). See "interfaceName"
on page 18-47.

» className—Specifies the name of the class (including the package name)
that is the implementation class for the Web service. See "className" on
page 18-43.

» input—Specifies the directory or JAR containing the classes that should be
copied to WEB-INF/classes. This argument will be added to the classpath
used by the WebServicesAssembler. See "input" on page 18-46.

= output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created. See "output” on page 18-48.

» use—For bottom up Web service assembly, this argument specifies the use
attribute of the message format in the generated WSDL. See "use" on
page 18-68.

= ear—Specifies the name and location of the generated EAR. See "ear" on
page 18-44.

= uri—Specifies the URI to use for the Web service. See "uri" on page 18-63.

Assembling REST Web Services 12-7

How to Assemble REST Web Services

s restSupport—Specifies whether REST (Representational State Transfer)
support will be enabled for this Web service. See "restSupport" on page 18-49.

3. Deploy the service and bind the application.

Deploy EAR files in the standard manner into a running instance of OC4]J. For
more information on deploying EAR files, see the Oracle Containers for J2EE
Deployment Guide.

4. (Optional) Check that deployment succeeded. OracleAS Web Services provides a
Web Service Test Page for each deployed Web service.

The Test Page enables you to generate and invoke any REST POST or GET
requests. See "How to Use the Web Services Test Page" on page 13-6 for
information on accessing and using the Web Service Test Page.

Note: REST Web services do not use J2EE or J2SE clients. However,
since every REST endpoint is also a SOAP endpoint, you can assemble
J2SE or J2EE clients for those endpoints. For examples of how to create
GET or POST REST messages, use the Web Services Test Page.

How to Access REST Web Service Operations

Example 12-2 illustrates the StringTools interface that is used to assemble the REST
Web service in Step 2 described earlier.

Example 12-2 Interface Used to Assemble REST Web Services

interface StringTools {

package oracle.webservices.examples.rest;
import java.rmi.Remote;

import java.rmi.RemoteException;

public interface StringTools extends Remotef{
public String appendStrings (String a, String b) throws RemoteException;
public String toUpperCase (String c) throws RemoteException;
public String concatArrayOfStrings (String s[]) throws RemoteException;

The first two methods in the interface, appendStrings and toUpperCase, use
atomic parameters. As REST Web service operations, these operations can be accessed
with HTTP GET. The following example illustrates a call to the appendStrings
operation, if document style is specified at assembly time:

http://{yourserver}/{context-path}/{service-URL}/appendStrings?String
1=Hello+&String_ 2=World

This query string would return the following XML response:

<appendStringsResponseElement xmlns="http://oracle.webservices.examples.rest/">
<result>Hello World</result>
</appendStringsResponseElement>

The third method in the interface, concatArrayOfStrings takes a non-atomic
parameter. As a REST Web service operation, it cannot be called using HTTP GET. It
can only be called with HTTP POST. For example:

<nsl:concatArrayOfStringsElement

xmlns:nsl="http://oracle.webservices.examples.rest/">
<nsl:arrayOfString 1>a,</nsl:arrayOfString 1>
<nsl:arrayOfString 1>b.</nsl:arrayOfString 1>

12-8 Web Services Developer's Guide

How REST Builds Requests and Responses

</nsl:concatArrayOfStringsElement>
<concatArrayOfStringsRequest xmlns="http://oracle.webservices.examples.rest/">
This request string would return the following XML code:

<ns0:concatArrayOfStringsResponseElement

xmlns:nsO="http://oracle.webservices.examples.rest/">
<ns0:result>a,b.</ns0:result>

</ns0:concatArrayOfStringsResponseElement>

How to Test REST Web Services

You can use the Web Services Test Page to test whether REST Web services deployed
successfully.
See Also:

"Invoking the Test for a REST Web Service" on page 13-14 for more
information on using the Web Services Test Page.

REST Additions to Deployment Descriptors

If REST support is enabled for a Web service, then an optional boolean
<rest-support> subelement is added to the <port-component> element of the
oracle-webservices.xml deployment descriptor. If <rest-support> is set to
true, then the port to which the subelement is applied will support REST-style GET
and POST requests and responses. The default value is false.

See Also:

"<rest-support>" on page C-10 for additional information on the
<rest-support> subelement.

How REST Builds Requests and Responses

The following sections describe how REST Web service requests are formed on the
client side and how they are processed on the server side.

HTTP GET Requests
Suppose a SOAP endpoint is deployed at the following URL:

http://example.com/my-app/my-service

If this endpoint is REST enabled, then HTTP GET requests will be accepted at the
following URL:

http://example.com/my-app/my-service/{operationName}?{paraml}={valuel}&{param2}={v
alue2}

In this example, { operationName} is one of the operation names in the WSDL for
the service. For RPC-literal operations, {paraml}, {param2}, and so on, are the part
names defined in the operation's input wsdl :message. Note that these must be
simpleTypes (xsd: int, and so on).

Assembling REST Web Services 12-9

How REST Builds Requests and Responses

12-10

Note: Some browsers limit the size of the HTTP GET URL (typically
less than 2000 characters). Try to keep the size of the URL small by
using a limited number of parameters and short parameter names and
values.

For document-literal operations, messages have only a single parameter. To simulate
multiple parameters, the WSDL specifies a single parameter that is defined in the
schema as a sequence. Each member of the sequence is considered a parameter. In
this case, { paraml}, {param2}, and so on, will be the members of the sequence type,
instead of message parts. As with RPC, these must be simpleTypes.

Example 12-3 illustrates the request message defined for an operation named
addNumbers.

Example 12-3 GET Request on an Operation

<wsdl :message name="AddNumbersRequest">
<wsdl:part name="a" type="xsd:int" />
<wsdl:part name="b" type="xsd:int" />
</wsdl:Message>

This request can be invoked by using a GET with the following URL:

http://{yourhost}/{context-path}/{service-url}/addNumbers?a=23&b=24

Example 124 illustrates the SOAP envelope that the OracleAS Web Services platform
will create on the server side from the GET request. This message will be processed
like any other incoming SOAP request.

Example 12-4 SOAP Envelope Created from a GET Request

<soap:Envelope>
<soap:Body>
<ns:addNumbers>
<ns:a>23</ns:a>
<ns:b>24</ns:b>
</ns:addNumbers>
<soap:Body>
<soap:Envelope>

Example 12-5 illustrates the request message sent for the addNumbers service when it
is defined as a document-literal operation.

Example 12-5 Sample GET Request on an Document-Literal Wrapped Operation

<wsdl :message name="AddNumbersRequest">
<wsdl:part name="params" type="tns:AddNumbersRequstObject" />
</wsdl:Message>

Example 12-6 illustrates the definition of the AddNumbersRequestObject as it
would be defined in the schema.

Example 12-6 XML Definition of a Document-Literal Wrapped Operation

<xsd:complexType name="AddNumbersRequestObject">
<xsd:complexContent>
<xsd: sequence>
<xsd:element name="a" type="xsd:int"/>

Web Services Developer's Guide

How REST Builds Requests and Responses

<xsd:element name="b" type="xsd:int"/>
</xsd:sequence>
</xsd:complexContent>
</xsd:complexType>

This operation can be invoked by a GET request with the following URL. Note that
this is the same URL that is used for the RPC-literal request in Example 12-3.

http://{yourhost}/{context-path}/{service-url}/addNumbers?a=23&b=24

HTTP POST Requests

REST Web services support HTTP POST requests that are simple XML messages—not
SOAP envelopes. REST requests do not support messages with attachments. Since the
service also supports SOAP requests, the implementation must determine if a given
request is meant to be SOAP or REST.

When a SOAP service receives a POST request, it looks for a SOAPAction header. If it
exists, the implementation will assume that it is a SOAP request. If it does not, it will
find the QName of the root element of the request. If it is the SOAP Envelope QName, it
will process the message as a SOAP request. Otherwise it will process it as a REST
request.

REST requests will be processed by wrapping the request document in a SOAP
envelope. The HTTP headers will be passed through as received, except for the
Content-Type header in a SOAP 1.2 request. This Content-Type header will be changed
to the proper content type for SOAP 1.2, application/soap+xml.

For example, the following REST request illustrated in Example 12-7 will be wrapped
in the SOAP envelope illustrated in Example 12-8.

Example 12-7 REST Request

<ns:addNumbers>
<ns:a>23</ns:a>
<ns:b>24</ns:b>

</ns:addNumbers>

The request illustrated in Example 12-8 will be processed as a normal SOAP request.

Example 12-8 SOAP Envelope Wrapping the REST Request

<soap:Envelope>
<soap:Body>
<ns:addNumbers>
<ns:a>23</ns:a>
<ns:b>24</ns:b>
</ns:addNumbers>
</soap:Body>
</soap:Envelope>

REST Responses

For any request (either GET or POST) that was processed as a REST request, the
response must also be in REST style. The OracleAS Web Services platform will
transform the SOAP response on the server into a REST response before sending it to
the client. The REST response will be an XML document whose root Element is the
first child Element of the SOAP Body. For example, assume that the SOAP envelope
illustrated in Example 12-9 exists on the server.

Assembling REST Web Services 12-11

Tool Support for REST Web Services

Example 12-9 SOAP Response
<soap:Envelope>
<soap:Body>
<ns0:result xmlns:nso="..">
<ns:title>How to Win at Poker</ns:title>
<ns:author>John Doe</ns:author>
</ns0:result>
</soap:Body>
</soap:Envelope>

Example 12-10 illustrates the response sent back to the client. Note that the
Content-Type will always be text /xml. Any SOAP Headers or attachments will not
be sent back to the client.

Example 12-10 REST Response

<ns0:result xmlns:ns0="..">
<ns:title>How to Win at Poker</ns:title>
<ns:author>John Doe</ns:author>
</ns0:result>

Tool Support for REST Web Services

The Create Java Web Service wizard in Oracle JDeveloper provides an option for
enabling REST functionality for a Web service. For more information on using Oracle
JDeveloper to enable REST functionality in a Web Service, see the Oracle JDeveloper
on-line help.

Limitations
See "Assembling REST Web Services" on page F-8.

Additional Information
For more information on:

= assembling a Web service from a WSDL, see Chapter 6, "Assembling a Web Service
from WSDL".

= assembling a Web service from Java classes, see Chapter 7, "Assembling a Web
Service with Java Classes".

= assembling a Web service from EJBs, see Chapter 8, "Assembling a Web Service
with EJBs".

= assembling a Web service from database resources, see Chapter 10, "Assembling
Database Web Services".

» testing REST Web services, see Chapter 13, "Testing Web Service Deployment".

12-12 Web Services Developer's Guide

13

Testing Web Service Deployment

This chapter provides information on how to test your JAX-RPC or REST Web Service
deployment. A Web service has deployed successfully if you can invoke its operations.
To do this, Oracle Application Server Web Services provides a test page. You can use
the Web Services Test Page to perform any of the following tasks:

View the Web service’s deployed service description (WSDL)

Exercise Web service operations with different values

Exercise operations for different values for Web service security and reliability
Provide values for HTTP authentication for the request

Perform stress testing

The following sections provide more information on accessing and using the Web
Services Test Page:

Steps to Access and Test Web Service Operations
How to Access the Web Services Test Page

How to Use the Web Services Test Page

How to Disable the Web Services Test Page
How to Obtain a Web Service WSDL Directly

See Also:

Chapter 12, "Assembling REST Web Services" for more information
about REST Web Services.

Steps to Access and Test Web Service Operations

The following steps describe how to access and use the functionality in the Test Page
for a JAX-RPC or REST Web Service. The following sections provide more detail on
each step.

1.

Access the Test Page for a Web Service.

You can access the Test Page through Application Server Control or through a Web
browser. See "How to Access the Web Services Test Page" on page 13-2 for more
information on this step.

Select the operation you want to test from the Operation drop down list.

Enter the parameter values for the Web Service operation you want to test.

Testing Web Service Deployment 13-1

How to Access the Web Services Test Page

See "Editing Values in the Test Page" on page 13-9 for more information on this
step.

4. (Optional) Enter parameter values to exercise security and reliable messaging
features (for JAX-RPC Web services only).

See "Testing WS-Security and Reliable Messaging Features" on page 13-10 for more
information on this step.

5. (Optional) Enter HTTP authentication values to access the Web service.

See "Enabling HTTP Authentication for the Web Service Test" on page 13-11 for
more information on this step.

6. (Optional) Enter parameters to enable stress testing.

See "Stress Testing the Web Service Operation" on page 13-12 for more information
on this step.

7. Click the Invoke button to send the test message to the service endpoint.

You can invoke the request to a JAX-RPC or REST Web service as a SOAP request.
For a REST Web service, you can invoke it as a SOAP request, or an HTTP POST or
HTTP GET operation. See "Invoking the Web Service Test" on page 13-13 for more
information on this step.

How to Access the Web Services Test Page

You can access the Test Page either by entering the URI for a JAX-RPC or REST Web
service directly in a Web browser or by using Application Server Control.

= Accessing the Web Services Test Page through a Web Browser
= Accessing the Web Services Test Page through Application Server Control
= Accessing a Web Services Test Page Protected with SSL

Accessing the Web Services Test Page through a Web Browser

To access a Test Page for a JAX-RPC or REST Web service directly, you can enter the
address of its service endpoint in a Web browser. The address has the format:

http://host:port/context-root/service
Table 13-1 describes the components of the address.

Table 13—-1 URL Components for Accessing the Test Page

URL Component Description

context-root The value specified in the <context-root> element for the
Web module associated with the Web service. See the
META-INF/application.xml in the Web service's EAR file to
determine this value.

host The host name of the Web service's server running OracleAS
Web Services.

port The port name of the Web service's server running OracleAS
Web Services.

service The value specified in the <url-pattern> element for the
servlet associated with the Web service. This is the service name.
See the WEB-INF/web.xml file in the Web service's WAR file to
determine this value.

13-2 Web Services Developer's Guide

How to Access the Web Services Test Page

Accessing the Web Services Test Page through Application Server Control

You can use Application Server Control to access the Test Page for a particular
JAX-RPC or REST Web service. The following steps provide a brief overview of how to
use the tool to navigate to the Test Page. For more detailed information, see the topic
"Web Services Page" in the Application Server Control on-line help.

1.
2.
3.

Open Application Server Control
Click the Web Services tab on the OC4]J: home page.

In the table of Web services, click the Select radio button associated with the Web
service application and port that you want to test

Click the Test Service button to open Test Web Service: port_name page.

Enterprise Manager displays the Test Web service page, which lists the Web sites
defined in your current environment.

Click the Select radio button to select a Web site listener for the Web service.

Enterprise Manager generates a URL based on information about the context root
defined for the application and the Web site you selected. The URL appears in the
URL field.

Click the Test Web Service button to open the Web Service Test Page.

Accessing a Web Services Test Page Protected with SSL

If the Web Services Test Page is protected by SSL (Secure Sockets Layer), you must
perform some additional configuration steps in order to use it. The steps are different
depending on whether OracleAS Web Services is running on Oracle HTTP Server.

If you are running OracleAS Web Services as a standalone application, you only
need to add keystore and truststore configuration properties to the opmn . xm1 file.
This is the main configuration file for the Oracle Process Manager and Notification
Server (OPMN).

If you are running OracleAS Web Services on Oracle HTTP Server, in addition to
editing the opmn . xm1 file you must export the user certificate in Oracle Wallet
and import it to the OC4] keystore as a trusted certificate.

See Also:

» Oracle Process Manager and Notification Server Administrator’s Guide
for more information on OPMN.

» Oracle Containers for [2EE Security Guide for more information on
keystore and truststore properties.

The following sections describe how to make the necessary changes so that you can
access the SSL-protected Test page.

Accessing the SSL-Protected Test Page when OracleAS Web Services Runs as
Standalone

Accessing the SSL-Protected Test Page when OracleAS Web Services runs on
Oracle HTTP Server

Testing Web Service Deployment 13-3

How to Access the Web Services Test Page

13-4

Accessing the SSL-Protected Test Page when OracleAS Web Services Runs as
Standalone

If you are running OracleAS Web Services as a standalone application, follow these
steps to access an SSL-protected Web Services Test Page.

1.

4.
5.

Locate the opmn . xm1 file in your installation.

The opmn . xm1 file can be found here:

ORACLE_HOME/opmn/conf/opmn.xml

Here, ORACLE_HOME is the directory where you installed OracleAS Web Services.
It is assumed that the file has already been configured for SSL.

Add the following properties to the OC4] start-parameters section of
opmn . xml, then save the file. These properties are described in Table 13-2. See
Example 13-1 for a sample opmn . xml file that uses these properties.

m -Djavax.net.ssl.trustStore=<full path to 0C4J keystore
file>

m -Djavax.net.ssl.trustStorePassword=<0C4J keystore
password>

m -Djavax.net.ssl.keyStore=<full path to 0C4J keystore file>
m -Djavax.net.ssl.keyStorePassword=<0C4J keystore password>
Restart OPMN.

For example, the following command will stop, then restart all OPMN processes.
prompt> opmnctl startall

Enter the URL for the Web Service's Test page in a browser.

Enter values to test the service and press Invoke button

You should receive the expected SOAP message response.

Table 13-2 describes the properties supported by Oracle HTTPS for keystores and
truststores.

Table 13-2 Keystore and Truststore Properties

Property Name Description

javax.net.ssl.keyStore Specifies the location and name of the keystore file or wallet file

to use as the keystore.

This property can be set to point to the text wallet file exported
from Oracle Wallet Manager that contains the credentials that
are to be used for a specific connection.

If no other credentials have been set for the HTTPS connection,
then the file indicated by this property is opened when a
handshake first occurs. If any errors occur as this file is read,
then the connection fails and an IOException is thrown.

If this property has no setting, the application is responsible for
verifying that the certificate chain contains a certificate that can
be trusted.

javax.net.ssl.keyStorePassw This property can be set to indicate the password that is

ord

necessary to open the keystore (keystore file or wallet file).

Web Services Developer's Guide

How to Access the Web Services Test Page

Table 13-2 (Cont.) Keystore and Truststore Properties

Property Name Description

javax.net.ssl.trustStore This property is used similarly to javax.net.ssl.keyStore, but
specifies the location and name of the keystore file or wallet file
to use as the truststore (a file that includes the trusted certificate
authorities that a client will implicitly accept).

javax.net.ssl. This property is used similarly to
javax.net.ssl.keyStorePassword, but specifies the
password that is necessary to open the truststore (keystore file or
wallet file).

Example 13-1 illustrates a fragment of an opmn.xml file that contains the keystore and
truststore properties. In this example, <ias-component id="default-group">
indicates the start of the OC4]J start parameters section.

Example 13-1 opmn.xml Fragment with Keystore and Truststore Properties

<opmn>

<ias-component id="default-group">
<process-type id="home" module-id="0C4J" status="enabled">
<module-data>
<category-id="start-parameters">
<data-id="java-options" value=".. -Djavax.net.ssl.trustStore=<full path to
0C4J keystore file>, -Djavax.net.ssl.trustStorePassword=<0C4J keystore password>,
-Djavax.net.ssl.keyStore=<full path to 0C4J keystore file>,
-Djavax.net.ssl.keyStorePassword=<0C4J keystore password>, ...>
</category>

</module-data>
</process-type>
</ias-component>

</opmn>

Accessing the SSL-Protected Test Page when OracleAS Web Services runs on
Oracle HTTP Server

If you are running OracleAS Web Services on a Oracle HTTP Server, follow these steps
to access an SSL-protected Web Services Test Page.

Note: In this procedure, you use the Oracle Wallet Manager and
Java keytool utilities to export and import certificates. A discussion of
how to use these utilities is beyond the scope of this manual. For
detailed information, see the following resources:

s For Oracle Wallet Manager, see "Using Oracle Wallet Manager" in
the Oracle Database Advanced Security Administrator’s Guide. This
document is available from the Oracle Server Technologies group.

= For the Java keytool utility, see "keytool - Key and Certificate
Management Tool" at the following Web site.

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/k
eytool.html

1. Locate the opmn. xml file in your installation.

Testing Web Service Deployment 13-5

How to Use the Web Services Test Page

The opmn . xm1 file can be found here:

ORACLE_HOME/opmn/conf/opmn.xml

Here, ORACLE_HOME is the directory where you installed OracleAS Web Services.
It is assumed that the file has already been configured for SSL.

2. Add the following properties to the 0C4J start-parameters section of
opmn . xml, then save the file. These properties are described inTable 13-2 in the
previous section. See Example 13-1 for a sample opmn . xm1 file that uses these

properties.

s -Djavax.net.ssl.trustStore=<full path to 0C4J keystore
file>

m -Djavax.net.ssl.trustStorePassword=<oc4j keystore
password>

m -Djavax.net.ssl.keyStore=<full path to 0C4J keystore file>
m -Djavax.net.ssl.keyStorePassword=<oc4j keystore password>

3. Use Oracle Wallet Manager to export the user certificate from the Oracle HTTP
Server wallet file.

You can find the Oracle Wallet manager here:

ORACLE_HOME/bin/owm

The following is a sample path to a wallet file:
ORACLE_HOME/Apache/Apache/conf/ssl.wlt/default/ewallet.pl?2

You can refer to Oracle Wallet Manager documentation for how to export the
certificate.

4. Use the Java keytool utility to import the certificate into the OC4] keystore as a
trusted certificate.

5. Restart OPMN.
For example, the following command will stop, then restart all OPMN processes.
prompt> opmnctl startall

6. Enter the URL for the Web Service's Test page in a browser.

7. Enter values to test the service and press Invoke button

You should receive the expected SOAP message response.

How to Use the Web Services Test Page

Oracle Application Server Web Services provides a Test Page for each deployed Web
service. The Test Page can be used to exercise the operations exposed by either
JAX-RPC Web services or REST services.

= Viewing the Web Service WSDL

» Editing Values in the Test Page

» Testing WS-Security and Reliable Messaging Features

s Enabling HTTP Authentication for the Web Service Test
» Stress Testing the Web Service Operation

13-6 Web Services Developer's Guide

How to Use the Web Services Test Page

= Invoking the Web Service Test

Figure 13-1 displays the Web Service Test Page for the sayHello operation of the
HelloServiceEJdB JAX-RPC Web service.

Figure 13-1 Web Service Test Page

HelloServiceEJB endpoint
Far a farmal definition, please review the Service Description.
Diowwnload the JavaScript Stub (BETA) for HelloServicelnfFPort and see its docurmentation .

HelleServicelnfPort

Operation ;| sayHello v | & HTML Form O XML Source

Reliable Messaging [Jinclude In Header

HYWS-Security (Include In Header

= parametars

String_1 wad: string [#lInclude in Message

Show Transport Info

Perfarm stress test [Enahle

Irmvoke

CoopyTh WED 2003, 2005, 0 Ak . AT rese ned.

Viewing the Web Service WSDL

To view a JAX-RPC or REST Web service’s WSDL, click the Service Description link.
You can use your Web browser’s File>Save As operation to save the WSDL locally.

Click the Return button to return to the Test Page.
Figure 13-2 illustrates a fragment of a WSDL for a JAX-RPC Web service.

Testing Web Service Deployment 13-7

How to Use the Web Services Test Page

Figure 13-2 WSDL Fragment for a JAX-RPC Web Service

<7xml version="1.0" encoding="UTF-8" 7=
- =definitions xmins="http:f fschemas.kumlsoap.org/fwsdl /"
xmilns:soaplZz="http:f fschemas.xmlsoap.orgfwsdlfsoap1z /"
xmilns:soap="http:f fschemas.xmlsoap.orgfwsdlfsoapf"
wrmilns:xsd="http: f fwww . w3.orgf 2001 fXMLSchema"
xminsinsli="http:f foracle.j?ee.ws fejbfHelloftypes"
smilns:mime="http:f fschemas.xmlsoap.orgfwsdlfmime /"
wmilns:tns="http:f foracle.jZee.ws fejbfHello" name="HelloServiceEIB"
targetMamespace="http:f foracle.j2ee.wsfejbfHello" =
- =types=
- =schema zmins="http:f fwww. w3.orgf2001 fXMLSchema"”
wmilnsiwsdl="http:f fschemas.xmlsoap.orgfwsdl /"
wmilns:xsi="http: f fwww. w3.orgf 2001 fEMLSchema-instance"” xmins:soapll-
enc="http:f fschemas.«mlsoap.orgfsoap/fencodingf"
wmilns:itns="http:f foracle.jZee.wsfejbfHello ftypes"
elementFormbDefault="qualified"
targetMamespace="http:f foracle.j2Zee.wsfejbfHelloftypes" >
- =complexType name="sayHello"=
- “sEQUEnCE >
<element name="8tring_1" nillable="true" type="string" />
</sequence =
</complexType =
- =complexType name="sayHelloResponse" >
- “sEQUEnCE >
<element name="result" nillable="true" type="string" /=
</sequence =
</complexType =
<element name="sayHelloElement" type="tns:sayHello" /=
<element name="sayHelloResponseElement" type="tns:sayHelloResponse" /=
<fschemaz=
</ftypes >
- =messzage name="HelloServiceInf_sayHello"=
<part name="parameters" element="ns1:sayHelloElement" />

deo =

Figure 13-3 illustrates a fragment of a WSDL for a REST Web service.

13-8 Web Services Developer's Guide

How to Use the Web Services Test Page

Figure 13-3 WSDL Fragment for a REST Web Service

<7aml version="1.0" encoding="UTF-8" 7=
- «definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns: tns0="http:/ foracle.demoftypes/"
xmlns: java="http:/ /schemas.xmlsoap.org/wsdlfjava/"
xmlns: soapl2="http:/ fschemas.xmlsoap.org/wsdl/soap12 /"
xmlns: soap="http:f /schemas.xmlsoap.org/wsdl/soap/"
zmlns: format="http:/ fschemas.xmlsoap.org/wsdl/formatbinding /"
xmins: xsd="http:f fvsww . w3.org/2001/XMLSchema"
zmlns: mime="http:/ fschemas.xmlsoap.org/wsdl/mime/"
zmlns: tns="http:/ foracle.demo/" name="HelloWwWebService"
targetMamespace="http:/ foracle.demo /"=
- <typess
- <schema zmins="http:/ /vwwww.w3.org/2001/¥MLSchema"
#mlns:wsdl="http:/ fschemas.xmlsoap.org/wsdl/"
xmins: xsi="http:/ S veww . w3.org/ 2001/ ¥XMLSchema-instance" smins:soapll-
enc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns: tns="http:/ foracle.demo/types/"
targetMamespace="http:f foracle.demo/types/" elementFaormDefault="qualified">
- <complexType name="sayHelloTo"=
- <£sEquence>
<element name="name" type="string" nillable="true" /=
</sequencex
< /complexTypes
- <complexType name="sayHelloToResponse"x
- <£sEquence>

Editing Values in the Test Page

The Test Page enables you to test any of the operations exposed by a JAX-RPC or REST
Web service. By default, the editable parameters and attributes of the operation are
displayed in an HTML form. Optional parameters and attributes on the form are
indicated by a checkbox. Select the checkbox to provide a value for the parameter.

Note: To distinguish attributes from parameters in the HTML Form,
attributes are preceded with an "@" symbol.

Use the Operation drop-down list to select the Web service operation that you want to
test.

A "+" link in the form indicates that you can add additional copies of a structure.

An "X" link in the form indicates that you can remove copies of a structure that you do
not want.

How to Edit the Test Page as XML Source

Instead of entering values for a JAX-RPC or REST Web service operation in an HTML
form, you can enter them directly in XML source code. To do this, select the XML
Source radio button on the Test Page.

Testing Web Service Deployment 13-9

How to Use the Web Services Test Page

Note:

= If you enter values in the XML source, you do not have to precede

attributes with @ symbols.

= If you enter values for an operation in XML source, then toggle to
HTML Form mode, the values you entered will not be preserved.
The form will display, cleared of any values.

Testing WS-Security and Reliable Messaging Features

You can invoke a JAX-RPC Web service operation with different values for security
and reliability. To expose these parameters, expand the nodes next to Reliable

Messaging and WS-Security.

Note: REST Web Services, as implemented by OracleAS Web
Services, do not support security or reliability features. If you specify
any of the security or reliability options for a REST Web service

request, they will be ignored.

Figure 13-4 illustrates the parameters and default values for security and reliability in

the HTML form.

Tip: After you provide values for the parameters, you can click the
XML Source radio button to see the reliability and security headers

inserted into the SOAP request.

Figure 13-4 WS-Security and Reliable Message Components in the Test Page

Operation ;| sayHello v & HTML Forrm O XML Source

E Reliable Messaging [include In Header

Dplicate Elimination | an (= #sd:hoolean

Guaranteed Delivery [on s¥sd:hoolean
Reply To LIRL wsdstring
Reply Pattern | Pall A4 wadstring

Evws-Security [JInclude In Header

Liser Mame | | wadsting

Password | | xsdstring

Reliable Messaging Parameters

Expand the Reliable Messaging node to indicate that reliability features will
participate in the test. A reliability SOAP header will be inserted into the SOAP

envelope of the request.

You can choose different settings for these parameters:

13-10 Web Services Developer's Guide

How to Use the Web Services Test Page

= Duplicate Elimination—turning this feature "on" will insert the Duplicate
Elimination reliability header into the message. This tells the reliable endpoint to
eliminate duplicates of the message that will be sent. The default value is on.

= Guaranteed Delivery—turning this feature "on" will insert the Guaranteed
Delivery reliability header into the message. This tells the reliable endpoint that it
must acknowledge receiving the message. The default value is on.

s Reply To URL—indicates the URL to which acknowledgments and faults will be
sent for messages that want asynchronous acknowledgements. The URL is
typically the host name of the client, with the port that the listener is on.

= Reply Pattern—indicates how the client can interact with the endpoint. The values
can be Callback (asynchronous acknowledgment/fault), Response (synchronous
acknowledgement/fault), or Polling (the acknowledgment or fault must be polled
for). The default value is Polling.

See Also:

"Ensuring Web Service Reliability" in the Oracle Application Server
Advanced Web Services Developer’s Guide for more information on
reliability features.

WS-Security Parameters

Select the WS-Security checkbox to indicate that security features will participate in
the test. A security SOAP header will be inserted into the SOAP envelope.

You can choose different settings for these parameters:
s User Name

s Password

See Also:

Oracle Application Server Web Services Security Guide for more
information on the security features that are available for OracleAS
Web Services.

Enabling HTTP Authentication for the Web Service Test

Expand the Show Transport Info node to display the HTTP Authentication options for
the JAX-RPC or REST Web service. If the HTTP service you are testing is password
protected, the parameters under Show Transport Info enable you to provide a user
name and password. You can also specify a value for SOAP Action in case the service
needs to provide any specialized filtering on the SOAP request.

Figure 13-5 illustrates the Show Transport Info parameters in the Test Page.

Testing Web Service Deployment 13-11

How to Use the Web Services Test Page

Figure 13-5 HTTP Authentication and Stress Test Parameters in the Test Page

El Showr Transpart Info

HTTF Authentication [] Enahle

Llser | |
Mame

Password | |

SOAP Action |http:m:|racIe.jzee.wsIejh!Helln:savHeﬂ Enable

E Perform stress test [Enable
Mumber of Concurrent 10

Threads threads)
Murrnber of Loops) (loops)
Delay 1000

(milliseconds)

Stress Testing the Web Service Operation

Expand the Perform Stress Test node to display the options to create and configure a
continuous series of invocations of the JAX-RPC or REST Web service operation. The
Perform Stress Test options are displayed in Figure 13-5.

s Number of Concurrent Threads—The number of concurrent threads on which the
invocations should be sent. The default is 10 threads.

= Number of Loops—The number of times to invoke the operation. The default is 5
times for each thread.

s Delay—Number of milliseconds to wait between operation invocations. The
default is 1000 milliseconds (1 second).

When you invoke the test, a stress report page is returned. The report page identifies
the service endpoint and operation being tested, the size of the message sent, the
number of concurrent threads on which it is run, the number of times it is run on each
thread, and the delay between each operation invocation. Figure 136 illustrates s
fragment of a sample stress test report.

13-12 Web Services Developer's Guide

How to Use the Web Services Test Page

Figure 13-6 Sample Stress Test Report

Stress Report

Endpriant UREL Fittpe b Tpo s otmede eoc 388 Mhe T Service-cjo helloSeraice-eh
Opemation Name sayHella
Sime of Weecamm 1}

Sivegs Test Parameters

Start Ciste Wed &ug 73 172144 DT 2004
et Ivoeation Duretion A0z

Marher of covearent theads 10

Hmishie of Inopa 5

Delay bebween inoeatons 1000

Irome akinm Azzme zate: Report

Comt LR Iin Tl Blate
50 17 Boims Oms 140 ms 12 5ifs
ThyeadTaop Tirnz

an 140

an 140 ms

40 140wz

an 147500

dan 140 me

0 140ms

Invoking the Web Service Test

After you have specified the parameter values and functionality you want to test for
the operation, you can send the message to the Web service endpoint. For a JAX-RPC
Web service, the message is sent to the service as a SOAP request. For a REST Web
service, the message can be sent as either a SOAP request, or an XML REST GET, or
POST operation.

= Invoking the Test for a JAX-RPC Web Service
= Invoking the Test for a REST Web Service

Invoking the Test for a JAX-RPC Web Service

Click the Invoke button to send the message as a SOAP request to the JAX-RPC Web
service endpoint. The Test Page displays the response from the service. The response
can be displayed in formatted XML (default) or as raw XML (wire format).

Testing Web Service Deployment 13-13

How to Use the Web Services Test Page

Figure 13-7 Response from a JAX-RPC Web Service

Test Result

Wiewy: Formatied HhL | Baw xhL

=env:Envrelope
xnlns:env="http: //schenas.xunlsoap.org/soapsenvelope s
wxnlns:xsd="http: //wmmr. w3, org/ 2001 /XML A3chena™
xmlns:xsi="http: /. wi. org/ 2001 XML A3chena-instance™
xmlns:nsl="http: fforacle.jZee.ws/elb/Hello/types=
<eny:Body-
-n=0:zayHelloResponseElement -
“mEl:result-HELLO!! ¥ou just said :Hello</nsl:result-
= fnsh: sayHelloResponseElement -
<fenvr:Body-
= fenvr:Envelope-

Invoking the Test for a REST Web Service

13-14

The Test Page for a REST Web service enables you to send the test message to the REST
service as either an XML REST POST or GET operation. In addition, OracleAS Web
Services allows you the option of sending the message as a SOAP request.

The Test Page provides the following buttons that enable you to invoke the Web
service operation on the test message.

s Invoke—invokes the request as a SOAP request.

= Invoke REST POST—generates and invokes a REST POST request.

» Invoke REST GET—redirects the page to the GET URL.

Figure 13-8 illustrates a Test Page for a REST-enabled Web service operation.

Web Services Developer's Guide

How to Use the Web Services Test Page

Figure 13-8 Test Page for a REST Web Service Operation

HelloWebService endpoint

Far a farmal definition, please review the Service Description.

Download the JavaScript Stub (BETA) for HelloWwehSemiceSoapHtpFPort and see its documentation .

HelloWebServiceSoapHttpPort

Operation ;| sayHelloTo % | (& HTML Form O ®ML Source

Reliable Messaging Cinclude In Header

HYs-Security [include In Header

=l parameters

narne wsd:string [“]Include In Message

Mote: XML source wew contents will not He refliected in the AT form wiew

Show Transport Info

Perfarm stress test [Enable

Imvoke

| Invoke RESTPOST || Invake REST GET

Invoke Click the Invoke button to send the XML REST request to the service as a SOAP
message over HTTP. The service returns a SOAP response message to the Test Page
application. The response can be displayed in either formatted XML (default) or raw
XML (wire format).

Figure 13-9 illustrates a SOAP response from a REST Web service in formatted XML.

Testing Web Service Deployment 13-15

How to Use the Web Services Test Page

Figure 13-9 Response from a REST Service as a SOAP Response in Formatted XML

Test Result

Wiewy: Formatied HhL | Baw xhL

=env:Envrelope
xnlns:env="http: //schenas.xunlsoap.org/soapsenvelope s
wxnlns:xsd="http: //wmmr. w3, org/ 2001 /XML A3chena™
¥olns:xsi="http: /. wi. org/ 2001 /=ML S3chena-instance
xmlns:nsl="http: /foracle. deno/types /"=
<eny:Body-
-n=0: zayHelloToResponseElement -
“msl:result>-Hello hello</nsl:result-
= fnsh: sayHelloToResponseElement =
<fenvr:Body-
= fenvr:Envelope-

rr

Invoke REST POST Click Invoke REST POST on the Test Page to send the message to
the REST Web service. The response is returned to the Test Page application. The
response can be displayed in either formatted XML (default) or raw XML (wire
format).

Note:

= REST Web Services, as implemented by OracleAS Web Services,
do not support security or reliability features. If you specify these
options for a REST Web service request, they will be ignored.

= REST Web service responses do not include the SOAP Envelope
or Body elements.

Figure 13-10 illustrates a REST Web service response from a REST POST operation.

Figure 13—-10 Response from a REST POST Operation in Formatted XML

Test Result

Wiewy: Formatied HhL | Baw xhL

~n=0:zayHelloToResponseElement
xmlns:nsl="http: /foracle. deno/types /"=
“msl:result>-Hello hello</nsl:result-
=fnsh: sayHelloToResponseElement =

Invoke REST GET Click Invoke REST GET on the Test Page to send the request to the
service as an HTML GET command in the Web browser. The response is displayed in
the browser without the Test Page application.

13-16 Web Services Developer's Guide

How to Disable the Web Services Test Page

Note:

= REST Web Services, as implemented by OracleAS Web Services,
do not support security or reliability features. If you specify these
options for a REST Web service request, they will be ignored.

= REST Web service responses do not include the SOAP Envelope
or Body elements.

Figure 13-11 illustrates the REST Web service response from a REST GET operation.

Figure 13-11 Response from a REST GET Operation

- <ns0:sayHelloToResponseElement
xmlns:ns0="http:/foracle.demo/types/">
<nsO:result=Hello hello</ns0: result=

</n=0:sayHelloToResponseElement =

How to Disable the Web Services Test Page

Disabling the Test Page allows you to increase security by reducing the externally
visible details of an application that exposes Web services.

To disable the Test Page, follow these general steps:

1. Extract the oracle-webservices.xml deployment descriptor from the JAR file
before deployment.

2. Insert the boolean <expose-testpage> element set to false in the
<webservice-description> section of the deployment descriptor.

Example 13-2 illustrates this step.

3. Replace the edited oracle-webservices.xml deployment descriptor in the
JAR file.

4. Deploy the JAR file as usual.

Note: WebServicesAssembler will overwrite this entry if you
reassemble the Web service with a deployment descriptor passed in
with the ddFileName command.

Example 13-2 illustrates a fragment of an oracle-webservices.xml deployment
descriptor that disables the Test Page.

Example 13-2 Disabling the Web Services Test Page in the oracle-webservices.xml File

<oracle-webservices>

<webservice-description name="with-test-page-blocked">
<expose-testpage>false</expose-testpage>

</webservice-description>

Testing Web Service Deployment 13-17

How to Obtain a Web Service WSDL Directly

</oracle-webservices>

How to Obtain a Web Service WSDL Directly

If you do not use the Web Services Test Page to get the WSDL file for a Web service,
you can obtain it directly.

To obtain the WSDL, use the Web service URL and append a query string. The format
for the URL to obtain the WSDL service description is:

http://host:port/context-root/service?WSDL

WSDL can be either uppercase or lowercase. Table 13-1 on page 13-2 contains a
description of the URL components.

This URL returns a WSDL description in the form service . wsdl. The service . wsdl
description contains the WSDL for the Web service named service, located at the
specified URL. Using the WSDL, you can build a client application to access the Web
service.

Limitations
See "Testing Web Service Deployment" on page F-9.

Additional Information

For more information on Web services that can use the Web Services Test Page, see the
following chapters:

» Chapter 6, "Assembling a Web Service from WSDL"

» Chapter 7, "Assembling a Web Service with Java Classes"
» Chapter 8, "Assembling a Web Service with EJBs"

s Chapter 10, "Assembling Database Web Services"

s Chapter 12, "Assembling REST Web Services"

= "Using Web Service Providers" in the Oracle Application Server Advanced Web
Services Developer’s Guide.

For more information on Web service security and reliability, see these resources:

» for adding security to a Web service, see the Oracle Application Server Web Services
Security Guide.

= for adding reliability to a Web service, see "Ensuring Web Service Reliability" in
the Oracle Application Server Advanced Web Services Developer’s Guide.

13-18 Web Services Developer's Guide

14

Assembling a J2EE Web Service Client

This chapter describes how to develop a Web service client from within a J2EE
container. Any component of a J2EE 1.4-compliant container, such as a version 2.4
servlet, 2.1 EJB, or 2.0 JSP application can act as a J2EE Web service client.

This chapter contains the following sections:

s Understanding J2EE Web Service Clients

= How to Assemble a J2EE Web Service Client

= Writing J2EE Web Service Client Code

s Understanding the Packaging Structure for J2EE Clients

See Also:

Chapter 15, "Assembling a J2SE Web Service Client" for information
on assembling a Web service client that runs in the J2SE environment.

Understanding J2EE Web Service Clients

The J2EE platform provides an environment that allows client applications to access
Web services. In a J2EE environment, the deployment descriptors define the client-side
Web service access information. This access information can be changed at deployment
time. In addition, the J2EE platform handles the underlying work of creating and
initializing access to Web services.

J2EE Web service clients inherit the advantages of the J2EE platform, such as
declarative security, transactions, and instance management. In addition to these
platform characteristics, the OracleAS Web Services management framework makes it
possible to configure SOAP logging and auditing, WS-Reliability, and WS-Security.

Unlike the J2SE Web service client, the J2EE client resides in and is managed by the
OC4] container. It requires no proxy code generation or packaging. You get a portable
client application with Web service access that is easy to embed in JSPs, servlets, and
EJBs. EJB variants such as Container Managed Persistence (CMP), Bean Managed
Persistence (BMP), and Message-Driven Beans (MDB) can call out to Web service
endpoints.

How to Assemble a J2EE Web Service Client

Required information—These subsections contain the steps that are required for
assembling a J2EE Web service client:

» Prerequisites

Assembling a J2EE Web Service Client 14-1

How to Assemble a J2EE Web Service Client

Steps to Assemble a J2EE Web Service Client
How to Add J2EE Web Service Client Information to Deployment Descriptors

Optional information—These subsections may be optional, depending on the type of
client you are writing, or the functionality they employ:

Prerequisites

Steps to Deploy and Run an Application Client Module
How to Access a Web Service from a Client in the Same Module
How to Add OC4J-Specific Platform Information for Deployment and Runtime

How to Add JAX-RPC Handlers for Message Processing to Deployment
Descriptors

Before you begin, supply the following files and information.

The WSDL file or location from which the service endpoint interface and JAX-RPC
mapping file will be generated.

The location where the generated service endpoint interface and JAX-RPC
mapping file will be stored.

Steps to Assemble a J2EE Web Service Client

Use the WebServicesAssembler tool to assemble a service endpoint interface and the
J2EE Web service client. Then, edit the deployment descriptor to add Web service
access information. The following steps describe these tasks in more detail.

1.

Provide the WSDL and the information described in the Prerequisites section as
input to the WebServicesAssembler genInterface command.

In the following example, the HelloService.wsdl is used to generate
HelloInterface in the oracle.demo.hello package.

Command line:

java -jar wsa.jar
-genInterface
-wsdl HelloService.wsdl
-output build
-packageName oracle.demo.hello

Ant task:

<oracle:genInterface wsdl="${etc.webl.dir}/HelloService.wsdl"
output="build"
packageName="oracle.demo.hello"

/>

In this command and Ant task:

s genInterface—Creates a service endpoint interface for each port type and a
Java value type class (beans) for any complex type defined in a WSDL. It also
creates a JAX-RPC mapping file that describes the mapping between the XML
schema types and the Java value type classes. See "genInterface" on
page 18-31.

s wsdl—Specifies the absolute file path, relative file path, or URL to a WSDL
document. See "wsdl" on page 18-65.

14-2 Web Services Developer's Guide

How to Assemble a J2EE Web Service Client

= output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created. See "output” on page 18-48.

» packageName—Specifies the package name that will be used for generated
classes if no package name is declared in the JAX-RPC mapping file. See
"packageName" on page 18-48.

2. Edit the deployment descriptor of the J2EE component to add a <service-ref>
element. This element captures all of the Web service access information.

See "How to Add J2EE Web Service Client Information to Deployment
Descriptors" on page 14-4 for a sample of the <service-ref> element and its
subelements.

If the client also provides message processing in the form of JAX-RPC handlers,
then these also must be added to the deployment descriptor. See "How to Add
JAX-RPC Handlers for Message Processing to Deployment Descriptors" on
page 14-12 for more information on adding handler information to the
deployment descriptor.

3. Assemble the client deployment module into an EAR file:
a. Compile all the client files.
b. Copy deployment descriptor files to their appropriate locations.

For example, for an E]B, copy the WSDL to META-INF/wsdl/, the JAX-RPC
mapping file and the deployment files such as ejb-jar.xml and
orion-ejb-jar.xml to META-INF, and so on. For a description of where
files should reside for servlet, E]JB, or JSP Web service clients, see
"Understanding the Packaging Structure for J2EE Clients" on page 14-17.

c. Package the client deployment module.

Note: The current tool set cannot package J2EE Web service clients.
You must package the client manually. "Understanding the Packaging
Structure for J2EE Clients" on page 14-17 provides more information
on how to package a J2EE Web service client.

4. Deploy the client deployment module.

The following steps will deploy an EJB, JSP, or other J2EE client. If you are
deploying an application client, skip these steps and continue with "Steps to
Deploy and Run an Application Client Module".

a. Start OC4]J. The following is a sample command to start OC4J.

java -jar oc4j.jar

b. Deploy the client module into OC4]J. The following is a sample deployment
command.

java -jar admin_client.jar deployer:ocdj:<oc4jHost>:<oc4jPort> <adminID>
<adminPassword>

-deploy

-file .\client\myClient.ear

-deploymentName myClient

-bindWebApp default-web-site

The oc4jHost and oc4jPort variables are the host name and port number
of the OC4J server. The adminIDand adminPassword are the OC4]J server

Assembling a J2EE Web Service Client 14-3

How to Assemble a J2EE Web Service Client

user name and password. The following are sub-switches of the -deploy
switch.

s file—path and filename of the EAR file to deploy.

s deploymentName—user-defined application deployment name, used to
identify the application within OC4]J.

» bindWebApp—specifies the Web site to which the web application should be
bound. This is the Web site that will be used to access the application.

5. Run the EJB or JSP client.

If you are running an application client, see "Steps to Deploy and Run an
Application Client Module".

How to Add J2EE Web Service Client Information to Deployment Descriptors

You must edit the J2EE component's deployment descriptor to add information that
allows the component to access the Web service endpoint.

s For an EJB 2.1 Web service client, edit the META-INF/ejb-jar.xml deployment
descriptor.

s For a]JSP 2.0 or servlet Web service client, edit the WEB-INF /web.xml
deployment descriptor.

» For an application client, edit the META-INF/application-client.xml
deployment descriptor.

Edit the deployment descriptor to add a <service-ref> element. By adding this
element, you can employ an EJB, JSP, or servlet as a Web service client that can invoke
a remote Web service. The <service-ref> element and its subelements capture all
the Web service access information, such as the location of the WSDL and mapping
file, the service interface, the service ports, their related service endpoint interfaces,
and so on. For a complete listing of all the information that can be included in the
<service-ref> element, see the service-ref (J2EE client) schema.

http://java.sun.com/xml/ns/j2ee/j2ee_web_services_client_1_1.xsd

Example 14-1 illustrates a sample <service-ref> element that has been added to a
web . xml deployment descriptor for the MyHelloService Web service. The
<service-ref> subelements in this example are described in Table 14-1. Note that
this sample <service-ref> uses only a subset of all of the Web service access
information available in the schema.

Example 14-1 Contents of a Sample service-ref Element

<service-ref>
<service-ref-name>service/MyHelloServiceRef</service-ref-name>
<service-interface>javax.xml.rpc.Service</service-interface>
<wsdl-file>WEB-INF/wsdl/HelloService.wsdl</wsdl-file>
<jaxrpc-mapping-file>WEB-INF/HelloService-java-wsdl-mapping.xml
</jaxrpc-mapping-file>
<service-gname xmlns:service-gname_ns_ ="http://hello.demo.oracle/">
service-gname_ns__ :HelloService</service-gname>
<port-component-ref>
<service-endpoint-interface>oracle.demo.hello.HelloInterface
</service-endpoint-interface>
<port-component-1link></port-component-1ink>
</port-component-ref>
</service-ref>

14-4 Web Services Developer's Guide

How to Assemble a J2EE Web Service Client

Table 14-1 describes the <service-ref> subelements used in this sample.

Table 14-1 Subelements of the <service-ref> Element

service-ref Subelement

Description

<jaxrpc-mapping-file>

<port-component-link> (optional)

<port-component-ref>

<service-endpoint-interface>

<service-interface>

<service-qname>

<service-ref-name>

<wsdl-file>

Specifies the fully-qualified path to the JAX-RPC
mapping file.

If the Web service is implemented in the same module
as the client, you can add this element to access the
service. For more information on this element, see
"How to Access a Web Service from a Client in the
Same Module".

Declares a client dependency on the container for
resolving a service endpoint interface to a WSDL port.
It optionally associates the service endpoint interface
with a particular port-component. The container uses
this only for a Service.getPort (Class) method
call.

Specifies the fully-qualified Java class that represents
the service endpoint interface of a WSDL port.

Specifies the fully-qualified class name of the JAX-RPC
Service interface the client depends on. In most cases
the value will be javax.xml.rpc.Service. A
JAX-RPC generated Service Interface class may also be
specified.

Specifies the service QName for the service:

= xmlns:ns—maps to the targetNamespace
value in the WSDL.

= ns—maps to the service name attribute in the
WSDL.

Specifies the JNDI path and service name assigned by
the client.

Specifies the fully-qualified path to the WSDL file.

Steps to Deploy and Run an Application Client Module

The following steps describe how to deploy and run an application client module.
Unlike EJB, JSP, or other J2EE clients, you must specify the directory where the
generated deployment-cache. jar will be stored. You must also specify the location
of the deployment-cache. jar in the run command.

1. Start OC4J. The following is a sample command to start OC4]J.

java -jar oc4j.jar

2. Deploy the application client module into OC4J.

The following is a sample deployment command.

java -jar admin_client.jar deployer:ocdj:<oc4jHost>:<oc4jPort> <adminID>

<adminPassword>
-deploy

-file .\client\myAppClient.ear
-deploymentName myAppClient
-deploymentDirectory C:\home\myDir

Assembling a J2EE Web Service Client 14-5

How to Assemble a J2EE Web Service Client

This command creates a deployment-cache. jar file and stores it in
C:\home\myDir.

The oc4jHost, oc4jPort, adminID, and adminPassword variables and the
file and deploymentName sub-switches of —~deploy are described in Step 4b in
"Steps to Assemble a J2EE Web Service Client" on page 14-2.

The deploymentDirectory sub-switch indicates the location where OC4]J
deploys deployment-cache. jar. In this example, OC4J deploys it into
C:\home\myDir. If you do not specify this sub-switch, OC4J deploys the
application into the 0C4J_HOME/application-deployments/ directory. If you
supply the empty string (" "), OC4]J will always read the deployment
configurations from the EAR file each time the application is deployed.

3. Run the client deployment module. For an application client, the location of the
deployment-cache.jar must be present in the classpath. The following is a
sample run command:

java -classpath .:C:\home\myDir\deployment-cache.jar:'ocdjclient.jar"'
:appclient.jar oracle.myappclient.classname

In this sample, it is assumed that appclient. jar contains the class
oracle.myappclient.classname.

How to Access a Web Service from a Client in the Same Module

To enable the Oracle Application Server to access a Web service that resides in the
same module as the client, add the <port-component-1ink> element to the
<service-ref> clause of the client deployment descriptor and add the
PortComponentLinkResolver property to the system-application.xml
configuration. The following steps summarize these tasks.

1. Add the <port-component-1link> element to the <service-ref> clause in
the J2EE client deployment descriptor.

"How to Add a Port Component Link to a J2EE Client Deployment Descriptor"
provides more information on this step.

2. Shut down the Oracle Application Server.

3. Add the PortComponentLinkResolver property to the
system-application.xml server configuration file. This file resides in the
directory ORACLE_HOME/ j2ee/home/config.

Add the following lines to this file.

<ejb-module id="PortComponentLinkResolver"
path="../../../webservices/lib/wsserver.jar"/>

4, Re-start the Oracle Application Server.

How to Add a Port Component Link to a J2EE Client Deployment Descriptor

If the Web service resides in the same container as the client, then you can access the
service by adding the <port-component-1ink> element to the <service-ref>
clause of the J2EE client deployment descriptor (web.xml, ejb-jar.xml, or
application-client.xml).

The <port-component-1link> element links a <port-component-ref> toa
specific port component in the server-side deployment descriptor. The
<port-component-name> element resides in the server-side deployment descriptor,
webservices.xml.

14-6 Web Services Developer's Guide

How to Assemble a J2EE Web Service Client

The following examples illustrate this relationship. The webservices.xml fragment
in Example 14-2 illustrates the deployment configuration for the Web service that
exposes the E]B InterModuleEjb. In this fragment, the port component is named
InterPC. Example 14-3 illustrates a fragment of a client-side deployment descriptor
where this name is referenced from the <port-component-1ink> element in the
<service-ref> clause. The presence of this element allows the J2EE client to look up
the Web service.

These examples assume that the Web service is running in the same container as the
J2EE Web service client.

Example 14-2 webservices.xml Fragment, Identifying a Port Component Name

<webservices>
<webservice-description>
<webservice-description-name>InterModuleEjb</webservice-description-name>
<wsdl-file>META-INF/wsdl/InterModuleService.wsdl</wsdl-file>
<jaxrpc-mapping-file>META-INF/InterModuleService.xml</jaxrpc-mapping-file>
<port-component>
<port-component-name>InterPC</port-component-name>
<wsdl-port
xmlns:wsdll="http://PortCompLink.org/ejb/inter">wsdll:InterModuleSeiPort
</wsdl-port>
<service-endpoint-interface>oracle.demo.InterModuleSei
</service-endpoint-interface>
<service-impl-bean>
<ejb-link>InterModuleEjb</ejb-1link>
</service-impl-bean>
</port-component>
</webservices>

Example 14-3 illustrates a fragment of a client-side deployment descriptor where the
value of the <port-component-name> element in the server-side deployment
descriptor is referenced from the <port-component-1link> element in the
<service-ref> clause. The presence of this element allows the client to look up the
Web service.

Note that the value of the port component name in the <port-component-link> is
prefixed by PortCompLinkEjb-ejb. jar#. This value qualifies the name of the EJB
with the JAR file where it resides.

Example 14-3 <port-component-link> Element in the Client-Side Deployment Descriptor

<service-ref>
<service-ref-name>service/portcomplink/inter</service-ref-name>
<service-interface>javax.xml.rpc.Service</service-interface>
<wsdl-file>META-INF/wsdl/InterModuleService.wsdl</wsdl-file>
<jaxrpc-mapping-file>META-INF/InterModuleService.xml</jaxrpc-mapping-file>
<port-component-ref>
<service-endpoint-interface>oracle.demo.InterModuleSei
</service-endpoint-interface>
<port-component-link>PortCompLinkEjb-ejb.jar#InterPC</port-component-link>
</port-component-ref>
</service-ref>

How to Add OC4J-Specific Platform Information for Deployment and Runtime

The <service-ref-mapping> element can appear as a subelement of the
<orion-web-app> element in the orion-web.xml, orion-ejb-jar.xml, or

Assembling a J2EE Web Service Client 14-7

How to Assemble a J2EE Web Service Client

orion-application-client.xml proprietary deployment descriptor files. It
defines OC4J-specific runtime and deployment-time generated settings for a Web
service reference. You can use this element to configure the following information:

= configure the client to consume stateful Web Services
= configure the client to make JMS transport calls

= configure security, logging, and auditing quality of service (QOS) features for the
corresponding Web service.

The <service-ref-mapping> element is used in conjunction with the
<service-ref> element that appears in the standard deployment descriptors. The
<service-ref> element contains the information that lets you employ an E]B, JSP, or
servlet as a Web service client that can invoke a remote Web service.

Note that whenever a <service-ref> element can appear in a web.xml,
ejb-jar.xml, or application-client.xml file, a corresponding
<service-ref-mapping> element can appear in an orion-web.xml,
orion-ejb-jar.xml, or orion-application-client.xml file.

The <service-ref-mapping> element's supported features are described in the
service-ref-mapping-10_0.xsd that is imported into the orion-web,
orion-ejb-jar,and orion-application-client XSDs. Currently, there is no
tool support, such as Oracle JDeveloper wizards, for providing values to
service-ref-mapping-10_0.xsd. You must refer to the schema and edit the XML
file by hand.

In its simplest case, the <service-ref-mapping> element contains only
deployment information. Do not add run-time or quality of service elements if you do
not want your client to be managed. A managed client is more expensive in terms of
performance.

Example 144 contains a sample <service-ref-mapping> fragment that can be
appear in a proprietary deployment descriptor. So that you can see this element's
hierarchy, all the subelements are displayed. The tables following the XML sample
describe the subelements.

Example 14-4 Sample <service-ref-mapping> Segment

<service-ref-mapping name="service/MyJAXRPCTime">

<service-impl-class>oracle.demo.MyTime_Impl</service-impl-class>

<wsdl-file final-location="file:/myhome/mytime/client-wsdl/MyJAXRPCTime.wsdl">

<wsdl-location wsdl-override-last-modified=19NOV>

<service-gname namespaceURI="urn:oracle-ws" localpart="MyService" />

<stub-property>

<name>...</name>

<value>...</value>

</stub-property>

<call-property>
<name>javax.xml.rpc.service.endpoint.address</name>
<value>http://myhost:8888/time-ejb/timeport</value>

</call-property>

<port-info>
<wsdl-port>
<service-endpoint-interface>time.TimeService</service-endpoint-interface>
<stub-property>

<name>another.endpoint.address</name>
<value>http://anotherhost:8888/time-ejb/timeport</value>

</stub-property>

14-8 Web Services Developer's Guide

How to Assemble a J2EE Web Service Client

<call-property>
<name>. ..</name>
<value>...</value>

</call-property>

<runtime>...</runtime>

<operations>

<operation name="echo">

<runtime>

<auditing request="true" response="false" fault="false"/>
<reliability><reject-non-reliable-messages
value="false"/></reliability>

</runtime>
</operation>
</operations>
</port-info>
</service-ref-mapping>

Table 14-2 describes the subelements of <service-ref-mapping>.

Table 14-2 Subelements of the <service-ref-mapping> Element

Element Name

Description

<call-property>

<port-info>

<service-impl-class>
<service-qname>

<stub-property>

<wsdl-file>

Defines the call property values applicable to all ports. This is a
convenient way to specify a property without specifying the
port name. The name and value subelements of
<call-property> are described in Table 14-6 on page 14-12.

Note that the <port-info> element also contains a
<call-property> element. If call property values are
specified for a particular port inside the <port-info> tag, then
they will override the values set here.

Defines a port within a service-reference. See Table 14-3 on
page 14-10 for a description of the subelements of
<port-info>.

Defines a deployment-time generated name of a Service
implementation.

Derived at deployment-time, this element contains the QName of
the Web service.

Defines the stub property values applicable to all ports. This is a
convenient way to specify a property without specifying the
port name. The name and value subelements of
<stub-property> are described in Table 14-6 on page 14-12.

Note that the <port-info> element also contains a
<stub-property> element. If stub property values are
specified for a particular port inside the <port-info> tag, then
they will override the values set here.

Defines a deployment-time generated name for the WSDL file.
This element has this attribute:

s final-location—points to the copy of the WSDL
document associated with the service-ref in the
standard deployment descriptor.

Assembling a J2EE Web Service Client 14-9

How to Assemble a J2EE Web Service Client

Table 14-2 (Cont.) Subelements of the <service-ref-mapping> Element

Element Name Description

<wsdl-location> (Optional) Contains a valid URL pointing to a WSDL document.
If a URL is specified, then the WSDL document at this URL will
be used during deployment instead of the WSDL document
associated with the service-ref in the standard deployment
descriptor. Sample values for <wsdl-location> include:
http://hostname:port/myservice/myport?WSDL and
file:/home/userl/myfinalwsdl.wsdl.

This element has this attribute:

s wsdl-override-last-modified—this optional string
value is generated at deployment time and lists the time
when the WSDL file was last modified.

Table 14-3 describes the subelements for the <port-info> element. This element
provides all of the information for a port within a service reference. You can specify
either <service-endpoint-interface> or <wsdl-port> to indicate the port that
the container will use for container-managed port selection. If you specify both, then
the container will use the <wsdl-port> value. If you do not specify <wsdl-port> or
<service-endpoint-interface>, then the <port-info> property values will
apply to all available ports.

The <port-info> element also contains subelements that let you specify quality of
service features that are available for the port and its operations.

Table 14-3 Subelements of the <port-info> Element

Element Name Description

<call-property> Defines the call property values applicable to the port defined
by the <port-info> element. The name and value
subelements of <call-property> are described in Table 14-6
on page 14-12.

Note that the <service-ref-mapping> element also
contains a <call-property> subelement (described in
Table 14-2 on page 14-9). If call property values are specified
for a particular port inside the <port-info> tag, then they
override the <call-property> element values set under
<service-ref-mapping>.

<operations> Contains a sequence of elements, one for each operation. The
<operation> subelement indicates an individual operation.
Each of these subelements contain client-side quality of service
configuration for a single operation provided by the referenced
Web service. For a description of the <operations>
subelement, see Table 14—4 on page 14-11.

<runtime> Contains client-side quality of service runtime information
(security and/or reliability) applicable to all the operations
provided by the referenced Web service. Each child element
contains configuration for a specific feature.

<service-endpoint-interface> Specifies the fully-qualified path to the service endpoint
interface of a WSDL port. The container uses this port for
container-managed port selection.

14-10 Web Services Developer's Guide

How to Assemble a J2EE Web Service Client

Table 14-3 (Cont.) Subelements of the <port-info> Element

Element Name

Description

<stub-property>

<wsdl-port>

Defines the stub property values applicable to the port defined
by the <port-info> element. The name and value
subelements of <stub-property> are described in Table 14-6
on page 14-12.

Note that the <service-ref-mapping> element also
contains a <stub-property> subelement (described in
Table 14-2 on page 14-9). If stub property values are specified
for a particular port inside the <port-info> tag, then they
override the <stub-property> element values set under
<service-ref-mapping>.

Specifies the name of a port in the WSDL that the container will
use for container-managed port selection.

In container-managed port selection, the container manages
calls to the instance directly, and the client requests a generic
port that might be used to access multiple different instances.
This element has the following attributes

. localpart—The local part of a WSDL name. For
example, authenticateHeader.

= namespaceURI—The namespace URI of a WSDL. For
example, http://oracle.j2ee.ws/Header

Table 144 describes the <operation> subelement of the <operations> element.

Table 14-4 Subelement of the <operations> Element

Element Name

Description

<operation>

Specifies client-side quality of service configuration for a
particular operation provided by the referenced Web service.
The configuration appears within this element's <runtime>
subelement. The <runtime> subelement is described in
Table 14-5.

This <operation> element has these attributes:

= inputName—contains the input name of the operation
from the WSDL. It is required only if the name attribute
cannot be used to uniquely identify the operation.

= name—associates the contained quality of service
configuration to a specific operation. The value of the
attribute must match the operation name from the WSDL.

= outputName—contains the output name of the operation
from the WSDL. It is required only if the name and input
attributes cannot be used to uniquely identify the operation.

Table 14-5 describes the <runtime> subelement of the <operation> element.

Table 14-5 Subelement of the <operation> Element

Element Name

Description

<runtime>

Contains client-side quality of service configuration for
individual operations within the port. Each child element
contains configuration for one of the quality of services features
(security, reliability, and /or auditing).

Table 14-6 describes the name and value subelements of the <stub-property> and
<call-property> elements.

Assembling a J2EE Web Service Client 14-11

Writing J2EE Web Service Client Code

Table 14-6 Subelements of <stub-property> and <call-property> Elements

Element Name Description

<name> Defines the name of any property supported by the JAX-RPC
Call or Stub implementation. See the output of the Javadoc
tool for the valid properties for javax.xml.rpc.Call and
javax.xml.rpc.Stub.

<value> Defines a JAX-RPC property value that should be setona Call
object or a Stub object before it is returned to the Web service
client.

How to Add JAX-RPC Handlers for Message Processing to Deployment Descriptors

J2EE Web service clients can use JAX-RPC handlers to provide additional message
processing facilities for Web service endpoints. For example, you can use a handler to
process a SOAP message.

You must enter the handler information as a subelement of <service-ref> inaJ2EE
Web service client's deployment descriptor. The <handler> element encapsulates this
information.

See Also:

"Client-Side JAX-RPC Handlers" on page 16-4 for more information on
client-side handlers and how to register them with the deployment
descriptor.

Writing J2EE Web Service Client Code
This section contains the following subsections:
= Steps for Writing a J2EE Web Service Client
= How to Configure a J2EE Web Service Client for a Stateful Web Service
= How to Configure a J2EE Web Service Client to Make JMS Transport Calls
= How to Enable Chunked Data Transfer for HTTP 1.1
s How to Set a Character Encoding for a SOAP Message

Steps for Writing a J2EE Web Service Client

This section describes some of the common code that allows a J2EE component to
access a Web service. At runtime, all J2EE Web service clients use a standard JNDI
lookup to find Web services. The following steps describe the general pattern for
coding a JNDI lookup that could be used within a servlet, EJB, or a JSP.

1. Create the initial JNDI context.

Context ic = new InitialContext();

The OC4]J container sets up the initial context properties.

2. Locate the service using the 1ookup method from the initial context. The
comp/env/service/MyHelloServiceRef in Example 14-5 provides the
service reference. The JNDI call returns a reference to a service object.

Service service = (Service)
ic.lookup("java:comp/env/service/MyHelloServiceRef");

14-12 Web Services Developer's Guide

Writing J2EE Web Service Client Code

The client always accesses the service implementation by using a JNDI lookup.
This lookup returns a container-managed service reference. This allows the
container to intervene and provide the client with additional service functionality,
such as logging, security, and management.

3. Getahandle to the service port using the get Port method on the
container-managed service object. Cast the return value to the interface type.

HelloInterface helloPort = (HelloInterface) service.getPort (portQName,
oracle.demo.hello.HelloInterface.class);

Note that this step assumes that a QName has already been defined. For example:

QName portQName = new QName ("http://hello.demo.oracle/", "HelloInterfacePort");

Instead of getPort, the client can make a DII Web service call by using the
service object to get a handle on the Call object.

Call call = service.createCall (new QName ("http://hello.demo.oracle/",
"HelloInterfacePort");

4. Call a method on the remote object.

resultFromService = helloPort.sayHello (name) ;

Example 14-5 illustrates code that a servlet or JSP Web service client can use to look up
a Web service.

Example 14-5 Serviet or JSP Code to Look Up a Web Service

public String consumeService (String name)

Context ic = new InitialContext();
Service service =
(Service)ic.lookup("java:comp/env/service/MyHelloServiceRef") ;
// declare the qualified name of the port, as specified in the wsdl
QName portQName= new QName ("http://hello.demo.oracle/", "HelloInterfacePort");
//get a handle on that port : Service.getPort (portQName, SEI class)
HelloInterface helloPort =
(HelloInterface)
service.getPort (portQName, oracle.demo.hello.HelloInterface.class);
//invoke the operation : sayHello()
resultFromService = helloPort.sayHello (name);

How to Configure a J2EE Web Service Client for a Stateful Web Service

J2EE Web service clients can be configured, either by using configuration files or
programmatically, to consume stateful Web services.

= How to Configure a J2EE Client with Deployment Descriptor Files
= How to Configure a J2EE Client Programmatically

See Also:

"Exposing Java Classes as a Stateful Web Service" on page 7-9 for more
information on stateful Web services.

Assembling a J2EE Web Service Client 14-13

Writing J2EE Web Service Client Code

14-14

How to Configure a J2EE Client with Deployment Descriptor Files

A J2EE client can be configured to consume stateful Web services by editing the
<service-ref-mapping> clause of the appropriate Oracle proprietary deployment
descriptor (either orion-web.xml, orion-ejb-jar.xml, or
orion-application-client.xml).

Within the <service-ref-mapping> clause, add a <stub-property> element
with its <name> subelement set to the javax.xml.rpc.session.maintain
property and its <value> subelement set to true.

The value of the J2EE standard property javax.xml.rpc.session.maintain
indicates to the client whether it wants to participate in a session with a service
endpoint. If this property is set to true, the client indicates that it wants the session to
be maintained.

Example 14-6 illustrates a Web service client configuration for a stateful Web service.
The definition of the <stub-property> allows the client to participate in a session
with the port identified by the CycleCounterInterface service endpoint. The
<stub-property> element, with its setting for
javax.xml.rpc.session.maintain, is highlighted in bold.

Example 14-6 Configuration for a Client Participating with a Stateful Web Service

<service-ref-mapping name="service/CycleCounter">
<port-info>

<service-endpoint-interface>test.oracle.stateful.CycleCounterInterface</service-en
dpoint-interface>
<!-- set the javax.xml.rpc.session.maintain property to true for a
stateful client -->
<stub-property>
<name>javax.xml.rpc.session.maintain</name>
<value>true</value>
</stub-property>
<stub-property>
<name>javax.xml.rpc.service.endpoint.address</name>
<value>http://%$J2EE_HOST%: $HTTP_
PORT%/testsfWS-session/testsfWS-session</value>
</stub-property>
</port-info>
</service-ref-mapping>

How to Configure a J2EE Client Programmatically

A J2EE client can be configured programmatically to consume stateful Web services.
To do this, ensure that the client participates in the session by setting the SESSTON_
MAINTAIN_PROPERTY runtime property (javax.xml.rpc.session.maintain)to
true either on the stub, the DII call, or the endpoint client instance.

For example, you can set the value of this property inside the generated
implementation _port of javax.xml.rpc.Stub:

((Stub)__port) ._setProperty (Stub.SESSION_MAINTAIN_PROPERTY, Boolean.valueOf
(maintainSession)) ;

Instead of setting this property directly, OracleAS Web Services provides a helpful
wrapper class with a setMaintainSession (boolean) method. When this method
is set to true the session is maintained. The wrapper takes care of setting the property
inside of the client. For example, in the client code, you can enter the following:

HttpSoapllClient ¢ = new HttpSoapllClient(); // client wrapper class

Web Services Developer's Guide

Writing J2EE Web Service Client Code

c.setMaintainSession(true) ;

How to Configure a J2EE Web Service Client to Make JMS Transport Calls

You can statically configure the J2EE client to make JMS transport calls. To do this, add
a <service-ref-mapping> clause to the appropriate Oracle proprietary J2EE client
deployment descriptor file for your Web service (orion-web.xml,
orion-ejb-jar.xml, or orion-application-client.xml). Within the clause,
configure a <stub-property> element with name and value attributes for each of
these items.

= ReplyTo queue—Enter a <stub-property> element with the name subelement
set to the ReplyToQueueName API
(oracle.webservices. transport.ReplyToQueueName) and the value
subelement set to the JNDI name of the ReplyTo queue.

= ReplyTo factory name—Enter a <stub-property> element with the name
attribute set to the ReplyToFactoryName API
(oracle.webservices.transport.ReplyToFactoryName) and the value
subelement set to the JNDI name of the ReplyTo factory.

= service endpoint address—Enter a <stub-property> element with name
subelement set to the service endpoint address API
(javax.xml.rpc.service.endpoint.address) and the value subelement
set to the service endpoint interface file.

Example 14-7 illustrates a sample configuration.

Example 14-7 J2EE Client Configuration for JMS Transport Calls

<service-ref-mapping name="service/MyJMSService">
<stub-property>
<name>oracle.webservices.transport.ReplyToQueueName</name>
<value>jms/receiverQueue</value>
</stub-property>
<stub-property>
<name>oracle.webservices.transport.ReplyToFactoryName</name>
<value>jms/receiverQueueConnectionFactory</value>
</stub-property>
<stub-property>
<name>javax.xml.rpc.service.endpoint.address</name>
<value>/bank/soapl2bank</value>
</stub-property>
</service-ref-mapping>

How to Enable Chunked Data Transfer for HTTP 1.1

OracleAS Web Services permits the chunked transfer encoding of messages when the
protocol is HTTP 1.1. Chunked data transfer can be invoked on J2SE stub, J2EE stub
and DII Web service clients.

Chunking can increase performance by breaking the payload into smaller pieces.
These pieces can be sent over the wire faster than one large payload. Chunked transfer
encoding includes all of the information that the recipient needs to verify that it has
received the entire message. Chunked transfer encoding happens at the transport
level; it is not detected or handled by the invoker of a Web services call or the server.

The following properties in the oracle.webservices.ClientConstants class
can be set on the Stub or Call object to enable chunking and set the chunk size.

Assembling a J2EE Web Service Client 14-15

Writing J2EE Web Service Client Code

= DO_NOT_CHUNK—if this property is not set, or set to true, then chunking is
turned off by default. If this property is set to false, then chunking is enabled.

m CHUNK_SIZE—sets the chunk size in bytes. If this property is not set, then the
default chunk size is 4096 bytes.

Example 14-8 illustrates setting the chunking and chunk size property in client proxy
stub code.

Example 14-8 Stub Code to Set Data Chunk Size

import oracle.webservices.ClientConstants;

((OracleStub)port) ._setProperty(ClientConstants.DO_NOT_CHUNK, true);
((OracleStub)port) ._setProperty(ClientConstants.CHUNK_SIZE, 1024);

Example 14-9 illustrates using the DO_NOT_CHUNK and CHUNK_SIZE properties in DII
client code to set the chunk size to 1024 bytes.

Example 14-9 DIl Client Code to Set Data Chunk Size

import oracle.webservices.ClientConstants;

ServiceFactory factory = ServiceFactory.newInstance();

Service service = factory.createService (new

QName ("http://whitemesa.net/wsdl/rpc-lit-test", "tns"));

QName stringType = new QName("http://www.w3.org/2001/XMLSchema", "string");
Call call = service.createCall();

call.setProperty(ClientConstants.DO_NOT_CHUNK, false);
call.setProperty(ClientConstants.CHUNK_SIZE, 1024);

How to Set a Character Encoding for a SOAP Message

By default, a J2EE client (either static stub or DII) assembled under OracleAS Web
Services sends a request message with a SOAP envelope encoded with UTF-8
characters. To override this behavior, you can set the following Oracle proprietary

property:
oracle.webservices.ClientConstants.CHARACTER_SET ENCODING

You can apply this property to the javax.xml.rpc.Stubor javax.xml.rpc.Call
object with the setProperty method.

The value of the CHARACTER_SET_ENCODING property can be of type
java.lang.Stringor java.nio.charset.Charset. The set of supported
character encodings depends on the underlying Java Virtual Machine (JVM). Use the
Charset.availableCharsets method to return the list of character encodings that
are supported by your JVM. for more information on the
Charset.availableCharsets method, see the output of the Javadoc tool for the
java.nio.charset.Charset class.

This property can also be used for J2SE Web service clients.

Example 14-10 illustrates Stub client code that sets Shift_JIS as the character
encoding that will be used by the SOAP envelope.

14-16 Web Services Developer's Guide

Understanding the Packaging Structure for J2EE Clients

Example 14-10 Setting Shift_JIS Characters for a SOAP Envelope on a Stub Client

import oracle.webservices.ClientConstants;

((OracleStub)port) ._setProperty (ClientConstants.CHARACTER_SET_ENCODING, "Shift_
JIS");

Example 14-11 illustrates DII client code that sets Shift_JIS as the character
encoding that will be used by the SOAP envelope.

Example 14-11 Setting Shift_JIS Characters for a SOAP Envelope on a DIl Client

import oracle.webservices.ClientConstants;

ServiceFactory factory = ServiceFactory.newInstance();

Service service = factory.createService(new URL("path to wsdl"),

new QName ("service namespace", "service name"));

Call call = service.createCall();
call.setProperty(ClientConstants.CHARACTER SET ENCODING, Charset.forName("Shift_
JIS"));

Understanding the Packaging Structure for J2EE Clients

Oracle JDeveloper creates a standard package structure for Web application and EJB
client files. This section describes that structure in case you need to customize the
contents of the client EAR file.

s Understanding the Packaging Structure for a Servlet or Web Application Client
s Understanding the Packaging Structure for an EJB Client

Understanding the Packaging Structure for a Servlet or Web Application Client

This section describes the packaging of servlet or Web application clients. The values
for a number of elements in the deployment descriptors reflect the names of the files
and their storage position in the EAR file. If you change the content of the EAR file,
you might need to change the content of the deployment descriptors.

= Packaging Structure for Servlet or Web Application Clients

= Relationship Between Deployment Descriptors for Servlet or Web Application
Clients

Packaging Structure for Servlet or Web Application Clients

Servlet or Web application clients are packaged in an EAR file with the name <ear._
file name>.ear. At the top level, the EAR file contains a META-INF directory for
the manifest file and the application.xml file and <war file name>.war file for
the servlet or Web application files, the JAX-RPC mapping file, the WSDL file, and the
deployment descriptors. Example 14-12 illustrates the standard package structure of
the EAR file.

Example 14—-12 Structure of a Serviet or Web Application Client EAR File

. /META-INF
. /MANIFEST.MF
./application.xml
./<war file>.war
. /WEB-INF/

Assembling a J2EE Web Service Client 14-17

Understanding the Packaging Structure for J2EE Clients

/orion-web.xml
/web.xml
/wsdl/<wsdl file name>.wsdl
/<mapping file>.xml
/classes
/class files
/1lib
/.jar files
./*.jsp or html files

Relationship Between Deployment Descriptors for Serviet or Web Application
Clients

This section identifies the relationships between the J2EE standard deployment
descriptor web . xm1, the OC4J deployment descriptor for servlets or Web applications
orion-web.xml, and the packaging structure of the client EAR file. These
relationships are important because if you edit the structure or contents of the client
EAR file, you might have to edit the content of the deployment descriptors.

The client information is contained in the <service-ref> element in web.xml. This
element contains information about the Web service that can be looked up and
consumed from inside a servlet or JSP. For example, it contains the locations for the
WSDL (<wsdl-£file>), the JAX-RPC mapping file (<jaxrpc-mapping-£file>), the
service interface used for JNDI lookup (<service-ref-name>), the service interface
class (<service-interface>), and the service endpoint interface
(<service-endpoint-interface>). Note that the <service-ref-name> in
web . xml also appears as an attribute in the <service-ref-mapping> element in
orion-web.xml. If you change the names and locations of any of these items in the
EAR, then you must make the corresponding changes in the deployment descriptors.

See Also:

"How to Add J2EE Web Service Client Information to Deployment
Descriptors" on page 14-4 for information on the <service-ref>
and <service-ref-mapping> elements and their subelements.

Example 14-13 lists the contents of web . xm1 for a servlet or Web application client.
The <service-ref> element is highlighted in bold.

Example 14-13 web.xml Contents for a Serviet or Web Application Client

<web-app>

<servlet>
<servlet-name>consumer</servlet-name>
<gservlet-class>oracle.ServiceConsumerServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>consumer</servlet-name>
<url-pattern>/consumer</url-pattern>

</servlet-mapping>

<service-ref>
<service-ref-name>service/MyHelloServiceRef</service-ref-name>
<service-interface>javax.xml.rpc.Service</service-interface>
<wsdl-file>WEB-INF/wsdl/HelloService.wsdl</wsdl-file>

<jaxrpc-mapping-file>WEB-INF/HelloService-java-wsdl-mapping.xml</jaxrpc-mapping-£fi
le>

<service-gname
xmlns:service-gname_ns_ ="http://hello.demo.oracle/">service-gqname_ns_

14-18 Web Services Developer's Guide

Understanding the Packaging Structure for J2EE Clients

:HelloService</service-gname>
<port-component-ref>

<service-endpoint-interface>oracle.demo.hello.HelloInterface</service-endpoint-int
erface>
</port-component-ref>
</service-ref>
</web-app>

Example 14-14 lists the contents of OC4] proprietary orion-web.xml deployment
descriptor for Web applications and servlets. The <service-ref-mapping> element
is highlighted in bold.

Example 14-14 orion-web.xml Contents for a Client-Side Serviet or Web Application

<orion-web-app
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://xmlns.oracle.com/oracleas/schema/orion-web-1
0_0.xsd">
<service-ref-mapping name="service/MyHelloServiceRef">
<!-- stub property applicable across all ports -->
<stub-property>

<name>javax.xml.rpc.service.endpoint.address</name>

<value>http://localhost:8888/hello/HelloService</value>
</stub-property>
</service-ref-mapping>
</orion-web-app>

Understanding the Packaging Structure for an EJB Client

This section describes the packaging of EJB clients. The values for a number of
elements in the deployment descriptors reflect the names of the files and their storage
position in the EAR file. If you change the content of the EAR file, you might need to
change the content of the deployment descriptors.

= Package Structure for EJB Application Clients
= Relationship Between Deployment Descriptors for EJB Application Clients

Package Structure for EJB Application Clients

EJB clients are packaged in an EAR file with the name <ear. file name>.ear. At
the top level, the EAR file contains a META-INF directory for the manifest file and the
application.xml file, the EJB class files, and <ejb_jar file_name>.jar file.
The JAR file contains the JAR manifest file, the JAX-RPC mapping file, the WSDL file,
and the deployment descriptors. Example 14-15 illustrates the packaging structure of
an EJB client EAR file.

Example 14-15 Package Structure for a Client-Side EJB Application EAR File

. /META-INF
. /MANIFEST.MF
./application.xml
./<ejb jar file name>.jar
./class files
. /META-INF/
/MANIFEST.MF

Assembling a J2EE Web Service Client 14-19

Understanding the Packaging Structure for J2EE Clients

14-20

/ejb-jar.xml
/orion-ejb-jar.xml
/wsdl/<wsdl file name>.wsdl
/<mapping file>.xml

Relationship Between Deployment Descriptors for EJB Application Clients

This section identifies the relationships between the J2EE standard deployment
descriptor ejb-jar.xml, the OC4J deployment descriptor for servlets or Web
applications orion-ejb-jar.xml, and the packaging structure of the EJB client EAR
file. These relationships are important because if you edit the structure or contents of
the client EAR file, you might have to edit the content of the deployment descriptors.

The client information is contained in the <service-ref> element in ejb-jar.xml.
This element contains information about the servlet or Web application that can be
used as a Web service client. For example, it contains the locations for the WSDL
(<wsdl-file>), the JAX-RPC mapping file (<jaxrpc-mapping-£file>), the service
interface used for JNDI lookup (<service-ref-name>), the service interface class
(<service-interface>), and the service endpoint interface
(<service-endpoint-interface>). Note that the <service-ref-name> in
ejb-jar.xml also appears as an attribute in the <service-ref-mapping> element
in orion-ejb-jar.xml. If you change the names and locations of any of these items
in the EAR, then you must make the corresponding changes in the deployment
descriptors.

See Also:

"How to Add J2EE Web Service Client Information to Deployment
Descriptors" on page 14-4 for information on the <service-ref>
and <service-ref-mapping> elements and their subelements.

Example 14-16 lists the contents of ejb-jar.xml for an EJB client. The
<service-ref> element is highlighted in bold.

Example 14-16 ejb-jar.xml Contents for a Client-Side EJB Application
<ejb-jar>
<display-name>serviceConsumerEJB</display-name>
<enterprise-beans>
<session>
<ejb-name>ServiceConsumer</ejb-name>
<home>oracle.ServiceConsumerHome</home>
<remote>oracle.ServiceConsumerRemote</remote>
<ejb-class>oracle.ServiceConsumerBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<service-ref>
<service-ref-name>service/MyHelloService</service-ref-name>
<service-interface>javax.xml.rpc.Service</service-interface>
<wsdl-file>META-INF/wsdl/HelloService.wsdl</wsdl-file>

<jaxrpc-mapping-file>META-INF/HelloService-java-wsdl-mapping.xml</jaxrpc-mapping-£
ile>

<service-gnamexmlns:ns="http://hello.demo.oracle/">ns:HelloService</service-gname>
<port-component-ref>

<service-endpoint-interface>oracle.demo.hello.HelloInterface</service-endpoint-int
erface>

Web Services Developer's Guide

Additional Information

</port-component-ref>
</service-ref>
</session>

</enterprise-beans>

</ejb-jar>

Example 14-17 lists the contents of OC4] proprietary orion-ejb-jar.xml
deployment descriptor for Web applications and servlets. The
<service-ref-mapping> element is highlighted in bold.

Example 14-17 orion-ejb-jar.xml Contents for a Client-Side EJB Application

<orion-ejb-jar>

<enterprise-beans>
<session-deployment name="ServiceConsumer">
<service-ref-mapping name="service/MyHelloService">
<stub-property>
<name>javax.xml.rpc.service.endpoint.address</name>
<value>http://localhost:8888/hello/HelloService</value>
</stub-property>
</service-ref-mapping>
</session-deployment>
</enterprise-beans>

</orion-ejb-jar>

Limitations

See "Assembling a J2EE Web Service Client" on page F-9.

Additional Information

For more information on:

assembling Web services from a WSDL, see Chapter 6, "Assembling a Web Service
from WSDL".

assembling stateful Web services, see Chapter 7, "Assembling a Web Service with
Java Classes".

assembling Web services from E]Bs, see Chapter 8, "Assembling a Web Service
with EJBs".

assembling Web services from a JMS queue or topic, see Chapter 9, "Assembling
Web Services with JMS Destinations".

assembling Web services from database resources, see Chapter 10, "Assembling
Database Web Services".

assembling Web services with J2SE 5.0 Annotations, see Chapter 11, "Assembling
Web Services with Annotations".

building J2SE clients, see Chapter 15, "Assembling a J2SE Web Service Client".

using the WebServicesAssembler tool to assemble Web services, see Chapter 18,
"Using WebServicesAssembler".

packaging and deploying Web services, see Chapter 19, "Packaging and Deploying
Web Services"

jar files that are needed to assemble a client, see Appendix A, "Web Service Client
APIs and JARs".

Assembling a J2EE Web Service Client 14-21

Additional Information

= Web services interoperability, see "Ensuring Interoperable Web Services" in the
Oracle Application Server Advanced Web Services Developer’s Guide.

= using quality of service features in Web service clients, see "Managing Web
Services" in the Oracle Application Server Advanced Web Services Developer’s Guide.

» adding security to a Web service, see the Oracle Application Server Web Services
Security Guide.

= how to write clients to access Web services secured on the transport level, see
"Adding Transport-level Security for Web Services Based on E]Bs" and "Accessing
Web Services Secured on the Transport Level" in the Oracle Application Server Web
Services Security Guide.

= adding reliability to a Web service, see "Ensuring Web Service Reliability" in the
Oracle Application Server Advanced Web Services Developer’s Guide.

= adding an auditing and logging configuration to a Web service, see "Auditing and
Logging Messages" in the Oracle Application Server Advanced Web Services
Developer’s Guide.

» processing nonstandard data types, see "Custom Serialization of Java Value Types"
in the Oracle Application Server Advanced Web Services Developer’s Guide.

s the JAX-RPC mapping file, see "JAX-RPC Mapping File Descriptor" in the Oracle
Application Server Advanced Web Services Developer’s Guide.

= data types supported by OracleAS Web Services, see "Mapping Java Types to XML
and WSDL Types" in the Oracle Application Server Advanced Web Services Developer’s
Guide.

= Oracle JDeveloper tool support for Web service development, see the Oracle
JDeveloper on-line help.

14-22 Web Services Developer's Guide

15

Assembling a J2SE Web Service Client

This chapter provides information on developing a Web services client for the J2SE
platform. This chapter has the following sections.

= Understanding J2SE Web Service Clients

s How to Assemble a J2SE Web Service Client

= Writing Web Service Client Applications

= How to Use Dynamic Invocation Interface to Invoke Web Services

s Tool Support for Assembling J2SE Web Service Clients

Understanding J2SE Web Service Clients

The J2SE client, unlike the J2EE client, is responsible for much of the underlying work
of looking up the service, and creating and maintaining the instances of classes that
access the Web service. Since developers cannot rely on the container, they must create
and manage their own services, and ensure the availability of all runtime
environments needed to access the Web service.

The following sections describe static stub clients and Dynamic Invocation Interface
(DII) clients.

s Understanding Static Stub Clients
s Understanding JAX-RPC Dynamic Invocation Interface

Understanding Static Stub Clients

The WebServicesAssembler command genProxy generates static stubs from a
supplied WSDL document. The generated stubs implement the
javax.xml.rpc.Stub interface and a service endpoint interface. Additionally, the
generated stubs are specifically bound to the HTTP transport and SOAP protocol. You
can instantiate the generated stubs and invoke their methods directly to send requests
to the associated Web service.

In addition, WebServicesAssembler generates a client utility class that demonstrates
how a client leverages the static stubs to interact with a Web service. The name of the
utility client class is <WSDL_port_name>Client.java. This class handles all steps
necessary for creating a stub instance. You may want to instantiate the utility client
and use it to invoke the remote service's operations.

Assembling a J2SE Web Service Client 15-1

How to Assemble a J2SE Web Service Client

Note: The client utility class file is regenerated every time
WebServicesAssembler is executed. It is strongly recommended that
you place your own code in a separate file; otherwise, you will lose
your changes.

Understanding JAX-RPC Dynamic Invocation Interface

The JAX-RPC Dynamic Invocation Interface enables you to invoke a remote Web
service operation even if the name of the service or the signature of the remote method
is unknown prior to runtime.

Support for DII is provided through OC4]J's implementation of the
javax.xml.rpc.Call interface. The javax.xml.rpc.Service class acts as a
factory for Call instances by using the overloaded Service.createCall ()
method. Once created, the various getters and setters that the Call interface provides
are used to configure the port type, the operation name, the service endpoint address,
and other attributes required for executing the remote method.

See Also:

"How to Use Dynamic Invocation Interface to Invoke Web Services"
on page 15-9 for examples of using DII clients to invoke Web services.

How to Assemble a J2SE Web Service Client

This section contains the following subsections:
m Prerequisites

= Steps to Assemble a J2SE Web Service Client with a Static Stub

Prerequisites

Before you begin, provide the following files and information.

= Supply the URI to the WSDL you want to employ to generate the client. This
chapter uses the WSDL file described in "Sample WSDL File" on page 15-3.

= Decide on the destination location for generated artifacts.

= Decide on a package name for the client files.

Steps to Assemble a J2SE Web Service Client with a Static Stub

You can use WebServicesAssembler to create a J2SE Web service client using static
stubs. To create the static stub, follow these steps.

1. Provide the URI to the WSDL, the name of the output directory, the package name,
and the other information and files described in the Prerequisites section as input
to the WebServicesAssembler genProxy command. The following command
generates the client proxies and stores them in build/src/client. The client
application uses the stub to invoke operations on a remote service:

Command line:

java -jar wsa.jar -genProxy
-output build/src/client/
-wsdl http://localhost:8888/hello/HelloService?WSDL
-packageName oracle.demo.hello

15-2 Web Services Developer's Guide

How to Assemble a J2SE Web Service Client

Ant task:

<oracle:genProxy
wsdl="http://localhost:8888/hello/HelloService?WSDL"
output="build/src/client"
packageName="oracle.demo.hello"/>

In this command and Ant task:

= genProxy—Creates a static proxy stub that can be used by a J25E Web service
client. See "genProxy" on page 18-34.

= wsdl—Specifies the absolute file path, relative file path, or URL to a WSDL
document. See "wsdl" on page 18-65.

= output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created. See "output” on page 18-48.

» packageName—Specifies the package name that will be used for generated
classes if no package name is declared in the JAX-RPC mapping file. See
"packageName" on page 18-48.

For more information on the required and optional arguments to genProxy, see
"genProxy" on page 18-34.

Use the client utility class file created by genProxy as your application client, or
use it as a template to write your own client code. The client utility class file is one
of a number of files created by genProxy.

You can also use the client utility class file to test your endpoint. Example 15-2,
"HelloInterfacePortClient.java Listing" on page 15-6, illustrates the client utility
class file created in this example. For more information about this file, see "Writing
Web Service Client Applications" on page 15-5.

Compile the client files and put them in the classpath.

List the appropriate JARs on the classpath before compiling the client. Table A-2,
" Classpath Components for a Client Using a Client-Side Proxy" lists all of the JAR
files that can possibly be used on the client classpath. As an alternative to listing
individual JARs, you can include the client-side JAR, wsclient_extended.jar
on the client classpath. This JAR file contains all the classes necessary to compile
and run a Web service client. The classes are from the individual JAR files listed in
Table A-2. See "Setting the Classpath for a Web Service Proxy" on page A-2 for
more information on wsclient_extended. jar and the client classpath.

Run the J2SE client from the command line.

Sample WSDL File

Example 15-1 contains a partial listing of the HelloService.wsdl used to generate
the client. One of the files generated from this WSDL is the client utility class file listed
in Example 15-2.

This partial listing illustrates a number of entries in the WSDL file that are employed
in the generation of the client utility class file. For example:

The name of the client utility class file, HelloInterfacePortClient. java,is
derived from the value of the <port name> attribute.

The operation name, sayHello, which appears under the <portType> element,
becomes a method in the client utility class file.

The parameter and data type belonging to sayHello is defined by the
complexType defining the sayHello request:

Assembling a J2SE Web Service Client 15-3

How to Assemble a J2SE Web Service Client

<complexType name="sayHello">
<sequence>
<element name="name" nillable="true" type="string"/>
</sequence>
</complexType>

The preceding elements appear in bold in the partial listing of HelloService.wsdl.

Example 15-1 WSDL Fragment, With Elements Used in the Client Utility Class File

<definitions

<types>
<schema targetNamespace="http://hello.demo.oracle/"
xmlns="http://www.w3.0rg/2001/XMLSchema"

<complexType name="sayHello">
<sequence>
<element name="name" nillable="true" type="string"/>
</sequence>
</complexType>
<complexType name="sayHelloResponse">
<sequence>
<element name="result" nillable="true" type="string"/>
</sequence>
</complexType>
<element name="sayHelloElement" type="tns:sayHello"/>
<element name="sayHelloResponseElement" type="tns:sayHelloResponse"/>
</schema>
</types>
<message name="HelloInterface_sayHelloResponse">
<part name="parameters" element="tns:sayHelloResponseElement"/>
</message>
<message name="HelloInterface_sayHello">
<part name="parameters" element="tns:sayHelloElement"/>
</message>
<portType name="HelloInterface">
<operation name="sayHello">
<input message="tns:HelloInterface_sayHello"/>
<output message="tns:HelloInterface_sayHelloResponse"/>
</operation>
</portType>
<binding name="HelloInterfacePortBinding" type="tns:HelloInterface">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<operation name="sayHello">
<soap:operation soapAction="http://hello.demo.oracle/:sayHello"/>
<input>
<soap:body use="literal" parts="parameters"/>
</input>
<output>
<soap:body use="literal" parts="parameters"/>
</output>
</operation>
</binding>
<service name="HelloService">
<port name="HelloInterfacePort" binding="tns:HelloInterfacePortBinding">
<soap:address location="HelloService"/>
</port>

15-4 Web Services Developer's Guide

Writing Web Service Client Applications

</service>
</definitions>

Writing Web Service Client Applications
This section contains the following subsections:
s Understanding the Client Utility Class File
= Steps to Create a Service Factory
= How to Enable Chunked Data Transfer for HTTP 1.1
= How to Set a Character Encoding for a SOAP Message on a J2SE Client
= How to Set Cookies in a Web Service Client Stub

Understanding the Client Utility Class File

The genProxy command generates a client utility class file that enables you to invoke
Web service methods. You can use this file as your application client, or use it as a
template to write your own application client code.

Note: The client utility class file is regenerated each time you run
genProxy. If you add code to this file for testing purposes, then your
changes will be lost if you regenerate the proxy. For production code,
your client code should exist outside of this utility class.

The command derives the name of the file by appending the suffix Client to the port
name. For example, for the HelloInterfacePort port name, genProxy generates
the HelloInterfacePortClient. java file.

See Also:

Example 15-2, "HelloInterfacePortClient.java Listing" on page 15-6 for
an example of a client utility class file generated by the genProxy
command.

The client utility class serves as a proxy to the Web service implementation. The
client-side proxy code constructs a SOAP request and marshals and unmarshals
parameters for you. Using the proxy classes saves you the work of creating SOAP
requests and data marshalling for accessing a Web service or processing Web service
responses.

The most important part of the client utility class file is the factory code for creating
javax.xml.rpc.Service objects and obtaining the operations available on the
service. The Service object acts as an instance of the generated stub class.

Note the following lines of code in the client utility class file:

public HelloInterfaceClient () throws Exception {
ServiceFactory factory = ServiceFactory.newInstance();
_port = ((HelloService)factory.loadService
(HelloService.class)) .getHelloInterfacePort () ;

}

If you write your own application client, then you must supply this code to create the
service factory and obtain a port implementation.

Assembling a J2SE Web Service Client 15-5

Writing Web Service Client Applications

Steps to Create a Service Factory
The following steps describe the code.

1. Instantiate a new javax.xml.rpc.ServiceFactory instance or use an existing
instance.

ServiceFactory factory = ServiceFactory.newInstance();

2. Load the service for a particular service endpoint interface using the
loadService method. This returns an object of type Service that also
implements the requested service endpoint interface.

(HelloService) factory.loadService (HelloService.class)

In this example, the returned Service is cast to the service endpoint interface
HelloService.

3. Use the get...() method to get the desired port. The ellipsis ("...") represents the
value of the port name element in the WSDL.

HelloService.getHelloInterfacePort();

In this example, the method name is getHelloInterfacePort (), where
HelloInterfacePort is the port name in the WSDL. The method returns a
Java implementation for HelloInterfacePort.

Example 15-2 displays the client utility class file,
HelloInterfacePortClient.java, which was generated from the
HelloService.wsdl in Example 15-1 by the genProxy command.

The lines of code that create the Service objects and obtain the operations available
on the service appear in bold. Note the generated code that can be used to set the
SESSION_MAINTAIN_PROPERTY system property to alert the client that the Web
service is stateful. The session will be maintained when the client is operating in
conjunction with a server side, stateful Web service. By maintaining the session,
subsequent requests to the service are faster.

Example 15-2 HellointerfacePortClient.java Listing

import oracle.webservices.transport.ClientTransport;
import oracle.webservices.OracleStub;

import javax.xml.rpc.ServiceFactory;

import javax.xml.rpc.Stub;

public class HelloInterfacePortClient ({
private HelloInterface _port;

public HelloInterfacePortClient() throws Exception {
ServiceFactory factory = ServiceFactory.newInstance();
_port =((HelloService)factory.loadService(
HelloService.class)) .getHelloInterfacePort();

/**
* @param args
*/
public static void main(String[] args) {
try {
HelloInterfacePortClient myPort = new HelloInterfacePortClient();
System.out.println("calling " + myPort.getEndpoint());
// Add your own code here

15-6 Web Services Developer's Guide

Writing Web Service Client Applications

} catch (Exception ex) {
ex.printStackTrace() ;

/**
* delegate all operations to the underlying implementation class.
*/
// sayHello
public String sayHello(String name) throws java.rmi.RemoteException {
return _port.sayHello (name) ;

/’k*
* used to access the JAX-RPC level APIs
* returns the interface of the port instance
*/
public oracle.demo.hello.HelloInterface getPort() {
return _port;

public String getEndpoint () {
return (String) ((Stub)
_port) ._getProperty (Stub.ENDPOINT ADDRESS_PROPERTY) ;

}

public void setEndpoint (String endpoint) {
((Stub) _port)._setProperty (Stub.ENDPOINT_ADDRESS_PROPERTY,

endpoint) ;

}

public String getPassword() {
return (String) ((Stub) _port)._getProperty (Stub.PASSWORD_PROPERTY) ;

public void setPassword(String password) {
((Stub) _port)._setProperty(Stub.PASSWORD_PROPERTY, password) ;

public String getUsername() {
return (String) ((Stub) _port)._getProperty (Stub.USERNAME_PROPERTY) ;

public void setUsername (String username) {
((Stub) _port)._setProperty(Stub.USERNAME_PROPERTY, username);

public void setMaintainSession(boolean maintainSession) ({
((Stub) _port)._setProperty(Stub.SESSION MAINTAIN PROPERTY, new
Boolean(maintainSession));

}

public boolean getMaintainSession() {
return ((Boolean) ((Stub)
_port) ._getProperty(Stub.SESSION MAINTAIN PROPERTY)).booleanValue();

}

/**

* returns the transport context

Assembling a J2SE Web Service Client 15-7

Writing Web Service Client Applications

*/
public ClientTransport getClientTransport() {
return ((OracleStub) _port).getClientTransport();
}

How to Enable Chunked Data Transfer for HTTP 1.1

OracleAS Web Services permits the chunked transfer encoding of messages when the
protocol is HTTP 1.1. Chunked data transfer can be invoked on J2SE stub, J2EE stub
and DII Web service clients.

See Also:

"How to Enable Chunked Data Transfer for HTTP 1.1" on page 14-15
for more information on how to enable this feature.

How to Set a Character Encoding for a SOAP Message on a J2SE Client

By default, a client assembled under Oracle Application Server Web Services sends a
request message with a SOAP envelope encoded with UTF-8 characters. To override
this behavior, you can set the following Oracle proprietary property:

oracle.webservices.ClientConstants.CHARACTER_SET_ ENCODING
Use this property to set the character encoding for a J2SE client or a J2EE client.

See Also:

"How to Set a Character Encoding for a SOAP Message" on page 14-16
for more information on how to use the CHARACTER_SET_ENCODING

property.

How to Set Cookies in a Web Service Client Stub

A client stub can be used to set the cookies used in an HTTP request. The Cookie class
represents an HTTP cookie and can be found in the Oracle Applications Server 10g
HTTPClient package. Cookie has the following constructor:

Cookie (java.lang.String name, java.lang.String value,
java.lang.String domain, java.lang.String path, java.util.Date
expires, boolean secure)

All parameters except expires are required to the Cookie constructor.
The domain that you specify for the cookie must be either:
s the full host name, or

= in the case where the cookie is shared between multiple hosts, the domain must
start with a period. For example:

.oracle.com
The following general steps describe how to set a cookie in an HTTP request:
1. Createa java.util.Map object to contain the cookies.

2. Construct one or more cookies, using the Cookie class from the Oracle
Applications Server 10g HTTPClient package.

3. Load the cookies into the Map object.

4. Set the property oracle.webservices.ClientConstants.COOKIE_MAP.

15-8 Web Services Developer's Guide

How to Use Dynamic Invocation Interface to Invoke Web Services

The value of the property is a java.util.Map object that contains items and
keys of type HTTPClient.Cookie.

5. Setthe javax.xml.rpc.session.SESSION_MAINTAIN_PROPERTY runtime
property set to true.

This property alerts the client that the Web service is stateful. If this property is not
set to true, then the cookies will be ignored.

Example 15-3 illustrates stub code that sets the value of two cookies. The cookieMap
variable is declared to be of type java.util.Map and obtains its contents from a
HashMap. The Cookie constructor is used to define two cookies, cookie and
cookie2. The cookieMap.put lines add the cookies to the hashmap. The
Stub.SESSION_MAINTAIN_PROPERTY is present and set to true and the
ClientConstants.COOKIE_MAP is set to cookieMap.

Example 15-3 Setting a Cookie in a Client Stub

import HTTPClient.Cookie;
Map cookieMap = new HashMap () ;

Cookie cookie = new Cookie("name", "value", ".oracle.com", "/", null, false);
Cookie cookie2 = new Cookie("name2", "value2", ".oracle.com", "/", null,
false);

cookieMap.put (cookie, cookie);
cookieMap.put (cookie2, cookiel);

((Stub) port)._setProperty(ClientConstants.COOKIE_MAP, cookieMap) ;
((Stub) port)._setProperty(Stub.SESSION_MAINTAIN_PROPERTY, Boolean.TRUE);

How to Use Dynamic Invocation Interface to Invoke Web Services

Basic Calls

Invoking a Web service by using the Dynamic Invocation Interface (DII) requires a
number of steps. At each step, you typically have to make some choices. The examples
at the end of this section display choices made at each of the steps.

Using DII to invoke a Web Service consists of the following general steps:
1. Create the call object.

2. Register parameters.

3. Invoke the Web service.

You can create the call object either with or without a WSDL. If you do not have a
WSDL, or decide not to use the WSDL for creating the call dynamically, then follow
the steps under "Basic Calls". If you do have a WSDL to construct the call, then follow
the instructions under "Configured Calls".

For a basic call, the call object is created dynamically without a WSDL. The following
steps provide more information on how to construct a basic call.

1. You are constructing a call object dynamically, without a WSDL. For examples, see:
= Example 154, "Basic Call with parameter registration and Java bindings"

= Example 15-7, "Basic Call with SOAPElement, but without parameter
registration”

Assembling a J2SE Web Service Client 15-9

How to Use Dynamic Invocation Interface to Invoke Web Services

Configured Calls

Example 15-9, "Basic Call with document-literal invocation and
SOAPElement, but without parameter registration”

Register parameters.

Case 1: You are constructing the SOAP request yourself as a SOAPElement,
and are receiving the response as a SOAPElement. In this case, you do not
have to register parameters or return types. For examples of this case, see:

- Example 15-7, "Basic Call with SOAPElement, but without parameter
registration”

- Example 15-9, "Basic Call with document-literal invocation and
SOAPElement, but without parameter registration”

Case 2: You are explicitly registering the parameters and returns (parts) that
are being used in the Web service invocation in your Basic Call, including the
part name, the XML and Java type names, and the parameter mode. In this
case, you can furnish the individual parameters as Java object instances. For
an example of this case, see:

- Example 154, "Basic Call with parameter registration and Java bindings"

Invoke the Web service. You can invoke the Web service either by using
SOAPElement or by Java bindings.

Case 1: Using SOAPElement. If you are using a document-literal invocation,
then you will typically construct a SOAPElement for your message and pass it
to the invoke () method. Note that this invocation employs the public, Oracle
specific API from OracleCall. For examples of this case, see:

— Example 15-7, "Basic Call with SOAPElement, but without parameter
registration”

- Example 15-9, "Basic Call with document-literal invocation and
SOAPElement, but without parameter registration”

Case 2: Using Java bindings. If you are using an RPC-literal or RPC-encoded
invocation, then you will typically supply an array containing Java objects in
the invoke () method and cast the return object to the anticipated return
type. For examples of this case, see:

- Example 154, "Basic Call with parameter registration and Java bindings"

- Example 15-5, "Configured Call with Java bindings, but without
parameter registration”

- Example 15-6, "Configured Call with registration of wrapper parameters
and Java bindings"

- Example 15-8, "Configured Call with a WSDL, complex return parameter
registration, and Java bindings"

- Example 15-10, "Configured Call with RPC-encoded invocation, complex
parameter registration, and Java bindings"

For a configured call, the call object is constructed from a WSDL. The following steps
provide more information on how to construct a configured call.

1.

Provide the WSDL for constructing the call object. For examples, see:

15-10 Web Services Developer's Guide

How to Use Dynamic Invocation Interface to Invoke Web Services

Example 15-5, "Configured Call with Java bindings, but without parameter
registration”

Example 15-6, "Configured Call with registration of wrapper parameters and
Java bindings"

Example 15-8, "Configured Call with a WSDL, complex return parameter
registration, and Java bindings"

Example 15-10, "Configured Call with RPC-encoded invocation, complex
parameter registration, and Java bindings"

Register parameters. For a Configured Call, you must register parameters for the
following cases:

Case 1: You are employing a complex or other type that is not being mapped
to a primitive Java type (or an Object variant of a primitive Java type). For
examples of this case, see:

- Example 15-8, "Configured Call with a WSDL, complex return parameter
registration, and Java bindings"

- Example 15-10, "Configured Call with RPC-encoded invocation, complex
parameter registration, and Java bindings".

Case 2: You are using a document-literal wrapped style and do not want to
create a SOAPElement like the ones illustrated in Example 15-7 and
Example 15-9 for Basic Call. In this case, the name of the parameter must be
the OName of the wrapper. For an example of this case, see:

- Example 15-6, "Configured Call with registration of wrapper parameters
and Java bindings"

Case 3: If Case 1 and Case 2 do not apply, then you do not have to register
parameters or returns. For an example of this case, see:

- Example 15-5, "Configured Call with Java bindings, but without
parameter registration”

Invoke the Web service. You can invoke the Web service either by using
SOAPElement or by Java bindings.

Case 1: Using SOAPElement. If you are using a document-literal invocation,
then you will typically construct a SOAPElement for your message and pass it
to the invoke () method. Note that this invocation employs the public, Oracle
specific API from OracleCall. For examples of this case, see:

— Example 15-7, "Basic Call with SOAPElement, but without parameter
registration”

- Example 15-9, "Basic Call with document-literal invocation and
SOAPElement, but without parameter registration”

Case 2: Using Java bindings. If you are using an RPC-literal or RPC-encoded
invocation, then you will typically supply an array containing Java objects in
the invoke () method and cast the return object to the anticipated return
type. For examples of this case, see:

- Example 154, "Basic Call with parameter registration and Java bindings"

- Example 15-5, "Configured Call with Java bindings, but without
parameter registration”

- Example 15-6, "Configured Call with registration of wrapper parameters
and Java bindings"

Assembling a J2SE Web Service Client 15-11

How to Use Dynamic Invocation Interface to Invoke Web Services

- Example 15-8, "Configured Call with a WSDL, complex return parameter
registration, and Java bindings"

- Example 15-10, "Configured Call with RPC-encoded invocation, complex
parameter registration, and Java bindings"

Examples of Web Service Clients that use DIl

This section provides a variety of client examples that use basic calls or configured
calls to invoke a Web service.

The following code snippet illustrates an import statement that can be used by the
following code examples.

import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.Service;

import javax.xml.rpc.Call;

import javax.xml.rpc.ParameterMode;
import javax.xml.namespace.QName;
import javax.xml.soap.SOAPFactory;
import javax.xml.soap.SOAPElement;
import java.net.URL;

import oracle.webservices.OracleCall;
import oracle.xml.parser.v2.XMLElement;

Example 15-4 Basic Call with parameter registration and Java bindings

// (1) Creation of call object without WSDL.

String endpoint = "http://localhost:8888/echo/DiiDocEchoService";

ServiceFactory sf = ServiceFactory.newlInstance();

Service service = sf.createService(new QName ("http://echo.demo.oracle/", "tns"));
Call call = service.createCall();

// (2) Configuration of call and registration of parameters.
call.setTargetEndpointAddress (endpoint) ;
call.setProperty(Call.SOAPACTION_USE_PROPERTY, new Boolean(true));
call.setProperty(Call.SOAPACTION_URI_PROPERTY, "");
call.setProperty(Call.ENCODINGSTYLE_URI_PROPERTY,
"http://schemas.xmlsoap.org/soap/encoding/") ;
call.setProperty(Call.OPERATION_STYLE_PROPERTY, "rpc");

QName QNAME_TYPE_STRING = new QName ("http://www.w3.org/2001/XMLSchema", "string");
call.addParameter ("s", QNAME_TYPE_STRING, ParameterMode.IN) ;

call.setReturnType (QNAME_TYPE_STRING) ;

// (3) Invocation.
System.out.println("Response is " + call.invoke(new Object[]{"hello"}));

Example 15-5 Configured Call with Java bindings, but without parameter registration

/// (1) Creation of call object using WSDL.

String namespace = "http://www.xmethods.net/sd/CurrencyExchangeService.wsdl";
URL wsdl=new URL (namespace) ;

ServiceFactory factory = ServiceFactory.newInstance();

QName serviceName = new QName (namespace, "CurrencyExchangeService");

Service service = factory.createService(wsdl, serviceName);

QName portName = new QName (namespace, "CurrencyExchangePort");

Call call = service.createCall (portName) ;

// (2) Registration of parameters.

15-12 Web Services Developer's Guide

How to Use Dynamic Invocation Interface to Invoke Web Services

// -> taken from the WSDL

// (3) Configuration of operation and invocation.

QName operationName = new QName ("urn:xmethods-CurrencyExchange", "getRate");
call.setOperationName (operationName) ;

Float rate = (Float) call.invoke(new Object[]{"usa", "canada"});
System.out.println("getRate: " + rate);

Example 15-6 Configured Call with registration of wrapper parameters and Java
bindings

// (1) Creation of call object using WSDL.

String namespace = "http://server.hello/jaxws";
ServiceFactory factory = ServiceFactory.newInstance();

QOName serviceName = new QName (namespace, "HelloImplService");
URL wsdl=new URL (namespace+"?WSDL") ;

Service service = factory.createService(wsdl, serviceName);
QName portName = new QName (namespace, "HelloImpl");

Call call = service.createCall (portName) ;

// (2) Registration of SayHello and SayHelloResponse wrapper classes

// These must be available in the classpath.

String TYPE_NAMESPACE_VALUE = "http://server.hello/jaxws";

QName regQname = new QName (TYPE_NAMESPACE_VALUE, "sayHelloElement") ;

QName respQName = new QName (TYPE_NAMESPACE_VALUE, "sayHelloResponseElement") ;
call.addParameter ("name", regQname, SayHello.class, ParameterMode.IN);
call.setReturnType (respQName, SayHelloResponse.class);

// (3) Invocation

SayHello input = new SayHello("Duke");

Object[] params = new Object[] { input };

SayHelloResponse result = (SayHelloResponse) call.invoke(params);
String response = result.getResult();

Example 15-7 Basic Call with SOAPElement, but without parameter registration

// (1) Creation of call object without WSDL

ServiceFactory sf = ServiceFactory.newlInstance();

Service service = sf.createService(new QName ("http://echo.demo.oracle/", "tns"));
Call call = service.createCall();

call.setTargetEndpointAddress ("http://localhost:8888/echo/DiiDocEchoService") ;

// (2) No registration of parameters

// (3a) Direct creation of payload as SOAPElement
SOAPFactory soapfactory = SOAPFactory.newlInstance();

SOAPElement ml = soapfactory.createElement ("echoStringElement", "tns",
"http://echo.demo.oracle/");
SOAPElement m2 = soapfactory.createElement("s", "tns",

"http://echo.demo.oracle/");
m2.addTextNode ("Bob") ;
ml.addChildElement (m2) ;
System.out.println("Request is: ");
((XMLElement) ml) .print (System.out);

// (3b) Invocation
SOAPElement resp = (SOAPElement) ((OracleCall) call).invoke (ml);

Assembling a J2SE Web Service Client 15-13

How to Use Dynamic Invocation Interface to Invoke Web Services

System.out.println("Response is: ");
((XMLElement) resp) .print(System.out);

Example 15-8 Configured Call with a WSDL, complex return parameter registration, and
Java bindings

// (0) Preparing a complex argument value

Integer req I = new Integer(Integer.MAX_VALUE);
String reg s = "testDocLitBindingAnonymAll & <body>";
Integer req inner_ I = new Integer(Integer.MIN_VALUE);
String req inner_s = "<inner> & <body>";

int[] req inner_i = {0,Integer.MAX VALUE, Integer.MIN_VALUE};
InnerSequence redq inner = new InnerSequence();
req_inner.setVarInteger(req inner_ I);
req_inner.setVarString (req inner_s);
req_inner.setVarInt (reqg_ inner_ i);
EchoAnonymAllElement req = new EchoAnonymAllElement () ;
req.setVarInteger ((req I);

req.setVarString ((reg s);

req.setInnerSequence(req inner);

// (1) Creation of call object using the WSDL

String TARGET_NS = "http://soapinterop.org/DocLitBinding";

String TYPE_NS = "http://soapinterop.org/xsd";

String XSD_NS = "http://www.w3.org/2001/XMLSchema";

QName SERVICE_NAME = new QName(TARGET NS, "DocLitBindingService");

QName PORT_NAME = new QName(TARGET_NS, "DocLitBindingPort");

String wsdlUrl = "http://"+getProperty ("HOST")+
":"+getProperty ("HTTP_PORT") +
"/doclit_binding/doclit_binding";

QName operation = new QName (TARGET_NS, "echoAnonymAll");

ServiceFactory factory = ServiceFactory.newInstance();

Service srv = factory.createService(new URL(wsdlUrl + "?WSDL"), SERVICE_NAME);
Call call = srv.createCall(PORT_NAME, operation);

// (2) Registration of complex return parameter
call.setReturnType (new QName (TYPE_NS, "EchoAnonymAllElement"),
EchoAnonymAllElement.class) ;

// (3) Invocation

EchoAnonymAllElement res = (EchoAnonymAllElement) call.invoke(new Object[]{req}
)i

System.out.println("AnonymAll body : " +res.getVarString());
System.out.println("AnonymAll inner : " +res.getInnerSequence());

Example 15-9 Basic Call with document-literal invocation and SOAPElement, but
without parameter registration

// (1) Creation of Basic Call

ServiceFactory sf = ServiceFactory.newlInstance();

Service service = sf.createService(new QName ("http://echo.demo.oracle/", "tns"));
String endpoint="http://localhost:8888/test/echo";

Call call = service.createCall();

call.setTargetEndpointAddress (endpoint) ;

// (2) No parameter registration

15-14 Web Services Developer's Guide

Additional Information

// (3) Invocation using SOAPElement
SOAPFactory soapfactory = SOAPFactory.newInstance();

SOAPElement ml = soapfactory.createElement ("echoStringElement", "tns",
"http://echo.demo.oracle/");
SOAPElement m2 = soapfactory.createElement("s", "tns",

"http://echo.demo.oracle/");

m2.addTextNode ("Bob") ;

ml.addChildElement (m2) ;

System.out.println("Request is: ");

((XMLElement) ml) .print (System.out);

SOAPElement resp = (SOAPElement) ((OracleCall) call).invoke(ml);
System.out.println("Response is: ");

((XMLElement) resp).print(System.out);

Example 15-10 Configured Call with RPC-encoded invocation, complex parameter
registration, and Java bindings

// (1) Creation of ConfiguredCall using WSDL

ServiceFactory sf = ServiceFactory.newlInstance();

String endpoint="http://localhost:8888/test/echo";

Service service = sf.createService(new java.net.URL(endpoint + "?WSDL"), new
QName ("http://echo.demo.oracle/", "DiiRpcEchoService"));

Call call = service.createCall (new QName ("http://echo.demo.oracle/",
"HttpSoapll"), new QName ("http://echo.demo.oracle/", "echoStrings"));
call.setProperty(Call.SOAPACTION_USE_PROPERTY, new Boolean(true));
call.setProperty(Call.SOAPACTION_URI_PROPERTY, "");
call.setProperty(Call.ENCODINGSTYLE_URI_PROPERTY,
"http://schemas.xmlsoap.org/soap/encoding/") ;
call.setProperty(Call.OPERATION_STYLE_PROPERTY, "rpc");

// (2) Registration of complex input and return arguments

QName stringArray = new QName ("http://echo.demo.oracle/", "stringArray");
call.addParameter("s", stringArray, String[].class, ParameterMode.IN);
call.setReturnType (stringArray, String[].class);

// (3) Invocation
String[] request = new String[]{"bugs", "little_pieces", "candy"};
String[] resp = (String[]) call.invoke(new Object[]{request});
System.out.println("Response is: ");
for (int 1 = 0; i < resp.length; i++) {
System.out.print (resp[i] + " ");
}
System.out.println();

Tool Support for Assembling J2SE Web Service Clients

Oracle JDeveloper enables you to build client applications that use Web services. It
supports OC4]J J2SE Web service clients by allowing you to create Java stubs from Web
service WSDL descriptions. You can use these stubs to access existing Web services.
For more information, see the Oracle JDeveloper on-line help.

Additional Information
For more information on:

= assembling Web services from a WSDL, see Chapter 6, "Assembling a Web Service
from WSDL".

Assembling a J2SE Web Service Client 15-15

Additional Information

assembling stateful Web services, see Chapter 7, "Assembling a Web Service with
Java Classes".

assembling Web services from E]Bs, see Chapter 8, "Assembling a Web Service
with EJBs".

assembling Web services from a JMS queue or topic, see Chapter 9, "Assembling
Web Services with JMS Destinations".

assembling Web services from database resources, see Chapter 10, "Assembling
Database Web Services".

assembling Web services with J2SE 5.0 Annotations, see Chapter 11, "Assembling
Web Services with Annotations".

building J2EE clients, see Chapter 14, "Assembling a J2EE Web Service Client".

improving performance by data chunking, see "How to Enable Chunked Data
Transfer for HTTP 1.1" on page 14-15.

using the WebServicesAssembler tool to assemble Web services, see Chapter 18,
"Using WebServicesAssembler".

packaging and deploying Web services, see Chapter 19, "Packaging and Deploying
Web Services".

JAR files that are needed to assemble a client, see Appendix A, "Web Service Client
APIs and JARs".

Web services interoperability, see "Ensuring interoperable Web Services" in the
Oracle Application Server Advanced Web Services Developer’s Guide.

using quality of service features in Web service clients, see "Managing Web
Services" in the Oracle Application Server Advanced Web Services Developer’s Guide.

adding security to a Web service, see the Oracle Application Server Web Services
Security Guide.

how to write clients to access Web services secured on the transport level, see
"Adding Transport-level Security for Web Services Based on E]Bs" and "Accessing
Web Services Secured on the Transport Level" in the Oracle Application Server Web
Services Security Guide.

adding reliability to a Web service, see "Ensuring Web Service Reliability" in the
Oracle Application Server Advanced Web Services Developer’s Guide.

adding an auditing and logging configuration to a Web service, see "Auditing and
Logging Messages" in the Oracle Application Server Advanced Web Services
Developer’s Guide.

processing nonstandard data types, see "Custom Serialization of Java Value Types"
in the Oracle Application Server Advanced Web Services Developer’s Guide.

the JAX-RPC mapping file, see "JAX-RPC Mapping File Descriptor" in the Oracle
Application Server Advanced Web Services Developer’s Guide.

data types supported by OracleAS Web Services, see "Mapping Java Types to XML
and WSDL Types" in the Oracle Application Server Advanced Web Services Developer’s
Guide.

Oracle JDeveloper tool support for Web service development, see the Oracle
JDeveloper on-line help.

15-16 Web Services Developer's Guide

16

Using JAX-RPC Handlers

This chapter provides an overview of working with JAX-RPC message handlers.
s Understanding Message Handlers

= How to Write a JAX-RPC Handler

= How to Configure and Register a Server-Side Handler with Ant Tasks

» How to Edit webservices.xml to Register a Server-Side Handler

» Client-Side JAX-RPC Handlers

Understanding Message Handlers

SOAP message handlers can be used to process messages to and from a Web service.
There are two kinds of handlers: client and server.

» Client side handlers can intercept messages sent from a client application, the
"request”, and the corresponding message returned from the service to the client,
the "response".

= Server side handlers can intercept messages received by a Web service, the
"request”, and the corresponding message returned by the service, the "response”.

Because handlers gain privileged access to the entire SOAP envelope, they are
commonly used for SOAP header processing. Some other common uses for handlers
are:

= logging
= auditing
= encryption/decryption

Much of this functionality is provided by the OracleAS Web Services management
infrastructure. In many cases, a user-written handler might not be necessary.

For any given Web service or Web service client, there can be zero or more handlers. A
collection of handlers constitutes a handler chain. The handler chain is maintained by
the JAX-RPC runtime implementation. The default behavior of the runtime
implementation is to call each handler in order from the chain. However, a handler can
change this processing model based on its implementation of the
javax.xml.rpc.handler.Handler interface. For example, returning false in the
handleRequest message will halt the runtime from proceeding to the next handler
in the chain. Throwing an exception will have a similar effect.

Using JAX-RPC Handlers 16-1

How to Write a JAX-RPC Handler

See Also:

The JAX-RPC 1.1 specification provides more information on handlers
and the handler model:

http://java.sun.com/webservices/jaxrpc/index. jsp

How to Write a JAX-RPC Handler

To write a JAX-RPC handler, implement the javax.xml.rpc.handler.Handler
interface.

package javax.xml.rpc.handler;

public interface Handler{
public boolean handleRequest (javax.xml.rpc.handler.MessageContext context);
public boolean handleResponse (javax.xml.rpc.handler.MessageContext context);
public boolean handleFault (javax.xml.rpc.handler.MessageContext context);
public void destroy();
public void init(javax.xml.rpc.handler.HandlerInfo config);
public javax.xml.namespace.QName[] getHeaders();

}

As an alternative to implementing the Handler interface, you can extend the
javax.xml.rpc.handler.GenericHandler class. This class provides default
implementations for all of the interface's methods so there is no need to redefine them
in your handler implementation.

See Also:

The API at the following Web site provides more information on the
Handler interface and GenericHandler class.

http://java.sun.com/j2ee/1.4/docs/api/javax/xml/rpc/
handler/package-summary.html

How to Configure and Register a Server-Side Handler with Ant Tasks

Handlers are ultimately configured and registered in the Web services deployment
descriptor (webservices.xml). However, instead of editing the file yourself, you can
have WebServicesAssembler generate the proper configuration by specifying the
handler classes, that is, classes that implement the Handler interface, at development
time.

Note: WebServicesAssembler provides Ant tasks that let you
configure JAX-RPC message handlers. These tasks are listed in "Ant
Tasks that can Configure and Register Handlers" on page 16-3.

Handlers cannot be configured by using the WebServicesAssembler
command line.

For example, to add server handlers for a Web service described by the WSDL in
Example 17-1, you could use the following Ant task. The server handler appears in
bold:

<oracle:topDownAssemble appName="hello-service"
wsdl="Hello.wsdl"
input="./classes"
output="build"

16-2 Web Services Developer's Guide

How to Edit webservices.xml to Register a Server-Side Handler

ear="dist/hello-service.ear"
packageName="oracle.demo"
>
<oracle:porttype className="oracle.demo.HelloImpl" />
<oracle:handler name="ServerHandler"
handlerClass="oracle.demo.ServerHelloHandler" />
</oracle:topDownAssemble>

In this example, the server handler oracle.demo.ServerHelloHandler is
configured for the hello-service Web service. Any number of handlers can be
added by adding <handler> elements, each with unique names. Handlers are added
to the chain in the same order in which the handler elements are listed. Although this
example is for top down development, handlers can also be added to other Ant tasks
using the same <handler> element.

The process for adding client-side handlers is almost identical.

See Also:

= "How to Configure Handlers in an Ant Task" on page 18-81 for
more information on configuring handlers.

s 'Client-Side JAX-RPC Handlers" on page 16-4 for more
information on configuring client-side handlers.

Ant Tasks that can Configure and Register Handlers

The following is a list of Ant tasks that can include the <handler> element. For more
information on these commands, see Chapter 18, "Using WebServicesAssembler".

= agAssemble

= assemble

= corbaAssemble

s dbJavaAssemble

= ejbAssemble

= genDDs

= genProxy (for client-side generation only)
= jmsAssemble

= plsqlAssemble

= sqlAssemble

= topDownAssemble

How to Edit webservices.xml to Register a Server-Side Handler

If you use Ant tasks to add handlers while generating your Web service, then the
appropriate configuration will be added to the webservices.xml file for you. There
should be no need to add any additional information to this file.

However, if you use the command line, or manually create a Web service deployment
descriptor, then you must edit the webservices.xmnl file. You can add handlers to
the file by adding <handler> subelements to the <port-component> element.
Example 16-1 illustrates a <port-component> element with multiple handlers.

Using JAX-RPC Handlers 16-3

Client-Side JAX-RPC Handlers

Example 16-1 Sample JAX-RPC Handlers in webservices.xml

<port-component>
<handler>
<handler-name>First Handler</handler-name>
<handler-class>oracle.xx.AccountTransactionHandler</handler-class>
<init-param>
<param-name>test</param-name>
<param-value>testValue</param-value>
</init-param>
</handler>
<handler>
<handler-name>Second Handler</handler-name>
<handler-class>oracle.xx.NewAccountHandler</handler-class>
</handler>

</port-component>

Table 16-1 describes the <handler> subelements that can be used to specify a
server-side handler.

Table 16-1 <handler> Subelements for a Server-Side Handler

Subelement Description

<handler-class> The fully-qualified name of the handler’s class. The class must
hnpbnwntjavax.xml.rpc.handler.Handlen

<handler-name> A unique name that identifies the handler.

<init-param> A subelement containing one param-name, param-value pair.

The param-name, param-value pair represents a single parameter
and value that will be passed to the handler's init method.
There is no limit on the number of init-param subelements
that can be used in a <handler> element.

For more information on the contents of webservices.xml, see its schema at the
following Web address:

http://java.sun.com/xml/ns/j2ee/j2ee_web_services_1_1.xsd

Client-Side JAX-RPC Handlers

On the Web service client, JAX-RPC handlers can intercept and process messages sent
from a client application and the corresponding message returned by the service.
These handlers can, for example, process the SOAP message. The following sections
describe how to register the handlers for use in Web service clients:

s How to Register a JAX-RPC Handler for J2EE Web Service Client
s How to Register a JAX-RPC Handler for a J2SE Web Service Client

How to Register a JAX-RPC Handler for J2EE Web Service Client

For J2EE Web service clients, JAX-RPC handler information appears within the
<service-ref> element in the deployment descriptor for a given J2EE client. The
<service-ref> element captures all of the service's J2EE client-related information,
such as the location of the WSDL and mapping file, the service interface, the ports the
service will run on and their related service endpoint interfaces, and so on.

16-4 Web Services Developer's Guide

Client-Side JAX-RPC Handlers

Unlike server-side handlers, client-side handlers are associated with service references
(<service-ref>) instead of port component references (<port-component>).
Client-side handlers have a configurable <port-name> parameter that associates a
handler with the port of the invoked service. When a service endpoint (WSDL port) is
invoked, the value of <port-name> determines which handler is run.

To register a handler for a J2EE Web service client, enter the handler information in the
<service-ref> section of its deployment descriptor. The following list identifies the
J2EE deployment descriptors for each J2EE component that can act as a Web service
client.

s WEB-INF/web.xml for a JSP or servlet
s META-INF/application-client.xml for an application client
s META-INF/ejb-jar.xml for an EJB

The contents of <service-ref> element are described by the service-ref (J2EE
client) schema, available at the following Web site.

http://java.sun.com/xml/ns/j2ee/j2ee_web_services_client_1_1.xsd

Using the handler Element in a J2EE Web Service Client

The <handler> element encapsulates the handler information for a J2EE Web service
client. Table 16-2 describes the subelements that it can use.

Table 16-2 <handler> Subelements for a J2EE Web Service Client Handler

Subelement Description

<handler-class> The fully-qualified name of the handler’s class. The class must
implement javax.xml.rpc.handler.Handler.

<handler-name> The unique name that identifies the handler.

<init-param> A subelement containing one param-name, param-value pair.

The param-name, param-value pair represents a single parameter
and value that will be passed to the handler's init method.
There is no limit on the number of init-param subelements
that can be used in a <handler> element.

<port-name> The name of the port on which the handler will operate.

Enter the handler information at the end of the <service-ref> section, after any
port component information. Example 16-2 illustrates a <service-ref> element
with two defined handlers. In this example, First Handler is associated with the
class oracle.xx.AccountTransactionHandler and runs on portA. Second
Handler is associated with the class oracle.xx.NewAccountHandler and runs on
portB.First Handler runs only if PortA is invoked and Second Handler runs
only if PortB is invoked.

Example 16-2 Sample JAX-RPC Handler for a J2EE Client
<service-ref>
<service-ref-name>service/MyHelloServiceRef</service-ref-name>

<port-component-ref>

</port-component-ref>
<handler>
<handler-name>First Handler</handler-name>
<handler-class>oracle.xx.AccountTransactionHandler</handler-class>

Using JAX-RPC Handlers 16-5

Limitations

<port-name>portA</port-name>

</handler>
<handler>

<handler-name>Second Handler </handler-name>
<handler-class>oracle.xx.NewAccountHandler</handler-class>
<port-name>portB</port-name>

</handler>

</service-ref>

How to Register a JAX-RPC Handler for a J2SE Web Service Client

Client-side JAX-RPC handlers for J2SE clients can be registered using the genProxy
Ant task for WebServicesAssembler. In Example 16-3, the handler
oracle.demo.ClientHelloHandler will be available to the J2SE client. Unlike
J2EE Web service clients, J2SE clients do not use a deployment descriptor.

Example 16-3 Registering a Handler for a J2SE Web Service Client

<oracle:genProxy

Limitations

wsdl="http://localhost:8888/hello-service/hello-service?WSDL"
output="build/src/client"
packageName="oracle.demo">
<oracle:handler
name="ClientHelloHandler"
handlerClass="oracle.demo.ClientHelloHandler" />
</oracle:genProxy>

See "Understanding JAX-RPC Handlers" on page F-9.

Additional Information

For more information on:

16-6

processing messages directly, see the SAA] APIs available from:
http://java.sun.com/webservices/saaj/index.jsp

OracleAS Web Services extensions to the SAA] APIs that allow you to work with
SOAP 1.2 messages, see "Working with SOAP Messages" on page 5-11.

assembling Web services from a WSDL, see Chapter 6, "Assembling a Web Service
from WSDL".

assembling stateful Web services, see Chapter 7, "Assembling a Web Service with
Java Classes".

assembling Web services from E]Bs, see Chapter 8, "Assembling a Web Service
with EJBs".

assembling Web services from a JMS queue or topic, see Chapter 9, "Assembling
Web Services with JMS Destinations".

assembling Web services from database resources, see Chapter 10, "Assembling
Database Web Services".

assembling Web services with J2SE 5.0 Annotations, see Chapter 11, "Assembling
Web Services with Annotations".

Web Services Developer's Guide

17

Processing SOAP Headers

This chapter describes the ways in which you can process SOAP headers:
= How to Process SOAP Headers with Parameter Mapping

= How to Process SOAP Headers by Using Handlers

s How to Process SOAP Headers by Using the ServiceLifecycle Interface

How to Process SOAP Headers with Parameter Mapping

The WebServicesAssembler tool can be used to map SOAP header blocks defined in a
wsdl : binding element of a WSDL file to method parameters in the generated
service endpoint interface (SEI). This allows the SOAP header blocks to be accessed
directly inside methods implementing the service endpoint interface.

Example 17-1 illustrates a simple WSDL that explicitly defines a SOAP header.

Example 17-1 Simple WSDL That Explicitly Defines a SOAP Header

<definition xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://test.com"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" =xmlns:xs="http://www.w3.
org/2001/XMLSchema"
>
<types/>
<message name="HelloHeader">
<part name="header" type="xs:string"/>
</message>
<message name="HelloMessage">
<part name="body" type="xs:string"/>
</message>
message name="HelloMessageResponse"/>
<portType name="HelloPortType">
<operation name="sayHello">
<input message="tns:HelloMessage"/>
<output message="tns:HelloMessageResponse/>
</operation>
</portType>
<binding name="HelloBinding" type="tns:HelloPortType">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.
org/soap/http" />
<operation name="sayHello">
<input>
<soap:body use="literal" namespace="http://test.com"/>
<!--the SOAP header must be defined here -->
<soap:header message=""tns:HelloHeader" part="header"
use="literal"/>

Processing SOAP Headers 17-1

How to Process SOAP Headers with Parameter Mapping

</input>
<output>
<soap:body use="literal" namespace="http://test.com"/>
</output>
</operation>
</binding>
<service name="HelloService">
<port name="HelloPort" binding="tns:HelloBinding">
<soap:address
location="http://localhost:8888/hello-service/hello-service"/>
</port>
</service>
</definition>

The WebServicesAssembler tool provides the boolean mapHeadersToParameters
argument for mapping SOAP headers to parameters. The default for this argument is
true, so there is no need to explicitly provide it unless you want to suppress the
SOAP headers.

You can generate the service endpoint interface with parameter mapping by using
either Ant tasks or the WebServicesAssembler tool. The following sample Ant task
maps SOAP headers to parameters for the hello-service Web service.

<oracle:topDownAssemble appName="hello-service"

wsdl="Hello.wsdl"

input="./classes"

output="build"

ear="dist/hello-service.ear"

packageName="oracle.demo "

mapHeadersToParameters="true"

>

<oracle:porttype className="oracle.demo.HelloImpl" />
</oracle:topDownAssemble>

The following is the WebServicesAssembler command line version of the previous
example.

java -jar wsa.jar -topDownAssemble
-wsdl Hello.wsdl
-output build
-ear dist/hello-services.ear
-mapHeadersToParameters true
-packageName oracle.demo

In this command and Ant task:

» topDownAssemble—Creates the required classes and deployment descriptors for
a Web service based on a WSDL description. The files can be stored in either an
EAR file, a WAR file, or a directory. See topDownAssemble on page 18-22.

» wsdl—Specifies the absolute file path, relative file path, or URL to a WSDL
document. See "wsdl" on page 18-65.

= output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created. See "output” on page 18-48.

= ear—Specifies the name and location of the generated EAR. See "ear" on
page 18-44.

» mapHeadersToParameters—Indicates if SOAP headers defined in the WSDL
should be mapped to parameters for each of the methods in the generated Java
code. See "mapHeadersToParameters" on page 18-69.

17-2 Web Services Developer's Guide

How to Process SOAP Headers by Using Handlers

» packageName—Specifies the package name that will be used for generated
classes if no package name is declared in the JAX-RPC mapping file. See
"packageName" on page 18-48.

See Also:

"mapHeadersToParameters" on page 18-69 for more information on
this argument.

Ant Tasks and Commands that can Map Headers to Parameters

The following WebServicesAssembler commands and Ant tasks can be used to call the
mapHeaderstoParameters argument. For more information on these commands,
see Chapter 18, "Using WebServicesAssembler".

= genlnterface
= genProxy

= topDownAssemble

How to Process SOAP Headers by Using Handlers

JAX-RPC Handlers can be used to process both explicit and implicit SOAP headers.
Explicit SOAP headers are those defined in the WSDL document. Example 17-1
illustrates a simple WSDL that defines a SOAP header. Implicit SOAP headers are
those that are not necessarily defined in any particular WSDL document, but may be
present in a SOAP envelope.

Handlers gain access to a SOAP header using the methods defined in the javax.
xml . rpc.handler.Handler interface. These methods are:

boolean handleRequest (MessageContext context);
boolean handleResponse (MessageContext context);
boolean handleFault (MessageContext context);

The context argument in each of these messages can be used to view the SOAP
headers in the SOAP envelope. The following is an example of a handler
implementation viewing the headers on a SOAP request:

boolean handleRequest (MessageContext context) {
javax.xml.rpc.handler.soap.SOAPMessageContext smc = (javax.xml.rpc.handler.
soap.SOAPMessageContext) context;
javax.xml.soap.SOAPHeader sh = smc.getSOAPMessage.getSOAPHeader () ;
//the SOAPHeader will contain a list of SOAPHeaderElements (header blocks)
Iterator it = sh.examineAllHeaderElements();
//iterate through all the SOAP header elements and print their names
while(it.hasNext()) {
javax.xml.soap.SOAPHeaderElement elem = (SOAPHeaderElement)it.next();
System.out.println(elem.getElementName () .getQualifiedName()) ;
}

return true;

Processing SOAP Headers 17-3

How to Process SOAP Headers by Using the ServiceLifecycle Interface

See Also:

» For more information on the Handler interface, see the Java API
for XML-Based RPC (JAX-RPC 1.1) specification at the following
Web address:

http://java.sun.com/webservices/jaxrpc/index. jsp).

= For more information on processing messages directly, see the
SOAP with Attachments API for Java (SAAJ) at the following Web
address:

http://java.sun.com/webservices/saaj/index. jsp

How to Process SOAP Headers by Using the ServiceLifecycle Interface

You can manage the life cycle of the service endpoint by implementing the javax.
xml.rpc.server.ServiceLifecycle interface. The interface has the following
methods.

void init (Object context);
void destroy();

The runtime system will invoke the init method and pass a context object. The
context object contains the ServletEndpointContext object. From this object,
you can extract the SOAPMessageContext to process the header upon each
invocation.

Example 17-2 demonstrates how to use the javax.xml.rpc.server.
ServiceLifecycle interface to access SOAP headers:

Example 17-2 Using ServiceLifecycle to Access SOAP Headers

public class HelloImpl implements HelloPortType, ServiceLifecycle{
private Object m_context;

public void sayHello(String body) {
javax.xml.rpc.server.ServletEndpointContext sec =
(ServletEndpointContext)m_context;
javax.xml.rpc.handler.soap.SOAPMessageContext mc =
(SOAPMessageContext) sec.getMessageContext () ;
javax.xml.soap.SOAPHeader sh = mc.getSOAPMessage () .getSOAPHeader () ;
// from here you can process all the header
// blocks in the SOAP header.

//this will be called by the runtime system.
public void init (Object context) {
m_context = context;
}
public void destroy () {
}
}

Implementing this interface enables you to process both implicit and explicit SOAP
headers, although it is more useful for the implicit headers.

How to Get HTTP Response and Request Headers

The following sections describe how static stub and Dynamic Invocation Interface
(DII) clients can obtain the headers from HTTP response and requests.

17-4 Web Services Developer's Guide

How to Process SOAP Headers by Using the ServiceLifecycle Interface

s How Stub Clients Can Get Headers with the ServiceLifecycle Interface
s How DII Clients Can Get Headers with the OracleCall Interface
s How DII Clients of WSIF Services Can Get Message Headers

How Stub Clients Can Get Headers with the ServiceLifecycle Interface

J2SE and J2EE static stub clients can use the HTTP_SERVLET_REQUEST and HTTP_
SERVLET_RESPONSE properties in the oracle.webservices.ServerConstants
class to access the HTTP message header. This property can be used by a service
implementation class to get the HI'TP servlet request or response when the Web
service caller uses HTTP transport.

To use either of these properties, the service implementation must implement javax.
xml.rpc.server.ServiceLifecyle and store the Object passed into the init
method which is an instance of javax.xml.rpc.server.
ServletEndpointContext.

When a method in the service implementation class is invoked, the
ServletEndpointContext.getMessageContext method returns a javax.xml.
rpc.handler.MessageContext. The MessageContext.getProperty method
can use either HTTP_SERVLET REQUEST or HTTP_SERVLET_RESPONSE as a
property name.

If HTTP_SERVLET_REQUEST is the requested property, then the returned object is an
instance of javax.servlet.http.HttpServletRequest. If HITP_SERVLET_
RESPONSE is the requested property, then the returned object is an instance of javax.
servlet.http.HttpServletResponse.

Example 17-3 illustrates how to get an HTTP request header to obtain the IP address.
In the example, the HelloImpl class implements the ServiceLifecycle interface.
In this case, the context object passed to the init method is cast to the
ServletEndpointContext object. The destroy method destroys the service
lifecycle. In the implementation of the get IPAddress method, the
getMessageContext method pulls the message context from the
ServletEndpointContext object. The getProperty method uses the HTTP_
SERVLET_REQUEST property to return the request as an Ht tpServletRequest
object. The getRemoteAddr method returns the IP address.

Example 17-3 Getting an HTTP Header

public class HelloImpl implements ServiceLifecycle {
ServletEndpointContext m_context;
public void init(Object context) throws ServiceException {
m_context = (ServletEndpointContext)context;

}

public void destroy() {
}

public String getIPAddress () {
HttpServletRequest request = (HttpServletRequest)m_context.
getMessageContext () .getProperty (ServerConstants.HTTP_ SERVLET REQUEST) ;
return request.getRemoteAddr () ;

Processing SOAP Headers 17-5

Limitations

How DII Clients Can Get Headers with the OracleCall Interface

Dynamic Invocation Interface (DII) clients can use methods in the oracle.
webservices.OracleCall interface to obtain HTTP request and response headers.
To retrieve response headers, use the getResponseHeaders () method. This method
returns a Vector; the elements in the Vector are the SOAP response headers.

To retrieve request headers use the getHeaders () method. This method also returns
a Vector where the elements are the SOAP response headers. Typically, the headers
are added to the Vector with the addHeaders () method.

Example 174 illustrates DII client code for getting the response headers.
Example 17-4 Retrieving Response Headers in DIl Client Code

OracleCall call = (OracleCall)port.getCall();
Vector headers = call.getResponseHeaders();
if (Vector != null) {
for(int 1 = 0;1 < headers.size();i++) {
Element header = (Element) headers.get(i);
// do something with the header Element

How DIl Clients of WSIF Services Can Get Message Headers

For information on how message headers can be retrieved by DII clients of Web
Services Invocation Framework (WSIF) services, see "How DII Clients of WSIF
Services Can Get Message Headers" in the Oracle Application Server Advanced Web
Services Developer’s Guide.

Limitations
See "Processing SOAP Headers" on page F-9.

Additional Information
For more information on:

= assembling Web services from a WSDL, see Chapter 6, "Assembling a Web Service
from WSDL".

= assembling stateful Web services, see Chapter 7, "Assembling a Web Service with
Java Classes".

assembling Web services from E]Bs, see Chapter 8, "Assembling a Web Service
with EJBs".

= assembling Web services from a JMS queue or topic, see Chapter 9, "Assembling
Web Services with JMS Destinations".

= assembling Web services from database resources, see Chapter 10, "Assembling
Database Web Services".

= assembling Web services with J2SE 5.0 Annotations, see Chapter 11, "Assembling
Web Services with Annotations".

17-6 Web Services Developer's Guide

18

Using WebServicesAssembler

This chapter describes the functionality provided by the WebServicesAssembler tool.
= About the WebServicesAssembler Tool

» Setting Up Ant for WebServicesAssembler

s WebServicesAssembler Commands

s WebServicesAssembler Arguments

= Resolving Name Collisions

s Default Algorithms to Map Between Target WSDL Namespaces and Java Package
Names

= How to Establish a Database Connection

» Additional Ant Support for WebServicesAssembler

= How to Assign Multiple Web Services to an EAR or WAR Archive
s How to Represent Java Method Parameter Names in the WSDL

About the WebServicesAssembler Tool

The WebServicesAssembler tool assists in assembling Oracle Application Server Web
Services. It enables you to generate the artifacts required to develop and deploy Web
services, regardless of whether you are creating the service top down or bottom up.
The WebServicesAssembler can also be invoked to create Web service client objects
based on a WSDL.

Support for Top Down Web Service Generation

In the top down case, you provide WebServicesAssembler with a WSDL and it creates
the service endpoint interfaces. You can then fill in the implementation for the service
for any required architecture, such as Java classes.

See Also:

Chapter 6, "Assembling a Web Service from WSDL" for an example of
top down Web service assembly that uses WebServicesAssembler.

Support for Bottom Up Web Service Generation

In the bottom up case, you start with existing business logic, such as Java classes,
Enterprise Java Beans (E]Bs), CORBA objects, JMS queues, or database artifacts such as
PL/SQL procedures. WebServicesAssembler uses these artifacts to assemble a WSDL,
a mapping file, and the necessary deployment descriptors.

Using WebServicesAssembler 18-1

About the WebServicesAssembler Tool

See Also:

See the following chapters for examples of bottom up Web service
assembly that use WebServicesAssembler:

s Chapter 7, "Assembling a Web Service with Java Classes"

s Chapter 8, "Assembling a Web Service with EJBs"

s Chapter 9, "Assembling Web Services with JMS Destinations"
s Chapter 10, "Assembling Database Web Services"

Support for XML Schema-Driven Web Service Generation

In the schema-driven case, you start with an XML schema and generate Java beans.
Once you have the Java beans, you write the interface that uses the beans as
arguments and use the bottom up paradigm to generate the WSDL, mapping file and
deployment descriptors.

While you could use JAX-B or Toplink to generate beans from XML schemas, you
could also use WebServicesAssembler or Ant tasks.

See Also:

"Using Custom Serialization in Schema-Driven Web Service
Development" in the Oracle Application Server Advanced Web Services
Developer’s Guide for more information on using Ant tasks or
WebServicesAssembler to generate a Web service from a schema.

Support for Deployment

Although the OC4] container handles deployment, the WebServicesAssembler tool
assists you by ensuring that the application archives it generates are properly prepared
for deployment. WebServicesAssembler handles the generation of all relevant
deployment descriptors and maps proprietary configuration needed by the
applications into Oracle specific deployment files. Applications based on Java classes
or EJB 2.1 are deployable across different containers. These Web services are in a J2EE
standard deployable form and adhere to industry standards, such as the JAX-RPC,
Enterprise Web Services 1.1, and Web Services-Interoperability (WS-I) specifications.

Support for Command Line Invocation and Ant Tasks

The WebServicesAssembler tool can be invoked either on the command line or by Ant
tasks. WebServicesAssembler allows you flexibility in how you assemble your Web
service. You can break the assembly process into a number of steps that let you more
closely control how the Web service is created. For example, you can perform the
following tasks.

= Use another mechanism to create deployment descriptors

To do this, WebServicesAssembler provides command line arguments to add and
delete services from deployment descriptors. This means that you can start with a
set of hand-coded deployment descriptors that contain information that
WebServicesAssembler does not generate. You can then use
WebServicesAssembler to append information to these descriptors.

= Control when artifacts are compiled and which classpath to use
s Control when artifacts are packaged into an archive
= Control the content of the archive

s Create platform-independent build files

18-2 Web Services Developer's Guide

WebServicesAssembler Commands

Command Line Syntax

The WebServicesAssembler tool supports a number of commands. When you invoke
WebServicesAssembler, only one command can appear on the command line.

A typical command line has the following syntax.

java -jar [0C4J_HOME] /webservices/lib/wsa.jar -[command] -[argument name] [argument
value]...

In this example, 0C4J_HOME is where OC4J was installed and wsa . jar is the name of
the WebServicesAssembler JAR file. Note the following command line syntax rules.

A command must be specified first on the command line.

Commands and arguments can be preceded with a dash "-", however, it is not
required.

A space must separate an argument name from its value.

All argument names are case-sensitive when used in Ant tasks. They are not
case-sensitive when used on the command line.

If a white space is required in an argument value, the value must be escaped.

For example, on Windows and Linux, white space must be double-quoted. Other
operating systems may require a different way to pass white space as parameters
to a Java executable.

All arguments that are used after the command can be placed in any order.

Typically, an argument can appear only once on the command line. Exceptions to
this rule are noted in the individual argument descriptions.

Setting Up Ant for WebServicesAssembler

To call WebServicesAssembler commands from Ant tasks, you may need to make
some changes and additions to your installation of Ant.

See Also:

"How to Set Up Ant for WebServicesAssembler" on page 4-3 for a
description of the changes and additions needed to call Ant tasks.

WebServicesAssembler Commands

This section describes the commands available for the WebServicesAssembler tool. The
commands are organized into the following categories based on the functionality they
provide.

Web Service Assembly Commands—assemble Web services. These commands
create all of the files necessary to create a deployable archive such as a WAR, an
EAR, or an EJB JAR.

WSDL Management Commands—perform actions on a WSDL, such as generate a
WSDL for bottom up development, manage its contents and location, and
determine whether it can be processed by WebServicesAssembler.

Java Generation Commands—generate code to create a Java interface from a
WSDL, a proxy/stub, or JAX-RPC value type classes.

Deployment Descriptor Generation Commands—generate deployment descriptors
for EARs, WARs, or EJB JARs.

Using WebServicesAssembler 18-3

WebServicesAssembler Commands

Maintenance Commands—return a short description of WebServicesAssembler
commands and the version number of the tool.

Web Service Assembly Commands

The following commands can be used to assemble a Web service.

aqAssemble—Assembles a Web service from a Advanced Queue in the database

assemble—Assembles a Web service from Java classes and annotated Java classes.
(See Chapter 11, "Assembling Web Services with Annotations" for more
information on using J2SE 5.0 Web Services Annotations.)

corbaAssemble—Assembles a Web service endpoint from a CORBA servant object
dbJavaAssemble—Assembles Web services from a Java class in a database
ejbAssemble—Assembles an EJB as a Web service

jmsAssemble—Assembles a JMS Endpoint Web service
plsqlAssemble—Assembles a Web service from a PL/SQL package
sqlAssembles—Assembles a Web service from SQL queries and DML statements

topDownAssemble—Assembles Web service classes and deployment descriptors
from a WSDL specification

These commands share the following functionality and behavior:

Each of the *Assemble commands creates all of the files required for a deployable
archive.

Each of the *Assemble commands, except topDownAssemble, calls the
assemble command after they generate a Java class.

The files created by the *Assemble commands are placed in the staging directory
structure under the directory specified by the output argument.

See Figure 18-1 for an illustration of the staging directory structure created by the
*Assemble commands.

The names and contents of the ear and war directories are affected by the values
you provide for the ear and war arguments.

See "ear" on page 18-44 and "war" on page 18-51 for more information on these
arguments.

The output of each of the *Assemble commands, except ejbAssemble, is an
EAR and a WAR file, and an optional directory that contains the contents of a
WAR that can be deployed into an OC4] instance.

The contents of the classpath are not copied to the archive. If you specify the
classpath or input arguments to any of the *Assemble commands, you must
be sure that the classes found in the classpath are also available in the server.

You can add files to an EAR or WAR file before it is archived by the *Assemble
commands.

See "How to Add Files to an Archive" on page 18-84 for more information on this
topic.

Figure 18-1 illustrates the staging directory structure created by the *Assemble
commands. Beneath the specified output directory, the commands create three
subdirectories: ear, src, and war.

18-4 Web Services Developer's Guide

WebServicesAssembler Commands

The ear subdirectory contains the contents of the generated EAR file. It also
contains a META-INF subdirectory that contains the application.xml file.

The src subdirectory contains the generated source files. It also contains a proxy
subdirectory that contains the Java proxy files. If the Web Service is assembled
from a WSDL (top down), src also contains subdirectory with a skeleton of the
generated service endpoint interface and value type classes.

The war subdirectory contains the contents of the generated WAR file. This
subdirectory also contains a WEB- INF subdirectory. WEB-INF contains the
mapping files and the standard and Oracle proprietary deployment descriptors.
These files include the web-service_name_java_wsdl_mapping.xml, web.xml,
oracle-webservices.xml and webservices.xmnl files.

WEB-INF also contains the classes and wsdl subdirectories. The classes
subdirectory contains the implementation classes. The wsdl subdirectory contains
the Web service's WSDL file.

Note: WebServicesAssembler does not remove files from the war
and ear staging directories by default. If you use the same output
directory for multiple invocations of WebServicesAssembler, then you
may find extra, unwanted files in the WAR and EAR archives. If you
want to avoid this behavior, do one of the following:

= specify a different output directory for each invocation of
WebServicesAssembler

= delete the contents of the output directory in between calls to the
WebServicesAssembler invocations

Figure 18-1 Staging Directory Structure Created by the *Assemble Commands

agAssemble

output directory
ear src war
—content of L-generated —content of
ear file source files war file
META-INF proxy . skeleton WEB-INF . .
L_application.xml L_Java proxy files (topdown Assemble only) web_service_name-java-wsdl-mapping.xml
L_generated Service web.xml)
Endpoint Interface oracle-webservices.xml
and value type webservices.xml
classes
classes) wsdl)
—implementation classes —web_service_name.wsdl

Use the agAssemble command to generate Web services from an advanced queue in
the database. To use this command, you must connect to a database.

The agAssemble command can also add WSIF bindings for an advanced queue to the
WSDL. Use the wsifDbBinding argument to add WSIF bindings to the WSDL when
you are exposing a database resource as a Web service. You must specify the

Using WebServicesAssembler 18-5

WebServicesAssembler Commands

className of the resource's Oracle JPublisher-generated Java class and a database
connection.

See Also:

s "How to Assemble a Web Service from an Oracle Streams AQ" on
page 10-22 provides more information about using the
agAssemble command to expose an advanced queue as a Web
service.

= "How to Establish a Database Connection" on page 18-75
describes the arguments that allow you to connect to a database.

s "Configuring a WSIF Endpoint for Database Resources" in the
Oracle Application Server Advanced Web Services Developer’s Guide
provides more information on adding bindings for database
resources to the WSDL.

Command Line Example:
java -jar wsa.jar -agAssemble
-dbUser scott/tiger
-sgl ToyQueue
-dbConnection jdbc:oracle:thin:@dsunrde22:1521:sqlj
-dataSource jdbc/OracleManagedDS
-appName query

Ant Task Example:

<oracle:agAssemble
dbUser="scott/tiger"
sqgl="ToyQueue"
dbConnection="jdbc:oracle:thin:@dsunrde22:1521:sqlj"
dataSource="jdbc/OracleManagedDS"
appName="query"

/>

Required Arguments:
To use the agAssemble command, you must specify the following arguments.

= Database Assembly Arguments: sql

You must also connect to the database. To do this, use one of the following
combinations of arguments.

— dataSource, dbConnection, and dbUser

— dataSource

All Arguments:

The following list identifies all of the arguments that can be used with the
agAssemble command.

= Database Assembly Arguments: agqConnectionFactoryLocation,
agqConnectionLocation, dataSource, dbConnection, dbUser, jpubProp, sql
(required), sqlTimeout, sysUser, useDataSource, wsifDbBinding, wsifDbPort

For more information on these arguments, see "Database Assembly Arguments"
on page 18-53.

s Deployment Descriptor Arguments: appendToExistingDDs, context,
ddFileName, uri

18-6 Web Services Developer's Guide

WebServicesAssembler Commands

assemble

For more information on these arguments, see "Deployment Descriptor
Arguments" on page 18-62.

= General Assembly Arguments: appName, debug, ear, emptySoapAction, help,
interfaceName, mappingFileName, output, packageName, portName,
restSupport, schema, serviceName, useDimeEncoding, war

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 18-41.

= Java Generation Arguments: valueTypeClassName
For more information on this argument, see "Java Generation Arguments" on
page 18-68.

s Message Format Arguments: style, use
For more information on these arguments, see "Message Format Arguments" on
page 18-67.

= Session Arguments: timeout
For more information on this argument, see "Session Arguments" on page 18-51.

s WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort
For more information on these arguments, see "WSDL Access Arguments" on
page 18-64.

= WSDL Management Arguments: createOneWayOperations, genQos,

qualifiedElementForm, soap Version, targetNamespace, typeNamespace

For more information on these arguments, see "WSDL Management Arguments"
on page 18-65.

Ant Task Support:

= <proxy> tags. For more information, see "How to Configure Proxy Generation in
an Ant Task" on page 18-77.

m <port>tags.In the <port> tag, agAssemble can use these arguments:
bindingName, name (same as portName), portName,
sendConnectionFactoryLocation, sendQueueLocation, soap Version, and uri. For
more information, see "How to Configure a Port in an Ant Task" on page 18-78.

» <handler> tags. For more information, see "How to Configure Handlers in an
Ant Task" on page 18-81.

Use the assemble command to generate a Web service bottom up. The command
creates all of the files required to create a deployable archive. These files include the
proprietary oracle-webservices.xml deployment descriptor. The command can
generate stateless Web services whether the transport mechanism is HTTP or JMS.

To find the Java implementation class, you must specify an input or classpath
argument. If you specify either of these arguments, you must be sure that the classes
found in the classpath are also available in the server. This is because the contents of
the classpath are not copied to the archive.

Assembling WSIF Bindings into the WSDL

In addition to generating a Web service, the assemble command can also add WSIF
bindings to the WSDL. Use the wsifJavaBinding argument to add WSIF bindings

Using WebServicesAssembler 18-7

WebServicesAssembler Commands

to the WSDL when you are exposing a Java class as a Web service. You must also
specify the Java class with the className argument.

See Also:

s "Configuring a WSIF Endpoint for Multiple Java Ports" in the
Oracle Application Server Advanced Web Services Developer’s Guide.

= "Using Web Services Invocation Framework" in the Oracle
Application Server Advanced Web Services Developer’s Guide for more
information on WSIFE.

Assembling a Web Service with J2SE 5.0 Annotations

If you are using the assemble command to assemble a Web service from Java classes
that contain J2SE 5.0 Annotations, then use the className argument to identify the
implementation class. The @WebService annotation must be present on the class
declaration.

J2SE 5.0 annotations require a class name because annotations can appear in either the
interface or the implementation class. If the annotations appear only in the interface,
WebServicesAssembler can obtain them through its referenced implementation class. If
the implementation class also contains annotations, WebServicesAssembler will
process them.

The following example illustrates the assemble command being used to generate a
Web service from a Java class that contains J2SE 5.0 annotations. The className
argument specifies the com.mycompany . HelloImpl class.

java -jar wsa.jar assemble -appName myService -className com.mycompany.HelloImpl
-output wsdl

If you want WebServicesAssembler to process only the annotations in the interface,
then enter the @WebService annotation with the serviceEndpointInterface
property in the implementation class file. J2SE 5.0 annotations will expect all
remaining annotations to appear in the service endpoint interface class. For example, if
you enter the following annotation in the implementation class file, then
WebServicesAssembler will process only the annotations in the demo .myInterface
interface.

@WebService (serviceEndpointInterface="demo.myInterface")

See Also:

Chapter 11, "Assembling Web Services with Annotations" for more
information on using J2SE 5.0 Annotations to assemble a Web service.

The following command line and Ant task examples demonstrate how to use the
assemble command to generate a Web service bottom up. The command will create
an EAR file named build/myService.ear.

Command Line Example:

java -jar wsa.jar -assemble
-input myservice.jar
-className com.mycompany.HelloImpl
-interfaceName com.myCompany.myService.Hello
-output build
-appName myService

18-8 Web Services Developer's Guide

WebServicesAssembler Commands

Ant Task Example:

<oracle:assemble appName="myService"

output="build"

input="myservice.jar

>

<oracle:porttype
interfaceName="com.myCompany .myService.Hello"
className="com.mycompany.HelloImpl" />

</oracle:assemble>

Required Arguments:
To use the assemble command, you must specify the following arguments.

General Assembly Arguments: className

All Arguments

The following list identifies all of the arguments that can be used with the assemble
command.

Deployment Descriptor Arguments: appendToExistingDDs, context,
ddFileName, uri

For more information on these arguments, see "Deployment Descriptor
Arguments" on page 18-62.

General Assembly Arguments: appName, bindingName, className (required),
classpath, debug, ear, emptySoapAction, help, input, interfaceFileName,
interfaceName, mappingFileName, output, portName, portTypeName,
restSupport, schema, serviceName, strictJaxrpcValidation, useDimeEncoding, war

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 18-41.

Java Generation Arguments: valueTypeClassName, wsifJavaBinding

For more information on these arguments, see "Java Generation Arguments" on
page 18-68.

JMS Assembly Arguments: sendConnectionFactoryLocation, sendQueueLocation

For more information on these argument, see "JMS Assembly Arguments" on
page 18-58.

Message Format Arguments: mtomSupport, style, use

For more information on these arguments, see "Message Format Arguments" on
page 18-67.

Session Arguments: callScope, recoverable, session, timeout
For more information on these arguments, see "Session Arguments" on page 18-51.
WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort

For more information on these arguments, see "WSDL Access Arguments” on
page 18-64.

WSDL Management Arguments: createOneWayOperations, genQos,
qualifiedElementForm, soap Version, targetNamespace, typeNamespace

For more information on these arguments, see "WSDL Management Arguments"
on page 18-65.

Using WebServicesAssembler 18-9

WebServicesAssembler Commands

Ant Task Supports:

= <proxy> tags. For more information, see "How to Configure Proxy Generation in
an Ant Task" on page 18-77.

= <port> tags. In the <port> tag, assemble can use these arguments:
bindingName, name (same as por tName), portName,
sendConnectionFactoryLocation, sendQueueLocation, soap Version, and uri. For
more information, see "How to Configure a Port in an Ant Task" on page 18-78.

s <porttype> tags. For more information, see "How to Configure a Port Type in an
Ant Task" on page 18-80.

s <handler> tags. For more information, see "How to Configure Handlers in an
Ant Task" on page 18-81.

= tags to specify WSIF bindings for multiple ports. For more information, see
"Configuring a WSIF Endpoint for Multiple Java Ports" in the Oracle Application
Server Advanced Web Services Developer’s Guide.

corbaAssemble

18-10

Use the corbaAssemble command to expose a CORBA servant object as a Web
service. The command takes a CORBA IDL file and CORBA naming properties as
input. It outputs all of the files required to create a deployable archive.

Internally, WebServicesAssembler will invoke the IDL-to-Java compiler (1d13j) that
can be found in the environment. The JDK bin directory must be part of the path
environment variable. WebServicesAssembler uses the IDL-to-Java compiler to
compile the IDL file into Java classes.

Command Line Example

java -jar wsa.jar -corbaAssemble
-idlInterfaceName oraclecorba.Hello
-corbanameURL corbaname: :corba.orbd.host:1050#oracle.corba/Hello
-idlFile ./Hello.idl
-uri /corba_hello
-output dist
-context corba_hello
-targetNamespace http://oracle.j2ee.ws/corba/Hello
-typeNamespace http://oracle.j2ee.ws/corba/Hello/types
-serviceName Corba_hello
-appName corba_hello
-style rpc
-use literal

Ant Task Example:

<oracle:corbaAssemble idlInterfaceName="oraclecorba.Hello"
corbanameURL="corbaname: :corba.orbd.host:1050#0oracle.corba/Hello"
idlFile="./Hello.idl"
output="dist"
context="corba_hello"
targetNamespace="http://oracle.j2ee.ws/corba/Hello"
typeNamespace="http://oracle.j2ee.ws/corba/Hello/types"
serviceName="Corba_hello"
appName="corba_hello"
style="rpc"
use="literal"
>
<oracle:port uri="/corba_hello" />

Web Services Developer's Guide

WebServicesAssembler Commands

</oracle:corbaAssemble>

Required Arguments:
To use the corbaAssemble command, you must specify the following arguments.

CORBA Assembly Arguments: idlInterfaceName

All Arguments:

The following list identifies all of the arguments that can be used with the
corbaAssemble command.

CORBA Assembly Arguments: corbanameURL, corbaObjectPath, idlFile,
idlInterfaceName (required), idljPath, ORBInitialHost, ORBInitialPort, ORBInitRef

For more information on these arguments, see "CORBA Assembly Arguments" on
page 18-52.

Deployment Descriptor Arguments: appendToExistingDDs, context,
ddFileName, uri

For more information on these arguments, see "Deployment Descriptor
Arguments" on page 18-62.

General Assembly Arguments: appName, bindingName, className, classpath,
debug, ear, emptySoapAction, help, mappingFileName, output, packageName,
portName, portTypeName, restSupport, schema, serviceName, useDimeEncoding,
war

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 18-41.

JMS Assembly Arguments: sendConnectionFactoryLocation, sendQueueLocation

For more information on these arguments, see "JMS Assembly Arguments" on
page 18-58.

Message Format Arguments: style, use

For more information on these arguments, see "Message Format Arguments" on
page 18-67.

WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort

For more information on these arguments, see "WSDL Access Arguments” on
page 18-64.

WSDL Management Arguments: createOneWayOperations, genQos,
qualifiedElementForm, soap Version, targetNamespace, typeNamespace

For more information on these arguments, see "WSDL Management Arguments"
on page 18-65.

Ant Task Support:

<proxy> tags. For more information, see "How to Configure Proxy Generation in
an Ant Task" on page 18-77.

<port> tags. In the <port> tag, corbaAssemble can use these arguments:
bindingName, name (same as portName), portName,
sendConnectionFactoryLocation, sendQueueLocation, soapVersion, and uri. For
more information, see "How to Configure a Port in an Ant Task" on page 18-78.

<handler> tags. For more information, see "How to Configure Handlers in an
Ant Task" on page 18-81.

Using WebServicesAssembler 18-11

WebServicesAssembler Commands

dbJavaAssemble

Use the dbJavaAssemble command to generate Web services from a Java class inside
the Java VM in an Oracle database. To use this command, you must connect to a
database.

The dbJavaAssemble command can also add WSIF bindings for a Java class inside
the Java VM to the WSDL. Use the wsifDbBinding argument to add WSIF bindings
to the WSDL when you are exposing a database resource as a Web service. You must
specify the className of the resource's Oracle JPublisher-generated Java class and a
database connection.

See Also:

s "How to Assemble a Server-Side Java Class as a Web Service" on
page 10-32 provides more information on using the
dbJavaAssemble command to generate Web services from a
Java class inside the Java VM in an Oracle database.

= "How to Establish a Database Connection" on page 18-75
describes the arguments that allow you to connect to a database.

s "Configuring a WSIF Endpoint for Database Resources" in the
Oracle Application Server Advanced Web Services Developer’s Guide
provides more information on adding bindings for database
resources to the WSDL.

Command Line Example:

java -jar wsa.jar -dbJavaAssemble
-dbJavaClassName oracle.sqlj.checker.JdbcVersion
-dbUser scott/tiger
-dbConnection jdbc:oracle:thin:@dsunrde22:1521:sqlj
-dataSource jdbc/OracleManagedDS
-appName javacallin

Ant Task Example:

<oracle:dbJavaAssemble
dbUser="scott/tiger"
dbJavaClassName="oracle.sqglj.checker.JdbcVersion"
dbConnection="jdbc:oracle:thin:@dsunrde22:1521:sqlj"
dataSource="jdbc/OracleManagedDS"
appName="javacallin"

/>

Required Arguments:
To use the dbJavaAssemble command, you must specify the following arguments.

» Database Assembly Arguments: dbJavaClassName

The dbJavaClassName argument specifies the Java class in the database that is to
be published as a Web service.

You must also connect to the database. To do this, use one of the following
combinations of arguments:

— dataSource, dbConnection, and dbUser

— dataSource

18-12 Web Services Developer's Guide

WebServicesAssembler Commands

All Arguments:

The following list identifies all of the arguments that can be used with the
dbJavaAssemble command.

Database Assembly Arguments: dataSource, dbConnection, dbJavaClassName
(required), dbUser, jpubProp, sysUser, useDataSource, wsifDbBinding,
wsifDbPort

For more information on these arguments, see "Database Assembly Arguments"
on page 18-53.

Deployment Descriptor Arguments: appendToExistingDDs, context,
ddFileName, uri

For more information on these arguments, see "Deployment Descriptor
Arguments" on page 18-62.

General Assembly Arguments: appName, className, classpath, debug, ear,
emptySoapAction, help, interfaceName, mappingFileName, output,
packageName, portName, restSupport, schema, serviceName, useDimeEncoding,
war

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 18-41.

Java Generation Arguments: valueTypeClassName

For more information on this argument, see "Java Generation Arguments" on
page 18-68.

Message Format Arguments: style, use

For more information on these arguments, see "Message Format Arguments" on
page 18-67.

Session Arguments: timeout
For more information on this argument, see "Session Arguments" on page 18-51.
WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort

For more information on these arguments, see "WSDL Access Arguments” on
page 18-64.

WSDL Management Arguments: createOneWayOperations, genQos,
qualifiedElementForm, soap Version, targetNamespace, typeNamespace

For more information on these arguments, see "WSDL Management Arguments"
on page 18-65.

Ant Task Support:

<proxy> tags. For more information, see "How to Configure Proxy Generation in
an Ant Task" on page 18-77.

<port> tags. In the <port> tag, dbJavaAssemble can use these arguments:
bindingName, portName (or name), sendConnectionFactoryLocation,
sendQueueLocation, soap Version, and uri. For more information, see "How to
Configure a Port in an Ant Task" on page 18-78.

<handler> tags. For more information, see "How to Configure Handlers in an
Ant Task" on page 18-81.

Using WebServicesAssembler 18-13

WebServicesAssembler Commands

ejbAssemble

Use the ejbAssemble command to create an EAR or EJB JAR that can expose an EJB
as a Web service. You must specify a valid version 2.1 E]B JAR as input; the system will
create a WSDL and the proprietary oracle-webservices.xml deployment
descriptor.

By default, this command creates an EAR file that contains a version 2.1 E]B file that
can be deployed directly. The oracle-webservices.xml file specifies the context
and URL pattern that can be used to access the E]B as a Web service.

If you do not want to deploy the EJB as an EAR file, you can create an EJB JAR file
instead. For example, this enables you to deploy the EJB as a JAR file to a J2EE
container, or to use other J2EE application deployment tools, such as Ant. To save the
EJB as a JAR file, specify a directory for the ear argument.

Assembling WSIF Bindings into the WSDL

The ejbAssemble command can also add WSIF bindings to the WSDL. Use the
wsifEjbBinding argument to add WSIF bindings when you are exposing an EJB as
a Web service. You must specify the EJB's home interface in the c1lassName argument
and its JNDI name in the jndiName argument.

Note: You cannot use the ejbAssemble command or
WebServicesAssembler to assemble Web services from version 3.0
EJBs. To do this, you must use J2SE 5.0 Annotations. For more
information, see "Steps to Use Annotations to Assemble a Web Service
from a Version 3.0 EJB" on page 11-12.

See Also:

= 'ear" on page 18-44 for a description of the different ways in
which you can specify this parameter.

= "Using Web Services Invocation Framework" in the Oracle
Application Server Advanced Web Services Developer’s Guide provides
more information on WSIE.

s "Configuring a WSIF Endpoint for E]Bs" in the Oracle Application
Server Advanced Web Services Developer’s Guide provides
information on adding WSIF bindings for individual and for
multiple ports.

» Chapter 8, "Assembling a Web Service with E]Bs" provides more
information on using the ejbAssemble command to expose a
version 2.1 EJB as a Web service.

The following command line and Ant task examples create the EAR file
build/myService.ear.

Command Line Example:

java -jar wsa.jar -ejbAssemble
-output build
-input myEjb.jar
-ejbName myEjb
-appName myService

18-14 Web Services Developer's Guide

WebServicesAssembler Commands

Ant Task Example:

<oracle:ejbAssemble output="build"

input="myEjb.jar"
ejbName="myEjb"
appName="myService"
/>

Required Arguments:
To use the ejbAssemble command, you must specify the following arguments.

General Assembly Arguments: ejpName, input

All Arguments:

The following list identifies all of the arguments that can be used with the
ejbAssemble command.

Deployment Descriptor Arguments: appendToExistingDDs, context,
ddFileName, uri

For more information on these arguments, see "Deployment Descriptor
Arguments" on page 18-62.

General Assembly Arguments: appName, bindingName, className, classpath,
debug, ear, ejpName (required), emptySoapAction, help, initial ContextFactory,
input (required), interfaceName, jndiName, jndiProviderURL, mappingFileName,
output, portName, portTypeName, restSupport, schema, serviceName,
strictJaxrpcValidation, useDimeEncoding

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 18-41.

Java Generation Arguments: valueTypeClassName, wsifEjbBinding

For more information on these arguments, see "Java Generation Arguments" on
page 18-68.

JMS Assembly Arguments: sendConnectionFactoryLocation, sendQueueLocation

For more information on these arguments, see "JMS Assembly Arguments” on
page 18-58.

Message Format Arguments: style, use

For more information on these arguments, see "Message Format Arguments" on
page 18-67.

WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort

For more information on these arguments, see "WSDL Access Arguments" on
page 18-64.

WSDL Management Arguments: createOneWayOperations, genQos,
qualifiedElementForm, soap Version, targetNamespace, typeNamespace

For more information on these arguments, see "WSDL Management Arguments"
on page 18-65.

Additional Ant Support:

<proxy> tags. For more information, see "How to Configure Proxy Generation in
an Ant Task" on page 18-77.

Using WebServicesAssembler 18-15

WebServicesAssembler Commands

jmsAssemble

<port> tags. In the <port> tag, eJbAssemble can use these arguments:
bindingName, name (same as portName), portName,
sendConnectionFactoryLocation, sendQueueLocation, soapVersion, and uri. For
more information, see "How to Configure a Port in an Ant Task" on page 18-78.

<handler> tags. For more information, see "How to Configure Handlers in an
Ant Task" on page 18-81.

tags to specify WSIF bindings for multiple ports. For more information, see
"Configuring a WSIF Endpoint for Multiple EJB Ports" in the Oracle Application
Server Advanced Web Services Developer’s Guide.

Use the jmsAssemble command to expose a JMS destination (queue or topic) as a
Web service. JMS Web services have two types of operations: send and receive. The
send operation sends a message to the JMS destination. The receive operation retrieves
a message from the destination. Some of the JMS message properties (for example,
correlation ID) can be exposed as SOAP headers.

See Also:

Chapter 9, "Assembling Web Services with JMS Destinations" provides
more information on using the jmsAssemble command to expose a
JMS destination as a Web service.

Command Line Example:

java -jar wsa.jar -jmsAssemble

-sendConnectionFactoryLocation jms/ws/mdb/theQueueConnectionFactory
-sendQueuelocation jms/ws/mdb/theQueue
-replyToConnectionFactoryLocation jms/ws/mdb/logQueueConnectionFactory
-replyToQueueLocation jms/ws/mdb/logQueue

-linkReceiveWithReplyTo true

-targetNamespace http://oracle.j2ee.ws/jms-doc

-typeNamespace http://oracle.j2ee.ws/jms-doc/types

-serviceName JmsService

-appName jms_service

-context jms_service

-input ./demo/build/mdb_service.jar

-uri JmsService

-output ./demo/dist

Ant Task Example:

<oracle:jmsAssemble

linkReceiveWithReplyTo="true"

targetNamespace="http://oracle.j2ee.ws/jms-doc"

typeNamespace="http://oracle.j2ee.ws/jms-doc/types"

serviceName="JmsService"

appName="jms_service"

context="jms_service"

input="./demo/build/mdb_service.jar"

output="./demo/dist"

>

<oracle:port uri="JmsService"
sendConnectionFactoryLocation="jms/ws/mdb/theQueueConnectionFactory"
sendQueueLocation="jms/ws/mdb/theQueue"
replyToConnectionFactoryLocation="jms/ws/mdb/logQueueConnectionFactory"
replyToQueueLocation="jms/ws/mdb/logQueue" />

</oracle:jmsAssemble>

18-16 Web Services Developer's Guide

WebServicesAssembler Commands

Required Arguments:
To use the jmsAssemble command, you must specify the following arguments.

= JMS Assembly Arguments: either replyToConnectionFactoryLocation or
sendConnectionFactoryLocation

All Arguments:

The following list identifies all of the arguments that can be used with the
jmsAssemble command.

s Deployment Descriptor Arguments: appendToExistingDDs, context,
ddFileName, uri

For more information on these arguments, see "Deployment Descriptor
Arguments" on page 18-62.

= General Assembly Arguments: appName, bindingName, debug, ear,
emptySoapAction, help, input, output, portName, portTypeName, serviceName,
useDimeEncoding, war

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 18-41.

= JMS Assembly Arguments: deliveryMode, genJmsPropertyHeader,
jmsTypeHeader, linkReceiveWithReplyTo, payloadBindingClassName, priority,
receiveConnectionFactoryLocation, receiveQueueLocation, receiveTimeout,
receiveTopicLocation, replyToConnectionFactoryLocation, replyToQueueLocation,
replyToTopicLocation, sendConnectionFactoryLocation, sendQueueLocation,
sendTopicLocation, timeToLive, topicDurableSubscriptionName

For more information on these arguments, see "JMS Assembly Arguments" on
page 18-58.

= WSDL Management Arguments: createOneWayOperations, genQos,
qualifiedElementForm, soap Version, targetNamespace, typeNamespace

For more information on these arguments, see "WSDL Management Arguments"
on page 18-65.

Ant Task Supports:

= <proxy> tags. For more information, see "How to Configure Proxy Generation in
an Ant Task" on page 18-77.

s <port>tags.In the <port> tag, jmsAssemble can use these arguments:
bindingName, name (same as portName), portName,
sendConnectionFactoryLocation, sendQueueLocation, soap Version, and uri. For
more information, see "How to Configure a Port in an Ant Task" on page 18-78.

» <handler> tags. For more information, see "How to Configure Handlers in an
Ant Task" on page 18-81.

plsqlAssemble

Use the plsglAssemble command to generate Web services from a PL/SQL package
containing stored procedures and functions. To use this command, you must connect
to a database.

Using WebServicesAssembler 18-17

WebServicesAssembler Commands

See Also:

= "How to Establish a Database Connection" on page 18-75
describes the arguments that allow you to connect to a database.

= "How to Assemble a Web Service from a PL/SQL Package" on
page 10-9 provides more information on using the
plsglAsemble command to expose PL/SQL packages as Web
services.

Assembling WSIF Bindings into the WSDL

The plsglAssemble command can also add WSIF bindings for a PL/SQL package to
the WSDL. Use the wsifDbBinding argument to add WSIF bindings to the WSDL
when you are exposing a database resource as a Web service. You must specify the
className of the resource's Oracle JPublisher-generated Java class and a database
connection.

See Also:

"Configuring a WSIF Endpoint for Database Resources” in the Oracle
Application Server Advanced Web Services Developer’s Guide provides
more information on adding bindings for database resources to the
WSDL.

Command Line Example:

java -jar wsa.jar -plsglAssemble
-appName query
-dbUser scott/tiger
-sgl Company
-dbConnection jdbc:oracle:thin:@dsunrde22:1521:sqlj
-dataSource jdbc/OracleManagedDS

Ant Task Example:

<oracle:plsglAssemble
dbUser="scott/tiger"
appName="query"
sgl="Company"
dbConnection="jdbc:oracle:thin:@dsunrde22:1521:sqlj"
dataSource="jdbc/OracleManagedDS"

/>

Required Arguments:
To use the plsglAssemble command, you must specify the following arguments.

= Database Assembly Arguments: sql

The sqgl argument specifies the name of the PL/SQL package that is to be
published as a Web service.

You must also connect to the database. To do this, use one of the following
combinations of arguments.

— dataSource, dbConnection, and dbUser

— dataSource
All Arguments:

The following list identifies all of the arguments that can be used with the
plsglAssemble command.

18-18 Web Services Developer's Guide

WebServicesAssembler Commands

sqlAssemble

Database Assembly Arguments: dataSource, dbConnection, dbUser, jpubProp,
sql, sysUser, useDataSource, wsifDbBinding, wsifDbPort

For more information on these arguments, see "Database Assembly Arguments"
on page 18-53.

Deployment Descriptor Arguments: appendToExistingDDs, context,
ddFileName, uri

For more information on these arguments, see "Deployment Descriptor
Arguments" on page 18-62.

General Assembly Arguments: appName, className, classpath, debug, ear,
emptySoapAction, help, interfaceName, mappingFileName, output,
packageName, portName, restSupport, schema, serviceName, useDimeEncoding,
war

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 18-41.

Java Generation Arguments: valueTypeClassName

For more information on this argument, see "Java Generation Arguments" on
page 18-68.

Message Format Arguments: style, use

For more information on these arguments, see "Message Format Arguments" on
page 18-67.

Session Arguments: timeout
For more information on this argument, see "Session Arguments" on page 18-51.
WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort

For more information on these arguments, see "WSDL Access Arguments" on
page 18-64.

WSDL Management Arguments: createOneWayOperations, genQos,
qualifiedElementForm, soap Version, targetNamespace, typeNamespace

For more information on these arguments, see "WSDL Management Arguments"
on page 18-65.

Ant Task Support:

<proxy> tags. For more information, see "How to Configure Proxy Generation in
an Ant Task" on page 18-77.

<port> tags. In the <port> tag, plsglAssemble can use these arguments:
bindingName, name (same as portName), portName,
sendConnectionFactoryLocation, sendQueueLocation, soap Version, and uri. For
more information, see "How to Configure a Port in an Ant Task" on page 18-78.

<handler> tags. For more information, see "How to Configure Handlers in an
Ant Task" on page 18-81.

Use the sglAssemble command to generate Web services from SQL statements,
including SQL queries and DMLs (Data Manipulation Language). To use this
command, you must connect to a database.

Using WebServicesAssembler 18-19

WebServicesAssembler Commands

18-20

See Also:

= "How to Assemble a Web Service from a SQL Query or DML
Statement" on page 10-15 provides a full example of generating
Web services from SQL statements.

= "How to Establish a Database Connection" on page 18-75
describes the arguments that allow you to do this.

Adding WSIF Bindings to the WSDL

The sglAssemble command can also add WSIF bindings for SQL queries to the
WSDL. Use the wsifDbBinding argument to add WSIF bindings to the WSDL when
you are exposing a database resource as a Web service. You must specify the
className of the resource's Oracle JPublisher-generated Java class and a database
connection.

See Also:

"Configuring a WSIF Endpoint for Database Resources” in the Oracle
Application Server Advanced Web Services Developer’s Guide provides
more information on adding bindings for database resources to the
WSDL.

The following command line and Ant task examples establish a database connection
and run two SQL commands.

Command Line Example:

java -jar wsa.jar -sglAssemble
-dbUser scott/tiger
-sglstatement "getEmp=select ename, sal from emp where empno=:{id NUMBER}"
-sglstatement "getEmpBySal=select ename, sal from emp where sal>:{mysal NUMBER}"
-dbConnection jdbc:oracle:thin:@dsunrde22:1521:sqlj
-dataSource jdbc/OracleManagedDS

Ant Task Example:
<oracle:sglAssemble
dbUser="scott/tiger"
dbConnection="jdbc:oracle:thin:@dsunrde22:1521:sqlj"
dataSource="jdbc/OracleManagedDS"
appName="query">
<sglstatement value="getEmp=select ename, sal from emp where empno=:{id
NUMBER} " />
<sglstatement value="getEmpBySal=select ename, sal from emp where
sal>:{mysal NUMBER}"/>
</oracle:sqglAssemble>

Required Arguments:
To use the sglAssemble command, you must specify the following arguments.

= Database Assembly Arguments: sqlstatement

You must also connect to the database. To do this, use one of the following
combinations of arguments.

— dataSource, dbConnection, and dbUser

— dataSource

Web Services Developer's Guide

WebServicesAssembler Commands

All Arguments:

The following list identifies all of the arguments that can be used with the
sglAssemble command.

Database Assembly Arguments: dataSource, dbConnection, dbUser, jpubProp,
sql, sqlstatement, sysUser, useDataSource, wsifDbBinding, wsifDbPort

For more information on these arguments, see "Database Assembly Arguments"
on page 18-53.

Deployment Descriptor Arguments: appendToExistingDDs, context,
ddFileName, uri

For more information on these arguments, see "Deployment Descriptor
Arguments" on page 18-62.

General Assembly Arguments: appName, className, classpath, debug, ear,
emptySoapAction, help, interfaceName, mappingFileName, output,
packageName, portName, restSupport, schema, serviceName, useDimeEncoding,
war

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 18-41.

Java Generation Arguments: valueTypeClassName

For more information on this argument, see "Java Generation Arguments" on
page 18-68.

Message Format Arguments: style, use

For more information on these arguments, see "Message Format Arguments" on
page 18-67.

Session Arguments: timeout
For more information on this argument, see "Session Arguments" on page 18-51.
WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort

For more information on these arguments, see "WSDL Access Arguments” on
page 18-64.

WSDL Management Arguments: createOneWayOperations, genQos,
qualifiedElementForm, soap Version, targetNamespace, typeNamespace

For more information on these arguments, see "WSDL Management Arguments"
on page 18-65.

Ant Task Support:

<proxy> tags. For more information, see "How to Configure Proxy Generation in
an Ant Task" on page 18-77.

<port> tags. In the <port> tag, sglAssemble can use these arguments:
bindingName, name (same as portName), portName,
sendConnectionFactoryLocation, sendQueueLocation, soapVersion, and uri. For
more information, see "How to Configure a Port in an Ant Task" on page 18-78.

<handler> tags. For more information, see "How to Configure Handlers in an
Ant Task" on page 18-81.

Using WebServicesAssembler 18-21

WebServicesAssembler Commands

topDownAssemble

Use the topDownAssemble command to create the required classes and deployment
descriptors for a Web service based on a WSDL description. The files can be stored in
either an EAR file, a WAR file, or a directory. You must specify a value for either the
input or classpath arguments to allow for the proper loading of the specified
implementation class.

This command is typically used with genInterface to generate a Web service top
down. If these commands are used together to generate a Web service, then they must
share the same value for the unwrapParameters argument.

Only one service element can be implemented. WebServicesAssembler enables you to
generate the artifacts for only one service at a time. If more than one service is
described in the WSDL, a command line argument, serviceName, enables you to
specify the service you want to use.

Note that if there is any conflict between the names of generated classes, then they will
be resolved according to JAX-RPC rules as described in section 4.3.12, "Name
Collisions" in the JAX-RPC specification. For more information, see "Resolving Name
Collisions" on page 18-71.

See Also:

Chapter 6, "Assembling a Web Service from WSDL" provides more
information on using the topDownAssemble command to generate a
Web service based on a WSDL description.

WSDL Limitations

The following list describes the limitations on WSDLs that can be consumed by
WebServicesAssembler.

» If the WSDL contains references to multiple port types, then the
topDownAssemble command must specify a <porttype> tag for each port type.

= National Language Support (also known as "NLS" or "Globalization Support")
characters that occur in names in the WSDL, such as in the name of a service, port
type, operation, binding or port, are not supported. This may also result in errors
in the Web Services Test Page.

= In top down Web service development, you cannot use WebServicesAssembler to
change the message format. You can do this only by editing the WSDL.

s The WSDL cannot contain multiple message formats. Remove any ports from the
WSDL that reference a binding with a message format that you do not want to use.

= WebServicesAssembler cannot consume WSDLs that contain the xsd: choice or
xsd:group XML types. If you want to consume a WSDL that contains these XML
types, set the WebServicesAssembler dataBinding argument to false and code
the SOAPElement so that the payload conforms to the schema definition in the
WSDL file.

The following command line and Ant task create required classes and deployment
descriptors for a Web service. It creates an EAR build/myService.ear. The target
of the input argument should contain the implementation classes. These classes will
be copied to the generated archive for you.

Command Line Example:

java -jar wsa.jar -topDownAssemble
-output build

18-22 Web Services Developer's Guide

WebServicesAssembler Commands

-wsdl my.wsdl

-input myClasses

-className com.mycompany.HelloImpl
-appName myService

Ant Task Example:

<oracle:topDownAssemble output="build"
wsdl="my.wsdl"
input="myClasses"
appName="myService">
<porttype
className="com.mycompany.HelloImpl" />
</oracle:topDownAssemble>

Required Arguments:
To use the topDownAssemble command, you must specify the following arguments.

= General Assembly Arguments: className; (input and/or classpath)

= WSDL Management Arguments: wsdl

All Arguments:

The following list identifies all of the arguments that can be used with the
topDownAssemble command.

s Deployment Descriptor Arguments: appendToExistingDDs, context,
ddFileName, uri

For more information on these arguments, see "Deployment Descriptor
Arguments" on page 18-62.

= General Assembly Arguments: appName, classFileName, className (required),
classpath, debug, ear, emptySoapAction, help, input, interfaceName,
mappingFileName, output, packageName, portName, restSupport, searchSchema,
serviceName, useDimeEncoding, war

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 18-41.

= Java Generation Arguments: dataBinding, mapHeadersToParameters,
overwriteBeans, unwrapParameters, valueTypePackagePrefix

For more information on these arguments, see "Java Generation Arguments" on
page 18-68.

= Message Format Arguments: mtomSupport

For more information on this argument, see "Message Format Arguments" on
page 18-67.

s WSDL Access Arguments: fetchWsdlImports, httpNonProxyHosts,
httpProxyHost, httpProxyPort, wsdl (required)

For more information on these arguments, see "WSDL Access Arguments” on
page 18-64.

= WSDL Management Arguments: wsdlTimeout

For more information on this argument, see "WSDL Management Arguments" on
page 18-65.

Using WebServicesAssembler 18-23

WebServicesAssembler Commands

Additional Ant Support:
= <proxy> tags. For more information, see "How to Configure Proxy Generation in
an Ant Task" on page 18-77.

s <port> tags. In the <port> tag, topDownAssemble can use these arguments:
name (same as por tName), portName, and uri. For more information, see "How to
Configure a Port in an Ant Task" on page 18-78.

s <porttype> tags. For more information, see "How to Configure a Port Type in an
Ant Task" on page 18-80.

s <handler> tags. For more information, see "How to Configure Handlers in an
Ant Task" on page 18-81.

WSDL Management Commands

analyze

The following commands perform actions on a WSDL. The fetchwWsdl and
genQosWsdl commands are used in top down Web service development to manage
the contents and location of the WSDL. The genWsdl command is used to generate a
WSDL for bottom up Web service development. The analyze command can be used
at any time to determine whether WebServicesAssembler supports the functionality
described in the WSDL.

» analyze—Determines whether WebServicesAssembler supports the functionality
described in the WSDL

» fetchWsdl—Copies the WSDL and its imports to an output directory

= genConcreteWsdl—Creates a concrete WSDL by determining the message format
from the abstract part of the WSDL

s genQosWsdl—Inserts assertions about Quality of Service (capability assertions)
into the WSDL

s genWsdl—Generates a WSDL based on a Java interface

Use the analyze command to confirm whether the WSDL can be processed by this
version of the WebServicesAssembler. The analyze command determines whether
the specified WSDL can be used to generate a proxy or create an interface for top
down assembly. The command also checks that the WSDL uses valid XML and
whether it complies with the JAX-RPC requirements of OC4]J.

This command returns a message if the WSDL cannot be processed.

Note: The analyze command does not check conformance to the
Web Services Interoperability (WS-I) specification or general
interoperability of your WSDL. You may want to use the WS-I
Analyzer tool either directly, or from inside Oracle JDeveloper to
check conformance. For more information on tools that you can use to
check interoperability, see "Ensuring Interoperable Web Services" in
the Oracle Application Server Advanced Web Services Developer’s Guide.

The following command line and Ant task examples demonstrate using analyze to
see if the specified WSDL can be processed.

18-24 Web Services Developer's Guide

WebServicesAssembler Commands

fetchWsdl

Command Line Example:
java -jar wsa.jar -analyze
-wsdl myservice.wsdl

Ant Task Example:

<oracle:analyze wsdl="myservice.wsdl"
/>

Required Arguments:
To use the analyze command, you must specify the following argument.

s WSDL Access Arguments: wsdl

All Arguments:

The following list identifies all of the arguments that can be used with the analyze
command.

= General Assembly Arguments: debug, help

For more information on these arguments, see "General Web Services Assembly
Arguments" on page 18-41.

s WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort,
wsdl (required)

For more information on this argument, see "WSDL Access Arguments" on
page 18-64.

= WSDL Management Arguments: wsdlTimeout

For more information on this argument, see "WSDL Management Arguments" on
page 18-65.

Additional Ant Support:
None

Use the fetchWsdl command in top down Web service generation to copy the base
(or top level) WSDL file and all of its imported and included WSDLs and schemas into
a specified output directory.

All of the WSDLs and schemas are downloaded into the same directory. Any naming
conflicts are resolved by appending a number to the name of the file before the
extension. For example, if three myschema . xsd files are downloaded, they will be
named myschema . xsd, myschemal . xsd, and myschema? . xsd.

The following command line and Ant task examples will fetch the base WSDL
specified by the URL, and any other WSDL fragments and schemas it imports. The
results are then stored in the wsdl directory.

Command Line Example:

java -jar wsa.jar -fetchwWdsl
-wsdl http://someserver/services/aservice?WSDL
-output wsdl

Ant Task Example:

<oracle: fetchiisdl wsdl="http://someserver/services/aservice?WSDL"

Using WebServicesAssembler 18-25

WebServicesAssembler Commands

output="wsdl"
/>

Required Arguments:
To use the fetchWsdl command, you must specify the following argument.

= WSDL Access Arguments: wsdl

All Arguments:

The following list identifies all of the arguments that can be used with the fetchwsdl
command.

= General Assembly Arguments: debug, help, output

For more information on these arguments, see "General Web Services Assembly
Arguments" on page 18-41.

s WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort,
wsdl (required)

For more information on these arguments, see "WSDL Access Arguments" on
page 18-64.

= WSDL Management Arguments: wsdlTimeout
For more information on this argument, see "WSDL Management Arguments" on

page 18-65.

Additional Ant Support:
None

genConcreteWsd|

18-26

While an abstract WSDL is enough to define the API for a Web service,
WebServicesAssembler needs a concrete WSDL to deploy a Web service or to generate
client proxies that can communicate with a Web service.

If you have only an abstract WSDL, use the genConcreteWsdl command. In top
down Web service development, this command enables you to generate a concrete
WSDL given an abstract WSDL. The command does this by analyzing the

wsdl : portType part of the WSDL and determining whether the bindings for the
Web service (that is, the use and style values) should be document/literal or
RPC/literal. The command writes these values into the binding element of the
WSDL, and saves it with the name determined by the value of the output argument.

The following command line and Ant task examples take an abstract WSDL
myAbstract.wsdl as input and generate a concrete WSDL myConcrete.wsdl in
the outputDir directory.

Command Line Example:

java -jar wsa.jar -genConcreteWsdl
-output outputDir/myConcrete.wsdl
-wsdl myAbstract.wsdl

Ant Task Example:

<oracle:genConcreteWsdl output="outputDir/myConcrete.wsdl"
wsdl="myAbstract.wsdl" />

Web Services Developer's Guide

WebServicesAssembler Commands

genQosWsdl

Required Arguments:
To use the genConcreteWsdl command, you must specify the following argument.

= WSDL Access Arguments: wsdl

All Arguments:

The following list identifies all of the arguments that can be used with the
genConcreteWsdl command.

s Deployment Descriptor Arguments: ddFileName

For more information on this argument, see "Deployment Descriptor Arguments"
on page 18-62.

= General Assembly Arguments: debug, help, output

For more information on these arguments, see "General Web Services Assembly
Arguments" on page 18-41.

s WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort,
importAbstractWsdl, wsdl (required)

For more information on these arguments, see "WSDL Access Arguments" on
page 18-64.

= WSDL Management Arguments: singleService, wsdlTimeout

For more information on these arguments, see "WSDL Management Arguments"
on page 18-65.

Additional Ant Support:
None.

In top down Web service development, use the genQosWsdl command to add
capability assertions for security and reliability into a specified WSDL. Capability
assertions are descriptions of Web service management policies that allow consumers
of Web services to discover which management policies are enabled for the Web
service.

Usually, the capability assertions are defined in the deployment descriptor. Use the
ddFileName argument to specify the file that contains the capability assertions and
the wsdl argument to specify the name of the WSDL into which they will be inserted.
The output argument specifies where the modified WSDL file will be stored. If you
do not specify the output argument, then the original WSDL will be overwritten.

See Also:

"Working with Capability Assertions" in the Oracle Application Server
Advanced Web Services Developer’s Guide describes how capability
assertions are derived and how they are inserted into the WSDL.

The following command line and Ant task examples add assertions to my . wsd1l and
store the results in the build directory.

Command Line Example:

java -jar wsa.jar -genQosWsdl
-wsdl my.wsdl
-ddFileName oracle-webservices.xml

Using WebServicesAssembler 18-27

WebServicesAssembler Commands

genWsdl

-output build

Ant Task Example:

<oracle:genQosWsdl wsdl="my.wsdl"
ddFileName="oracle-webservices.xml"
output="build"
/>

Required Arguments:
To use the genQosWsdl command, you must specify the following arguments.

= Deployment Descriptor Arguments: ddFileName
= WSDL Management Arguments: wsdl

All Arguments:

The following list identifies all of the arguments that can be used with the
genQosWsdl command.

s Deployment Descriptor Arguments: ddFileName (required)

For more information on this argument, see "Deployment Descriptor Arguments"
on page 18-62.
= General Assembly Arguments: debug, help, output

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 18-41.

s WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort,
wsdl (required)

For more information on these arguments, see "WSDL Access Arguments” on
page 18-64.
= WSDL Management Arguments: wsdlTimeout

For more information on this argument, see "WSDL Management Arguments" on
page 18-65.

Additional Ant Support:
None

Use the genisdl command to generate a WSDL and a JAX-RPC mapping file for
assembling Web services bottom up from a Java interface. This command requires
either an interfaceName argument or a className argument that points to an
annotated Java class to provide the WSDL with a value for the service endpoint
interface.

The following example illustrates the genWsdl command. The interfaceName
argument specifies the oracle.j2ee.demo.HelloIntf interface.

java -jar wsa.jar genWSDL -interfaceName oracle.j2ee.demo.HelloIntf -output wsdl
-classpath classes

Generating WSDLs with WSIF Bindings

The genWsdl command can use the following arguments to add WSIF bindings to the
generated WSDL.

18-28 Web Services Developer's Guide

WebServicesAssembler Commands

s thewsifJavaBinding argument adds WSIF bindings to the WSDL when you are
exposing a Java class as a Web service. You must also specify the Java class with
the className argument.

s thewsifEjbBinding argument adds WSIF bindings to the WSDL when you are
exposing an EJB as a Web service. You must specify the EJB's home interface in the
className argument and its JNDI name in the jndiName argument.

s the wsifDbBinding argument adds WSIF bindings to the WSDL when you are
exposing a database resource as a Web service. You must specify the className
of the resource's Oracle JPublisher-generated Java class and a database connection.

You can also use the genWsdl command to add WSIF bindings for multiple ports in
the WSDL.

See Also:

"Using Web Services Invocation Framework" in the Oracle Application
Server Advanced Web Services Developer’s Guide for more information on
WESIF.

Generating WSDLs for use with J2SE 5.0 Annotations

If you are generating a WSDL from J2SE 5.0 Annotations, then use the className
argument instead of the interfaceName argument. The className argument must
identify the implementation class and the @WebService annotation must be present
on the class declaration.

Use the interfaceName argument if the specified className does not contain any
J2SE 5.0 Annotations.

J2SE 5.0 Annotations require a class name because annotations can appear in either the
interface or the implementation class. If the annotations appear only in the interface,
WebServicesAssembler can obtain them through its referenced implementation class. If
the implementation class also contains annotations, WebServicesAssembler will
process them.

In the following example, the genWsdl command is used to generate a WSDL for use
with J2SE 5.0 annotations. The className argument specifies the
oracle.j2ee.demo.HelloImpl class.

java -jar wsa.jar genWsdl -className oracle.j2ee.demo.HelloImpl -output wsdl
-classpath classes

If you want WebServicesAssembler to process only the J2SE 5.0 annotations in the
interface, then enter the @WebService annotation with the
serviceEndpointInterface property in the implementation class file. J2SE 5.0
Annotations will expect all remaining annotations to appear in the service endpoint
interface class. For example, if you enter the following annotation in the
implementation class file, then WebServicesAssembler will process only the
annotations in the demo .myInterface interface.

@WebService (serviceEndpointInterface="demo.myInterface")
The following command line and Ant task output a JAX-RPC mapping file and a

WSDL that corresponds to the Java interface specified by interfaceName. The
results are stored in the etc directory.

Command Line Example:

java -jar wsa.jar -genWsdl
-classpath myservice.jar

Using WebServicesAssembler 18-29

WebServicesAssembler Commands

-output etc
-interfaceName com.mycompany.myservice.Hello

Ant Task Example:
<oracle:genWsdl output="etc"
>
<oracle:porttype interfaceName="com.mycompany.myservice.Hello"/>
<oracle:classpath>
<pathelement path="myservice.jar" />
</oracle:classpath>
</oracle:genWsdl>

Required Arguments:
To use the genWsdl command, you must specify the following arguments.
= General Assembly Arguments: classpath; when generating a WSDL using J2SE

5.0 Annotations, genWsdl requires either interfaceName or a className that
points to an annotated Java class

All Arguments:

The following list identifies all of the arguments that can be used with the genwsdl
command.

= Database Assembly Arguments: dataSource, dbConnection, dbUser,
wsifDbBinding, wsifDbPort

For more information on these arguments, see "Database Assembly Arguments"
on page 18-53.

= Deployment Descriptor Arguments: ddFileName

For more information on this argument, see "Deployment Descriptor Arguments"
on page 18-62.

= General Assembly Arguments: bindingName, className (required for J2SE 5.0
Annotations), classpath (required), debug, emptySoapAction, help,
initialContextFactory, interfaceName (required for J2SE 5.0 Annotations),
jndiName, jndiProviderURL, mappingFileName, output, portName,
portTypeName, schema, serviceName, strictJaxrpcValidation

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 18-41.

= Java Generation Arguments: valueTypeClassName, wsifEjbBinding,
wsifJavaBinding

For more information on these arguments, see "Java Generation Arguments" on
page 18-68.

= JMS Arguments: sendConnectionFactoryLocation, sendQueueLocation

For more information on these arguments, see "JMS Assembly Arguments” on
page 18-58.

= Message Format Arguments: style, use

For more information on these arguments, see "Message Format Arguments" on
page 18-67.

= WSDL Management Arguments: createOneWayOperations, genQos,
qualifiedElementForm, soap Version, targetNamespace, typeNamespace

18-30 Web Services Developer's Guide

WebServicesAssembler Commands

For more information on these arguments, see "WSDL Management Arguments"
on page 18-65.

Additional Ant Support:

= <port> tags. In the <port> tag, genWsdl can use these arguments:
bindingName, name (same as portName), portName,
sendConnectionFactoryLocation, sendQueueLocation, soap Version, and uri. For
more information, see "How to Configure a Port in an Ant Task" on page 18-78.

= <porttype> tags. For more information, see "How to Configure a Port Type in an
Ant Task" on page 18-80.

= tags to specify WSIF bindings for multiple ports. For more information, see
"Configuring a WSIF Endpoint for Multiple Java Ports", "Configuring a WSIF
Endpoint for Multiple EJB Ports", and "Configuring a WSIF Endpoint for Multiple
Database Resource Ports", in the Oracle Application Server Advanced Web Services
Developer’s Guide.

Java Generation Commands

geninterface

The following commands generate code to create a Java interface, a proxy/stub, or
JAX-RPC value type classes.

= genInterface—Generates a Java interface from a WSDL file
s genProxy—Generates a proxy/stub from a WSDL file
= genValueTypes—Generates JAX-RPC value type classes from an XML schema

For top down Web service development, this command creates a service endpoint
interface for each port type and a Java value type class (beans) for any complex type
defined in a WSDL. It also creates a JAX-RPC mapping file that describes the mapping
between the XML schema types and the Java value type classes. These files can then be
used to construct a J2EE Web service client or to create an implementation that can run
on the server.

If you are assembling a J2EE Web service client and want to pass in an Oracle specific
client configuration, then use the ddFileName argument.

In addition to a JAX-RPC mapping file, the genInterface command generates the
files listed in Table 18-1 from a WSDL document. The list and descriptions assume that
no JAX-RPC mapping file was used to change the default naming conventions of these
files. Also note that if there is any conflict between the names of generated Java classes,
then they will be resolved according to JAX-RPC rules as described in section 4.3.12,
"Name Collisions" in the JAX-RPC specification. For more information, see "Resolving
Name Collisions" on page 18-71.

Using WebServicesAssembler 18-31

WebServicesAssembler Commands

Note: Changing any of these generated files is not recommended
because they may be overwritten if a WebServicesAssembler
command is invoked again. WebServicesAssembler will not overwrite
the files generated with the genInterface command for the schema
types under these conditions:

= the class name, including the package name, already exists in the
classpath argument given to the WebServicesAssembler
command, and

s the command line argument overwriteBeans is set to false (the
default value). See "overwriteBeans" on page 18-69.

Table 18-1 geninterface Generated Files

File Name Description

<derived_name> java One file is generated for each type defined in the schemas in the
specified WSDL. The name of the Java class file, derived_name, is
derived from the name of the complex type or element in the
schema. The JAX-RPC specification sections 4.2.3, "XML Struct
and Complex Type", 4.3.6, "WSDL Fault", and 6.5, "SOAP Fault",
describe this class.

<portTypeName> java The service endpoint interface file. This file contains a Java
method for every WSDL operation in the port type. The
portTypeName is the value of the <portTypeName> element in
the WSDL document. Section 4.3.3, "WSDL Port Type", in the
JAX-RPC 1.1 specification, describes this class.

Note: The genInterface command cannot process a WSDL file
correctly if it uses multibyte characters in element names. The
command will produce class files but they will not compile correctly.

To work around this limitation, set the dataBinding argument to
false when generating the interface. For more information, see
"genInterface, genProxy, and topDownAssemble Cannot Process
WSDL Files Correctly that Contain Multibyte Characters in Element
Names" on page F-12.

18-32 Web Services Developer's Guide

WebServicesAssembler Commands

See Also:

s Chapter 14, "Assembling a J2EE Web Service Client" for
information on how to use genInterface to construct a J2EE
Web service client.

s Chapter 6, "Assembling a Web Service from WSDL" for
information on how to use genInterface to create a server-side
implementation.

s "Default Algorithms to Map Between Target WSDL Namespaces
and Java Package Names" on page 18-72 for information on how
WebServicesAssembler performs package-to-namespace
mappings.

s The JAX-RPC 1.1 specification provides more information on the
mapping which WebServicesAssembler uses to map special
characters in the WSDL, such as periods (.) and dashes (-).

http://java.sun.com/webservices/jaxrpc/index. jsp

The following command line and Ant task examples create a service endpoint
interface in the src directory (src/oracle/demo/service).

Command Line Example:

java -jar wsa.jar -genInterface
-output src
-wsdl myservice.wsdl
-packageName oracle.demo.service

Ant Task Example:

<oracle:genInterface output="src"
wsdl="myservice.wsdl"
packageName="oracle.demo.service"
/>

Required Arguments:
To use the genInterface command, you must specify the following argument.

= WSDL Access Arguments: wsdl

All Arguments

The following list identifies all of the arguments that can be used with the
genInterface command.

s Deployment Descriptor Arguments: ddFileName

For more information on this argument, see "Deployment Descriptor Arguments"
on page 18-62.

= General Assembly Arguments: classpath, debug, help, mappingFileName,
packageName, output, searchSchema, serviceName

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 18-41.

= Java Generation Arguments: dataBinding, mapHeadersToParameters,
overwriteBeans, unwrapParameters, valueTypePackagePrefix

Using WebServicesAssembler 18-33

WebServicesAssembler Commands

genProxy

For more information on these arguments see, "Java Generation Arguments" on
page 18-68.

s WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort,
wsdl (required)

For more information on these arguments see, "WSDL Access Arguments" on
page 18-64.

= WSDL Management Arguments: wsdlTimeout

For more information on this argument see, "WSDL Management Arguments" on
page 18-65.

Additional Ant Support:
None

Use the genProxy command to create a static proxy stub that can be used by a J2SE
Web service client. This command creates all of the Java files required to contact the
ports specified in the WSDL. If you have an Oracle specific client configuration, use
the ddFileName argument to pass it to the command.

You must compile the proxy code before you can use it.

The genProxy command generates the files Table 18-2 from a WSDL document. The
list and descriptions assume that no JAX-RPC mapping file was used to change the
default naming conventions of these files. Also note that if there is any conflict
between the names of generated Java classes, then they will be resolved according to
JAX-RPC rules as described in section 4.3.12, "Name Collisions" in the JAX-RPC
specification. For more information, see "Resolving Name Collisions" on page 18-71.

Note that changing any of these generated files is not recommended because they may
be overwritten if the WebServicesAssembler command is invoked again.

Note: WebServicesAssembler will not overwrite the files generated
with the genProxy command for the schema types under these
conditions:

= the class name, including the package name, already exists in the
classpath argument given to the WebServicesAssembler
command, and

= the command line argument overwriteBeans is set to false
(the default value). See "overwriteBeans" on page 18-69.

Table 18-2 genProxy Generated Files

File Name Description

<derived_name> java One file is generated for each type defined in the schemas in the
specified WSDL. The name of the Java class file, derived_name, is
derived from the name of the complex type or element in the
schema. The JAX-RPC specification sections 4.2.3, "XML Struct
and Complex Type", 4.3.6, "WSDL Fault", and 6.5, "SOAP Fault",
describe this class.

18-34 Web Services Developer's Guide

WebServicesAssembler Commands

Table 18-2 (Cont.) genProxy Generated Files

File Name Description

<portName>Client.java A utility class file is generated for each port in the WSDL. This
file contains code that shows you how to call your service. You
should use this file only to test your service; not as the vehicle in
which your clients call the service. It is example code. The
portName is the value of the <portName> element in the WSDL
document.

Note: this file is not mandated by the JAX-RPC specification.

<portTypeName> java The service endpoint interface file. This file contains a Java
method for every WSDL operation in the port type. The
portTypeName is the value of the <portTypeName> element in
the WSDL document. Section 4.3.3, "WSDL Port Type", in the
JAX-RPC 1.1 specification, describes this class.

<serviceName>.java A service interface file with this name is generated for every
service in the WSDL document. The serviceName is the value of
the <serviceName> element in the WSDL. Sections 4.3.9,
"WSDL Service", and 4.3.10, "Service Interface" describe this
class.

Runtime directory/package These directories contain the files used internally by the Web
services proxy code. You should not use any of these files
directly because they may change or be removed in a future
release.

See Also:

s Chapter 15, "Assembling a J2SE Web Service Client" for more
information on using genProxy to create proxy stub code.

= "WSDL Limitations" on page 18-22 describes the limitations on
WSDLs that can be used as input to the WebServicesAssembler
tool.

The following command line and Ant task examples create all of the proxy code and
store it in the proxysrc directory.

Command Line Example:

java -jar wsa.jar -genProxy
-output proxysrc
-wsdl myservice.wsdl

Ant Task Example:

<oracle:genProxy output="proxysrc"
wsdl="myservice.wsdl"
/>

Required Arguments:
To use the genProxy command, you must specify the following argument.

s WSDL Access Arguments: wsdl

All Arguments:

The following list identifies all of the arguments that can be used with the genProxy
command.

s Deployment Descriptor Arguments: ddFileName

Using WebServicesAssembler 18-35

WebServicesAssembler Commands

"

For more information on this argument, see "Deployment Descriptor Arguments
on page 18-62.

General Assembly Arguments: classpath, debug, help, mappingFileName,
packageName, output, searchSchema, serviceName, useDimeEncoding

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 18-41.

Java Generation Arguments: dataBinding, mapHeadersToParameters,
overwriteBeans, unwrapParameters, valueTypePackagePrefix

For more information on these arguments see, "Java Generation Arguments" on
page 18-68.

JMS Assembly Arguments: replyToConnectionFactoryLocation,
replyToQueueLocation

For more information on these arguments see, "JMS Assembly Arguments" on
page 18-58.

Message Format Arguments: mtomSupport

For more information on this argument, see "Message Format Arguments" on
page 18-67.

Proxy Arguments: endpointAddress, genJUnitTest
For more information on these arguments see, "Proxy Arguments” on page 18-61.

WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort,
wsdl (required)

For more information on these arguments, see "WSDL Access Arguments" on
page 18-64.

WSDL Management Arguments: wsdlTimeout

For more information on this argument see, "WSDL Management Arguments" on
page 18-65.

Additional Ant Support:

genValueTypes

<handler> tags—For more information, see "How to Configure Handlers in an
Ant Task" on page 18-81.

<port> tags—In the <port> tag, genProxy can use these arguments:
endpointAddress, name (same as portName), portName,
replyToConnectionFactoryLocation, and replyToQueueLocation. For more
information, see "How to Configure a Port in an Ant Task" on page 18-78.

Use the genvalueTypes command to create JAX-RPC value type classes (beans) from
the specified schemas. This command creates the beans for schema-driven Web service
development.

WebServicesAssembler can create more than one value type class for each
genValueTypes invocation. The command supports more than one schema
argument on the command line or <schema value=""> line in an Ant task.

In addition to the beans, this command creates the custom-type-mappings.xml
and jaxrpc-mappings.xml files. The custom-type-mappings.xml file makes it
easier to configure the custom serializer. The generated custom type mapping file

18-36 Web Services Developer's Guide

WebServicesAssembler Commands

conforms to the service side schema, but it can be modified slightly to be used on the
client side.

The jaxrpc-mappings.xml file is a partial JAX-RPC mapping file that can be
supplied when generating the WSDL for bottom up Web service development.

See Also:

» "Editing the Server Side Custom Type Mapping File" in the Oracle
Application Server Advanced Web Services Developer’s Guide for an
example of an edited service side custom type mapping file.

» "Custom Serialization of Java Value Types" in the Oracle
Application Server Advanced Web Services Developer’s Guide for more
information on the custom serializer.

The following command line and Ant task examples create a value type (bean) for
every complex type defined in the schemas mySchema . xsd and otherSchema . xsd
and creates the files custom-type-mappings.xml and jaxrpc-mappings.xml.
The beans and files are stored in the build directory.

Command Line Example:

java -jar wsa.jar -genValueTypes
-schema mySchema.xsd
-schema otherSchema.xsd
-packageName com.mycompany
-output build

Ant Task Example:

<oracle:genValueTypes packageName="com.mycompany" output="build">
<oracle:schema value="otherSchema.xsd"/>
<oracle:schema value="mySchema.xsd"/>
</oracle:genValueTypes>

Required Arguments:
To use the genvalueTypes command, you must specify the following argument.

= General Assembly Arguments: schema

All Arguments:

The following list identifies all of the arguments that can be used with the
genValueTypes command.

= General Assembly Arguments: debug, help, packageName, output, schema
(required)

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 18-41.

s WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort
For more information on these arguments see, "WSDL Access Arguments” on

page 18-64.

Additional Ant Support:
None

Using WebServicesAssembler 18-37

WebServicesAssembler Commands

Deployment Descriptor Generation Commands

The following commands create deployment descriptors or files that are used in
generating descriptors for the EAR.

= genApplicationDescriptor—Creates an application.xml file

s genDDs—Creates deployment descriptors

genApplicationDescriptor

Use the genApplicationDescriptor command to create an application.xml
file that can be used when generating an EAR.

The input argument must be a directory that contains the WARs and EJB JARs that
will be placed in the EAR. The generated application.xml will contain tags for
each of the WARs and EJB JARs found in the specified input directory.

Command Line Example:

java -jar wsa.jar -genApplicationDescriptor
-input src/ejb
-output build

Ant Task Example:

<oracle:genApplicationDescriptor
input="src/ejb"
output="build"

/>

Required Arguments:

To use the genApplicationDescriptor command, you must specify the following
argument.

s General Assembly Arguments: input

All Arguments:

The following list identifies all of the arguments that can be used with the
genApplicationDescriptor command.
= Deployment Descriptor Arguments: context
For more information on this argument, see "Deployment Descriptor Arguments"
on page 18-62.
= General Assembly Arguments: debug, help, input (required), output

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 18-41.

Additional Ant Support:
None

genDDs

Use the genDDs command in top down or bottom up Web service generation to create
the web.xml, webservices.xml, and oracle-webservices.xml deployment
descriptors.

18-38 Web Services Developer's Guide

WebServicesAssembler Commands

The following command line and Ant task examples create the deployment
descriptors and store them in the WEB-INF directory.

Command Line Example:

java -jar wsa.jar -genDDs
-output WEB-INF
-wsdl myservice.wsdl
-classpath myservice.jar
-interfaceName com.mycompany.myservice.Hello
-className com.mycompany.myservice.HelloImpl

Ant Task Example:

<oracle:genDDs output="WEB-INF"

wsdl="myservice.wsdl"

classpath="myservice.jar"

>

<oracle:porttype
interfaceName="com.mycompany.myservice.Hello"
className="com.mycompany.myservice.HelloImpl" />

</oracle:genDDs>

Required Arguments
To use the genDDs command, you must specify the following arguments.

= General Assembly Arguments: className, interfaceName

s WSDL Access Arguments: wsdl

All Arguments:

The following list identifies all of the arguments that can be used with the genDDs
command.

s Deployment Descriptor Arguments: appendToExistingDDs, context,
ddFileName, uri

For more information on these arguments, see "Deployment Descriptor
Arguments" on page 18-62.

= General Assembly Arguments: className (required), classpath, debug, ejpName,
help, interfaceName (required), mappingFileName, output, serviceName,
strictJaxrpcValidation, useDimeEncoding

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 18-41.

= JMS Assembly Arguments: sendConnectionFactoryLocation, sendQueueLocation

For more information on these arguments see, "JMS Assembly Arguments" on
page 18-58.

s WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort,
wsdl (required)

For more information on these arguments see, "WSDL Access Arguments” on
page 18-64.

= WSDL Management Arguments: wsdlTimeout

For more information on this argument see, "WSDL Management Arguments" on
page 18-65.

Using WebServicesAssembler 18-39

WebServicesAssembler Commands

Additional Ant Support:

= <port> tags. In the <port> tag, genDDs can use these arguments: name (same as
portName), portName, sendConnectionFactoryLocation, sendQueueLocation,
and uri. For more information, see "How to Configure a Port in an Ant Task" on
page 18-78.

s <porttype> tags. For more information, see "How to Configure a Port Type in an
Ant Task" on page 18-80.

s <handler> tags. For more information, see "How to Configure Handlers in an
Ant Task" on page 18-81.

Maintenance Commands

help

The following commands return a short description of WebServicesAssembler
commands and the version number of the tool.

= help—Returns a list of WebServicesAssembler commands

m version—Returns the version of the WebServicesAssembler tool

Use the help command to return a list of WebSer