ORACLE

Oracle® Warehouse Builder
Transformation Guide

10g Release 2 (10.2)
B28227-01

June 2006

Oracle Warehouse Builder Transformation Guide, 10g Release 2 (10.2)
B28227-01
Copyright © 2000, 2006, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

This program contains Batik version 1.6.
Apache License
Version 2.0, January 2004
http:/ /www.apache.org/licenses/

For additional information about the terms and conditions, search for "Apache License" in Oracle Warehouse
Builder online help.

Contents

PUrOIACE ...ttt iX
AN S Te B T=S YL T TSSO TOORRRO PSR ix
Documentation Accessibility ... ix
(@) 0 M7=) 1L T0) V- I U RTRRRRRRR X
RS EXT<Y B a1 o) S Tar= U aTo) o =TT X

1 Introducing Oracle Warehouse Builder Transformations

ADbout TransSfOrMAtIONScciiiiiiiiiiiie ettt ettt e ae et s e e e e s e e saesbaesaesraesaesbeessenseaes 1-1
Types of Transformations ..o 1-1
Transforming Data Using Warehouse Builderc.cccooviiiiiiiins 1-3
Benefits of Using Warehouse Builder for Transforming Dataccccoeeviniiinniiinnnnnne. 1-3

About Transformation LiDraries...........cccccooiiiiiiiiiiiiiiiee et sr et s reeaae e eebeaee e 1-3
Types of Transformation Libraries ... 1-3
Accessing Transformation Libraries...........cccccciiiiiiiiiiiii e 1-4

Defining Custom Transformationsccooiiiiiiiiiin i 1-5
Defining Functions and Procedures ..o 1-7
Defining PL/SQL TYPES ...ccvvviiiiiiiiiiiiiiiiiii s s s e 1-8

Editing Transformation Properties ... 1-10
Editing Function or Procedure Definitionscccccevviiiiiniiiiiniiiiccce 1-10
Editing PL/SQL TYPES ...cvoviviiiiiiiiiiiiiiictci st 1-11

Importing PL/SQL ... 1-12

2 Transformations

Administrative TransformMationsc.cccooiiiiiiiiiiiiiieee e e et sr et sreetaesreeebeaee e 2-1
WB_ABORT ..ottt ettt st te st st teestee st e e sbe et e esbeaessesaseessbeessaensseesbeasaesnseesssenssaenseenn 2-2
WB_COMPILE_PLSQL ..ottt tesie et stteetee s e eeste st eeateastaesseaesssesssaesseessseaseesssaesssesssassseenn 2-2
WB_DISABLE_ALL_CONSTRAINTS ...ttt ettt et siesveeie e evae e sre e e saaesse e s e assae e 2-2
WB_DISABLE_ALL_TRIGGERSoti ettt ettt ettt e sstae e stve v eneass e aaessbaesssennnees 2-3
WB_DISABLE_CONSTRAIINT ...ttt ittt ettt et eee e stae st eeetveesvae e e es e asaesssaesssassnaenseens 2-4
WB_DISABLE_TRIGGER ..ottt ettt ettt et et staesa e stve e stae e e esbeasssessneesssassaenseens 2-5
WB_ENABLE_ALL_CONSTRAINTS ...ttt ettt ettt ettt eestve st eeetbesvaesnaaesssessnaenseans 2-6
WB_ENABLE_ALL_TRIGGERS ...ttt ettt ettt estte et eestveesva e e sebesaaesnseesssesnaesseans 2-6
WB_ENABLE_CONSTRAINTooeottt ittt eesie et et stteestee et eestestaeetesssaesssaessessssaenseasssasnseeses 2-7
WB_ENABLE_TRIGGERooiitiiitietiee ettt ettt et eteestte st ae st e stae e aes e assaesssaesssenssaenseens 2-8
WB_TRUNCATE_TABLE ...ttt ettt sttt e stae e ee e e svaesnbe e stbessees e asssessseessseessaenseens 2-9

ASCIL..oe ettt st e et e s ae et et te e bt e ateeteeabeeaeeseess e b eeaesheebaeehaetbeebe et aenteanbeteenseereeseeraenreas 2-10
CHIR oottt ettt ettt ettt et e e st e baesb e et aesae et besbe et besteassesseenseeseesseesaeabeetaeete et beseesaesreesaesraas 2-10
CONC AT ..ttt et e s te et e e e te e teete e be e s e s e e s e esaesbeshaesbestbesaeereassesesseenseaseeseesrsesaessnas 2-11
IINITICAP ettt et ettt ettt teete e ae et e b e e b e et aesbesbaesbeetbesbeessasseesesrseenseseesaesreesaenraas 2-12
INSTR, INSTR2, INSTR4, INSTRB, INSTRCcccteieeieetiecteese ettt st svve e eseeevaeenn e eeeas 2-12
LENGTH, LENGTH2, LENGTH4, LENGTHB, LENGTHCccoccoiiiiiiieiereeece e, 2-13
LOWER ..ottt ettt ettt sttt s te et ae e te et b e st e eaeeabeass e seesseesae s eesaesseebaesbestsesseeteenbeesraesaessaas 2-14
LPAD oottt et ettt ettt r e b eb e e ebe b b etbe et besbeereeabeene e neenseeree e ereeraeeraas 2-14
LTRIM ..ottt et ettt te vt s teeteseaeess e s e e s e esaesseshaesbe et besbeeseanseseanseenseseesaesreesaenraas 2-15
INLSSORT ...ttt ettt ettt st et sb et e sae et besbe et besbease e st esseeseesseesaesbestaeebeessensesseansesaesraas 2-15
INLS_INITCAP ..ottt ettt sttt s te et ste et etveetesateeaesste e e s e e s aesaessessaessessaessesteessenseansaseans 2-16
INLS_LOWER ...ttt ettt ettt et te ettt et ev e e s e ebaesaesbaesbestbesbeeseansesssanseessaeseessesraesaesrnas 2-16
INLS_UPPERoottetiie ittt ettt ettt ettt et et e et e ebaesaesbaesae et aesbeeseassesssarseenseeseessesreesaessens 2-17
REPLACQCE ...ttt ettt sttt s ae et a e et e s e e aesseenseeseesseesaesbestaesbeesbesseereantesaesraas 2-17
REGEXP_INSTR ...ttt ettt ettt ettt ettt v e st sbaetaeetaesaesteasaes e sssesnssseesnesreesaesrnas 2-18
REGEXP_REPLACQCE ...ttt sttt st ettt et te st st s se e s eesaesaesraesaesrnas 2-20
REGEXP_SUBSTR ...ttt ettt ev et et sae vt st aeeaessve e snse e s eeseesaesreesaesraas 2-22
RPAD oottt ettt ettt ettt ettt b e e b eb e e ebeeha et be et betbeereanbene e teenseeree e ereeraeeraas 2-23
RTRIM ..ottt ettt ettt ettt st s e e s ees e e s e ebaesbesbsesbestbesbeeseassesearseenseaseessesreesaesraas 2-24
SOUNDEX ...ttt ettt ste sttt ae e staeste et be s e ese s teass e see s eesae st aesaessesbaessesssessesreessenseanssesseas 2-24
SUBSTR, SUBSTR2, SUBSTR4, SUBSTRB, SUBSTRCccccottetieeieeiieeeeie et svveeee e 2-25
TRANSLATEttt ettt sttt et e e e aeeste e s e e see s e ebaesaeebaesbesssessesreanseennareas 2-26
TRIM oottt ettt ettt e s e et e e te et b et e eteeateeteesbe e st eseesseesaessessaesbeebbesbeeeeassesseenseanseaseesaesreesaessaas 2-27
UPPER ...ttt et ettt ettt ettt et e s e e s e ebaesbesbaesbe et besbeereanseseanseenseeseeaesreesaesraas 2-27
WB_LOOKUP_CHAR (NUMDET) ...eutiiiiieitiieiie sttt ettt sttt estes et e e 2-28
WB_LOOKUP_CHAR (VArChar2)c.ceeeeeeeeeieie ettt sttt sttt etes et eseese s saeseenaas 2-28
WBL_IS_SPACKE ...ttt ettt sae vt st et e s teesb e tessbess st eesee s aessesseesaesaesraestessnas 2-29
Control Center TransfOrmMationS..........ccccvevieiiieieiieie ettt st er e rae e eeae e esbesseese e seenseenes 2-29
WB_RT_GET_ELAPSED_TIMEcoiiiiitiiiieiteee sttt ettt ettt s e s evaesaesraesaesnnas 2-30
WB_RT_GET_JOB_METRICS........c.oioietitieeee ittt sttt ettt et sve e e e s eveesaesraesaesnnas 2-31
WB_RT_GET_LAST_EXECUTION_TIMEccoooietieieetietie ettt evee s s v 2-31
WB_RT_GET_MAP_RUN_AUDIT ...ttt ettt ettt sr e sr e evae v svaesaesnaas 2-32
WB_RT_GET_NUMBER_OF_ERRORSocotiotiietieie ettt ettt sr v v svaesae v 2-33
WB_RT_GET_NUMBER_OF_WARNINGScooeitieieetietie ettt ettt et sr v v v v 2-33
WB_RT_GET_PARENT_AUDIT _IDoooiiiioiietieeeeteetie ettt e e s evee v svaeeaeevnas 2-34
WB_RT_GET_RETURN_CODEcottiietietie ettt ettt sr e vae v svaesaeevsenvesvesnve e annas 2-34
WB_RT_GET_START_TIME ..ottt ettt ettt ettt sr v saesraesaeennas 2-35
Conversion TransSfOrmMationNsS.c.cocvevieiieiicie ettt st e sae b taesreeeaeseeesbesseessesseeseenes 2-35
ASCIISTR ...ttt ettt ettt ettt ettt e s e s e e s e et aesbesbsesbe st besbeeseansessarseensesseesesreesaesrnas 2-36
COMPOSE ...ttt ettt ettt sttt s te et aeste st e s e ete s beass e seesseesaesseesaessesbaessesssessesreassenseansaessaas 2-36
CONVERT ...ttt ettt ettt e e e st e s te st be s e e te s tease e se e s eesaessaesaesbeebaesaeessassesrsassenseanssesreas 2-37
HEXTORAW ...ttt ettt sttt st s te st s e et estesss e st e s eeseesseesaesbestbesbeessenssaseanseeneaseas 2-37
NUMTODSINTERV AL ..ottt ettt ettt t e sv et st vaestae s e evessse s ssseessaeseesaesraesaessaas 2-38
NUMTOYMINTERVAL. ...ttt ettt ettt st st teereesae e e se e s eeseesaesraesaesanas 2-39
RAWTOHEX ...ttt sttt ettt st te et beese e se e s e e seesseesaesbeetaesbeesbenseanesnseeneaseas 2-39

RAWTONHEX ..ottt sttt et sae st s st st e aene st e sae e 2-40

SCN_TO_TIMESTAMP ...ccootitiitiit ittt ettt sttt sttt et e st sa e s st st s 2-40

TIMESTAMP_TO_SCNoiitiitieiectietieettetie et ettt ettt e e stesveesaesraesaesteesaestessaesssassasseensesssessesseessens 2-41
TO_BINARY_DOUBLE........oootiiietietiesteete ettt sr e vt sbe et sveeaaesteate e se e s e e seenseesaesaens 2-42
TO_BINARY_FLOAT ..ottt ettt v et v taesbeetaeeteesaessesss e seeseeseesseesaesaens 2-43
TO_CHAR oottt ettt ettt e ettt e e aesb e e sbesbaesbeebeetbeeteastesssaasesseeseesaesraesnesnses 2-43
TO_CLOB ...ttt ettt st st e s b e et b e tbeeteetbeeteesbeasssesnseseesesbaesaesteesaesreenseraesaens 2-45
TO_DATE ..ottt ettt st st e s ae et etbe e teetbeeteesbeasssesnssseese st aesaesbessbesreenteraesaens 2-45
TO_DSINTERVAL ..ottt ettt ettt et sv e sae v vaesbeetaesbesebesssaseasseensesseesessaesaens 2-45
TO_MULTI_BYTE ..ottt s v e st sttt ete et be e reeaee et eseessesbeesaesraesaesaeas 2-46
TO_INCHAR ..ottt ettt ettt te ettt et e e saesbaesaesbaesbeebeesbeeteassesssarsesseeseessesseesaesaeas 2-46
TO_INCLOB ...ttt ettt ettt ettt et e e ae st e e saesbaesbeebeesbeeessssessearsasssesseesaesreesaenaeas 2-47
TO_INUDMBER ..ottt ettt ettt ettt e e saesbeesaesbaesbeebeesbeeeeasbessearsesssesseessesreesaesaens 2-47
TO_SINGLE_BYTE ..ottt vt st ste et eteasae e saneeseesree e sraesaesaeas 2-48
TO_TIMESTAMP ...ttt ettt ettt ettt et b e sae st et beete et beeressaesssasesssesseesaesreesaesaeas 2-48
TO_TIMESTAMP _TZ ..ottt ettt s v st st s te et eveasae e st e s e saeesaesreesaesae s 2-49
TO_YMINTERV AL ...ttt ettt et s tae sttt ete e aeeeessse s aseessesreesaesraesaenaeas 2-50
UNISTR ..ottt ettt st et e te et et e et be st e eaeeabe e s seesseesaesseesaeaesbaesbesaeesbenseasseesrsesaenaens 2-50
Date TranSfOrMAationsccocvvevieiiiiie ittt eer e se et e st steetaeebae s e steesbesseesesseenseeneesenses 2-51
ADD_MONTHS ...ttt ettt et s r e b b tbe s te et beeteeasesesaseeseesseesaesreesaesaeas 2-52
CURRENT _DATE ...ttt ettt ettt ev et st sae b taeste et e eteassessesaseessesseesaesraesaesaeas 2-53
DBTIMEZONE.......cotitiititiee ittt sttt ettt et tesae e e e e e se e s eesaesaesbaessesbaessesteessenseessenseassansens 2-53
FROM_TZ ..ottt ettt ettt s te et s ae et ate e teasteeae e se e s e eseesseeseesaestsesbeeteasseereansesaesaeas 2-53
LAST DAY ettt ettt ettt et sttt te et e es e e saesbeesbesbaesbesbeesbeeseanseeseaseensesbeeaesraesaeeaeas 2-54
MONTHS_BETWEENooiiiiieiectieie ettt ettt sr e st staetveeteesaeeeeanse s aseesesseesaesrsesaeseeas 2-54
INEW _TIME ...ttt ettt ettt ettt v e sae st e e saesbaesbeebeesbesseanseesearseensesseesaesraesaesaeas 2-55
INEXT_ DAY oottt ettt ettt ettt s e et e v e e saesbaesbesbbesaeebeasbeessanseessaseessesseesesrsesaesaeas 2-56
ROUND (ALE) e.vvevereeiereeie sttt ettt ettt st st st st ebe st et st b st bt bt e b et eb et ebebeb e benenbenes 2-56
SESSIONTIMEZONE.........oooiiieie ettt ettt ettt veesaestaestestaesbeste e tesseassee s aseessesseesaesrsesaeseens 2-56
SYSDATE ...ttt ettt ettt e ae et e es e e saeebaesbesbaesbeebe et beereenbe st es e et e saee e eraeraeeaeas 2-57
SYSTIMESTAMP ...ttt ettt ettt st er et s teetbe e be st beabeese e sesss e see s aesaessesbaesaesrsesaesaeas 2-57
SYS_EXTRACT _UTC ..ottt ettt ettt et e st staesbe bt saesteesteeseasseessaseessessaessesrsesaesseas 2-58
TRUNC (ALE) c.vuveeevereeeirteiereceirtcere ettt sttt st st et sa et sa et bbb s bbb e e sen e senee 2-58
WB_CAL_MONTH_NAME ...ttt ettt et ettt ettt ese e e sse e ssaesaesaesraesaesraesaesanas 2-58
WB_CAL_MONTH_OF_YEAR. ..ottt ettt ettt ettt sse e sse st sseeseesaesraesaesraesaesneas 2-59
WB_CAL_MONTH_SHORT_NAMEooiittieetiee ettt ettt ettt sr v st svee v svaesaeeve s 2-59
WB_CAL_QTR .ottt ettt et st e st st etaestestbeeteesbesbessesssasseessessessaessesaaesaesrsasseseeas 2-60
WB_CAL_WEEK_OF_YEAR ..ottt ettt et sv et evae sttt evesnaeseeanee e aans 2-60
WB_CAL_YEAR ..ottt ettt ettt vt ste e tbe e testbe s e sse e sesss e se e s aesaessesaaesaesrnesaesaeas 2-61
WB_CAL_YEAR _NAME ..ottt ettt ettt et te e ae et aes e saesreesaesraesae e s 2-61
WB_DATE_FROM_JULIANeot ittt ittt eveetaesteettestesttestesse e e sssassee s aeseessessaesaesrsessesaeas 2-62
WB_DAY _INAME ...ttt ettt s r et stestbeste st besbeese e sease e seesseeseesesseessesrsesaeseens 2-62
WB_DAY_OF_MONTHcctiiiitiieeee ettt ettt st et veate e e ess et eesaesaesraesaesraesaesaeas 2-63
WB_DAY_OF_WEEKctiitiiiiitcie ettt sttt st ettt s tveatesre e e st et seesaesaesraesaesraesaesaeas 2-63
WB_DAY_OF_YEAR ...ttt ettt st ste sttt stestvestestteateess e e ass e see s assaessessaessesrsessessens 2-64
WB_DAY_SHORT _NAMEoo ottt sttetae ettt sttt ese e e ess e sseesaesaesraesaesraesaesanas 2-64
WBL_DECADE ...ttt ettt ettt et b et esbeetbesbe et teabeeseessesrsansaessaeseessesseesaesreesaenaeas 2-65
WB_HOURILZ ...ttt ettt ettt ste st sae et etae s testbeeteesbessesss e ssassaessessessaesaesraesaesssestenenes 2-65

WB_HOURITZMILSS......coiiiiiiientiee ettt ettt e sttt estes st s s e st es 2-66

WB_HOURZA ...ttt ettt ettt et st et te et e s beese s se e s e e seesseebaesaestaesbeesbensesreansensesnnes 2-67
WB_HOURZAMIL_SS......cotitieieeeetee ettt ettt ettt ettt et et e e e e sveesaesbaesaesbestbesteessansesreansesnesnnes 2-67
WBLIS_ DATE ...ttt ettt sttt et s e e ae et e s e e e e ss e esaesaeebaesbeesbesaeereanrennesnnes 2-68
WB_JULIAN_FROM_DATE ...ttt ettt ettt s ae et e ss e eraesaesraesaeenaas 2-68
TWBLIMIL_SS ... oottt ettt ettt et e e s b et e e eb e et beebe et besbe st tesbeereasseere e se et eebee e sraeeaeaanes 2-69
WB_WEEK_OF_MONTHcouiiiiiitcit ettt ettt st sttt e sse et e see s eesaesaesrsesaeennas 2-69
Number TransformMations...........cccocviuiiiiiiiiiiice ettt et et eteesbe e as e e s eeseesaesraesseereesneens 2-70
ABS e e e ettt ettt et e et e b e et b e etaeehaetbeehe et bes bt arbere et e e e enreeraeareas 2-71
ALCOS ..ottt e ettt ettt et e et et e e ae b e etae b aetbeebe et teste et bete et eereenneeraeareas 2-71
ASIIN L.ttt st e ettt e ettt ete e ae et er e et e b aeeaeeha et be et besbeereenaeneeateanseenteereanreeneaanes 2-71
AT AN .ottt et et e s ae ettt e vt e e eteaabe st s e et e s e eaeeheeraeehaetbeehe et besteenbereeseereeneereeareas 2-72
AT ANZ ...ttt ettt e b e e sb et e e s be et aetbe et besbeeteeabeene e ae et e s e et ehaeebeshaesbeseeneeraesreas 2-72
BITAND ..ottt ettt ettt ete e ae et e b e et e eb e e sbesbaesaeebbesbeeseansesearseenseeseeaesreeraeeraas 2-72
CEIL ..ottt ettt ettt ettt et et st et e e et e et b e s te et besbe et besbeaae e st enseeaeeaseesaeebeetaeebeesbeneeaesreeraeeraas 2-73
Ottt et e et et ettt ettt he et e bt e b et aeebeehaetbe et besbeereenreent e st enteeseeaeeraeraearaas 2-74
COSH ...ttt sttt ettt e te e teete s et e s e e s e esaesbesbsesbeebbesbeereansesssseenseaseenesreesaesraas 2-74
EXP oottt ettt ettt e tt e ae et eb e e b et aeebeehaetbe et aesbeereenre st e st et eeseenaesraeraeeraas 2-74
FLOOR ..ottt ettt ettt ettt st et e st e et e sae et beste et besseassasseensaeseesseesaesbestaesbeessansesaesreesaensans 2-75
LN ettt ettt et e et e e be et b et e e te e bttt ae et e s e e s e ebaeebeehaetbe et besbeereentee st e aeenseasee e sraeraeeraas 2-75
LOG ettt ettt ettt s h et e e ae ettt be et beateeae e te et e et e aheeaaeabeetbeete et bebee e eraeraenaaas 2-75
IMOD ...ttt ettt ettt bbb e e te et be e te et be s e ete bt ert e re s e b e e s e s aeeaeehaetbe et benteetsee e ereetaeeraas 2-76
INADNV L ettt ettt e et e e tae s be et besbeeteeabeesessseeseeesee s aesaessesbaesbestaessesreanteesrsesaessaas 2-76
POWER ...ttt ettt ettt sttt e te et teete st be s e ete s teass e seesseesae s eesaesaesbaessesssensesreanteesrsesaessnas 2-77
REMAINDER........ooitiiitieteet ettt ettt ettt v e e s e etaesaestbesae et aesbesseasseessanseenseeseessesreesaessans 2-77
ROUND (NUINIDET) ...t ettt ettt sttt sttt et et sa et st bbb s e e e et ene 2-78
SIGIN ..ttt ettt ettt ettt e e te et e e saesbe et be e te et beete et besbease e st aaseeseerseesae s e esaeeaeehaetbeetbenbeerseeaeeraeraeeraas 2-78
SINN ettt ettt ettt e e ettt ettt ettt e et eh et e b et beehe et besbe et besbeeae e st ensaeree st etaeabeehaeebe et eeseeeeereeraeeraas 2-79
SINH ..ottt sttt st et e e te et teete et be st eete e bt et e re s e ebaeas e et aeebeehaetbeerbesbeernae et eraesaeeraas 2-79
SORT ..ottt ettt ettt e s te et e e teetbe s e ete e beaae e bt et e s e e b e et eeebeehaeebe et besbeereanbe st eseenseeseeaesreeraeeraas 2-79
TAN ettt ettt ettt e b et aeeae et betbe et besbeare e te e e e e e et e ereeabeehaeebe et beseeaeereeraeeraas 2-80
TANH ..ot ettt et ettt ettt et e et e b e e ebeehaetbe et betbeereanbeene e te et eebee e ereeraeeraas 2-80
TRUNC (ITUIMNDET) e vcvtieieceiecerce ettt ettt sttt e b et eb et eb e b e bbb e e s e s e s e s ene 2-80
WB_LOOKUP_NUM (0N @ NNUMDET) ...c..cutiiiitiieiiesieseet ettt ettt eaees e s e 2-81
WB_LOOKUP_NUM (0N @ VATCRAT2) ...cuueiiiiiieiiesiee ettt sttt sttt etes e esees e e e 2-82
WBL_IS_INUMBER ..ottt ettt ettt et sv et st tbe s te st be e este s e essassee s asseesseeseessesrsesaessaas 2-82
WIDTH_BUGCKET ...ttt ettt ettt et sv ettt be s bestbesbees e e sssassee s eeseesssesaessesrsesaesseas 2-83
OLAP TransSformMationS........c.cccooeuiiiiriiiiiiitiecieetietieeteetie et eteeeetee e esseestesseesaesbaessestesssesreessenseassesssesennes 2-84
WB_OLAP_AW_PRECOMPUTEoooititieeieeee sttt ettt r et ss s saesvaesaeevaas 2-85
WB_OLAP_LOAD_CUBE ...ttt ettt sttt ste e e e sttt see s aesaesaesrsesaesnnas 2-86
WB_OLAP_LOAD_DIMENSIONcoiiitirtiitintietecreeteeereetie e sttesveeevesseessaseessasssessssseessesssessessnns 2-86
WB_OLAP_LOAD_DIMENSION_GENUKccoisittiieitietie ettt e s ss e ereesaesvaesae v 2-87
Other TranSfOrMAatiONSc.cocviiviiiiiiiiiietiece ettt et e s e seesseesaesbeesaesbeesaeseeessesseenseeseesennes 2-87
DEPTH ..ottt sttt sttt s te et be s e et e s e ese e se e s eeseesseesaesbeebaesbeesbenbe et sraeraeeraas 2-88
DIUMP ..t et ettt e et eete e se et e e s e e s e esaesbesbsesae et besbeeseansese e seenseeseeaesreesaeeraas 2-88
EMPTY_BLOB, EMPTY_CLOB.....ooo ittt sttt ettt e e seve e saesraenaesnaas 2-90

NLS_CHARSET_DECL_LEN ..ottt et sttt sttt ss e e suesaeeaes 2-90

NLS_CHARSET _ID oottt sttt et e aese st ss st s st s e e enaenes 2-90

NLS_CHARSET_INAME ..ottt ettt sv e va e sve st sveetaestesae e e sseseesneeraesaens 2-91
INULLIE ...ttt ettt et e te et te st e e e s e e saesbaeaesbsesbeebeesbeeeeasaesseanseessenseesnesnsensesanes 2-91
INV L ettt st e ettt e et b et e e teeabeete e be e s e s e e beehaeeaeehaetbeehe et beereenbeant et eeneeaseeaesreeraeeaeas 2-92
INVL2 oottt ettt ettt et bt e e te e s be e te e be e s eeseeseebeesbeshaesbeebeesbeereanse st et e eneenseeaesreeraenaeas 2-93
ORA _HASH ...ttt ettt ettt ettt s e e saesbaesbesbaesbesbeesbeeseasseaseaseessesseesaesrsesaesaeas 2-93
PATH oottt ettt s ae s tae s beeta et e eteesbeeteasbeeneaseenseesee st st aesaeebeetbeneeneeraesaeas 2-94
SYS_CONTEXT ...ttt ettt ettt sttt et st et be e tesateeae e se e s eeseesseesaesbesbaesbeereantesreansenneannes 2-95
SYS_GUID ..ottt et ettt ettt et e s e e stesbaesbeshaesbeebeesbeeresssesearseensesseeaesraesneannes 2-95
SYS_TYPEID ..ottt ettt ettt sae et st et etteetesabeeaessbessess e e s eesaesaesbaessestesssesreenrensestens 2-96
UID ettt et ettt ettt et e et et e et e sb e e sae et e etbeebesabeebeesbesbeaae e eeaat e nee s eeteeareene et eeaeenneres 2-96
USER ..ottt ettt ettt ettt e sttt e e e e sb e e ae e b e etaeebe et beebe et beabeereen bt eae e neenteeseeseehee st eraeraeereas 2-97
USEREINV ..ottt sttt ettt e te et et a et et e e se e s e esaesseesaesbeesaeebestbesseeresnseeresnsesaesaeas 2-97
VSIZE ..ottt ettt e et s ae ettt e e te et e e ae e be ettt e e re et e et e b e eaae b e etaeeae et benbeereante e sraeraenaeas 2-98
Spatial Transformations ... 2-99
SDO_AGGR_CENTROIDoctiitietiitetie ettt sreevaesteetaestestsestesteesaesrsasae s assesssesseesaessaesaesaeas 2-99
SDO_AGGR_CONVEXHULL.....oooiitiiietieeese ettt ettt ete et ee v sae v s sreeaaesvesnsenneens 2-100
SDO_AGGR_MBR. ...ttt ettt ettt ettt et eas et s st esseebaesbestaesbeebsesbesressbessssnseaneaseenes 2-100
SDO_AGGR_UNIONoootiititiecte ettt sttt ettt ettt ee et e s s e ssesbaesbestaesbeetsesbesseassessssnseessasennes 2-100
Streams TranSfOrMAtioNSccoouiiiiiiiiiiiieeccee ettt ee e e er et b e etaesbeetaeebessaenneans 2-101
REPLICATE. ... oottt ettt ettt ettt et e e e seesaeebeesbestaesaeebsesaeeteansesssanseseansennes 2-101
XML TransSfOrMationS..........cccoceeeieiiieieeeeie et ettt ettt e seesseetaesteetaesteetbesteesbesseessssseessesseessesseessessens 2-102
EXISTSNODE..... ..ottt ettt sttt et e e e e s e e aesseebaesbestaesbeetbessesreanseensenssensessaenns 2-103
EXTRACT ettt ettt s v e st st e tae s be et e ete et besseesssssarseesee s eessesaessaesaesrsesennes 2-103
EXTRACTVALUE ..ottt ettt ettt eesa et sbesaaesaeebbesbesteenbessssnseeneanseenes 2-104
SYS_XIMLAGG ...ttt ettt ettt ettt te et et eae e e e s e e st e sseebeesbesaaesaeebsesbeeteesbenseenseeneanseenes 2-104
SYS_XIMLGEN ..ottt sttt ettt sttt ettt ese et e s e e saesaeebaesbesaaesbeebsesbeetesssenssanseanearsennes 2-105
WB_XIML_LOAD . ..ottt ettt ettt ettt et sv st b e tae saeetbesbeetbesbeassasseensasseeseesaesaesraas 2-106
WB_XML_LOADL_F ..ottt ettt et vt st et abe et b e s e sss s se s eesee s eesaesaesraas 2-106
XIMLCONCAT ..ottt ettt ettt et be e et e s eeseesseebaesbestaesbeessesbesreassesssenseeseansennes 2-107
XMLSEQUENCEoooii ottt ettt ettt st st be s te st beetesste e et esssaeseesessaesaesbeessestesssesseans 2-108
XMLTRANSFORM ..ottt sttt et ettt st te e e e s s e e sseebaesbestaesbesbsessessesnsesssansenssansennes 2-109

Index

vii

viii

Audience

Preface

This preface includes the following topics:
= Audience

s Documentation Accessibility

= Conventions

s Related Publications

This manual is written for Oracle database administrators and others who create
warehouses using Oracle Warehouse Builder.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Conventions

In this manual, Windows refers to the Windows NT, Windows 2000, and Windows XP
operating systems. The SQL*Plus interface to Oracle Database may be referred to as
SQL.

In the examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following table lists the conventions used in this manual:

Convention Meaning

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted.

boldface text Boldface type in text refers to interface buttons and links. Boldface
type also serves as emphasis to set apart main ideas.

italicized text Italicized text applies to new terms introduced for the first time.
Italicized text also serves as an emphasis on key concepts.

unicode text Unicode text denotes exact code, file directories and names, and
literal commands.

italicized unicode ltalicized unicode text refers to parameters whose value is

text specified by the user.
1 Brackets enclose optional clauses from which you can choose one
or none.

Related Publications
The Warehouse Builder documentation set includes these manuals:
s Oracle Warehouse Builder User’s Guide
» Oracle Warehouse Builder Transformation Guide
» Oracle Warehouse Builder Installation and Configuration Guide
s Oracle Warehouse Builder API and Scripting Reference
» Oracle Business Intelligence Concepts Guide

In addition to the Warehouse Builder documentation, you can reference Oracle
Database Data Warehousing Guide.

1

Introducing Oracle Warehouse Builder
Transformations

One of the main functions of an Extract, Transformation, and Loading (ETL) tool is to
transform data. Oracle Warehouse Builder provides several methods of transforming
data. This chapter discusses transformations and describes how to create custom
transformation using Warehouse Builder. It also describes how to import
transformation definitions.

This chapter contains the following topics:

= About Transformations on page 1-1

= About Transformation Libraries on page 1-3

s Defining Custom Transformations on page 1-5
» Editing Transformation Properties on page 1-10

» Importing PL/SQL on page 1-12

About Transformations

Transformations are PL/SQL functions, procedures, and packages that enable you to
transform data. You use transformations when designing mappings and process flows
that define ETL processes.

Transformations are stored in the Warehouse Builder repository. Depending on where
the transformation is defined, transformations can be shared either across the project
in which they are defined or across all the projects.

Transformation packages are deployed at the package level but executed at the
transformation level.

Types of Transformations

Transformations, in Warehouse Builder, can be categorized as follows:
s Predefined Transformations
s Custom Transformations

The following sections provide more details about these types of transformations.
Predefined Transformations

Warehouse Builder enables you to perform common transformations by providing a
set of predefined transformations. These predefined transformations are part of the

Introducing Oracle Warehouse Builder Transformations 1-1

About Transformations

Oracle Library and consist of built-in and seeded functions and procedures. You can
directly use these predefined transformations to transform your data. For more
information on the Oracle Library, see "Types of Transformation Libraries" on page 1-4.

Predefined transformations are organized into the following categories:
= Administration
= Bioinformatics
» Character

= Control Center
» Conversion

s Date

s Numeric

= OLAP

» Other

= Streams

« XML

For more information about the transformations that belong to each category, see
Chapter 2, "Transformations".

Custom Transformations

A custom transformation is one that is created by the user. Custom transformations
can use predefined transformations as part of their definition.

Custom transformations contains the following categories:

= Functions: The functions category contains any standalone functions. It is
available under the Public Transformations node of the Global Explorer. It is also
created automatically under the Transformations node of every Oracle module in
the Project Explorer. Functions can be defined by the user or imported from a
database. A function transformation takes 0-n input parameters and produces a
result value.

s Procedures: The procedures category contains any standalone procedures used as
transformations. It is available under the Public Transformations node of the
Global Explorer. The Procedures category is also automatically created under the
Transformations node of each Oracle module in the Global Explorer. Procedures
can be defined by the user or imported from a database. A procedure
transformation takes 0-n input parameters and produces 0-n output parameters.

= Packages: PL/SQL packages can be created or imported in Warehouse Builder.
The package body may be modified. The package header, which is the signature
for the function or procedure, cannot be modified. The package can be viewed in
the transformation library property sheet.

s PL/SQL Types: PL/SQL types include PL/SQL record types, ref cursor types, and
nested table types. The PL/SQL types category contains any standalone PL/SQL
types. It is automatically created under the Package node of every transformation,
both in the Project Explorer and Global Explorer.

In addition to these categories, you can also import PL/SQL packages. Although you
can modify the package body of an imported package, you cannot modify the package

1-2 Oracle Warehouse Builder Transformation Guide

About Transformation Libraries

header, which is the signature for the function or procedure. For more information on
importing PL/SQL packages, see "Importing PL/SQL" on page 1-12.

For more information about creating custom transformations, see "Defining Custom
Transformations" on page 1-5.

Transforming Data Using Warehouse Builder

Warehouse Builder provides an intuitive user interface that enables you to define
transformations. You can either use the predefined transformations or define custom
transformations that suit your requirements. Transformations are stored in the
repository. Custom transformation can be deployed to the Oracle database just like any
other data object that you define in an Oracle module.

The Mapping Editor includes a set of prebuilt transformation operators that enable
you to define common transformations when you define how data will move from
source to target. Transformation operators are prebuilt PL/SQL functions, procedures,
package functions, and package procedures. They take input data, perform operations
on it and produce output. For more information on these operators, refer to the
chapter titled "Data Flow Operators" in the Oracle Warehouse Builder User's Guide.

Benefits of Using Warehouse Builder for Transforming Data

Warehouse Builder enables you to reuse PL/SQL as well as to write your own PL/SQL
transformations. To enable faster development of warehousing solutions, Warehouse
Builder provides custom procedures and functions written in PL/SQL.

Because SQL and PL/SQL are versatile and proven languages widely used by many
information professionals, the time and expense of developing an alternative
transformation language is eliminated by using Warehouse Builder. With Warehouse
Builder, you can create solutions using existing knowledge and a proven, open, and
standard technology.

All major relational database management systems support SQL and all programs
written in SQL can be moved from one database to another with very little
modification.

This means that all the SQL knowledge in your organization is fully portable to
Warehouse Builder. Warehouse Builder enables you to import and maintain any
existing complex custom code. You can later use these custom transformations in
Warehouse Builder mappings.

About Transformation Libraries

A transformation library consists of a set of reusable transformations. Each time you
create a repository, Warehouse Builder creates a Transformation Library containing

transformation operations for that project. This library contains the standard Oracle
Library and an additional library for each Oracle module defined within the project.

Types of Transformation Libraries

Transformation libraries are available under the Public Transformations node of the
Global Explorer in the Design Center. Figure 1-1 displays the Global Explorer with the
Public Transformations node expanded.

Introducing Oracle Warehouse Builder Transformations 1-3

About Transformation Libraries

Figure 1-1 Global Explorer with the Oracle Library

¥ Global Explorer

E}%ﬂ Public: Transformations
E‘?}' arr

>>_<‘] Functions

----r'"g Procedures

% Packages

E% Pre-Defined

[0 Administration

EH-(P Bioinformatics

BT Character

B Control_Certer

B Conwersion

-0 Date

(TP Mumeric

&

[

£

£

£

[

H-{ oLap

b ([P COther

(P svs

w0 Streams

(T TIMEDIMENSION
AR

Transformation libraries can be categorized as follows:
s Oracle Library

This is a collection of predefined functions from which you can define procedures
for your Global Shared Library. The Oracle Library is contained in the Global
Explorer. Expand the Pre-Defined node under the Public Transformation node.
Each category of predefined transformations is represented by a separate node as
shown in Figure 1-1. Expand the node for a category to view the predefined
transformations in that category. For example, expand the Character node to view
the predefined character transformations contained in the Oracle library.

= Global Shared Library

This is a collection of reusable transformations created by the user. These
transformations are categorized as functions, procedures, and packages defined
within your repository.

The transformations in the Global Shared Library are available under the Custom
node of the Public Transformations node as shown in Figure 1-1. Any
transformation that you create under this node is available across all projects in the
repository. For information on creating transformations in the global shared
library, see "Defining Custom Transformations" on page 1-5.

When you deploy a transformation defined in the Global Shared Library, the
transformation is deployed to the location that is associated with the default
control center.

Accessing Transformation Libraries

Since transformations can be used at different points in the ETL process, Warehouse
Builder enables you to access transformation libraries from different points in the
Design Center.

You can access the Transformation Libraries using the following:
= Expression Builder

While creating mappings, you may need to create expressions to transform your
source data. The Expression Builder interface enables you to create the expressions
required to transform data. Since these expressions can include transformations,
Warehouse Builder enables you to access transformation libraries from the
Expression Builder.

1-4 Oracle Warehouse Builder Transformation Guide

Defining Custom Transformations

Transformation libraries are available under the Transformations tab of the
Expression Builder as shown in Figure 1-2. The Private node under
TRANSFORMLIBS contains transformations that are available only in the current
project. These transformations are created under the Transformation node of the
Oracle module. The Public node contains the custom transformations from the
Global shared Library and the predefined transformations from the Oracle Library.

Figure 1-2 Transformation Libraries in the Expression Builder

H Expression Builder: Expression for EXPRESSION

Inputs | Transformations | Expression for EXPRESSION e
=M TRANSFORMLIES
B'%Priva{e

EHg Pubdic
-8 Custom
S}}E Pre-Defined

1

= Add Transformation Operator dialog

The Transformation operator in the Mapping Editor enables you to add
transformations, both from the Oracle library and the Global Shared Library, to a
mapping. You can use this operator to transform data as part of the mapping.

s Create Transformation Wizard

The Implementation page of the Create Transformation Wizard enables you to
specify the PL/SQL code that is part of the function or procedure body. You can
use transformations in the PL/SQL code.

Defining Custom Transformations

Custom transformations include procedures, functions, packages, and table functions.
Warehouse Builder provides wizards to create each type of custom transformation.
Custom transformations can belong to the Global Shared Library or to a particular
project.

Custom Transformations in the Global Shared Library

Custom transformations that are part of the Global Shared Library can be used across
all projects of the repository in which they are defined. For example, you create a
function called ADD_EMPL in the Global Shared Library of the repository REP_
OWNER. This procedure can be used across all the projects in REP_OWNER.

You use the Custom node of the Public Transformations node in the Global Explorer to
define custom transformations that can used across all projects in the repository.
Figure 1-1 displays the Global Explorer that you use to create such transformations.

To create a custom transformation in the Global Shared Library:

1. From the Global Explorer, expand the Public Transformations node and then the
Custom node.

Warehouse Builder displays the type of transformations that you can create. This
includes functions, procedures, and packages. Note that PL/SQL types can be
created only as part of a package.

Introducing Oracle Warehouse Builder Transformations 1-5

Defining Custom Transformations

2. Right-click the type of transformation you want to define and select New.
For example, to create a function, right-click Functions and select New.

3. For functions and procedures, Warehouse Builder displays the Welcome page of
the Create Function Wizard or the Create Procedure wizard respectively. Click
Next to proceed. See "Defining Functions and Procedures" on page 1-7 for more
information about the other pages in the wizard.

For packages, Warehouse Builder displays the Create Transformation Library
dialog. Provide a name and an optional description for the package and click OK.
The new package is added to the Packages node. You can subsequently create
procedures, functions, or PL/SQL types that belong to this package. For more
information about creating PL/SQL types, see "Defining PL/SQL Types" on

page 1-8.

Custom Transformations in a Project

Sometimes, you may need to define custom transformations that are required only in
the current module or project. In this case, you can define custom transformations in
an Oracle module of a project. Such custom transformations are accessible from all the
projects in the current repository. For example, consider the repository owner called
REP_OWNER that contains two projects PROJECT1 and PROJECT?2. In the Oracle
module called SALES of PROJECT1, you define a procedure called CALC_SAL. This
procedure can be used in all modules belonging to PROJECT1, but is not accessible in
PROJECT2.

Figure 1-3 displays the Project Explorer from which you can create custom
transformations that are accessible within the project in which they are defined.
Expand the Oracle module of the project in which you want to create a custom
transformation. Expand the Transformations node under the module. There is a node
for each type of custom transformation. Use these nodes to create your transformation.

Figure 1-3 Creating Custom Transformations in an Oracle Module

* Project Explorer
54 MY _PROJECT
-5 OB _DEMOD
E!P__ Databases
I:—]ré Oracle

[_@ Mappings
i % Real-Time Mappings

E}% Tranzformations

; ’_:'| Functions

--P_g Proce Mewy... Crl-N
: % Packag

AddRemove Experts Here

Impart....

----- {77 Data Aucit
E]"-% Dimensions
E]----EB Cubes

E]"--rﬁ Tahles

----- [:g External Tables

...... iewrs

----- IE Materialized Views
I:]----{-'z? Sequences
E]---G@ UzerDefinedTypes
-3, queues

F-4Eg XSALES

To define a custom transformation in an Oracle Module:

1. From the Project Explorer, expand the Oracle warehouse module node and then
the Transformations node.

1-6 Oracle Warehouse Builder Transformation Guide

Defining Custom Transformations

2. Right-click the type of transformation you want to create and select New. For
example, to create a package, right-click Packages and select New.

For functions or procedures, Warehouse Builder displays the Welcome page of the
Create Function Wizard or the Create Procedure Wizard respectively. Click Next to
proceed. See "Defining Functions and Procedures" on page 1-7 for information
about the remaining wizard pages.

For packages, Warehouse Builder opens the Create Transformation Library dialog.
Provide a name and an optional description for the package and click OK. The
package gets added under the Packages node. You can subsequently create
procedures, functions, or PL/SQL types that belong to this package. For more
information about creating PL/SQL types, see "Defining PL/SQL Types" on

page 1-8.

Defining Functions and Procedures

Use the following pages of the Create Function Wizard or Create Procedure Wizard to
define a function or procedure.

= Name and Description Page on page 1-7
»s Parameters Page on page 1-7
= Implementation Page on page 1-8

= Summary Page on page 1-8

Name and Description Page
You use the Name and Description page to describe the custom transformation.
Specify the following details on this page:

= Name: Represents the name of the custom transformation. For more information
about naming conventions, refer to the section titled "Naming Conventions for
Data Objects" in the chapter "Defining Oracle Data Objects" of the Oracle
Warehouse Builder User's Guide.

s Description: Represents the description of the custom transformation. This is an
optional field.

= Return Type: Represents the data type of the value returned by the function. You
select a return type from the available options in the drop-down list. This field is
applicable only for functions.

Parameters Page

Use the Parameters page to define the parameters, both input and output, of the
transformation. Specify the following details for each parameter:

= Name: Enter the name of the parameter.
s Type: Select the data type of the parameter from the drop-down list.

s I/O: Select the type of parameter. The options available are Input, Output, and
input/Output.

= Required: Select Yes to indicate that a parameter is mandatory and No to indicate
that it is not mandatory.

s Default Value: Enter the default value for the parameter. The default value is used
when you do not specify a value for the parameter at the time of executing the
function or procedure.

Introducing Oracle Warehouse Builder Transformations 1-7

Defining Custom Transformations

Implementation Page

Use the Implementation page to specify the implementation details, such as the code,
of the transformation. To specify the code used to implement the function or
procedure, click Code Editor. Warehouse Builder displays the Code Editor window of
the New Transformation wizard. This editor contains two panels. The upper panel
displays the code and the lower panel displays the function signature and messages.

When you create a function, the following additional options are displayed:

s Function is deterministic: This hint helps to avoid redundant function calls. If a
stored function was called previously with the same arguments, the previous
result can be used. The function result should not depend on the state of session
variables or schema objects. Otherwise, results might vary across calls. Only
DETERMINISTIC functions can be called from a function-based index or a
materialized view that has query-rewrite enabled.

= Enable function for parallel execution: This option declares that a stored function
can be used safely in the child sessions of parallel DML evaluations. The state of a
main (logon) session is never shared with child sessions. Each child session has its
own state, which is initialized when the session begins. The function result should
not depend on the state of session (static) variables. Otherwise, results might vary
across sessions.

= Pipelined: Select this option to create a pipelined table function. This option is
enabled only when you create a table function.

Summary Page

The Summary page provides a summary of the options that you chose on the previous
pages of the wizard. Click Finish to complete defining the function or procedure.
Warehouse Builder creates the function or procedure and displays it under the
corresponding folder under the Public Transformations and Custom nodes in the
Global Explorer.

Defining PL/SQL Types
Warehouse Builder enables you to create the following PL/SQL types:
= PL/SQL Record types
= Ref Cursor types
= Nested Table types
To create a PL/SQL Type, use the following steps:
1. From the Project Explorer, expand the Transformations node.

To create a PL/SQL type in the Global Shared Library, from the Global Explorer,
expand the Public Transformations node and then the Custom node.

2. Expand the package node under which you want to create the PL/SQL type.
3. Right-click PL/SQL Types and select New.

The Welcome page of the Create PL/SQL Type Wizard is displayed. Click Next to
proceed. The wizard guides you through the following pages:

= Name and Description Page
= Attributes Page
s Return Type Page

1-8 Oracle Warehouse Builder Transformation Guide

Defining Custom Transformations

= Summary Page

Name and Description Page

Use the Name and Description page to provide the name and an optional description
for the PL/SQL type. Also use this page to select the type of PL/SQL type you want to
create.

You can create any of the following PL/SQL types:
= PL/SQL Record Type

Select this option to create a PL/SQL record type. A record type is a composite
data structure whose attributes can have different data types. You can use a record
type to hold related items and pass them to subprograms as a single parameter.
For example, you can create an employee record whose attributes include
employee ID, first name, last name, date of joining, and department ID.

s Ref Cursor Type

Select this option to create a ref cursor. Ref cursors are like pointers to result sets.
The advantage with a ref cursor is that it is not tied to any particular query.

= Nested Table Type

Select this option to create a nested table. Nested tables represent sets of values.
They are similar to one-dimensional arrays with no declared number of elements.
Nested tables enable you to model multidimensional arrays by creating a nested
table whose elements are also tables.

After specifying the name and selecting the type of PL/SQL type object to create, click
Next.

Attributes Page

Use the Attributes page to define the attributes of the PL/SQL record type. You specify
attributes only for PL/SQL record types. A PL/SQL record must have at least one
attribute.

For each attribute, define the following:

= Name: The name of the attribute. The name should be unique within the record
type.
s Type: The data type of the attribute. Select the data type from the drop-down list.

s Length: The length of the data type, for character data types.

s Precision: The total number of digits allowed for the attribute, for numeric data
types.

= Scale: The total number of digits to the right of the decimal point, for numeric data
types.

= Seconds Precision: The number of digits in the fractional part of the datetime
field. It can be a number between 0 and 9. The Seconds Precision is used only for
TIMESTAMP data types.

Click Next to proceed to the next step.
Return Type Page

Use the Return Type page to select the return type of the PL/SQL type. You must
specify a return type when you create ref cursors and nested tables.

Introducing Oracle Warehouse Builder Transformations 1-9

Editing Transformation Properties

To define ref cursors:

The return type for a ref cursor can only be a PL/SQL record type. If you know the
name of the PL/SQL record type, you can search for it by typing the name in the
Search For field and clicking Go.

The area below the Search For field displays the available PL/SQL types. These
PL/SQL types are grouped under the two nodes: Public and Private. Expand the
Public node to view the PL/SQL types that are part of the Oracle shared library. The
types are grouped by package name. The Private node contains PL/SQL types that are
created as part of a package in an Oracle module. Only PL/SQL types that belong to
the current project are displayed. Each Oracle module is represented by a node. Within
the module, the PL/SQL types are grouped by the package to which they belong.

To define nested tables:

For nested tables, the return type can be a scalar data type or a PL/SQL record type.
Select one of the following options on this page based on what the PL/SQL type
returns:

= Select a scalar type as return type

This option enables you to create a PL/SQL type that returns a scalar type. Use the
drop-down list to select the data type.

= Select a PL/SQL record as return type

This option enables you to create a PL/SQL type that returns a PL/SQL record
type. If you know the name of the PL/SQL record type that is returned, type the
name in the Search For field and click Go. The results of the search are displayed
in the area below the option.

You can also select the return type from the list of available types displayed. The
area below this option contains two nodes: Public and Private. The Public node
contains PL/SQL record types that are part of the Oracle Shared Library. The
PL/SQL record types are grouped by the package to which they belong. The
Private node contains the PL/SQL record types created as transformations in each
Oracle module in the current project. These are grouped by module. Select the
PL/SQL record type that the PL/SQL type returns.

Click Next to proceed with the creation of the PL/SQL type.

Summary Page

The Summary page displays the options that you have chosen on the wizard pages.
Review the options. Click Back to modify any options. Click Finish to create the
PL/SQL type.

Editing Transformation Properties

You can edit the definition of a transformation using the editors. Make sure you edit
properties consistently. For example, if you change the name of a parameter, then you
must also change its name in the implementation code.

Editing Function or Procedure Definitions

The Edit Function dialog enables you to edit function definitions. To edit a procedure
definition, use the Edit Procedure dialog.

Use the following steps to edit functions or procedures:

1-10 Oracle Warehouse Builder Transformation Guide

Editing Transformation Properties

1. From the Project Explorer, expand the Oracle module in which the transformation
is created. Then expand the Transformations node.

To edit a transformation that is part of the Global Shared Library, from the Global
Explorer, expand the Public Transformations node, and then the Custom node.

2. Right-click the name of the function, procedure, or package you want to edit and
select Open Editor.

The Edit Function or Edit Procedure dialog is displayed. Use the following tabs to
edit the function or procedure definition:

= Name Tab on page 1-11
s Parameters Tab on page 1-11
s Implementation Tab on page 1-11

To edit a package, Warehouse Builder displays the Edit Transformation Library dialog.
You can only edit the name and description of the package. You can edit the functions
and procedures contained within the package using the steps used to edit functions or
packages.

Name Tab

Use the Name tab to edit the name and description of the function or procedure. For
functions, you can also edit the return data type.

Parameters Tab

Use the Parameters tab to edit, add, or delete new parameters for a function or
procedure. You can also edit and define the attributes of the parameters. The contents
of the Parameters tab are the same as that of the Parameters page of the Create
Transformation Wizard. For more information about the contents of this page, see
"Parameters Page" on page 1-7.

Implementation Tab

Use the Implementation tab to review the PL/SQL code for the function or procedure.
Click Code Editor to edit the code. The contents of the Implementation tab are the
same as that of the Implementation page of the Create Transformation Wizard. For
more information on the contents of the Implementation page, see "Implementation
Page" on page 1-8.

Editing PL/SQL Types

The Edit PL/SQL Type dialog enables you to edit the definition of a PL/SQL type. Use
the following steps to edit a PL/SQL type:

1. From the Project Explorer, expand the Oracle module that contains the PL/SQL
type. Then expand the Transformations node.

To edit a PL/SQL type stored in the Global Shared Library, expand the Public
Transformations node in the Global Explorer, and then the Custom node.

2. Expand the package that contains the PL/SQL type and then the PL/SQL Types
node.

3. Right-click the name of the PL/SQL type that you want to edit and select Open
Editor.

The Edit PL/SLQ Type dialog is displayed. Use the following tabs to edit the
PL/SQL type:

Introducing Oracle Warehouse Builder Transformations 1-11

Importing PL/SQL

s Name Tab
s Attributes Tab

s Return Type Tab

Name Tab

The Name tab displays the name and the description of the PL/SQL type. Use this tab
to edit the name or the description of the PL/SQL type.

To rename a PL/SQL type, select the name and enter the new name.

Attributes Tab

The Attributes tab displays details about the existing attributes of the PL/SQL record
type. This tab is displayed for PL/SQL record types only. You can modify existing
attributes, add new attributes, or delete attributes.

To add a new attribute, click the Name column of a blank row specify the details for
the attribute. To delete an attribute, right-click the gray cell to the left the row that
represents the attribute and select Delete.

Return Type Tab

Use the Return Type tab to modify the details of the return type of the PL/SQL type.
For a ref cursor, the return type must be a PL/SQL record. For a nested table, the
return type can be a PL/SQL record type or a scalar data type.

Importing PL/SQL

Use the Import Wizard to import PL/SQL functions, procedures, and packages into a
Warehouse Builder project.

The following steps describe how to import PL/SQL packages from other sources into
Warehouse Builder.

To import a PL/SQL function, procedure, or package:
1. From the Project Explorer, expand the project node and then Databases node.
2. Right-click an Oracle module node and select Import.
Warehouse Builder displays the Import Metadata Wizard Welcome page.
3. Click Next.

4. Select PL/SQL Transformation in the Object Type field of the Filter Information
page.

5. Click Next.
The Import Metadata Wizard displays the Object Selection page.

6. Select a function, procedure, or package from the Available Objects list. Move the
objects to the Selected Objects list by clicking the single arrow button to move a
single object or the double arrow button to move multiple objects.

7. Click Next.
The Import Metadata Wizard displays the Summary and Import page.
8. Verify the import information. Click Back to revise your selections.

9. Click Finish to import the selected PL/SQL transformations.

1-12 Oracle Warehouse Builder Transformation Guide

Importing PL/SQL

Warehouse Builder displays the Import Results page.

10. Click OK proceed with the import. Click Undo to cancel the import process.

The imported PL/SQL information appears under the Transformations node of the
Oracle node into which you imported the data.

When you use imported PL/SQL:

You can edit, save, and deploy the imported PL/SQL functions and procedures.
You cannot edit imported PL/SQL packages.

Wrapped PL/SQL objects are not readable.

Imported packages can be viewed and modified in the category property sheet.

You can edit the imported package body but not the imported package
specification.

Introducing Oracle Warehouse Builder Transformations 1-13

Importing PL/SQL

1-14 Oracle Warehouse Builder Transformation Guide

2

Transformations

As you design mappings and process flows, you may want to use specialized
transformations to transform data. This chapter describes all the predefined
transformations provided by Warehouse Builder.

This chapter contains the following topics, each of which details all the predefined
transformations in that category.

s Administrative Transformations on page 2-1
s Character Transformations on page 2-9

= Control Center Transformations on page 2-29
s Conversion Transformations on page 2-35

s Date Transformations on page 2-51

= Number Transformations on page 2-70

s OLAP Transformations on page 2-84

s Other Transformations on page 2-87

= Spatial Transformations on page 2-99

= Streams Transformations on page 2-101

s XML Transformations on page 2-102

Administrative Transformations

Administrative transformations provide pre-built functionality to perform actions that
are regularly performed in ETL processes. The main focus of these transformations is
in the DBA related areas or to improve performance. For example, it is common to
disable constraints when loading tables and then to re-enable them after loading has
completed.

The administrative transformations in Warehouse Builder are custom functions. The
Administrative transformation that Warehouse Builder provides are:

= WB_ABORT on page 2-2

= WB_COMPILE_PLSQL on page 2-2

= WB_DISABLE_ALL_CONSTRAINTS on page 2-2
= WB_DISABLE_ALL_TRIGGERS on page 2-3

= WB_DISABLE_CONSTRAINT on page 2-4

= WB_DISABLE_TRIGGER on page 2-5

Transformations 2-1

Administrative Transformations

WB_ABORT

= WB_ENABLE_ALL_CONSTRAINTS on page 2-6
= WB_ENABLE_ALL_TRIGGERS on page 2-6

= WB_ENABLE_CONSTRAINT on page 2-7

= WB_ENABLE_TRIGGER on page 2-8

= WB_TRUNCATE_TABLE on page 2-9

Syntax
WB_ABORT (p_code, p_message)

where p_codeis the abort code, and must be between -20000 and -29999; and p_
message is an abort message you specify.

Purpose

WB_ABORT enables you to abort the application from a Warehouse Builder component.
You can run it from a post mapping process or as a transformation within a mapping.

Example

Use this administration function to abort an application. You can use this function in a
post mapping process to abort deployment if there is an error in the mapping.

WB_COMPILE_PLSQL

Syntax
WB_COMPILE_PLSQL (p_name, p_type)

where p_name is the name of the object that is to be compiled; p_ type is the type of
object to be compiled. The legal types are:

' PACKAGE'
'PACKAGE BODY'
'PROCEDURE'
'FUNCTION'
'TRIGGER'

Purpose
This program unit compiles a stored object in the database.

Example

The following hypothetical example compiles the procedure called add_employee_
proc:

EXECUTE WB_COMPILE_PLSQL('ADD_EMPLOYEE_PROC', 'PROCEDURE') ;

WB_DISABLE_ALL_CONSTRAINTS

Syntax
WB_DISABLE_ALL_CONSTRAINTS (p_name)

2-2 Oracle Warehouse Builder Transformation Guide

Administrative Transformations

where p_name is the name of the table on which constraints are disabled.

Purpose

This program unit disables all constraints that are owned by the table as stated in the
call to the program.

For faster loading of data sets, you can disable constraints on a table. The data is now
loaded without validation. This is mainly done on relatively clean data sets.

Example

The following example shows the disabling of the constraints on the table
OE.CUSTOMERS:

SELECT constraint_name

, DECODE (constraint_type, 'C', 'Check', 'P', 'Primary') Type
, status

FROM user_constraints

WHERE table_name = 'CUSTOMERS';

CONSTRAINT_NAME TYPE STATUS

CUST_FNAME_NN Check ENABLED
CUST_LNAME_NN Check ENABLED
CUSTOMER_CREDIT_LIMIT_ MAX Check ENABLED
CUSTOMER_ID_MIN Check ENABLED
CUSTOMERS_PK Primary ENABLED

Perform the following in SQL*Plus or Warehouse Builder to disable all constraints:

EXECUTE WB_DISABLE_ALL_CONSTRAINTS ('CUSTOMERS') ;

CONSTRAINT_NAME TYPE STATUS

CUST_FNAME_NN Check DISABLED
CUST_LNAME_NN Check DISABLED
CUSTOMER_CREDIT_LIMIT_MAX Check DISABLED
CUSTOMER_ID_MIN Check DISABLED
CUSTOMERS_PK Primary DISABLED

Note: This statement uses a cascade option to allow dependencies
to be broken by disabling the keys.

WB_DISABLE_ALL_TRIGGERS

Syntax
WB_DISABLE_ALL_TRIGGERS (p_name)

where p_name is the table name on which the triggers are disabled.

Purpose

This program unit disables all triggers owned by the table as stated in the call to the
program. The owner of the table must be the current user (in variable USER). This
action stops triggers and improves performance.

Transformations 2-3

Administrative Transformations

Example

The following example shows the disabling of all triggers on the table OE.0C_
ORDERS:

SELECT trigger_name

, status

FROM user_triggers

WHERE table_name = 'OC_ORDERS';

TRIGGER_NAME STATUS
ORDERS_TRG ENABLED
ORDERS_ITEMS_TRG ENABLED

Perform the following in SQL*Plus or Warehouse Builder to disable all triggers on the
table OC_ORDERS.

EXECUTE WB_DISABLE_ALL_TRIGGERS ('OC_ORDERS') ;

TRIGGER_NAME STATUS
ORDERS_TRG DISABLED
ORDERS_ITEMS_TRG DISABLED

WB_DISABLE_CONSTRAINT

Syntax
WB_DISABLE_CONSTRAINT (p_constraintname, p_tablename)

where p_constraintname is the constraint name to be disabled; p_ tablenameis
the table name on which the specified constraint is defined.

Purpose
This program unit disables the specified constraint that is owned by the table as stated
in the call to the program. The user is the current user (in variable USER).

For faster loading of data sets, you can disable constraints on a table. The data is then
loaded without validation. This reduces overhead and is mainly done on relatively
clean data sets.

Example
The following example shows the disabling of the specified constraint on the table
OE.CUSTOMERS:

SELECT constraint_name
, DECODE (constraint_type

, 'C', 'Check'

, '"P', 'Primary’
) Type

, status

FROM user_constraints
WHERE table_name = 'CUSTOMERS';

CONSTRAINT_NAME TYPE STATUS
CUST_FNAME_NN Check ENABLED
CUST_LNAME_NN Check ENABLED

2-4 Oracle Warehouse Builder Transformation Guide

Administrative Transformations

CUSTOMER_CREDIT_LIMIT_MAX Check ENABLED
CUSTOMER_ID_MIN Check ENABLED
CUSTOMERS_PK Primary ENABLED

Perform the following in SQL*Plus or Warehouse Builder to disable the specified
constraint.

EXECUTE WB_DISABLE_CONSTRAINT ('CUSTOMERS_PK', 'CUSTOMERS') ;

CONSTRAINT_NAME TYPE STATUS
CUST_FNAME_NN Check ENABLED
CUST_LNAME_NN Check ENABLED
CUSTOMER_CREDIT_LIMIT_ MAX Check ENABLED
CUSTOMER_ID_MIN Check ENABLED
CUSTOMERS_PK Primary DISABLED

Note: This statement uses a cascade option to allow dependencies to
be broken by disabling the keys.

WB_DISABLE_TRIGGER

Syntax
WB_DISABLE_TRIGGER (p_name)

where p_name is the trigger name to be disabled.

Purpose

This program unit disables the specified trigger. The owner of the trigger must be the
current user (in variable USER).

Example
The following example shows the disabling of a trigger on the table OE . OC_ORDERS:
SELECT trigger_name, status

FROM user_triggers
WHERE table_name = 'OC_ORDERS';

TRIGGER_NAME STATUS
ORDERS_TRG ENABLED
ORDERS_ITEMS_TRG ENABLED

Perform the following in SQL*Plus or Warehouse Builder to disable the specified
constraint.

ECECUTE WB_DISABLE_TRIGGER ('ORDERS_TRG');

TRIGGER_NAME STATUS
ORDERS_TRG DISABLED
ORDERS_ITEMS_TRG ENABLED

Transformations 2-5

Administrative Transformations

WB_ENABLE_ALL_CONSTRAINTS

Syntax
WB_ENABLE_ALL_CONSTRAINTS (p_name)

where p_name is the name of the table for which all constraints should be enabled.

Purpose
This program unit enables all constraints that are owned by the table as stated in the
call to the program.

For faster loading of data sets, you can disable constraints on a table. After the data is
loaded, you must enable these constraints again using this program unit.

Example
The following example shows the enabling of the constraints on the table
OE.CUSTOMERS:

SELECT constraint_name
, DECODE (constraint_type

, 'C', 'Check'

, '"P', 'Primary)
Type

, status

FROM user_constraints
WHERE table_name = 'CUSTOMERS';

CONSTRAINT_NAME TYPE STATUS

CUST_FNAME_NN Check DISABLED
CUST_LNAME_NN Check DISABLED
CUSTOMER_CREDIT_LIMIT MAX Check DISABLED
CUSTOMER_ID_MIN Check DISABLED
CUSTOMERS_PK Primary DISABLED

Perform the following in SQL*Plus or Warehouse Builder to enable all constraints.

EXECUTE WB_ENABLE_ALL_CONSTRAINTS ('CUSTOMERS') ;

CONSTRAINT_NAME TYPE STATUS

CUST_FNAME_NN Check ENABLED
CUST_LNAME_NN Check ENABLED
CUSTOMER_CREDIT_LIMIT_MAX Check ENABLED
CUSTOMER_ID_MIN Check ENABLED
CUSTOMERS_PK Primary ENABLED

WB_ENABLE_ALL_TRIGGERS

Syntax
WB_ENABLE_ALL_TRIGGERS (p_name)

where p_name is the table name on which the triggers are enabled.

2-6 Oracle Warehouse Builder Transformation Guide

Administrative Transformations

Purpose

This program unit enables all triggers owned by the table as stated in the call to the
program. The owner of the table must be the current user (in variable USER).

Example
The following example shows the enabling of all triggers on the table OE. OC_ORDERS:

SELECT trigger_name

, status

FROM user_triggers

WHERE table_name = 'OC_ORDERS';

TRIGGER_NAME STATUS
ORDERS_TRG DISABLED
ORDERS_ITEMS_TRG DISABLED

Perform the following in SQL*Plus or Warehouse Builder to enable all triggers defined
on the table OE.OC_ORDERS.

EXECUTE WB_ENABLE_ALL_TRIGGERS ('OC_ORDERS');

TRIGGER_NAME STATUS
ORDERS_TRG ENABLED
ORDERS_ITEMS_TRG ENABLED

WB_ENABLE_CONSTRAINT

Syntax
WB_ENABLE_CONSTRAINT (p_constraintname, p_tablename)

where p_constraintname is the constraint name to be disabled and p_tablename
is the table name on which the specified constraint is defined.

Purpose

This program unit enables the specified constraint that is owned by the table as stated
in the call to the program. The user is the current user (in variable USER). For faster
loading of data sets, you can disable constraints on a table. After the loading is
complete, you must re-enable these constraints. This program unit shows you how to
enable the constraints one at a time.

Example

The following example shows the enabling of the specified constraint on the table
OE.CUSTOMERS:

SELECT constraint_name
, DECODE (constraint_type

, 'C', 'Check’
, 'P', 'Primary’
) Type

, status

FROM user_constraints
WHERE table_name = 'CUSTOMERS';

Transformations 2-7

Administrative Transformations

CONSTRAINT_NAME TYPE STATUS

CUST_FNAME_NN Check DISABLED
CUST_LNAME_NN Check DISABLED
CUSTOMER_CREDIT_LIMIT_ MAX Check DISABLED
CUSTOMER_ID_MIN Check DISABLED
CUSTOMERS_PK Primary DISABLED

Perform the following in SQL*Plus or Warehouse Builder to enable the specified
constraint.

EXECUTE WB_ENABLE_CONSTRAINT ('CUSTOMERS_PK', 'CUSTOMERS');

CONSTRAINT_NAME TYPE STATUS
CUST_FNAME_NN Check DISABLED
CUST_LNAME_NN Check DISABLED
CUSTOMER_CREDIT_LIMIT_MAX Check DISABLED
CUSTOMER_ID_MIN Check DISABLED
CUSTOMERS_PK Primary ENABLED

WB_ENABLE_TRIGGER

Syntax
WB_ENABLE_TRIGGER (p_name)

where p_name is the trigger name to be enabled.

Purpose

This program unit enables the specified trigger. The owner of the trigger must be the
current user (in variable USER).

Example
The following example shows the enabling of a trigger on the table OE. OC_ORDERS:

SELECT trigger_name

, status

FROM user_triggers

WHERE table_name = 'OC_ORDERS';

TRIGGER_NAME STATUS
ORDERS_TRG DISABLED
ORDERS_ITEMS_TRG ENABLED

Perform the following in SQL*Plus or Warehouse Builder to enable the specified
constraint.

EXECUTE WB_ENABLE_TRIGGER ('ORDERS_TRG');

TRIGGER_NAME STATUS
ORDERS_TRG ENABLED
ORDERS_ITEMS_TRG ENABLED

2-8 Oracle Warehouse Builder Transformation Guide

Character Transformations

WB_TRUNCATE_TABLE

Syntax
WB_TRUNCATE_TABLE (p_name)

where p_name is the table name to be truncated.

Purpose

This program unit truncates the table specified in the command call. The owner of the
trigger must be the current user (in variable USER). The command disables and
re-enables all referencing constraints to enable the truncate table command. Use this
command in a pre-mapping process to explicitly truncate a staging table and ensure
that all data in this staging table is newly loaded data.

Example
The following example shows the truncation of the table OE . OC_ORDERS:

SELECT COUNT(*) FROM oc_orders;

Perform the following in SQL*Plus or Warehouse Builder to enable the specified
constraint.

EXECUTE WB_TRUNCATE_TABLE ('OC_ORDERS') ;

Character Transformations

Character transformations enable Warehouse Builder users to perform transformations
on Character objects. The custom functions provided with Warehouse Builder are
prefixed with WB_.

The character transformations available in Warehouse Builder are:
= ASCII on page 2-10

= CHR on page 2-10

= CONCAT on page 2-11

= INITCAP on page 2-12

= INSTR, INSTR2, INSTR4, INSTRB, INSTRC on page 2-12

= LENGTH, LENGTH2, LENGTH4, LENGTHB, LENGTHC on page 2-13
= LOWER on page 2-14

= LPAD on page 2-14

= LTRIM on page 2-15

= NLSSORT on page 2-15

= NLS_INITCAP on page 2-16

Transformations 2-9

Character Transformations

ASCII

CHR

= NLS_LOWER on page 2-16

= NLS_UPPER on page 2-17

= REPLACE on page 2-17

= REGEXP_INSTR on page 2-18

s REGEXP_REPLACE on page 2-20

= REGEXP_SUBSTR on page 2-22

= RPAD on page 2-23

= RTRIM on page 2-24

= SOUNDEX on page 2-24

= SUBSTR, SUBSTR2, SUBSTR4, SUBSTRB, SUBSTRC on page 2-25
= TRANSLATE on page 2-26

= TRIM on page 2-27

= UPPER on page 2-27

= WB_LOOKUP_CHAR (number) on page 2-28
= WB_LOOKUP_CHAR (varchar2) on page 2-28
= WB_IS_SPACE on page 2-29

Syntax
ascii::=ASCII (attribute)

Purpose

ASCII returns the decimal representation in the database character set of the first
character of attribute. Anattribute can be of data type CHAR, VARCHAR?,
NCHAR, or NVARCHAR?. The value returned is of data type NUMBER. If your
database character set is 7-bit ASCII, this function returns an ASCII value. If your
database character set is EBCDIC Code, this function returns an EBCDIC value. There
is no corresponding EBCDIC character function.

Example
The following example returns the ASCII decimal equivalent of the letter Q:

SELECT ASCII('Q') FROM DUAL;
ASCII('Q")

Syntax
chr::=CHR (attribute)

2-10 Oracle Warehouse Builder Transformation Guide

Character Transformations

CONCAT

Purpose

CHR returns the character with the binary equivalent to the number specified in the
attribute in either the database character set or the national character set.

If USING NCHAR_CS is not specified, this function returns the character with the
binary equivalent to attribute as a VARCHAR? value in the database character set.
If USING NCHAR_CS is specified in the expression builder, this function returns the
character with the binary equivalent to attribute as a NVARCHAR?2 value in the
national character set.

Examples

The following example is run on an ASCII-based machine with the database character
set defined as WE8ISO8859P1:

SELECT CHR(67) | |CHR(65) | |CHR(84) "Dog"
FROM DUAL;

Dog

CAT

To produce the same results on an EBCDIC-based machine with the WESEBCDIC1047
character set, modify the preceding example as follows:

SELECT CHR(195) | |CHR(193)||CHR(227) "Dog"
FROM DUAL;

Dog

CAT

The following example uses the UTF8 character set:

SELECT CHR (50052 USING NCHAR_CS)
FROM DUAL;
CH

i

Syntax
concat::=CONCAT (attributel, attribute2)

Purpose

CONCAT returns attributel concatenated with attribute2. Both attributel
and attribute2 can be CHAR or VARCHAR?2 data types. The returned string is of
VARCHAR? data type contained in the same character set as attributel. This
function is equivalent to the concatenation operator (| |).

Example
This example uses nesting to concatenate three character strings:

SELECT CONCAT (CONCAT (last_name, '''s job category is '), job_id) "Job"
FROM employees
WHERE employee_id = 152;

Transformations 2-11

Character Transformations

INITCAP

Hall's job category is SA_REP

Syntax
initcap::=INITCAP(attribute)

Purpose

INITCAP returns the content of the at tribute with the first letter of each word in
uppercase and all other letters in lowercase. Words are delimited by white space or by
characters that are not alphanumeric. Attribute can be of the data types CHAR or
VARCHAR?. The return value is the same data type as attribute.

Example
The following example capitalizes each word in the string;:

SELECT INITCAP('the soap') "Capitals" FROM DUAL;

Capitals

The Soap

INSTR, INSTR2, INSTR4, INSTRB, INSTRC

Syntax

instr::=INSTR (attributel, attribute2, n, m)
instr2::=INSTR2 (attributel, attribute2, n, m)
instrd::=INSTR4 (attributel, attribute2, n, m)
instrb::=INSTRB(attributel, attribute2, n, m)
instrc::=INSTRC (attributel, attribute2, n, m)

Purpose

INSTR searches at tributel beginning with its nth character for the mth occurrence
of attribute2. It returns the position of the character in attributel that is the first
character of this occurrence. INSTRB uses bytes instead of characters. INSTRC uses
Unicode complete characters. INSTR2 UCS2 code points. INSTR4 uses UCS4 code
points.

If n is negative, Oracle counts and searches backward from the end of attributel.
The value of m must be positive. The default values of both n and m are 1, which means
that Oracle begins searching the first character of attributel for the first occurrence
of attribute2. The return value is relative to the beginning of attributel,
regardless of the value of n, and is expressed in characters. If the search is unsuccessful
(if attribute2 does not appear m times after the nth character of attributel), then
the return value is 0.

Examples

The following example searches the string "CORPORATE FLOOR", beginning with the
third character, for the string "OR". It returns the position in CORPORATE FLOOR at
which the second occurrence of "OR" begins:

2-12 Oracle Warehouse Builder Transformation Guide

Character Transformations

SELECT INSTR('CORPORATE FLOOR','OR', 3, 2) "Instring"
FROM DUAL;

Instring

The next example begins searching at the third character from the end:

SELECT INSTR('CORPORATE FLOOR', 'OR', -3, 2) "Reversed Instring"
FROM DUAL;

Reversed Instring

This example assumes a double-byte database character set.

SELECT INSTRB('CORPORATE FLOOR', 'OR',5,2) "Instring in bytes"
FROM DUAL;

Instring in bytes

LENGTH, LENGTH2, LENGTH4, LENGTHB, LENGTHC

Syntax

length: :=LENGTH (attribute)
length2::=LENGTH2 (attribute
length4: :=LENGTH4 (attribute
lengthb: : =LENGTHB (attribute
lengthC: :=LENGTHC (attribute

)

)

)

)

Purpose

The length functions return the length of attribute, which can be of the data types
CHAR or VARCHAR2. LENGTH calculates the length using characters as defined by the
input character set. LENGTHB uses bytes instead of characters. LENGTHC uses Unicode
complete characters. LENGTH2 uses UCS2 code points. LENGTH4 uses US4 code points.
The return value is of data type NUMBER. If at tribute has data type CHAR, the

length includes all trailing blanks. If at tribute contains a null value, this function
returns null.

Example

The following examples use the LENGTH function using single- and multibyte database
character set.

SELECT LENGTH ('CANDIDE') "Length in characters"
FROM DUAL;

Length in characters

This example assumes a double-byte database character set.

Transformations 2-13

Character Transformations

LOWER

LPAD

SELECT LENGTHB ('CANDIDE') "Length in bytes"
FROM DUAL;

Length in bytes

Syntax
lower: :=LOWER (attribute)

Purpose

LOWER returns at tribute, with all letters in lowercase. The attribute can be of the
data types CHAR and VARCHAR?2. The return value is the same data type as that of
attribute.

Example

The following example returns a string in lowercase:

SELECT LOWER('MR. SCOTT MCMILLAN') "Lowercase"
FROM DUAL;

Lowercase

mr. scott mcmillan

Syntax
lpad: :=LPAD(attributel, n, attribute2)

Purpose

LPAD returns attributel, left-padded to length n with the sequence of characters in
attribute2. Attribute2 defaults to a single blank. If at tributel is longer than
n, this function returns the portion of attributel that fits in n.

Both attributel and attribute2 can be of the data types CHAR and VARCHAR2.
The string returned is of VARCHAR? data type and is in the same character set as
attributel. The argument n is the total length of the return value as it is displayed
on your screen. In most character sets, this is also the number of characters in the
return value. However, in some multibyte character sets, the display length of a
character string can differ from the number of characters in the string.

Example
The following example left-pads a string with the characters "*.":
SELECT LPAD('Page 1',15,'*.') "LPAD example"

FROM DUAL;

LPAD example

* K ,x % *Page 1

2-14 Oracle Warehouse Builder Transformation Guide

Character Transformations

LTRIM

NLSSORT

Syntax
ltrim: :=LTRIM (attribute, set)

Purpose

LTRIM removes characters from the left of attribute, with all the left most
characters that appear in set removed. Set defaults to a single blank. If attribute
is a character literal, you must enclose it in single quotes. Warehouse Builder begins
scanning at tribute from its first character and removes all characters that appear in
set until it reaches a character absent in set. Then it returns the result.

Both attribute and set can be any of the data types CHAR and VARCHAR?2. The
string returned is of VARCHAR? data type and is in the same character set as
attribute.

Example
The following example trims all of the left-most x's and y's from a string:

SELECT LTRIM('xyxXxyLAST WORD', 'xy') "LTRIM example"
FROM DUAL;

LTRIM example

XxyLAST WORD

Syntax
nlssort::=NLSSORT (attribute, nlsparam)

Purpose

NLSSORT returns the string of bytes used to sort attribute. The parameter
attribute is of type VARCHAR2. Use this function to compare based on a linguistic
sort of sequence rather than on the binary value of a string.

The value of nlsparam can have the form 'NLS_SORT = sort' where sortis a
linguistic sort sequence or BINARY. If you omit nlsparam, this function uses the
default sort sequence for your session.

Example
The following example creates a table containing two values and shows how the
values returned can be ordered by the NLSSORT function:

CREATE TABLE test (name VARCHAR2(15));
INSERT INTO TEST VALUES ('Gaardiner');
INSERT INTO TEST VALUES ('Gaberd');

SELECT * FROM test ORDER BY name;

Gaardiner
Gaberd

Transformations 2-15

Character Transformations

SELECT *
FROM test
ORDER BY NLSSORT (name, 'NLSSORT = XDanish');

Gaberd
Gaardiner

NLS_INITCAP

Syntax
nls_initcap::=NLS_INITCAP(attribute, nlsparam)

Purpose

NLS_INITCAP returns attribute, with the first letter of each word in uppercase, all
other letters in lowercase. Words are delimited by white space or characters that are
not alphanumeric.

The value of nlsparam can have the form 'NLS_SORT = sort', where sort is either
a linguistic sort sequence or BINARY. The linguistic sort sequence handles special
linguistic requirements for case conversions. These requirements can result in a return
value of a different length than the char. If you omit ‘nlsparam’, this function uses the
default sort sequence for your session.

Example
The following examples show how the linguistic sort sequence results in a different
return value from the function:

SELECT NLS_INITCAP('ijsland') "InitCap"
FROM dual;

Ijsland

SELECT NLS_INITCAP('ijsland', 'NLS_SORT=XDutch) "InitCap"
FROM dual;

Idsland

NLS_LOWER

Syntax
nls_lower: :=NLS_LOWER (attribute, nlsparam)

Purpose

NLS_LOWER returns attribute, with all letters lowercase. Both attribute and
nlsparam can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR?,
CLOB, or NCLOB. The string returned is of data type VARCHAR?2 and is in the same
character set as attribute. The value of nlsparam can have the form 'NLS_SORT

= sort', where sort is either a linguistic sort sequence or BINARY.

2-16 Oracle Warehouse Builder Transformation Guide

Character Transformations

NLS_UPPER

REPLACE

Example
The following example returns the character string 'citta' ' using the XGerman
linguistic sort sequence:

SELECT NLS_LOWER('CITTA''', 'NLS_SORT=XGerman) "Lowercase"
FROM DUAL;

Lowercase

Syntax
nls_upper::=NLS_UPPER (attribute, nlsparam)

Purpose

NLS_UPPER returns attribute, with all letters uppercase. Both attribute and
nlsparam can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB,
or NCLOB. The string returned is of VARCHAR?2 data type and is in the same character
set as attribute. The value of nlsparam can have the form 'NLS_SORT = sort',
where sort is either a linguistic sort sequence or BINARY.

Example
The following example returns a string with all letters converted to uppercase:

SELECT NLS_UPPER ('grofRe') "Uppercase"
FROM DUAL;

Uppercase

SELECT NLS_UPPER('grofRe', 'NLS_SORT=XGerman) "Uppercase"
FROM DUAL;

Uppercase

GROSSE

Syntax

replace: :=REPLACE (attribute, 'search_string', 'replacement_string')

Purpose

REPLACE returns an at tribute with every occurrence of search_string replaced
with replacement_string. If replacement_string is omitted or null, all
occurrences of search_string are removed. If search_stringisnull, attribute
is returned.

Transformations 2-17

Character Transformations

Both search_stringand replacement_string, as well as attribute, can be of
the data types CHAR or VARCHAR?2. The string returned is of VARCHAR?2 data type
and is in the same character set as attribute.

This function provides a superset of the functionality provided by the TRANSLATE
function. TRANSLATE provides single-character, one-to-one substitution. REPLACE
enables you to substitute one string for another, as well as to remove character strings.

Example
The following example replaces occurrences of "J" with "BL":

SELECT REPLACE('JACK and JUE','J','BL') "Changes"
FROM DUAL;

Changes

BLACK and BLUE

REGEXP_INSTR

Syntax

regexp_instr:=REGEXP_INSTR (source_string, pattern, position, occurance,
return_option, match_parameter)

Purpose

REGEXP_INSTR extends the functionality of the INSTR function by letting you search
a string for a regular expression pattern. The function evaluates strings using
characters as defined by the input character set. It returns an integer indicating the
beginning or ending position of the matched substring, depending on the value of the
return_option argument. If no match is found, the function returns 0.

This function complies with the POSIX regular expression standard and the Unicode
Regular Expression Guidelines.

s source_string is a character expression that serves as the search value. It is
commonly a character column and can be of any of the datatypes CHAR,
VARCHAR?2, NCHAR, NVARCHAR?2, CLOB, or NCLOB.

= patternis the regular expression. It is usually a text literal and can be of any of
the datatypes CHAR, VARCHAR2, NCHAR, or NVARCHAR?. It can contain up
to 512 bytes. If the datatype of pattern is different from the datatype of source_
string, Oracle Database converts pattern to the datatype of source_ string. For a
listing of the operators you can specify in pattern, please refer to Appendix C,
"Oracle Regular Expression Support".

= positionis a positive integer indicating the character of source_string where
Oracle should begin the search. The default is 1, meaning that Oracle begins the
search at the first character of source_string.

» occurrence is a positive integer indicating which occurrence of pattern in
source_string Oracle should search for. The default is 1, meaning that Oracle
searches for the first occurrence of pattern.

s return_option lets you specify what Oracle should return in relation to the
occurrence:

2-18 Oracle Warehouse Builder Transformation Guide

Character Transformations

- If you specify 0, then Oracle returns the position of the first character of the
occurrence. This is the default.

- If you specify 1, then Oracle returns the position of the character following the
occurrence.

» match parameter is a text literal that lets you change the default matching
behavior of the function. You can specify one or more of the following values for
match_parameter:

- i’ specifies case-insensitive matching.
- 'c' specifies case-sensitive matching.

- 'n' allows the period (.), which is the match-any-character character, to match
the newline character. If you omit this parameter, the period does not match
the newline character.

- 'm' treats the source string as multiple lines. Oracle interprets ~ and $ as the
start and end, respectively, of any line anywhere in the source string, rather
than only at the start or end of the entire source string. If you omit this
parameter, Oracle treats the source string as a single line.

If you specify multiple contradictory values, Oracle uses the last value. For
example, if you specify 'ic, then Oracle uses case-sensitive matching. If you specify
a character other than those shown above, then Oracle returns an error.

If you omit match_parameter, then:

— The default case sensitivity is determined by the value of the NLS_SORT
parameter.

— A period (.) does not match the newline character.

— The source string is treated as a single line.

Example

The following example examines the string, looking for occurrences of one or more
non-blank characters. Oracle begins searching at the first character in the string and
returns the starting position (default) of the sixth occurrence of one or more non-blank
characters.

SELECT
REGEXP_INSTR('500 Oracle Parkway, Redwood Shores, CA', '[~]+', 1, 6) FROM
DUAL;

REGEXP_INSTR

The following example examines the string, looking for occurrences of words
beginning with s, 1, or p, regardless of case, followed by any six alphabetic characters.
Oracle begins searching at the third character in the string and returns the position in
the string of the character following the second occurrence of a seven letter word
beginning with s, 1, or p, regardless of case.

SELECT
REGEXP_INSTR('500 Oracle Parkway, Redwood Shores, CA',
"[s|r|p]ll[:alpha:]1{6}', 3, 2, 1, 'i")
FROM DUAL;

REGEXP_INSTR

Transformations 2-19

Character Transformations

28

REGEXP_REPLACE

Syntax

regexp_replace:=REGEXP_REPLACE (source_string, pattern, replace_string,
position, occurance, match_parameter)

Purpose

REGEXP_REPLACE extends the functionality of the REPLACE function by letting you
search a string for a regular expression pattern. By default, the function returns
source_string with every occurrence of the regular expression pattern replaced with
replace_string. The string returned is n the same character set as source_ string.
The function returns VARCHAR? if the first argument is not a LOB and returns CLOB
if the first argument is a LOB.

This function complies with the POSIX regular expression standard and the Unicode
Regular Expression Guidelines.

s source_string is a character expression that serves as the search value. It is
commonly a character column and can be of any of the datatypes CHAR,
VARCHAR2, NCHAR, NVARCHAR?2, CLOB or NCLOB.

= patternis the regular expression. It is usually a text literal and can be of any of
the datatypes CHAR, VARCHAR2, NCHAR, or NVARCHAR?. It can contain up
to 512 bytes. If the datatype of pattern is different from the datatype of source_
string, Oracle Database converts pattern to the datatype of source_ string.

s replace_string can be of any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR?2, CLOB, or NCLOB. If replace_string is a CLOB or NCLOB, then
Oracle truncates replace_string to 32K. The replace_string can contain up to 500
backreferences to subexpressions in the form \n, where n is a number from 1 to 9.
If n is the blackslash character in replace_string, then you must precede it with the
escape character (\\).

= positionis a positive integer indicating the character of source_string where
Oracle should begin the search. The default is 1, meaning that Oracle begins the
search at the first character of source_string.

= occurrence is a nonnegative integer indicating the occurrence of the replace
operation:

- If you specify 0, then Oracle replaces all occurrences of the match.
- If you specify a positive integer n, then Oracle replaces the nth occurrence.

s match_parameter is a text literal that lets you change the default matching
behavior of the function. This argument affects only the matching process and has
no effect on replace_string. You can specify one or more of the following
values for match_parameter:

- i’ specifies case-insensitive matching.
- 'c' specifies case-sensitive matching.

- 'n' allows the period (.), which is the match-any-character character, to match
the newline character. If you omit this parameter, the period does not match
the newline character.

2-20 Oracle Warehouse Builder Transformation Guide

Character Transformations

- 'm' treats the source string as multiple lines. Oracle interprets ~ and $ as the
start and end, respectively, of any line anywhere in the source string, rather
than only at the start or end of the entire source string. If you omit this
parameter, Oracle treats the source string as a single line.

If you specify multiple contradictory values, Oracle uses the last value. For
example, if you specify 'ic', then Oracle uses case-sensitive matching. If you specify
a character other than those shown above, then Oracle returns an error. If you omit
match_parameter, then:

— The default case sensitivity is determined by the value of the NLS_SORT
parameter.

— A period (.) does not match the newline character.

— The source string is treated as a single line.

Example

The following example examines phone_number, looking for the pattern
xxx . xxx.xxxx. Oracle reformats this pattern with (xxx) xxx-xxxx.

SELECT
REGEXP_REPLACE (phone_number,
C([[:digit: 11 {3)\. ([[:digit:]11{3})\. ([[:digit:]]{4})",
"(\1) \2-\3")

FROM employees;

REGEXP_REPLACE

(515) 123-4567
(515) 123-4568
(515) 123-4569
(590) 423-4567

The following example examines country_name. Oracle puts a space after each
non-null character in the string.

SELECT
REGEXP_REPLACE (country_name, '(.)', '\l ') "REGEXP_REPLACE"
FROM countries;

REGEXP_REPLACE

Argentina
Australia
Belgium
Brazil
Canada

The following example examines the string, looking for two or more spaces. Oracle
replaces each occurrence of two or more spaces with a single space.

SELECT
REGEXP_REPLACE('500 Oracle Parkway, Redwood Shores, CA','(){2,}', ' ')
FROM DUAL;

REGEXP_REPLACE

500 Oracle Parkway, Redwood Shores, CA

Transformations 2-21

Character Transformations

REGEXP_SUBSTR

Syntax

regexp_substr :=REGEXP_SUBSTR (source_string, pattern, position,
occurance, match_parameter)

Purpose

REGEXP_SUBSTR extends the functionality of the SUBSTR function by letting you
search a string for a regular expression pattern. It is also similar to REGEXP_INSTR,
but instead of returning the position of the substring, it returns the substring itself.
This function is useful if you need the contents of a match string but not its position in
the source string. The function returns the string as VARCHAR?2 or CLOB data in the
same character set as source_string.

This function complies with the POSIX regular expression standard and the Unicode
Regular Expression Guidelines.

s source_string is a character expression that serves as the search value. It is
commonly a character column and can be of any of the datatypes CHAR,
VARCHAR2, NCHAR, NVARCHAR?2, CLOB or NCLOB.

= patternis the regular expression. It is usually a text literal and can be of any of
the datatypes CHAR, VARCHAR2, NCHAR, or NVARCHAR?. It can contain up
to 512 bytes. If the datatype of pattern is different from the datatype of source_
string, Oracle Database converts pattern to the datatype of source_ string.

s replace_string can be of any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR?2, CLOB, or NCLOB. If replace_string is a CLOB or NCLOB, then
Oracle truncates replace_string to 32K. The replace_string can contain up to 500
backreferences to subexpressions in the form \n, where n is a number from 1 to 9.
If n is the blackslash character in replace_string, then you must precede it with the
escape character (\\).

= positionis a positive integer indicating the character of source_string where
Oracle should begin the search. The default is 1, meaning that Oracle begins the
search at the first character of source_string.

= occurrence is a nonnegative integer indicating the occurrence of the replace
operation:

- If you specify 0, then Oracle replaces all occurrences of the match.
- If you specify a positive integer n, then Oracle replaces the nth occurrence.

» match parameter is a text literal that lets you change the default matching
behavior of the function. This argument affects only the matching process and has
no effect on replace_string. You can specify one or more of the following values for
match_parameter:

- i’ specifies case-insensitive matching.
- 'c' specifies case-sensitive matching.

- 'n' allows the period (.), which is the match-any-character character, to match
the newline character. If you omit this parameter, the period does not match
the newline character.

2-22 Oracle Warehouse Builder Transformation Guide

Character Transformations

RPAD

- 'm' treats the source string as multiple lines. Oracle interprets ~ and $ as the
start and end, respectively, of any line anywhere in the source string, rather
than only at the start or end of the entire source string. If you omit this
parameter, Oracle treats the source string as a single line.

If you specify multiple contradictory values, Oracle uses the last value. For
example, if you specify 'ic', then Oracle uses case-sensitive matching. If you specify
a character other than those shown above, then Oracle returns an error. If you omit
match_parameter, then:

— The default case sensitivity is determined by the value of the NLS_SORT
parameter.

— A period (.) does not match the newline character.

— The source string is treated as a single line.

Example

The following example examines the string, looking for the first substring bounded by
commas. Oracle Database searches for a comma followed by one or more occurrences
of non-comma characters followed by a comma. Oracle returns the substring,
including the leading and trailing commas.

SELECT
REGEXP_SUBSTR('500 Oracle Parkway, Redwood Shores, CA',',[",]1+,")
FROM DUAL;

REGEXPR_SUBSTR

, Redwood Shores,

The following example examines the string, looking for http:// followed by a
substring of one or more alphanumeric characters and optionally, a period (.). Oracle
searches for a minimum of three and a maximum of four occurrences of this substring
between http:/ / and either a slash (/) or the end of the string.

SELECT
REGEXP_SUBSTR('http://www.oracle.com/products',
‘http://([[:alnum:]]+\.?){3,4}/?")
FROM DUAL;

REGEXP_SUBSTR

http://www.oracle.com/

Syntax
rpad::=RPAD(attributel, n, attribute2)

Purpose

RPAD returns attributel, right-padded to length n with attribute2, replicated as
many times as necessary. Attribute2 defaults to a single blank. If attributel is
longer than n, this function returns the portion of attributel that fits in n.

Transformations 2-23

Character Transformations

Both attributel and attribute2 can be of the data types CHAR or VARCHAR2.
The string returned is of VARCHAR? data type and is in the same character set as
attributel.

The argument n is the total length of the return value as it is displayed on your screen.
In most character sets, this is also the number of characters in the return value.
However, in some multibyte character sets, the display length of a character string can
differ from the number of characters in the string.

Example
The following example rights-pads a name with the letters "ab" until it is 12 characters
long:

SELECT RPAD('MORRISON',12, 'ab') "RPAD example"
FROM DUAL;

RPAD example

MORRISONabab
RTRIM
Syntax
rtrim::=RTRIM(attribute, set)
Purpose
RTRIM returns attribute, with all the right most characters that appear in set
removed; set defaults to a single blank. If attribute is a character literal, you must
enclose it in single quotes. RTRIM works similarly to LTRIM. Both attribute and
set can be any of the data types CHAR or VARCHAR?2. The string returned is of
VARCHAR? data type and is in the same character set as attribute.
Example
The following example trims the letters "xy" from the right side of a string:
SELECT RTRIM('BROWNINGyxXxy', 'xy') "RTIRIM e.g."
FROM DUAL;
RTRIM e.g
BROWNINGYXX
SOUNDEX
Syntax

soundex: : =SOUNDEX (attribute)

Purpose

SOUNDEX returns a character string containing the phonetic representation of
attribute. This function enables you to compare words that are spelled differently,
but sound similar in English.

2-24 Oracle Warehouse Builder Transformation Guide

Character Transformations

The phonetic representation is defined in The Art of Computer Programming, Volume 3:
Sorting and Searching, by Donald E. Knuth, as follows:

= Retain the first letter of the string and remove all other occurrences of the
following letters: a, e, h,i,0, u, w, y.

= Assign numbers to the remaining letters (after the first) as follows:

- bfpv=1

- ¢gjkqsxz=2
- d,t=3

- 1=4

- m,n=5

- r=6

= If two or more letters with the same number were adjacent in the original name
(before step 1), or adjacent except for any intervening h and w, omit all but the
first.

= Return the first four bytes padded with 0.

Data types for attribute can be CHAR and VARCHAR?2. The return value is the
same data type as attribute.

Example

The following example returns the employees whose last names are a phonetic
representation of "Smyth":

SELECT last_name, first_name
FROM hr.employees
WHERE SOUNDEX (last_name) = SOUNDEX('SMYTHE') ;

LAST_NAME FIRST_NAME

Smith Lindsey

SUBSTR, SUBSTR2, SUBSTR4, SUBSTRB, SUBSTRC

Syntax

substr::=SUBSTR (attribute, position, substring_length)
substr2::=SUBSTR2 (attribute, position, substring_length)
substrd::=SUBSTR4 (attribute, position, substring_length)
substrb: :=SUBSTRB(attribute, position, substring_length)
substrc::=SUBSTRC (attribute, position, substring_length)

Purpose

The substring functions return a portion of attribute, beginning at character
position, substring_length characterslong. SUBSTR calculates lengths using
characters as defined by the input character set. SUBSTRB uses bytes instead of
characters. SUBSTRC uses Unicode complete characters. SUBSTR2 uses UCS2 code
points. SUBSTR4 uses UCS4 code points.

m IfpositionisO,itis treated as 1.

Transformations 2-25

Character Transformations

TRANSLATE

s Ifpositionis positive, Warehouse Builder counts from the beginning of
attribute to find the first character.

s Ifpositionis negative, Warehouse Builder counts backward from the end of
attribute.

s If substring_length is omitted, Warehouse Builder returns all characters to the
end of attribute. If substring lengthisless than 1, anull is returned.

Data types for attribute can be CHAR and VARCHAR?2. The return value is the
same data type as attribute. Floating-point numbers passed as arguments to
SUBSTR are automatically converted to integers.

Examples
The following example returns several specified substrings of "ABCDEFG":

SELECT SUBSTR ('ABCDEFG',3,4) "Substring"
FROM DUAL;

Substring

SELECT SUBSTR ('ABCDEFG',-5,4) "Substring"
FROM DUAL;

Substring

Assume a double-byte database character set:

SELECT SUBSTRB('ABCDEFG',5,4.2) "Substring with bytes"
FROM DUAL;

Substring with bytes

Syntax
translate: :=TRANSLATE (attribute, from_string, to_string)

Purpose

TRANSLATE returns attribute with all occurrences of each character in from_
string replaced by its corresponding character in to_string. Characters in
attribute that are notin from_string are not replaced. The argument from_
string can contain more characters than to_string. In this case, the extra
characters at the end of from_string have no corresponding characters in to_
string. If these extra characters appear in attribute, they are removed from the
return value.

You cannot use an empty string for to_string to remove all characters in from_
string from the return value. Warehouse Builder interprets the empty string as null,
and if this function has a null argument, it returns null.

2-26 Oracle Warehouse Builder Transformation Guide

Character Transformations

Examples

The following statement translates a license number. All letters 'ABC...Z' are translated
to 'X'and all digits '012 . .. 9" are translated to '9":

SELECT TRANSLATE ('2KRW229', '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ ',
199999999 9 IXXXXX XXX XX XX XXX XXXXXXXXXXX"') "License"
FROM DUAL;

License

9XXX999

The following statement returns a license number with the characters removed and the
digits remaining:

SELECT TRANSLATE ('2KRW229','0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ', '0123456789"')
"Translate example"
FROM DUAL;

Translate example

TRIM

Syntax
trim::=TRIM(attribute)

Purpose

TRIM enables you to trim leading or trailing spaces (or both) from a character string.
The function returns a value with data type VARCHAR?2. The maximum length of the
value is the length of attribute.

Example
This example trims leading and trailing spaces from a string;:
SELECT TRIM (' Warehouse ') "TRIM Example"

FROM DUAL;

TRIM example

Warehouse

UPPER

Syntax
upper: :=UPPER (attribute)

Purpose

UPPER returns attribute, with all letters in uppercase; attribute can be of the
data types CHAR and VARCHAR?2. The return value is the same data type as
attribute.

Transformations 2-27

Character Transformations

Example
The following example returns a string in uppercase:

SELECT UPPER('Large') "Uppercase"
FROM DUAL;

WB_LOOKUP_CHAR (number)

Syntax

WB.LOOKUP_CHAR (table_name
, column_name

, key_column_name

, key_value

)

where table_name is the name of the table to perform the lookup on and column_
name is the name of the VARCHAR?2 column that will be returned. For example, the
result of the lookup key_column_name is the name of the NUMBER column used as
the key to match on in the lookup table, key_value is the value of the key column
mapped into the key_column_name with which the match will be done.

Purpose

To perform a key lookup on a number that returns a VARCHAR? value from a
database table using a NUMBER column as the matching key.

Example
Consider the following table as a lookup table LKP1:

KEY_COLUMN TYPE COLOR
10 Car Red
20 Bike Green

Using this package with the following call:

WB.LOOKUP_CHAR ('LKP1'
, 'TYPE'

, 'KEYCOLUMN'

, 20

)

returns the value of 'Bike' as output of this transform. This output would then be
processed in the mapping as the result of an inline function call.

Note: This function is a row-based key lookup. Set-based lookups
are supported when you use the lookup operator.

WB_LOOKUP_CHAR (varchar2)

Syntax
WB.LOOKUP_CHAR (table_name

2-28 Oracle Warehouse Builder Transformation Guide

Control Center Transformations

, column_name
, key_column_name
, key_value

)

where table_name is the name of the table to perform the lookup on; column_name
is the name of the VARCHAR?2 column that will be returned, for instance, the result of
the lookup; key_column_name is the name of the VARCHAR?2 column used as the
key to match on in the lookup table; key_value is the value of the key column, for
instance, the value mapped into the key_column_name with which the match will be
done.

Purpose
To perform a key lookup on a VARCHAR? character that returns a VARCHAR?2 value
from a database table using a VARCHAR?2 column as the matching key.

Example
Consider the following table as a lookup table LKP1:

KEYCOLUMN TYPE COLOR
ACV Car Red
ACP Bike Green

Using this package with the following call:

WB.LOOKUP_CHAR ('LKP1'
, 'TYPE'

, 'KEYCOLUMN'

, "ACP'

)

returns the value of 'Bike' as output of this transformation. This output is then
processed in the mapping as the result of an inline function call.

Note: This function is a row-based key lookup. Set-based lookups
are supported when you use the lookup operator.

WB_IS_SPACE

Syntax
WB_IS_SPACE (attibute)

Purpose

Checks whether a string value only contains spaces. This function returns a Boolean
value. In mainframe sources, some fields contain many spaces to make a file adhere to
the fixed length format. This function provides a way to check for these spaces.

Example
WB_IS_SPACE returns TRUE if attribute contains only spaces.

Control Center Transformations

Control Center transformations are used in a process flow or in custom
transformations to enable you to access information about the Control Center at

Transformations 2-29

Control Center Transformations

execution time. For example, you can use a Control Center transformation in the
expression on a transition to help control the flow through a process flow at execution
time. You can also use Control Center transformations within custom functions. These
custom functions can in turn be used in the design of your process flow.

All Control Center transformations require an audit ID that provides a handle to the
audit data stored in the Control Center repository. The audit ID is a key into the public
view ALL_RT_AUDIT_EXECUTIONS. The transformations can be used to obtain data
specific to that audit ID at execution time. When run in the context of a process flow,
you can obtain the audit ID at execution time using the pseudo variable audit_idin
a process flow expression. This variable is evaluated as the audit ID of the currently
executing job. For example, for a map input parameter, this represents the map
execution and for a transition this represents the job at the source of the transition.

The Control Center transformations are:

= WB_RT_GET_ELAPSED_TIME on page 2-30

= WB_RT_GET_JOB_METRICS on page 2-31

s WB_RT_GET_LAST_EXECUTION_TIME on page 2-31
s WB_RT_GET_MAP_RUN_AUDIT on page 2-32

s WB_RT_GET_NUMBER_OF_ERRORS on page 2-33

= WB_RT_GET_NUMBER_OF_WARNINGS on page 2-33
s WB_RT_GET_PARENT_AUDIT_ID on page 2-34

s WB_RT_GET_RETURN_CODE on page 2-34

s WB_RT_GET_START_TIME on page 2-35

WB_RT_GET_ELAPSED_TIME

Syntax
WB_RT_GET_ELAPSED_TIME (audit_id)

Purpose

This function returns the elapsed time, in seconds, for the job execution given by the
specified audit_id. It returns null if the specified audit ID does not exist. For
example, you can use this function on a transition if you want to make a choice
dependent on the time taken by the previous activity.

Example

The following example returns the time elapsed since the activity represented by
audit_id was started:

declare

audit_id NUMBER := 1812;

1_time NUMBER;
begin

1_time:= WB_RT GET_ELAPSED_TIME (audit_id);
end;

2-30 Oracle Warehouse Builder Transformation Guide

Control Center Transformations

WB_RT_GET_JOB_METRICS

Syntax

WB_RT_GET_JOB_METRICS (audit_id, no_selected, no_deleted, no_updated, no_inserted,
no_discarded, no_merged, no_corrected)

where no_selected represents the number of rows selected, no_deleted
represents the number of rows deleted, no_updated represents the number of rows
updated, no_inserted represents the number of rows inserted, no_discarded
represents the number of rows discarded, no_merged represents the number of rows
merged, and no_corrected represents the number of rows corrected during the job
execution.

Purpose

This procedure returns the metrics of the job execution represented by the specified
audit_id. The metrics include the number of rows selected, deleted, updated,
inserted, merged, and corrected.

Example

The following example retrieves the job metrics for the audit ID represented by
audit_id.

declare
audit_id NUMBER := 16547;
1_nselected NUMBER;
1_ndeleted NUMBER;
1_nupdated NUMBER;
1_ninserted NUMBER;
1_ndiscarded NUMBER;
1_nmerged NUMBER;
1_ncorrected NUMBER;
begin
WB_RT_GET_JOB_METRICS(audit_id, 1_nselected, 1_ndeleted, 1_nupdated,
1_ninserted, 1l_ndiscarded, 1_nmerged, 1l_ncorrected);

dbms_output.put_line('sel=' || 1l_nselected || ', del=' 1_ndeleted |
", upd=" || l_nupdated);
dbms_output.put_line('ins='|| l_ninserted || ' , dis=' || l_ndiscarded);
dbms_output.put_line('mer=' || 1l_nmerged || ', cor=' ||l_ncorrected);
end;

WB_RT_GET_LAST_EXECUTION_TIME

Syntax
WB_RT_GET_LAST EXECUTION_TIME (objectName, objectType, objectLocationName)

where objectName represents the name of the object, objectType represents the
type of the object (for example MAPPING, DATA_AUDITOR, PROCESS_FLOW,
SCHEDULABLE), and objectLocationName represents the location to which the
object is deployed.

Purpose

This transformation gives you access to time-based data. Typically, you can use this in
a Process Flow to model some design aspect that is relevant to "time". For example you

Transformations 2-31

Control Center Transformations

can design a path that may execute different maps if the time since the last execution is
more than 1 day.

You can also use this transformation to determine time-synchronization across process
flows that are running concurrently. For example, you can choose a path in a process
flow according to whether another Process Flow has completed.

Example

The following example retrieves the time when the mapping TIMES_MAP was last
executed and the if condition determines whether this time was within 1 day of the
current time. Based on this time, it can perform different actions.

declare
last_exec_time DATE;
begin
last_exec_time:=WB_RT_GET_LAST_ EXECUTION_TIME ('TIMES_MAP', 'MAPPING', 'WH_
LOCATION') ;
if last_exec_time < sysdate - 1 then
-- last-execution was more than one day ago
-- provide details of action here

NULL;
Else
-- provide details of action here
NULL;
end if;

end;

WB_RT_GET_MAP_RUN_AUDIT

Syntax
WB_RT_GET_MAP_RUN_AUDIT (audit_id)

Purpose

This function returns the map run ID for a job execution that represents a map activity.
It returns null if audit_id does not represent the job execution for a map. For
example, you can use the returned ID as a key to access the ALL_RT_MAP_RUN_
<name> views for more information.

Example

The following example retrieves the map run ID for a job execution whose audit ID is
67265. It then uses this map run ID to obtain the name of the source from the ALL_RT_
MAP_RUN_EXECUTIONS public view.

declare
audit_id NUMBER := 67265;
1_sources VARCHAR2 (256) ;
1_run_id NUMBER;
begin
1_run_id := WB_RT_GET_MAP_RUN_AUDIT_ID(audit_id);
SELECT source_name INTO 1_sources FROM all_rt_map_run_sources
WHERE map_run_id = 1_run_id;
end;

2-32 Oracle Warehouse Builder Transformation Guide

Control Center Transformations

WB_RT_GET_NUMBER_OF_ERRORS

Syntax
WB_RT_GET_NUMBER_OF_ERRORS (audit_id)

Purpose

This function returns the number of errors recorded for the job execution given by the
specified audit_id. It returns null if the specific audit_id is not found.

Example

The following example retrieves the number of errors generated by the job execution
whose audit ID is 8769. You can then perform different actions based on the number of
erTors.

declare
audit_id NUMBER := 8769;
1_errors NUMBER;
begin
1_errors := WB_RT_GET_NUMBER_OF_ERRORS (audit_id);
if 1_errors < 5 then

WB_RT_GET_NUMBER_OF_WARNINGS

Syntax
WB_RT_GET_NUMBER_OF_WARNINGS (audit_id)

Purpose

This function returns the number of warnings recorded for the job executions
represented by audit_id. It returns null if audit_id does not exist.

Example

The following example returns the number of warnings generated by the job execution
whose audit ID is 54632. You can then perform different actions based on the number
of warnings.

declare
audit_is NUMBER := 54632;
1_warnings NUMBER;
begin
1_ warnings:= WB_RT_GET_NUMBER_OF_WARNINGS (audit_id);
if 1_warnings < 5 then

Transformations 2-33

Control Center Transformations

WB_RT_GET_PARENT_AUDIT_ID

Syntax
WB_RT_GET_PARENT_AUDIT_ID(audit_id)

Purpose

This function returns the audit id for the process that owns the job execution
represented by audit_id. It returns null if audit_id does not exist. You can then use the
returned audit id as a key into other public views such as ALL_RT_AUDIT_
EXECUTIONS, or other Control Center transformations if further information is
required.

Example

The following example retrieves the parent audit ID for a job execution whose audit ID
is 76859. It then uses this audit ID to determine the elapsed time for the parent activity.
You can perform different actions based on the elapsed time of the parent activity.

declare
audit_id NUMBER := 76859;
1_elapsed_time NUMBER;
1_parent_id NUMBER;

begin
1_parent_id := WB_RT_GET_PARENT_AUDIT ID(audit_id);
1_elapsed_time := WB_RT_GET_ELAPSED_TIME (l_parent_id) ;
if 1_elpased_time < 100 then

WB_RT_GET_RETURN_CODE

Syntax
WB_RT_GET_RETURN_CODE (audit_id)

Purpose

This function returns the return code recorded for the job execution represented by
audit_id. It returns null if audit_1id does not exist. For a successful job execution,
the return code is greater than or equal to 0. A return code of less than 0 signifies that
the job execution has failed.

Example
The following example retrieves the return code for the job execution whose audit ID
is represented by audit_id.

declare

audit_id NUMBER:=69;

1_code NUMBER;
begin

1_code:= WB_RT_GET_RETURN_CODE (audit_id) ;
end;

2-34 Oracle Warehouse Builder Transformation Guide

Conversion Transformations

WB_RT_GET_START_TIME

Syntax
WB_RT_GET_START_TIME (audit_id)

Purpose

This function returns the start time for the job execution represented by audit_id. It
returns null if audit_1id does not exist. For example, you can use this in a transition if
you wanted to make a choice dependent on when the previous activity started.

Example

The following example determines the start time of the job execution whose audit ID is
354.

declare

audit_id NUMBER:=354;

1_date TIMESTAMP WITH TIMEZONE;
begin

1_date := WB_RT_GET_START TIME (audit_id);
end;

Conversion Transformations

The conversion transformations enable Warehouse Builder users to perform functions
that allow conditional conversion of values. These functions achieve "if -then"
constructions within SQL.

The conversion transformations available in Warehouse Builder are:
s ASCIISTR on page 2-36

= COMPOSE on page 2-36

s CONVERT on page 2-37

= HEXTORAW on page 2-37

= NUMTODSINTERVAL on page 2-38
= NUMTOYMINTERVAL on page 2-39
= RAWTOHEX on page 2-39

= RAWTONHEX on page 2-40

= SCN_TO_TIMESTAMP on page 2-40
s TIMESTAMP_TO_SCN on page 2-41
= TO_BINARY_DOUBLE on page 2-42
= TO_BINARY_FLOAT on page 2-43

s TO_CHAR on page 2-43

= TO_CLOB on page 2-45

s TO_DATE on page 2-45

s TO_DSINTERVAL on page 2-45

s TO_MULTI_BYTE on page 2-46

Transformations 2-35

Conversion Transformations

s TO_MULTI_BYTE on page 2-46

s TO_NCHAR on page 2-46

= TO_NCLOB on page 2-47

= TO_NUMBER on page 2-47

= TO_SINGLE_BYTE on page 2-48

s TO_TIMESTAMP on page 2-48

s TO_TIMESTAMP_TZ on page 2-49
s TO_YMINTERVAL on page 2-50

= UNISTR on page 2-50

ASCIISTR
Syntax
asciistr::=ASCII (attribute)
Purpose
ASCIISTR takes as its argument a string of data type VARCHAR?2 and returns an
ASCII version of the string. Non-ASCII characters are converted to the form \xxxx,
where xxxx represents a UTF-16 code unit.
Example
The following example returns the ASCII string equivalent of the text string '"ABADE":
SELECT ASCIISTR('ABADE') FROM DUAL;
ASCIISTR("
AB\00C4CDE
COMPOSE
Syntax

compose: : =COMPOSE (attribute)

Purpose

COMPOSE returns a Unicode string in its fully normalized form in the same character
set as the input. The parameter attribute can be any of the data types CHAR,
VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. For example, an o code
point qualified by an umlaut code point will be returned as the o-umlaut code point.

Example
The following example returns the o-umlaut code point:

SELECT COMPOSE('o' || UNISTR('\038')) FROM DUAL;

co

2-36 Oracle Warehouse Builder Transformation Guide

Conversion Transformations

CONVERT

HEXTORAW

Syntax

convert: :=CONVERT (attribute, dest_char_set, source_char_set)

Purpose

CONVERT converts a character string specified in an operator attribute from one
character set to another. The data type of the returned value is VARCHAR?2.

s The attribute argument is the value to be converted. It can of the data types
CHAR and VARCHAR?2.

s The dest_char_set argument is the name of the character set to which
attributeis converted.

s The source_char_set argument is the name of the character set in which
attribute is stored in the database. The default value is the database character
set.

Both the destination and source character set arguments can be either literals or
columns containing the name of the character set. For complete correspondence in
character conversion, the destination character set must contain a representation of all
the characters defined in the source character set. When a character does not exist in
the destination character set, it is substituted with a replacement character.
Replacement characters can be defined as part of a character set definition.

Example

The following example illustrates character set conversion by converting a Latin-1
string to ASCIL. The result is the same as importing the same string from a
WEBSISO8859P1 database to a US7ASCII database.

SELECT CONVERT('A 8 £ 0 @ ABCDE ', 'USTASCII', 'WESISO8859P1')
FROM DUAL;

CONVERT (' ARI0@ABCDE'

AEI??ABCDE??

Common character sets include:

s US7ASCII: US 7-bit ASCII character set

= WESDEC: West European 8-bit character set

= WESHP: HP West European Laserjet 8-bit character set

s F7DEC: DEC French 7-bit character set

= WESEBCDIC500: IBM West European EBCDIC Code Page 500
= WESPC850: IBM PC Code Page 850

= WESISO8859P1: ISO 8859-1 West European 8-bit character set

Syntax
hextoraw: : =HEXTORAW (attribute)

Transformations 2-37

Conversion Transformations

Purpose

HEXTORAW converts at tribute containing hexadecimal digits in the CHAR,
VARCHAR2, NCHAR, or NVARCHAR?2 character set to a raw value. This function
does not support CLOB data directly. However, CLOBs can be passed in as arguments
through implicit data conversion.

Example
The following example creates a simple table with a raw column, and inserts a
hexadecimal value that has been converted to RAW:

CREATE TABLE test (raw_col RAW(10));

INSERT INTO test VALUES (HEXTORAW('7D'));

NUMTODSINTERVAL

Syntax
numtodsinterval: : =NUMTODSINTERVAL (n, interval_unit)

Purpose

NUMTODSINTERVAL converts n to an INTERVAL DAY TO SECOND literal. The
argument n can be any NUMBER value or an expression that can be implicitly
converted to a NUMBER value. The argument interval_unit can be of CHAR,
VARCHAR2, NCHAR, or NVARCHAR? data type. The value for interval_unit
specifies the unit of n and must resolve to one of the following string values:

= DAY’

= 'HOUR'

= MINUTE'
= 'SECOND'

The parameter interval_unit is case insensitive. Leading and trailing values within
the parentheses are ignored. By default, the precision of the return is 9.

Example

The following example calculates, for each employee, the number of employees hired
by the same manager within the past 100 days from his or her hire date:

SELECT manager_id, last_name, hire_date,
COUNT(*) OVER (PARTITION BY manager_id ORDER BY hire_date
RANGE NUMTODSINTERVAL (100, 'day') PRECEDING) AS t_count
FROM employees;

MANAGER_ID LAST NAME HIRE_DATE T_COUNT
100 Kochhar 21-SEP-89 1
100 De Haan 13-JAN-93 1
100 Raphaely 07-DEC-94 1
100 Kaufling 01-MAY-95 1
100 Hartstein 17-FEB-96 1
149 Grant 24-MAY-99 1
149 Johnson 04-JUN-00 1
210 Goyal 17-AUG-97 1

2-38 Oracle Warehouse Builder Transformation Guide

Conversion Transformations

205 Gietz 07-JUN-94

King 17-JUN-87
NUMTOYMINTERVAL
Syntax

RAWTOHEX

numtoyminterval: : =NUMTOYMINTERVAL (n, interval_unit)

Purpose

NUMTOYMINTERVAL converts n to an INTERVAL YEAR TO MONTH literal. The
argument n can be any NUMBER value or an expression that can be implicitly
converted to a NUMBER value. The argument interval_unit can be of CHAR,
VARCHAR2, NCHAR, or NVARCHAR? data type. The value for interval_unit
specifies the unit of n and must resolve to one of the following string values:

= DAY’

= 'HOUR'

= 'MINUTE'
= 'SECOND'

The parameter interval_unit is case insensitive. Leading and trailing values within
the parentheses are ignored. By default, the precision of the return is 9.

Example

The following example calculates, for each employee, the total salary of employees

hired in the past one year from his or her hire date.

SELECT last_name, hire_date, salary, SUM(salary)
OVER (ORDER BY hire_date
RANGE NUMTOYMINTERVAL(1, 'yvear') PRECEDING)
FROM employees;

LAST_NAME HIRE_DATE SALARY
King 17-JUN-87 24000
Whalen 17-SEP-87 4400
Kochhar 21-SEP-89 17000
Markle 08-MAR-00 2200
Ande 24-MAR-00 6400
Banda 21-APR-00 6200
Kumar 21-APR-00 6100
Syntax

rawtohex: : =RAWTOHEX (raw)

Purpose

AS t_sal

112400
106500
109400
109400

RAWTOHEX converts raw to a character value containing its hexadecimal equivalent.
The argument must be RAW data type. You can specify a BLOB argument for this

function if it is called from within a PL/SQL block.

Transformations 2-39

Conversion Transformations

RAWTONHEX

Example
The following hypothetical example returns the hexadecimal equivalent of a RAW
column value:

SELECT RAWTOHEX (raw_column) "Graphics"
FROM grpahics;

Graphics

Syntax
rawtonhex: : =RAWTONHEX (raw)

Purpose

RAWTONHEX converts raw to an NVARCHAR? character value containing its
hexadecimal equivalent.

Example
The following hypothetical example returns the hexadecimal equivalent of a RAW
column value:

SELECT RAWTONHEX (raw_column),
DUMP (RAWTONHEX (raw_column)) "DUMP"
FROM graphics;

RAWTONHEX (RA) DUMP

7D Typ=1 Len=4: 0,55,0,68

SCN_TO_TIMESTAMP

Syntax
scn_to_timestamp: :=SCN_TO_TIMESTAMP (number)

Purpose

SCN_TO_TIMESTAMP takes as an argument a number that evaluates to a system
change number (SCN), and returns the approximate timestamp associated with that
SCN. The returned value is of TIMESTAMP data type. This function is useful when
you want to know the timestamp associated with an SCN. For example, it can be used
in conjunction with the ORA_ROWSCN pseudocolumn to associate a timestamp with
the most recent change to a row.

Example

The following example uses the ORA_ROWSCN pseudocolumn to determine the
system change number of the last update to a row and uses SCN_TO_TIMESTAMP to
convert that SCN to a timestamp:

SELECT SCN_TO_TIMESTAMP (ORA_ROWSCN) FROM employees
WHERE employee_1id=188;

2-40 Oracle Warehouse Builder Transformation Guide

Conversion Transformations

You could use such a query to convert a system change number to a timestamp for use
in an Oracle Flashback Query:

SELECT salary FROM employees WHERE employee_id = 188;

SALARY

UPDATE employees SET salary = salary*10 WHERE employee_id = 188;
COMMIT;

SELECT salary FROM employees WHERE employee_id = 188;

SALARY

SELECT SCN_TO_TIMESTAMP (ORA_ROWSCN) FROM employees
WHERE employee_1id=188;

SCN_TO_TIMESTAMP (ORA_ROWSCN)

28-AUG-03 01.58.01.000000000 PM

FLASHBACK TABLE employees TO TIMESTAMP
TO_TIMESTAMP ('28-AUG-03 01.00.00.000000000 PM');

SELECT salary FROM employees WHERE employee_id = 188;
SALARY

TIMESTAMP_TO_SCN

Syntax
timestamp_to_scn: :=TIMESTAMP_TO_SCN (timestamp)

Purpose

TIMESTAMP_TO_SCN takes as an argument a timestamp value and returns the
approximate system change number (SCN) associated with that timestamp. The
returned value is of data type NUMBER. This function is useful any time you want to
know the SCN associated with a particular timestamp.

Example

The following example inserts a row into the oe.orders table and then uses
TIMESTAMP_TO_SCN to determine the system change number of the insert
operation. (The actual SCN returned will differ on each system.)

INSERT INTO orders (order_id, order_date, customer_id, order_total)
VALUES (5000, SYSTIMESTAMP, 188, 2345);

COMMIT;

SELECT TIMESTAMP_TO_SCN (order_date) FROM orders
WHERE order_id = 5000;

Transformations 2-41

Conversion Transformations

TIMESTAMP_TO_SCN (ORDER_DATE)

574100

TO_BINARY_DOUBLE

Syntax
to_binary_double: :=TO_BINARY_DOUBLE (expr, fmt, nlsparam)

Purpose

TO_BINARY_DOUBLE returns a double-precision floating-point number. The
parameter expr can be a character string or a numeric value of type NUMBER,

BINARY_FLOAT, or BINARY_DOUBLE. If expr is BINARY_DOUBLE, then the
function returns expr.

The arguments fmt and nlsparam are optional and are valid only if exprisa
character string. They serve the same purpose as for the TO_CHAR (number) function.
The case-insensitive string 'INF' is converted to positive infinity. The case-insensitive
string '-INF' is converted to negative identity. The case-insensitive string 'NaN' is
converted to NaN (not a number).

You cannot use a floating-point number format element (F, f, D, or d) in a character
string expr. Also, conversions from character strings or NUMBER to BINARY_
DOUBLE can be inexact, because the NUMBER and character types use decimal
precision to represent the numeric value, and BINARY_DOUBLE uses binary
precision. Conversions from BINARY_FLOAT to BINARY_DOUBLE are exact.

Example

The examples that follow are based on a table with three columns, each with a
different numeric data type:

CREATE TABLE float_point_demo
(dec_num NUMBER(10,2), bin_double BINARY_DOUBLE, bin_float BINARY_ FLOAT);

INSERT INTO float_point_demo VALUES (1234.56,1234.56,1234.56);
SELECT * FROM float_point_demo;

DEC_NUM BIN_DOUBLE BIN_FLOAT

1234.56 1.235E+003 1.235E+003
The following example converts a value of data type NUMBER to a value of data type
BINARY_DOUBLE:

SELECT dec_num, TO_BINARY_DOUBLE (dec_num)
FROM float_point_demo;

DEC_NUM TO_BINARY_DOUBLE (DEC_NUM)

1234.56 1.235E+003

The following example compares extracted dump information from the dec_num and
bin_double columns:

SELECT DUMP (dec_num) "Decimal",
DUMP (bin_double) "Double"

2-42 Oracle Warehouse Builder Transformation Guide

Conversion Transformations

FROM float_point_demo;

Decimal Double

Typ=2 Len=4: 194,13,35,57 Typ=101 Len=8: 192,147,74,61,112,163,215,10

TO_BINARY_FLOAT

TO_CHAR

Syntax
to_binary_float: :=TO_BINARY_FLOAT (expr, fmt, nlsparam)

Purpose

TO_BINARY_FLOAT returns a single-precision floating-point number. The parameter
expr can be a character string or a numeric value of type NUMBER, BINARY_FLOAT,
or BINARY_DOUBLE. If expr is BINARY_FLOAT, then the function returns expr.

The arguments fmt and nlsparam are optional and are valid only if exprisa
character string. They serve the same purpose as for the TO_CHAR (number) function.
The case-insensitive string 'INF' is converted to positive infinity. The case-insensitive
string '-INF' is converted to negative identity. The case-insensitive string 'NaN' is
converted to NaN (not a number).

You cannot use a floating-point number format element (F, f, D, or d) in a character
string expr. Also, conversions from character strings or NUMBER to BINARY_FLOAT
can be inexact, because the NUMBER and character types use decimal precision to
represent the numeric value, and BINARY_FLOAT uses binary precision. Conversions
from BINARY_DOUBLE to BINARY_FLOAT are inexact if the BINARY_DOUBLE
value uses more bits of precision than supported by the BINARY_FLOAT.

Example

Using table float_point_demo created for TO_BINARY_DOUBLE, the following
example converts a value of data type NUMBER to a value of data type BINARY_
FLOAT:

SELECT dec_num, TO_BINARY_FLOAT (dec_num)
FROM float_point_demo;

DEC_NUM TO_BINARY_FLOAT (DEC_NUM)

1234.56 1.235E+003

Syntax
to_char_date: :=TO_CHAR (attribute, fmt, nlsparam)

Purpose

TO_CHAR converts attribute of DATE or NUMBER data type to a value of
VARCHAR? data type in the format specified by the format fmt. If you omit fmt, a
date is converted to a VARCHAR?2 value in the default date format and a number is
converted to a VARCHAR? value exactly long enough to hold its significant digits.

Transformations 2-43

Conversion Transformations

If attribute is a date, the nlsparam specifies the language in which month and day
names and abbreviations are returned. This argument can have this form: 'NLS_
DATE_LANGUAGE = language' If you omit nlsparam, this function uses the
default date language for your session.

If attribute is a number, the nlsparam specifies these characters that are returned
by number format elements:

s Decimal character

= Group separator

s Local currency symbol

» International currency symbol

This argument can have the following form:

'NLS_NUMERIC_CHARACTERS = ''dg"''
NLS_CURRENCY = ''text''
NLS_ISO_CURRENCY = territory '

The characters d and g represent the decimal character and group separator,
respectively. They must be different single-byte characters. Within the quoted string,
you must use two single quotation marks around the parameter values. Ten characters
are available for the currency symbol.

If you omit nlsparam or any one of the parameters, this function uses the default
parameter values for your session.

Example
The following example applies various conversions on the system date in the database:

SELECT TO_CHAR(sysdate) no_fmt FROM DUAL;

26-MAR-02

SELECT TO_CHAR(sysdate, 'dd-mm-yyyy') fmted FROM DUAL;

26-03-2002

In this example, the output is blank padded to the left of the currency symbol.

SELECT TO_CHAR(-10000, 'L99G999D99MI"') "Amount" FROM DUAL;

$10,000.00-

SELECT TO_CHAR(-10000, 'L99G999D99MI"
'NLS_NUMERIC_CHARACTERS = '',.''
NLS_CURRENCY = ''AusDollars'' ') "Amount"

FROM DUAL;

AusDollars10.000,00-

2-44 Oracle Warehouse Builder Transformation Guide

Conversion Transformations

TO_CLOB

TO_DATE

Syntax
to_clob::=TO_CLOB(attribute)

Purpose

TO_CLOB converts NCLOB values in a LOB column or other character strings to CLOB
values. char can be any of the data types CHAR, VARCHAR2, NCHAR,
NVARCHAR?2, CLOB, or NCLOB. Oracle Database executes this function by
converting the underlying LOB data from the national character set to the database
character set.

Example
The following statement converts NCLOB data from the sample pm.print_media table
to CLOB and inserts it into a CLOB column, replacing existing data in that column.

UPDATE PRINT_MEDIA SET AD_FINALTEXT = TO_CLOB (AD_FLTEXTN) ;

Syntax
to_date::=TO_DATE(attribute, fmt, nlsparam)

Purpose

TO_DATE converts attribute of CHAR or VARCHAR? data type to a value of data
type DATE. The fmt is a date format specifying the format of attribute. If you omit
fmt, attribute must be in the default date format. If fmt is T, for Julian, then
attribute must be an integer. The nlsparam has the same purpose in this function
as in the TO_CHAR function for date conversion.

Do not use the TO_DATE function with a DATE value for the at tribute argument.
The first two digits of the returned DATE value can differ from the original
attribute, depending on fmt or the default date format.

Example
The following example converts character strings into dates:
SELECT TO_DATE('January 15, 1989, 11:00 A.M.', 'Month dd, YYYY, HH:MI A.M.',

'NLS_DATE_LANGUAGE = American')
FROM DUAL;

TO_DATE

15-JAN-89

TO_DSINTERVAL

Syntax
to_dsinterval::=TO_DSINTERVAL (char, nlsparam)

Transformations 2-45

Conversion Transformations

Purpose

TO_DSINTERVAL converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR? data type to an INTERVAL DAY TO SECOND value. The argument
char represents the character string to be converted. The only valid nlsparam you can
specify in this function is NLS_NUMERIC_CHARACTERS. nlsparam can have the
form: NLS_ NUMERIC_CHARACTERS = "dg", where d represents the decimal
character and g represents the group separator.

Example

The following example selects from the employees table the employees who had
worked for the company for at least 100 days on January 1, 1990:

SELECT employee_id, last_name
FROM employees
WHERE hire_date + TO_DSINTERVAL('100 10:00:00') <= DATE '1990-01-01";

EMPLOYEE_ID LAST_NAME
100 King
101 Kochhar
200 Whalen

TO_MULTI_BYTE

TO_NCHAR

Syntax
to_multi_byte::=TO_MULTI_BYTE (attribute)

Purpose

TO_MULTI_BYTE returns attribute with all of its single-byte characters converted
to their corresponding multibyte characters; at tribute can be of data type CHAR or
VARCHAR?. The value returned is in the same data type as attribute. Any
single-byte characters in at tribute that have no multibyte equivalents appear in the
output string as single-byte characters.

This function is useful only if your database character set contains both single-byte
and multibyte characters.

Example
The following example illustrates converting from a single byte 'A’ to a multi byte:

'A' in UTF8:
SELECT dump (TO_MULTI_BYTE('A')) FROM DUAL;

DUMP (TO_MULTI_BYTE('A'))

Typ=1 Len=3: 239,188,161

Syntax
to_nchar::=TO_NCHAR (c, fmt, nlsparam)

2-46 Oracle Warehouse Builder Transformation Guide

Conversion Transformations

TO_NCLOB

TO_NUMBER

Purpose

TO_NCHAR converts a character string, CLOB, or NCLOB value from the database
character set to the national character set. This function is equivalent to the
TRANSLATE ... USING function with a USING clause in the national character set.

Example

The following example converts NCLOB data from the pm.print_media table to the
national character set:

SELECT TO_NCHAR (ad_fltextn) FROM print_media
WHERE product_id = 3106;

TO_NCHAR (AD_FLTEXTN)

TIGER2 Tastaturen...weltweit fuehrend in Computer-Ergonomie.

TIGER2 3106 Tastatur

Product Nummer: 3106

Nur 39 EURO!

Die Tastatur KB 101/CH-DE ist eine Standard PC/AT Tastatur mit 102 Tasten. Tasta
turbelegung: Schweizerdeutsch.

. NEU: Kommt mit ergonomischer Schaumstoffunterlage.

. Extraflache und ergonimisch-geknickte Versionen verfugbar auf Anfrage.

. Lieferbar in Elfenbein, Rot oder Schwarz.

Syntax
to_nclob: :=TO_NCLOB (char)

Purpose

TO_NCLOB converts CLOB values in a LOB column or other character strings to
NCLOB values. char can be any of the data types CHAR, VARCHAR2, NCHAR,
NVARCHAR?2, CLOB, or NCLOB. Oracle Database implements this function by
converting the character set of char from the database character set to the national
character set.

Example
The following example inserts some character data into an NCLOB column of the
pm.print_media table by first converting the data with the TO_NCLOB function:

INSERT INTO print_media (product_id, ad_id, ad_fltextn)
VALUES (3502, 31001, TO_NCLOB('Placeholder for new product description'));

Syntax
to_number: :=TO_NUMBER (attribute, fmt, nlsparam)

Purpose

TO_NUMBER converts attribute to a value of CHAR or VARCHAR? data type
containing a number in the format specified by the optional format fmt, to a value of
NUMBER data type.

Transformations 2-47

Conversion Transformations

Examples
The following example converts character string data into a number:
UPDATE employees

SET salary = salary + TO_NUMBER('100.00', '9G999D99')
WHERE last_name = 'Perkins';

The nlsparam string in this function has the same purpose as it does in the TO_CHAR
function for number conversions.

SELECT TO_NUMBER ('-AusDollars100', 'L9G999D99",
' NLS_NUMERIC_CHARACTERS = "', .''

NLS_CURRENCY = ''AusDollars"''

') "Amount"

FROM DUAL;

TO_SINGLE_BYTE

Syntax
to_single_byte::=TO_SINGLE_BYTE (attribute)

Purpose

TO_SINGLE_BYTE returns attribute with all of its multibyte characters converted
to their corresponding single-byte characters; attribute can be of data type CHAR
or VARCHAR?2. The value returned is in the same data type as attribute. Any
multibyte characters in at tribute that have no single-byte equivalents appear in the
output as multibyte characters.

This function is useful only if your database character set contains both single-byte
and multibyte characters.

Example

The following example illustrates going from a multibyte 'A" in UTFS to a single byte
ASCIT'A":

SELECT TO_SINGLE_BYTE(CHR(15711393)) FROM DUAL;

T

A

TO_TIMESTAMP

Syntax
to_timestamp: :=TO_TIMESTAMP (char, fnt, nlsparam)

Purpose

TO_TIMESTAMP converts char of data type CHAR, VARCHAR2, NCHAR, or
NVARCHAR? to a value of TIMESTAMP data type. The optional £mt specifies the
format of char. If you omit fmt, then char must be in the default format of the
TIMESTAMP data type, which is determined by the NLS_ TIMESTAMP_FORMAT

2-48 Oracle Warehouse Builder Transformation Guide

Conversion Transformations

initialization parameter. The optional nlsparam argument has the same purpose in
this function as in the TO_CHAR function for date conversion.

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

Example

The following example converts a character string to a timestamp. The character string
is not in the default TIMESTAMP format, so the format mask must be specified:

SELECT TO_TIMESTAMP ('10-Sep-02 14:10:10.123000', 'DD-Mon-RR HH24:MI:SS.FF')
FROM DUAL;

TO_TIMESTAMP('10-SEP-0214:10:10.123000"', 'DD-MON-RRHH24:MI:SS.FF')

10-SEP-02 02.10.10.123000000 PM

TO_TIMESTAMP_TZ

Syntax
to_timestamp_tz: :=TO_TIMESTAMP_TZ (char, fmt, nlsparam)

Purpose

TO_TIMESTAMP_TZ converts char of data type CHAR, VARCHAR2, NCHAR, or
NVARCHAR? to a value of TIMESTAMP WITH TIME ZONE data type. The optional
fmt specifies the format of char. If you omit fmt, then char must be in the default
format of the TIMESTAMP WITH TIME ZONE data type. The optional nlsparam has
the same purpose in this function as in the TO_CHAR function for date conversion.

Note: This function does not convert character strings to
TIMESTAMP WITH LOCAL TIME ZONE.

Example

The following example converts a character string to a value of TIMESTAMP WITH

TIME ZONE:

SELECT TO_TIMESTAMP TZ('1999-12-01 11:00:00 -8:00','YYYY-MM-DD HH:MI:SS TZH:TZM')
FROM DUAL;

TO_TIMESTAMP_TZ('1999-12-0111:00:00-08:00", 'YYYY-MM-DDHH:MI:SSTZH: TZM")

01-DEC-99 11.00.00.000000000 AM -08:00

The following example casts a null column in a UNION operation as TIMESTAMP
WITH LOCAL TIME ZONE using the sample tables oe.order_items and oe.orders:

SELECT order_id, line_item_id, CAST(NULL AS TIMESTAMP WITH LOCAL TIME ZONE)
order_date
FROM order_items
UNION
SELECT order_id, to_number (null), order_date
FROM orders;

ORDER_ID LINE_ITEM_ID ORDER_DATE

Transformations 2-49

Conversion Transformations

TO_YMINTERVAL

UNISTR

2354 1
2354 2
2354 3
2354 4
2354 5
2354 6
2354 7
2354 8
2354 9
2354 10
2354 11
2354 12
2354 13
2354 14-JUL-00 05.18.23.234567 PM
2355 1
2355 2
Syntax

to_yminterval::=TO_YMINTERVAL (char)

Purpose
TO_YMINTERVAL converts a character string, represented by char, of data type
CHAR, VARCHAR?2, NCHAR, or NVARCHAR? to an INTERVAL YEAR TO MONTH

type.

Example

The following example calculates for each employee in the sample hremployees table
a date one year two months after the hire date:

SELECT hire_date, hire_date + TO_YMINTERVAL('01-02') "14 months"
FROM employees;

HIRE_DATE 14 months

17-JUN-87 17-AUG-88
21-SEP-89 21-NOV-90
13-JAN-93 13-MAR-94
03-JAN-90 03-MAR-91
21-MAY-91 21-JUL-92

Syntax
unistr::=UNISTR(string)

Purpose

UNISTR takes as its argument a text string, represented by string, and returns it in
the national character set. The national character set of the database can be either
AL16UTF16 or UTFS. UNISTR provides support for Unicode string literals by letting

2-50 Oracle Warehouse Builder Transformation Guide

Date Transformations

you specify the Unicode encoding value of characters in the string. This is useful, for
example, for inserting data into NCHAR columns.

The Unicode encoding value has the form "\xxxx' where xxxx' is the hexadecimal
value of a character in UCS-2 encoding format. To include the backslash in the string
itself, precede it with another backslash (\\). For portability and data preservation,
Oracle recommends that in the UNISTR string argument you specify only ASCII
characters and the Unicode encoding values.

Example

The following example passes both ASCII characters and Unicode encoding values to
the UNISTR function, which returns the string in the national character set:

SELECT UNISTR('abc\00e5\00£1\00£6"') FROM DUAL;

Date Transformations

Date transformations provide Warehouse Builder users with functionality to perform
transformations on date attributes. These transformations are ordered and the custom
functions provided with Warehouse Builder are all in the format WB_<function
name>.

The date transformations provided with Warehouse Builder are:
= ADD_MONTHS on page 2-52

s CURRENT_DATE on page 2-53

= DBTIMEZONE on page 2-53

s FROM_TZ on page 2-53

= LAST_DAY on page 2-54

= MONTHS_BETWEEN on page 2-54

= NEW_TIME on page 2-55

= NEXT_DAY on page 2-56

= ROUND (date) on page 2-56

= SESSIONTIMEZONE on page 2-56

s SYSDATE on page 2-57

s SYSTIMESTAMP on page 2-57

= SYS_EXTRACT_UTC on page 2-58

= TRUNC (date) on page 2-58

= WB_CAL_MONTH_NAME on page 2-58

= WB_CAL_MONTH_OF_YEAR on page 2-59

= WB_CAL_MONTH_SHORT_NAME on page 2-59
= WB_CAL_QTR on page 2-60

= WB_CAL_WEEK_OF_YEAR on page 2-60

Transformations 2-51

Date Transformations

= WB_CAL_YEAR on page 2-61

= WB_CAL_YEAR_NAME on page 2-61

= WB_DATE_FROM_JULIAN on page 2-62
= WB_DAY_NAME on page 2-62

= WB_DAY_OF_MONTH on page 2-63

= WB_DAY_OF_WEEK on page 2-63

= WB_DAY_OF_YEAR on page 2-64

= WB_DAY_SHORT_NAME on page 2-64
= WB_DECADE on page 2-65

= WB_HOURI2 on page 2-65

= WB_HOURI2MI_SS on page 2-66

= WB_HOUR24 on page 2-67

= WB_HOUR24MI_SS on page 2-67

= WB_IS_DATE on page 2-68

= WB_JULIAN_FROM_DATE on page 2-68
= WB_MI_SS on page 2-69

= WB_WEEK_OF_MONTH on page 2-69

ADD_MONTHS

Syntax
add_months: :=ADD_MONTHS (attribute, n)

Purpose

ADD_MONTHS returns the date in the attribute plus n months. The argument n can
be any integer. This will typically be added from an attribute or from a constant.

If the date in at tribute is the last day of the month or if the resulting month has
fewer days than the day component of attribute, then the result is the last day of
the resulting month. Otherwise, the result has the same day component as
attribute.

Example
The following example returns the month after the hire_date in the sample table
employees:

SELECT TO_CHAR (ADD_MONTHS (hire_date, 1), 'DD-MON-YYYY') "Next month"
FROM employees
WHERE last_name = 'Baer';

Next Month

07-JUL-1994

2-52 Oracle Warehouse Builder Transformation Guide

Date Transformations

CURRENT_DATE

DBTIMEZONE

FROM_TZ

Syntax
current_date: :=CURRENT_DATE ()

Purpose

CURRENT_DATE returns the current date in the session time zone, in a value in the
Gregorian calendar of data type DATE.

Example
The following example illustrates that CURRENT_DATE is sensitive to the session
time zone:

ALTER SESSION SET TIME_ZONE = '-5:0';
ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
SELECT SESSIONTIMEZONE, CURRENT_DATE FROM DUAL;

SESSIONTIMEZONE CURRENT_DATE

-05:00 29-MAY-2000 13:14:03

ALTER SESSION SET TIME_ZONE = '-8:0';
SELECT SESSIONTIMEZONE, CURRENT_DATE FROM DUAL;

SESSIONTIMEZONE CURRENT_DATE

-08:00 29-MAY-2000 10:14:33

Syntax
dbtimezone: : +DBTIMEZONE ()

Purpose

DBTIMEZONE returns the value of the database time zone. The return type is a time
zone offset (a character type in the format '[+ | -]TZH:TZM") or a time zone region
name, depending on how the user specified the database time zone value in the most
recent CREATE DATABASE or ALTER DATABASE statement.

Example
The following example assumes that the database time zone is set to UTC time zone:

SELECT DBTIMEZONE FROM DUAL;

DBTIME

Syntax

from_tz::=FROM_TZ (timestamp_value, time_zone_value)

Transformations 2-53

Date Transformations

Purpose

FROM_TZ converts a timestamp value, represented by timestamp_value, and a time
zone, represented by time_zone_value, to a TIMESTAMP WITH TIME ZONE
value. time_zone_value is a character string in the format "TZH:TZM' or a character
expression that returns a string in TZR with optional TZD format.

Example
The following example returns a timestamp value to TIMESTAMP WITH TIME
ZONE:
SELECT FROM_TZ (TIMESTAMP '2000-03-28 08:00:00', '3:00"')
FROM DUAL;

FROM_TZ (TIMESTAMP'2000-03-2808:00:00"','3:00")

28-MAR-00 08.00.00 AM +03:00

LAST_DAY

Syntax
last_day::=LAST DAY (attribute)

Purpose

LAST_DAY returns the date of the last day of the month that contains the date in
attribute.

Examples
The following statement determines how many days are left in the current month.

SELECT SYSDATE, LAST DAY (SYSDATE) "Last", LAST_DAY(SYSDATE) - SYSDATE "Days Left"
FROM DUAL;

SYSDATE Last Days Left

23-0CT-97 31-0CT-97 8

MONTHS_BETWEEN

Syntax
months_between: : =MONTHS_BETWEEN (attributel, attribute2)

Purpose

MONTHS_ BETWEEN returns the number of months between dates in attributel and
attribute2.If attributel is later than attribute2, the result is positive; if
earlier, then the result is negative.

If attributel and attribute2 are either the same day of the month or both last
days of months, the result is always an integer. Otherwise, Oracle calculates the
fractional portion of the result-based on a 31-day month and considers the difference
in time components attributel and attribute2.

2-54 Oracle Warehouse Builder Transformation Guide

Date Transformations

NEW_TIME

Example
The following example calculates the months between two dates:

SELECT MONTHS_BETWEEN (TO_DATE('02-02-1995', 'MM-DD-YYYY'),
TO_DATE('01-01-1995"', 'MM-DD-YYYY')) "Months"
FROM DUAL;

Months

1.03225806

Syntax

new_time: :=NEW_TIME (attribute, zonel, zone2)

Purpose

NEW_TIME returns the date and time in time zone zone2 when date and time in time
zone zonel are the value in attribute. Before using this function, you must set the
NLS_DATE_FORMAT parameter to display 24-hour time.

The arguments zonel and zone2 can be any of these text strings:
= AST, ADT: Atlantic Standard or Daylight Time

= BST, BDT: Bering Standard or Daylight Time

= CST, CDT: Central Standard or Daylight Time

s CST, EDT: Eastern Standard or Daylight Time

s GMT: Greenwich Mean Time

» HST, HDT: Alaska-Hawaii Standard Time or Daylight Time.
= MST, MDT: Mountain Standard or Daylight Time

= NST: Newfoundland Standard Time

s PST, PDT: Pacific Standard or Daylight Time

= YST, YDT: Yukon Standard or Daylight Time

Example

The following example returns an Atlantic Standard time, given the Pacific Standard
time equivalent:

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
SELECT NEW_TIME (TO_DATE ('11-10-99 01:23:45', 'MM-DD-YY HH24:MI:SS'),
'AST', 'PST') "New Date and Time"
FROM DUAL;

New Date and Time

09-NOV-1999 21:23:45

Transformations 2-55

Date Transformations

NEXT_DAY
Syntax
next_day: :=NEXT_DAY (attributel, attribute2)
Purpose
NEXT_DAY returns the date of the first weekday named by the string in attribute2
that is later than the date in attributel. The argument attribute2 must be a day
of the week in the date language of your session, either the full name or the
abbreviation. The minimum number of letters required is the number of letters in the
abbreviated version. Any characters immediately following the valid abbreviation are
ignored. The return value has the same hours, minutes, and seconds component as the
argument attributel.
Example
This example returns the date of the next Tuesday after February 2, 2001:
SELECT NEXT_DAY ('02-FEB-2001', 'TUESDAY') "NEXT DAY"
FROM DUAL;
NEXT DAY
06-FEB-2001
ROUND (date)
Syntax
round_date: :=ROUND(attribute, fmt)
Purpose
ROUND returns the date in at tribute rounded to the unit specified by the format
model fmt. If you omit £mt, date is rounded to the nearest day.
Example
The following example rounds a date to the first day of the following year:
SELECT ROUND (TO_DATE ('27-0OCT-00'), 'YEAR') "New Year"
FROM DUAL;
New Year
01-JAN-01
SESSIONTIMEZONE
Syntax

sessiontimezone: :=SESSIONTIMEZONE ()
Purpose

SESSIONTIMEZONE returns the time zone of the current session. The return typeis a
time zone offset (a character type in the format '[+ |]JTZH:TZM') or a time zone region

2-56 Oracle Warehouse Builder Transformation Guide

Date Transformations

SYSDATE

name, depending on how the user specified the session time zone value in the most
recent ALTER SESSION statement. You can set the default client session time zone
using the ORA_SDTZ environment variable.

Example
The following example returns the time zone of the current session:

SELECT SESSIONTIMEZONE FROM DUAL;

SESSION

Syntax
sysdate: :=SYSDATE

Purpose

SYSDATE returns the current date and time. The data type of the returned value is
DATE. The function requires no arguments. In distributed SQL statements, this
function returns the date and time on your local database. You cannot use this function
in the condition of a CHECK constraint.

Example
The following example returns the current date and time:

SELECT TO_CHAR(SYSDATE, 'MM-DD-YYYY HH24:MI:SS')"NOW" FROM DUAL;

04-13-2001 09:45:51

SYSTIMESTAMP

Syntax
systimestamp: :=SYSTIMESTAMP ()

Purpose

SYSTIMESTAMP returns the system date, including fractional seconds and time zone,
of the system on which the database resides. The return type is TIMESTAMP WITH
TIME ZONE.

Example
The following example returns the system timestamp:

SELECT SYSTIMESTAMP FROM DUAL;
SYSTIMESTAMP

28-MAR-00 12.38.55.538741 PM -08:00

The following example shows how to explicitly specify fractional seconds:

Transformations 2-57

Date Transformations

SELECT TO_CHAR (SYSTIMESTAMP, 'SSSSS.FF') FROM DUAL;

TO_CHAR (SYSTIME

55615.449255

SYS_EXTRACT_UTC

Syntax
sys_extract_utc: :=SYS_EXTRACT_UTC (datetime_with_timezone)

Purpose

SYS_EXTRACT_UTC extracts the UTC (Coordinated Universal Time—formerly
Greenwich Mean Time) from a datetime value with time zone offset or time zone
region name.

Example

The following example extracts the UTC from a specified datetime:

SELECT SYS_EXTRACT_UTC (TIMESTAMP '2000-03-28 11:30:00.00 -08:00")
FROM DUAL;

SYS_EXTRACT_UTC (TIMESTAMP'2000-03-2811:30:00.00-08:00")

28-MAR-00 07.30.00 PM

TRUNC (date)

Syntax
trunc_date::=TRUNC (attribute, fmt)

Purpose

TRUNC returns attribute with the time portion of the day truncated to the unit
specified by the format model fmt. If you omit £mt, date is truncated to the nearest
day.

Example
The following example truncates a date:

SELECT TRUNC (TO_DATE('27-0CT-92', 'DD-MON-YY'), 'YEAR') "New Year"
FROM DUAL;

01-JAN-92

WB_CAL_MONTH_NAME

Syntax
WB_CAL_MONTH_NAME (attribute)

2-58 Oracle Warehouse Builder Transformation Guide

Date Transformations

Purpose
The function call returns the full-length name of the month for the date specified in
attribute.

Example

The following example shows the return value on the sysdate and on a specified
date string:

SELECT WB_CAL_MONTH_NAME (sysdate)
FROM DUAL;

WB_CAL_MONTH_NAME (SYSDATE)

SELECT WB_CAL_MONTH_NAME ('26-MAR-2002")
FROM DUAL;

WB_CAL_MONTH_NAME (' 26-MAR-2002")

WB_CAL_MONTH_OF_YEAR

Syntax
WB_CAL_MONTH_OF_YEAR (attribute)

Purpose

WB_CAL_MONTH_OF_YEAR returns the month (1-12) of the year for date in
attribute.

Example

The following example shows the return value on the sysdate and on a specified
date string:

SELECT WB_CAL_MONTH_OF_YEAR (sysdate) month
FROM DUAL;

SELECT WB_CAL_MONTH_OF_YEAR('26-MAR-2002') month
FROM DUAL;

WB_CAL_MONTH_SHORT_NAME

Syntax
WB_CAL_MONTH_SHORT_NAME (attribute)

Transformations 2-59

Date Transformations

Purpose

WB_CAL_MONTH_SHORT_NAME returns the short name of the month (for example Jan')
for datein attribute.

Example

The following example shows the return value on the sysdate and on a specified
date string:

SELECT WB_CAL_MONTH_SHORT_NAME (sysdate) month
FROM DUAL;

SELECT WB_CAL_MONTH_SHORT_NAME ('26-MAR-2002') month
FROM DUAL;

WB_CAL_QTR

Syntax
WB_CAL_QTR (attribute)

Purpose

WB_CAL_QTR returns the quarter of the Gregorian calendar year (for example Jan -
March = 1) for the date in attribute.

Example

The following example shows the return value on the sysdate and on a specified
date string:

SELECT WB_CAL_QTR (sysdate) quarter
FROM DUAL;

QUARTER

SELECT WB_CAL_QTR ('26-MAR-2002') quarter
FROM DUAL;

QUARTER

WB_CAL_WEEK_OF_YEAR

Syntax
WB_CAL_WEEK_OF_YEAR (attribute)

2-60 Oracle Warehouse Builder Transformation Guide

Date Transformations

Purpose
WB_CAL_WEEK_OF_YEAR returns the week of the year (1-53) for the date in

attribute.
Example

The following example shows the return value on the sysdate and on a specified
date string:

SELECT WB_CAL_WEEK_OF_YEAR (sysdate) w_of_y
FROM DUAL;

SELECT WB_CAL_WEEK_OF_YEAR ('26-MAR-2002') w_of_y
FROM DUAL;

WB_CAL_YEAR

Syntax
WB_CAL_YEAR (attribute)

Purpose
WB_CAL_YEAR returns the numerical year component for the date in attribute.

Example

The following example shows the return value on the sysdate and on a specified
date string:

SELECT WB_CAL_YEAR (sysdate) year
FROM DUAL;

SELECT WB_CAL_YEAR ('26-MAR-2002') w_of_y
FROM DUAL;

WB_CAL_YEAR_NAME

Syntax
WH_CAL_YEAR_NAME (attribute)

Transformations 2-61

Date Transformations

Purpose
WB_CAL_YEAR_NAME returns the spelled out name of the year for the date in
attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_CAL_YEAR_NAME (sysdate) name
from dual;

Two Thousand Two

select WB_CAL_YEAR_NAME ('26-MAR-2001') name
from dual;

Two Thousand One

WB_DATE_FROM_JULIAN

WB_DAY_NAM

Syntax
WB_DATE_FROM_JULIAN (attribute)

Purpose
WB_DATE_FROM_JULIAN converts Julian date attribute to a regular date.

Example
The following example shows the return value on a specified Julian date:

select to_char (WB_DATE_FROM_JULIAN(3217345),'dd-mon-yyyy') JDate
from dual;

08-sep-4096

E

Syntax
WB_DAY_NAME (attribute)

Purpose
WB_DAY_NAME returns the full name of the day for the datein attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_DAY_NAME (sysdate) name
from dual;

2-62 Oracle Warehouse Builder Transformation Guide

Date Transformations

Thursday

select WB_DAY_NAME ('26-MAR-2002') name
from dual;

Tuesday

WB_DAY_OF_MONTH

Syntax
WB_DAY_OF_MONTH (attribute)

Purpose

WB_DAY_OF_MONTH returns the day number within the month for the date in
attribute.

Example

The following example shows the return value on the sysdate and on a specified
date string:

select WB_DAY_OF_MONTH (sysdate) num
from dual;

select WB_DAY_OF_MONTH ('26-MAR-2002') num
from dual

WB_DAY_OF_WEEK

Syntax
WB_DAY_OF_WEEK (attribute)

Purpose

WB_DAY_OF_WEEK returns the day number within the week for date attribute
based on the database calendar.

Example

The following example shows the return value on the sysdate and on a specified
date string:

select WB_DAY_OF_WEEK (sysdate) num

Transformations 2-63

Date Transformations

from dual;

select WB_DAY_OF_WEEK ('26-MAR-2002') num
from dual;

WB_DAY_OF_YEAR

Syntax
WB_DAY_OF_YEAR(attribute)

Purpose
WB_DAY_OF_YEAR returns the day number within the year for the date attribute.

Example

The following example shows the return value on the sysdate and on a specified
date string:

select WB_DAY_OF_YEAR (sysdate) num
from dual;

select WB_DAY_OF_YEAR ('26-MAR-2002') num
from dual;

WB_DAY_SHORT_NAME

Syntax
WB_DAY_SHORT_NAME (attribute)

Purpose

WB_DAY_SHORT_NAME returns the three letter abbreviation or name for the date
attribute.

Example

The following example shows the return value on the sysdate and on a specified
date string:

2-64 Oracle Warehouse Builder Transformation Guide

Date Transformations

select WB_DAY_SHORT_NAME (sysdate) abbr
from dual;

select WB_DAY_SHORT_NAME ('26-MAR-2002') abbr
from dual;

WB_DECADE

Syntax
WB_DECADE (attribute)

Purpose
WB_DECADE returns the decade number within the century for the date attribute.

Example

The following example shows the return value on the sysdate and on a specified
date string:

select WB_DECADE (sysdate) dcd
from dual;

select WB_DECADE ('26-MAR-2002"') DCD
from dual;

WB_HOUR12

Syntax
WB_HOUR12 (attribute)

Purpose

WB_HOUR12 returns the hour (in a 12-hour setting) component of the date
corresponding to attribute.

Example

The following example shows the return value on the sysdate and on a specified
date string:

Transformations 2-65

Date Transformations

select WB_HOUR12 (sysdate) hl2
from dual;

select WB_HOUR12 ('26-MAR-2002') hl2
from dual;

Note: For a date not including the timestamp (in the second
example), Oracle uses the 12:00 (midnight) timestamp and therefore
returns 12 in this case.

WB_HOUR12MI_SS

Syntax
WB_HOUR12MI_SS(attribute)

Purpose
WB_HOUR12MI_SS returns the timestamp in attribute formatted to HH12:MI:SS.

Example

The following example shows the return value on the sysdate and on a specified
date string:

select WB_HOUR12MI_SS (sysdate) hl2miss
from dual;

H12MISS

09:08:52

select WB_HOURI2MI_SS ('26-MAR-2002') hl2miss
from dual;

H12MISS

12:00:00

Note: For a date not including the timestamp (in the second
example), Oracle uses the 12:00 (midnight) timestamp and therefore
returns 12 in this case.

2-66 Oracle Warehouse Builder Transformation Guide

Date Transformations

WB_HOUR24

Syntax
WB_HOUR24 (attribute)

Purpose

WB_HOUR24 returns the hour (in a 24-hour setting) component of date corresponding
to attribute.

Example

The following example shows the return value on the sysdate and on a specified
date string:

select WB_HOUR24 (sysdate) h24
from dual;

select WB_HOUR24 ('26-MAR-2002') h24
from dual;

Note: For a date not including the timestamp (in the second
example), Oracle uses the 00:00:00 timestamp and therefore returns
the timestamp in this case.

WB_HOUR24MI_SS

Syntax
WB_HOUR24MI_SS(attribute)

Purpose
WB_HOUR24MI_SS returns the timestamp in attribute formatted to HH24:MI:SS.

Example

The following example shows the return value on the sysdate and on a specified
date string:

select WB_HOUR24MI_SS (sysdate) h24miss
from dual;

H24MISS

09:11:42

select WB_HOUR24MI_SS ('26-MAR-2002') h24miss
from dual;

Transformations 2-67

Date Transformations

WB_IS_DATE

WB_JULIAN_F

H24MISS

00:00:00

Note: For a date not including the timestamp (in the second
example), Oracle uses the 00:00:00 timestamp and therefore returns
the timestamp in this case.

Syntax
WB_IS_DATE (attribute, fmt)

Purpose

To check whether attribute contains a valid date. The function returns a Boolean
value which is set to true if at tribute contains a valid date. Fmt is an optional date
format. If fmt is omitted, the date format of your database session is used.

You can use this function when you validate your data before loading it into a table.
This way the value can be transformed before it reaches the table and causes an error.

Example
WB_IS_DATE returns true in PL/SQL if attribute contains a valid date.

ROM_DATE

Syntax
WB_JULIAN_FROM_DATE (attribute)

Purpose

WB_JULIAN_FROM_DATE returns the Julian date of date corresponding to
attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_JULIAN_FROM_DATE (sysdate) jdate
from dual;

2452362

select WB_JULIAN_FROM_DATE ('26-MAR-2002') jdate
from dual;

2452360

2-68 Oracle Warehouse Builder Transformation Guide

Date Transformations

WB_MI_SS

Syntax
WB_MI_SS(attribute)

Purpose

WB_MI_SS returns the minutes and seconds of the time component in the date
corresponding to attribute.

Example

The following example shows the return value on the sysdate and on a specified
date string:

select WB_MI_SS (sysdate) mi_ss
from dual;

select WB_MI_SS ('26-MAR-2002') mi_ss
from dual;

Note: For a date not including the timestamp (in the second
example), Oracle uses the 00:00:00 timestamp and therefore returns
the timestamp in this case.

WB_WEEK_OF _MONTH

Syntax
WB_WEEK_OF_MONTH (attribute)

Purpose

WB_WEEK_OF_MONTH returns the week number within the calendar month for the date
corresponding to attribute.

Example

The following example shows the return value on the sysdate and on a specified
date string:

select WB_WEEK_OF_MONTH (sysdate) w_of_m
from dual;

select WB_WEEK_OF_MONTH ('26-MAR-2002') w_of_m
from dual;

Transformations 2-69

Number Transformations

Number Transformations

Number transformations provide Warehouse Builder users with functionality to
perform transformations on numeric values. The custom functions provided with
Warehouse Builder are prefixed with WB_.

All numerical transformations provided with Warehouse Builder are:
= ABS onpage 2-71

= ACOS on page 2-71

= ASIN on page 2-71

= ATAN on page 2-72

= ATAN2 on page 2-72

= BITAND on page 2-72

= CEIL on page 2-73

= COS on page 2-74

s COSH on page 2-74

s EXP on page 2-74

= FLOOR on page 2-75

= LN on page 2-75

= LOG on page 2-75

= MOD on page 2-76

= NANVL on page 2-76

= POWER on page 2-77

= REMAINDER on page 2-77

= ROUND (number) on page 2-78

= SIGN on page 2-78

= SIN on page 2-79

= SINH on page 2-79

= SOQRT on page 2-79

= TAN on page 2-80

= TANH on page 2-80

s TRUNC (number) on page 2-80

= WB_LOOKUP_NUM (on a number) on page 2-81
= WB_LOOKUP_NUM (on a varchar2) on page 2-82
= WB_IS_NUMBER on page 2-82

2-70 Oracle Warehouse Builder Transformation Guide

Number Transformations

ABS

ACOS

ASIN

= WIDTH_BUCKET on page 2-83

Syntax
abs::=ABS (attribute)

Purpose
ABS returns the absolute value of attribute.

Example
The following example returns the absolute value of -15:

SELECT ABS(-15) "Absolute" FROM DUAL;
Absolute

Syntax
acos::= ACOS (attribute)

Purpose

ACOS returns the arc cosine of attribute. The argument at tribute must be in the
range of -1 to 1, and the function returns values in the range of 0 to pi, expressed in
radians.

Example
The following example returns the arc cosine of .3:

SELECT ACOS(.3) "Arc_Cosine" FROM DUAL;

Arc_Cosine

1.26610367

Syntax
asin::=ASIN(attribute)

Purpose

ASIN returns the arc sine of attribute. The argument attribute must be in the
range of -1 to 1, and the function returns values in the range of -pi/2 to pi/2,
expressed in radians.

Example
The following example returns the arc cosine of .3:

SELECT ACOS(.3) "Arc_Sine" FROM DUAL;

Transformations 2-71

Number Transformations

ATAN

ATAN2

BITAND

Arc_Sine

.304692654

Syntax
atan::=ATAN(attribute)

Purpose

ATAN returns the arc tangent of attribute. The argument attribute can be in an
unbounded range, and the function returns values in the range of -pi/2 to pi/2,
expressed in radians.

Example
The following example returns the arc tangent of .3:

SELECT ATAN(.3) "Arc_Tangent" FROM DUAL;

Arc_Tangent

.291456794

Syntax
atan2::=ATAN2 (attributel, attribute2)

Purpose

ATAN2 returns the arc tangent of attributel and attribute2. The argument
attributel can be in an unbounded range, and the function returns values in the range
of -pi to pi, depending on the signs of attributel and attribute2, and are expressed in
radians. ATAN2 (attributel,attribute2) is the same as

ATAN2 (attributel/attribute2).

Example
The following example returns the arc tangent of .3 and .2:

SELECT ATAN2(.3,.2) "Arc_Tangent2" FROM DUAL;

Arc_Tangent2

.982793723

Syntax
bitand::=BITAND (exprl, expr2)

2-72 Oracle Warehouse Builder Transformation Guide

Number Transformations

CEIL

Purpose

BITAND computes an AND operation on the bits of exprl and expr2, both of which
must resolve to nonnegative integers, and returns an integer. This function is
commonly used with the DECODE function, as illustrated in the example that follows.

Both arguments can be any numeric data type, or any nonnumeric data type that can
be implicitly converted to NUMBER. The function returns NUMBER.

Example

The following represents each order_status in the sample table oe . orders by
individual bits. (The example specifies options that can total only 7, so rows with
order_status greater than 7 are eliminated.)

SELECT order_id, customer_id,

DECODE (BITAND (order_status, 1), 1, 'Warehouse', 'PostOffice')
Location,

DECODE (BITAND (order_status, 2), 2, 'Ground', 'Air') Method,

DECODE (BITAND (order_status, 4), 4, 'Insured',K 'Certified') Receipt

FROM orders
WHERE order_status < 8;

ORDER_ID CUSTOMER_ID LOCATION MET RECEIPT

2458 101 Postoffice Air Certified
2397 102 Warehouse Air Certified
2454 103 Warehouse Air Certified
2354 104 Postoffice Air Certified
2358 105 Postoffice G Certified
2381 106 Warehouse G Certified
2440 107 Warehouse G Certified
2357 108 Warehouse Air Insured
2394 109 Warehouse Air Insured
2435 144 Postoffice G Insured
2455 145 Warehouse G Insured
Syntax

ceil::=CEIL(attribute)

Purpose
CEIL returns smallest integer greater than or equal to attribute.

Example
The following example returns the smallest integer greater than or equal to 15.7:

SELECT CEIL(15.7) "Ceiling" FROM DUAL;
Ceiling

Transformations 2-73

Number Transformations

Syntax
cos::=COS (attribute)
Purpose
COS returns the cosine of attribute (an angle expressed in degrees).
Example
The following example returns the cosine of 180 degrees:
SELECT COS (180 * 3.14159265359/180) "Cosine" FROM DUAL;
Cosine

-1

COSH
Syntax
cosh::=COSH(attribute)
Purpose
COSH returns the hyperbolic cosine of attribute.
Example
The following example returns the hyperbolic cosine of 0:
SELECT COSH(0) "Hyperbolic Cosine" FROM DUAL;
Hyperbolic Cosine
1
EXP

Syntax
exp: :=EXP(attribute)

Purpose

EXP returns e raised to the nth power represented in attribute, where e =
2.71828183...

Example
The following example returns e to the 4th power:

SELECT EXP(4) "e to the 4th power" FROM DUAL;
e to the 4th power

54.59815

2-74 Oracle Warehouse Builder Transformation Guide

Number Transformations

FLOOR

LN

LOG

Syntax
floor: :=FLOOR (attribute)

Purpose

FLOOR returns the largest integer equal to or less than the numerical value in
attribute.

Example
The following example returns the largest integer equal to or less than 15.7:

SELECT FLOOR(15.7) "Floor" FROM DUAL;

Syntax
In::=LN(attribute)

Purpose
LN returns the natural logarithm of attribute, where attribute is greater than 0.

Example
The following example returns the natural logarithm of 95:

SELECT LN(95) "Natural Logarithm" FROM DUAL;

Natural Logarithm

4.55387689

Syntax
log::=LOG (attributel, attribute2)

Purpose

LOG returns the logarithm, base attributel of attribute2. The base attributel
can be any positive number other than 0 or 1 and attribute2 can be any positive
number.

Example
The following example returns the logarithm of 100:

SELECT LOG(10,100) "Log base 10 of 100" FROM DUAL;

Transformations 2-75

Number Transformations

Log base 10 of 100

MOD
Syntax
mod: :=MOD(attributel, attribute2)
Purpose
MOD returns the remainder of attributel divided by attribute2. It returns
attributel if attribute2 is 0.
Example
The following example returns the remainder of 11 divided by 4:
SELECT MOD(11,4) "Modulus" FROM DUAL;
Modulus
3
NANVL
Syntax

nanvl: : =NANVL (m, n)

Purpose

The NANVL function is useful only for floating-point numbers of type BINARY_
FLOAT or BINARY_DOUBLE. It instructs Oracle Database to return an alternative
value n if the input value m is NaN (not a number). If m is not NaN, then Oracle returns
m. This function is useful for mapping NaN values to NULL.

This function takes as arguments any numeric data type or any nonnumeric data type
that can be implicitly converted to a numeric data type. Oracle determines the
argument with the highest numeric precedence, implicitly converts the remaining
arguments to that data type, and returns that data type.

Example

Using table float_point_demo created for TO_BINARY_DOUBLE, insert a second
entry into the table:

INSERT INTO float_point_demo
VALUES (0,'NaN', 'NaN');

SELECT * FROM float_point_demo;
DEC_NUM BIN_DOUBLE BIN_FLOAT

1234.56 1.235E+003 1.235E+003
0 Nan Nan

2-76 Oracle Warehouse Builder Transformation Guide

Number Transformations

POWER

REMAINDER

The following example returns bin_f1loat if it is not a number. Otherwise, 0 is
returned.

SELECT bin_float, NANVL (bin_float,0)
FROM float_point_demo;

BIN_FLOAT NANVL (BIN_FLOAT,0)

1.235E+003 1.235E+003
Nan 0
Syntax

power: :=POWER (attributel, attribute2)

Purpose

POWER returns attributel raised to the nth power represented in attribute2. The
base attributel and the exponent in attribute2 can be any numbers, but if
attributel is negative, then attribute2 must be an integer.

Example
The following example returns three squared:

SELECT POWER(3,2) "Raised" FROM DUAL;
Raised

Syntax
remainder: :=REMAINDER (m,n)

Purpose

REMAINDER returns the remainder of m divided by n. This function takes as
arguments any numeric data type or any nonnumeric data type that can be implicitly
converted to a numeric data type. Oracle determines the argument with the highest
numeric precedence, implicitly converts the remaining arguments to that data type,
and returns that data type.

If n = 0 or m = infinity, then Oracle returns an error if the arguments are of type
NUMBER and NaN if the arguments are BINARY_FLOAT or BINARY_DOUBLE. If n
!= 0, then the remainder is m - (n*N) where N is the integer nearest m/n. If m is a
floating-point number, and if the remainder is 0, then the sign of the remainder is the
sign of m. Remainders of 0 are unsigned for NUMBER values.

The MOD function is similar to REMAINDER except that it uses FLOOR in its
formula, whereas REMAINDER uses ROUND.

Transformations 2-77

Number Transformations

Example

Using table float_point_demo created for TO_BINARY_DOUBLE, the following
example divides two floating-point numbers and returns the remainder of that
operation:

SELECT bin_float, bin_double, REMAINDER (bin_float, bin_double)
FROM float_point_demo;

BIN_FLOAT BIN_DOUBLE REMAINDER (BIN_FLOAT, BIN_DOUBLE)

1.235E+003 1.235E+003 5.859E-005

ROUND (number)

SIGN

Syntax
round_number: :=ROUND (attributel, attribute2)

Purpose

ROUND returns attributel rounded to attribute2 places right of the decimal
point. If attribute2 is omitted, attributel is rounded to 0 places. Additionally,
attribute2 can be negative to round off digits left of the decimal point and
attribute2 must be an integer.

Examples
The following example rounds a number to one decimal point:

SELECT ROUND(15.193,1) "Round" FROM DUAL;

The following example rounds a number one digit to the left of the decimal point:

SELECT ROUND(15.193,-1) "Round" FROM DUAL;
Round

Syntax
sign::=SIGN(attribute)

Purpose

If attribute <0, SIGN returns -1. If attribute = 0, the function returns 0. If
attribute >0, SIGN returns 1. This can be used in validation of measures where
only positive numbers are expected.

Example
The following example indicates that the function's argument (-15) is <0:

2-78 Oracle Warehouse Builder Transformation Guide

Number Transformations

SELECT SIGN(-15) "Sign" FROM DUAL;

Sign
-1
SIN
Syntax
sin::=SIN(attribute)
Purpose
SIN returns the sine of attribute (expressed as an angle)
Example
The following example returns the sine of 30 degrees:
SELECT SIN(30 * 3.14159265359/180) "Sine of 30 degrees" FROM DUAL;
Sine of 30 degrees
.5
SINH
Syntax
sinh::=SINH(attribute)
Purpose
SINH returns the hyperbolic sine of attribute.
Example
The following example returns the hyperbolic sine of 1:
SELECT SINH(1) "Hyperbolic Sine of 1" FROM DUAL;
Hyperbolic Sine of 1
1.17520119
SQRT

Syntax
sqgrt::=SQRT (attribute)

Purpose

SQRT returns square root of attribute. The value in at tribute cannot be negative.
SQRT returns a "real" result.

Transformations 2-79

Number Transformations

Example
The following example returns the square root of 26:

SELECT SQRT(26) "Square root" FROM DUAL;

Square root

5.09901951
TAN
Syntax
tan::=TAN(attrin=bute)
Purpose
TAN returns the tangent of attribute (an angle expressed in radians).
Example
The following example returns the tangent of 135 degrees:
SELECT TAN(135 * 3.14159265359/180) "Tangent of 135 degrees" FROM DUAL;
Tangent of 135 degrees
-1
TANH
Syntax
tanh::=TANH (attribute)
Purpose
TANH returns the hyperbolic tangent of attribute.
Example
The following example returns the hyperbolic tangent of 5:
SELECT TANH(5) "Hyperbolic tangent of 5" FROM DUAL;
Hyperbolic tangent of 5
.462117157
TRUNC (number)

Syntax
trunc_number: :=TRUNC (attribute, m)

2-80 Oracle Warehouse Builder Transformation Guide

Number Transformations

Purpose

TRUNC returns attribute truncated to m decimal places. If m is omitted, attribute
is truncated to 0 places. m can be negative to truncate (make zero) m digits left of the
decimal point.

Example
The following example truncates numbers:

SELECT TRUNC (15.79,1) "Truncate"
FROM DUAL;
Truncate

15.7

SELECT TRUNC (15.79,-1) "Truncate"
FROM DUAL;

Truncate

WB_LOOKUP_NUM (on a number)

Syntax

WB_LOOKUP_NUM (table_name
, column_name

, key_column_name

, key_value

)

where table_name is the name of the table to perform the lookup on; column_name
is the name of the NUMBER column that will be returned, for instance, the result of
the lookup; key_column_name is the name of the NUMBER column used as the key
to match on in the lookup table; key_value is the value of the key column, for
example, the value mapped into the key_column_name with which the match will be
done.

Purpose

To perform a key look up that returns a NUMBER value from a database table using a
NUMBER column as the matching key.

Example
Consider the following table as a lookup table LKP1:

KEYCOLUMN TYPE_NO TYPE
10 100123 Car
20 100124 Bike

Using this package with the following call:

WB_LOOKUP_CHAR('LKP1'
, 'TYPE_NO'

, 'KEYCOLUMN'

, 20

)

Transformations 2-81

Number Transformations

returns the value of 100124 as output of this transformation. This output is then
processed in the mapping as the result of an inline function call.

Note: This function is a row-based key lookup. Set-based lookups
are supported when you use the lookup operator.

WB_LOOKUP_NUM (on a varchar2)

Syntax:

WB_LOOKUP_CHAR (table_name
, column_name

, key_column_name

, key_value

)

where table_name is the name of the table to perform the lookup on; column_name
is the name of the NUMBER column that will be returned (such as the result of the
lookup); key_column_name is the name of the NUMBER column used as the key to
match on in the lookup table; key_value is the value of the key column, such as the
value mapped into the key_column_name with which the match will be done.

Purpose:

To perform a key lookup which returns a NUMBER value from a database table using
a VARCHAR? column as the matching key.

Example
Consider the following table as a lookup table LXP1:

KEYCOLUMN TYPE_NO TYPE
ACV 100123 Car
ACP 100124 Bike

Using this package with the following call:

WB_LOOKUP_CHAR ('LKP1'
, 'TYPE'

, 'KEYCOLUMN'

, "ACP'

)

returns the value of 100124 as output of this transformation. This output is then
processed in the mapping as the result of an inline function call.

Note: This function is a row-based key lookup. Set-based lookups
are supported when you use the Key lookup operator described in
the Oracle Warehouse Builder User's Guide.

WB_IS_NUMBER

Syntax
WB_IS_NUMBER (attibute, fmt)

2-82 Oracle Warehouse Builder Transformation Guide

Number Transformations

Purpose

To check whether attribute contains a valid number. The function returns a Boolean
value, which is set to true if at tribute contains a valid number. Fmt is an optional
number format. If fmt is omitted, the number format of your session is used.

You can use this function when you validate the data before loading it into a table.
This way the value can be transformed before it reaches the table and causes an error.

Example
WB_IS_NUMBER returns true in PL/SQL if attribute contains a valid number.

WIDTH_BUCKET

Syntax
width_bucket: :=WIDTH_BUCKET (expr,min_value,max_value,num_buckets)

Purpose

For a given expression, WIDTH_BUCKET returns the bucket number into which the
value of this expression would fall after being evaluated. WIDTH_BUCKET lets you
construct equiwidth histograms, in which the histogram range is divided into intervals
that have identical size. Ideally each bucket is a closed-open interval of the real
number line. For example, a bucket can be assigned to scores between 10.00 and
19.999... to indicate that 10 is included in the interval and 20 is excluded. This is
sometimes denoted as (10, 20).

The argument expr represents the expression for which the histogram is being
created. This expression must evaluate to a numeric or datetime value or to a value
that can be implicitly converted to a numeric or datetime value. If expr evaluates to
null, then the expression returns null. min_value and max_value are expressions
that resolve to the end points of the acceptable range for expr. Both of these
expressions must also evaluate to numeric or datetime values, and neither can
evaluate to null. num_buckets is an expression that resolves to a constant indicating
the number of buckets. This expression must evaluate to a positive integer.

When needed, Oracle Database creates an underflow bucket numbered 0 and an
overflow bucket numbered num_buckets+1. These buckets handle values less than
min_value and more than max_value and are helpful in checking the
reasonableness of endpoints.

Example

The following example creates a ten-bucket histogram on the credit_limit column
for customers in Switzerland in the sample table oe . customers and returns the
bucket number ("Credit Group") for each customer. Customers with credit limits
greater than the maximum value are assigned to the overflow bucket, 11:

SELECT customer_id, cust_last_name, credit_limit,
WIDTH_BUCKET (credit_limit, 100, 5000, 10) "Credit Group"
FROM customers WHERE nls_territory = 'SWITZERLAND'
ORDER BY "Credit Group";

CUSTOMER_ID CUST_LAST_NAME CREDIT_LIMIT Credit Group
825 Dreyfuss 500 1
826 Barkin 500 1
853 Palin 400 1
827 Siegel 500 1

Transformations 2-83

OLAP Transformations

843 Oates 700 2
844 Julius 700 2
835 Eastwood 1200 3
840 Elliott 1400 3
842 Stern 1400 3
841 Boyer 1400 3
837 Stanton 1200 3
836 Berenger 1200 3
848 Olmos 1800 4
849 Kaurusmdki 1800 4
828 Minnelli 2300 5
829 Hunter 2300 5
852 Tanner 2300 5
851 Brown 2300 5
850 Finney 2300 5
830 Dutt 3500 7
831 Bel Geddes 3500 7
832 Spacek 3500 7
838 Nicholson 3500 7
839 Johnson 3500 7
833 Moranis 3500 7
834 Idle 3500 7
845 Fawcett 5000 11
846 Brando 5000 11
847 Streep 5000 11

OLAP Transformations

OLAP transformations enable Warehouse Builder users to load data stored in
relational dimensions and cubes into an analytic workspace.

The OLAP transformations provided by Warehouse Builder are:
= WB_OLAP_AW_PRECOMPUTE on page 2-85

= WB_OLAP_LOAD_CUBE on page 2-86

= WB_OLAP_LOAD_DIMENSION on page 2-86

= WB_OLAP_LOAD_DIMENSION_GENUK on page 2-87

The WB_OLAP_LOAD_CUBE, WB_OLAP_LOAD_DIMENSION, and WB_OLAP_LOAD_
DIMENSION_GENUK transformations are used for cube cloning in Warehouse Builder.
Use these OLAP transformations only if your database version is Oracle Database 9i or
Oracle Database 10g Release 1. Starting with Oracle 10g Release 2, you can directly
deploy dimensions and cubes into an analytic workspace.

The WB_OLAP_AW_PRECOMPUTE only works with the Oracle Warehouse Builder 10g
Release 2.

The examples used to explain these OLAP transformations are based on the scenario
depicted in Figure 2-1.

2-84 Oracle Warehouse Builder Transformation Guide

OLAP Transformations

Figure 2-1 Example of OLAP Transformations

AW_WH

TIME_DIM AW_TIME
SALES_CUBE AW _SALES

\u_________\—'_'___'_'_'_,_,_/

The relational dimension TIME_DIM and the relational cube SALES_CUBE are stored
in the schema WH_TGT. The analytic workspace AW_WH, into which the dimension and
cube are loaded, is also created in the WH_TGT schema.

WB_OLAP_AW_PRECOMPUTE

Syntax

WBWB_OLAP_AW_PRECOMPUTE (p_aw_name, p_cube_name, p_measure_name, p_allow_parallel_
solve, p_max_job_queues_allocated)

where p_aw_name is the name of the AW where cube is deployed, p_cube_name is
the name of the cube to solve, p_measure_name is the optional name of a specific
measure to solve (if no measure is specified, then all measures will be solved), p_
allow_parallel_solve is the boolean to indicate parallelization of solve based on
partitioning (performance related parameter), p_max_job_queues_allocatedis
the number of DBMS jobs to execute in parallel (default value is 0). If 5 is defined and
there are 20 partitions then a pool of 5 DBMS jobs will be used to perform the data
load.

There is a subtle different between parallel and non-parallel solving. With non-parallel
solve, the solve happens synchronously, so when the API call is completed the solve is
complete. Parallel solve executes asynchronously, the API call will return with a job id
of the job launched. The job will control parallel solving using the max job queues
parameter to control its processing. The user may then use the job id to query the all_
scheduler_* views to check on the status of the activity.

Purpose

WB_OLAP_AW_PRECOMPUTE is used for solving a non-compressed cube
(compressed cubes are auto-solved). The load and solve steps can be done
independently. By default, the cube map loads data, then solves (precomputes) the
cube. You can load data using the map, then perform the solve at a different point of
time (since the solve/build time is the costliest operation).

Example

The following example loads data from the relational cubes MART and SALES_CUBE
into a cube called SALES and performs a simple solve execution working serially. This
example has parameters for parallel solve and max number of job queues. If parallel
solve is performed then an ASYNCHRONOUS solve job is launched and the master
job ID is returned through the return function.

declare
rslt varchar2(4000);

Transformations 2-85

OLAP Transformations

begin
rslt :=wb_olap_aw_precompute ('MART', 'SALES_CUBE', 'SALES');

end;
/

WB_OLAP_LOAD_CUBE

Syntax

wb_olap_load_cube: :=WB_OLAP_LOAD_CUBE (olap_aw_owner, olap_aw_name, olap_cube_
owner, olap_cube_name, olap_tgt_cube_name)

where olap_aw_owner is the name of the database schema that owns the analytic
workspace; olap_aw_name is the name of the analytic workspace that stores the cube
data; olap_cube_owner is the name of the database schema that owns the related
relational cube; olap_cube_name is the name of the relational cube; olap_tgt_
cube_name is the name of the cube in the analytic workspace.

Purpose

WB_OLAP_LOAD_CUBE loads data from the relational cube into the analytic
workspace. This allows further analysis of the cube data. This is for loading data in an
AW cube from a relational cube which it was cloned from. This is a wrapper around
some of the procedures in the DBMS_AWM package for loading a cube.

Example

The following example loads data from the relational cube SALES_CUBE into a cube
called AW_SALES in the AW_WH analytic workspace:

WB_OLAP_LOAD_CUBE('WH_TGT', 'AW_WH', 'WH_TGT', 'SALES_CUBE', 'AW_SALES')

WB_OLAP_LOAD_DIMENSION

Syntax

wb_olap_load_dimension: :=WB_OLAP_LOAD_DIMENSION (olap_aw_owner, olap_aw_name, olap_
dimension_owner, olap_dimension_name, olap_tgt_dimension_name)

where olap_aw_owner is the name of the database schema that owns the analytic
workspace; olap_aw_name is the name of the analytic workspace that stores the
dimension data; olap_dimension_owner is the name of the database schema in
which the related relational dimension is stored; olap_dimension_ name is the name
of the relational dimension; olap_tgt_dimension_name is the name of the
dimension in the analytic workspace.

Purpose

WB_OLAP_LOAD_DIMENSION loads data from the relational dimension into the
analytic workspace. This allows further analysis of the dimension data. This is for
loading data in an AW dimension from a relational dimension which it was cloned
from. This is a wrapper around some of the procedures in the DBMS_AWM package
for loading a dimension.

2-86 Oracle Warehouse Builder Transformation Guide

Other Transformations

Example

The following example loads the data from the relational dimension TIME_DIM into a
dimension called AW_TIME in the analytic workspace AW_WH:

WB_OLAP_LOAD_DIMENSION('WH_TGT', 'AW_WH', 'WH_TGT', 'TIME DIM', 'AW_TIME')

WB_OLAP_LOAD_DIMENSION_GENUK

Syntax

wb_olap_load_dimension_genuk: :=WB_OLAP_LOAD_DIMENSION_GENUK (olap_aw_owner, olap_
aw_name, olap_dimension_owner, olap_dimension_name, olap_tgt_dimension_name)

where olap_aw_owner is the name of the database schema that owns the analytic
workspace; olap_aw_name is the name of the analytic workspace that stores the
dimension data; olap_dimension_owner is the name of the database schema in
which the related relational dimension is stored; olap_dimension_name is the name
of the relational dimension; olap_tgt_dimension_name is the name of the
dimension in the analytic workspace.

Purpose

WB_OLAP_LOAD_DIMENSION_GENUK loads data from the relational dimension into
the analytic workspace. Unique dimension identifiers will be generated across all
levels. This is for loading data in an AW dimension from a relational dimension which
it was cloned from. This is a wrapper around some of the procedures in the DBMS_
AWM package for loading a dimension.

If a cube has been cloned and if you select YES for the Generate Surrogate Keys for
Dimensions option, then when you want to reload the dimensions, you should use the
WB_OLAP_LOAD_DIMENSION_GENUK procedure. This procedure generates surrogate
identifiers for all levels in the AW, because the AW requires all level identifiers to be
unique across all levels of a dimension.

Example

Consider an example in which the dimension TIME_DIM has been deployed to the
OLAP server by cloning the cube. The parameter generate surrogate keys for
Dimension was set to true. To now reload data from the relational dimension TIME_
DIM into the dimension AW_TIME in the analytic workspace AW_WH, use the following
syntax.

WB_OLAP_LOAD_CUBE('WH_TGT', 'AW_WH', 'WH_TGT', 'TIME_DIM', 'AW_TIME')

Other Transformations

Other transformations included with Warehouse Builder enable you to perform
various functions which are not restricted to certain data types. This section describes
those types. Other transformations provided by Warehouse Builder are:

= DEPTH on page 2-88

= DUMP on page 2-88

= EMPTY_BLOB, EMPTY_CLOB on page 2-90
= NLS_CHARSET_DECL_LEN on page 2-90

= NLS_CHARSET_ID on page 2-90

Transformations 2-87

Other Transformations

= NLS_CHARSET_NAME on page 2-91
= NULLIF on page 2-91

= NVL on page 2-92

= NVL2 on page 2-93

= ORA_HASH on page 2-93

= PATH on page 2-94

= SYS_CONTEXT on page 2-95
= SYS_GUID on page 2-95

= SYS_TYPEID on page 2-96

= UID on page 2-96

= USER on page 2-97

= USERENYV on page 2-97

= VSIZE on page 2-98

DEPTH
Syntax
depth: :=DEPTH (correlation_integer)
Purpose
DEPTH is an ancillary function used only with the UNDER_PATH and EQUALS_PATH
conditions. It returns the number of levels in the path specified by the UNDER_PATH
condition with the same correlation variable. The correlation_integer canbe any
NUMBER integer. Use it to correlate this ancillary function with its primary condition
if the statement contains multiple primary conditions. Values less than 1 are treated as
1.
Example
The EQUALS_PATH and UNDER_PATH conditions can take two ancillary functions,
DEPTH and PATH. The following example shows the use of both ancillary functions.
The example assumes the existence of the XMLSchema warehouses . xsd.
SELECT PATH(1), DEPTH(2)
FROM RESOURCE_VIEW
WHERE UNDER_PATH (res, '/sys/schemas/OE', 1)=1
AND UNDER_PATH (res, '/sys/schemas/OE', 2)=1;
PATH (1) DEPTH (2)
/www.oracle.com 1
/www.oracle.com/xwarehouses.xsd 2
DUMP
Syntax

dump: : =DUMP (expr, return_fmt, start_position, length)

2-88 Oracle Warehouse Builder Transformation Guide

Other Transformations

Purpose

DUMP returns a VARCHAR? value containing the data type code, length in bytes, and
internal representation of expr. The returned result is always in the database character
set. The argument return_fmt specifies the format of the return value and can have
any of the following values:

= 8 returns result in octal notation.

= 10 returns result in decimal notation.

= 16 returns result in a hexadecimal notation.
s 17 returns result as single characters.

By default, the return value contains no character set information. To retrieve the
character set name of expr, add 1000 to any of the preceding format values. For
example, a return_fmt of 1008 returns the result in octal and provides the character
set name of expr.

The arguments start_position and length combine to determine which portion
of the internal representation to return. The default is to return the entire internal
representation in decimal notation. If expr is null, then this function returns null.

Note: This function does not support CLOB data directly. However,
CLOBs can be passed in as arguments through implicit data
conversion.

Example

The following examples show how to extract dump information from a string
expression and a column:

SELECT DUMP('abc', 1016)
FROM DUAL;

DUMP ('ABC',1016)

Typ=96 Len=3 CharacterSet=WE8DEC: 61,62,63

SELECT DUMP(last_name, 8, 3, 2) "OCTAL"
FROM employees
WHERE last_name = 'Hunold';

Typ=1 Len=6: 156,157
SELECT DUMP(last_name, 10, 3, 2) "ASCII"

FROM employees
WHERE last_name = 'Hunold';

Transformations 2-89

Other Transformations

EMPTY_BLOB, EMPTY_CLOB

Syntax

empty_blob: :=EMPTY_BLOB ()
empty_clob: :=EMPTY_CLOB ()

Purpose

EMPTY_BLOB and EMPTY_CLOB return an empty LOB locator that can be used to
initialize a LOB variable or, in an INSERT or UPDATE statement, to initialize a LOB
column or attribute to EMPTY. EMPTY means that the LOB is initialized, but not
populated with data. You must initialize a LOB attribute that is part of an object type
before you can access and populate it.

Note: You cannot use the locator returned from this function as a
parameter to the DBMS_LOB package or the OCL

Example

The following example initializes the ad_photo column of the sample pm.print_media
table to EMPTY:

UPDATE print_media SET ad_photo = EMPTY_BLOB() ;

NLS_CHARSET_DECL_LEN

Syntax
nls_charset_decl_len::=NLS_CHARSET_DECL_LEN (byte_count, charset_id)

Purpose

NLS_CHARSET_DECL_LEN returns the declaration width (in number of characters) of
an NCHAR column. The byte_count argument is the width of the column. The
charset_id argument is the character set ID of the column.

Example
The following example returns the number of characters that are in a 200-byte column
when you are using a multibyte character set:

SELECT NLS_CHARSET_DECL_LEN(200, nls_charset_id('jaléeucfixed')) FROM DUAL;

NLS_CHARSET_DECL_LEN(200,NLS_CHARSET_ID('JA16EUCFIXED'))

NLS_CHARSET_ID

Syntax
nls_charset_id::= NLS_CHARSET_ ID(text)

Purpose

NLS_CHARSET_ID returns the character set ID number corresponding to character set
name text. The text argument is a run-time VARCHAR?2 value. The text value

2-90 Oracle Warehouse Builder Transformation Guide

Other Transformations

"CHAR_CS' returns the database character set ID number of the server. The text
value 'NCHAR_CS' returns the national character set ID number of the server.

Invalid character set names return null.

Example
The following example returns the character set ID number of a character set:

SELECT NLS_CHARSET_ID('jal6euc') FROM DUAL;

NLS_CHARSET_ID('JAl6EUC')

NLS_CHARSET_NAME

NULLIF

Syntax
nls_charset_name::= NLS_CHARSET NAME (number)

Purpose

NLS_CHARSET_NAME returns the name of the character set corresponding to ID
number. The character set name is returned as a VARCHAR?2 value in the database
character set.

If number is not recognized as a valid character set ID, then this function returns null.

Example
The following example returns the character set corresponding to character set ID
number 2:

SELECT NLS_CHARSET_NAME (2) FROM DUAL;

WE8DEC

Syntax
nullif::=NULLIF (exprl, expr2)

Purpose

NULLIF compares exprl and expr?2. If they are equal, then the function returns null.
If they are not equal, then the function returns expr1. You cannot specify the literal
NULL for exprl.

If both arguments are numeric data types, then Oracle Database determines the
argument with the higher numeric precedence, implicitly converts the other argument
to that data type, and returns that data type. If the arguments are not numeric, then
they must be of the same data type, or Oracle returns an error.

The NULLIF function is logically equivalent to the following CASE expression:

CASE WHEN exprl = expr 2 THEN NULL ELSE exprl END

Transformations 2-91

Other Transformations

NVL

Example

The following example selects those employees from the sample schema hr who have
changed jobs since they were hired, as indicated by a job_id in the job_history
table different from the current job_id in the employees table:

SELECT e.last_name, NULLIF(e.job_id, j.job_id) "0ld Job ID"
FROM employees e, job_history j
WHERE e.employee_id = j.employee_id
ORDER BY last_name;

LAST_ NAME 0ld Job ID
De Haan AD_VP
Hartstein MK_MAN
Kaufling ST_MAN
Kochhar AD_VP
Kochhar AD_VP
Raphaely PU_MAN
Taylor SA_REP
Taylor

Whalen AD_ASST
Whalen

Syntax

nvl::=NVL(attributel, attribute2)

Purpose

If attributel is null, NVL returns attribute2. If attributel is not null, then
NVL returns attributel. The arguments attributel and attribute2 can be any
data type. If their data types are different, attribute2 is converted to the data type
of attributel before they are compared. Warehouse Builder provides three variants
of NVL to support all input values.

The data type of the return value is always the same as the data type of attributel,
unless attributel is character data, in which case the return value data type is
VARCHAR?2, in the character set of attributel.

Example

The following example returns a list of employee names and commissions,
substituting "Not Applicable" if the employee receives no commission:

SELECT last_name, NVL(TO_CHAR (commission_pct), 'Not Applicable') "COMMISSION"
FROM employees
WHERE last_name LIKE 'B%';

LAST_NAME COMMISSION
Baer Not Applicable
Baida Not Applicable
Banda 11

Bates 16

Bell Not Applicable
Bernstein .26

Bissot Not Applicable

2-92 Oracle Warehouse Builder Transformation Guide

Other Transformations

NVL2

ORA_HASH

Bloom .21
Bull Not Applicable
Syntax

nvl2::=NVL2 (exprl, expr2, expr3)

Purpose

NVL2 lets you determine the value returned by a query based on whether a specified
expression is null or not null. If expr1 is not null, then NVL2 returns expr2. If exprl
is null, then NVL2 returns expr3. The argument exprl can have any data type. The
arguments expr2 and expr3 can have any data types except LONG.

If the data types of expr2 and expr3 are different:

s If expr2 is character data, then Oracle Database converts expr3 to the data type
of expr2 before comparing them unless expr3 is a null constant. In that case, a
data type conversion is not necessary. Oracle returns VARCHAR? in the character
set of expr2.

s If expr2 is numeric, then Oracle determines which argument has the highest
numeric precedence, implicitly converts the other argument to that data type, and
returns that data type.

Example

The following example shows whether the income of some employees is made up of
salary plus commission, or just salary, depending on whether the commission_pct
column of employees is null or not.

SELECT last_name, salary, NVL2(commission_pct,
salary + (salary * commission_pct), salary) income
FROM employees WHERE last_name like 'B%'
ORDER BY last_name;

LAST_ NAME SALARY INCOME
Baer 10000 10000
Baida 2900 2900
Banda 6200 6882
Bates 7300 8468
Bell 4000 4000
Bernstein 9500 11970
Bissot 3300 3300
Bloom 10000 12100
Bull 4100 4100
Syntax

ora_hash: :=ORA_HASH (expr,max_bucket, seed_value)

Transformations 2-93

Other Transformations

PATH

Purpose

ORA_HASH is a function that computes a hash value for a given expression. This
function is useful for operations such as analyzing a subset of data and generating a
random sample. The function returns a NUMBER value.

The expr argument determines the data for which you want Oracle Database to
compute a hash value. There are no restrictions on the type or length of data
represented by expr, which commonly resolves to a column name. The argument
max_bucket is optional and it determines the maximum bucket value returned by the
hash function. You can specify any value between 0 and 4294967295. The default is
4294967295. The optional seed_value argument enables Oracle to produce many
different results for the same set of data. Oracle applies the hash function to the
combination of expr and seed_value. You can specify any value between 0 and
4294967295. The default is 0.

Example

The following example creates a hash value for each combination of customer ID and
product ID in the sh.sales table, divides the hash values into a maximum of 100
buckets, and returns the sum of the amount_sold values in the first bucket (bucket 0).
The third argument (5) provides a seed value for the hash function. You can obtain
different hash results for the same query by changing the seed value.

SELECT SUM (amount_sold) FROM sales
WHERE ORA_HASH (CONCAT (cust_id, prod_id), 99, 5) = 0;

SUM (AMOUNT_SOLD)

The following example retrieves a subset of the data in the sh.sales table by
specifying 10 buckets (0 to 9) and then returning the data from bucket 1. The expected
subset is about 10% of the rows (the sales table has 960 rows):

SELECT * FROM sales
WHERE ORA_HASH (cust_id, 9) = 1;

PROD_ID CUST_ID TIME_ID C PROMO_ID QUANTITY_SOLD AMOUNT_SOLD

2510 6950 01-FEB-98 S 9999 2 78

9845 9700 04-FEB-98 C 9999 17 561

3445 33530 07-FEB-98 T 9999 2 170

740 22200 13-NOV-00 § 9999 4 156

9425 4750 29-NOV-00 I 9999 11 979

1675 46750 29-NOV-00 S 9999 19 1121
Syntax

path::=PATH(correlation_integer)

Purpose

PATH is an ancillary function used only with the UNDER_PATH and EQUALS_PATH
conditions. It returns the relative path that leads to the resource specified in the parent
condition. The correlation_integer can be any NUMBER integer and is used to

2-94 Oracle Warehouse Builder Transformation Guide

Other Transformations

correlate this ancillary function with its primary condition. Values less than 1 are
treated as 1.

Example

Please refer to the example for DEPTH. This example uses both the ancillary functions
of the EQUALS_PATH and UNDER_PATH.

SYS_CONTEXT

SYS_GUID

Syntax
sys_context::=SYS_CONTEXT (namespace, parameter, length)

Purpose

SYS_CONTEXT returns the value of parameter associated with the context namespace.
You can use this function in both SQL and PL/SQL statements. For namespace and
parameter, you can specify either a string or an expression that resolves to a string
designating a namespace or an attribute. The context namespace must already have
been created, and the associated parameter and its value must also have been set
using the DBMS_SESSION.set_context procedure. The namespace must be a valid
SQL identifier. The parameter name can be any string. It is not case sensitive, but it
cannot exceed 30 bytes in length.

The data type of the return value is VARCHAR?2. The default maximum size of the
return value is 256 bytes. You can override this default by specifying the optional
length parameter, which must be a NUMBER or a value that can be implicitly
converted to NUMBER. The valid range of values is 1 to 4000 bytes. If you specify an
invalid value, then Oracle Database ignores it and uses the default.

Oracle provides a built-in namespace called USERENV, which describes the current
session. For a description of the predefined parameters of the namespace USERENV,
refer Table 7-11 of the Oracle Database SQL Reference.

Example
The following statement returns the name of the user who logged onto the database:
CONNECT OE/OE

SELECT SYS_CONTEXT ('USERENV', 'SESSION_USER')
FROM DUAL;

SYS_CONTEXT ('USERENV', 'SESSION_USER')

The following hypothetical example returns the group number that was set as the
value for the attribute group_no in the PL/SQL package that was associated with the
context hr_apps when hr_apps was created:

SELECT SYS_CONTEXT ('hr_apps', 'group_no') "User Group"
FROM DUAL;

Syntax
sys_guid: :=SYS_GUID()

Transformations 2-95

Other Transformations

SYS_TYPEID

uiD

Purpose

SYS_GUID generates and returns a globally unique identifier (RAW value) made up of
16 bytes. On most platforms, the generated identifier consists of a host identifier, a
process or thread identifier of the process or thread invoking the function, and a
nonrepeating value (sequence of bytes) for that process or thread.

Example

The following example adds a column to the sample table hr.locations, inserts unique
identifiers into each row, and returns the 32-character hexadecimal representation of
the 16-byte RAW value of the global unique identifier:

ALTER TABLE locations ADD (uid_col RAW(32));
UPDATE locations SET uid_col = SYS_GUID();
SELECT location_id, uid_col FROM locations;

LOCATION_ID UID_COL

1000 7CD5B7769DF75CEFE034080020825436
1100 7CD5B7769DF85CEFE034080020825436
1200 7CD5B7769DF95CEFE034080020825436
1300 7CD5B7769DFASCEFE034080020825436

Syntax
sys_typeid::=SYS_TYPEID (object_type_value)

Purpose

SYS_TYPEID returns the typeid of the most specific type of the operand. This value is
used primarily to identify the type-discriminant column underlying a substitutable
column. For example, you can use the value returned by SYS_TYPEID to build an
index on the type-discriminant column. You can use the SYS_TYPEID function to
create an index on the type-discriminant column of a table.

You can use this function only on object type operands. All final root object
types—that is, final types not belonging to a type hierarchy—have a null typeid.
Oracle Database assigns to all types belonging to a type hierarchy a unique non-null
typeid.

Syntax
uid::=UID()

Purpose

UID returns an integer that uniquely identifies the session user, such as the user who is
logged on when running the session containing the transformation. In a distributed
SQL statement, the UID function identifies the user on your local database.

Use this function when logging audit information into a target table to identify the
user running the mappings.

2-96 Oracle Warehouse Builder Transformation Guide

Other Transformations

USER

USERENV

Example
The following returns the local database user id logged into this session:

SELECT uid FROM dual;

Syntax
user: :=USER()

Purpose

USER returns the name of the session user (the user who logged on) with the data type
VARCHAR?2.

Oracle compares values of this function with blank-padded comparison semantics. In
a distributed SQL statement, the UID and USER functions identify the user on your
local database.

Use this function when logging audit information into a target table to identify the
user running the mappings.

Example
The following example returns the local database user logged into this session:

SELECT user FROM dual;

OWB9I_RUN

Syntax

userenv: : =USERENV (parameter)

Purpose

Note: USERENV is a legacy function that is retained for backward
compatibility. Oracle recommends that you use the SYS_CONTEXT
function with the built-in USERENV namespace for current
functionality.

USERENV returns information about the current session. This information can be
useful for writing an application-specific audit trail table or for determining the
language-specific characters currently used by your session. You cannot use USERENV
in the condition of a CHECK constraint. Table 2-1 describes the values for the
parameter argument. All calls to USERENV return VARCHAR2 data except for calls

Transformations 2-97

Other Transformations

VSIZE

with the SESSIONID, ENTRYID, and COMMITSCN parameters, which return
NUMBER.

Table 2-1 Parameters of the USERENYV function

Parameter Return Value

CLIENT_INFO CLIENT_INFO returns up to 64 bytes of user session
information that can be stored by an application using the
DBMS_APPLICATION_INFO package.

Caution: Some commercial applications may be using this
context value. Please refer to the applicable documentation for
those applications to determine what restrictions they may
impose on use of this context area.

ENTRYID The current audit entry number. The audit entryid sequence is
shared between fine-grained audit records and regular audit
records. You cannot use this attribute in distributed SQL

statements

ISDBA ISDBA returns 'TRUE' if the user has been authenticated as
having DBA privileges either through the operating system or
through a password file.

LANG LANG returns the ISO abbreviation for the language name, a

shorter form than the existing ' LANGUAGE' parameter.

LANGUAGE LANGUAGE returns the language and territory used by the
current session along with the database character set in this
form: language_territory.characterset

SESSIONID SESSIONID returns the auditing session identifier. You cannot
specify this parameter in distributed SQL statements.

TERMINAL TERMINAL returns the operating system identifier for the
terminal of the current session. In distributed SQL statements,
this parameter returns the identifier for your local session. In a
distributed environment, this parameter is supported only for
remote SELECT statements, not for remote INSERT, UPDATE,
or DELETE operations.

Example
The following example returns the LANGUAGE parameter of the current session:

SELECT USERENV ('LANGUAGE') "Language" FROM DUAL;

Language

AMERICAN_AMERICA.WEBISO8859P1

Syntax
vsize: :=VSIZE (expr)

Purpose

VSIZE returns the number of bytes in the internal representation of expr. If expr is
null, then this function returns null. This function does not support CLOB data
directly. However, CLOBs can be passed in as arguments through implicit data
conversion.

2-98 Oracle Warehouse Builder Transformation Guide

Spatial Transformations

Example
The following example returns the number of bytes in the last_name column of the
employees in department 10:

SELECT last_name, VSIZE (last_name) "BYTES"
FROM employees
WHERE department_id = 10;

LAST_NAME BYTES

Spatial Transformations

Spatial Transformation is an integrated set of functions and procedures that enables
spatial data to be stored, accessed, and analyzed quickly and efficiently in an Oracle
database. Spatial transformations included with Warehouse Builder are:

s SDO_AGGR_CENTROID on page 2-99

= SDO_AGGR_CONVEXHULL on page 2-100
= SDO_AGGR_MBR on page 2-100

= SDO_AGGR_UNION on page 2-100

SDO_AGGR_CENTROID

Syntax
sdo_aggr_centroid: := SDO_AGGR_CENTROID (AggregateGeometry SDOAGGRTYPE)

Purpose

SDO_AGGR_CENTROID returns a geometry object that is the centroid (center of
gravity) of the specified geometry objects. The behavior of the function depends on
whether the geometry objects are all polygons, all points, or a mixture of polygons and
points:

= If the geometry objects are all polygons, the centroid of all the objects is returned.
= If the geometry objects are all points, the centroid of all the objects is returned.

= If the geometry objects are a mixture of polygons and points (specifically, if they
include at least one polygon and at least one point), any points are ignored, and
the centroid of all the polygons is returned.

The result is weighted by the area of each polygon in the geometry objects. If the
geometry objects are a mixture of polygons and points, the points are not used in the
calculation of the centroid. If the geometry objects are all points, the points have equal
weight.

Example
The following example returns the centroid of the geometry objects in the COLA_
MARKETS table.

SELECT SDO_AGGR_CENTROID (SDOAGGRTYPE (shape, 0.005))
FROM cola_markets;

Transformations 2-99

Spatial Transformations

SDO_AGGR_CENTROID (SDOAGGRTYPE (SHAPE, 0.005)) (SDO_GTYPE, SDO_SRID, SDO_POINT

SDO_GEOMETRY (2001, NULL, SDO_POINT_TYPE(5.21295938, 5.00744233, NULL), NULL, NULL)

SDO_AGGR_CONVEXHULL

Syntax
sod_aggr_convexhull::= SDO_AGGR_CONVEXHULL (AggregateGeometry SDOAGGRTYPE)

Purpose

SDO_AGGR_CONVEXHULL returns a geometry object that is the convex hull of the
specified geometry objects.

Example
The following example returns the convex hull of the geometry objects in the COLA_
MARKETS table.

SELECT SDO_AGGR_CONVEXHULL (SDOAGGRTYPE (shape, 0.005))
FROM cola_markets;

SDO_AGGR_CONVEXHULL (SDOAGGRTYPE (SHAPE, 0.005)) (SDO_GTYPE, SDO_SRID, SDO_POI

SDO_GEOMETRY (2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1l, 1003, 1), SDO_ORDINATE_
ARRAY (8, 1, 10, 7, 10, 11, 8, 11, 6, 11, 1, 7, 1, 1, 8, 1))

SDO_AGGR_MBR

Syntax
sod_aggr_mbr: := SDO_AGGR_MBR (geom SDO_GEOMETRY)

Purpose
SDO_AGGR_MBR returns the minimum bounding rectangle (MBR) of the specified
geometries, that is, a single rectangle that minimally encloses the geometries.

Example

The following example returns the minimum bounding rectangle of the geometry
objects in the COLA_MARKETS table.

SELECT SDO_AGGR_MBR (shape) FROM cola_markets;
SDO_AGGR_MBR (C.SHAPE) (SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SD

SDO_GEOMETRY (2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1l, 1003, 3), SDO_ORDINATE_
ARRAY (1, 1, 10, 11))

SDO_AGGR_UNION

Syntax
SDO_AGGR_UNION (

2-100 Oracle Warehouse Builder Transformation Guide

Streams Transformations

AggregateGeometry SDOAGGRTYPE

) RETURN SDO_GEOMETRY ;

Purpose

SDO_AGGR_UNION returns a geometry object that is the topological union (OR
operation) of the specified geometry objects.

Example

The following example returns the union of the first three geometry objects in the
COLA_MARKETS table (that is, all except cola_d).

SELECT SDO_AGGR_UNION (

SDOAGGRTYPE (c.shape, 0.005))

FROM cola_markets ¢

WHERE c.name < 'cola_d';
SDO_AGGR_UNION (SDOAGGRTYPE (C.SHAPE, 0.005)) (SDO_GTYPE, SDO_SRID, SDO_POINT (
SDO_GEOMETRY (2007, NULL, NULL, SDO_ELEM INFO_ARRAY(1, 1003, 2, 11, 1003, 1), SDO_
ORDINATE_ARRAY(8, 11, 6, 9, 8, 7, 10, 9, 8, 11, 1, 7, 1, 1, 5, 1, 8, 1, 8, 6, 5,
7,1, 7))

Streams Transformations

REPLICATE

The Streams transformations category contains one transformation called REPLICATE.
The following section describes this transformation.

Syntax
REPLICATE (lcr, conflict_resolution)

where 1cr stands for Logical Change Record and encapsulates the DML change. Its
data type is SYS.LCR$_ROW_RECORD. conflict_resolution isa Boolean
variable. If its value is TRUE, any conflict resolution defined for the table will be used
to resolve conflicts resulting from the execution of the LCR. For more information
about conflict resolution, refer to Oracle Streams Replication Administrators’ Guide.

Purpose

REPLICATE is used to replicate a DML change (INSERT, UPDATE, or DELETE) that
has occurred on a table in the source system on an identical table in the target system.
The table in the target system should be identical to the table in the source system in
the following respects:.

s The name of the schema that contains the target table should be the same as the
name of the schema that contains the source table.

s The name of the target table should the same as the name of the source table.

s The structure of the target table should be the same as that of the source table. The
structure includes the number, name, and data type of the columns in the table.

Transformations 2-101

XML Transformations

Example

Consider a table T1(cl varchar2(10), c2 number primary key) in schema S on the
source system and an identical table in the target system. Consider the following insert
operation on the table T1 on the source system

insert into T1 values ('abcde', 10)

An LCR representing the change following the above insert of a row on the table T1 in
the source system will have the following details

LCR.GET_OBJECT_OWNER will be 'S'

LCR.GET_OBJECT NAME will be 'T1'

LCR.GET_COMMAND_TYPE will be 'INSERT'

LCR.GET_VALUE('cl', 'mew') will have the value for the column 'cl' - i.e. 'abcde'
LCR.GET_VALUE('c2', 'mew') will have the value for the column 'c2' - i.e. 10

Such an LCR will be created and enqueued by a Streams Capture Process on the
source system that captures changes on table S.T1

REPLICATE(Icr, true) - will result in a row (‘abcde’, 10) being inserted into the table T1
on the target system.

Note: Using this approach will not provide lineage information. If
lineage is important, then do not use this function. Use the more direct
approach of using an LCRCast operator bound to the source table and
a table operator bound to the target table and connecting the attributes
of these two operators with the same name ('Match by name'). Further
information on LCR (Logical Change Record) is available in Oracle
Database 10g Documentation (Information Integration)

XML Transformations

XML transformations provide Warehouse Builder users with functionality to perform
transformations on XML objects. These transformations enable Warehouse Builder
users to load and transform XML documents and Oracle AQs.

To enable loading of XML sources, Warehouse Builder provides access to the database
XML functionality through custom functions, as detailed in this chapter.

Following are the XML transformations:
= EXISTSNODE on page 2-103

s EXTRACT on page 2-103

s EXTRACTVALUE on page 2-104

= SYS_XMLAGG on page 2-104

= SYS_XMLGEN on page 2-105

= WB_XML_LOAD on page 2-106

= WB_XML_LOAD_F on page 2-106
= XMLCONCAT on page 2-107

= XMLSEQUENCE on page 2-108

= XMLTRANSFORM on page 2-109

2-102 Oracle Warehouse Builder Transformation Guide

XML Transformations

EXISTSNODE

EXTRACT

Syntax
existsnode: :=EXISTSNODE (XMLType_instance,XPath_string,namespace_string)

Purpose

EXISTSNODE determines whether traversal of an XML document using a specified
path results in any nodes. It takes as arguments the XMLType instance containing an
XML document and a VARCHAR?2 XPath string designating a path. The optional
namespace_string must resolve to a VARCHAR? value that specifies a default
mapping or namespace mapping for prefixes, which Oracle Database uses when
evaluating the XPath expression(s).

This function returns a NUMBER value. It returns 0 if no nodes remain after applying
the XPath traversal on the document. It returns 1 if any nodes remain.

Example

The following example tests for the existence of the /Warehouse/Dock node in the
XML path of the warehouse_spec column of the sample table oe.warehouses:

SELECT warehouse_id, warehouse_name
FROM warehouses
WHERE EXISTSNODE (warehouse_spec, '/Warehouse/Docks') = 1;

WAREHOUSE_ID WAREHOUSE_NAME

1 Southlake, Texas
2 San Francisco
4 Seattle, Washington

Syntax
extract::=EXTRACT (XMLType_instance,XPath_string,namespace_string)

Purpose

EXTRACT is similar to the EXISTSNODE function. It applies a VARCHAR?2 XPath string
and returns an XMLType instance containing an XML fragment. The optional
namespace_string must resolve to a VARCHAR? value that specifies a default
mapping or namespace mapping for prefixes, which Oracle Database uses when
evaluating the XPath expression(s).

Example

The following example extracts the value of the /Warehouse/Dock node of the XML
path of the warehouse_spec column in the sample table oe . warehouses:
SELECT warehouse_name, EXTRACT (warehouse_spec, '/Warehouse/Docks')

"Number of Docks"

FROM warehouses
WHERE warehouse_spec IS NOT NULL;

WAREHOUSE_NAME Number of Docks

Southlake, Texas <Docks>2</Docks>

Transformations 2-103

XML Transformations

San Francisco <Docks>1</Docks>

New Jersey <Docks/>

Seattle, Washington <Docks>3</Docks>
EXTRACTVALUE

Syntax

SYS_XMLAGG

extractvalue: : =EXTRACTVALUE (XMLType_instance,XPath_string,namespace_string)

Purpose

The EXTRACTVALUE function takes as arguments an XMLType instance and an XPath
expression and returns a scalar value of the resultant node. The result must be a single
node and be either a text node, attribute, or element. If the result is an element, then
the element must have a single text node as its child, and it is this value that the
function returns. If the specified XPath points to a node with more than one child, or if
the node pointed to has a non-text node child, then Oracle returns an error. The
optional namespace_string must resolve to a VARCHAR? value that specifies a
default mapping or namespace mapping for prefixes, which Oracle uses when
evaluating the XPath expression(s).

For documents based on XML schemas, if Oracle can infer the type of the return value,
then a scalar value of the appropriate type is returned. Otherwise, the result is of type
VARCHAR?. For documents that are not based on XML schemas, the return type is
always VARCHAR?2.

Example

The following example takes as input the same arguments as the example for
EXTRACT. Instead of returning an XML fragment, as does the EXTRACT function, it
returns the scalar value of the XML fragment:

SELECT warehouse_name,
EXTRACTVALUE (e.warehouse_spec, '/Warehouse/Docks')
"Docks"
FROM warehouses e
WHERE warehouse_spec IS NOT NULL;

WAREHOUSE_NAME Docks

Southlake, Texas 2
San Francisco

New Jersey

Seattle, Washington 3

Syntax
sys_xmlagg: :=SYS_XMLAGG (expr, fmt)

Purpose

SYS_XMLAGG aggregates all of the XML documents or fragments represented by expr
and produces a single XML document. It adds a new enclosing element with a default
name ROWSET. If you want to format the XML document differently, then specify
fmt, which is an instance of the XMLFormat object.

2-104 Oracle Warehouse Builder Transformation Guide

XML Transformations

Example

The following example uses the SYS_XMLGEN function to generate an XML
document for each row of the sample table employees where the employee's last
name begins with the letter R, and then aggregates all of the rows into a single XML
document in the default enclosing element ROWSET:

SELECT SYS_XMLAGG (SYS_XMLGEN (last_name))
FROM employees
WHERE last_name LIKE 'R%';

SYS_XMLAGG (SYS_XMLGEN (LAST_NAME))

<ROWSET>
<LAST NAME>Raphaely</LAST NAME>
<LAST NAME>Rogers</LAST_NAME>
<LAST_NAME>Rajs</LAST_NAME>
<LAST_NAME>Russell</LAST_NAME>
</ROWSET>

SYS_XMLGEN

Syntax
sys_xmlgen: :=SYS_XMLGEN (expr, fmt)

Purpose

SYS_XMLGEN takes an expression that evaluates to a particular row and column of the
database, and returns an instance of type XMLType containing an XML document. The
expr can be a scalar value, a user-defined type, or an XMLType instance.

If expr is a scalar value, then the function returns an XML element containing the
scalar value. If expr is a type, then the function maps the user-defined type attributes
to XML elements. If expr is an XMLType instance, then the function encloses the
document in an XML element whose default tag name is ROW.

By default the elements of the XML document match the elements of expr. For
example, if expr resolves to a column name, then the enclosing XML element will be
the same column name. If you want to format the XML document differently, then
specify fmt, which is an instance of the XMLFormat object.

Example

The following example retrieves the employee email ID from the sample table
oe.employees where the employee_id value is 205, and generates an instance of
an XMLType containing an XML document with an EMATL element.

SELECT SYS_XMLGEN (email)
FROM employees
WHERE employee_id = 205;

SYS_XMLGEN (EMAIL)

<EMAIL>SHIGGINS</EMAIL>

Transformations 2-105

XML Transformations

WB_XML_LOAD

Syntax:
WB_XML_LOAD (control_file)

Purpose

This program unit extracts and loads data from XML documents into database targets.
The control_file, an XML document, specifies the source of the XML documents,
the targets, and any runtime controls. After the transformation has been defined, a
mapping in Warehouse Builder calls the transformation as a pre-map or post-map
trigger.

Example

The following example illustrates a script that can be used to implement a Warehouse
Builder transformation that extracts data from an XML document stored in the file
products.xml and loads it into the target table called books:

begin
wb_xml_load('<OWBXMLRuntime>"'

'<XMLSource>'

' <file>\ora817\GCCAPPS\products.xml</file>"

'</XMLSource>"'

'<targets>'

' <target XSLFile="\ora817\XMLstyle\GCC.xsl">books</target>"'

'</targets>'

'</OWBXMLRuUntime>"'
)i
end;

For more information on control files, see the Oracle Warehouse Builder User’s Guide.

WB_XML_LOAD_F

Syntax
WB_XML_LOAD_F (control_file)

Purpose

WB_XML_LOAD_F extracts and loads data from XML documents into database targets.
The function returns the number of XML documents read during the load. The
control_file,itself an XML document, specifies the source of the XML documents,
the targets, and any runtime controls. After the transformation has been defined, a
mapping in Warehouse Builder calls the transformation as a pre-map or post-map
trigger.

2-106 Oracle Warehouse Builder Transformation Guide

XML Transformations

XMLCONCAT

Example

The following example illustrates a script that can be used to implement a Warehouse
Builder transformation that extracts data from an XML document stored in the file
products.xml and loads it into the target table books:

begin
wb_xml_load_f ('<OWBXMLRuntime>"'

'<XMLSource>"'

' <file>\ora817\GCCAPPS\products.xml</file>"

'</XMLSource>"'

'<targets>'

' <target XSLFile="\ora817\XMLstyle\GCC.xsl">books</target>"'

'</targets>'

'</OWBXMLRuntime>"'
)i
end;

For more information on the types handled and detailed information on control_
files, see the Oracle Warehouse Builder User’s Guide.

Syntax
xmlconcat : : =XMLCONCAT (XMLType_instance)

Purpose

XMLCONCAT takes as input a series of XML Type instances, concatenates the series of
elements for each row, and returns the concatenated series. XMLCONCAT is the inverse
of XMLSEQUENCE. Null expressions are dropped from the result. If all the value
expressions are null, then the function returns null.

Example

The following example creates XML elements for the first and last names of a subset of
employees, and then concatenates and returns those elements:

SELECT XMLCONCAT (XMLELEMENT ("First", e.first_name),
XMLELEMENT ("Last", e.last_name)) AS "Result"
FROM employees e
WHERE e.employee_id > 202;

<First>Susan</First>
<Last>Mavris</Last>

<First>Hermann</First>
<Last>Baer</Last>

<First>Shelley</First>
<Last>Higgins</Last>

Transformations 2-107

XML Transformations

<First>William</First>
<Last>Gietz</Last>

XMLSEQUENCE

Syntax

xmlsequence:=xmlsequence (XMLType_instance XMLType)

Purpose

XMLSEQUENCE takes an XMLType instance as input and returns a varray of the
top-level nodes in the XMLType. You can use this function in a TABLE clause to unnest
the collection values into multiple rows, which can in turn be further processed in the

SQL query.

Example

The following example shows how XMLSequence divides up an XML document with
multiple elements into VARRAY single-element documents. The TABLE keyword
instructs the Oracle Database to consider the collection a table value that can be used
in the FROM clause of the subquery.

SELECT EXTRACT (warehouse_spec, '/Warehouse') as "Warehouse"
FROM warehouses
WHERE warehouse_name = 'San Francisco';

Warehouse

<Warehouse?
<Building>Rented</Building>
<Area>50000</Area>
<Docks>1</Docks>
<DockType>Side load</DockType>
<WaterAccess>Y</WaterAccess>
<RailAccess>N</RailAccess>
<Parking>Lot</Parking>
<VClearance>12 ft</VClearance>

</Warehouse>

SELECT VALUE (p)
FROM warehouses w,

TABLE (XMLSEQUENCE (EXTRACT (warehouse_spec, ' /Warehouse/*'))) p
WHERE w.warehouse_name = 'San Francisco';
VALUE (p)

<Building>Rented</Building>
<Area>50000</Area>
<Docks>1</Docks>
<DockType>Side load</DockType>
<WaterAccess>Y</WaterAccess>
<RailAccess>N</RailAccess>
<Parking>Lot</Parking>
<VClearance>12 ft</VClearance>

2-108 Oracle Warehouse Builder Transformation Guide

XML Transformations

XMLTRANSFORM

Syntax
xmltransform: : =XMLTRANSFORM (XMLType_instance, XMLType_instance)

Purpose

XMLTRANSFORM takes as arguments an XMLType instance and an XSL style sheet,
which is itself a form of XMLType instance. It applies the style sheet to the instance and
returns an XMLType. This function is useful for organizing data according to a style
sheet as you are retrieving it from the database.

Example

The XMLTRANSFORM function requires the existence of an XSL style sheet. Here is an
example of a very simple style sheet that alphabetizes elements within a node:

CREATE TABLE xsl_tab (coll XMLTYPE);

INSERT INTO xsl_tab VALUES (
XMLTYPE.createxml (
'<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"

<xsl:output encoding="utf-8"/>
<!-- alphabetizes an xml tree -->
<xsl:template match="*">
<xsl:copy>
<xsl:apply-templates select="*|text()">
<xsl:sort select="name(.)" data-type="text" order="ascending"/>
</xsl:apply-templates>
</xsl:copy>
</xsl:template>
<xsl:template match="text()">
<xsl:value-of select="normalize-space(.)"/>
</xsl:template>
</xsl:stylesheet> '));

The next example uses the xs1_tab XSL style sheet to alphabetize the elements in one
warehouse_spec of the sample table oe . warehouses:

SELECT XMLTRANSFORM (w.warehouse_spec, x.coll).GetClobval ()
FROM warehouses w, xsl_tab x
WHERE w.warehouse_name = 'San Francisco';

XMLTRANSFORM (W.WAREHOUSE_SPEC, X.COL1) .GETCLOBVAL ()

<Warehouse>
<Area>50000</Area>
<Building>Rented</Building>
<DockType>Side load</DockType>
<Docks>1</Docks>
<Parking>Lot</Parking>
<RailAccess>N</RailAccess>
<VClearance>12 ft</VClearance>
<WaterAccess>Y</WaterAccess>

</Warehouse>

Transformations 2-109

XML Transformations

2-110 Oracle Warehouse Builder Transformation Guide

A

ABS function, 2-71
accessing

transformation libraries, 1-4
ACOS function, 2-71
ADD_MONTHS function, 2-52
administrative transformations, 2-1
ASCII function, 2-10
ASCIISTR function, 2-36
ASIN function, 2-71
ATAN function, 2-72
ATAN2 function, 2-72

B

BITAND function, 2-72

Cc

CEIL function, 2-73
character transformations, 2-9
CHR function, 2-10
COMPOSE function, 2-36
CONCAT function, 2-11
control center transformations, 2-29
conversion transformations, 2-35
CONVERT function, 2-37
COS function, 2-74
COSH function, 2-74
creating

PL/SQL types, 1-8
CURRENT_DATE function, 2-53
custom transformations

about, 1-2

defining, 1-5

editing, 1-10

D

date transformations, 2-51
DBTIMEZONE function, 2-53
DEPTH function, 2-88
DUMP function, 2-88

Index

E
editing
PL/SQL types, 1-11
transformation properties, 1-10
EMPTY_BLOB, EMPTY_CLOB function, 2-90
EXISTSNODE function, 2-103
EXP function, 2-74
EXTRACT function, 2-103
EXTRACTVALUE function, 2-104

F

filters, with a transform, 1-12
FLOOR function, 2-75
FROM_TZ function, 2-53
functions

as transformations, 1-2

defining, 1-5

editing, 1-10

G
global shared library, 1-4

H
HEXTORAW function, 2-37

importing

PL/SQL functions, 1-12
INITCAP function, 2-12
INSTR function, 2-12
INSTR2 function, 2-12
INSTR4 function, 2-12
INSTRB function, 2-12
INSTRC function, 2-12

L

LAST_DAY function, 2-54
LENGTH function, 2-13
LENGTH2 function, 2-13
LENGTH4 function, 2-13
LENGTHB function, 2-13

Index-1

LENGTHC function, 2-13
LN function, 2-75

LOG function, 2-75
LOWER function, 2-14
LPAD function, 2-14
LTRIM function, 2-15

M

MOD function, 2-76
MONTHS_BETWEEN function, 2-54

N

NANVL function, 2-76

NEW_TIME function, 2-55
NEXT_DAY function, 2-56
NLS_CHARSET_DECL_LEN function,
NLS_CHARSET_ID function, 2-90
NLS_CHARSET_NAME function, 2-91
NLS_INITCAP function, 2-16
NLS_LOWER function, 2-16
NLS_UPPER function, 2-17
NLSSORT function, 2-15

NULLIF function, 2-91

number transformations, 2-70
NUMTODSINTERVAL function, 2-38
NUMTOYMINTERVAL function, 2-39
NVL2 function, 2-93

(o)

OLAP transformations, 2-84
ORA_HASH function, 2-93

Oracle library, 1-4

other (non-SQL) transformations, 2-87

P

packages
as transformations, 1-2
defining, 1-5
editing, 1-10
PATH function, 2-94
PL/SQL types
creating, 1-8
editing, 1-11
POWER function, 2-77
predefined transformations, 1-1
procedures
as transformations, 1-2
defining, 1-5
editing, 1-10
projects
importing PL/SQL into, 1-12

R

RAWTOHEX function, 2-39
RAWTONHEX function, 2-40
REGEXP_INSTR function, 2-18

Index-2

REGEXP_REPLACE function, 2-20
REGEXP_SUBSTR function, 2-22
REMAINDER function, 2-77
REPLACE function, 2-17
REPLICATE, 2-101

ROUND function, 2-56,2-78
RPAD function, 2-23

RTRIM function, 2-24

S

SCN_TO_TIMESTAMP function, 2-40

SDO_AGGR_CENTROID function, 2-99

SDO_AGGR_CONVEXHULL function,
SDO_AGGR_MBR function, 2-100
SDO_AGGR_UNION function, 2-100
SESSIONTIMEZONE function, 2-56
SIGN function, 2-78

SIN function, 2-79

SINH function, 2-79

SOUNDEX function, 2-24

Spatial Transformations, 2-99
SQRT function, 2-79

streams transformations, 2-101
SUBSTR function, 2-25

SUBSTR2 function, 2-25

SUBSTR4 function, 2-25

SUBSTRB function, 2-25

SUBSTRC function, 2-25
SYS_CONTEXT function, 2-95
SYS_EXTRACT_UTC function, 2-58
SYS_GUID function, 2-95
SYS_TYPEID function, 2-96
SYS_XMLAGG, 2-104
SYS_XMLGEN function, 2-105
SYSDATE function, 2-57
SYSTIMESTAMP function, 2-57

T

2-100

TAN function, 2-80
TANH function, 2-80
TIMESTAMP_TO_SCN function, 2-41
TO_BINARY_DOUBLE function, 2-42
TO_BINARY_FLOAT function, 2-43
TO_CHAR function, 2-43
TO_CLOB function, 2-45
TO_DATE function, 2-45
TO_DSINTERVAL function, 2-45
TO_MULTI_BYTE function, 2-46
TO_NCHAR function, 2-46
TO_NCLOB function, 2-47
TO_NUMBER function, 2-47
TO_SINGLE_BYTE function, 2-48
TO_TIMESTAMP function, 2-48
TO_TIMESTAMP_TZ function, 2-49
TO_YMINTERVAL function, 2-50
transformation filter data, 1-12
transformation libraries

about, 1-3

accessing, 1-4

global shared library, 1-4

Oracle library, 1-4

types, 1-3

types of, 1-3
transformation properties, 1-10
transformations

about, 1-1

administrative, 2-1

character, 2-9

control center, 2-29

conversion, 2-35

custom, 1-2

custom example, 1-12

date, 2-51

importing, 1-12

introduction to, 1-1 to 1-13

number, 2-70

OLAP, 2-84

other (non-SQL), 2-87

predefined, 1-1

streams, 2-101

types of, 1-1

XML, 2-102
TRANSLATE function, 2-26
TRIM function, 2-27
TRUNC function, 2-58, 2-80

U

UID function, 2-96
UNISTR function, 2-50
UPPER function, 2-27
USER function, 2-97
USERENYV function, 2-97

\'}

VSIZE function, 2-98

w

WB_ABORT function, 2-2
WB_CAL_MONTH_NAME function, 2-58
WB_CAL_MONTH_OF_YEAR function, 2-59
WB_CAL_MONTH_SHORT_NAME function, 2-59
WB_CAL_QTR function, 2-60
WB_CAL_WEEK_OF_YEAR function, 2-60
WB_CAL_YEAR function, 2-61
WB_CAL_YEAR_NAME function, 2-61
WB_COMPILE_PLSQL transformation, 2-2
WB_DATE_FROM_JULIAN function, 2-62
WB_DAY_NAME function, 2-62
WB_DAY_OF_MONTH function, 2-63
WB_DAY_OF_WEEK function, 2-63
WB_DAY_OF_YEAR function, 2-64
WB_DAY_SHORT_NAME function, 2-64
WB_DECADE function, 2-65
WB_DISABLE_ALL_CONSTRAINTS, 2-2
WB_DISABLE_ALL_TRIGGERS, 2-3
WB_DISABLE_CONSTRAINT, 2-4

WB_DISABLE_TRIGGER, 2-5
WB_ENABLE_ALL_CONSTRAINTS, 2-6
WB_ENABLE_ALL_TRIGGERS, 2-6
WB_ENABLE_CONSTRAINT, 2-7
WB_ENABLE_TRIGGER, 2-8
WB_HOURI12 function, 2-65
WB_HOURI12MI_SS function, 2-66
WB_HOUR?24 function, 2-67
WB_HOUR24MI_SS function, 2-67
WB_IS_DATE function, 2-68
WB_IS_NUMBER function, 2-82
WB_IS_SPACE function, 2-29
WB_JULIAN_FROM_DATE function, 2-68
WB_LOOKUP_CHAR function, 2-28
WB_LOOKUP_NUM function, 2-81,2-82
WB_MI_SS function, 2-69
WB_OLAP_AW_PRECOMPUTE, 2-85
WB_OLAP_LOAD_CUBE, 2-86
WB_OLAP_LOAD_DIMENSION, 2-86
WB_OLAP_LOAD_DIMENSION_GENUK, 2-87
WB_RT_GET_ELAPSED_TIME function, 2-30
WB_RT_GET_JOB_METRICS function, 2-31
WB_RT_GET_LAST_EXECUTION_TIME, 2-31
WB_RT_GET_MAP_RUN_AUDIT function, 2-32
WB_RT_GET_NUMBER_OF_ERRORS
function, 2-33
WB_RT_GET_NUMBER_OF_WARNINGS
function, 2-33
WB_RT_GET_PARENT_AUDIT_ID function, 2-34
WB_RT_GET_RETURN_CODE function, 2-34
WB_RT_GET_START_TIME function, 2-35
WB_TRUNCATE_TABLE, 2-9
WB_WEEK_OF_MONTH function, 2-69
WB_XML_LOAD, 2-106
WB_XML_LOAD_F, 2-106
WIDTH_BUCKET function, 2-83

X

XML Transformations, 2-102
XMLCONCAT function, 2-107
XMLSEQUENCE function, 2-108
XMLTRANSFORM function, 2-109

Index-3

Index-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Conventions
	Related Publications

	1 Introducing Oracle Warehouse Builder Transformations
	About Transformations
	Types of Transformations
	Predefined Transformations
	Custom Transformations

	Transforming Data Using Warehouse Builder
	Benefits of Using Warehouse Builder for Transforming Data

	About Transformation Libraries
	Types of Transformation Libraries
	Accessing Transformation Libraries

	Defining Custom Transformations
	Defining Functions and Procedures
	Name and Description Page
	Parameters Page
	Implementation Page
	Summary Page

	Defining PL/SQL Types
	Name and Description Page
	Attributes Page
	Return Type Page
	Summary Page

	Editing Transformation Properties
	Editing Function or Procedure Definitions
	Name Tab
	Parameters Tab
	Implementation Tab

	Editing PL/SQL Types
	Name Tab
	Attributes Tab
	Return Type Tab

	Importing PL/SQL

	2 Transformations
	Administrative Transformations
	WB_ABORT
	WB_COMPILE_PLSQL
	WB_DISABLE_ALL_CONSTRAINTS
	WB_DISABLE_ALL_TRIGGERS
	WB_DISABLE_CONSTRAINT
	WB_DISABLE_TRIGGER
	WB_ENABLE_ALL_CONSTRAINTS
	WB_ENABLE_ALL_TRIGGERS
	WB_ENABLE_CONSTRAINT
	WB_ENABLE_TRIGGER
	WB_TRUNCATE_TABLE

	Character Transformations
	ASCII
	CHR
	CONCAT
	INITCAP
	INSTR, INSTR2, INSTR4, INSTRB, INSTRC
	LENGTH, LENGTH2, LENGTH4, LENGTHB, LENGTHC
	LOWER
	LPAD
	LTRIM
	NLSSORT
	NLS_INITCAP
	NLS_LOWER
	NLS_UPPER
	REPLACE
	REGEXP_INSTR
	REGEXP_REPLACE
	REGEXP_SUBSTR
	RPAD
	RTRIM
	SOUNDEX
	SUBSTR, SUBSTR2, SUBSTR4, SUBSTRB, SUBSTRC
	TRANSLATE
	TRIM
	UPPER
	WB_LOOKUP_CHAR (number)
	WB_LOOKUP_CHAR (varchar2)
	WB_IS_SPACE

	Control Center Transformations
	WB_RT_GET_ELAPSED_TIME
	WB_RT_GET_JOB_METRICS
	WB_RT_GET_LAST_EXECUTION_TIME
	WB_RT_GET_MAP_RUN_AUDIT
	WB_RT_GET_NUMBER_OF_ERRORS
	WB_RT_GET_NUMBER_OF_WARNINGS
	WB_RT_GET_PARENT_AUDIT_ID
	WB_RT_GET_RETURN_CODE
	WB_RT_GET_START_TIME

	Conversion Transformations
	ASCIISTR
	COMPOSE
	CONVERT
	HEXTORAW
	NUMTODSINTERVAL
	NUMTOYMINTERVAL
	RAWTOHEX
	RAWTONHEX
	SCN_TO_TIMESTAMP
	TIMESTAMP_TO_SCN
	TO_BINARY_DOUBLE
	TO_BINARY_FLOAT
	TO_CHAR
	TO_CLOB
	TO_DATE
	TO_DSINTERVAL
	TO_MULTI_BYTE
	TO_NCHAR
	TO_NCLOB
	TO_NUMBER
	TO_SINGLE_BYTE
	TO_TIMESTAMP
	TO_TIMESTAMP_TZ
	TO_YMINTERVAL
	UNISTR

	Date Transformations
	ADD_MONTHS
	CURRENT_DATE
	DBTIMEZONE
	FROM_TZ
	LAST_DAY
	MONTHS_BETWEEN
	NEW_TIME
	NEXT_DAY
	ROUND (date)
	SESSIONTIMEZONE
	SYSDATE
	SYSTIMESTAMP
	SYS_EXTRACT_UTC
	TRUNC (date)
	WB_CAL_MONTH_NAME
	WB_CAL_MONTH_OF_YEAR
	WB_CAL_MONTH_SHORT_NAME
	WB_CAL_QTR
	WB_CAL_WEEK_OF_YEAR
	WB_CAL_YEAR
	WB_CAL_YEAR_NAME
	WB_DATE_FROM_JULIAN
	WB_DAY_NAME
	WB_DAY_OF_MONTH
	WB_DAY_OF_WEEK
	WB_DAY_OF_YEAR
	WB_DAY_SHORT_NAME
	WB_DECADE
	WB_HOUR12
	WB_HOUR12MI_SS
	WB_HOUR24
	WB_HOUR24MI_SS
	WB_IS_DATE
	WB_JULIAN_FROM_DATE
	WB_MI_SS
	WB_WEEK_OF_MONTH

	Number Transformations
	ABS
	ACOS
	ASIN
	ATAN
	ATAN2
	BITAND
	CEIL
	COS
	COSH
	EXP
	FLOOR
	LN
	LOG
	MOD
	NANVL
	POWER
	REMAINDER
	ROUND (number)
	SIGN
	SIN
	SINH
	SQRT
	TAN
	TANH
	TRUNC (number)
	WB_LOOKUP_NUM (on a number)
	WB_LOOKUP_NUM (on a varchar2)
	WB_IS_NUMBER
	WIDTH_BUCKET

	OLAP Transformations
	WB_OLAP_AW_PRECOMPUTE
	WB_OLAP_LOAD_CUBE
	WB_OLAP_LOAD_DIMENSION
	WB_OLAP_LOAD_DIMENSION_GENUK

	Other Transformations
	DEPTH
	DUMP
	EMPTY_BLOB, EMPTY_CLOB
	NLS_CHARSET_DECL_LEN
	NLS_CHARSET_ID
	NLS_CHARSET_NAME
	NULLIF
	NVL
	NVL2
	ORA_HASH
	PATH
	SYS_CONTEXT
	SYS_GUID
	SYS_TYPEID
	UID
	USER
	USERENV
	VSIZE

	Spatial Transformations
	SDO_AGGR_CENTROID
	SDO_AGGR_CONVEXHULL
	SDO_AGGR_MBR
	SDO_AGGR_UNION

	Streams Transformations
	REPLICATE

	XML Transformations
	EXISTSNODE
	EXTRACT
	EXTRACTVALUE
	SYS_XMLAGG
	SYS_XMLGEN
	WB_XML_LOAD
	WB_XML_LOAD_F
	XMLCONCAT
	XMLSEQUENCE
	XMLTRANSFORM

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

