
Product Administration
Guide

Version 7.8, Rev. B
January 2011

Copyright © 2005, 2011 Oracle and/or its affiliates. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information;
they are provided under a license agreement containing restrictions on use and disclosure and are also
protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability
with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. This document is not warranted to be error-
free. Except as may be expressly permitted in your license agreement for these Programs, no part of
these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to
the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle America, Inc., 500 Oracle Parkway, Redwood
City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or
services from a third party, the relationship is directly between you and the third party. Oracle is not
responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of
the agreement with the third party, including delivery of products or services and warranty obligations
related to purchased products or services. Oracle is not responsible for any loss or damage of any sort
that you may incur from dealing with any third party.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

Contents
Product Administration Guide 1

Chapter 1: What’s New in This Release

Chapter 2: Overview of Product Administration
Roadmap for Product Administration 21

Roadmap for Creating Simple Products with Attributes 22

Roadmap for Creating Products with Components 23

When to Use Configuration, Compatibility, Eligibility, and Product Validation Rules
26

About Working with Product Administration 27

Chapter 3: Basic Product Administration
About the Product Record 29

Process of Creating Simple Products 34
Creating a Product Record 35
Associating a Product with Price Lists 35
Setting Up User Access To a Product 35
Releasing a Simple Product 36

Setting Up Products with Recurring Prices 37

Creating Product Lines 37

Defining Product Features 38

Defining Related Products 39

Defining Equivalent Products 40

Comparing Features of Equivalent Products 40

Creating Product Entitlements 41

Associating Literature with Products 42

Associating Product News with Products 42

Associating Images with Products 43

Creating Product Field Service Details and Measurements 43

Exporting and Importing Products 43
Product Administration Guide Version 7.8, Rev. B 3

Contents ■
About Managing Product Records 43
Editing Product Records 44
Copying Product Records 44
Deleting Product Records 44
Exporting Product Records for Display 45

Creating a Product List Report 46

Chapter 4: Multilingual Translations for Product Data
About Product Data Translation 47

Translating the Product Description 48

Translating Product Class Display Names 49

Translating Attribute Names 49

Translating Attribute Definition Names 50

Translating Attribute Values 51

Translating Configuration Rule Explanations 51

Translating Relationship Names 52

Translating UI Group Names 53

Translating UI Property Values 53

Chapter 5: Product Bundles
About Product Bundles 55

Creating Simple Product Bundles 55

Modifying Simple Product Bundles 56

Deleting Simple Product Bundles 57

Controlling How Bundle Components are Forecast 57

Chapter 6: Products with Attributes
Component-Based Versus Attribute-Based Pricing 59

About Product Attributes 60

About Product Classes 60

About the Product Class Hierarchy 61

About Attribute Domains 62

About Hidden Attributes 63

Scenario for Creating Products with Attributes 64
Product Administration Guide Version 7.8, Rev. B4

Contents ■
Process of Creating Products with Attributes 65
Creating Attribute Definitions 65
Creating Product Classes in a Hierarchy 66
Associating Attributes with a Product 68
Setting Up Attribute Pricing 68

Setting Up Required Attributes 69

Setting a Read-Only Value for an Attribute of a Product 69

Changing Inherited Properties of Attributes 70

Changing the Hidden or Required Settings for a Product Attribute 73

About Managing Product Classes 74
Viewing Related Objects for Product Classes 74
Editing a Product Class Definition 74
Deleting a Product Class 76
Exporting or Importing Product Classes 76

About Managing Attribute Definition Records 78
Viewing Related Objects for Attribution Definitions 78
Editing Attribute Definitions 79
Deleting Attribute Definitions 79

Viewing Product Attributes 79

Chapter 7: Product Attributes with Business Component
Domains

About Attributes with Business Component Domains 81

About the UI Properties for Attributes with Business Component Domains 82

Process of Creating an Attribute with a Business Component Domain 83
Adding the Attribute to a Selection Page 84
Associating the Attribute with a Business Component 84
Setting Up Multiple Fields for Display 86
Creating a Business Component Field Constraint 87
Creating an Attribute Value Constraint 91

Chapter 8: Smart Part Numbers for Products with
Attributes

About Smart Part Numbers 93

Roadmap for Creating Smart Part Numbers 94

Process of Creating Dynamically Generated Smart Part Numbers 95
Creating a Part Number Generation Record 96
Product Administration Guide Version 7.8, Rev. B 5

Contents ■
Defining the Part Number Templates 97
Mapping Attribute Values to the Template 97
Testing the Part Number Templates 98

Editing a Dynamic Generation Method 98

Process of Creating Predefined Smart Part Numbers 99
Creating a Part Number Generation Record 99
Selecting the Attributes for Predefined Part Numbers 100
Creating the Part Number Matrix 100
Testing the Part Number Matrix 101

Editing a Predefined Generation Method 101

Assigning Smart Part Numbers to a Product 101

Viewing a Product’s Smart Part Number in a Quote 102

Updating a Generation Method with Attribute Changes 102

Chapter 9: Designing Products with Components
About Products with Components 105

About Products with Components and Product Classes 105

About Relationships 106

About Cardinality 108

Guidelines for Designing Products with Components 109

Process of Designing a Product with Components 110
Creating Product Records for a Product with Components and for Its Components 110
Adding a Single Product as a Component 111
Adding Products as Components Using the Class Domain 111
Adding Products as Components Using the Dynamic Class Domain 113
Adding a Group of Products from Different Classes as Components 114
Adding a Product with Components as a Component 116

Refreshing the Customizable Product Work Space 116

Enabling the Customize Button 117

About Managing the Structure of Products with Components 117
Editing a Relationship Definition 117
Deleting Products from Products with Components 118
Copying Products with Components 118

Creating a Report on a Product’s Structure 119
Product Administration Guide Version 7.8, Rev. B6

Contents ■
Chapter 10: Managing Products with Components
About Auto Match 121

About Finish It! 122

Viewing Relationships for Products 123

Using Product Classes as Templates for Products with Components 123

About Bundles as Products with Components 124
Converting a Bundle to a Regular Product with Components 125
Converting a Regular Product with Components to a Bundle 125

Defining an Asset with Components 126

Controlling How Products with Components Are Taxed 128

Controlling How Products with Components are Forecast 129

Chapter 11: Creating Custom Siebel Configurator User
Interfaces

About Default and Custom Siebel Configurator User Interfaces 131

About the Siebel Configurator User Interface View 133

About Themes for the Siebel Configurator UI 133

About Creating a Menu-Based Siebel Configurator UI 136

About Siebel Configurator UI Groups 138

About Siebel Configurator UI Controls 138

About High Interactivity and Standard Interactivity Siebel Configurator UIs 140

About Pricing Integration with Siebel Configurator 141

Creating Custom UIs for Customizable Products 141

Process of Creating a Custom Siebel Configurator User Interface 142
Creating the Siebel Configurator User Interface Record 142
Selecting the Base and Product Themes 143
Grouping Items onto Pages of the Siebel Configurator User Interface 143
Adding a Summary Page to the Siebel Configurator User Interface 145
Assigning Siebel Configurator Interfaces to Users 146

Tasks for Setting Up the Siebel Configurator HI User Interface 148
Setting Up the Grandchild Display of the HI Siebel Configurator User Interface 148
Using the Attribute Inline Display Control in the HI Siebel Configurator User Interface

151
Validating the User Interface for Customizable Products 153

About Managing Item Groups 153
Product Administration Guide Version 7.8, Rev. B 7

Contents ■
Chapter 12: Siebel Configurator UI Properties
About Siebel Configurator UI Properties 155

About Predefined UI Properties 156

Using User-Defined UI Properties 158

Defining a UI Property 159

Hiding Parts of a Customizable Product 159

Chapter 13: Siebel Configurator Web Templates
About Customizable Product Web Templates 161

About UI Properties in Web Templates 163

About UI Property Values 163

Creating a New Web Template 165

Modifying the Display Name of a Customizable Product 166

Example of Modifying the Display Name of a Customizable Product 169

Modifying the Display Name of Groups 170

Example of Modifying the Display Name of Groups 172

Modifying the Display Name of Items 173

Example of Modifying the Display Name of Items 176

Chapter 14: Configuration Constraints
About Configuration Constraints 179

About Start and End Dates for Configuration Constraints 180

About the Siebel Configurator Constraints View 181

Guidelines for Creating Configuration Constraints 182

Creating Configuration Constraints 182

Creating Groups of Related Configuration Constraints 186

Activating and Deactivating Configuration Constraints 186

About Managing Configuration Constraints 187
Editing Configuration Constraints 187
Copying Configuration Constraints 188
Deleting Configuration Constraints 188

Creating Siebel Configurator Constraint Templates 189

Creating a Siebel Configurator Constraint Summary Report 190
Product Administration Guide Version 7.8, Rev. B8

Contents ■
Chapter 15: Configuration Links
About Configuration Links 193

Creating a Business Component Configuration Link 195

Creating a Context Variable Link 197

Creating a System Variable Configuration Link 198

About Managing Configuration Links 199
Editing a Configuration Link Definition 199
Deleting a Configuration Link 199

Chapter 16: Configuration Resources
About Configuration Resources 201

Creating Configuration Resources 202

Managing Resources Using Configuration Constraints 202

About Managing Configuration Resources 203
Editing Configuration Resource Definitions 203
Deleting Configuration Resources 203

Chapter 17: Configuration Constraint Template Reference
About Configuration Constraint Processing 206

About Configuration Constraint Conditions 207

Compound Logic and Comparison Operators in Configuration Constraints 208

Arithmetic Operators in Configuration Constraints 210

Attribute Value (Advanced) Template 211

Conditional Value Template 212

Constrain Template 213

Constrain Attribute Conditions Template 213

Constrain Attribute Value Template 213

Constrain Conditionally Template 214

Constrain Product Quantity Template 215

Constrain Relationship Quantity Template 215

Constrain Resource Value Template 216

Display Message Template 217

Display Recommendation Template 217
Product Administration Guide Version 7.8, Rev. B 9

Contents ■
Exclude Template 218

Provide and Consume Templates 223

Simple Provide and Consume Templates 226

Relationship Item Constraint Template 228

Require Template 229

Require (Mutual) Template 234

Set Initial Attribute Value Template 235

Set Initial Resource Value Template 236

Set Preference Template 236

Chapter 18: Siebel Configurator Rule Assembly Language
Why Use Rule Assembly Language? 239

About Rule Assembly Language 239

Creating Constraints Using the Assisted Advanced Constraint Template 240

Creating Constraints Using the Advanced Constraint Template 241

Managing Constraints Written in Rule Assembly Language 244

About Specifying Data in Rule Assembly Language 245

About Operators in Rule Assembly Language 245
Data Operators in Rule Assembly Language 247
Boolean Operators in Rule Assembly Language 247
Comparison and Pattern Matching Operators in Rule Assembly Language 250
Arithmetic Operators in Rule Assembly Language 251
Attribute Operators in Rule Assembly Language 253
Conditional Operators in Rule Assembly Language 255
Special Operators in Rule Assembly Language 255
Customizable Product Access Operators in Rule Assembly Language 259

Examples of Constraints Using Rule Assembly Language 259

Chapter 19: Siebel Configurator Scripts
About Siebel Configurator Scripts 263

About Siebel Configurator Script Processing 264

About Product Names in Siebel Configurator Scripts 266

About Product Path in Siebel Configurator Scripts 267

Siebel Configurator Script Events and Methods 268
Cfg_InstInitialize Event 269
Product Administration Guide Version 7.8, Rev. B10

Contents ■
Cfg_ChildItemChanged Event 270
Cfg_AttributeChanged Event 272
Cfg_InstPostSynchronize Event 274
Cfg_ItemChanged Event 275
Cfg_OnConflict Event 276
OnAttributeSelected Event 277
OnChildItemSelected Event 277
GetInstanceId Method 277
GetCPInstance Method 278
GetObjQuantity Method 280
AddItem Method 281
RemoveItem Method 281
SetAttribute Method 282

Creating Siebel Configurator Event Scripts 283

Creating Siebel Configurator Declarations Scripts 284

Reviewing the Siebel Configurator Script Log File 285

About Managing Siebel Configurator Scripts 285
Editing Siebel Configurator Scripts 285
Deleting Siebel Configurator Scripts 286

Chapter 20: Testing Products and Using Workspace Projects
Testing a Product with Components in Validation Mode 287

About Scenario Tester and Workspace Projects 289

Process of Testing Products with Scenario Tester 291
Defining a Workspace Project for Scenario Testing 291
Defining the Contents for Scenario Testing 292
Creating Scenarios for Scenario Testing 293
Validating Scenarios 295
Correcting Product Definitions and Retesting 296

Displaying Only the Project in Use 296

Working with the Scenario XML File 296

Batch Validating Scenarios 297

Chapter 21: Releasing Products and Other Versioned
Objects

About Versions of C/OM Objects 299

Creating Time Slice Reports for Product Versions 300
Product Administration Guide Version 7.8, Rev. B 11

Contents ■
Releasing Products for Use 301

Deleting Product Versions 302

Replacing Earlier Product Versions 302

Displaying Product Versions that Are Available to Customers 302

Making Products Unavailable to Customers 303

Reverting to Earlier Versions of Products 303

Releasing Multiple Products Using Workspace Projects 304

Managing Products Using Workspace Projects 304

Migrating Products Among Environments 305

Chapter 22: Product and Promotion Eligibility and
Compatibility

About Product and Promotion Eligibility 309

About Eligibility Rules and Configuration Rules for Siebel CRM Version 7.7 and Earlier
310

Defining How Eligibility Output Displays 311

Defining Eligibility Groups 312

Defining Product and Promotion Eligibility Rules 313

Defining Eligibility for Products with Components and for Component Products 315

Creating Eligibility Matrices 315

About Product and Promotion Compatibility 317

About Compatibility Rules 317

Defining Compatibility Groups 318

Defining Compatibility Rules for Products and Promotions 319

Creating Compatibility Matrices 322

Verifying Quotes and Orders for Eligibility and Compatibility 323

Eligibility and Compatibility Workflow Reference 324
Product Eligibility & Compatibility - Default Workflow 325
Product Compatibility - Default Workflow 326
Compatibility Multiple Popup Workflow 328
Configurator Eligibility Compatibility Workflow 329
Check Eligibility & Compatibility - Default Workflow 330
Pricing and Eligibility Procedure - Default Workflow 331
Product Administration Guide Version 7.8, Rev. B12

Contents ■
Chapter 23: Creating Validation Rules for Customizable
Products

About Validation for Customizable Products 333

Scenario for Product Validation Using Custom Validation Services 334

Activating Workflows for Product Validation 335

Setting Up Product Validation Using the Simple Expression Business Service 336

Setting Up Product Validation Using Custom Validation Services 339

About Creating Custom Rule Checkers 341
PreValidate Method 341
Validate Method 344

Chapter 24: Siebel Configurator Technical Reference
Siebel Configurator Architecture 353

Siebel Configurator Server Deployment 354

Enabling Snapshot Mode 354

Enabling Auto Match 354

Specifying Keep Alive Time for Siebel Configurator Sessions 355

Enforcing the Field Length for Entering Advanced Rules 355

Displaying RAL in the Constraints View 356

Turning Off Default Instance Creation 357

Revising the Application Default Cardinalities 358

Configuring the Object Broker 358

Displaying Fields from S_PROD_INT in Selection Pages 358

ASIs for Managing Products 361

Auto Match Business Service for Siebel Configurator 362

Chapter 25: Siebel Configurator Workflow and Method
Reference

Siebel Configurator Workflow Reference 365
Configurator Cleanup Workflow 365
Configurator Load Workflow 366
Configurator Save Workflow 366
Configurator Validate Workflow 367
Configurator External Validate Workflow 367
Product Administration Guide Version 7.8, Rev. B 13

Contents ■
Siebel Configurator Methods Reference 368
LoadInstance Method 368
Validate Complex Product From Property Set Method 370
AppendMessages Method 371

Chapter 26: Siebel Configurator API Reference
About Siebel Configurator APIs 373

Instance APIs for the Complex Object Manager 373
LoadInstance Method 375
CreateSession Method 377
SetInstance Method 378
SyncInstance Method 378
UnloadInstance Method 378
GetAllPorts Method 379
EnumObjects Method 379
GetAttribute Method 380
GetFieldValues Method 381
GetInstance Method 381
GetParents Method 381
GetPossibleDomain Method 382
GetPossibleValues Method 382
GetProductId Method 383
GetRootPath Method 383
HasGenerics Method 384
GetConditionVal Method 384

APIs to Interact with Conflicts and Messages 384
GetDetailedReqExpl Method 385
GetExplanations Method 385
GetSignals Method 386
RemoveFailedRequests Method 386
UndoLastRequest Method 387

APIs to Set Product and Attribute Values 387
AddItem Method 387
CopyInstance Method 388
RemoveItem Method 388
ReplaceItem Method 389
RepriceInstance Method 390
SetAttribute Method 390
SetItemQuantity Method 391
SetFieldValue Method 391
Product Administration Guide Version 7.8, Rev. B14

Contents ■
Object Broker Methods 392
GetProdStruct Method 392
DeltaQuote Method 393

API to Select the Siebel Configurator User Interface 396
SetUIOption Method 396

API to Validate Customizable Products 397
BatchValidate Method 397

Chapter 27: Siebel Configurator in Release 6.x, 7.0 and 7.5
Managing Models in Release 6.x and 7.x 403

Designing the Catalog in Release 6.x and 7.x 405

Working with Properties in Release 6.x and 7.x 406

Working with Resources in Release 6.x and 7.x 406

Working with Linked Items in Release 6.x and 7.x 406

Designing Rules and Logical Expressions in Release 6.x and 7.x 407

Designing Scripts in Release 6.x and 7.x 408

Quote Integration and Configuration Assistant in Release 6.x and 7.x 410

Index
Product Administration Guide Version 7.8, Rev. B 15

Contents ■
Product Administration Guide Version 7.8, Rev. B16

1 What’s New in This Release
What’s New in Product Administration Guide, Version 7.8, Rev. B.
Table 1 lists changes described in this version of the documentation to support release 7.8 of the
software.

Table 1. New Product Features in Product Administration Guide, Version 7.8, Rev. B

Topic Description

“Deleting Product Records” on
page 44

New topic. It describes how to deactivate product records.

“Deleting a Product Class” on
page 76

New topic. It describes how to deactivate product class
records

“Using User-Defined UI Properties”
on page 158

New topic. It describes how to use user defined UI properties
in JavaScript.

“Creating a Context Variable Link”
on page 197

New topic. It describes how to create a context variable link.

“Set Preference Template” on
page 236

Modified Topic. It adds information about the new dynamic
default feature of the Set Preference Template.

“Cfg_InstInitialize Event” on
page 269

Modified topic. It adds more information about how this event
is triggered.

“Deleting Product Versions” on
page 302

New topic. It describes how to delete product versions.

“Defining How Eligibility Output
Displays” on page 311

Modified topic. It adds information about how to define how
eligibility output is displayed on server-based applications.

“GetConditionVal Method” on
page 384

New topic. It describes the GetConditionVal method.

“ReplaceItem Method” on page 389 New topic. It describes the ReplaceItem method.
Product Administration Guide Version 7.8, Rev. B 17

What’s New in This Release ■
What’s New in Product Administration Guide, Version 7.8, Rev. A.
Table 2 lists changes described in this version of the documentation to support release 7.8 of the
software.

What’s New in Product Administration Guide, Version 7.8
Table 3 lists changes described in this version of the documentation to support release 7.8 of the
software.

Table 2. New Product Features in Product Administration Guide, Version 7.8, Rev. A

Topic Description

Throughout the book Changed procedures to reflect usability enhancements in the
Administration - Product screen user interface for 7.8.2.

“Activating Workflows for Product
Validation” on page 335

Added this topic.

Chapter 20, “Testing Products and
Using Workspace Projects”

Modified this chapter to reflect enhancements in scenario
tester for 7.8.2.

“About Scenario Tester and
Workspace Projects” on page 289

Added this topic.

Chapter 22, “Product and Promotion
Eligibility and Compatibility”

Modified this chapter to reflect enhancements in eligibility for
7.8.2.

“Creating Eligibility Matrices” on
page 315

Added this topic.

“Creating Compatibility Matrices” on
page 322

Added this topic.

Chapter 25, “Siebel Configurator
Workflow and Method Reference”

Added this chapter.

“API to Select the Siebel
Configurator User Interface” on
page 396

Added this Method reference.

Table 3. New Product Features in Product Administration Guide, Version 7.8

Topic Description

“When to Use Configuration,
Compatibility, Eligibility, and
Product Validation Rules” on
page 26

Added this topic.

“Setting Up Required Attributes” on
page 69

Added this topic.
Product Administration Guide Version 7.8, Rev. B18

What’s New in This Release ■
“About High Interactivity and
Standard Interactivity Siebel
Configurator UIs” on page 140

Added this topic

“Creating Custom UIs for
Customizable Products” on
page 141

Added this topic.

“Process of Creating a Custom
Siebel Configurator User Interface”
on page 142

Added this topic.

“Assigning Siebel Configurator
Interfaces to Users” on page 146

Added this topic.

Chapter 20, “Testing Products and
Using Workspace Projects”

Added this chapter.

Chapter 21, “Releasing Products
and Other Versioned Objects”

Added this chapter.

Chapter 22, “Product and Promotion
Eligibility and Compatibility”

Added this chapter.

Chapter 23, “Creating Validation
Rules for Customizable Products”

Added this chapter.

“Configuring the Object Broker” on
page 358

Added this topic.

Table 3. New Product Features in Product Administration Guide, Version 7.8

Topic Description
Product Administration Guide Version 7.8, Rev. B 19

What’s New in This Release ■
Product Administration Guide Version 7.8, Rev. B20

2 Overview of Product
Administration
This chapter provides an overview of product administration. It includes the following topics:

■ “Roadmap for Product Administration” on page 21

■ “Roadmap for Creating Simple Products with Attributes” on page 22

■ “Roadmap for Creating Products with Components” on page 23

■ “When to Use Configuration, Compatibility, Eligibility, and Product Validation Rules” on page 26

■ “About Working with Product Administration” on page 27

Roadmap for Product Administration
This guide explains product administration for a number of different types of products. You only have
to read the chapters that apply to the types of product your company sells.

Simple Products Without Attributes
This is a product that only comes in one form, such as a book. The customer does not make any
decisions about features of the product.

To create simple products without attributes, read Chapter 3, “Basic Product Administration.”

Product Bundles
A product bundle is a group of products sold together. It cannot be customized.

For example, you might offer customers vacation packages that include airfare, hotel
accommodations for a specific number of days, and specific special events, all for one price.

To create this sort of product, you should read:

■ Chapter 3, “Basic Product Administration”

■ Chapter 5, “Product Bundles”

Simple Products with Attributes
A product with attributes has features that the customer can choose but does not have components
the customer can choose.

For example, a customer buying a t-shirt might be able to choose the shirt’s color and its size. The
shirt has two attributes, color and size. Each of these attributes has several possible values, such as
white, gray, black, and S, M, L, XL.
Product Administration Guide Version 7.8, Rev. B 21

Overview of Product Administration ■ Roadmap for Creating Simple Products with
Attributes
For information about creating simple products with attributes, see “Roadmap for Creating Simple
Products with Attributes” on page 22.

Products with Components
This is a product with components that a customer can select.

For example, a customer buying a computer might have to select a mouse, a floppy disk drive, a
monitor, and other components.

For information about creating products with components, see “Roadmap for Creating Products with
Components” on page 23.

Product Compatibility
You can define global rules that specify which products and promotions are compatible with each
other.

For more information, see Chapter 22, “Product and Promotion Eligibility and Compatibility.”

Product Eligibility
You can define global rules that specify which customers are eligible to buy products and promotions.

For more information, see Chapter 22, “Product and Promotion Eligibility and Compatibility.”

Product Validation Rules
For special cases where you want to create custom business services to check the compatibility of
products, you can use product validation rules.

For more information, see Chapter 23, “Creating Validation Rules for Customizable Products.”

Translations
If you are working with any of these types of products and you have to translate the interface into
multiple languages, you should also read: Chapter 4, “Multilingual Translations for Product Data.”

Roadmap for Creating Simple Products
with Attributes
A simple product with attributes has features that the customer can choose but does not have
components the customer can choose.

For example, a customer buying a t-shirt might be able to choose the shirt’s color and its size. The
shirt has two attributes, color and size. Each of these attributes has several possible values, such as
white, gray, black, and S, M, L, XL.

To create a simple product with attributes, perform the following tasks:
Product Administration Guide Version 7.8, Rev. B22

Overview of Product Administration ■ Roadmap for Creating Products with Components
■ Create the product. You create this in the same way you create other simple products. See
Chapter 3, “Basic Product Administration.”

■ Define the attributes of the product. You must define what attributes the product has and
the valid values for each attribute. See Chapter 6, “Products with Attributes”

For a more advanced method of defining attributes, see Chapter 7, “Product Attributes with
Business Component Domains.”

■ Decide whether to use the default user interface or create a custom user interface. For
information about the default interface, see “About Default and Custom Siebel Configurator User
Interfaces” on page 131.

■ Design the custom user interface. If you decide to create a custom interface, see Chapter 11,
“Creating Custom Siebel Configurator User Interfaces.” For more advanced methods of designing
a custom interface, see Chapter 12, “Siebel Configurator UI Properties.” and Chapter 13, “Siebel
Configurator Web Templates.”

■ Create constraints for the product with attributes. For some products with attributes, you
create constraints to define which attributes are compatible. For example, a shirt may come in
five sizes and ten colors, but some colors may not be available in all sizes.

■ To create simple constraints, see Chapter 14, “Configuration Constraints.”

■ For more advanced methods of creating constraints, you can use the same methods used to
create advanced constraints for products with components, described in “Roadmap for
Creating Products with Components” on page 23.

■ Create scripts for the product with attributes. Optionally, you can enhance the behavior of
Siebel Configurator by writing scripts in the Siebel eScript or the Siebel VB language. When the
user selects certain attributes or does things like updating the shopping cart, you can use scripts
to check the configuration, verify and adjust pricing, or forward information to other applications.
See Chapter 19, “Siebel Configurator Scripts.”

■ Create smart part numbers. If necessary, you can automatically generate a different part
number for each combination of attributes that is available. For example, you can have part
numbers for size S white shirt, size M white shirt, and so on. This allows you to pass the part
numbers to back office applications used for filling orders. See Chapter 8, “Smart Part Numbers
for Products with Attributes.”

■ Testing Products with Attributes. After you have designed the product, user interface, and
constraints, you should test the product to make sure that it works with the products that are
available now and in the future. See Chapter 20, “Testing Products and Using Workspace Projects.”

■ Releasing Products with Attributes. After you have tested the product, you can release it to
customers. See Chapter 21, “Releasing Products and Other Versioned Objects.”

Roadmap for Creating Products with
Components
A product with components has components that a customer can select.
Product Administration Guide Version 7.8, Rev. B 23

Overview of Product Administration ■ Roadmap for Creating Products with Components
For example, a customer buying a computer might have to select a mouse, a floppy disk drive, a
monitor, and other components.

Before you create a product with components, perform the following task:

■ Decide which rules to use for compatible products. You can define rules that specify which
products are compatible by using configuration rules, compatibility rules, or product validation
rules. To decide which to use, see “When to Use Configuration, Compatibility, Eligibility, and Product
Validation Rules” on page 26.

If you decide to use Siebel Configurator, perform the following tasks:

1 Set up cache administration. You specify how product models will be cached during run time,
in order to improve performance. For information about cache administration, see Performance
Tuning Guide.

2 Create the product with components and the component products. You create these in the
same way you create simple products, as described in Chapter 3, “Basic Product Administration.”
If the product with components or any component products have attributes, create them in the
same way you create simple products with attributes, as described in “Roadmap for Creating
Simple Products with Attributes” on page 22.

3 Define the structure of the product with components. You define the structure of the
product with components by specifying which products are its components. See Chapter 9,
“Designing Products with Components.”

4 For special techniques for defining and managing products with components, see Chapter 10,
“Managing Products with Components.”

5 Decide whether to use the default user interface or create a custom user interface. For
information about the default interface, see “About Default and Custom Siebel Configurator User
Interfaces” on page 131.

6 Design the custom user interface. If you decide to create a custom interface, see Chapter 11,
“Creating Custom Siebel Configurator User Interfaces.” For more advanced methods of designing
a custom interface, see Chapter 12, “Siebel Configurator UI Properties.” and Chapter 13, “Siebel
Configurator Web Templates.”

7 Create constraints for the product with components. For most products with components,
you must create constraints to define which components are compatible. For example, if the
product with components is a computer, you must define constraints to specify which processors
are compatible with which operating systems, and so on. To create simple constraints, see
Chapter 14, “Configuration Constraints.”

For more advanced methods of creating constraints, you can perform the following tasks:

■ Designing Links. Links provide access to other types of information besides products. You
can define links to fields in a business component, to the login name of the user, or to the
current system date. This lets you write constraints that affect only certain login names, are
conditioned on dates, or are conditioned on business component information. See
Chapter 15, “Configuration Links.”
Product Administration Guide Version 7.8, Rev. B24

Overview of Product Administration ■ Roadmap for Creating Products with Components
■ Designing Resources. Resources keep track of configuration-related amounts in a
customizable product. For example, you are designing a customizable product that is a
computer. This product has several choices of chassis, each with a different number of card
slots. Several of the components in this product are expansion cards that consume these
slots. To keep track of the number of slots available you could define a resource called Slots
Available. When the user selects a chassis, a constraint associated with the customizable
product would add the number of slots in the chassis to a Slots Available resource. Thus, you
can write constraints that monitor slot usage. See Chapter 16, “Configuration Resources.”

■ Modifying the Configuration Constraint Templates. The Constraints view provides
constraint templates that allow you to create a wide variety of configuration constraints. See
Chapter 17, “Configuration Constraint Template Reference.”

■ Writing Constraints using Siebel Configurator Rule Assembly Language. Rule
Assembly Language (RAL) is for users who are more comfortable working in a programming
environment rather than using templates. See Chapter 18, “Siebel Configurator Rule Assembly
Language”

8 Designing Siebel Configurator Scripts. Optionally, you can enhance the behavior of Siebel
Configurator by writing scripts in the Siebel eScript or the Siebel VB language. Scripts allow you
to add procedural logic to the configuration process. When the user selects certain items or does
things like updating the shopping cart, you can use scripts to check the configuration, verify and
adjust pricing, or forward information to other applications. See Chapter 19, “Siebel Configurator
Scripts.”

9 Testing Products with Components. After you have designed the product with components,
user interface, and rules, you should test the product with components to make sure that it works
with the products that are available now and in the future. See Chapter 20, “Testing Products and
Using Workspace Projects.”

10 Releasing Products with Components. After you have tested the product with components,
you can release it to customers. See Chapter 21, “Releasing Products and Other Versioned
Objects.”

11 Set up cache administration. You specify how product models will be cached during run time,
in order to improve performance. For information about cache administration, see Performance
Tuning Guide.

For additional information about products with components, see:

■ Chapter 24, “Siebel Configurator Technical Reference.” This chapter includes information about a
number of features that can be used by developers.

■ Chapter 27, “Siebel Configurator in Release 6.x, 7.0 and 7.5.” If you are upgrading from version 6
to version 7 of Siebel Configurator, read this chapter describing the differences between the
products.
Product Administration Guide Version 7.8, Rev. B 25

Overview of Product Administration ■ When to Use Configuration, Compatibility,
Eligibility, and Product Validation Rules
When to Use Configuration,
Compatibility, Eligibility, and Product
Validation Rules
There three ways to write rules to specify that products are compatible or incompatible with each
other, which should be used in different cases.

■ “Configuration Rules”

■ “Compatibility Rules”

■ “Product Validation Rules”

In addition, you should write rules to determine which customers are eligible to buy products using
“Eligibility Rules”.

Configuration Rules
Configuration rules are used to specify that components of a product with components are not
compatible with each other.

For example, a computer is a product with components, and its components that may not all be
compatible with each other. A specific model of monitor or keyboard may work only with some CPUs
and not with others.

When you define configuration rules, they only apply within the product with components. If you
have many different computers that use the same keyboard, you must write separate configuration
rules for each computer to specify which CPUs that keyboard is compatible with.

Use configuration rules if the exclude rules and require rules apply to just the component products
within a configuration model.

For more information about Siebel Configurator, see “Roadmap for Creating Products with
Components” on page 23.

Compatibility Rules
Without configuration, compatibility rules are global. While configuration rules apply to products only
when they are components of a given product with components, compatibility rules apply to products
globally.

For example, if you created a rule saying that a given computer keyboard is incompatible with a given
CPU, without configuration, the rule would apply whenever that computer and CPU are ordered. It
would not apply only to a specific model of computer.

Use compatibility rules without configuration if the exclude or require rules apply across a customers
entire asset base, open sales orders and current quote. This is the scope of compatibility rules by
default; it is possible to change this scope by configuring the application.

With configuration, it is possible to have compatibility rules apply only to products within the same
root product, as configuration rules do. If you are using only product excludes rules, this approach
may be useful, because it avoids the overhead of the Siebel Configurator constraint engine.
Product Administration Guide Version 7.8, Rev. B26

Overview of Product Administration ■ About Working with Product Administration
For more information about compatibility rules, see Chapter 22, “Product and Promotion Eligibility and
Compatibility.”

Product Validation Rules
Product validation is most useful when you create your own business services to solve specialized
business problems that cannot be addressed using Siebel Configurator.

For more information about product validation rules, see Chapter 23, “Creating Validation Rules for
Customizable Products.”

Eligibility Rules
Eligibility rules are used to specify which customers are eligible to buy products or promotions.

You should always use eligibility rules for this purpose. You should not use configuration rules to
specify which customers are eligible to buy products.

For more information about eligibility rules, see Chapter 22, “Product and Promotion Eligibility and
Compatibility.”

About Working with Product
Administration
This topic gives you background that you need for working with product administration.

Logging On as the Siebel Administrator
The Siebel database server installation script creates a Siebel administrator account that can be used
to perform the tasks described in this guide. For more information, see Siebel Server Installation
Guide and Siebel Server Administration Guide.

To log on as the Siebel administrator, start the application and log on using the user name and
password assigned by your database administrator. Generally, the Siebel administrator connects to
the server database.

CAUTION: Do not perform system administrative functions on your local database. Although there
is nothing to prevent you from doing this, it can have serious results. Examples include: data
conflicts, an overly large local database, a large number of additional transactions to route.

License Key Requirements
This guide describes basic product management tasks. It also describes how to use Siebel
Configurator to create and manage products with components and products with attributes. To use
Siebel Configurator, you must have the appropriate license keys installed.
Product Administration Guide Version 7.8, Rev. B 27

Overview of Product Administration ■ About Working with Product Administration
Product Administration Guide Version 7.8, Rev. B28

3 Basic Product Administration
This chapter describes the basic product administration tasks common to both simple and
customizable products. It includes the following topics:

■ “About the Product Record” on page 29

■ “Process of Creating Simple Products” on page 34

■ “Setting Up Products with Recurring Prices” on page 37

■ “Creating Product Lines” on page 37

■ “Defining Product Features” on page 38

■ “Defining Related Products” on page 39

■ “Defining Equivalent Products” on page 40

■ “Comparing Features of Equivalent Products” on page 40

■ “Creating Product Entitlements” on page 41

■ “Associating Literature with Products” on page 42

■ “Associating Product News with Products” on page 42

■ “Associating Images with Products” on page 43

■ “Creating Product Field Service Details and Measurements” on page 43

■ “Exporting and Importing Products” on page 43

■ “About Managing Product Records” on page 43

■ “Creating a Product List Report” on page 46

About the Product Record
Noncustomizable products are called simple products. Products with features that can be chosen at
the time of purchase are called customizable products. There are two types of customizable
products:

■ Products with attributes have features such as size and color that can be chosen.

■ Products with components have components that can be chosen.

You enter a product into the Siebel database by creating a product record. This record stores
important information about the product. The only required field in the product record is the product
name. However, it is important to associate the record with a price list and a product line. This allows
users to create quotes and to find important information about the product. In addition, when you
associate a product with a product class, the product inherits the attributes defined on the class.
Product Administration Guide Version 7.8, Rev. B 29

Basic Product Administration ■ About the Product Record
Table 4 lists the fields in the product record.

Table 4. Fields in the Product Record

Field Description

Allocate Below Safety Click the box to allow allocation below the safe inventory level of this
product.

Auto Allocate Click the box if you are using automatic allocation by the Order
Fulfillment engine of a particular product during the fulfillment process.

Auto Substitute Click the box to allow auto-substitution. Auto-substitution is the
automatic use by the Order Fulfillment Engine of a substitute product
when the product ordered cannot be found in inventory.

The substitute products are set using the Create Substitute form on the
Product Field Service Details page.

Check Eligibility Select this checkbox to make the application check customers’ eligibility
to buy this product. For more information, see Chapter 22, “Product and
Promotion Eligibility and Compatibility.”

Compensable Select this checkbox if sales personnel can receive compensation for
selling the product.

Compound Product Select this checkbox if this is a networking product which uses compound
product validation rules.

Customizable Displays a check mark if this is a customizable product with a work space
and at least one version of the product has been released and is available
to users.

Description Enter a brief description of the product.

Division Code (SAP) Can be used for setting up user access to products but is not
recommended. Instead, set up user access by assigning products to
categories.

Effective End The date after which the product is unavailable. This field is for
information only. Versioning controls when the product is available.

Effective Start Enter the date on which the product becomes available. This field is for
information only. Versioning controls when the product is available.

Global Product Identifier Enter a unique product identification string. Use this field to map
products from one Siebel installation to another or to a third-party
product master. This field is useful when the string in the Part # field is
required for local use or is not compatible with third-party product
masters. This field is intended for use by integrators needing to move
product information between applications.
Product Administration Guide Version 7.8, Rev. B30

Basic Product Administration ■ About the Product Record
Equivalent Product Displays the primary equivalent product. Click the select button in this
field to display all equivalent products or to add additional equivalent
products.

Field Replaceable Select this checkbox if this is a field-replaceable unit.

Format For training products, select a training format such as Instructor led and
Web-based.

Image File Name Select the image file associated with the product. You can also select the
image in Administration - Product screen, Collateral, Images view.

The optimal bitmap dimensions for product images are 4.15 x 4.15
inches, 12.14 x 12.14 cm, or 398 x 398 pixels.

Inclusive Eligibility Select this checkbox to specify inclusive eligibility. For more information,
see “Defining Product and Promotion Eligibility Rules” on page 313.

Integration Id Enter the back-office application product ID. This field can be used by
SAP and Oracle Product Connectors.

Item Size Enter the numeric product size.

Lead Time Enter the standard lead time for ordering the product. Measured in
weeks. For example, if you enter 2, this means 2 weeks.

Locked Flag Select this checkbox to lock the product so it can be modified.

Locked By Displays the user who locked the product.

Model Product This field is obsolete. It is provided as a reference for upgrade users of
Siebel Configurator.

MTBF Enter the mean time between failure for the product.

MTTR Enter the mean time to repair the product.

Orderable Select this checkbox if the product can be ordered. Determines whether
a product can be listed as a quote line item on a quote.

All components you add to a product with components must be
orderable.

Organization Can be used for setting up user access to products but is not
recommended. Instead, set up user access by assigning products to
categories.

Pageset Enter the name of the Siebel Advisor pageset to which the product
belongs. For more information, see Siebel Interactive Designer
Administration Guide.

Parent Product Select the parent product. This field is for information only. It is not used
for creating or managing products with components.

Part # Enter the part number of the product.

Table 4. Fields in the Product Record

Field Description
Product Administration Guide Version 7.8, Rev. B 31

Basic Product Administration ■ About the Product Record
Part Number Method Select the part number generation methods that can be assigned to a
product. This menu is part of the smart part number feature, described
in Chapter 8, “Smart Part Numbers for Products with Attributes.”

Price Type Select the price type. Options are:

■ One-Time. The customer pays once to buy the product.

■ Recurring. The customer pays a fixed recurring fee to use the
product. An example is a fixed monthly fee for local telephone
service.

■ Usage. The customer pays for the product based on usage. An
example is the charge for electricity, based on how much you
consume.

Primary Vendor Select the primary vendor for the product.

The primary vendor must be specified to associate the product with an
opportunity in the Opportunity Product Analysis Chart view.

Product Enter the name of the product. Products that will be added to the same
user access category must not have the same name.

The name should be only alphanumeric characters. Special characters
such as $ and / are not supported for customizable product scripting or
for Siebel Configurator APIs.

Product Class Select the product class to which you want to assign this product. The
product will inherit all the attributes defined on the class or that are
inherited by the class.

This is the field in the Workspace version. For the information to take
effect, you must click Release to release the product.

Product Level Enter the numeric product level in the product hierarchy. This field is for
record keeping only and is not used to create or manage the product
class system.

Product Line Select the desired product line for the product.

Project Resource Select this checkbox if the product is a service for a project. This
determines if the product is going to be available in the rate list.

Qty Enter the number of items in the unit of measure. For example, if the
unit of measure is a case, Qty would be the number of items in the case,
such as 24.

Return if Defective Select this checkbox to indicate that a defective product should be
returned by the customer when a replacement is shipped. Deselect the
checkbox if customers should not return defective products.

Revision Select the revision level of the product as it goes through revisions.

Table 4. Fields in the Product Record

Field Description
Product Administration Guide Version 7.8, Rev. B32

Basic Product Administration ■ About the Product Record
Sales Product Select this checkbox if the product is a sales product. This determines
whether the product is displayed in the Product picklist for Opportunities.

Serialized Select this checkbox if movement of the product (a transaction) requires
an asset number or its corresponding serial number. The default is no
check mark or X (not serialized).

NOTE: If the Serialized field is selected, the Service ID field of the Quote
item, Order item or Asset should be entered.

Service Product Select this checkbox if the product is a service. Only products designated
as service products will display when you click the Service button on a
quote.

Special pricing rules apply to service products. For more information, see
Pricing Administration Guide.

Ship Carrier Select the name of the shipping carrier for this product.

Ship Method Select the shipping mode: air ground, and so on.

Status Select the status of the product: prototype, alpha, beta, and so on.

Structure Type Select the type of structure the product has. Options are:

■ None. Simple product.

■ Bundle. Bundle product.

■ Customizable. Customizable product.

Structure Type controls whether the Customize button appears in the
product selection, quote, and order user interface.

Structure Type does not control how the product appears in the Siebel
Configurator User Interface. A product appear as a customizable product
in Siebel Configurator as long as it has either attributes or components
that the user can select, regardless of Structure Type.

Targeted Country Select the country where you want to sell this product.

Targeted Industry Select the industry you want to target with this product.

Targeted Max Age Enter the maximum age of buyers for this product.

Targeted Min Age Enter the minimum age of buyers for this product.

Targeted Postal Code Enter the postal code where you want to target sales of this product.

Tax Subcomponent Flag Select this checkbox to compute the tax on a bundle by adding up the
tax on its components. Useful when the tax rate or computation method
is not the same for all the components in a bundle.

Taxable Select this checkbox if the product is taxable.

Table 4. Fields in the Product Record

Field Description
Product Administration Guide Version 7.8, Rev. B 33

Basic Product Administration ■ Process of Creating Simple Products
Process of Creating Simple Products
This process covers the essential tasks that you must perform to create a simple product and make
it visible to users. Other tasks for creating simple products are covered in the rest of this chapter.

To create a simple product, perform the following tasks:

■ “Creating a Product Record” on page 35

■ “Associating a Product with Price Lists” on page 35

■ “Setting Up User Access To a Product” on page 35

■ “Releasing a Simple Product” on page 36

CAUTION: Do not create or copy training products in the Administration - Product screen. For
information about creating training products, see Siebel Training Guide.

Thumbnail Image File
Name

Select the thumbnail image file associated with the product. You can also
select the thumbnail image in Administration - Product screen, Product
Images view.

Tool Click the box if this product is a tool, such as one used by field service
engineers.

Track as Asset Select this checkbox if, when the product is purchased, you want to track
it as a customer asset to allows you to create quotes and orders based
on the asset. For more information, see the topic about asset-based
ordering in Siebel Order Management Guide.

Type Select the product type: product, service, or training. You should select
a Type if users will be using the Spread Discount feature in Quotes. If
you create custom values in this list, you must configure the product
using Siebel Tools to make the Spread Discount feature work. For more
information about Spread Discount, see Siebel Order Management
Guide.

Unit of Measure Select the unit of measure by which the product is sold, for example,
Each.

Vendor Part # Enter the vendor’s part number for this product.

Vendor Site Displays the primary vendor’s location. This field is filled automatically
when you select a vendor.

Table 4. Fields in the Product Record

Field Description
Product Administration Guide Version 7.8, Rev. B34

Basic Product Administration ■ Process of Creating Simple Products
Creating a Product Record
You enter products into the Siebel application by creating product records. The product record
contains the product name and important information about the product, such as its product line
name or part number.

You add a new product record by clicking the New button. This creates the new product without
releasing it, and locks the workspace.

This task is a step in “Process of Creating Simple Products” on page 34.

To create a product record

1 Navigate to Administration - Product screen, then the Products view.

2 In the Products list, add a new record and complete the necessary fields, described in “About the
Product Record” on page 29.

Associating a Product with Price Lists
Products are not visible to customers unless they are associated with price lists that are assigned to
the customers. For more information on creating price lists and assigning them to customers, see
Pricing Administration Guide.

This task is a step in “Process of Creating Simple Products” on page 34.

To associate a product with a price list

1 Navigate to the Administration - Product screen, then the Products view.

2 In the Products list, select the desired product.

3 Click the Pricing view tab.

4 In the Price Lists list, add a new record and select the desired price list.

5 Complete the remaining fields as needed.

For more information about these fields, see Pricing Administration Guide.

Setting Up User Access To a Product
You must set up user access to allow the user to select a product for a quote or to sees the product
in a catalog. The catalog administrator creates product catalogs, which contain product categories.
The catalog administrator sets up access controls by assigning access groups to the catalog and to
the categories. For information about creating catalogs and categories and giving users visibility to
them, see Siebel Order Management Guide.

The product administrator assigns products to catalogs and categories. You can assign a product to
more than one category, and thus more than one catalog.
Product Administration Guide Version 7.8, Rev. B 35

Basic Product Administration ■ Process of Creating Simple Products
Until you assign a product to at least one category, the product does not display in the following
places:

■ On eSales Web pages. When customers buy your products through the Web, they cannot see
the product.

■ While browsing catalogs. When salespeople click the Browse Catalog button to view products
in catalogs, they cannot see the product.

NOTE: For products with components, you must give users access to the product with components
and all its components. To accomplish this, first assign the product with components and its
components to the same product category or to categories that have the same access groups. Then
assign users who will configure the product to these access groups. If the users in the access groups
differ across components, these users will not be able to configure the product with components
correctly.

The recommended method for assigning users to access groups is to assign the users to
organizations and then assign the organizations to the access groups.

This task is a step in “Process of Creating Simple Products” on page 34.

To set up user access

1 Navigate to the Administration - Product screen, then the Products view.

2 In the Products list, select the desired product.

3 Click the Category view tab.

4 Add a new record to the Category list.

A dialog box appears that lists all the currently defined categories.

5 Select a category from the dialog box.

6 Repeat Step 4 and Step 5 to add all the categories needed to give users visibility to this product.

Releasing a Simple Product
Though simple products do not have a Versions list, they are versioned objects. A new version was
created when you created the product, and you must release this version to make the product visible
to users. For more information about versioned objects, see Chapter 21, “Releasing Products and
Other Versioned Objects.”

This task is a step in “Process of Creating Simple Products” on page 34.

To release a simple product

1 Navigate to the Administration - Product screen, then the Products view.

2 In the Products list, select the simple product.

3 Click Release.
Product Administration Guide Version 7.8, Rev. B36

Basic Product Administration ■ Setting Up Products with Recurring Prices
Setting Up Products with Recurring
Prices
Some products involve recurring prices. For example, customers pay a monthly fee for telephone
service. For more information, see the topic about multiple price types in Pricing Administration

Guide.

To set up a product with recurring prices

1 Navigate to the Administration - Product screen, then the Products view.

2 In the Products list, select the desired product.

3 In the More Info form, click the Show More button.

4 Confirm that the fields are filled out appropriately, as described in the following table:

Creating Product Lines
Product lines are used to group your products.

For example, if you sell clothing, men’s shirts may be one product line, women’s shirts may be a
second product line, and so on.

NOTE: You can add products to a product line by selecting them when you add the Product Line
record, as described in this procedure. When you create a new product that is part of the product
line, you can add it to the product line by selecting it in the Product Line field of the Product record.

To create a product line name

1 Navigate to the Administration - Product screen, then the Product Lines view.

2 In the Product Lines list, add a new record and complete the necessary fields. Some fields are
described in the following table.

Field Comments

Price Type Confirm that this is set to Recurring.

Unit of Measure Confirm that this is set to an appropriate value for a recurring price, such
as Per Month.

Service Product Confirm that this check box is selected.

Field Comments

Product Line Enter a name for the product line.
Product Administration Guide Version 7.8, Rev. B 37

Basic Product Administration ■ Defining Product Features
Defining Product Features
Products frequently share common features, such as size or data transfer rate. You can create a list
of these product features and assign features to products.

Product features are different from product attributes:

■ A product feature describes important characteristics of a product, particularly those that
differentiate the product. For example, you sell a type of office chair that has aluminum
construction. Your competitors sell the same office chair with steel construction. Aluminum
construction is an important feature of the office chair because it differentiates the chair from
your competitors. It is also a static feature and cannot be chosen by the customer. All of your
customers who purchase this office chair get aluminum construction.

■ A product attribute is a characteristic of a product that the customer can choose when purchasing
the product. For example, the office chair fabric comes in one of three colors. Color is an attribute
of the office chair because the user can choose the color at the time of purchase.

To define product features

■ create the product features.

■ associate the product features with products.

To create product features

1 Navigate to the Administration - Product screen, then the Product Features view.

2 In the Product Features list, add a new record and complete the necessary fields. Some fields
are described in the following table.

The application adds these features to the Features picklist, so you can assign them to individual
products.

To assign a key feature to a product

1 Navigate to the Administration - Product screen, then the Products view.

Product Line Manager Optionally, select product line managers and other key personnel
associated with the product line.

Products Select all the products in this product line.

Field Comments

Feature Enter the name of the product feature.

Product Line Optionally, select a product line that is associated with this
product feature.

Field Comments
Product Administration Guide Version 7.8, Rev. B38

Basic Product Administration ■ Defining Related Products
2 In the Products list, select the product to which you want to assign a key feature.

3 Click the Collateral view tab.

4 In the Collateral link bar, click Key Features.

5 In the Key Features list, add a new record and select the feature in the Features field.

6 Repeat Step 5 to add additional key features for the product.

Defining Related Products
You can define several types of relationships between products. This causes the related products to
appear together in other parts of the Siebel application.

For example, if you define a substitute product in the Related Products view, the substitute product
displays in the Product Service Details view. If you define a substitute product in the Product Service
Details view, it displays automatically as a substitute product in the Related Products view.

You can define the following types of relationships:

■ Bundled

■ Component

■ Cross-Promoted

■ Integrated

■ Recommended Service

■ Service

■ Substitute

To define related products

1 Navigate to the Administration - Product screen, then the Products view.

2 In the Products list, select the product with which you want to associate related products.

3 Click the Recommendations view tab.

4 In the Recommendations view link bar, click Related Products.

5 In the Related Products list, add a new record.

The Add Internal Products dialog box appears.

6 Select the desired product.

The product appears in the Related Products list.

7 To change the relationship of the related product, click in the Relation field and choose the
desired relationship from the drop-down menu.
Product Administration Guide Version 7.8, Rev. B 39

Basic Product Administration ■ Defining Equivalent Products
Defining Equivalent Products
For each product you define, you can designate one or more other products as equivalent products.
You can then display these products and compare their product features. You can also assign a
ranking to the equivalent products that reflects their degree of equivalence.

Equivalent products differ from substitute products in that they do not automatically display in the
Field Service Details view.

You can designate one of the equivalent products as the primary equivalent product. The equivalent
primary product is the one displayed in the Equivalent Products field in the product definition and
other places where the display allows only one equivalent product to be shown.

To designate equivalent products

1 Navigate to the Administration - Product screen, then the Products view.

2 In the Products list, select the desired product.

3 In the More Info form, click the show more button to expand the form.

Expanding the form displays the Equivalent Product field.

4 Click the select button in the Equivalent Product field.

a Use the Equivalent Products dialog box to add equivalent products.

b In the dialog box, select the Primary field for one product that you are adding to designate it as
the primary equivalent product.

c Click OK to exit the dialog box.

The primary equivalent product appears in the Equivalent Product field in the product record.

Comparing Features of Equivalent
Products
You compare equivalent products by displaying all the equivalent products for a product and then
selecting which features you want to use for the comparison. You can then rank the equivalent
products.

To compare features of equivalent products

1 Navigate to the Administration - Product screen, then the Products view.

2 In the Products list, select the desired product.

3 Click the Collateral view tab.

4 In the Collateral view link bar, click Key Features.

The Product Comparison list appears to the right of the Key Features list. Equivalent products are
displayed in the columns of the Product Comparison list.
Product Administration Guide Version 7.8, Rev. B40

Basic Product Administration ■ Creating Product Entitlements
5 In the Product Comparison list, add a new record.

A dialog appears that contains all the product feature definitions.

6 Select the desired product from the dialog box.

The feature is added to the Product Comparison list.

7 Repeat the steps above until all the desired features have been added.

8 Assign a ranking to the equivalent products, if desired.

A rank of 1 means a product has the highest degree of equivalence relative to the other
equivalent products.

Creating Product Entitlements
Entitlements refer to the services that come with a product. They are created on the Product
Entitlements page under Product Administration.

When you create a product entitlement, you can designate the entitlement as applicable to “Agree
Line Item Products” and/or “Entitlement Template Products.” These are for Field Service use. For
more information, see Siebel Field Service Guide.

Entitlement templates are used for different purposes in the Administration - Product screen and in
the Administration - Service screen:

■ Administration - Product screen. If you associate product with an entitlement template in the
Administration - Product screen, as described in the following procedure, any customer who buys
that product will automatically have those entitlements.

■ Administration - Service screen. If you associate product with an entitlement template in the
Service Administration screen, Entitlement Templates, Products view, you indicate that this
product is covered by the entitlement. When this entitlement template is used in a contract, the
contract will automatically cover all the products listed under the entitlement templates.

To create product entitlements

1 Navigate to the Administration - Product screen, then the Products view.

2 In the Products list, select the product for which to create entitlements.

3 Click the Service Information view tab.

4 In the Service Information view link bar, click Product Entitlements.

5 In the Entitlements list, add a new record.

6 Click the select button in the Name field and select an Entitlement template from the Entitlement
Templates dialog box.

The entitlement template record is added to the Product Entitlements list.

7 Click in the Agree Line Item or Entitlement Template Products field to set these features.

A check mark appears to indicate these features are set.
Product Administration Guide Version 7.8, Rev. B 41

Basic Product Administration ■ Associating Literature with Products
Associating Literature with Products
You associate literature with products so salespeople can use this literature to sell the products.
Product literature is associated with the product as an attachment, so it can be used for such things
as product brochures, competitive analyses, and image files.

NOTE: When you choose literature to associate with a product, only literature of the type Sales Tool
is displayed. When you create literature to be associated with products in this way, be sure to choose
Sales Tool in the Type field. For more information about creating literature, see Application
Administration Guide.

To associate literature with a product

1 Navigate to the Administration - Product screen, then the Products view.

2 In the Products list, select the desired product.

3 Click t he Collateral view tab.

4 In the Collateral view link bar, click Literature.

5 In the Literature list, add a New Record.

The Add Literature dialog box appears.

6 Select the desired literature items.

Associating Product News with Products
Product news is information about a product that is displayed in eService and eSales as inline text
associated with the product.

Product news is not the same as product literature, which is covered in “Associating Literature with
Products” on page 42.

To add a news item to a product

1 Navigate to the Administration - Product screen, then the Products view.

2 In the Products list, select a product to which you want to add a news item.

3 Click the Collateral view tab.

4 In the Collateral view link bar, click News.

5 In the News list, add a new record.

The Pick Product News dialog box appears. To read the first few lines of a news item in the dialog
box, place your cursor over it.

6 Select the desired news item.

The news item appears under Product News with its title under the Solution field and the solution
type set to Product News.
Product Administration Guide Version 7.8, Rev. B42

Basic Product Administration ■ Associating Images with Products
7 Edit the record as needed by clicking in the desired field.

Associating Images with Products
You can associate both a thumbnail image and a regular image with a product.

To associate images with a product

1 Navigate to the Administration - Product screen, then the Products view.

2 Click the Collateral view tab.

3 In the Collateral view link bar, click Images.

4 In the Images form, in the Image File Name field, select an image.

5 In the Images form, in the Thumbnail Image File Name field, select an image.

Creating Product Field Service Details
and Measurements
You provide information about how to replace a defective part with substitute parts in the

Administration - Product screen, Product Service Details view. Most field service information is
entered when creating products in the Products view, but Inventory Options and Substitute Products
are managed in the Product Field Service Details view.

The Administration - Product screen, Measurements view is used to define which measurements field
service personnel should make and what the parameters of those measurements should be.

For more information about both of these, see Siebel Field Service Guide.

Exporting and Importing Products
You can import and export products using Workspace Projects view. For more information, see
“Migrating Products Among Environments” on page 305.

About Managing Product Records
You can manage product records in the following ways:

■ “Editing Product Records” on page 44

■ “Copying Product Records” on page 44

■ “Deleting Product Records” on page 44

■ “Exporting Product Records for Display” on page 45
Product Administration Guide Version 7.8, Rev. B 43

Basic Product Administration ■ About Managing Product Records
Editing Product Records
You can change the content of any of the fields in a product record. Changing the class to which a
product is assigned can change the attributes the product inherits. If the product’s attributes change,
you must revise all products with components in which the product is component. Verify that no
configuration rules or scripts refer to attributes the product no longer has.

CAUTION: If you change the name of the product, you must revise all products with components in
which it is a component. Also revise configuration rules, UI design, and scripts that refer to the
product.

Copying Product Records
When you copy a product record, all parts of the product definition are included in the copy.

If you copy a customizable product record, the copy includes all the relationships, links, resources,
scripts, rules, and user interface of the product version in the workspace.

Use the Copy feature to create product templates. For example, your product line has a two-tiered
structure. The first tier contains a half-dozen products that have a similar basic structure. The second
tier contains products based on the structure of the products in the first tier.

You could create the first tier by copying a template product with components 6 times. You would
then modify each of the copies to form the first tier. These then become the templates you would
use to create the second tier.

CAUTION: Do not create or copy training products in the Administration - Product screen. For
information about creating training products, see Siebel Training Guide.

To copy a product record

1 Navigate to the Administration - Product screen, then the Products view.

2 In the Products list, select the product you want to copy.

3 From the menu, choose Copy Record.

A new record appears.

4 Enter a name for the copy in the Product Field.

5 Revise other fields, such as Part # as desired.

Deleting Product Records
You cannot delete a product record. If you no longer want to use the product, you can deactivate all
versions rather than deleting the product.

If you have a large number of inactive versions for a given product, you can delete the versions using
the CleanupSingleObject method of the ISS Authoring Import Export Service. For more information,
see Siebel Order Management Guide.
Product Administration Guide Version 7.8, Rev. B44

Basic Product Administration ■ About Managing Product Records
To deactivate a product

1 Navigate to the Administration - Product screen, and then the Products view.

2 In the Products list, select and lock the desired product.

3 In the Versions view, deselect the Active checkbox for the Work Space version.

Release the Work Space version.

Exporting Product Records for Display
You can export product records in several formats for display.

For example, you can download files in comma-separated format for display in Microsoft Excel. The
supported formats are as follows:

■ Tab delimited file

■ Comma separated file (csv format for use with spreadsheets like Excel)

■ HTML file

■ A file with delimiters you specify

You can request all the rows in the current query or only the highlighted rows. You can request all
columns or only the currently visible columns. Currently visible columns are those you have selected
for display in the Columns Displayed form.

When you export a product with components or bundle for display, only the root-level product record
is exported. The structure of the product with components or bundle is not exported.

NOTE: This procedure exports only product records for use in other display mediums such as
spreadsheets. This procedure does not export the structure of a product or any other information
contained in records related to the product record. To export product structures and other
information in XML format for use by other applications, see “Exporting and Importing Products” on
page 43.

To export product records for display

1 Navigate to the Administration - Product screen, then the Products view.

2 In the Products list, select the products you want to export.

3 Verify that the columns displayed are those you want to export.

To add or subtract columns, from the Products menu, choose Columns Displayed.

4 To export the product records for display, from the Products menu, choose “Export...”

Do not click Export Product. This will export the product information in XML format for use by
other applications.

The File Download dialog box appears.

5 Follow the instructions in the File Download dialog box to save the file.
Product Administration Guide Version 7.8, Rev. B 45

Basic Product Administration ■ Creating a Product List Report
Creating a Product List Report
You can obtain a report that lists all the products in the product table. For each product, the report
shows the following information:

■ Product name

■ Part number

■ Description

■ Unit of measure

■ Vendor

■ Product line

■ Effective start date

■ Effective end date

The product list displays in the Siebel Report Viewer. You can print the report or create an email
attachment.

TIP: The on-screen display of the report typically lists more products on each page than the
Products list. Use the report to scan through the product table.

To create a product list report

1 Navigate to the Administration - Product screen, then the Products view.

2 Click the Reports button, which is near the top of the screen, and from the Reports menu, select
Admin Product List.

3 Use the dialog box to run the report.

The Siebel Report Viewer appears and displays the Admin Product List report.

4 Print the report or create an email attachment as desired.
Product Administration Guide Version 7.8, Rev. B46

4 Multilingual Translations for
Product Data
You can specify language translations for product-related data the user sees when creating a quote
or purchasing a product from an eSales Web site. This chapter describes what product data can be
translated and how to specify the translations. It includes the following topics:

■ “About Product Data Translation” on page 47

■ “Translating the Product Description” on page 48

■ “Translating Product Class Display Names” on page 49

■ “Translating Attribute Names” on page 49

■ “Translating Attribute Definition Names” on page 50

■ “Translating Attribute Values” on page 51

■ “Translating Configuration Rule Explanations” on page 51

■ “Translating Relationship Names” on page 52

■ “Translating UI Group Names” on page 53

■ “Translating UI Property Values” on page 53

About Product Data Translation
You can specify language translations for the following data:

■ Product description

■ Product class display name

■ Attribute display name

■ Attribute definition name

■ Attribute list of values

In addition, for products with components, you can translate the following data:

■ Configuration rule explanation

■ Relationship name

■ UI group name

■ UI property value

The process for translating each of the types of product data is the same. The Product Administrator
selects the desired item, selects a language, and then enters the translation for the item. This creates
a record containing the translation. The Product Administrator can create multiple translation records
for an item.
Product Administration Guide Version 7.8, Rev. B 47

Multilingual Translations for Product Data ■ Translating the Product Description
When users log in to either Quotes or to an eSales Web page and specifies a language, they see the
item translations for that language entered by the Product Administrator.

In some cases, the lists that display items that can be translated include a field called Translate. This
field is unrelated to setting up data for multilingual translation and should be ignored.

Translating the Product Description
Use these procedures to translate the product description.

To translate the product description

1 Navigate to the Administration - Product screen, then the Products view.

2 Select a product whose description you want to translate.

3 Click the Translations view tab.

4 Add a new record to the Translations list and complete the necessary fields, described in the
following table.

To translate the product description of customizable products

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Product Definitions list, select a customizable product whose description you want to
translate.

3 In the Versions list, click the name of the Work Space version.

4 Click the Display Names view tab.

5 Add a new record to the Display Names list and complete the necessary fields, described in the
following table.

Field Comments

Language Displays the name of the language after you select the code.

Code Select a language code.

Description Enter the translation of the description.

Field Comments

Display Name Enter the translation of the name.

Language Select a language code.
Product Administration Guide Version 7.8, Rev. B48

Multilingual Translations for Product Data ■ Translating Product Class Display Names
Translating Product Class Display Names
You can enter translations of the names of product classes, so they are displayed in the language of
the end user. To translate a class display name

1 Navigate to the Administration - Product screen, then the Product Classes view.

2 Select and lock product class whose attributes you want to translate.

3 In the Versions list, click the Work Space version.

4 Click the Display Name view tab.

5 Add a new record to the Display Name list and complete the necessary fields, described in the
following table.

6 Repeat Step 5 to create additional language translations for the class display name.

Translating Attribute Names
You can translate the name of an attribute, so it is displayed to end users in their own language, in
the following ways:

■ You can translate the attribute name at the Product Classes level, so all products in the class
inherit the translation of the attribute name.

■ You can translate the attribute name at the Product level, so the translation applies only to that
product.

To translate an attribute display name at the Product Classes level

1 Navigate to Administration - Product screen, then the Product Classes view.

2 Select and lock the product class where the attributes are defined.

3 Click the Class Attributes view tab.

4 In the Versions list, click the Work Space version.

5 Click the Attributes view tab.

6 From the Attributes menu, select Translations.

Field Comments

Display Name Enter the translation of the display name.

Language Select a language code.
Product Administration Guide Version 7.8, Rev. B 49

Multilingual Translations for Product Data ■ Translating Attribute Definition Names
7 Add new records in the Translations dialog box and complete the necessary fields, described in
the following table.

To translate an attribute display name at the Product level

1 Navigate to Administration - Product screen, then the Product Definitions view.

2 In the Products list, select the product whose attributes you want to translate.

3 In the Versions list, click the name of the Work Space version.

4 Click the Attributes view tab.

5 From the Attributes menu, select Translations.

6 Add new records in the Translations dialog box and complete the necessary fields, described in
the following table.

Translating Attribute Definition Names
You can translate the name of an attribute definition, so it is displayed to end users in their own
language.

To translate an attribute definition

1 Navigate to Administration - Product screen, then the Attribute Definitions view.

2 In the Attribute Definitions list, select and lock the desired attribute definition.

3 Click the name in the Translations field.

The Translations list appears.

4 In the Translations list, add new records and complete the necessary fields. Some fields are
described in the following table.

Field Comments

Language Select a language code.

Name Enter the translation of the name.

Field Comments

Language Select a language code.

Name Enter the translation of the name.

Field Comments

Display Name Enter the translation of the attribute definition name.

Language Select a language code.
Product Administration Guide Version 7.8, Rev. B50

Multilingual Translations for Product Data ■ Translating Attribute Values
Translating Attribute Values
For attributes with a list of values domain, you can translate the attribute values. For example, you
have a list of values named Color with the values red, blue, and green, and you want to translate
these values into French, Spanish, and other languages.

For additional information on creating and managing multilingual lists of value (MLOVs), see Global
Deployment Guide.

To translate an attribute list of values

1 Navigate to the Administration Product screen, then the Attribute Definitions view.

2 In the Attribute Definitions list, select and lock the attribute whose values you want to translate.

3 In the Versions list, click the Work Space version.

4 Click the Details view tab.

5 In the Attribute Values list, select the attribute value that you want to translate.

6 In the Attribute Value Display Names list, add a new record for each language that you want to
translate this value into, and complete the necessary fields, described in the following table.

7 Repeat Step 5 and Step 6 to translate all the values in the Attribute Values list.

Translating Configuration Rule
Explanations
Use this procedure to translate configuration rule explanations for a customizable product.

To translate a configuration rule explanation

1 Navigate to the Administration - Product, then the Product Definitions view.

2 In the Products list, select and lock the desired customizable product.

3 In the Versions list, click the Work Space version.

4 Click the Constraints view tab.

5 In the Constraints List, select the constraint containing the explanation you want to translate.

6 From the Constraints List menu, choose Translate Constraint Description.

A dialog box appears that displays the rule explanation translations you have already created.

Field Comments

Display Name Enter the translation of the value.

Language Select a language code.
Product Administration Guide Version 7.8, Rev. B 51

Multilingual Translations for Product Data ■ Translating Relationship Names
7 In the dialog box, add a new record and complete the necessary fields, described in the following
table.

Translating Relationship Names
You can translate relationship names for a product with components the following ways:

■ You can translate the relationship name at the Product Classes level, so all products in the class
inherit the translation.

■ You can translate the relationship name at the Product level, so the translation applies only to
that product.

To translate a relationship name at the Product Class level

1 Navigate to the Administration - Product screen, then the Product Classes view.

2 Select and lock the desired Product Class.

3 In the Versions list, click the name of the Work Space version.

4 In the Structure list, select the relationship whose name you want to translate.

5 From the Structure list menu, choose Translate Relationship.

A dialog box appears that displays the relationship name translations you have already created.

6 In the dialog box, add a new record and complete the necessary fields, described in the following
table.

To translate a relationship name at the Product level

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select and lock the desired product with components.

3 In the Versions list, click the Work Space version.

4 Select the relationship whose name you want to translate.

Field Comments

Language Displays the name of the language after you select the code.

Code Select a language code.

Description Enter the translation of the description.

Field Comments

Language Select a language code.

Relationship Name Enter the translation of the relationship name for that language.
Product Administration Guide Version 7.8, Rev. B52

Multilingual Translations for Product Data ■ Translating UI Group Names
5 From the Structure list menu, choose Translate Relationship.

A dialog box appears that displays the relationship name translations you have already created.

6 In the dialog box, add a new record and complete the necessary fields, described in the following
table.

Translating UI Group Names
Use this procedure to translate group names that display in customizable product selection pages.

To translate a UI group name

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select and lock the desired customizable product.

3 In the Versions list, click the Work Space version.

4 Click the User Interface view tab.

5 In the User Interface view, click the Name of the UI group whose name you want to translate to
drill down on it.

6 From the Group List menu, choose Translate Groups.

The Group Name Translations dialog box appears.

7 In the dialog box, add a new record and complete the necessary fields, described in the following
table.

8 Repeat Step 7 to create additional translations for this UI group name.

Translating UI Property Values
Use this procedure to translate the value of a UI Property. The property type must be type String.

Field Comments

Language Displays the name of the language after you select the code.

Code Select a language code.

Description Enter the translation of the description.

Field Comments

Language Select a language.

Name Enter the translation of the group name.
Product Administration Guide Version 7.8, Rev. B 53

Multilingual Translations for Product Data ■ Translating UI Property Values
To translate a UI property value

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select and lock the desired customizable product.

3 In the Versions list, click the Work Space version.

4 Click the Properties view tab.

5 Select the UI property you want to translate.

6 From the Customizable Product menu, choose Translate UI Property.

A dialog box appears that displays the relationship name translations you have already created.

7 In the dialog box, add a new record and complete the necessary fields, described in the following
table.

Field Comments

Language Displays the name of the language after you select the code.

Code Select a language code.

Description Enter the translation of the description.
Product Administration Guide Version 7.8, Rev. B54

5 Product Bundles
This chapter explains how to create product bundles. A product bundle is a group of products that
are sold together for a specified price. This chapter covers the following topics:

■ “About Product Bundles” on page 55

■ “Creating Simple Product Bundles” on page 55

■ “Modifying Simple Product Bundles” on page 56

■ “Deleting Simple Product Bundles” on page 57

■ “Controlling How Bundle Components are Forecast” on page 57

About Product Bundles
A product bundle is a group of products sold as a package. If you create a product bundle, the user
cannot change the items in the bundle or the quantity. If you want the user to be able to select the
items, you must use a product with components instead of a product bundle.

A product bundle is itself a product and has a product record. It can also have a part number. You
price bundles by assigning them a list price. You cannot use Siebel Pricer to create roll-up pricing
based on components or on attributes of components in a bundle. You also cannot use attribute-
based pricing to set the price of a bundle based on the attributes of the bundle as a whole.

When you create a bundle, it is added to the product master. This means you can add the bundle to
any quote or order. Product packages that you create in a quote or order are bundles that are specific
to that quote or order. They are not added to the product master.

Creating Simple Product Bundles
A simple product bundle is a group of products offered as package. The user cannot change the items
in the bundle or the quantity.

To create a simple product bundle, you first create a product record for the bundle and select Bundle
in the Structure Type field. Then you add products to the bundle. After creating the bundle, see
Pricing Administration Guide to set up pricing.

Observe the following guidelines and restrictions when creating a simple product bundle:

■ The quantity of a product in a bundle can be greater than one. When creating a quote or
purchasing the bundle, users cannot change the quantity of a product in the bundle. The user
cannot change which items are in the bundle.

■ When users add bundles to quotes and orders, the products in the bundle display as line items
beneath the bundle’s product name.
Product Administration Guide Version 7.8, Rev. B 55

Product Bundles ■ Modifying Simple Product Bundles
■ You can add a product bundle to another product bundle.

■ You can add a product with components to a bundle.

■ When you add a bundle to a product with components, the user can change the quantity of the
bundle product during a configuration session.

■ You can convert a bundle to a product with components and you can convert a product with
components to a bundle.

To create a product bundle

1 Navigate to the Administration - Product screen, then the Products view.

2 Create a new product record, enter the name of the bundle in the Product field, and select Bundle
in the Structure Type field.

Complete any other needed fields for the product bundle, as you would for a simple product.

3 Click the Bundle Product view tab.

4 In the Product Bundle list, add a new record and complete the necessary fields. Some fields are
described in the following table.

5 Repeat Step 4for each product you want to add to the bundle.

6 Create the pricing for the bundle product, as described in Pricing Administration Guide.

7 Click Done.

This releases the bundle for use by customers. A check mark displays in the Bundle check box in
the product record form.

Modifying Simple Product Bundles
You can modify a simple product bundle by changing the items in the bundle or by changing the
quantity of items. Modifying a product bundle releases a new version of the bundle.

Field Comments

Product Select a product that is in the bundle.

Description Enter a brief description of the bundle. This does not display to
users.

Quantity Enter the quantity of the product you want to include in the
bundle.

Sequence Enter the order in which products in the bundle display in quotes
and orders.

Forecastable Select this field to add the product to product forecasts when the
bundle is included in a quote and the user updates the related
opportunity.
Product Administration Guide Version 7.8, Rev. B56

Product Bundles ■ Deleting Simple Product Bundles
To modify a product bundle

1 Navigate to Administration - Product screen, then the Products view.

2 Select and lock the record for the desired bundle.

3 Click the Bundle Product view tab.

4 Edit, add, or delete products from the bundle.

5 When finished, click Done.

This releases a new version of the bundle for use by customers.

Deleting Simple Product Bundles
You cannot delete the product record for a product bundle. However, you can make the product
bundle unavailable for use.

To make a product bundle unavailable

1 Modify the bundle to remove all its products.

2 In the bundle’s product record, deselect the Sales Product check box.

This removes the product bundle from the product picklist.

3 Remove the product bundle from all price lists.

4 Delete any pricing rules that refer to the product bundle.

5 Remove the product bundle from all product with components relationships, and configuration
rules. Validate the products with components and release a new version.

Controlling How Bundle Components are
Forecast
When you add a product to a bundle, you can put a check mark in the Forecastable field. This adds
the product to forecasts when the bundle is included in a quote and the user updates the related
opportunity.

To prevent bundle products from being added to product forecasts, do not put a check mark in the
Forecastable field in Bundle Administration.

A Forecastable check box is also available in the Quotes screen, Line Items view. This allows you to
add or remove a bundle and its products from product forecasts within individual quotes.
Product Administration Guide Version 7.8, Rev. B 57

Product Bundles ■ Controlling How Bundle Components are Forecast
Product Administration Guide Version 7.8, Rev. B58

6 Products with Attributes
This chapter describes how to create product classes and product class hierarchies. Product classes
provide a central location for defining product attributes. Products inherit the attributes of the
product classes to which they belong. This chapter covers the following topics:

■ “Component-Based Versus Attribute-Based Pricing” on page 59

■ “About Product Attributes” on page 60

■ “About Product Classes” on page 60

■ “About the Product Class Hierarchy” on page 61

■ “About Attribute Domains” on page 62

■ “About Hidden Attributes” on page 63

■ “Scenario for Creating Products with Attributes” on page 64

■ “Process of Creating Products with Attributes” on page 65

■ “Setting Up Required Attributes” on page 69

■ “Changing Inherited Properties of Attributes” on page 70

■ “Changing the Hidden or Required Settings for a Product Attribute” on page 73

■ “About Managing Product Classes” on page 74

■ “About Managing Attribute Definition Records” on page 78

Component-Based Versus Attribute-
Based Pricing
Users to select the features of two types of customizable products:

■ Products with components. Customers can choose the product’s components. For example,
when customers buy a computer, they can choose the monitor, keyboard, and mouse they want.

■ Attribute-based products. Customers can choose the product’s attributes. For example, when
customers buy a shirt, they can choose its color.

In most cases, it is clear which one of these two a product is. However, in some cases, the product
administrator must decide whether to let users select options as product components or as
attributes. For example, if a PC monitor comes in three sizes, 14-inch, 17-inch, and 21-inch, then
those monitors could be offered as:

■ Three separate products with three different prices, which are used as three component products
within a customizable PC product.
Product Administration Guide Version 7.8, Rev. B 59

Products with Attributes ■ About Product Attributes
■ One monitor product with a Screen Size attribute that includes three values (14, 17, and 21),
which is used as one component product within a customizable PC Product.

You should decide how to set up products with components, in a way that will be effective as the
product hierarchy and its circumstances change.

About Product Attributes
Product attributes are characteristics of a product that a customer can choose. For example, you sell
a product in three colors. As part of creating this product, you would define an attribute called Color
and assign it the three colors. As part of purchasing the product, customers would choose one of the
colors.

A product attribute has two parts: the name of the attribute and the possible values of the attribute.
For example, you could define an attribute with the name Color and the values red, green, or blue.
The allowable values for an attribute are called the attribute domain. In a configuration session, the
user can select only one value for an attribute.

Components of a product are not attributes. For example, you sell a desktop computer. Customers
can select one of several types of CD-ROMs when configuring this product. Having a CD-ROM is a
characteristic of this product, but the CD-ROMs are components, not attributes.

Product attributes and product features are similar concepts. They both describe characteristics of
the product that are of interest to customers. However, feature definitions do not create
configurability. For example, you could define a feature: “Comes in three colors, red, green, and
blue.” This feature definition can be displayed to the user as a message only. It does not create the
mechanism for choosing the color. To create that, you must define a product attribute and assign it
the values red, green, and blue.

You can define attributes directly in the administration interface. You do not need to create database
table extensions or new field definitions in Siebel Tools.

Attributes are implemented in a way that allows users to select the desired attribute value when they
configure the product. For example, when a user creates a quote, the Color attribute displays in the
interface, and the user can select the desired value.

About Product Classes
Product classes provide a way to organize and administer product attributes. When you assign a
product to a product class, it automatically inherits all the attributes defined for that product class.
Product classes let you define what attributes are maintained for products, assign those attributes
to the products, and maintain those attributes in a consistent fashion.

When you define an attribute for a product class, you specify both the attribute name and the range
of values that the attribute can have. This range of values is called the attribute domain. For
example, for a product class called blanket, you define an attribute called color and define its domain
to be green, red, and blue. Every blanket you assign to this product class inherits the attribute color
and its possible values.
Product Administration Guide Version 7.8, Rev. B60

Products with Attributes ■ About the Product Class Hierarchy
Subclasses are product classes that have a parent product class. Subclasses have the following
characteristics:

■ Subclasses can be nested as deeply as needed. This forms the product class hierarchy.

■ Subclasses inherit the attributes of their parent product class. As you nest downward, each
subclass inherits the entire set of attributes from the product classes above it.

■ You can modify the definitions of inherited attributes. If you do so, this breaks inheritance from
the parent product class. Changes to attribute definitions in the parent product class are not
inherited by modified attributes in subclasses.

■ You can define additional attributes for the subclass, beyond the attributes of the parent product
class.

You can define attributes at the product class or subclass level. You cannot define an attribute at the
product level. At the product level, users can only select the attribute’s value.

About the Product Class Hierarchy
The product class hierarchy allows you to organize and manage product attributes. It is separate
from the mechanisms you use to organize products themselves, such as product lines and product
categories.

For example, you have the product class hierarchy in Figure 1. The product class called Class has two
attributes defined on it, Attribute 1 and Attribute 2. Class also has a subclass called Subclass.
Subclass has Attribute 3 defined on it and contains one product, called Product C.

Figure 1. Class Hierarchy
Product Administration Guide Version 7.8, Rev. B 61

Products with Attributes ■ About Attribute Domains
Subclass inherits Attribute 1 and Attribute 2. It also has an attribute definition of its own, Attribute
3. Product C, assigned to Subclass, inherits all three attribute definitions.

NOTE: When you define a product with components, you define named parts called relationships.
Then you add the contents of product classes to them. Adding a small number of products to a
relationship from a large product class requires that the entire product class be searched each time
the product with components is instantiated. This can adversely affect performance. Consider
defining the product class system to avoid this.

In the Administration - Product screen, Product Classes view, you can create product classes,
organize them into hierarchies, and define attributes for them. By clicking the Structure view tab,
you can view the Class Explorer, which gives you an overview of the entire product class hierarchy
system.

About Attribute Domains
When you define an attribute, you must define the domain of possible values for the attribute.

About Defining Attribute Domains
There are the following methods for defining the domain:

■ List of values. You can list the specific values the attribute can have. When users configure a
product, they select one of the values from a drop-down menu. For example, the attribute Color
could have the list of values red, green, or blue.

A special case of a list of values domain is a list of values that contains only one value. This is
useful for creating attributes that you use for managing resources. For example, you could create
an attribute called slots-consumed for a product class of computer expansion cards. Typically,
each card requires one expansion slot. You would create a list of values containing only the
number 1, and would set 1 as the default value. You could then write rules that subtract the value
of this attribute from a resource called slots-available each time the user picks an expansion
card.

Parametric search can be used to search for attribute values.

Attribute-based pricing can only use attribute values that have been defined as elements in a list
of values (LOV). Attribute-based pricing requires the discrete values that appear in an LOV.

■ Free form. This domain allows free form user input. During runtime, it provides a blank field
where the user can make any desired entry.

Parametric search cannot be used to search for attribute values.

■ Business Component (Buscomp) field. This domain is defined by a field in a business
component. For example, you can define an attribute called Account and associate it with the
Name field in the Account business component. When users configure a product, they see an
attribute called Account. They can then open a picklist and select the desired account. This
domain type can be used only for products that are configured in Siebel Configurator selection
pages.

Parametric search cannot be used to search for attribute values.
Product Administration Guide Version 7.8, Rev. B62

Products with Attributes ■ About Hidden Attributes
This chapter covers the list of values and free form domain types. For information about the Business
Component field type, see Chapter 7, “Product Attributes with Business Component Domains.”

Domain Data Types
The data type you specify in the attribute definition determines how the application interprets the
values in the domain. For example, you define an attribute with a list of values domain. You define
the attribute values to be 1, 5, 10. To write configuration rules that perform numeric computations
using these values, you must select the data type Integer or Number when defining the attribute.

The domain of an attribute can be one of the following data types:

■ Boolean. Use this data type when the user’s input is true or false, yes or no. If you specify the
Integer data type for these inputs, the application assigns 1 for True or Yes inputs. False and No
are assigned 0.

■ Number. The attribute value can be any positive or negative real number. In Boolean
expressions, numbers greater than 0 are interpreted as true. Omit commas when specifying the
domain. For example, enter 10,000 as 10000.

■ Integer. The attribute value can be any positive or negative whole number. If a computation
results in a fractional amount, the result is rounded to the nearest whole number. In Boolean
expressions, integers greater than 0 are interpreted as true. Omit commas when specifying the
domain. For example, enter 10,000 as 10000.

■ String. The attribute value can be letters, numbers, or any combination. Attributes with this data
type cannot be used as operands in a computation or as the result of a computation. The only
arithmetic operator that can be used with this data type is = (equals). For example, you can write
rules that test if the user has picked a specific string from a list of values.

■ Date. The attribute value is interpreted as a date and must be in the correct date format. The
system administrator sets date format defaults. Arithmetic computations using dates is not
supported. For example, you cannot increase or decrease a date using a computation. All
comparison operations are supported for dates. For example, you can compare two dates and
determine whether one is earlier than (<), later than (>), or the same as (=) another date. Data
type mismatches cause the user’s input to be rejected, or can cause indeterminate results. For
example, comparing a date data type to an integer data type.

About Hidden Attributes
When you place a check mark in the Hidden field in an attribute definition, the attribute does not
display in the Quote, Order, Agreement, or Asset views. For example, if you assign a product to a
product class that has hidden attribute A1. When you add this product to a quote and select Dynamic
Attributes, A1 does not display.

The attribute continues to display in customizable product selection pages and you can write
configuration rules on it.
Product Administration Guide Version 7.8, Rev. B 63

Products with Attributes ■ Scenario for Creating Products with Attributes
Use hidden attributes to create configuration parameters that customers do not need to see. For
example, you could define a hidden attribute whose value is the number of bays required for a
chassis. You could then write configuration rules that use the value of this attribute to monitor the
number of available bays during a configuration session.

Upgrade users. Use hidden attributes as a replacement for virtual products.

Scenario for Creating Products with
Attributes
This topic gives one example of how attributes may be used. You may use attributes differently,
depending on your business model.

A business sells work shirts that have the following attributes:

■ All brands of shirts come in the sizes S, M, L, XL.

■ All brands of shirts come in the colors tan, green, blue, and brown.

■ Some brands of shirts give the customer the option of personalizing the shirt by adding the
company name.

Customers must pay extra for the XL size work shirt and for personalized work shirts.

To set up these attributes, the product administrator:

■ Creates attribute definitions:

■ The attribute Work Shirt Size has the domain S, M, L, XL.

■ The attribute Work Shirt Color has the domain tan, green, blue, brown.

■ The attribute Work Shirt Personalization has the domain Y, N.

■ Creates product classes:

■ The product class Work Shirt is associated with the attributes Work Shirt Size and Work Shirt
Color.

■ The product class Personalized Work Shirt is a subclass of the product class Work Shirt. From
the product class Work Shirt, it inherits the attributes Work Shirt Size and Work Shirt Color.
It is also associated with the attribute Work Shirt Personalization.

■ Associates all its work shirt products with these product classes:

■ If the work shirt cannot be personalized, it is associated with the product class Work Shirt.

■ If the work shirt can be personalized, it is associated with the product class Personalized
Work Shirt.

■ Sets up attribute pricing to reflect the extra cost of the XL and personalized work shirts.
Product Administration Guide Version 7.8, Rev. B64

Products with Attributes ■ Process of Creating Products with Attributes
Process of Creating Products with
Attributes
To create products with attributes, perform the following tasks:

■ “Creating Attribute Definitions” on page 65. First you create attribute definitions, with the domain
for each attribute.

■ “Creating Product Classes in a Hierarchy” on page 66. Then you create the hierarchy of product
classes. For each product class, you select attribute definitions that you created in the previous
step.

■ “Associating Attributes with a Product” on page 68. Then you associate products with product
classes. The products inherit all the attributes of the product class.

■ “Setting Up Attribute Pricing” on page 68. If these attributes affect price, you must set up attribute
pricing.

Creating Attribute Definitions
First, you create definitions of all the attributes that will be associated with your product.

This task is a step in “Process of Creating Products with Attributes” on page 65.

To create an attribute definitions

1 Navigate to the Administration - Product screen, then the Attribute Definitions view.

2 In the Attribute Definitions list, add a new record.

3 In the Attribute field of the new record, enter a name for this attribute.

The Locked Flag is automatically selected.

4 In the Versions list, click the Work Space version.

5 In the Details list, add a new record and complete the necessary fields, described in the following
table.

Field Comments

Data Type Select the data type for the domain of this attribute. For more
information, see “About Attribute Domains” on page 62.

Domain Type Select the type of the domain for this attribute. Options are Free
Form and Enumerated. For more information, see “About Attribute
Domains” on page 62.

Unit of Measure Optionally, select the unit of measure for this attribute, such as
day, month, dollar, dozen.
Product Administration Guide Version 7.8, Rev. B 65

Products with Attributes ■ Process of Creating Products with Attributes
6 If you selected Enumerated as the domain type, you must enter all the values for the domain by
adding new records to the Attribute Values list and completing the necessary fields, described in
the following table.

7 When you are finished, deselect the Locked Flag.

Creating Product Classes in a Hierarchy
Next you create product classes. This task is a step in “Process of Creating Products with Attributes”
on page 65.

You create and manage product class hierarchies by specifying a parent product classes when
defining product classes. Subclasses inherit the domains of their parent product classes. For more
information, see “About the Product Class Hierarchy” on page 61.

You can view the hierarchy in by clicking the Structure view tab. This view contains a tree display
that shows the hierarchy in a manner very similar to the Microsoft Windows file Explorer. You can
expand or collapse classes and subclasses as needed to view the hierarchy. The portion of the
hierarchy in which you are located displays in the Classes list.

To create a product class

1 Navigate to the Administration - Product screen, then the Product Classes view.

2 In the Product Classes list, add a new record, and enter a name for the class in the Product Class
field.

The Locked Flag is automatically selected

3 In the Versions record, complete the necessary fields. Some fields are described in the following
table.

4 In the Versions list, click the name of the Work Space version.

5 Click the Display Name view tab.

Field Comments

Value Enter a valid value for the attribute.

Sequence Enter a value to control the order in which the attribute values are
displayed in runtime.

Field Comments

Parent Product Class If this product class is a subclass, select the parent product class.
This controls the product class’s location in the class hierarchy.

Searchable Select this field to make the product class available for parametric
search.
Product Administration Guide Version 7.8, Rev. B66

Products with Attributes ■ Process of Creating Products with Attributes
6 Add a record to the Display Name list, for each language that the product will be displayed in,
and complete the necessary fields, described in the following table.

7 Click the Class Attributes view tab.

8 In the Class Attributes list, add new records for all the attributes in this product class, and
complete the necessary fields, described in the following table. In the Class Attributes list, add
new record and complete the necessary fields, described in the following table.

Field Comments

Display Name Enter the name that will be seen by customers using the
application in this language.

Language Select a language code, such as ENU for American English.

Field Comments

Name Enter a name for this class attribute

Attribute Definition Select the definition for this attributes. Definitions are available if
they were created as described in “Creating Attribute Definitions”
on page 65.

Default Value (Display) Enter the default value that the end user sees when the product
is initially displayed. The attribute has this value unless the end
user selects a different value. However, if you write rules that
manipulate the attribute value, the Siebel Configurator engine
can override the default value.

NOTE: Fields that include (Display) in their names are
translations of the value in the administrator’s location. Fields
without (Display) in their names are in the default or Language
Independent Code (LIC) location.

Rejected Value (Display) This field is relevant when an attribute is marked as required. If
the attribute is required, the value in this field is the value that
the Siebel Configurator interprets to be not valid. The attribute
will be marked as not entered, if this is the attribute's value.

To use this checkbox, follow the instructions in “Setting Up
Required Attributes” on page 69.

Required Select this checkbox to require the user to select a value for this
attribute. To use this checkbox, follow the instructions in “Setting
Up Required Attributes” on page 69.

Read Only Select this check box to make this attribute read-only, so the user
cannot change the default value.

Hidden Select this check box to prevents the attribute from displaying in
quote, agreement, order, or asset views. Attribute still displays in
customizable product selection pages.
Product Administration Guide Version 7.8, Rev. B 67

Products with Attributes ■ Process of Creating Products with Attributes
9 Click the Structure view tab and verify that this product class displays in the correct location in
the class hierarchy.

10 When you are finished, release the Product Class record, so other users can work on this product
class.

The new product class definition appears in the Product Classes list.

Associating Attributes with a Product
To associate attributes with a product, you assign the product to a product class. The product inherits
all the attributes of the product class or subclass to which it is assigned.

This task is a step in “Process of Creating Products with Attributes” on page 65.

NOTE: Before you associate the product with a product class, you must create the product, as
described in Chapter 3, “Basic Product Administration.”

To associate a product with a product class

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Versions list, in the record for the Work Space version, in the Product Class field, select
the product class.

Setting Up Attribute Pricing
If these attributes affect price, you must set up attribute pricing. For example, if you charge more
for products in the largest sizes or for products of certain colors, you must set up pricing for the
attributes that customers pay extra for.

For more information, see the topic about attribute pricing in Pricing Administration Guide.

Unit of Measure Optionally, select the unit of measure for this attribute, such as
day, month, dollar, dozen.

Searchable Select this checkbox to allow this attribute and its values to be
used in parametric searches. For example, if the attribute is Color,
you can search for products that have Color = Red.

Inherited This checkbox is selected if the attribute value is inherited from a
parent product classes. Read-only.

Modified This checkbox is selected if properties of the inherited attribute
such as Read-only, Default, and Rejected were overridden by the
user.

Field Comments
Product Administration Guide Version 7.8, Rev. B68

Products with Attributes ■ Setting Up Required Attributes
Setting Up Required Attributes
You can set up attributes to require users to select values for them.

If attributes are required, Siebel Configurator displays a red star next to them if they are not filled,
just as it displays a red star next to required cardinalities that are not filled. When the value is
entered, the red star is no longer displayed.

If you click Finish It!, Siebel Configurator does not complete required attributes for the user, as it
completes required cardinalities. Instead, it displays an error message saying that the configuration
is incomplete.

To set up required attributes, follow these steps:

■ Set up the attribute values as usual. If it is an enumerated attribute, include in the list of possible
values a value that would not be acceptable for this attribute. This value must match the type of
the attribute, for example 999 in the type is numeric. Give this value a display name that will be
displayed as an error message and that will be displayed in the control telling the user to select
a value; for example, give it the display name Select a Color. For more information about setting
up attribute values, see “Creating Attribute Definitions” on page 65.

■ Attach the attribute to a product class, and select the Required field. As the rejected and default
value for the product class, enter 999, the value for the message. Because it is the default value,
it is displayed in the drop-down control for the attribute. For more information about attaching
an attribute to a product class, see “Creating Product Classes in a Hierarchy” on page 66.

NOTE: As an alternative to designating an attribute as required in the product class definition,
you can designate it as required in the product definition after the attribute has been attached
to the product through the product class assignment. This gives the administrator the flexibility
to have the same attributes on a product class required on some products and not required on
other products.

■ Attach the product class to the product. The product inherits the rejected value from the product
class. For more information about attaching a product to a product class, see “Associating
Attributes with a Product” on page 68.

Setting a Read-Only Value for an
Attribute of a Product
When you set the value of an attribute for a product, it cannot be changed by either the user, a
configuration rule, or the Siebel Configurator engine. One example, is when you want to set an
attribute value so that provide and consume rules can use it to add or subtract from a defined
resource.

For example, you create an attribute called Slots Required for a product class containing expansion
cards. Some cards take up one expansion slot; some take up two. You could define a list of values
containing the integers 1 and 2 and make it the domain for Slots Required. For each expansion card
you would then set the value of this attribute at 1 or 2. Users cannot change this value when
configuring the product, and configuration rules cannot change this value.
Product Administration Guide Version 7.8, Rev. B 69

Products with Attributes ■ Changing Inherited Properties of Attributes
You would then write a provide rule that increases a Slots Available resource when the user picks a
chassis. For the expansion card product class, you would write a consume rule that reduces Slots
Available by the value of Slots Required, each time the user picks an expansion card. In this fashion,
you use attribute values as constants that interact with a defined resource to manage a consumable
configuration variable.

To set an attribute value for a product

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select and lock the desired product.

3 In the Versions list, click the Work Space version.

4 Click the Attributes view tab.

The Attributes list appears, displaying all the product’s attributes inherited from its product class
or subclass.

5 In the record for the desired attribute:

a Select the desired attribute value in the Default Value field.

b Select the Read Only checkbox.

Changing Inherited Properties of
Attributes
When you associate an attribute with a product class, it is inherited by all member subclasses. If you
edit an attribute on the product class where it was originally defined, the changes propagate to all
member subclasses. The attribute definition is uniform for all subclasses that inherit it.

Subclasses can have two kinds of attributes: local and inherited. A local attribute is one that is
defined on the subclass. An inherited attribute is one that is inherited from a parent product class.

You customize an inherited attribute domain by editing its definition at the subclass level. When you
edit an inherited attribute definition, the changes propagate to all members of the subclass, including
other subclasses under that subclass.

Editing an inherited attribute permanently breaks attribute inheritance for the fields you edit. Editing
the domain of an inherited attribute permanently prevents an attribute from inheriting domain
changes from its parent attribute.

If you delete the parent product class attribute, it is not deleted from subclasses where inheritance
is broken. (The attribute definition is deleted from all subclasses where inheritance has not been
broken.)
Product Administration Guide Version 7.8, Rev. B70

Products with Attributes ■ Changing Inherited Properties of Attributes
For example, you have the class hierarchy in Figure 2. Product Class A has one subclass called
Subclass B. Subclass B has one subclass called Subclass C. Class A has Attribute A defined on it.
Subclass B has attribute B defined on it. Subclass C has Attribute C defined on it. Subclass B inherits
Attribute A from Class A. Subclass C inherits Attribute A from Class A and Attribute B from Subclass
B.

In Subclass B, you edit the domain of Attribute A by entering a new list of values and default Value.
Subclass B no longer inherits changes to these fields from Attribute A in Class A, its parent attribute.

When you edit a local or inherited attribute, the changes propagate to all members of the product
class or subclass. In the example, the new values propagate to Attribute A in Subclass C.

There are restrictions on which fields you can edit for inherited attribute properties. These
restrictions are shown in Table 5.

Figure 2. Attribute Inheritance

Table 5. Editable Fields in a Subclass Inherited Attribute Properties

Field Editable?

Name Yes. Breaks inheritance for all fields. Same as defining new attribute.

Data Type Yes. Breaks inheritance for all fields. Same as defining new attribute.

Default Value Yes. Breaks inheritance for this field.

Required Yes. Breaks inheritance for this field.

Display Name Yes. Breaks inheritance for this field.
Product Administration Guide Version 7.8, Rev. B 71

Products with Attributes ■ Changing Inherited Properties of Attributes
To change an inherited property of an attribute

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select and lock the desired product.

3 In the Versions list, click the Work Space version.

4 Click the Attributes view tab.

5 In the list applet, select the attribute you want to change.

6 In the desired record in the Attributes list, change the property of the attribute.

You can change all the fields except Attribute Name and Attribute Definition.

Viewing Changes in the Inherited Properties of Attributes
You can view changes that users have entered to override the inherited properties of an attribute.

To view changes in inherited properties of an attribute

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select and lock the desired product.

3 In the Versions list, click the Work Space version.

4 Click the Attributes view tab.

5 In the list applet, select the attribute whose changes you want to view.

6 From the Attributes list menu, select Show User Input.

A text file appears, with a list of changes that users made to the inherited properties.

Restoring the Inherited Properties of an Attribute
If users have changed the inherited properties of an attribute, you can discard all these changes and
restore the inherited properties.

To restore the inherited properties of an attribute

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select and lock the desired product.

Parametric Search Yes. Breaks inheritance for this field.

Unit of Measure Yes. Breaks inheritance for this field.

Description Yes. Breaks inheritance for this field.

Table 5. Editable Fields in a Subclass Inherited Attribute Properties

Field Editable?
Product Administration Guide Version 7.8, Rev. B72

Products with Attributes ■ Changing the Hidden or Required Settings for a Product
Attribute
3 In the Versions list, click the Work Space version.

4 Click the Attributes view tab.

5 In the list applet, select the attribute whose properties you want to restore.

6 From the Attributes list menu, select Restore.

Changing the Hidden or Required
Settings for a Product Attribute
When you define an attribute at the class level, you can set the attribute to be hidden or required:

■ Hidden attributes do not display in the Quote, Order, Agreement, or Asset views.

■ Required attributes are those where the user must select a value for the attribute. The value of
the attribute cannot be blank.

Attribute definitions propagate automatically to all the products that belong to the product class.
However, you can change the Hidden flag and the Required flag settings for an attribute at the
product level. This lets you manage the hidden or required settings for attributes product by product.

You can use the hidden setting to simplify your product class system. For example, if a product class
has 8 attributes and a product has 7 of these attributes, you can put the product in this class and
hide the eighth attribute. You do not have to create a special subclass with 7 attributes for the
product.

To change the hidden or required settings for attributes of a product

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select and lock the desired product.

3 In the Versions list, click the Work Space version.

4 Click the Attributes view tab.

5 In the Explorer applet, select the attribute you want to hide.

6 In the Attributes list, in the record for the attribute, select the Hidden checkbox.

To change the hidden or required settings for attributes of a product class

1 Navigate to the Administration - Product screen, then the Product Classes view.

2 In the Product Classes list, select and lock the desired product class.

3 In the Versions list, click the Work Space version.

4 Click the Attributes view tab.

5 In the Attributes list, in the record for the attribute, select the Hidden checkbox.
Product Administration Guide Version 7.8, Rev. B 73

Products with Attributes ■ About Managing Product Classes
About Managing Product Classes
You can manage product classes in the following ways:

■ “Viewing Related Objects for Product Classes” on page 74

■ “Editing a Product Class Definition” on page 74

■ “Deleting a Product Class” on page 76

■ “Exporting or Importing Product Classes” on page 76

Viewing Related Objects for Product Classes
The Product Class Cross References view allows you to view the objects that are related to a product
class, including:

■ Subclasses. Classes that are a child to the product class

■ Products. Products that have the product class as a parent product class

■ Relationships. Objects that use the product class to form relationships

■ Attribute Adjustments. Attribute Adjustments that use the product class

The user can drill down on any of these line item to display the administration view for that object.

NOTE: The Cross References list applies to one version of a product class, because different versions
may include different direct subclasses. Versions include Workspace versions.

To view related objects for a product class

1 Navigate to the Administration - Product screen, then the Product Classes view.

2 In the Product Classes list, select the class whose related objects you want to view.

3 In the Versions list, click the name of version whose related objects you want to view.

4 Click the Cross Reference view tab.

5 In the Cross Reference link bar, click Subclasses, Products, Relationship, or Attribute
Adjustments to view lists of related objects.

Editing a Product Class Definition
Editing a class definition record does not change the attributes defined on the class. However, if you
change the parent class name of a subclass to another already-existing class name, this changes the
location of the subclass in the class hierarchy and can change which attributes the products in the
subclass inherit.
Product Administration Guide Version 7.8, Rev. B74

Products with Attributes ■ About Managing Product Classes
For example, a subclass SC1 has parent class PC1, which has three attributes defined on it A1, A2,
A3. This means SC1 inherits attributes A1, A2, A3. Class PC2 has attributes A4, A5, A6 defined on
it. If you change the parent class of subclass SC1 from PC1 to PC2, this changes the attributes
inherited by SC1 to A4, A5, A6. You have moved SC1 from being a subclass of PC1 to being a subclass
of PC2.

If you are changing the parent-class name for class, do the following first.

To prepare a product class for a parent-class name change

1 Run a query in the Products list to identify all the products assigned to the class.

2 Analyze how changing the parent class name of the class will affect the attributes inherited by
these products.

3 Identify all pricing rules defined for the attributes inherited by the class.

Note which rules must be changed to reflect the new parent class name and any new attributes.

4 Identify all configuration rules that refer to inherited attributes of the class.

Note which rules must be changed to reflect the new parent class name and any new attributes.

If you are changing the class name, do the following first.

To prepare a product class for name change

1 Identify all pricing rules defined for the attributes inherited by the class.

Note which rules must be changed to reflect the new parent class name and any new attributes.

2 Identify all configuration rules that refer to inherited attributes of the class.

Note which rules must be changed to reflect the new parent class name and any new attributes.

3 Identify all product with components relationships of type Class and Dynamic Class that have
been defined using the class.

Note which relationships need to be redefined to reflect the new class name.

4 Identify any customizable product UI properties defined for the class.

Note any UI property definitions that must be revised to reflect the new class name.

If you are changing a class definition, do the following first.

Before editing a class definition, make sure you have fully analyzed the impact on attribute
inheritance.

Also make sure you have analyzed the impact on pricing rules, configuration rules, and UI design.

To edit a class definition

1 If you are changing the parent class name of a class, verify that all the steps in preparing the
class for a parent-class name change are complete. You must do this using the Work Space
version of the parent class.
Product Administration Guide Version 7.8, Rev. B 75

Products with Attributes ■ About Managing Product Classes
2 If you are changing a class name, verify that all the steps in preparing a class for name change
are complete.

3 Navigate to the Administration - Product screen, then the Product Classes view.

4 In the Product Classes list, select and lock the desired record.

5 In the Versions list, click the Work Space version.

6 Modify fields, user interface definitions, constraints, and other information as needed.

NOTE: These changes will not take effect until you release the new version by selecting this class
and clicking Release in the Administration - Products screen, Product Classes view.

Deleting a Product Class
You cannot delete a product class record. If you no longer want to use the product class, you can
deactivate all versions rather than deleting the product class.

Before doing this, verify that the product class is not used for defining any active products.

If you have a large number of inactive versions for a given product class, you can delete the versions
using the CleanupSingleObject method of the ISS Authoring Import Export Service. For more
information, see Siebel Order Management Guide.

To expire or deactivate a product class

1 Navigate to the Administration - Product screen, then the Product Classes view.

2 In the Product Classes list, select and lock the desired product class.

3 In the Versions view, deselect the Active checkbox for the Work Space version.

4 Release the Work Space version.

Exporting or Importing Product Classes
You can export a product class or the whole product class structure to another database. When you
export a product class, the following parts are included in the export:

■ The parent product class of the product class you are exporting plus all the subclasses of the
parent product class. When you export a product class, the export contains not just the product
class you selected, but the portion of the product class structure to which it belongs.

■ Attribute definitions for the product classes and all subclasses.

■ List of values definitions associated with attribute definitions. List of values are exported in the
current language only.

The products in the product classes are not exported.

When you export the whole product class structure, all product classes and subclasses are exported,
along with the items listed above. Products are not exported.
Product Administration Guide Version 7.8, Rev. B76

Products with Attributes ■ About Managing Product Classes
When you export a product class or the product class structure, an XML file is created in a location
you specify. The XML file contains the exported product class structure. When you import this product
class structure, the application reads the XML file and synchronizes the product class system of the
import database to the XML file. The XML file takes precedence, and the product class system is
modified to reflect the portion of the product class system in the XML file.

For example, in the XML file the subclass shoes, has the parent product class footwear. In the import
database the subclass shoes has the parent product class Wardrobe. After importing the XML file,
the subclass shoes will have the parent product class footwear.

Use the following process to update the product class structure in database B with changes from
database A.

■ Back up database B.

■ Export the desired product classes from database A.

■ Import the product classes to database B.

■ Compare the updated product class structure and list of values definitions in database B with
database A.

■ Verify that components in affected products with components in database B have the correct
attributes.

Use the following process to update both the products and product class structure in database B with
changes from database A:

■ Use the process above to update the product class structure in database B.

■ Export the products from database A, except products with components.

■ Import the products into database B. Verify that the products are in the correct product classes
and inherit the correct attributes.

■ Export products with components from database A.

■ Import products with components to database B. For each product with components, verify that
the component products are present and have the correct attributes.

To export a product class or the whole product class structure

1 Review the processes above.

2 Navigate to the Administration Product screen, then the Product Classes view.

3 In the Product Classes list, select the product class you want to export.

4 In the Versions list, select the version you want to export.

5 From the Versions menu, choose Export Version.

The Export Versioned Object dialog box appears.

6 In the dialog box, click Object(s) Only to export the product class or click Full Structure to export
the whole product class structure.

A Save As dialog box appears.
Product Administration Guide Version 7.8, Rev. B 77

Products with Attributes ■ About Managing Attribute Definition Records
7 Browse to the location where you want to store the file, specify the file name, and then click
Save.

The application creates an XML file containing the exported product class structure and stores it
at the location you specified.

When you import a product class structure, you must import the entire contents of the export file.
You cannot choose which product classes in the file to import.

To import a product class structure

1 Review the processes above.

2 Navigate to Administration - Product screen, then the Product Classes view.

3 In the Product Classes list, select the product class you want to import data into.

4 In the Versions list, select the Work Space version.

5 From the Versions menu, choose Import.

6 In the dialog box, click Browse, locate the XML file containing the product class structure you
want to import, and then open and import the file.

The new product class structure is imported into the database.

About Managing Attribute Definition
Records
You can manage attribute definition records in the following ways:

■ “Viewing Related Objects for Attribution Definitions” on page 78

■ “Editing Attribute Definitions” on page 79

■ “Deleting Attribute Definitions” on page 79

Viewing Related Objects for Attribution Definitions
The Attribute Definition Cross References view allows you to view the objects that are related to an
attribute definition, including:

■ Class. Product classes that contain the Attribute Definition

■ Smart Part Number. Smart Part Numbering that makes use of the Attribute Definition

To view related objects for an attribute definition

1 Navigate to the Administration - Product screen, then the Attribute Definitions view.

2 In the Attribute Definitions list, select the definition whose related objects you want to view.

3 In the Versions list, click the version whose related objects you want to view.
Product Administration Guide Version 7.8, Rev. B78

Products with Attributes ■ Viewing Product Attributes
4 Click the Cross References view tab.

5 In the Cross References link bar, click the Class or Smart Part Number link to view lists of related
objects.

Editing Attribute Definitions
When you edit attribute definitions, you modify the attribute domain.

To edit an attribute definition

1 Navigate to the Administration - Product screen, then the Attribute Definitions view.

2 In the Attribute Definitions list, select and lock the desired attribute definition.

3 In the Versions list, click the Work Space version.

4 In the Details view, edit the definitions as necessary.

Deleting Attribute Definitions
You cannot delete an attribute definition. If you no longer want to use the attribute, you can
deactivate all versions

Before doing this, verify that the attribute is not used in any configuration rules, or for attribute-
based pricing.

To expire or deactivate an attribute definition

1 Navigate to the Administration - Product screen, then the Attribute Definitions view.

2 In the Attribute Definitions list, select the desired attribute definition.

3 In the Versions view, deselect the Active checkbox for the Work Space version of the attribute
definition.

4 Release the Work Space version.

Viewing Product Attributes
If a product has been assigned to a product class, it inherits all the attributes defined on the product
class. You can verify that you have defined product classes and associated them with products
correctly by viewing the attributes for the products.

To view a product’s attributes

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select the desired product.
Product Administration Guide Version 7.8, Rev. B 79

Products with Attributes ■ Viewing Product Attributes
3 In the Versions list, click the name of the desired version.

4 Click the Attributes view tab.
Product Administration Guide Version 7.8, Rev. B80

7 Product Attributes with
Business Component Domains
This chapter describes how to define attributes that have a business component domain. These
attributes allow users to select a record from a pick applet, also called a dialog box. A field in this
record then displays in the selection page as the value of the attribute.

This chapter requires that you be familiar with creating pick applets in Siebel Tools.

This chapter includes the following topics:

■ “About Attributes with Business Component Domains” on page 81

■ “About the UI Properties for Attributes with Business Component Domains” on page 82

■ “Process of Creating an Attribute with a Business Component Domain” on page 83

About Attributes with Business
Component Domains
The Product Administrator has created a product with components called Premier Service Package.
The Product Administrator wants users to be able to select an account name when configuring the
product.

This product has been assigned to a product class that has the attribute Account defined on it.
Account has been added to a group in the User Interface view and will display in a selection page.

In the selection page, the Account attribute displays with a blank text field and a select icon. When
the user clicks on the select icon, a dialog box displays containing available accounts. When the user
selects an account, the account name is transferred to the Account text box.

In this scenario, the user was able to access a Siebel business component to display account records.
When the user selected an account record, the account name field in the record was transferred to
the selection page and became the value of the Account attribute. The domain of the Account
attribute is the records retrieved by the business component and displayed in the dialog box, also
called a pick applet.

Attributes with a business component domain differ from attributes with other domain types in
several ways:

■ The attribute values are not defined by a list of values. The user selects the attribute’s value
directly from a pick applet, which displays information from a business component.

■ Attributes can be defined so that when the user selects the value for one attribute (the primary
attribute), the values for other attributes are automatically selected. For example, if the user
selects a value for Account Name (the primary attribute), the value of the Address attribute is
filled in automatically. Configuration rules can be written only on the primary attribute. You
cannot write configuration rules on attributes whose values are automatically selected based on
the value of the primary attribute.
Product Administration Guide Version 7.8, Rev. B 81

Product Attributes with Business Component Domains ■ About the UI Properties for
Attributes with Business Component Domains
About the UI Properties for Attributes
with Business Component Domains
You can define an attribute that has values the user can select from a pick applet. The pick applet
displays records from a specified business component. When the user selects a record, a specified
field in the record displays in the selection page as the value of the attribute.

Several predefined UI properties are provided to associate the attribute with a pick applet and
picklist. Defining these UI properties on the attribute replaces the Siebel Tools procedures for
configuring the originating business component when defining a pick applet.

You define these UI properties on the attribute that you have set up to display a select button in the
selection pages. These UI properties associate the attribute with a pick applet and a picklist and are
shown in Table 6.

The PickMap value is an XML tag that has the following format:

<PickMap Field=“AttributeName” PickField=“BusCompFieldname” Constrain=“Y/N”
BusObj=“BusObjName” />

■ Field. For UI properties with name PickMap01, this specifies the name of the attribute in the
selection page. Use the attribute name, not its display name.

For UI properties with Constrain=“Y”, specifies the business component field name or attribute
name to be used as a filter for the records displayed in the pick applet. The format for specifying
a business component is buscompname.fieldname. The format for specifying an attribute name
is attributename.

For example, to constrain the records displayed in the pick applet to those having the current
record’s Opportunity name in the Quotes view, (Quote business component), you would enter
Quote.Opportunity. To constrain records to the value of the Account Name attribute, you would
enter Account Name.

■ PickField. Specifies the picklist field name. When the user selects a record from the pick applet,
the contents of this field becomes the attribute value shown in the selection page. Use the
business component field name, not the field’s display name.

Table 6. Predefined UI Properties

Name Value

PickApplet The name of the pick applet.

PickList The name of the picklist.

PickMap01 This is an XML tag that associates the attribute name with the picklist field that you
want to display.

PickMapnn PickMap02 and so on, display multiple fields from the same picklist. You can also
use this PickMap definition to define a constraint on the records the user sees in the
pick applet.
Product Administration Guide Version 7.8, Rev. B82

Product Attributes with Business Component Domains ■ Process of Creating an
Attribute with a Business Component Domain
■ Constrain. When set to “Y” (Yes), PickMap specifies a business component field that filters the
records the user sees in the pick applet. If not specified, the default is “N” (No).

■ BusObj. Specifies the business object in which the PickMap definition is active. If omitted, the
PickMap definition is active in all business objects. For example, if you set BusObj=“Order Entry”,
the PickMap applies to orders but not quotes. Use this argument to constrain the pick applet
differently for orders than for quotes. If you insert a BusObj argument in PickMap01, this limits
the display of the select icon and pick applet to the specified business object, for example Quote.

Process of Creating an Attribute with a
Business Component Domain
You associate a business component with an attribute using the same process as creating a pick
applet in Siebel Tools, with the following modifications:

■ Configuring the originating applet. The selection page takes the place of the originating
applet. You replace this procedure with steps that define the attribute and insert it in the
selection page. To do this step, see “Adding the Attribute to a Selection Page” on page 84.

■ Configuring the pick applet. You can use an existing pick applet or define a new applet. If you
define a new pick applet, there is no change to the procedures described in Siebel Tools
Reference.

■ Configuring the originating business component. These procedures are replaced by defining
a series of UI properties on the attribute. These UI properties specify the pick applet name,
picklist name, and pick map definitions. You can define multiple pick maps that display the
content of several fields from the same record. You can also define UI properties to constrain the
pick list.

■ Configuring the picklist. You can use an existing picklist or define a new one. If you define a
new one, there is no change to the procedures described in Siebel Tools Reference.

Assuming that the picklist and pick applet are already defined in Siebel Tools, to define an attribute
with a business component domain, perform the following tasks:

1 “Adding the Attribute to a Selection Page” on page 84. First, add the attribute to a selection page.

2 “Associating the Attribute with a Business Component” on page 84. Associate the attribute with a
business component by defining UI properties on it.

3 “Setting Up Multiple Fields for Display” on page 86. Optionally, you can set up attributes so that
selecting a value for one automatically selects the values for others.

4 “Creating a Business Component Field Constraint” on page 87. Optionally, you can constrain a pick
applet so that it displays only the records having a specified field value.

5 “Creating an Attribute Value Constraint” on page 91. Optionally, you can constrain the records that
display in the pick applet based on the value of an attribute in the selection pages.
Product Administration Guide Version 7.8, Rev. B 83

Product Attributes with Business Component Domains ■ Process of Creating an
Attribute with a Business Component Domain
Adding the Attribute to a Selection Page
This step creates the attribute in the class system and defines where it displays in the selection
pages. It replaces configuring the originating applet step in the Siebel Tools process for creating a
pick applet.

This task is a step in “Process of Creating an Attribute with a Business Component Domain” on page 83.

The attribute data type should be the same as the data type of the business component field from
which the attribute value will come. For example, if the data type of the business component field is
Boolean, the attribute data type should be Boolean. The application does not verify that the attribute
data type and the business component field data type are the same.

In the User Interface view, you do not need to pick a UI control for the attribute. When you define
the PickMap01 UI property on the attribute, the application automatically assigns a text field with
select button to the attribute. When you select a record from the pick applet, the specified field in
the record displays in the attribute text box.

If you select a UI control for the attribute, it will be overridden by the text box with select button.

To add the attribute to a selection page

1 Define an attribute on a class. Leave the list of values and the Default Value field blank.

2 Verify that only products that are themselves products with components or will always be
components of products with components are assigned to the class. Products that will be part of
bundles should not be assigned to the class since they are not configured using selection pages.

3 Navigate to the Administration - Product screen, then the Product Definitions view, and select
and lock the desired product with components. This product must belong to the class on which
the attribute is defined.

4 In the User Interface view, select a group and add the attribute to the Group Item List.

Do not select a UI control for the attribute.

Associating the Attribute with a Business Component
This step defines the UI properties needed to associate the attribute to a picklist. It replaces
configuring the originating business component step in the Siebel Tools process for creating a pick
applet. For information on these UI properties see “About the UI Properties for Attributes with Business
Component Domains” on page 82.

This task is a step in “Process of Creating an Attribute with a Business Component Domain” on page 83.

The Product Administrator has created a product with components called Premier Service Package.
This product has been assigned to a product class that has the attributes Account, Location, and
Opportunity defined on it. These attributes have been added to a group in the User Interface view
and will display in selection pages.
Product Administration Guide Version 7.8, Rev. B84

Product Attributes with Business Component Domains ■ Process of Creating an
Attribute with a Business Component Domain
The Product Administrator wants users to be able to select an account name when configuring the
product. To do this, the Product Administrator must define the following three UI properties on the
Account attribute:

■ PickList. Its value is PickList Account.

■ PickApplet. Its value is Account Pick Applet.

■ PickMap01. This UI property provides the name of the attribute and the business component
field. Its value is an XML tag that has the following elements:

■ Field = “Account”. This is the attribute name.

■ PickField = “Name”. This is the business component field.

The Account attribute displays with a text box in the configuration selection pages. When the user
clicks the select button, the Account Pick Applet displays. When the user selects an account and clicks
OK, the Account name is transferred to the Account field in the selection page.

Table 7 shows how to use the predefined UI properties to associate an attribute with a business
component.

Associating the attribute with a business component

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select and lock the desired product with components.

3 In the Versions list, click the Work Space version.

4 Click the Properties view tab.

5 Select the desired attribute in the Explorer applet.

6 Click New in the List applet.

7 Define the UI properties as shown in Table 7.

Table 7. UI Properties

Name Value

PickApplet The name of the pick applet.

PickList The name of the picklist.

PickMap01 This is an XML tag that associates the attribute name with the picklist field that you
want to display.

Only the Field and PickField variables are required. Enclose their values in quotes.

Field: The attribute name in the selection page.

PickField: The picklist field to be used as the attribute value.

The PickMap that provides this information must be named PickMap01.
Product Administration Guide Version 7.8, Rev. B 85

Product Attributes with Business Component Domains ■ Process of Creating an
Attribute with a Business Component Domain
Setting Up Multiple Fields for Display
You can group attributes together so that selecting a record from a pick applet for one attribute
populates several attributes. You do this by defining additional PickMap UI properties on an attribute.
These additional UI properties define how to populate the other attributes.

This task is a step in “Process of Creating an Attribute with a Business Component Domain” on page 83.

The attribute on which you define PickMap01 is called the primary attribute. The user selects a value
for this attribute and this causes the values for the other attributes to be selected automatically.

The Product Administrator has created a product with components called Premier Service Package.
This product has been assigned to a product class that has the attributes Account, Location, and
Opportunity defined on it. These attributes have been added to a group in the User Interface view
and will display in selection pages.

The Product Administrator wants users to be able to select an account name when configuring the
product. When they do, the Account Administrator wants to automatically populate the Location
attribute with the state in which the account is located.

To do this, the Product Administrator must define the following UI properties on the Account
attribute:

■ PickList. Its value is PickList Account.

■ PickApplet. Its value is Account Pick Applet.

■ PickMap01. This UI property provides the name of the attribute and the business component
field. Its value is an XML tag that has the following elements:

■ Field = “Account”. This is the attribute name.

■ PickField = “Name”. This is the business component field.

■ PickMap02. This UI property defines an attribute that will receive its value automatically when
the user selects a value for the primary attribute. In this case, the attribute is Location. The value
of the UI property is an XML tag that has the following elements:

■ Field = “Location”. This is the attribute name.

■ PickField = “State”. This is the business component field.

The Account and Location attributes display with a text box next to them in the configuration
selection pages. When the user clicks the select button and chooses an Account name, it is
transferred to the Account field and the state name is transferred to the Location field.
Product Administration Guide Version 7.8, Rev. B86

Product Attributes with Business Component Domains ■ Process of Creating an
Attribute with a Business Component Domain
Table 8 shows how to use the predefined UI properties to set up multiple fields for display.

To set up multiple fields for display

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 Select and lock the desired product with components.

3 In the Versions list, click the Work Space version.

4 Click the Properties view tab.

5 Select the desired attribute.

6 Define the UI properties as shown in Table 8.

Creating a Business Component Field Constraint
You can constrain the records that display in the pick applet based on a field that they have in
common with the business component that starts the configuration session. This is similar to using
Siebel Tools to constrain the display of records in a pick applet based on a field in the originating
business component.

Table 8. UI Properties

Name Value

PickApplet The name of the pick applet.

PickList The name of the picklist.

PickMap01 This is an XML tag that associates the attribute name with the picklist field that you
want to display.

PickMap01 must be defined on the primary attribute

Only the Field and PickField variables are required. Enclose their values in quotes.

Field: The name of primary attribute.

PickField: The name of the business component field.

PickMap02 Only the Field and PickField variables are required.

These variables are for attributes other than the primary attribute. These attributes
will be populated automatically when the user selects a pick applet record for the
primary attribute. Attribute values for these attributes are read-only. Enclose the
attribute values in quotes.

Field: The name of the attribute, other than the primary attribute.

PickField: The name of the business component field.

You can define PickMaps to populate as many fields as desired. Number the PickMaps
in sequential order, for example Pickmap03, PickMap04, etc.
Product Administration Guide Version 7.8, Rev. B 87

Product Attributes with Business Component Domains ■ Process of Creating an
Attribute with a Business Component Domain
This task is a step in “Process of Creating an Attribute with a Business Component Domain” on page 83.

You do this by defining an additional PickMap UI property on an attribute. This additional UI property
defines how to constrain the records in the pick applet specified in PickMap01. The constraint PickMap
specifies the business component name and field to use to filter the records in the pick applet.

The Product Administrator has created a product with components called Premier Service Package.
This product has been assigned to a product class that has the attributes Account, Location, and
Opportunity defined on it. These attributes have been added to a group in the User Interface view
and will display in selection pages.

The Product Administrator wants users to be able to select an account name when configuring the
product in a quote. When they do, the Account Administrator wants to automatically populate the
Location attribute with the state in which the account is located.

In addition, the Product Administrator wants to constrain the pick applet to display only the accounts
associated with the opportunity name displayed in the Quote Opportunity field. For example, if the
opportunity name is Boeing, the pick applet would display all the Boeing accounts only.

To do this, the Product Administrator must define the following UI properties on the Account
attribute:

■ PickList. Its value is PickList Account.

■ PickApplet. Its value is Account Pick Applet.

■ PickMap01. This UI property provides the name of the attribute and the business component
field. Its value is an XML tag that has the following elements:

■ Field = “Account”. This is the attribute name.

■ PickField = “Name”. This is the business component field.

■ PickMap02. This UI property defines an attribute that will receive its value automatically when
the user selects a value for the primary attribute. In this case, the attribute is Location. The value
of the UI property is an XML tag that has the following elements:

■ Field = “Location”. This is the attribute name.

■ PickField = “State”. This is the business component field.

■ PickMap 03. This UI property filters the display of records in the pick applet to those having the
same value as a field in the business component that starts the configuration session. The value
of the UI property is an XML tag that has the following elements:

■ Constrain = “Y”. This notifies the application that the UI property defines a constraint.

■ Field = “Quote.Opportunity”. This is the business component name and field name that will
be used as a filter.

■ PickField = “Name”. This is the picklist field name that will be filtered.

The Account and Location attributes display with a text box next to them in the configuration
selection pages. When the user clicks the select button for Account, a pick applet displays. It contains
only the accounts that have the name specified in the Opportunity field of the quote that started the
configuration session (Quote business component). When the user selects an account and clicks OK,
the Account name is transferred to the Account field and the state name is transferred to the Location
field.
Product Administration Guide Version 7.8, Rev. B88

Product Attributes with Business Component Domains ■ Process of Creating an
Attribute with a Business Component Domain
Table 9 shows how to use the predefined UI properties to constrain the user’s choices.

Table 9. UI Properties

Name Value

PickApplet The name of the pick applet.

PickList The name of the picklist.

PickMap01 This is an XML tag that associates the attribute name with the picklist field that you
want to display.

PickMap01 must be defined on the primary attribute

Only the Field and PickField variables are required. Enclose their values in quotes.

Field: The name of primary attribute.

PickField: The name of the business component field.
Product Administration Guide Version 7.8, Rev. B 89

Product Attributes with Business Component Domains ■ Process of Creating an
Attribute with a Business Component Domain
To use a field to constrain the user’s choices

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 Select and lock the desired product with components.

3 Navigate to the Properties view.

4 Select the desired attribute.

5 Define the UI properties as shown in Table 9 on page 89.

PickMap02 Only the Field and PickField variables are required.

These variables are for attributes other than the primary attribute. These attributes
will be populated automatically when the user selects a pick applet record for the
primary attribute. Attribute values for these attributes are read-only. Enclose their
values in quotes.

Field: The name of the attribute, other than the primary attribute.

PickField: The name of the business component field.

You can define PickMaps to populate as many fields as desired. Number the
PickMaps in sequential order, for example Pickmap03, PickMap04, and so on. Define
one PickMap for each field.

PickMap03 This PickMap defines the business component field used to filter the records
displayed in the pick applet

Field, PickField, and Constrain variables are required. Enclose their values in quotes.

Field: Specifies the business component name and field that filters the pick applet.
The format for specifying the field name is buscompname.fieldname.

The business component specified in Field must be in the same Tools business object
(BusObj) as Siebel Configurator. The field cannot be the field specified in PickMap01.

For example, to constrain the records displayed in the pick applet to those having
the current record’s Opportunity name in the Quotes view, (Quote business
component), you would enter Quote.Opportunity.

PickField: Specifies the name of field in the picklist that is filtered by the Field
variable.

Constrain: Must be set to “Y”.

All PickMaps must be have a unique number. For example if there are 4 PickMaps,
PickMap01...PickMap04, name the constraint PickMap, PickMap05.

Table 9. UI Properties

Name Value
Product Administration Guide Version 7.8, Rev. B90

Product Attributes with Business Component Domains ■ Process of Creating an
Attribute with a Business Component Domain
Creating an Attribute Value Constraint
You can constrain the records that display in the pick applet based on the value of an attribute in the
selection pages. The attribute value is used to create a search specification that matches the
attribute value to the value in a field in the business component that populates the pick applet.

This task is a step in “Process of Creating an Attribute with a Business Component Domain” on page 83.

For example, you define an attribute called Account Name. In a configuration session, the user
selects Hewlett Packard from the pick applet you have defined for this attribute. You have also
created an attribute called Address. You have defined a pickmap for this attribute that constrains the
display of addresses to those belonging to the value of the Account Name attribute, which is Hewlett
Packard. The pick applet for Address would display only those addresses for Hewlett Packard.

You create an attribute value constraint in the same way as creating a business component
constraint. The only difference is that for Field you specify the attribute name rather than a
buscomp.fieldname in the pickmap definition. Using the example above, you would enter
Field=“Account Name”.

NOTE: If the attribute you specify to constrain the pick applet does not have an attribute value, the
pick applet will contain no records.
Product Administration Guide Version 7.8, Rev. B 91

Product Attributes with Business Component Domains ■ Process of Creating an
Attribute with a Business Component Domain
Product Administration Guide Version 7.8, Rev. B92

8 Smart Part Numbers for
Products with Attributes
This chapter explains how to set up part numbers so that they are dynamically generated based on
the product attributes that the user selects. Smart part numbers can be used to generate part
numbers when creating quotes, orders, and agreements. They can also be used when adding items
to a shopping cart.

This chapter includes the following topics:

■ “About Smart Part Numbers” on page 93

■ “Roadmap for Creating Smart Part Numbers” on page 94

■ “Process of Creating Dynamically Generated Smart Part Numbers” on page 95

■ “Editing a Dynamic Generation Method” on page 98

■ “Process of Creating Predefined Smart Part Numbers” on page 99

■ “Editing a Predefined Generation Method” on page 101

■ “Assigning Smart Part Numbers to a Product” on page 101

■ “Viewing a Product’s Smart Part Number in a Quote” on page 102

■ “Updating a Generation Method with Attribute Changes” on page 102

About Smart Part Numbers
Smart part numbers can be used to generate part numbers for the following types products in
quotes, orders, agreements, and for products added to shopping carts:

■ Simple products

■ Bundles

■ Products with components

Smart part numbers allow you to automatically generate part numbers for different combinations of
product attributes. You do not have to make an entry in the product table and provide a part number
for each combination of product attributes that a customer can purchase.

For example, you sell shirts in three sizes: small, medium, and large. You also sell them in three
colors: red, green, and blue. There are nine possible combinations of size and color that customers
can purchase. Each combination needs a part number that can be passed to a back-end application
at the time of purchase.

One way to set this up is to make an entry in the product table for each combination. In other words,
you create nine separate products. This is time consuming and does not take advantage of the
attribute features in the class system. It also does not take advantage of the attribute-based pricing
features in Siebel Pricer.
Product Administration Guide Version 7.8, Rev. B 93

Smart Part Numbers for Products with Attributes ■ Roadmap for Creating Smart Part
Numbers
Another way to set this up is to make one entry in the product table for the shirt. You then define
color and size attributes on the class to which the shirt belongs. Finally, you use smart part number
to define which part number to assign to each combination of attributes. For example, when the
customer selects the shirt in size small and color blue, smart part number generates a part number
for this combination and displays it in the quote. You can also use attribute-based pricing in Siebel
Pricer to determine the price of the shirt.

There are several advantages to this method:

■ It makes managing the product table easier. You make one entry for a product and then use the
class system to define and manage its attributes. If you enter a product’s attribute combinations
as products in the product table, you must manually edit the table when attributes change.

■ It makes managing part numbers easier and more accurate. You can make one entry for a part
number definition and it will be applied to all the forms of the product consistently and accurately.

■ It allows you to take advantage of important features in related products such as attribute-based
pricing in Siebel Pricer.

Roadmap for Creating Smart Part
Numbers
Smart part number provides the following methods for defining how part numbers are generated:

■ Dynamic. You specify what product attributes participate in creating a part number and the
string that each attribute value will have. You then define a part number template with
placeholders for the attribute values. Smart part number inserts the value of the attribute into
the part number template to create the final part number. Use this method when your part
numbers include important information, besides attribute values, that is needed to uniquely
identify the product.

■ Predefined. You specify what product attributes participate in creating a part number. You can
then do one of two things:

■ You can auto-generate a matrix of all the combinations of these attributes. Random part
numbers are provided for each combination. You can accept the random values or replace
them with your own values.

■ You can manually create the matrix, inserting your own part numbers.

■ When the user selects product attributes, smart part number searches the list for the correct
attribute combination and uses its part number. Use this method when your part numbers
cannot be easily created using string substitution.

You define named smart part number methods on product classes. These methods use the attributes
defined on the class to generate a part number. Only attributes with a list of values domain can be
used to generate part numbers. When you assign a product to a class, you can select for it any of
the smart part number methods that have been defined on the class.

If you add or remove attributes on a class, or change the values for an attribute, these changes are
not automatically propagated to the smart part number methods defined on the class. You must
manually update each smart part number method with the changes.
Product Administration Guide Version 7.8, Rev. B94

Smart Part Numbers for Products with Attributes ■ Process of Creating Dynamically
Generated Smart Part Numbers
To create smart part numbers for products, perform the following tasks:

1 Creating the smart part numbers. You can do this in one of two ways:

■ “Process of Creating Dynamically Generated Smart Part Numbers” on page 95

■ “Process of Creating Predefined Smart Part Numbers” on page 99

2 “Assigning Smart Part Numbers to a Product” on page 101

Process of Creating Dynamically
Generated Smart Part Numbers
When you create dynamic part numbers, you first create a template that contains a placeholder for
each attribute you want to include in the part number. You then define mappings that specify how
attribute values replace the placeholders. When the user chooses attribute values, the application
inserts the mappings into the part number template to generate the part number.

The following definitions are important to understanding dynamically generated part numbers.

■ Part number template. A sequence of sections in a specified order.

■ Section. A portion of a part number template. Each section contains one attribute name that
acts as a placeholder. Sections can also contain a prefix and a postfix.

For example, you want to create part numbers that begin with ENU- and end with -MC. You want
to include values for two attributes, Attrib1 and Attrib2, and separate them with a dash (-). Here
is an example: ENU-S-GRN-MC. In this part number, S is the value substituted for Attrib1 and
GRN is the value for Attrib2.

To create a part number template, you would define two sections. In Table 10, the first row is the
first section of the part number. The second row is the second section.

■ Mapping. A mapping is a string of characters you define for an attribute value. The mapping is
what the abbreviation method uses to determine what characters to insert in the part number.
If you do not define a mapping, the abbreviation method uses the attribute value itself.

■ Abbreviation method. The abbreviation method determines how the characters are derived
from the mapping. These characters replace the attribute’s placeholder in the part number
template. The mapping methods are: Abbreviation, Acronym, First Two Symbols, First and Last
Symbols, First Symbol.

■ Abbreviation. Inserts the whole mapping.

Table 10. Part Number Template

Prefix
Attribute Name
(Placeholder) Postfix Sequence

ENU- Attrib1 - 1

(none) Attrib2 -MC 2
Product Administration Guide Version 7.8, Rev. B 95

Smart Part Numbers for Products with Attributes ■ Process of Creating Dynamically
Generated Smart Part Numbers
■ Acronym. Inserts the first character in the mapping plus the first character following each
space in the mapping.

■ First Two Symbols. Inserts the first two characters in the mapping.

■ First and Last Symbols. Inserts the first and last characters in the mapping.

■ First Symbol. Inserts the first character in the mapping.

An example of how abbreviation methods determine which characters to insert in part number
templates is shown in Table 11. The first column shows the mapping. The remaining columns show
the characters that would be inserted in the template for each abbreviation method.

Only attributes with a list of values domain can be used to create dynamic part numbers.

Before creating part numbers using this method, determine which attributes you want to use in the
part number. Then write down the sections of the part number, including the prefix and postfix for
each attribute.

To creating dynamically generated part numbers, perform the following tasks:

1 “Creating a Part Number Generation Record” on page 96

2 “Defining the Part Number Templates” on page 97

3 “Mapping Attribute Values to the Template” on page 97

4 “Testing the Part Number Templates” on page 98

Creating a Part Number Generation Record
First Create a part number generation record. This record names the part number generation method
and specifies whether the method is dynamic or predefined.

This task is a step in “Process of Creating Dynamically Generated Smart Part Numbers” on page 95.

To create a part number generation record

1 Navigate to the Administration - Products screen, then the Product Classes view.

2 In the Product Classes list, select the desired product class.

Table 11. How Mapping Methods Work

Mapping Abbreviation Acronym
First
Symbol

First and Last
Symbols

Small Small S S Sl

X Large X Large XL X Xe

X-LARGE X-Large X X XE

A123 B456 C78 A123 B456 C78 ABC A A8
Product Administration Guide Version 7.8, Rev. B96

Smart Part Numbers for Products with Attributes ■ Process of Creating Dynamically
Generated Smart Part Numbers
3 Click the name in the Smart Part Number field.

The name is a hyperlink. The Smart Part Number list appears.

4 In the Smart Part Number list, add a new record and complete the necessary fields, described in
the following table.

Defining the Part Number Templates
Next, define the part number template.

This task is a step in “Process of Creating Dynamically Generated Smart Part Numbers” on page 95.

To define the part number template

1 In the Name field of the Smart Part Number record, click the name you entered.

The name is a hyperlink. The Part Number Method view appears.

2 In the Part Number Template list, add a new record and complete the necessary fields, described
in the following table.

3 Repeat Step 2 for each section you want to include in the part number.

Mapping Attribute Values to the Template
Next, map attribute values to the template.

This task is a step in “Process of Creating Dynamically Generated Smart Part Numbers” on page 95.

Field Comments

Name Enter a name for the part number generation method.

Type Select Dynamic.

Field Comments

Pre-Fix Enter a static text that appears before all other parts of the smart
part number generated by the application

Attribute Name Select the attribute for this section

Post Fix Enter a static text that appears after all other parts of the smart
part number generated by the application

Abbreviation Method Select an abbreviation method for the attribute mapping

Sequence Enter a sequence. The sequence determines the order of the
section in the part number.
Product Administration Guide Version 7.8, Rev. B 97

Smart Part Numbers for Products with Attributes ■ Editing a Dynamic Generation
Method
To define a mapping for each attribute value

1 In the Part Number Template list, highlight the template section for which you want to define
attribute value mappings.

The values for the attribute display in the Attribute Mapping list, below the Part Number Template
list.

2 For each attribute value in Attribute Mapping, enter a mapping in the Mapping field.

The abbreviation method uses the string in the Mapping field to determine what characters to
insert in the part number for this attribute value. If you do not enter a mapping, the abbreviation
method uses the attribute value as the mapping.

3 Repeat Step 1 and Step 2 for each section in Part Number Template.

Testing the Part Number Templates
Finally, test the part number template.

This task is a step in “Process of Creating Dynamically Generated Smart Part Numbers” on page 95.

You do this by creating a quote and selecting the product for which you have created a smart part
number method. Add the product to the quote enough times so that you can select all the
combinations of attributes needed to verify that the smart part number template is working correctly.
The smart part number displays in the Line Item Detail view. For more information on locating the
smart part number in a quote, see “Viewing a Product’s Smart Part Number in a Quote” on page 102.

Editing a Dynamic Generation Method
You can edit a dynamic generation method in several ways:

■ Edit the name of the generation method

■ Delete the generation method

■ Edit the part number template

■ Edit the attribute value mappings

If you edit the name of a generation method or delete the method, the change is reflected in all
product records to which the method is assigned. For example, you delete the generation method
Dynamic1. All product records that have Dynamic1 as the Part Number Method, no longer have an
assigned generation method.

If you edit the product template or attribute mappings, the changes become effective immediately.
The next time the product is added to quote, order, and so on, the revised part number scheme will
be used. The part numbers assigned to products are not changed. You can update the part number
by reselecting the product attributes.

If you add or remove attributes defined on a class or change attribute values, these changes are not
propagated to the generation method. You must manually update the method. For information on
this, see “Updating a Generation Method with Attribute Changes” on page 102.
Product Administration Guide Version 7.8, Rev. B98

Smart Part Numbers for Products with Attributes ■ Process of Creating Predefined
Smart Part Numbers
Process of Creating Predefined Smart
Part Numbers
To create predefined part numbers, you create a matrix that contains one row for each possible
combination of attribute values. The last entry in the row is the part number you want to assign to
this combination. You can create the matrix manually, or the application can generate it
automatically.

When the application generates the matrix, it assigns a random part number to each combination.
You can accept this part number or replace it with one of your own.

When the user configures the product, the application searches the matrix for the combination of
attribute values the user has chosen and assigns the corresponding part number to the product.

Only attributes with a list of values (LOV) domain can be used to create predefined part numbers.
Before creating part numbers using this method, determine which combinations of attribute values
are allowable. Assign part numbers only to these combinations.

To create predefined part numbers, perform the following tasks:

1 “Creating a Part Number Generation Record” on page 99

2 “Selecting the Attributes for Predefined Part Numbers” on page 100

3 “Creating the Part Number Matrix” on page 100

4 “Testing the Part Number Matrix” on page 101

Creating a Part Number Generation Record
First, create a part number generation record. This record names the part number generation method
and specifies whether the method is dynamic or predefined.

This task is a step in “Process of Creating Predefined Smart Part Numbers” on page 99.

1 Navigate to the Administration - Products screen, then the Product Classes view.

2 In the Product Classes list, select the desired product class.

3 Click the link in the Smart Part Number field.

4 In the Part Number Definitions list, add a new record and complete the necessary fields,
described in the following table.

Field Comments

Name Enter a name for the part number generation method.

Type Select Predefined.
Product Administration Guide Version 7.8, Rev. B 99

Smart Part Numbers for Products with Attributes ■ Process of Creating Predefined
Smart Part Numbers
Selecting the Attributes for Predefined Part Numbers
The next step is to select the desired attributes.

This task is a step in “Process of Creating Predefined Smart Part Numbers” on page 99.

To select the desired attributes

1 In the part number definition Name field, click the name you entered.

The name is a hyperlink. The Part Number Method view appears.

2 In the Attributes list, add a new record and, in the Attribute Name field, select the desired
attribute.

3 Repeat Step 2 until you have added all the attributes that you want to use for defining part
numbers.

Creating the Part Number Matrix
The last step is to generate a part number matrix.

This task is a step in “Process of Creating Predefined Smart Part Numbers” on page 99.

To create the part number matrix

1 Click the Attribute Matrix view tab.

The Attribute Matrix displays the part number matrix. There is one column for each attribute you
selected. There is also a Part Number column and a Description column.

2 To generate the matrix automatically, click the menu button and choose Generate Part Numbers.

The application creates one record for each possible combination of attribute values. The
application also generates a random part number for each combination.

NOTE: You can also create the matrix manually by clicking New and creating a record for each
desired attribute combination.

3 Review the matrix and verify that it is structured correctly.

If you have not specified the correct attributes, click Attributes. Then add or subtract attributes
as needed before regenerating the matrix.

4 Edit the part number for each attribute combination as desired.

You can either accept the randomly generated part numbers or enter the desired part numbers.
You can also enter a description for each combination. Users do not see the description.

5 Add new records as desired.

Enter an attribute value for each attribute, and enter a part number.

6 Delete records for unneeded attribute combinations as desired.
Product Administration Guide Version 7.8, Rev. B100

Smart Part Numbers for Products with Attributes ■ Editing a Predefined Generation
Method
Testing the Part Number Matrix
The last step is to test the part number matrix.

This task is a step in “Process of Creating Predefined Smart Part Numbers” on page 99.

You do this by creating a quote and selecting the product for which you have created a smart part
number method. See “Viewing a Product’s Smart Part Number in a Quote” on page 102.

Editing a Predefined Generation Method
You can edit a predefined generation method in several ways:

■ Edit the name of the generation method

■ Delete the generation method

■ Edit the part numbers in a generation method’s part number matrix

■ Add or delete records in a generation method’s part number matrix

■ Regenerate the part number matrix, using different attributes

If you edit the name of a generation method or delete the method, the change is reflected in all
product records to which the method is assigned. For example, you delete the generation method
Predefined1. All product records that have Predefined1 as the Part Number Method, no longer have
an assigned generation method.

If you edit the part number matrix for a generation method, the changes become effective
immediately. The next time the product is added to quote, order, and so on, the revised part number
scheme will be used. The part numbers assigned to products are not changed. You can update the
part number by reselecting the product attributes.

If you add or remove attributes defined on a class or change attribute values, these changes are not
propagated to the generation method. You must manually update the method. To do this, see
“Updating a Generation Method with Attribute Changes” on page 102.

Assigning Smart Part Numbers to a
Product
Smart part numbers defined on a product class are not inherited by the products in the class. You
must manually assign the part number generation method to a product.

When you assign a generation method to a product, this method is used for generating part numbers
whenever this product is used in new quotes, orders and so on.

To assign a generation method to a product

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select the desired product.
Product Administration Guide Version 7.8, Rev. B 101

Smart Part Numbers for Products with Attributes ■ Viewing a Product’s Smart Part
Number in a Quote
3 In the bottom applet, in the product Part Number Method field, enter the generation method
information.

4 Click Release to make it take effect.

Viewing a Product’s Smart Part Number
in a Quote
The part number displayed in the Part # field throughout the application and in quotes, orders, and
so on is the internally assigned part number. This part number is different than the smart part
number, which displays in a separate field.

Before viewing a product’s smart part number in a quote, you must assign a part number generation
method to the product. See “Assigning Smart Part Numbers to a Product” on page 101.

Assigning a generation method to a product does not cause a smart number to be generated in
existing quotes containing the product.

To view a product’s smart part number in a quote

1 Create a quote containing the product.

2 Navigate to the Quotes screen, then the Line Items view.

3 Highlight the desired line item, and click the Item Detail view tab.

4 Locate the Smart Part Number field.

You may need to expand the Line Item Detail form to make the Smart Part Number field visible.

Updating a Generation Method with
Attribute Changes
When you add or remove attribute definitions for a class, these changes are not propagated to smart
part number methods defined on the class. If you modify the list of values domain for an attribute,
these changes also are not propagated. You must manually update each smart part number method
with changes to attributes.

You do this by validating the smart part number generation method. When you validate a generation
method, the application does two things:

■ If you have added or removed attributes, a pop-up message displays and recommends you edit
the attribute list you are using for the generation method. For dynamic generation methods, you
must modify section definitions and mappings. For predefined methods, you must edit the rows
of the matrix.

■ If you have changed attribute values for an attribute, the changes are added to the attribute
values available for selection. For dynamic generation methods, you must edit the mappings to
reflect the new values. For predefined methods, you must edit the rows of the matrix.
Product Administration Guide Version 7.8, Rev. B102

Smart Part Numbers for Products with Attributes ■ Updating a Generation Method with
Attribute Changes
Choose one of the following procedures to validate a smart part number generation method.

To update a dynamic generation method with attribute changes

1 Navigate to the Administration - Product screen, then the Product Classes view

2 In the Product Classes list, select the desired product class.

3 Click the hyperlink in the Smart Part Number field of the desired product class.

A list of the part number generation methods defined on the product class appears.

4 To edit a generation method name, click the method name in the Name field.

The Part Number Method view appears.

5 In Part Number Template, click the menu button and choose Validate Definition.

If an attribute has been added, removed, or its name has been changed, a pop-up message
appears recommending you revise the sections in Part Number Template.

If an attribute’s values have changed, the values available in Attribute Mapping are updated and
no pop-up message appears.

6 Revise the sections defined in Part Number Template as needed.

7 Add or revise mappings in Attribute Mapping as needed.

The following procedure shows how to update a predefined generation method.

To update a predefined generation method with attribute changes

1 Navigate to the Administration - Product screen, then the Product Classes view.

2 In the Product Classes list, select the desired product class.

3 Click the Part Number Definitions view tab.

A list of the part number generation methods defined on the product class appears.

4 To edit a generation method name, click the word Predefined in the Type field.

The Part Number Method view appears.

5 In Attributes, click the menu button and choose Validate Definition.

If an attribute has been added, removed, or its name has been changed, a pop-message up
appears recommending you revise the Attributes list.

If an attribute’s values have changed, the values available for automatically generating a matrix
are updated and no pop-up message appears.

6 Revise the Attributes list as needed.

7 Add, remove, or revise rows in the matrix as needed.
Product Administration Guide Version 7.8, Rev. B 103

Smart Part Numbers for Products with Attributes ■ Updating a Generation Method with
Attribute Changes
Product Administration Guide Version 7.8, Rev. B104

9 Designing Products with
Components
This chapter describes how to design the structure of a product with components. It includes the
following topics:

■ “About Products with Components” on page 105

■ “About Products with Components and Product Classes” on page 105

■ “About Relationships” on page 106

■ “About Cardinality” on page 108

■ “Guidelines for Designing Products with Components” on page 109

■ “Process of Designing a Product with Components” on page 110

■ “Refreshing the Customizable Product Work Space” on page 116

■ “Enabling the Customize Button” on page 117

■ “About Managing the Structure of Products with Components” on page 117

■ “Creating a Report on a Product’s Structure” on page 119

About Products with Components
A product with components is one that has components that the user can select. For example, you
sell desktop workstations. At the time of purchase, the user can select from several types of disk
drive, monitor, keyboard, and mouse to configure the workstation.

A product with components can have other products with components as components. For example,
you sell a telephone PBX system that includes 6 rack-mounted PC-based modules. Each module is
configurable in a fashion similar to a desktop computer. The components of the PBX system form a
product hierarchy. To configure the PBX, the user begins at the top with the PBX as a whole and works
down through the hierarchy, configuring its components.

About Products with Components and
Product Classes
This chapter and subsequent chapters describe how to define structure, constraints, custom user
interface, and other properties of individual products.

Alternatively, you can also define these properties for product classes and then associate individual
products with the class. The individual products inherit all the properties from the class.

For more information about product classes, see “About Product Classes” on page 60.
Product Administration Guide Version 7.8, Rev. B 105

Designing Products with Components ■ About Relationships
To associate a customizable product with a product class

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select the desired customizable product.

3 In the Versions list, in the record for the Work Space version, in the Product Class field, select
the product class.

About Relationships
You specify the components of a product with components by defining relationships. A relationship
can be defined for a single product, a group of products, or the products in a class.

NOTE: Relationships are also called ports.

The relationships you define for a product with components are component type relationships. This
means the items in the relationship are components of the product with components. For example,
you define a relationship called Hard Drives for the product with components Desktop Computer. You
specify that it contains all the products assigned to the Disk Drive class. This makes the disk drives
in this class components of the product with components Desktop Computer.

Relationships form the framework of a product with components. They are also the framework
underlying the user interface you design for the product. For example, you sell configurable
computers. The buyer can choose among several monitors, several keyboards, and several CD-ROMs
when configuring a computer. You could create a relationship called Monitors, another called
Keyboards, and one called CD-ROMS. You would then specify the products to include in each
relationship. You could then design the user interface to present monitors, keyboards, and CD-ROMs
each on a separate selection page.

When you design a product with components, begin by defining a framework of relationships. Keep
in mind that each relationship represents a distinct, configurable part of the product.

Figure 3 shows a relationship framework in a product with components.

■ Relationship 1 contains a single product, Product 1

■ Relationship 2 contains all the products in product class, Class 1
Product Administration Guide Version 7.8, Rev. B106

Designing Products with Components ■ About Relationships
■ Relationship 3 contains Product 2, Product 3, and Product 4, each from a different product class

Products with components and the product class system both include hierarchies. However, these
hierarchies differ in important ways. In the product class system, inheritance is used to propagate
attribute definitions downward through the class system. By contrast, inheritance plays no role in
the hierarchy of components in a product with components. Attributes inherited by a product with
components because of its membership in a product class do not propagate to the component
products in the product with components.

For example, a product with components belongs to a product class that has the attribute Color (red,
green, blue). The product with components as a whole inherits this attribute but its components do
not. For example, if the product with components is a laptop computer, this means the laptop comes
in three colors, red, green, or blue.

However, these colors are not inherited by any of the components of the laptop. For example, if the
laptop has a CD-ROM, it does not inherit these colors. The color attribute of the CD-ROM (if it has
one) is defined in the product class from which it comes, not in the product with components in which
it resides.

NOTE: If a class relationship is assigned to a class that have subclasses, the products in the
subclasses appear in the class relationship. For example, there is a parent class called Hard Drive
and subclasses called Laptop Hard Drives and Desktop Hard Drives, both of which have products in
them. If the relationship is on the Hard Drive class, the application will pick up products from both
Laptop Hard Drive class and Desktop Hard Drives.

Figure 3. Product with Components Relationships
Product Administration Guide Version 7.8, Rev. B 107

Designing Products with Components ■ About Cardinality
About Cardinality
When you define a relationship, you can specify a minimum, maximum, and default cardinality.
Cardinality refers to the quantity of the component that the user can select. For example, you define
a relationship called Hard Drives. It contains a 20 GB drive and a 30 GB drive. If you set the minimum
cardinality to 2, the user must pick 2 items from this relationship. The user can do this in any of the
following ways:

■ Pick one 20 GB drive and one 30 GB drive

■ Pick two 20 GB drives

■ Pick two 30 GB drives

The three types of cardinality you can define for a relationship are as follows:

■ Minimum Cardinality. Governs whether or not selecting items from this relationship is optional
or is required. If you set the minimum cardinality to 0, selecting items is optional. If you set the
minimum cardinality to greater than 0, the user must select that number of items from the
relationship.

■ Maximum Cardinality. Sets the maximum number of items that the user can select from a
relationship. If you set the minimum cardinality to greater than 0, you must set the maximum
cardinality to a number at least as large If you do not enter a maximum cardinality, the default
is 999. To revise this default, see “Revising the Application Default Cardinalities” on page 358.

■ Default Cardinality. Specifies what quantity of the default product is automatically added to
the initial solution that the user sees. Default cardinality must be equal to or greater than the
minimum cardinality and must be less than or equal to the maximum cardinality.

If you specify a default cardinality and do not specify a default product, the application uses the
first product that displays when you expand the relationship folder in the Structure view.

Combinations for Setting Cardinality
Table 12 describes several combinations for setting cardinality. The table shows what the user will
see in the initial solution and what actions that the user can take. In the table, N is the quantity of
the default product in the initial solution. In all the cases where the Min Card is greater than 0, the
user can substitute other products for the default product.

Table 12. Combinations of Cardinality

Min
Card

Default
Card Max Card

application
Adds Default
Product?

User
Pick
Reqd?

Initial
Solution User Actions Allowed

=0 = Min
Card

>Default
Card

No No No items Increase item quantities to
Max Card.

=0 > Min
Card

=Default
Card

No No N=Max Card Decrease Item quantities
to 0 but cannot increase
them.
Product Administration Guide Version 7.8, Rev. B108

Designing Products with Components ■ Guidelines for Designing Products with
Components
About Generics
Generics are notifications to the user from the engine that one or more items within a relationship
needs to be selected for the product with components to be correct. An example of generics is a red
star displayed next to the relationship name and product title during a configuration session because
some minimum cardinality requirements were not satisfied. Siebel Configurator gives users a
warning when they try to save a configuration that has generics in it, but it allows users to save the
configuration and also saves the fact that the configuration is incomplete to the quote or order.

When the user verifies a quote, the application checks for incomplete configurations as well as for
other information. If the configuration saved was incomplete because of unsatisfied cardinalities on
relationships, the application displays a message when the user verifies saying that the configuration
of the item is not complete and the user should reconfigure the item.

Guidelines for Designing Products with
Components
You can minimize order problems if you avoid adding the same product to more than one relationship
in a customizable product. If you restructure the customizable product and publish a new version,
the Auto Match business service in Siebel Configurator may not pick the correct relationship for the
item if transactional data (for quotes, orders, and assets) based on old versions of the product is
reconfigured. For more information see “Auto Match Business Service for Siebel Configurator” on
page 362.

=0 > Min
Card

>Default
Card

No No N=Default
Card

Increase item quantities to
Max Card or decrease them
to 0.

>0 = Min
Card

=Default
Card

Yes Yes N=Min,
Default, Max

Cannot increase or
decrease item quantities.

>0 = Min
Card

> Default
Card

Yes Yes N=Min Can increase item
quantities to Max Card but
cannot decrease them.

>0 > Min
Card

= Default
Card

Yes Yes N=Default Can decrease item
quantities to Min Card but
cannot increase them.

>0 > Min
Card

>Default
Card

Yes Yes N=Default Can decrease item
quantities to Min Card or
increase them to Max Card.

Table 12. Combinations of Cardinality

Min
Card

Default
Card Max Card

application
Adds Default
Product?

User
Pick
Reqd?

Initial
Solution User Actions Allowed
Product Administration Guide Version 7.8, Rev. B 109

Designing Products with Components ■ Process of Designing a Product with Components
Guidelines for Asset-Based Ordering
If you are designing products with components and you use asset-based ordering, the best practice
is to avoid creating require rules that add items that are not tracked as assets to a customizable
product.

For example, you write a require rule that adds a one-time charge for Installation to a customizable
product. You do not set the Track as Asset flag for Installation in its product record. This means
Installation does not display as a customer asset.

Then the customer requests an addition to the service. The call center agent selects the service,
clicks Modify, and starts a configuration session. The Siebel Configurator engine adds Installation,
because it is required by configuration rules. Installation is transferred to the quote even though it
is not required by the service modification.

Process of Designing a Product with
Components
To define a product with components, perform the following tasks:

■ “Creating Product Records for a Product with Components and for Its Components” on page 110

■ Add components to products with components, which can be done in the following ways:

■ “Adding a Single Product as a Component” on page 111

■ “Adding Products as Components Using the Class Domain” on page 111

■ “Adding Products as Components Using the Dynamic Class Domain” on page 113

■ “Adding a Group of Products from Different Classes as Components” on page 114

■ “Adding a Product with Components as a Component” on page 116

NOTE: Instead of defining the structure of an individual product with components, as described in
this process, you can define the structure of a product class. Products associated with the class
inherit both the structure and constraints from the class. For more information, see “About Product
Classes” on page 60.

Creating Product Records for a Product with
Components and for Its Components
First, you must create product records that represent the product with components as a whole and
that represent all of its components.

This task is a step in “Process of Designing a Product with Components” on page 110.

For example, if the product with components is a computer, first you create a product record that for
the entire computer and product records for all of its components, such as disk drives, a monitor,
and so on. You must create all the products before you can add the components to the product with
components.
Product Administration Guide Version 7.8, Rev. B110

Designing Products with Components ■ Process of Designing a Product with Components
Create product records in the same way as you do for a simple product, as described in “Process of
Creating Simple Products” on page 34.

All these products must be orderable. To make a product orderable, place a check mark in the
Orderable check box in the product record.

Adding a Single Product as a Component
You can create a relationship that adds a single product as a component of a product with
components.

This task is a step in “Process of Designing a Product with Components” on page 110.

To add a single-product relationship

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select and lock the desired product with components.

3 In the Versions list, click the Work Space version.

4 In the Structure list, add a new record and complete the necessary fields, described in the
following table.

Adding Products as Components Using the Class Domain
You can add products as components of a product with components by using the class domain.

This task is a step in “Process of Designing a Product with Components” on page 110.

Field Comments

Relationship Name Enter a name for this relationship.

Product Select the product that is a component of this product with
components.

Minimum Cardinality,
Maximum Cardinality, and
Default Cardinality

Enter the minimum, maximum, and default cardinality for the
product. For more information, see “About Cardinality” on
page 108.
Product Administration Guide Version 7.8, Rev. B 111

Designing Products with Components ■ Process of Designing a Product with Components
This method of adding products does not maintain a connection to the class system. When you
refresh the customizable product work space, relationships are not updated. For example, if you
assign a new product to a class, this product is not added to the relationship containing this class
when you refresh the work space or release a new version of the customizable product. Use this
method when you want to keep the relationship contents static or when you want to add only some
of the products in a product class. If you want the relationship to be updated when you update the
class system, see “Adding Products as Components Using the Dynamic Class Domain” on page 113.

NOTE: Adding a small number of products to a relationship from a large product class requires that
the entire class be searched each time the product with components is instantiated. This can
adversely affect performance. Consider defining a separate class for these products to avoid this
impact on performance.

To add products by using the class domain

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select and lock the desired product with components.

3 In the Versions list, click the Work Space version.

4 In the Structure list, add a new record and complete the necessary fields, described in the
following table.

5 Click the Define Domain button and then use the following options to select the products you
want to add to the relationship:

■ Add column. Click Add in the record to add the product to the relationship. A check mark
displays in the “Is in domain” field.

■ Add All button. Adds all the products in the class to the relationship.

■ Set as Default button. Adds the product to the relationship and makes it the default
product. The product name displays in the Default Product field of the relationship.

■ Clear Default button. Removes the product from the relationship’s Default Product field.
Does not remove the product from the relationship.

Field Comments

Relationship Name Enter a name for this relationship.

Domain Type Select Class.

Product Class Select a class.

The dialog box contains one record for each class and for each
subclass in the class system. Selecting a class selects all of its
subclasses.

Minimum Cardinality,
Maximum Cardinality, and
Default Cardinality

Enter the minimum, maximum, and default cardinality for the
product. For more information, see “About Cardinality” on
page 108.
Product Administration Guide Version 7.8, Rev. B112

Designing Products with Components ■ Process of Designing a Product with Components
■ Delete button. Removes the product from those you have selected to be in the relationship.
Removes the check mark from the “Is in domain” field. Does not remove the product from
the product class.

■ Delete All button. Removes all the products from the relationship. No products display a
check mark in the “Is in domain” field. Does not remove the products from the product class.

6 In the Structure view, the relationship icon displays as a folder. Click this folder to display the
products you added.

Verify that the relationship is defined properly, that the default product is correct, and that all
the products you want to add are present.

7 Remove the check mark from the Forecastable field for items as needed.

Removing the check mark means the item will not be included in product forecasts when the
opportunity is updated for quotes, orders, and so on contained the product with components.

8 For each product in the relationship, enter a sequence number in the Sequence Number Field.

The item with sequence number 1 displays first within the relationship in selection pages. If your
display is not wide enough to show the Sequence Number field, manually adjust column widths
to bring the Sequence Number field into view.

Adding Products as Components Using the Dynamic
Class Domain
You can add products as components of a product with components by using the dynamic class
domain.

This task is a step in “Process of Designing a Product with Components” on page 110.

This method of adding products maintains a connection to the class system. When the work space is
refreshed, Dynamic Class relationships are updated from the class system. For example, if you add
a new product to a class in the class system, this product is added to the relationship containing this
class when you refresh the work space or release a new version of the product with components.

When you refresh the work space to update the contents of the relationship, you must reenter the
sequence numbers in the relationship definition.

To add products using the dynamic class domain

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select and lock the desired product with components.

3 In the Versions list, click the Work Space version.
Product Administration Guide Version 7.8, Rev. B 113

Designing Products with Components ■ Process of Designing a Product with Components
4 In the Structure list, add a new record and complete the necessary fields, described in the
following table.

5 Click the Define Domain button and select the products you want to add to the relationship:

a In the Define Relationship Domain dialog box, click Add All.

A check mark appears in the Is in domain field for all the products in the class.

b Also, in the Define Relationship domain dialog box, use the following buttons to specify the
default product:

❏ Set as Default button. Adds the product to the relationship and makes it the default
product. The product name displays in the Default Product field of the relationship.

❏ Clear Default button. Removes the product from the relationship’s Default Product
field. Does not remove the product from the relationship.

6 Remove the check mark from the Forecastable field for items as needed.

Removing the check mark means the item will not be included in product forecasts when the
opportunity is updated for quotes, orders, and so on contained the product with components.

7 For each product in the relationship, enter a sequence number in the Sequence Number Field.

The item with sequence number 1 displays first within the relationship in selection pages. If your
display is not wide enough to show the Sequence Number field, manually adjust column widths
to bring the Sequence Number field into view.

Adding a Group of Products from Different Classes as
Components
The products you add to a relationship do not have to be from the same class. You can group products
from several classes or products not assigned to a class into one relationship.

This task is a step in “Process of Designing a Product with Components” on page 110.

Field Comments

Relationship Name Enter a name for this relationship.

Domain Type Select Dynamic Class.

Product Class Select a class.

The dialog box contains one record for each class and for each
subclass in the class system. Selecting a class selects all of its
subclasses.

Minimum Cardinality,
Maximum Cardinality, and
Default Cardinality

Enter the minimum, maximum, and default cardinality for the
product. For more information, see “About Cardinality” on
page 108.
Product Administration Guide Version 7.8, Rev. B114

Designing Products with Components ■ Process of Designing a Product with Components
You do this by creating a relationship of domain type Class but without specifying a class. This allows
you to select products from anywhere in the class system.

You can do anything with this relationship that you can do with other class-type relationships such
as creating resources, configuration rules, and links.

CAUTION: This method of defining a relationship domain requires a search throughout the class
system each time the product with components is instantiated. This can have an adverse impact on
performance. Avoid using this method, if possible.

To add groups of products from different classes

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select and lock the desired product with components.

3 In the Versions list, click the Work Space version.

4 In the Structure list, add a new record and complete the necessary fields, described in the
following table.

5 Click the Define Domain button and select the products you want to add to the relationship, using
the following buttons in the Define Relationship Domain dialog box:

■ Add column. Click the word Add in the record to add the product to the relationship. A check
mark displays in the “Is in domain” field.

■ Add All button. Adds all the products in the class to the relationship.

■ Set as Default button. Adds the product to the relationship and makes it the default
product. The product name displays in the Default Product field of the relationship.

■ Clear Default button. Removes the product from the relationship’s Default Product field.
Does not remove the product from the relationship.

■ Delete button. Removes the product from those you have selected to be in the relationship.
Removes the check mark from the “Is in domain” field. Does not remove the product from
the product class.

■ Delete All button. Removes all the products from the relationship. No products display a
check mark in the “Is in domain” field. Does not remove the products from the product class.

Because you did not specify the product class, this dialog box lists all products from all classes
and subclasses.

Field Comments

Relationship Name Enter a name for this relationship.

Domain Type Select Class.

Minimum Cardinality,
Maximum Cardinality, and
Default Cardinality

Enter the minimum, maximum, and default cardinality for the
product. For more information, see “About Cardinality” on
page 108.
Product Administration Guide Version 7.8, Rev. B 115

Designing Products with Components ■ Refreshing the Customizable Product Work Space
Adding a Product with Components as a Component
You can add products with components as components of other products with components. This
means you can create products with components that are sub-assemblies and then include them as
components in the final product. For example, you sell a configurable power supply and a
configurable gearbox as part of an industrial lathe. You can create one product with components for
configuring the power supply and one for configuring the gearbox. You can then add both of these
component products with components to the industrial lathe product with components.

This task is a step in “Process of Designing a Product with Components” on page 110.

In the Structure view, when you add a product with components to a relationship, its configurable
parts do not display. Instead, the product with components displays as a single product.

When you edit a product with components and release it, the changes propagate to all products with
components containing it.

Use the following procedures to add a product with components:

■ To add a product with components that is not assigned to a class, see “Adding a Single Product as
a Component” on page 111.

■ To add a product with components that is a member of a class, see “Adding Products as
Components Using the Class Domain” on page 111 or “Adding Products as Components Using the
Dynamic Class Domain” on page 113.

Refreshing the Customizable Product
Work Space
If a product with components contains relationships of type Dynamic Class, refreshing the work
space copies a new instance of these product classes into the relationships. This means a fresh copy
of all the products in the class become part of the product with components instance.

For example, the number of products in a class has changed. You have defined a relationship of type
Dynamic Class that specifies this product class. When you refresh the work space, the revised
product class is copied to the relationship from the product table. When you view the relationship in
the User Interface view or in Validate mode, the new products display.

Relationships of domain type Class and Product are not updated from the product table when you
refresh the work space.

Refreshing the work space updates the products or attributes in a product with components. The
configuration rules, resource definitions, link definitions, and scripts that are part of the product with
components are not updated to reflect changes. You must manually make these updates.

For more information about relationships of type Dynamic Class, see “Adding Products as Components
Using the Dynamic Class Domain” on page 113.

NOTE: To use this procedure, the Structure Type field of the product must be set to Customizable.
Product Administration Guide Version 7.8, Rev. B116

Designing Products with Components ■ Enabling the Customize Button
To refresh the work space

1 Navigate to the Administration - Product screen, then the Products view.

2 In the Products list, select and lock the desired product with components.

3 In the Customizable Product link bar, click Structure.

4 From the Structure view menu, select Refresh Dynamic Class.

Enabling the Customize Button
The user can select a configurable product and click the Customize button to customize the product.
However, the Customize button is only enabled when the user’s responsibilities include one of the
appropriate views that allows users to customize products. The following views of the Quotes screen
are examples of views that enable the customize button:

■ Complex Product Runtime Instance View

■ Complex Product Runtime Instance View - Order

■ Complex Product Runtime Instance View - Shopping Cart

Within these views, the Customize button is enabled only when the type of the product is
Customizable.

To find a complete list of the views that enable the Customize button

1 Open Siebel Tools.

2 In the Views tab, search for views that match the following:

Complex Product Runtime Instance View*

About Managing the Structure of
Products with Components
You can manage the structure of products with components in the following ways:

■ “Editing a Relationship Definition” on page 117

■ “Deleting Products from Products with Components” on page 118

■ “Copying Products with Components” on page 118

Editing a Relationship Definition
You can only edit the current work space of a product with components. You cannot edit a version
that has already been released. All the fields in a relationship definition can be edited except the
relationship name. Changes are not propagated to other parts of the product with components.
Product Administration Guide Version 7.8, Rev. B 117

Designing Products with Components ■ About Managing the Structure of Products with
Components
To edit a relationship definition

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select and lock the desired product with components.

3 In the Versions list, click the Work Space version.

4 In the Explorer applet, select the desired relationship.

5 Edit the fields in the Structure record as desired.

6 Revise configuration rules, resource definitions, link definitions, and scripts as needed to reflect
the changes.

Deleting Products from Products with Components
You can only delete products from the current work space of a customizable product. You cannot
delete products from a released version. You can delete relationships or products included within a
relationship.

Changes are not propagated to other parts of the product with components. For example, if you
delete a product from a relationship, configuration rules for that product are not deleted.

If you delete a product from a relationship that has domain type Dynamic Class, the product will be
added back to the relationship when you refresh the work space or release the product. This is
because the product still exists in the product class. When you refresh the work space or release the
product, the relationship is updated so that it contains all the products in the product class and the
current attribute definitions.

To avoid this, you can change the relationship domain type to Class. This breaks the connection to
the product class system and prevents any further updates of the relationship. You can also leave
the domain type unchanged and remove the product from the product class.

To delete products

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select and lock the desired product with components.

3 In the Versions list, click the Work Space version.

4 To delete a relationship, select the desired relationship record. To delete a product within
relationship, expand the relationship and select the product record.

5 From the Structure View menu, choose Delete Record.

6 Revise configuration rules, link definitions, and resource definitions as needed.

Copying Products with Components
When you copy a product with components, all parts of the product are included in the copy. This
includes its relationships, links, resources, scripts, rules, and its user interface.
Product Administration Guide Version 7.8, Rev. B118

Designing Products with Components ■ Creating a Report on a Product’s Structure
All the parts of the copied product are visible and can be edited.

To copy a product with components

1 Navigate to the Administration - Product screen, then the Products view.

2 In the Products list, select the desired product with components.

3 From the Products menu, choose Copy Record.

4 Enter a name for the copy in the Product Field.

5 Revise other fields, such as Part # as desired.

Creating a Report on a Product’s
Structure
You can request a report that lists all the relationships in a product with components as well as the
contents of each relationship. You can request the report once, or schedule the report to run at
scheduled times.

The report title is Product Relationship Report. This report must be enabled on the report server
before performing the following procedure.

To create a report on a product’s structure

1 Remove the product with components from all existing quotes.

2 Navigate to the Administration - Product screen, then the Product Definitions view.

3 In the Products list, select and lock the desired product with components.

4 In the Versions list, click the desired version.

5 Click the Reports icon at the top of the screen to produce or schedule the report.
Product Administration Guide Version 7.8, Rev. B 119

Designing Products with Components ■ Creating a Report on a Product’s Structure
Product Administration Guide Version 7.8, Rev. B120

10 Managing Products with
Components
This chapter provides information about special techniques for managing products with components.
It includes the following topics:

■ “About Auto Match” on page 121

■ “About Finish It!” on page 122

■ “Viewing Relationships for Products” on page 123

■ “Using Product Classes as Templates for Products with Components” on page 123

■ “About Bundles as Products with Components” on page 124

■ “Defining an Asset with Components” on page 126

■ “Controlling How Products with Components Are Taxed” on page 128

■ “Controlling How Products with Components are Forecast” on page 129

About Auto Match
If a quote, asset, or order contains a product with components configuration based on an out-of-date
version of the product, Auto Match can compare the old version with the current version of the
product and make limited changes to bring the quote, asset, or order up to date automatically. The
user does not have to configure the product again.

Auto Match works as follows:

■ Auto Match is triggered when the system determines that the version in the quote, order, or asset
is not the current version.

■ Auto Match compares the relationships and their contents in the quote, asset or order to the
current version of the product.

■ Auto Match identifies items in the old version that are not in the same relationship as items in
the new version. An item can be a product or product class. These items in the old version are
misclassified items. The relationship containing them is the old relationship. The relationship in
the current product that contains the items is the new relationship.

■ If the old relationship and the new relationship have a common parent, typically the product root,
Auto Match will automatically move the items to the new relationship in the quote, order or asset.
Auto Match does this by either changing the relationship name or by adding a new relationship.

■ If the old relationship and new relationship do not have the same parent, the user receives and
error message and must configure the product again.
Product Administration Guide Version 7.8, Rev. B 121

Managing Products with Components ■ About Finish It!
■ If the current version has a lower max cardinality for a relationship, this cardinality is enforced
in the version in the quote, order, or asset. For example, the cardinality of Relationship A has
been reduced from 10 to 8 in the current version. In a quote, Relationship A contains 10 items.
Auto Match will remove two items from the quote.

■ If a relationship has been removed from the current version but is included in a quote, order, or
asset, Auto Match will attempt to move its items to a relationship at the same level. For example,
Relationship A, containing 10 items, has been removed from the current version. A quote has the
previous version of the product with components, including Relationship A with 10 items. Auto
Match will try to move all 10 items to other relationships at the same level, while observing
maximum cardinality restrictions. Any excess items are removed.

■ Auto Match only compares the physical structure of the product’s current version to that in the
quote, asset, or order. It does not consider configuration rules. For example, if the old version
contains Product A, and Product A would be excluded in the new version, Auto Match does not
detect this.

■ For products with attributes, Auto Match checks to see whether any of the required attributes
have not been specified.

Auto Match is implemented as a business service and is not enabled by default. To turn Auto Match
on, see “Enabling Auto Match” on page 354.

About Finish It!
“Finish It!” is a button that appears in configuration session selection pages. This button is active
under the following conditions:

■ The configuration session contains a relationship that has a minimum cardinality greater than
zero.

■ No default product has been defined for this relationship.

■ The user has not selected the number of products from this relationship required by the minimum
cardinality.

These relationships are called unsatisfied quantity relationships. In selection pages, a red asterisk
displays next to the relationship name and next to the item in the relationship, indicating that the
user must make a selection.

When the user clicks Finish It!, the Siebel Configurator engine adds items to the solution from all
unsatisfied quantity relationships so that minimum cardinalities are met or exceeded. The Siebel
Configurator engine makes arbitrary selections from these relationships. You cannot specify which
products will be selected by setting the sequence of the product in the relationship.

For example, you have defined a relationship called Keyboard. This relationship has a minimum
cardinality of 1 and no default product. This causes the Finish It! button to become active in
configuration sessions. When the user clicks Finish It!, the Siebel Configurator engine adds a
keyboard to the solution.
Product Administration Guide Version 7.8, Rev. B122

Managing Products with Components ■ Viewing Relationships for Products
If you do not want the Finish It! button to be active during configuration sessions, specify default
products for all relationships with a minimum cardinality greater than zero.

NOTE: If there are required attributes that have not been selected, Finish It displays a message
telling the user those attributes are required. It does not fill in a value for the required attributes.
For more information about required attributes, see “Setting Up Required Attributes” on page 69.

Viewing Relationships for Products
Use the Relationships view to view all the relationships associated with a product, so you can see
which customizable products use this product as a component.

To view relationships for a product

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select the product whose relationships you want to view.

3 Click the name of the desired version.

4 Click the Cross References view tab.

Using Product Classes as Templates for
Products with Components
You can create a product class and use it as a template for building other products with components.

Use this feature when you have products with components that include the same group of items. For
example, you sell desktop computers. You have seven configurable models that share the same
chassis types, keyboards, and mouse. You can create a product class consisting of these three
relationships. You would then use the product class as the basis for constructing each model.

The following features of the product class are inherited by all class members:

■ Relationships and their contents.

■ Configuration rules.

■ Resources

■ Links

■ User interface groups.

■ The base theme and product theme are not inherited

■ User interface property definitions and scripts are not inherited by class members

NOTE: To turn off the product class template, perform a similar procedure. In Step 5, remove the
product class from the Parent Product Class field.
Product Administration Guide Version 7.8, Rev. B 123

Managing Products with Components ■ About Bundles as Products with Components
To use a product class as a template for a product with components

1 Navigate to the Administration - Product screen, then the Product Classes view.

2 In the Products Classes list, select the product class you want to use as a template.

3 Navigate to the Administration - Product screen, then the Product Definitions view.

4 Lock the product with components.

5 In the Product record for the desired product, in the Product Class field, select the desired
product class.

Adding a product to the product class causes it to inherit the structure of the product class
product.

6 Navigate to the User Interface view and verify the class-product structure has been inherited
correctly.

About Bundles as Products with
Components
A bundle is a group of items sold as one product and is a special form of product with components
that has the following characteristics:

■ Bundles created in Bundle Administration also display in Customizable Products, Versions view
and in Customizable Products, Structure view.

■ A bundle is made up of one or more relationships that have a Product domain. Each relationship
adds only one product to a bundle.

■ Bundles do not include a UI definition, configuration rules, links, resources, or scripts. Bundles
do not include selection pages. Users do not configure a bundle by starting a configuration
session.

■ The quantity of a product in a bundle is determined by the Default Cardinality of the product.

If you add items to a bundle that are not allowed, they are ignored. For example, if you define
configuration rules for a bundle, they are ignored. When you convert bundles to regular products
with components, ignored items then become effective.

If you convert a product with components to a bundle, only the items within the scope of a bundle
are used. All other items, such as configuration rules, are ignored.

Regular products with components are added to quotes using Siebel EAI. Bundles are added to
quotes using internal code.

For more information about bundle products, see Chapter 5, “Product Bundles.”

For information about converting bundles, see:

■ “Converting a Bundle to a Regular Product with Components” on page 125

■ “Converting a Regular Product with Components to a Bundle” on page 125.
Product Administration Guide Version 7.8, Rev. B124

Managing Products with Components ■ About Bundles as Products with Components
Converting a Bundle to a Regular Product with
Components
A bundle is a group of items sold as one product and is a special form of product with components.
A bundle has one or more relationships that have a Product domain. Bundles do not include a UI
definition, configuration rules, links, resources, or scripts.

When you convert a bundle to a regular product with components, you can work with the newly
converted product with components in the same way as a regular product with components.

To convert a bundle to a regular product with components

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select and lock the desired bundle product.

3 Click Release.

This converts the bundle to a regular product with components. A check mark displays in the
Customizable Product check box in the Product record. A check mark no longer displays in the
Bundle check box.

4 Revise existing quotes and orders as needed to reflect the change.

Converting a Regular Product with Components to a
Bundle
When you convert a regular product with components to a bundle, any items outside the scope of a
bundle, such as configuration rules, stop being effective and are ignored. They are not erased from
the definition and become effective again if you convert the bundle back to a product with
components.

Converting has the following effects:

■ All previous versions still display in Administration - Product screen, then the Product Definitions
view.

■ The current work space is retained, but its contents are altered as described in the following
items.

■ For relationships that have a Product domain, the product is added to the bundle.

■ For relationships that have a Class or Dynamic Class domain, only the product specified in the
Default Product field is added to the bundle. If no product is specified, no product is added, even
if the Default Cardinality is greater than one.

■ The quantity in the Default Cardinality field is used to determine the quantity of the product in
the bundle. Other cardinality fields are ignored. If the default cardinality is blank or zero, the
quantity of the product in the bundle is blank. When creating a quote, only those products with
a quantity greater than or equal to one are displayed in the quote.
Product Administration Guide Version 7.8, Rev. B 125

Managing Products with Components ■ Defining an Asset with Components
■ All selection page definitions, UI Property definitions, configuration rules, link definitions,
resource definitions, and scripts are ignored and do not become part of the bundle. If you convert
the bundle back to a regular product with components, these again become effective.

■ When you convert a product with components that inherits part of its structure from a class-
product, none of the inherited structure becomes part of the bundle.

■ If the Forecastable flag is set for a product in the Structure view and the product becomes part
of a bundle, the Forecastable flag remains set for the product in the bundle.

When a user adds a bundle to a quote or order, the bundle and its components display as separate
line items. Users cannot start a configuration session.

The product with components must have at least one released version before you can convert it to
a bundle.

To convert a regular product with components to a bundle

1 Navigate to the Administration - Product screen, then the Products view.

2 Select and lock the desired product with components.

3 Make any desired changes and release a new version.

4 Click the Bundle Product view tab and review the displayed contents.

The Bundle Product view displays the products in the product with components that will be
included in the bundle. If the contents are not correct, revise the product with components and
release a new version.

5 In the Bundle Product view, click Modify, and then click Done.

This converts the product with components to a bundle and releases a new version. A check mark
displays in the Bundle field in the product form. The check mark in the Customizable Product field
is removed.

6 Revise existing quotes and orders as needed to reflect the change.

Defining an Asset with Components
When creating a quote, users can choose to add to or modify products with components the customer
has already purchased. The customer’s already-purchased products with components are called
assets with components.

The user creates a quote and selects a customer’s asset with components. The user then starts a
configuration session and modifies the asset by adding or removing items. The user then saves the
changes to the quote. The asset with components, with revisions, displays in the Quotes screen, Line
Items view.

In Quotes screen, Line Items, Line Item Detail view, each item in the asset with components displays
a status in the Delta Status field:

■ Existing. All items that were not changed. These items display no price.
Product Administration Guide Version 7.8, Rev. B126

Managing Products with Components ■ Defining an Asset with Components
■ New. All items that have been added or for which the quantity increased. If the quantity of an
item increased, the original quantity is shown with status Existing. A second entry in the quote
shows the increase, has status New, and displays a price.

■ Removed. All items that were removed or decreased in quantity. If the quantity of an item is
reduced, the new quantity is displayed with the status Existing. A second entry in the quote
shows the reduction, and has status Removed. These items display no price.

■ Modified. All items for which attribute settings have changed. These items display a price.

Delta Quotes differ from Favorites in that only new or changed items from the configuration session
have a price. Unchanged items are listed at zero price. When you add a Favorite to a quote, all the
items in the product with components have a price. Favorites are new products being sold for the
first time. Delta Quote products are items being sold as add-ons or replacement components for
products you have already sold.

The Siebel Configurator engine uses the name of the asset with components’s product root to
determine what product with components to load for the quote configuration session. If a new
version of the product with components has been released, the new version is used to modify the
asset with components. Any configuration conflicts that result are displayed during the configuration
session and must be resolved. Item pricing is not maintained during the configuration session and
should be ignored. Pricing is computed when the user saves the configuration to the quote.

When you define an asset with components, it is added to the Customizable Asset dialog box in
Quotes, so users can select it when creating delta quotes.

Defining an asset with components requires two steps:

1 Create a customizable asset record.

2 Configure the customizable asset.

To create a customizable asset record

1 Navigate to the Assets screen.

2 In the Assets list, add a new record and complete the necessary fields. Some fields are described
in the following table.

Field Comments

Product Select the product with components on which the customer’s
asset with components is based.
Product Administration Guide Version 7.8, Rev. B 127

Managing Products with Components ■ Controlling How Products with Components Are
Taxed
To configure an asset with components

1 Review the product with components configuration that the customer has purchased.

Determine if a new version of the product with components has been released and what effect
this will have on configuring an asset with components.

2 Highlight the asset with components record for which you want to create a configuration.

3 Click the More Info tab to display the asset form and then click Customize.

This starts a configuration session, similar to those users see when configuring products with
components in Quotes. The session displays the selection pages for the product with components
that the user purchased.

4 Configure the product with components to reflect what the customer purchased and exit the
session. This includes configuring component attributes.

This creates the configured asset with components.

5 In the Assets list, verify that the desired asset with components is highlighted.

6 Click the Attribute tab and set the value of attributes defined for the asset with components as
a whole.

Controlling How Products with
Components Are Taxed
The components of products with components can have different tax rates.

For example, a company may sell a product with components called Concrete Services. As its
components, this product may have the cost of concrete, the cost of using a truck to pour concrete,
the cost of labor, and the cost of engineering services. In some jurisdictions, these components may
be taxed at different rates.

Account Select the customer’s account.

This field filters the records displayed in the Customizable Asset
dialog box in Quotes. The dialog box displays only the assets with
components that have the same account name as the account
name in the Quotes record.

CAUTION: If you do not assign an account name, the asset with
components displays every time the Customizable Asset dialog
box is opened, regardless of the account.

Asset Description Enter a descriptive phrase or name that is meaningful to users
creating quotes.

This field displays in the Customizable Asset dialog box in quotes

Field Comments
Product Administration Guide Version 7.8, Rev. B128

Managing Products with Components ■ Controlling How Products with Components are
Forecast
You can control how tax is computed by setting the Tax Subcomponent flag. To tax the components
individually, set the Tax Subcomponent flag on the root of the product with components or bundle.
If you do not set the Tax Subcomponent flag, the tax is computed on the total price of the product
with components or bundle.

If one of the components is itself a product with components, you can set the Tax Subcomponent
flag on the component. This causes the tax for that component to be the sum of the tax computations
on the components of that component.

Note the following points about taxing components:

■ You cannot use a base price for the parent product if the components are taxed individually. The
parent product price must be the sum of the prices of all the component products. You will get
inaccurate results if you give the parent product a price, and then do delta pricing on components
and compute tax at the subcomponent level.

■ When you set the Tax Subcomponent flag for the parent product, you can either set this flag or
not set it for each component product that has subcomponents. If you don't set this flag on a
component, the tax will be calculated for the component product. If you do set the flag on a
component, the tax for the component will be based on the tax of its components.

■ When you set the Tax Subcomponent flag for a component of a product, you must set this flag
for the parent product as well. If you do not, you will tax the entire product at the parent level,
and you will also tax the component product. This double counting will cause an inaccurate tax
calculation.

The tax will be calculated accurately if you apply volume discounts or bundling discounts to the
product. These discounts are applied at the component level, so the tax on each subcomponent will
be adjusted to reflect the discount.

CAUTION: You cannot use simple bundles for pricing when tax rates of components are different.

To tax the components of a product with components or bundle

1 Navigate to the Administration - Product screen.

2 In the Products list, select the desired product with components or bundle.

3 Expand the product form and put a check mark in the Tax Subcomponent Flag check box.

Controlling How Products with
Components are Forecast
When you add a component to a product with components, a check mark displays in the Forecastable
field. This means the component is added to product forecasts when the product with components is
included in a quote and the user updates the related opportunity.

To prevent components from being added to product forecasts, remove the check mark from the
component’s Forecastable field.

A Forecastable check box is also available in Quotes, Line Items. This allows you to add or remove
a product or component from product forecasts within individual quotes.
Product Administration Guide Version 7.8, Rev. B 129

Managing Products with Components ■ Controlling How Products with Components are
Forecast
Product Administration Guide Version 7.8, Rev. B130

11 Creating Custom Siebel
Configurator User Interfaces
This chapter describes how to create a custom user interface for configuring a customizable product
and how to assign user interfaces to users. You can create this interface for products with
components and products with attributes.

This chapter includes the following topics:

■ “About Default and Custom Siebel Configurator User Interfaces” on page 131

■ “About the Siebel Configurator User Interface View” on page 133

■ “About Themes for the Siebel Configurator UI” on page 133

■ “About Creating a Menu-Based Siebel Configurator UI” on page 136

■ “About Siebel Configurator UI Groups” on page 138

■ “About Siebel Configurator UI Controls” on page 138

■ “About Pricing Integration with Siebel Configurator” on page 141

■ “Process of Creating a Custom Siebel Configurator User Interface” on page 142

■ “Tasks for Setting Up the Siebel Configurator HI User Interface” on page 148

■ “About Managing Item Groups” on page 153

About Default and Custom Siebel
Configurator User Interfaces
You must decide whether to use the default Siebel Configurator user interface or to design a custom
user interface.

The default user interface displays all the configurable items in the customizable product on a single
selection page. If you create a custom interface, you can display the configurable items on multiple
pages.

The default user interface makes intelligent choices for UI controls based on attribute domain type
and upon relationship cardinality. For example:

■ If an attribute has an LOV type domain, the default interface displays a combo box for setting
the attribute.

■ If a relationship has a min and max cardinality of 1, the application displays a combo box without
multiple instances. If the max cardinality is greater than 1, the application displays a combo box
with multiple instances.

If you create a custom interface, you can select the control used for each configurable item.
Product Administration Guide Version 7.8, Rev. B 131

Creating Custom Siebel Configurator User Interfaces ■ About Default and Custom
Siebel Configurator User Interfaces
If you use the default interface, the application creates a high interactivity (HI) interface and a
standard interactivity (SI) interface. It assigns the appropriate interface to each user based on the
user’s browser. Users are assigned the HI interface if their browser supports it. Users are assigned
the SI interface if their browser does not support the HI interface.

If you create custom interfaces, you can create several HI and SI interfaces and assign them to users
based on their responsibilities and their browsers.

The application decides which interface to assign to a user using the decision flow shown in Figure 4.

For more information about high interactivity and standard interactivity and the browsers used for
each, see the topic about deployment modes for Siebel Web clients in Siebel System Administration
Guide.

Figure 4. Evaluation Logic for Assigning a Siebel Configurator User Interface
Product Administration Guide Version 7.8, Rev. B132

Creating Custom Siebel Configurator User Interfaces ■ About the Siebel Configurator
User Interface View
About the Siebel Configurator User
Interface View
Using the User Interface view, you can define the page or series of pages that display during a
configuration session. These pages display when the user configures a customizable product as part
of creating a quote in the Quotes screen. They also display when a user selects a customizable
product in an eSales Web page. The same pages display when an administrator validates a
customizable product.

The pages that display during the configuration process are called selection pages. The user makes
selections from these pages to configure the customizable product.

You can design the following features of selection pages:

a Basic page layout. You set the basic look and feel of the customizable product’s selection
pages by choosing a base theme. Several base themes are provided. You can also build your own
base themes.

b Method of presenting products. There are several ways to present your products. You can
present them all on one page, you can set up several tabbed pages, or you can set up a wizard
to guide the user through pages sequentially. You select a product theme in the Versions tab.
You can also build your own product themes.

c What items a page will contain. You can choose which items to display on a page using a
grouping mechanism provided in the User Interface view. You can add to a group the items in
a relationship, the attributes of the customizable product, its links, or its resources. Depending
on the product theme, each group displays on a separate page.

d How items will be selected. When you add an item to a group in the User Interface view,
you can choose among several user interface control types for it such as combo box, check box,
radio button, quantity box, and text box. These UI control types determine how the user goes
about selecting an item.

The user interface you design is part of the customizable product’s current work space. When you
release a customizable product, the user interface is stored as part of the released version.

About Themes for the Siebel
Configurator UI
When you create a work space for a customizable product, you can select a base theme and product
theme. These control the basic look and feel of the pages a user sees when they configure the
product.

About the Base Theme
A base theme defines the home page for the customizable product. It is the container within which
the product theme pages display. The base theme has a thread bar you can use to navigate between
product theme pages. Two types of base theme are provided:
Product Administration Guide Version 7.8, Rev. B 133

Creating Custom Siebel Configurator User Interfaces ■ About Themes for the Siebel
Configurator UI
■ Base Theme with Auto Pricing. When the user selects an item, its price is updated
immediately.

■ Base Theme with Manual Pricing. The pricing of items is not updated until the user clicks
Update Price.

Upgrade users: If you do not select a base or product theme, default themes are used. If you do
not specify groups or controls, intelligent defaults are used. These defaults replace Configuration
Assistant in release 6.x and lower.

About Product Themes
Product themes specify the style used to group items together on selection pages. You define which
items appear on a page by defining groups in the User Interface view and adding products to the
groups. Each group is displayed on a separate selection page.

Three basic product theme types are provided.

■ Tab Product Theme

The items in each group are displayed on a separate page, as shown in Figure 5. The Stereos
group and the Options group each have a tab, and the user can move between pages by clicking
the tab. A standard group of buttons, Save, Cancel, Done, and Finish It display above the tabs.
A Red Star displays next to the title of the Stereos page to indicate that the user is required to
choose an item and has not done so.

Figure 5. Tab Product Theme
Product Administration Guide Version 7.8, Rev. B134

Creating Custom Siebel Configurator User Interfaces ■ About Themes for the Siebel
Configurator UI
■ Wizard Product Theme

The items in each group are presented on separate pages, as shown in Figure 6. The Stereos
group is displayed by itself as the first page in the sequence. A standard group of buttons, Save,
Cancel, Done, and Finish It display above the page. A Red Star displays next to the title of the
Stereos page to indicate that the user is required to choose an item and has not done so. Previous
and Next buttons, located within the page, allow the user to move between pages.

Figure 6. Wizard Product Theme
Product Administration Guide Version 7.8, Rev. B 135

Creating Custom Siebel Configurator User Interfaces ■ About Creating a Menu-Based
Siebel Configurator UI
■ Single Page Product Theme

All the groups in the customizable product are presented on a single selection page, as shown in
Figure 7 on page 136. The tab pages used in the Tab theme and Wizard theme are stacked
vertically one beneath the other to form the selection page. A standard group of buttons, Save,
Cancel, Done, and Finish It display at the top of the selection page. A Red Star displays next to
the title of the Stereos group to indicate that the user is required to choose an item and has not
done so.

The top portion of the page, containing the product name and standard buttons, is not shown in
the figure.

About Creating a Menu-Based Siebel
Configurator UI
A special set of themes and UI controls is provided to build a menu-based interface:

■ Base Theme with Menu. This theme must be selected as the base theme. This theme provides
auto-repricing. No base theme is provided to select manual repricing.

■ Menu Product Theme. This theme must be selected as the product theme. It displays
relationships and their contents. It does not displays attributes, resources, or linked items.

■ Standard Menu Group Theme. This theme must be selected for all groups except a summary
page group.

■ Summary Menu Group Theme. Assign this theme to a group when you want to display a
summary page. For more information on summary pages, see “Adding a Summary Page to the
Siebel Configurator User Interface” on page 145.

■ Check Box For Menu Theme. Select this UI control to display a check box with price.

Figure 7. Single Page Product Theme
Product Administration Guide Version 7.8, Rev. B136

Creating Custom Siebel Configurator User Interfaces ■ About Creating a Menu-Based
Siebel Configurator UI
The menu-based interface displays each group as a menu item. When the user clicks on the group
name, a pane opens and displays the items that can be selected in that group. When the user makes
a selection, the selection is displayed below the group name. Figure 8 shows a menu-based selection
page. Two groups have been defined, Stereos and Options. The user’s selection is shown below each
group.

Both group names are hyperlinks. If the user clicks on the Options group, a pane displaying the
contents of that group opens as shown in Figure 9. The user can then select items from that group.
When users are finished, they click Menu to close the pane.

Observe the following guidelines when using these themes and controls:

■ The menu-based themes and controls can be used in conjunction with employee and partner
applications. They cannot be used with customer applications, such as Siebel eSales.

■ You cannot mix menu-based themes and controls with other types of themes and controls in a
product. For example, if you select a menu-based base theme, you must also select a menu-
based product theme as well as menu-based UI controls.

■ A product with components that will be a component of another product with components cannot
use menu-based themes and controls. For example CP2 is a product with components and a
component of product CP1. CP2 cannot use menu-based themes and controls. Note that CP1 is
not restricted from using menu-based themes and controls.

■ Only one summary group can be defined for products that use menu-based themes and controls.
The summary group must be named:

■ Menu-based UI controls for links, resources, and attributes are not supported. Do not add links,
resources, or attributes to groups.

Figure 8. Example of Menu-Based Selection Page

Figure 9. Option Package Group
Product Administration Guide Version 7.8, Rev. B 137

Creating Custom Siebel Configurator User Interfaces ■ About Siebel Configurator UI
Groups
About Siebel Configurator UI Groups
Groups are the way you define what items appear on a selection page. Depending on the product
theme, each group you define causes a separate selection page to be created. For example, you want
all the hard disks in a product with components to appear on the same page. You do this by defining
a group in the User Interface view and then adding the Hard Disks relationship to this group. If you
selected a tab type product theme, the hard disks display as a selectable page tab. When the user
clicks on the tab, a selection page displays containing only the hard disks.

The User Interface view lets you create groups that contain relationships, attributes, resources, or
links.

When you create a group, you can choose a group style. The group style defines the details of how
a group will display.

About Siebel Configurator UI Controls
A user interface control determines how an object is displayed for selection. For example, a radio
button control, displays a list of items with a button for each one. You choose a control as part of
adding an item to a group in the User Interface view.

The User Interface view provides several types of UI controls:

■ Combo Box. A combo box is a drop-down menu. Items are hidden from view until you click the
down-arrow to open the menu and make selections. There are two types of combo box:

■ Single selection. The user can select only one value from the drop-down menu.

■ Multiple selection. The user can select multiple values from the drop-down menu using an
Add Item button.

■ Check Box. Items display as a list. Each item has a check box next to it. When you select an
item, a check mark appears in the check box. You can select more than one item.

■ Radio Button. Items display as a list. Each item has a button next to it. When you select an
item, a dot appears in the button. You can select only one item. If you select another item, the
previous item’s button clears, and the current item displays a dot in the button.

■ Quantity Box. A box displays next to the item in which the user enters or edits the quantity.
The user then clicks elsewhere in the page to update the quantity.

■ Text Box. A read-only box displays next to the item. The box contains the value of the displayed
item. Use this UI control to display the current value of resources or linked items.

■ Edit Box. A text box displays next to the item. The text box contains the value of the displayed
item. You can edit the value. Use this control when you want users to be able to manually enter
or edit attribute values.

Keep in mind the following factors when choosing a user interface control:
Product Administration Guide Version 7.8, Rev. B138

Creating Custom Siebel Configurator User Interfaces ■ About Siebel Configurator UI
Controls
■ For items added from a relationship, what are the cardinalities? If the minimum and maximum
cardinality for the relationship is 1, this means only one item can be selected. The radio button
or single-selection combo box can be used because it allows only one selection. If the relationship
cardinality allows more than one selection, you must choose a UI control that allows multiple
selections such as a check box or multiple-selection combo box.

■ For attribute items, select a UI control that matches the attribute type. For LOV attributes use a
combo box. For a range of values attribute or a single-value attribute, use a quantity box or text
box.

■ For resource items and for linked items, use a text box.

Table 13 on page 139 describes the specific UI controls available in the User Interface view. In the
Multiple Items column, Yes means that the UI control allows selection of more than one item from a
list. No means you can select only one item.

For all controls, excluded items display unavailable. For example, if you assign a radio button control
to a relationship, excluded items display with the radio button grayed out so that it cannot be
selected.

You can revise this so that excluded items do not display at all. You do this by assigning the
predefined Excluded UI property to an item. You assign the Excluded UI property in the Properties
view.

Table 13. User Interface view UI Controls

UI Control Type
Select Multiple
Items? Description

Combo Box No Selected item highlighted.

Combo Box with Add
Button

Yes Selected item highlighted. Unselected items have
Add button.

Combo Box with Price No Selected item highlighted. Displays price.

Combo Box with Price and
Quantity

No Selected item highlighted. Displays price. Allows
user to enter quantity.

Combo Box with Add
Button and Price

Yes Selected item highlighted. Unselected items have
Add button. Displays price.

Combo Box with Update
Quantity button

No Selected item highlighted. User can specify a
quantity for the selected item.

Check Box with Price Yes Displays item price.

Check Box without Price Yes Price not displayed.

Radio Buttons with Price No Displays item price.

Radio Buttons without
Price

No Price not displayed.

Quantity Box User enters
quantity

Update Quantity button displays next to item
name.
Product Administration Guide Version 7.8, Rev. B 139

Creating Custom Siebel Configurator User Interfaces ■ About High Interactivity and
Standard Interactivity Siebel Configurator UIs
About High Interactivity and Standard
Interactivity Siebel Configurator UIs
Like other Siebel applications, Siebel Configurator supports two types of user interfaces:

■ Standard Interactivity. The entire page refreshes whenever data is updated, as in standard
Web pages.

■ High Interactivity. Only the data refreshes when data is updated.

The high interactivity interface provides better performance, but it does not support all browsers. In
general, you should use standard interactivity for customer applications, because you cannot be sure
what browsers your customers use.

For more information about high interactivity and standard interactivity and the browsers used for
each, see the topic about deployment modes for Siebel Web clients in Siebel System Administration
Guide.

You can assign multiple user interfaces to a set of users, as described in “Assigning Siebel Configurator
Interfaces to Users” on page 146. If you have any doubt about what browser is used by a group of
end users, you should assign two interfaces to that responsibility, one that is high interactivity and
one that is standard interactivity. The application will check the interfaces in the order you specify
in the Sequence field, and it will assign the user the first interface it finds that supports the user’s
browser.

Quantity Box with Price User enters
quantity

Displays item price. Update Quantity button
displays next to item name.

Text Box with Price No Read-only. Displays item price.

Text Box No Read-only.

Combo Box for Attribute No Selected item highlighted.

Edit Box for Attribute No Displays value of attribute. Can be edited.

Radio Button for Attribute No User can select one attribute value.

Text Box for Attribute No Read-only. Displays value of attribute.

Linked Item No Read-only. Displays value of linked item.

Resource No Read-only. Displays value of resource.

Table 13. User Interface view UI Controls

UI Control Type
Select Multiple
Items? Description
Product Administration Guide Version 7.8, Rev. B140

Creating Custom Siebel Configurator User Interfaces ■ About Pricing Integration with
Siebel Configurator
About Pricing Integration with Siebel
Configurator
Siebel Pricer works in conjunction with Siebel Configurator to provide updated pricing information
during a configuration session. There are two methods for obtaining updated pricing information:
automatic and manual. You select which method to use when you select a base theme.

Automatic price updates is the default method and is the method used by the default base theme.
Base themes that provide manual price updates are labeled as such when displayed in the dialog box
where you select the base theme. Unless labeled otherwise, base themes use the automatic price
update method.

With automatic price updates, the pricing of the entire product with components is updated when the
session starts, each time a new solution is created during the session, and when the session ends.
When the user picks a product, the price of the product displays automatically.

With manual price updates, the pricing of the entire product with components is updated when the
session starts, when the user clicks the Check Price button, and when the session ends. During the
session, prices are not updated automatically when the user picks a product. Users must click the
Check Price button to obtain the prices of the products they select.

When a price update occurs during a configuration session Siebel Pricer pricing elements trigger in
the following order:

1 Component-based pricing adjustments

2 Attribute-based pricing adjustments

3 Pricing procedures. Only pricing that applies to the individual product triggers. Aggregate and
volume discount pricing does not trigger.

When the session ends, Siebel Pricer pricing elements trigger in the same order.

When building a customizable product, use automatic price updates. Switch to manual price updates
only if performance becomes too slow. The sequence of events after the user selects a product is as
follows:

■ Siebel Configurator engine computes a new solution

■ Siebel Configurator engine forwards the solution to Siebel Pricer

■ Siebel Pricer returns pricing for all items in the solution

■ Siebel Configurator redisplays the selection page

If you do not need interactive pricing, consider switching to manual price updates.

Creating Custom UIs for Customizable
Products
End users use Siebel Configurator to choose the features of products with attributes and products
with components. You can customize the Siebel Configurator interface for both of these.
Product Administration Guide Version 7.8, Rev. B 141

Creating Custom Siebel Configurator User Interfaces ■ Process of Creating a Custom
Siebel Configurator User Interface
To create custom UIs for products with attributes

1 Navigate to the Administration - Product screen, then the Product Classes view.

2 In the Product Classes list, select and lock the desired product class.

3 In the Versions list, click the Work Space version.

4 Click the User Interface view tab.

5 Design the user interface by following the instructions in this chapter.

All products associated with this product class inherit this interface.

To create custom UIs for products with components

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select and lock the desired customizable product.

3 In the Versions list, click the Work Space version.

4 Click the User Interface view tab.

5 Design the user interface by following the instructions in this chapter.

Process of Creating a Custom Siebel
Configurator User Interface
To create a custom Siebel Configurator user interface, perform the following tasks:

■ “Creating the Siebel Configurator User Interface Record” on page 142

■ “Selecting the Base and Product Themes” on page 143

■ “Grouping Items onto Pages of the Siebel Configurator User Interface” on page 143

■ “Adding a Summary Page to the Siebel Configurator User Interface” on page 145

■ “Assigning Siebel Configurator Interfaces to Users” on page 146

CAUTION: In the Customizable Product UI layer, the type of the user interface controls must match
with the type of the user interface option and the base theme type of the user interface option. If
the types do not match, the user interface will be rendered incorrectly or there will be runtime errors.
For example if you select a Customizable Product menu base theme, then you should only select
relationship or attributes controls for menu theme. As another example, if you select a customizable
product base theme of type High Interactivity, then you should only select High Interactivity
relationship or attributes UI controls. As another example, you should not mix High Interactivity and
Standard Interactivity user interface themes, and should not mix menu and non-menu themes.

Creating the Siebel Configurator User Interface Record
First, create the user interface record.
Product Administration Guide Version 7.8, Rev. B142

Creating Custom Siebel Configurator User Interfaces ■ Process of Creating a Custom
Siebel Configurator User Interface
To create the user interface record

1 Select and lock the desired product, and click User Interface in the link bar, as described in
“Creating Custom UIs for Customizable Products” on page 141.

2 In the User Interface list, add a new record and complete the necessary fields, described in the
following table.

Selecting the Base and Product Themes
User interface themes are templates that control the basic look and feel of the selection pages that
users see when configuring a customizable product. Base themes control basic page design and
product themes control the method used to present product choices. For more information, see
“About Themes for the Siebel Configurator UI” on page 133.

This task is a step in “Process of Creating a Custom Siebel Configurator User Interface” on page 142.

To select the base and product themes

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select the desired product.

3 In the Versions list, click the Workspace hyperlink.

4 Click the User Interface view tab.

5 In the User Interface list:

a In the Base Theme field, select the desired base theme.

b In the Product Theme field, select the desired product theme.

Grouping Items onto Pages of the Siebel Configurator
User Interface
Groups are the way you define which components or attributes of a product go on which selection
pages. Depending on the product theme, all the items in a group display on one page. These pages
display when the user selects the item for configuration.

Field Comments

Option Name Enter a name for the user interface.

Option Type Select a type for the user interface. Options are High Interactivity
and Standard Interactivity.

Sequence Enter a sequence number, which is used to decide which user
interface to assign to users who are assigned multiple user
interfaces. For more information, see “Assigning Siebel
Configurator Interfaces to Users” on page 146.
Product Administration Guide Version 7.8, Rev. B 143

Creating Custom Siebel Configurator User Interfaces ■ Process of Creating a Custom
Siebel Configurator User Interface
For example, you design a customizable product that includes a computer monitor and a service plan.
The user can select from among 4 monitors and 3 service plans. To display monitors and service
plans on separate selection pages, you would create one group for monitors and one for service
plans.

All the relationships, resource definitions, and linked items in a customizable product are listed in
the User Interface view. Each item has an Add Item to Group button.

The attributes of the product are also listed. For products with components, these are not the
attributes defined for items in relationships. These are the attributes that the whole product with
components inherits from the class to which it belongs in the product table.

Setting up groups requires two steps:

a Create a group for each selection page.

b Add items to the groups.

This task is a step in “Process of Creating a Custom Siebel Configurator User Interface” on page 142.

To create a group

1 In the User Interface list, click the name of a user interface.

The User Interface Group list appears.

2 In the User Interface Group list, add a new record and complete the necessary fields, described
in the following table.

3 Repeat Step 2 until you have created all the desired groups.

Each group definition corresponds to one selection page. After you define a group, add the items you
want to display on its corresponding page.

To add items to a group

1 Select the desired group.

Field Comments

Group Name Enter a name for the group. This name displays on the selection
page. Use the product theme to guide how you choose group
names. For example, if you use a tab theme, name the group
according to what you want to appear on the page tabs.

Group Theme Select the group theme, which controls the layout of the group
within the base theme. In most cases, you should select the
Standard Group Theme.

Sequence Enter a number specifying the order in which pages display. The
group with sequence = 1 displays first in the page series.

Description Enter a description of the group for your own use. The description
does do not display on the selection page.
Product Administration Guide Version 7.8, Rev. B144

Creating Custom Siebel Configurator User Interfaces ■ Process of Creating a Custom
Siebel Configurator User Interface
2 In the explorer display of the product on the left of the screen, select the desired item and click
Add Item.

The item appears in the Group Item list, below the Group list.

3 Complete the remaining fields in the Group Item list, described in the following table.

4 Repeat Step 3 for each item you want to add to the group.

Adding a Summary Page to the Siebel Configurator User
Interface
You can add a summary page that shows users how they have configured the product. This page
displays the relationships from which the user has made selections along with attribute values. It
also displays all the selected products the user has chosen with an editable quantity. If needed, you
can make this quantity read-only by customizing the summary tab .swt.

Each relationship is a hyperlink. When the user clicks on the relationship name, the selection page
containing that relationship displays, and the user can revise the selections.

Field Comments

Name Displays the name of the item you added. For Relationship items,
this field contains the product display name. For Attribute,
Resource and Linked Items, this field contains the item name.
This field displays in the selection page.

Type Displays whether the item is from a relationship, is a resource, a
linked item, or is an attributes.

Sequence Enter a sequence number to controls the order of display of
relationships within a group. The item with Sequence =1 is
displayed first in the group.

UI Control Select a UI control, such as radio button or check box for the item
or for the items in a relationship. For more information, see
“About Siebel Configurator UI Controls” on page 138.
Product Administration Guide Version 7.8, Rev. B 145

Creating Custom Siebel Configurator User Interfaces ■ Process of Creating a Custom
Siebel Configurator User Interface
Figure 10 shows an example of a summary page. The top portion of the page lists the relationships
and the attribute values that have been selected. The bottom portion of the page shows the items
that the user has selected from each relationship.

This task is a step in “Process of Creating a Custom Siebel Configurator User Interface” on page 142.

To add a summary page

1 In the User Interface view, create a group, as described in “Grouping Items onto Pages of the
Siebel Configurator User Interface” on page 143, and complete the fields with the values described
in the following table.

2 Do not add items to the group. The application generates the summary page automatically.

Assigning Siebel Configurator Interfaces to Users
After you have created custom user interfaces for all your users, you must assign each interface to
the appropriate users.

This task is a step in “Process of Creating a Custom Siebel Configurator User Interface” on page 142.

Figure 10. Example of a Summary Page

Field Value

Group Name Enter the name that will be the tab or page title name. For
example, enter Summary.

Group Theme Select Summary Group Theme.

Sequence Enter a number to set the sequence of the summary page. To
make the summary page the last page in the series, enter a
sequence number that is higher than the number of the other
groups
Product Administration Guide Version 7.8, Rev. B146

Creating Custom Siebel Configurator User Interfaces ■ Process of Creating a Custom
Siebel Configurator User Interface
You can create a number of Siebel Configurator user interfaces for the same customizable product
and assign them to different users. This can be useful for the following reasons:

■ You can create a simple user interface for customers buying the product through the Web and an
interface that allows quicker data entry for call center agents.

■ You can create a user interface with only a small number of options for salespeople doing
indicative quoting, who need to select only a limited number of product options to determine
price. You can create a user interface with all available options for technical designers, who need
to select all product options before submitting the order.

■ If you are unsure what browsers a group of users has, you can assign that group of users both
a high interactivity and a standard interactivity user interface, and give the high interactivity user
interface a lower sequence number. The application will check each user’s browser; it will display
the high interactivity interface if the browser supports it, and it will display the standard
interactivity interface of the browser does not support high interactivity.

Because several user interfaces use the same product model, maintenance is reduced.

You assign a user interface to users by associating it with a responsibility. Users have responsibilities
that determine what views they can see. If you set up your application for the first example above,
you would have the responsibilities Web Customers and Call Center Agents. For the second example
above, you would have the responsibilities Salesperson and Technical Designer. For more information
about responsibilities, see Security Guide for Siebel Business Applications.

If you leave the responsibility blank, the user interface is assigned to all users. If you add another
option with a specific responsibility to override the blank responsibility for some users, you should
make the sequence number for this specific responsibility lower than the sequence number for the
blank responsibility.

To assign a Siebel Configurator user interface to users

1 Navigate to the Administration - Product, then the Product Definitions screen.

2 In the Products list, select and lock the desired customizable product.

3 In the versions list, click the Work Space version.

4 Click the User Interface view tab.

5 Add records to the User Interface list and complete the necessary fields. Some fields are
described in the following table.

Field Comments

Option Name Enter the name of a custom user interface.

Option Type Select the type of this user interface, high interactivity or
standard interactivity.
Product Administration Guide Version 7.8, Rev. B 147

Creating Custom Siebel Configurator User Interfaces ■ Tasks for Setting Up the Siebel
Configurator HI User Interface
Tasks for Setting Up the Siebel
Configurator HI User Interface
The HI user interface has several features that are not available in the SI user interface. The
following topics describe how to set them up:

■ “Setting Up the Grandchild Display of the HI Siebel Configurator User Interface” on page 148

■ “Using the Attribute Inline Display Control in the HI Siebel Configurator User Interface” on page 151

■ “Validating the User Interface for Customizable Products” on page 153

Setting Up the Grandchild Display of the HI Siebel
Configurator User Interface
The grandchild display of the HI Siebel Configurator user interface allows you to display an arbitrarily
deep model and instance hierarchy on a single page, with minimum refresh.

This feature should be used carefully, because performance degrades with the depth of the hierarchy
displayed.

To turn on the grandchild display

1 Set the following UI Properties:

■ MultiChildrenPort = <the name of the port that has grand child> (at the parent CP group
level)

■ Default Group = <Group Name> (At the child level)

2 Change the template, as follows:

<!-- Template Start: eCfgControlCheckPriceMultiLevelJS.swt -->

<swe:include file="eCfgPort_HeaderJS.swt"/>

<tr>

 <td colspan=3>

Sequence Enter the sequence in which this record is checked. When a user
clicks Customize, the application checks the records in this list in
order of sequence, and it assign the user the first record it finds
that is assigned to the user’s responsibility and supports the
user’s browser.

Responsibility Enter the responsibility that this user interface is assigned to.

Field Comments
Product Administration Guide Version 7.8, Rev. B148

Creating Custom Siebel Configurator User Interfaces ■ Tasks for Setting Up the Siebel
Configurator HI User Interface
 <swe:for-each id="500" CfgLoopType="DomainAndChildren" startValue="1500"
count="Dynamic" iteratorName="101Id"

 Usage="CheckBox"

 CfgFieldList="CfgFieldName:Name, CfgUIControl:lblName, HtmlAttrib_width:310,
Default:Y*

 CfgFieldName:RequireMoreChild, Default:Y*

 CfgFieldName:List Price, CfgUIControl:lblListPrice,
DataType:DTYPE_CURRENCY, NeedRefresh:N, HtmlAttrib_align:center,
HtmlAttrib_width:80*

 CfgFieldName:Current Price, CfgUIControl:lblYourPrice,
DataType:DTYPE_CURRENCY, HtmlAttrib_align:center, HtmlAttrib_width:80*

 CfgFieldName:Explanation, CfgUIControl:lblExplanation,
HtmlAttrib_align:center*

 CfgFieldName:Customize, CfgUIControl:lblCustomize,
HtmlAttrib_align:center"

 >

 <swe:control id="swe:111Id + 4000" CfgHtmlType="CfgCheckBox"
ForceRefresh="Y"

 CfgJSShow="showCheckBox" CfgJSUpdateExclusion="updateExcludedItemForPort"
CfgJSUpdateSelection="updatePortItemsForCheckBox"/>

 </swe:for-each>

 </td>

</tr>

<!-- LM: for each selected product of the current relationship, include full UI
starting from group level -->

<tr>

 <td width="100%" colspan="3">

 <table width="100%" cellpadding="0" cellspacing="0" border="0">

 <swe:for-each id="500" CfgLoopType="Children" startValue="1500"
count="Dynamic" iteratorName="101Id">

 <swe:switch>
Product Administration Guide Version 7.8, Rev. B 149

Creating Custom Siebel Configurator User Interfaces ■ Tasks for Setting Up the Siebel
Configurator HI User Interface
 <swe:case condition="Default, TestFieldValue, Operator:==,
FieldName:CanDrillDown, FieldValue:Y">

 <swe:for-each id="110" CfgLoopType="CurrentGroup" startValue="8100"
count="Dynamic" iteratorName="100Id">

 <tr>

 <td width="10%">

 </td>

 <td width="80%">

<swe:include id="swe:151Id" CfgHtmlType="CurrentGroup"/>

 </td>

 <td width="10%">

 </td>

 </tr>

</swe:for-each>

 </swe:case>

 <swe:default>

 <swe:for-each id="110" CfgLoopType="Attribute" startValue="1100" count="Dynamic"
iteratorName="IncId" >

 <tr class="listRowOff">

 <td class="row" width="100%" class="AppletBlank">

 <swe:include id="swe:151Id" CfgHtmlType="Children"/>

 </td>

 </tr>

 </swe:for-each>

 <tr><td width="100%" class="AppletBlank"> </td></tr>
Product Administration Guide Version 7.8, Rev. B150

Creating Custom Siebel Configurator User Interfaces ■ Tasks for Setting Up the Siebel
Configurator HI User Interface
 <tr><td width="100%" class="AppletBlank"> </td></tr>

 <swe:for-each id="100" CfgLoopType="Port" startValue="2100" count="Dynamic"
iteratorName="IncId" >

 <tr class="listRowOff">

 <td width="100%" class="row" class="AppletBlank" >

 <swe:include id="swe:151Id" CfgHtmlType="Children"/>

 </td>

 </tr>

 </swe:for-each>

 <tr><td width="100%" class="AppletBlank"> </td></tr>

 <tr><td width="100%" class="AppletBlank"> </td></tr>

 </swe:default>

 </swe:switch>

 </swe:for-each>

 </table>

 </td>

</tr>

<swe:include file="eCfgPort_FooterJS.swt"/>

<!-- Template End: eCfgControlCheckPriceMultiLevelJS.swt -->

Using the Attribute Inline Display Control in the HI
Siebel Configurator User Interface
The Attribute Inline Display control allows you to display attributes of child products on the same
Siebel Configurator selection page as the parent product. It is available only in the HI user interface.

The control is a form with attributes of the child product. You can click tabs at the top of the control
to display forms for different child products.
Product Administration Guide Version 7.8, Rev. B 151

Creating Custom Siebel Configurator User Interfaces ■ Tasks for Setting Up the Siebel
Configurator HI User Interface
For example, a parent product might be Mobile Package, a package of options for purchasing cell
phone service. Child products might be Mobile Subscription Options, Price Plans, and Accessories.
When the user displays the selection page for Mobile Package, the Attribute Inline Display Control
has a series of tabs that the user can click to display the attributes for these child products.

To set up the Attribute Inline Display control

1 For the Parent Product from which users can choose a Child Product:

a Navigate to the Administration - Product screen, then the Product Definitions view and select the
Customizable Product (for example, Mobile Package).

b In the Versions list, click the Work Space version.

c Click the User Interface view tab.

d Select the UI Group where the child product is referenced (for example, Subscription Details).

e Select eCfgControlComboAddPriceAttribGridJS.swt as the Group item theme (for example,
Mobile Subscription Options).

f For the Group name defined earlier (for example, Subscription Details), add new User Property
named MultiChildrenPort, and provide the relationship name as its value (for example, Mobile
Subscription Options).

2 For the child product whose attributes will be shown and selected:

a Navigate to the Administration - Product screen, then the Product Definitions view and select the
Customizable Product (for example, Mobile Subscription).

b Navigate to User Interface view.

3 Create a new UI Group, and complete the fields with the values described in the following table.

a Add all the attributes that you want to show as Group Items in this new UI Group, for example,
Activate Immediately, Activated.

b Navigate to User Interface view.

4 Create a new root product UI Property and complete the fields with the values described in the
following table.

Field Value

Group Name Grandchild Attr

Group Theme Standard Group Theme JS

Sequence 10

Field Value

Default Group Grandchild Attr
Product Administration Guide Version 7.8, Rev. B152

Creating Custom Siebel Configurator User Interfaces ■ About Managing Item Groups
a For an attributes that you specified earlier, such as Activate Immediately, create a new UI
Property and complete the fields with the values described in the following table.

Create another new UI Property and complete the fields with the appropriate values, such as
the values described in the following table.

NOTE: The type is case sensitive and must be in all lower case. Other supported types are
text and radio.

b For other attributes that you specified earlier, such as Activated, create a new UI Property and
complete the fields with the values described in the following table.

Create another new UI Property and complete the fields with the appropriate values, such as
the values described in the following table.

c Release a New Version of the product

5 Release the Parent Customizable Product.

Validating the User Interface for Customizable Products
When you validate the user interface for customizable products, you can pick an option for validation
in the workspace list applet. When you click Validate, Siebel Configurator tries to load the specified
user interface regardless of the current user or browser. This allows you to test all the user interfaces
for every different type of user. For more information about validating products, see “Testing a
Product with Components in Validation Mode” on page 287.

About Managing Item Groups
You can manage item groups in the following ways:

Field Value

Grandchild Enabled Y

Field Value

Grandchild Type combo

Field Value

Grandchild Enabled Y

Field Value

Grandchild Type Combo
Product Administration Guide Version 7.8, Rev. B 153

Creating Custom Siebel Configurator User Interfaces ■ About Managing Item Groups
■ “Editing Item Groups”

■ “Deleting Item Groups”

Editing Item Groups
You edit item groups by selecting a group and then editing the group record or by editing items in
the group’s Group Item List.

In the group record, you can change the group theme or the order in which the group displays.

In the Group Item List for a group, you can edit records by changing their sequence of display or by
changing the type of UI control used to display the item.

If you change the UI control for a relationship, make sure that the new control allows the user to
exercise the full range of the cardinalities you have defined for the relationship.

Deleting Item Groups
Item groups are the mechanism you use to group items onto selection pages. Deleting a group
removes the page and all its items from the collection of pages displayed in Siebel Configurator.
Product Administration Guide Version 7.8, Rev. B154

12 Siebel Configurator UI
Properties
This chapter explains how to use the Properties view to modify the display of selection pages for
customizable products. You must define a work space and have used the User Interface view to
define selection-page layout before using the Properties view.

This chapter includes the following topics:

■ “About Siebel Configurator UI Properties” on page 155

■ “About Predefined UI Properties” on page 156

■ “Defining a UI Property” on page 159

■ “Hiding Parts of a Customizable Product” on page 159

About Siebel Configurator UI Properties
A UI property is a named variable and its value. UI properties modify the display of an item in Siebel
Configurator. You define a UI property by selecting the desired item and then defining one or more
UI properties for it.

There are two types of UI properties:

■ Predefined UI properties, such as Hide, are Siebel-provided UI properties that perform special
functions. For more information, see “About Predefined UI Properties” on page 156.

■ User-defined UI properties are those that you define and then insert into a Web template to
control the display characteristics of an item. For more information, see “Using User-Defined UI
Properties” on page 158.

The Properties view displays all the items in the customizable product:

■ Product Name

■ Attribute

■ Relationship

■ Group

■ Linked Item

■ Resource

To use the Properties view, you select an item in the customizable product and then define a UI
property for the item in Item Display Properties. Each record in Display Properties has two fields.
The first contains the name of the UI Property variable. The second field contains the value you want
to assign to the variable. This value is what displays in the configuration session.

Observe the following guidelines when defining UI properties:
Product Administration Guide Version 7.8, Rev. B 155

Siebel Configurator UI Properties ■ About Predefined UI Properties
■ The relationship between an item and a UI variable name is one-to-one. You cannot define
multiple UI properties for an item, each with the same variable name.

■ An item can have multiple UI property definitions, each for a different UI variable. An example
of this would be an item that appears in multiple locations within a customizable product.

About Predefined UI Properties
Table 14 shows the predefined UI properties that you can use. These UI properties provide commonly
desired ways to modify the display of items. You do not need to insert a variable name for these
properties into a customizable product Web template. You only need to assign them to the desired
item in the Properties view.

For external images, the image must be stored in the Siebel installation directory in
\Public\enu\Images\<filename>, where <filename> is the name of the file.

Table 14. Predefined UI Properties

Property Name Value Description

Excluded Y Can only be defined on a relationship or on the product root.
Cannot be defined on products within a relationship

When defined on a relationship, prevents all excluded items in
the relationship from displaying.

If an item in a relationship is a product with components, does
not prevent display of excluded products within that product
with components.

When defined on the product root, prevents excluded items
from displaying throughout the product.

Hide Y or N When set to Y, causes item to be omitted from selection pages.
Can be defined on any part of a customizable product that
displays in the Properties view. Acts at the UI level, so adding
this UI property to hide values that are selected in existing
quotes will not remove these values, just change the display.

Description Enter a text
string.

Define on relationships only.

Enter the text exactly as it will display to the user.

Image Images/
<filename>

Define on relationships only.

The image displays on the right side of relationship header. The
image is displayed full size.

LearnMore Enter the full
URL to the
desired
location

Use with relationships only. Do not use with component
products, resources, attributes, or links.

The words “Learn More” are displayed adjacent to the item and
are a hyperlink to the URL you enter.
Product Administration Guide Version 7.8, Rev. B156

Siebel Configurator UI Properties ■ About Predefined UI Properties
ProductHeader
Image

Images/
<filename>

Define on product root only.

Displays an image of the root product on every selection page.
Image displays beneath item header, to the left of item labels.
The default image area is 120x120 pixels square. Can only be
defined on product root.

FullComputation Y When set to Y (Yes) and user makes an attribute selection, the
Siebel Configurator engine updates the selection state of all the
attribute values so that only selectable values are displayed.
For example, if one of the values is excluded, it displays
unavailable. Can cause performance reduction. This is the
default.

When set to N (No), the Siebel Configurator engine does not
update the selection state of the other attribute values and
displays all the values as selectable. For example, if one of the
values is excluded, it does not display unavailable. If users
select an excluded value, they receive a conflict message.

Use this UI property when display of the selection state of
attribute values is required.

Define on attributes with LOV domains only.

Resource Y Define on attributes only. When this property is set, the
attribute value will be treated as engine picked, which works
similar to a resource. This property is commonly used when an
attribute is used as a counter that will not be changed directly
by a user and that will be recalculated every time regardless
what previous value or state is.

Default Group The name of
a valid group

This property specifies the default group loaded in the
grandchild display.

Grandchild
Enabled

Y Define this property at the appropriate attribute group item
level in order to show attributes in line with products in the
grandchild display.

Table 14. Predefined UI Properties

Property Name Value Description
Product Administration Guide Version 7.8, Rev. B 157

Siebel Configurator UI Properties ■ Using User-Defined UI Properties
Using User-Defined UI Properties
After you give a name to a user-defined UI property, you can use the property by using the
appropriate JavaScript syntax.

For example:

■ The UI property name is ExcludeAtt.

■ You can use the UI property name with the following Javascript syntax:

attPropSet.GetProperty(".ExcludeAtt")

NOTE: You must include a period (.) before the name.

Grandchild Type combo, text,
radio

Define this property at the appropriate attribute group item
level in order to show attribute in line with products in the
grandchild display. This property specifies the type of attribute
user-interface control to load.

MultiChildrenPor
t[N]

This property is used by the CP UI service. It lets the UI service
know that before presenting a given group or the CP itself, the
UI service needs to fetch more details about the user property
value and relationship.

You can define this at the root level or at each group level for
multiple relationships (Name: MultiChildrenPort, Value:
Intrastate, Name: MultiChildrenPort1, Value: USA, Name:
MultiChildrenPort2, Value: Canada, Name: MultiChildrenPort3,
Value: Extended and so on, where Intrastate, USA, Canada,
Extended are relationship names within the CP.

You would need to define this for each CP UI definitions. If you
customize the OOTB template and add .swt template code to
access child component information (attribute or relationship
products) then you should define the root item as a multi
children port. This is needed because the UICache used, may
not contain the complete information needed for the UI
(obsolete or not cached UI information such as accessing all
attribute values of all products in the group item).

The disadvantage of using this is that there will be performance
penalty if the total relationship domains affected by these user
properties are large. If you have multiple of these remember to
name these like MultiChildrenPort0, MultiChildrenPort1, and so
on, for example from 0 to n. in any of 0 you have an option to
just say MultiChildrenPort.

Table 14. Predefined UI Properties

Property Name Value Description
Product Administration Guide Version 7.8, Rev. B158

Siebel Configurator UI Properties ■ Defining a UI Property
For an example of how user-defined UI properties can be used, see the use of the UI variable in the
topic “Creating a New Base Theme Template” on page 167.

Defining a UI Property
A UI property is a named variable and its value. UI properties modify the display of an item in a
customizable product. You define a UI property by selecting the desired item in a customizable
product and then defining one or more UI properties for it.

To define a UI property for a product

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select and lock the desired product.

3 In the Versions list, click the Work Space version.

4 Click the Properties view tab.

5 In the Explorer applet, click the name of the item for which you want to define a UI property.

6 In Properties view, add a new record and complete the necessary fields, described in the
following table.

Hiding Parts of a Customizable Product
The predefined UI property Hide lets you omit items from display in selection pages.

This UI property is very useful with class-products. For child products in the class, you can hide
portions of the product structure inherited from the class-product.

This allows you to define the class-product structure and then tailor its display for each of the child
products that inherit the structure.

You can hide any of the items that display in the Properties view:

■ An attribute

■ An attribute value

■ A relationship

■ An item in a relationship

■ A group

Field Comments

Name Enter the name of the UI property variable. The variable can be
predefined or user-defined.

Value Enter a value for the variable. The value can be predefined or
user-defined.
Product Administration Guide Version 7.8, Rev. B 159

Siebel Configurator UI Properties ■ Hiding Parts of a Customizable Product
■ A linked item

■ A resource

You define the Hide property on an item in the same fashion as other UI properties.
Product Administration Guide Version 7.8, Rev. B160

13 Siebel Configurator Web
Templates
This chapter explains how to customize the Web templates that are used to create Siebel
Configurator selection pages. It includes the following topics:

■ “About Customizable Product Web Templates” on page 161

■ “About UI Properties in Web Templates” on page 163

■ “About UI Property Values” on page 163

■ “Creating a New Web Template” on page 165

■ “Modifying the Display Name of a Customizable Product” on page 166

■ “Example of Modifying the Display Name of a Customizable Product” on page 169

■ “Modifying the Display Name of Groups” on page 170

■ “Example of Modifying the Display Name of Groups” on page 172

■ “Modifying the Display Name of Items” on page 173

■ “Example of Modifying the Display Name of Items” on page 176

About Customizable Product Web
Templates
Customizable Product Web templates are files that control all aspects of how selection pages display.
You can customize the look and feel of selection pages by modifying these templates.

Customizable Product Web templates are stored in the installation subdirectory \webtempl. The
templates that control display of selection pages begin with eCfg. There four types of Web templates
used by Siebel Configurator.

■ Base Theme. The base theme defines an HTML table-based page layout. This layout is used for
all selection pages and provides the basic look and feel. The base theme calls the required
product theme, which displays in one or more table cells created by the base theme.

■ Product Theme. The product theme template defines how selection items and options are
displayed. The one-page theme displays all the configurable items on one selection page. The
tab themes display items on a series of tabbed pages. The wizard theme leads the user from one
selection page to the next. Product themes also create table layouts that define how items
display within the cells of the base theme. Product themes contain for-each loops that iterate
through the customizable product and identify relationships, items, attributes, and so on.
Product themes call group themes and control themes.

■ Group Theme. If you use a tab or wizard theme, you determine what items appear on a page
by defining groups. All the items in one group display on one page. A group theme template
specifies how a group displays on a page.
Product Administration Guide Version 7.8, Rev. B 161

Siebel Configurator Web Templates ■ About Customizable Product Web Templates
■ UI control template. UI control templates define what type of UI control is used for selecting
items. You can choose from several types of check box, radio button, and text box controls. The
control template iterates through each group, identifies all the items, and then creates a form
that displays the items for selection. The forms display in the table cells created by the product
theme.

Web templates are not themselves HTML files, but they do contain a combination of HTML table
commands, JavaScript, and Siebel Web Engine (swe) commands. The swe commands are in XML
format. These commands are used in Web templates as follows:

■ HTML table commands. These commands are used to define page layout. Control templates
create tables and then create forms that display in these tables. Control template tables display
in the cells created by product theme templates. Product theme templates displays in cells
created by the base theme template.

■ JavaScript. JavaScript commands are used to create arrays for storing data about the
customizable product obtained from the UI service. They are also used in control templates to
create forms.

■ swe:include. This command specifies the name of a template to include. This command links
the Web templates together. During iterative processing this command causes the Web Engine
to dynamically retrieve, insert, and parse the included Web template.

■ swe:for-each. This command provides iterative processing. It traverses the customizable
product beginning at the product root and identifies specified parts for display. The CfgLoop Type
specifies the type of items to be identified, such as group, relationship, or attribute.

■ swe:control. This XML element defines what control type to display with an item. To define a UI
property, you substitute a variable name for the value of the CfgFieldName attribute in this
element. Inserting UI property variables in Web templates is how you customize the way an item
displays.

Web templates are used by the Frame Code Engine to create HTML selection pages, as shown in
Figure 11.

Figure 11. Web Template Processing
Product Administration Guide Version 7.8, Rev. B162

Siebel Configurator Web Templates ■ About UI Properties in Web Templates
When a customizable product is called for display, an instance is created and stored in memory. The
Frame Code Engine requests information about the product from the UI service and uses it to provide
the values required in the Web templates. The Frame Code Engine then builds selection pages and
forwards them to the Web Engine Frame Manager. The pages are then provided to the Web Server.

About UI Properties in Web Templates
The Properties view lets you customize the way items display in a configuration session. You do this
by defining a UI property for the desired items. The UI property definition is a name-value pair where
the variable name is one you have entered in the Web template that controls the display of the item.
The value can be a string, HTML commands, XML commands, or JavaScript that defines what you
want to display instead of the default item name.

The Properties view displays all the items in the customizable product. To change how Web templates
display, you can define UI properties of the following items:

■ Customizable Product Name (root product)

■ Attribute

■ Relationship

■ Group

■ Linked Item

■ Resource.

For more information about using the Properties view, see Chapter 12, “Siebel Configurator UI
Properties.”

The Web Engine uses for-each loops to iterate through each level of a customizable product. At each
level, it determines what items occupy that level and what Web template to use for displaying the
items. When you modify a Web template and assign it to group member, the template is used to
control the display of all the group member’s items. For example, if you assign a radio button control
template to a relationship containing five items. The control template is used to define how each of
the five items displays. Thus, if you have inserted a UI property variable in the radio button control
template, then you must define a UI property for all five items.

About UI Property Values
The value you assign to a UI property name for an item can be text, HTML commands, or JavaScript
commands. If the value includes HTML or JavaScript commands, it is important to test them for
correctness before entering them in the Properties view.

If you do not test the commands and they have errors, this can prevent display of the selection
pages. If the value is a text string that does not include commands, you do not need to test it.

You test the commands included in the value of the UI property name by inserting them in an HTML
file and checking that they display correctly in a Web browser. Observe the following guidelines for
including HTML commands or JavaScript in a UI property name value:
Product Administration Guide Version 7.8, Rev. B 163

Siebel Configurator Web Templates ■ About UI Property Values
■ Avoid using tags or tag attributes common only to Internet Explorer or to Netscape.

■ Use DHTML commands with caution. Thoroughly test them before using them as the value of a
UI property name.

■ HTML statements should be self-contained and complete. Use opening and closing tags.

■ Use table tags very carefully. Make sure the table you define is sized correctly for the space it
will occupy.

■ If you insert JavaScript using the <Script> tag, avoid statements that manipulate the document.
Also avoid routines that rely on specific page content. If the content is not present, the script
may fail and the page may not display.

■ Do not use animated images or animated text.

HTML Text Formatting Commands
You can use HTML text formatting commands to enhance the way an item name displays. Here are
several examples:

■ You can define a UI property value that adds formatting to the item name. For example, you want
the item name Lamp to display in boldface. You would assign the following UI property value to
the item Lamp: Lamp.

■ You can add a message next to an item. If the message is lengthy consider creating a small, two-
cell table. Put the item name in the first cell, and put the explanation in the adjacent cell. The
value of the UI property name for the item would then be the HTML table commands, including
the item name and message. The base theme and product theme Web templates use tables to
layout the Web pages. This means the table you create for the item will be located within a cell
of the table that contains the whole Web page. Carefully review the table structure of the base
theme and product theme Web templates before creating tables for UI properties.

The following HTML tag types can be used as values for UI property names:

■ Text markup tags (, , and so on)

■ Table tags

■ Content presentation and flow tags (<address>, <nobr>, <plaintext>, and so on)

■ Formatted list tags

■ Rule, image, and multimedia tags (, <map>, <marquee>)

■ Forms tags (<button>, <input type> and so on.). You can use these tags to pass user input to
JavaScript routines that are part of the UI property name value.

■ Hyperlinks. You must include Target = ““in the link tag (<a>) definition. This causes the link to
load in a new browser window. If the link loads in the session browser window, the user will have
to click the Back button to return to the session. This can cause the session to lose its context
and can cause Web Engine problems.

Do not use the following tag types in UI property name values:

■ Header tags (<base>, <basefont>, and so on)

■ Skeletal/Layout tags (<frameset>, <body>, and so on)
Product Administration Guide Version 7.8, Rev. B164

Siebel Configurator Web Templates ■ Creating a New Web Template
Images
Use the HTML tag as the UI property value when you want to retrieve and display images.
You can shorten the path specification for the src attribute by storing the images in the same
directory as other images used by the Web Engine.

The Web Engine stores its images in the following installation subdirectory (Windows path syntax):

PUBLIC\<language>\IMAGES

The <language> variable is the three-letter language identifier for the language selected during
installation. For example, if you selected English during the install, the Web Engine image files are
located in the PUBLIC\enu\IMAGES subdirectory.

When you specify the src path in the tag, you only need to specify the IMAGES directory and
the file name. For example, you want to retrieve red.gif from the IMAGES directory and use it to
replace the attribute name Red. In the Properties view, you would assign a UI property name to the
Red attribute and specify the following value (Windows path syntax):

Before validating the UI design, you should test this value to make sure it behaves as expected in
the browser. Here is an example of an HTML file for testing image retrieval (English language
installation, Windows path syntax):

<html>
<head>
<base href="C:\installdir\PUBLIC\enu\">
</head>
<body>

</body>
</html>

Add HEIGHT and WIDTH attributes to the tag to make the image the correct size. Consider
making the image somewhat smaller than needed and then increasing its size when you validate the
UI design. This prevents the image from causing page layout problems when you first validate it.

Creating a New Web Template
The most common reason for creating a new Web Template is to insert UI property variables in the
template to change how an item in a customizable product displays. The best way to create a new
Web template is to modify an existing template and save it to a new file name.

The process for setting up a new template has two steps:

a Create a new Web template.

b Add the new template to the appropriate dialog box

To create a new Web template

1 Navigate to the Administration - Product screen, then the Product Definitions view.
Product Administration Guide Version 7.8, Rev. B 165

Siebel Configurator Web Templates ■ Modifying the Display Name of a Customizable
Product
2 In the Products list, select and lock the desired product.

3 In the Versions list, click the Work Space version.

4 Open the desired dialog box and locate the desired template.

For example, if you wanted to create a new base theme template, click the User Interface view
tab and click the select button in the Base Theme field to open the dialog box.

5 Write down the filename of the template you want to modify.

The filename is shown in the Template field. The filename ends in .swt.

6 Open the Web template in a text editor, modify it as desired, and save it to a new filename.

The Web templates are located in <install-dir>\webtempl (Windows path syntax), where
<install-dir> is the path to the Siebel installation directory. The new filename must end in .swt.
By convention, the filename should begin with “eCfg.”

In most cases, you will insert a UI property variable name into the template.

The next step is to add the new template to the dialog box.

To add a Web template to the dialog box

1 Open the dialog box again.

This is the dialog box you used to determine the filename of the template.

2 In the dialog box, click New and fill out the form for adding a new template and click OK.

■ Name: Enter a descriptive name. For example: Modified Base Theme.

■ Template: Enter the filename of the template you created.

■ Description (Optional): Enter a brief description of the template.

This adds the new template to the dialog box. You can now assign the new template to an item
in the customizable product. For example, if you created a new base theme template, you can
assign this template to the customizable product.

Modifying the Display Name of a
Customizable Product
This topic explains how to modify the customizable product name in the base theme. The base theme
defines the basic page container within which the product theme displays. The base theme includes
a header that contains the customizable product name that is stored in the Siebel database. You can
define a UI property that changes the name of the customizable product or adds artwork or other
formatting.

To change the name of the customizable product in a base theme, you insert a variable in the base
theme Web template. This variable tells the Web Engine to get the item name from a defined UI
property rather than using the customizable product name.

To change the display name of the customizable product, perform the following tasks:
Product Administration Guide Version 7.8, Rev. B166

Siebel Configurator Web Templates ■ Modifying the Display Name of a Customizable
Product
1 “Creating a New Base Theme Template” on page 167. You do this by saving a copy of the base
theme template. Then you insert a variable name in the new template.

2 “Assigning the New Base Theme Template” on page 168. Assign the new base theme template to
the customizable product.

3 “Defining a UI Property for the Customizable Product” on page 168. This value is what displays in
the selection pages.

Creating a New Base Theme Template
You must create a new Web template to customize the display name of the customizable product.
You do this by copying an existing base theme template. Then you insert a UI property variable into
the copy. Finally, you assign the new Web template as the base theme for the customizable product

To insert a UI property variable into a base theme Web template, you must locate the swe:control
element that governs the display of the customizable product name. The base themes have the same
basic layout:

■ The first <Table> tag creates the page container. Additional <Table> tags stack one on top of
another to partition the page vertically.

■ There are no swe:for-each loops in the template.

■ Near the top of the file, refer to the first <table> tag. Within the table definition, locate the
“Product Title” comment. Below the comment locate the first swe:control element.

■ One of the attributes of this element is CfgFieldName = “CxObjName”.

■ Replace CxObjName with the name of the UI Property variable. The name must be preceded with
a period (.). For example: “.NewProductName”.

To create a new base theme template

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select and lock the desired customizable product.

3 In the Versions list, click the Work Space version.

4 In the User Interface view, click the select button in the Base Theme field and open the dialog
box.

5 Write down the filename of the base theme.

The filename is shown in the Template field. The filename ends in .swt.

6 Open the Web template in a text editor and save it to a new filename.

The Web templates are located in <install-dir>\webtempl (NT path syntax), where <install-dir>
is the path to the Siebel installation directory. The new filename must end in .swt.

7 In the new template, locate the swe.control element containing the CfgFieldName=
“CxObjName” attribute.
Product Administration Guide Version 7.8, Rev. B 167

Siebel Configurator Web Templates ■ Modifying the Display Name of a Customizable
Product
8 Replace “CxObjName” with a UI property variable name and save the file.

The variable name must begin with a period (.). For example: “.NewProductName”. Verify that
the variable name is enclosed in quotes.

Assigning the New Base Theme Template
To assign the new base theme template to the customizable product, you first add the template to
the Pick UI Style dialog box. Then you select it as the base theme.

To assign the new base theme template to the customizable product

1 In the customizable product Work Space version, click the select button in the Base Theme field
and open the dialog box.

The Pick UI Style dialog box appears.

2 In the dialog box, click New and fill out the form for adding a new template and click OK.

■ Name. Enter a descriptive name. For example: Modified Base Theme.

■ Template. Enter the filename of the template you created.

■ Description (Optional). Enter a brief description of the template.

3 In the Pick UI Style dialog box, click the template you added and click OK.

This assigns the new base theme template to the customizable product.

Defining a UI Property for the Customizable Product
The last step is to define a UI property for all the customizable product.

To define a UI property for the customizable product

1 Click the Properties view tab for the customizable product.

2 In the box displaying the contents of the customizable product, click the name of the
customizable product. It is the first item listed.

3 In Item Display Properties, click New.

A new record appears.

4 Fill out the record.

■ Name. Enter the name of the UI property variable you entered in the base theme template.
Do not include the period (.) that begins the name.

■ Value. Enter the customizable product name you want to display. Include any HTML
formatting needed.

5 Open the Item Display Properties menu and click Validate.

This starts a configuration session. Verify that the customizable product display name is correct.
Product Administration Guide Version 7.8, Rev. B168

Siebel Configurator Web Templates ■ Example of Modifying the Display Name of a
Customizable Product
Example of Modifying the Display Name
of a Customizable Product
You have a customizable product called Premier Workstation. You want to display your company logo
to the left of the product name in the base theme. The logo filename is logo1.gif. You have placed
the file in the Siebel installation subdirectory \PUBIC\enu\IMAGES (NT path syntax, English language
installation).

Use the User Interface view to create the Web pages for configuring the customizable product.
Validate the customizable product, and verify that the pages display correctly.

To create a new base theme Web template and assign it to the customizable product

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select and lock the desired customizable product.

3 In the Versions list, click the Work Space version.

4 In the User Interface view, click the select button in the Base Theme field and open the dialog
box.

5 Write down the filename of the base theme.

6 Open the base theme Web template and save it to a new file name: eCfgNewProductTheme.swt

7 Open the new template and locate the swe.control element. Set
CfgFieldName=“.NewProductName”. The first character in the variable name must be a period
(.). The variable name must be surrounded by quotes. Save the file.

8 In the customizable product Work Space record, click the select button in the Base Theme field
and open the dialog box.

9 Click Add and add the new template. Then, select it as the base theme template.

To define a UI property for the customizable product

1 Navigate to the Properties view and select the customizable product.

2 Define a UI property for it as follows:

■ Name. NewProductName. Do not put a period before the name. This is the variable name
you inserted in the template file.

■ Value. Premier Workstation.

3 Open the Item Display Properties menu and click Validate.

This starts a configuration session. Verify that the customizable product display name is correct.
Product Administration Guide Version 7.8, Rev. B 169

Siebel Configurator Web Templates ■ Modifying the Display Name of Groups
Modifying the Display Name of Groups
This topic explains how to modify group names that display in the product themes. For example, you
can use UI property definitions to define what displays on each tab in a tabbed product theme.

To change the name of a group in a product theme, you insert a variable in the product theme Web
template. This variable tells the Web Engine to get the item name from a defined UI property rather
than using the group name you defined in the User Interface view.

To change the display name of a group, perform the following tasks:

1 “Creating a New Product Theme Template” on page 170. You do this by saving a copy of the product
theme template. Then you insert a variable name in the new template.

2 “Assign the New Product Theme Template” on page 171. Assign the new product theme template
to the customizable product.

3 “Define a UI Property for all the Groups” on page 171. For each group name, you give the variable
the desired value. This value is what displays in the configuration Web pages.

You must define a UI property for all the group names, not just the ones you want to change. This
is because the product theme template determines the display name of the all the groups. When you
insert a UI property variable in the template, the Web Engine gets all the group names from UI
property definitions.

Creating a New Product Theme Template
You must create a new Web template to customize the display of group names. You do this by copying
an existing product theme template. Then you insert a UI property variable into the copy. Finally,
you assign the new Web template as the product theme for the customizable product.

To insert a UI property variable into a product theme Web template, you must locate the swe:control
element that governs the display of the group name:

■ Tab Theme. Locate the first swe:case tag. It is located near the top of the file.

■ Single Page Theme. Locate the third <table> tag. It is within the for-each loop near the top of
the file.

■ Wizard Theme. Locate the first for-each loop. It is near the top of the file.

■ Beneath the location specified above, locate the first swe:control element. It defines the group
data record. One of the attributes of this element is
CfgFieldName = “CxGroupName”.

■ Replace CxGroupName with the name of the UI Property variable. The name must be preceded
with a period (.). For example: “.NewGroupName”.

To create a new product theme template

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Product list, select and lock the desired customizable product.

3 In the Versions list, click the Work Space version.
Product Administration Guide Version 7.8, Rev. B170

Siebel Configurator Web Templates ■ Modifying the Display Name of Groups
4 In the User Interface view, click the select button in the Product Theme field and open the dialog
box.

5 Write down the filename of the product theme.

The filename is shown in the Template field. The filename ends in .swt.

6 Open the Web template and save it to a new filename.

The Web templates are located in <install-dir>\webtempl (NT path syntax), where <install-dir>
is the path to the Siebel installation directory. The new filename must end in .swt.

7 In the new template, locate the swe.control element containing the CfgFieldName=
“CxGroupName” attribute.

8 Replace “CxGroupName” with a UI property variable name and save the file.

The variable name must begin with a period (.). For example: “.NewGroupName”. Verify that the
variable name is enclosed in quotes.

Assign the New Product Theme Template
To assign the new product theme template to the customizable product, you first add the template
to the Pick UI Style dialog box. Then you select it as the product theme.

To assign the new product theme template to the customizable product

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Product list, select and lock the desired customizable product.

3 In the Versions list, click the Work Space version.

4 In the User Interface view, click the select button in the Product Theme field and open the dialog
box.

5 In the dialog box, click New, fill out the form for adding a new template, and click OK.

■ Name. Enter a descriptive name. For example: Modified Tab Theme.

■ Template. Enter the filename of the template you created.

■ Description (Optional). Enter a brief description of the template.

6 In the Pick UI Style dialog box, click the template you added and click OK.

This assigns the new product theme template to the customizable product.

Define a UI Property for all the Groups
The last step is to define a UI property for all the groups.

To define a UI Property for all the groups

1 Click the Properties view tab.
Product Administration Guide Version 7.8, Rev. B 171

Siebel Configurator Web Templates ■ Example of Modifying the Display Name of Groups
2 In the box displaying the contents of the customizable product, select the first group in the Group
section.

3 In Item Display Properties, click New.

A new record appears.

4 Fill out and save the record.

■ Name. Enter the name of the UI property variable you entered in the product theme
template. Do not include the period (.) that begins the name.

■ Value. Enter the group name you want to display. Include any HTML formatting needed.

5 Save the new record.

6 Perform these steps for all the groups.

7 Open the Item Display Properties menu and click Validate.

This starts a configuration session. Verify that the group names display correctly.

Example of Modifying the Display Name
of Groups
You have a customizable product that has three groups: Group A,
Group B, and Collection C. You want to change the name of Collection C to Group C in the selection
pages.

Use the User Interface view to create the Web pages for configuring the customizable product.
Validate the customizable product, and verify that the pages display correctly.

To create a new product theme template and assign it to the customizable product

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Product list, select and lock the desired customizable product.

3 In the Versions list, click the Work Space version.

4 In the User Interface view, click the select button in the Product Theme field and open the dialog
box.

5 Write down the filename of the product theme.

6 Open the product theme Web template and save it to a new file name:
eCfgModifiedTabTheme.swt

7 Open the new template and locate the swe.control element. Set
CfgFieldName=“.NewGroupName”. The first character in the variable name must be a period (.).
The variable name must be surrounded by quotes. Save the file.

8 In the customizable product Work Space record, click the select button in the Product Theme field
and open the dialog box.

9 Click Add and add the new template.
Product Administration Guide Version 7.8, Rev. B172

Siebel Configurator Web Templates ■ Modifying the Display Name of Items
10 Select the template as the product theme template.

To define a UI property for each of the groups

1 Click the Properties view tab and select Collection C in the Group section.

2 Define a UI property for it as follows:

■ Name. NewGroupName. Do not put a period before the name. This is the variable name you
inserted in the template file.

■ Value. Group C.

3 Select Group A.

4 Define the UI property for it as follows:

■ Name. NewGroupName. Do not put a period before the name.

■ Value. Group A.

5 Select Group B.

6 Define the UI property for it as follows:

■ Name. NewGroupName. Do not put a period before the name.

■ Value. Group B.

7 Open the Item Display Properties menu and click Validate.

This starts a configuration session. Verify that the group names display correctly.

Modifying the Display Name of Items
This topic explains how to modify the display name of an item, such as an attribute, relationship,
linked item, or resource. A common reason for doing this is that you want the item name that the
customer sees to be different than the name you have in the product table for a specific version of
the customizable product.

For example, a computer component is called 256 MB disk drive in the product table. However, in an
upcoming offering, you want to call this item the Standard 256 MB Disk. Rather than change the item
name in the product table, you can change it using the Properties view. This change is specific to the
customizable product and is stored with it when you release the product. You can use the Properties
view to change item names with each release of a customizable product, without having to change
the item name in the product table.

To change the display name of an item, you insert a variable in the UI control Web template that
governs display of the item. This variable tells the Web Engine to get the item name from a defined
UI property.

To change the display name of a relationship item in the form, perform the following tasks:
Product Administration Guide Version 7.8, Rev. B 173

Siebel Configurator Web Templates ■ Modifying the Display Name of Items
1 “Creating a New UI Control Template” on page 174. You do this by saving a copy of the UI control
template you selected in the User Interface view. Then you insert a variable name in the new
template.

2 “Assigning the New UI Control Template” on page 175. Assign the new template to the item.

3 “Defining a UI Property for the Item” on page 175. Define a UI Property for the item.

Creating a New UI Control Template
You must create a new UI control template to customize the display of an item. You do this by copying
an existing template. Then you insert a UI property name variable into the copy. Finally, you assign
the new template as the UI control template for the item.

To insert a UI property variable into a Web template, you must locate the swe.control element that
governs the display of the item. The UI control Web templates all have the same basic layout:

■ A swe.include statement reads in a header file. This file places the relationship name at the top
of the form that will contain the items.

■ A swe for-each loop iterates through the relationship in the customizable product and loads its
items into an array.

■ A second swe for-each loop reads the array and constructs the form.

■ A variable called DisplayValue near the beginning of the second swe for-each loop defines what
item name appears next to each instance of the control in the form.

■ The DisplayValue variable is set equal to a swe.control element that contains an attribute
CfgFieldName= “CxObjName”. Replace CxObjName with the name of the UI property variable.
The name must be preceded with a period (.). For example: “.NewName”.

To create a new UI control template

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Product list, select and lock the desired customizable product.

3 In the Versions list, click the Work Space version.

4 Click the User Interface view tab.

5 Click the group name containing the item whose display you want to modify.

The items belonging to the group you select display in the Group Item List.

6 In the Group Item List, select the item you want to modify, for example a relationship.

7 In the record you selected, click the select button in the UI control field.

The Pick UI Style dialog box displays. The control you have selected for the group member is
highlighted.

8 Write down the filename of the Web template that governs the display of this control.

The filename is shown in the Template field. The filename ends in .swt.
Product Administration Guide Version 7.8, Rev. B174

Siebel Configurator Web Templates ■ Modifying the Display Name of Items
9 Open the Web template in a text editor and save it to a new filename.

The Web templates are located in <install-dir>\webtempl (NT path syntax) where <install-dir>
is the path to the Siebel installation directory. The filename should begin with eCfg and end with
.swt. For example: eCfgport_modifiedcheckbox.swt

10 In the new template, locate the correct swe.control element containing the CfgFieldName=
“CxObjName” attribute.

11 Replace “CxObjName” with a UI property variable name and save the file.

The variable name must begin with a period (.). For example: “.NewName”. Verify the variable
name is enclosed in quotes.

Assigning the New UI Control Template
To assign the new Web template to a group item, you first add the template to the Pick UI Style dialog
box. Then you select it as the template for an item in the group.

To assign the new UI control template

1 In the User Interface view Group List, click the group name containing the item whose display
you want to modify.

The items belonging to the group you select display in the Group Item List.

2 In the Group Item List, click the item you want to modify.

This selects the record.

3 In the record you selected, click the select button in the UI control field.

The Pick UI Style dialog box appears.

4 In the dialog box, click New and fill out the form for adding a new template and click OK.

■ Name. Enter a descriptive name. For example: Modified Check Box.

■ Template. Enter the filename of the template you created.

■ Description (Optional). Enter a brief description of the template.

5 In the Pick UI Style dialog box, click the template you added and click OK.

This assigns the new template to the item and closes the dialog box.

6 In Group Item List, save the revised record.

Defining a UI Property for the Item
The last step is to assign the variable in the new Web template to the item. Then you enter a value
for the variable. The value you enter is what displays in a configuration session.

For example, if you assigned the template to a relationship, you must define a UI property for each
item in the relationship.
Product Administration Guide Version 7.8, Rev. B 175

Siebel Configurator Web Templates ■ Example of Modifying the Display Name of Items
To define a UI Property for the item

1 Click the Properties view tab.

2 In the box displaying the contents of the customizable product, select the item on which you want
to define the UI property.

3 In Item Display Properties, click New.

A new record appears.

4 Fill out the record.

■ Name. Enter the name of the UI property variable. Do not include the period (.) that begins
the name.

■ Value. Enter the value you want to the variable to have for this item.

5 Save the new record.

6 Open the Item Display Properties menu and click Validate.

This starts a configuration session. Verify that the item names display correctly.

Example of Modifying the Display Name
of Items
You have a customizable product that includes a relationship called Hard Drives. This relationship
contains several disk drives. You want to assign radio buttons as the UI control for selecting the
drives.

To prepare for defining the UI Property

1 Use the User Interface view to create the selection pages for configuring the customizable
product.

2 Validate the customizable product, and verify that the pages display correctly.

To create a new UI control template and assign it to the Hard Drives relationship

1 In the User Interface view, select the group containing the Hard Drives relationship.

2 In Group Item List, select the Hard Drives relationship.

3 Open the Pick UI Style dialog box and write down the name of the radio button template assigned
to the relationship.

4 Open the radio button template and save it to a new file name: eCfgModifiedRadioButton.swt

5 Open the new template and locate the correct swe.control element.

6 Set CfgFieldName= “.NewName”.

The first character in the variable name must be a period (.). The variable name must be
surrounded by quotes.
Product Administration Guide Version 7.8, Rev. B176

Siebel Configurator Web Templates ■ Example of Modifying the Display Name of Items
7 Save the file.

8 In the User Interface view Group Item List, select the relationship containing the hard drives.

9 Open the Pick UI Style dialog box and click Add to add the new template.

10 Select the new template as the control template for the Hard Drives relationship.

To define a UI property for each of the Hard Drives

1 Navigate to the Properties view and select the first drive in the Hard Drives relationship.

2 Define a UI property for it as follows:

■ Name. NewName. Do not put a period before the name. This is the variable name you
inserted in the template file.

3 Repeat these steps to define a UI property for each hard drive in the relationship.

4 Open the Item Display Properties menu and click Validate.

This starts a configuration session. Verify that the item names display correctly.
Product Administration Guide Version 7.8, Rev. B 177

Siebel Configurator Web Templates ■ Example of Modifying the Display Name of Items
Product Administration Guide Version 7.8, Rev. B178

14 Configuration Constraints
This chapter explains how to create configuration constraints. It also explains how to create
constraint templates. It includes the following topics:

■ “About Configuration Constraints” on page 179

■ “About Start and End Dates for Configuration Constraints” on page 180

■ “About the Siebel Configurator Constraints View” on page 181

■ “Guidelines for Creating Configuration Constraints” on page 182

■ “Creating Configuration Constraints” on page 182

■ “Creating Groups of Related Configuration Constraints” on page 186

■ “Activating and Deactivating Configuration Constraints” on page 186

■ “About Managing Configuration Constraints” on page 187

■ “Creating Siebel Configurator Constraint Templates” on page 189

■ “Creating a Siebel Configurator Constraint Summary Report” on page 190

About Configuration Constraints
A configuration constraint defines how two items in a customizable product or a product with
attributes are related. For example:

■ In a product with components, Component A and Component B are mutually exclusive. If the
user picks one, then you want to prevent them from picking the other. One way you can do this
is by writing a configuration constraint: Component A excludes Component B. The Constraints
view provides a constraint template to help you write this constraint.

■ A product with attributes comes in a number of different colors and sizes. However, the color red
is not available in the XL size. One way you can prevent users from picking a product with the
color red and the XL size is to write a configuration constraint: Red excludes XL.

Constraint templates are constraint statements where you replace variables in the statement to
create a configuration constraint. The Constraints view provides constraint templates for the most
common types of configuration constraints. You can also create your own constraint templates.

In the Constraints view, you create a configuration constraint by first selecting a constraint template.
Then you pick items from the customizable product and operators or even other constraint templates
to replace the variables in the constraint. Both arithmetic and logical operators are provided by the
Constraints view.

Configuration constraints you create apply only to the current product, and are stored as part of it.
In contrast, constraint templates reside in the Constraints view and can be used with any product.
Product Administration Guide Version 7.8, Rev. B 179

Configuration Constraints ■ About Start and End Dates for Configuration Constraints
For information about the templates that are available with the product, see Chapter 17,
“Configuration Constraint Template Reference.”

About Start and End Dates for
Configuration Constraints
For each constraint you create, you can set effective dates that control when the constraint is active.
You can set both a start date and an end date. On the start date the constraint is used to compute
all solutions presented to the user when they configure a product. On the end date, the constraint is
no longer used to when computing solutions.

Specifying start and end dates in combination has the following effects:

■ Both a start and end date specified. The constraint becomes active on the start date and
becomes inactive on the end date.

■ Start date specified. The constraint becomes active on the start date and remains active
thereafter.

■ End date specified. The constraint is active when the version is released for use, and becomes
inactive on the end date.

The start date is determined using the Siebel server’s system clock. The start and end dates work
as follows in relation to the date the product is released (release date):

■ If the release date is earlier than the start date, the constraint becomes active on the start date.

■ If the release date is later than the start date, the constraint is active when the product is
released.

■ If the release date is earlier than the end date, the constraint becomes inactive on the end date.

■ If the release date is later than the end date, the constraint is inactive when the product is
released, and the constraint remains inactive.

When you are validating a product, you can temporarily activate or deactivate constraints in the
current work space by clicking the constraint’s Active box in the Constraints List. This lets you
simulate how the constraint will behave on the start and end date.

For example, you can test a constraint with a start date in Validate mode using the following process:

1 Deselect the constraint’s Active checkbox to deactivate the constraint. Then go to Validate mode
and test the product. This simulates what users will see before the start date when the constraint
is not being used to compute solutions.

2 Select the constraint’s Active box to activate the constraint. Then go to Validate mode and test
the product. This simulates what users will see after the start date when the constraint is being
used compute solutions.

You can specify start and end dates for constraints when you create them or by editing constraints
after they have been created.
Product Administration Guide Version 7.8, Rev. B180

Configuration Constraints ■ About the Siebel Configurator Constraints View
About the Siebel Configurator
Constraints View
The Constraints view has three parts:

■ “Constraint Listing”

■ “Constraint Template Listing”

■ “Constraint Statement”

Constraint Listing
When you go to the Constraints view, all the constraints defined for a product are listed. You can
edit, copy, and delete the constraints in the listing.

Constraint Template Listing
When you click New Constraint or New Template in the constraint listing, the constraint template
listing appears. This listing contains the pre-defined constraint templates in the Constraints view. It
also lists any templates you have created.

The constraint templates provide the basic constraint types you need for creating configuration
constraints. For example, there are constraint templates for exclude constraints, others for require
constraints, and so on.

Each constraint template contains variables that you replace to create a configuration constraint. You
can replace the variables with items from the customizable product, links, resources, expressions,
or other templates.

Constraint Statement
When you select a constraint in the constraint template listing and click Continue, the Constraint
Statement form displays. It contains the constraint template you selected. You build a configuration
constraint by replacing the variables in the statement with items from the customizable product, with
resources or links, with operators, or with other constraints. To move to another variable in the
constraint statement, click it. The currently selected variable in the constraint statement displays
with square brackets around it. Variable that are not current but can be selected, display an underline
when the cursor is placed on them. When you select an item for a variable, it displays in red.

The items you can replace a variable with are grouped in the “Insert a” tab, located below the
Constraint Statement. When you move between variables in the constraint, the groupings change to
reflect your allowable choices.

In some templates when you replace a variable with a value, typically an expression, the Compound
button becomes active. The Compound button lets you nest expressions within expressions. For
example, you could use the Compound button to add two variables together where the second
variable is itself an expression that adds two variables.
Product Administration Guide Version 7.8, Rev. B 181

Configuration Constraints ■ Guidelines for Creating Configuration Constraints
Overview of Using the Constraints view
When you create constraints, you use the constraints view in the following way:

1 In the constraint template listing, select the desired constraint template.

2 Select the first variable in the constraint.

3 Click the desired item grouping.

4 Pick the product, operator, or constraint template you want to insert.

5 Move to the next variable and insert the desired item.

6 When you are finished, save the constraint.

Guidelines for Creating Configuration
Constraints
Observe the following guidelines when creating constraints:

■ If constraints are needed, create at least one constraint early in the process of building a product.
The presence of a configuration constraint, even if it is inactive, causes Siebel Configurator to
check the product for errors more rigorously when you go to validate mode.

■ Avoid writing constraints that use large quantities until you have verified the logic of the
constraint. For example, write a constraint that refers 10 items and check it before changing the
constraint to refer to 10,000 items. This prevents needless solution searches if the basic logic of
the constraint is incorrect.

■ Test each constraint after you create it. Consider inactivating constraints that are unrelated to
the new constraint to facilitate troubleshooting. Test constraints by starting a configuration
session and selecting the affected items. To start a configuration session, from the Constraints
List menu, select Validate.

■ If you are using asset-based ordering, you can minimize order problems if you avoid creating
require rules that add items that are not tracked as assets to a customizable product. For
example, you write a require rule that adds a one-time charge for Installation to a customizable
product. You do not set the Track as Asset flag for Installation in its product record. This means
Installation does not display as a customer asset. Then the customer requests an addition to the
service. The call center agent selects the service, clicks Modify, and starts a configuration
session. The Siebel Configurator engine adds Installation, because it is required by configuration
rules. Installation is transferred to the quote even though it is not required by the service
modification.

Creating Configuration Constraints
You can create configuration constraints for customizable products or for product classes.
Product Administration Guide Version 7.8, Rev. B182

Configuration Constraints ■ Creating Configuration Constraints
If you create the constraints for product classes, they are inherited by products with attributes that
are in this class and by products with components that are in this class.

CAUTION: The maximum size for a Siebel Configurator constraint is 900 characters. Do not enter a
constraint longer than this.

To navigate to the constraints view for products with components

1 Navigate to the Administration - Products screen, then the Product Definitions view.

2 In the Product list, select and lock the desired product.

3 In the Versions list, click the desired version.

4 Click the Constraints view tab.

The Constraints List appears with all the constraints that have been created for this product.

To navigate to the constraints view for product classes

1 Navigate to the Administration - Products screen, then the Products Classes view.

2 In the Product Classes list, select and lock the desired product class.

3 In the Versions list, click the desired version.

4 Click the Constraints view tab.

The Constraints List appears with all the constraints that have been created for this product.

To create a configuration constraint

1 Navigate to the Constraints view, as described previously.

2 In the Constraints List, click New Constraint.

The Pick a Constraint list appears and lists the constraint templates available for creating
constraints. The Constraint Statement form displays the syntax of the currently-selected
constraint.

3 In the Pick a Constraint list, select the desired constraint template and click Continue.

The Constraint Statement form and “Insert a” list appear. The Constraint Statement tab contains
the constraint template you selected. The “Insert a” tab lists the item groups available for the
currently-selected variable in the constraint.

To return to the display of all the Web templates, click Back. To exit and return to the Constraints
List, click Cancel.

4 In the Constraint Statement form, click the first variable you want to work on.

Variables are enclosed in square brackets. When you click a variable, it turns red to indicate it is
selected.
Product Administration Guide Version 7.8, Rev. B 183

Configuration Constraints ■ Creating Configuration Constraints
5 In the “Insert a” list, select the item grouping containing the item you want to insert. In the
dialog box, choose the desired item.

When selecting products, click the product’s select button. If you click the product name, the
dialog box displays product information.

The variable in the constraint template is replaced by the item.

6 Repeat these steps for each variable until you have built the desired constraint.

7 Click Save Constraint to save the constraint.

The Save button becomes active when you have selected values for all the variables in the
constraint. Clicking the Save button causes the Save Constraint form to appear.
Product Administration Guide Version 7.8, Rev. B184

Configuration Constraints ■ Creating Configuration Constraints
8 Fill out the fields in the Save Constraint form, and then click Save. Some fields are described in
the following table.

The constraint displays in the Constraints List.

9 From the Constraints List menu, select Validate.

This starts a configuration session. Verify that the constraint works correctly.

Field Comments

Name Enter a name for the constraint.

You should use names that help you to locate the constraint using
the Find button. For example, consider including the constraint
type (excludes, requires and so on) in the constraint name, so
you can search the Name field to find groups of constraints having
the same constraint type, for example, all the exclude
constraints.

Explanation Enter an explanation of how the constraint works.

You should enter explanations that help you to locate the
constraint using the Find button. For example, consider including
information that uniquely identifies the constraint, such as item
names, so you can search the Name and Explanation fields to find
a specific constraint.

Rule Statement Displays the constraint statement that you built. To edit the
constraint, click Edit.

Start Date Optionally, specify a start date on which the constraint becomes
effective.

End Date Optionally, specify an end date after which a constraint becomes
inactive. For more information about Start Date and End Date,
see “About Start and End Dates for Configuration Constraints” on
page 180.

Active Select this checkbox to activate the constraint, so it is used to
compute solutions.

Use this feature in the current work space to simulate the
behavior of constraints that will have a start date, end date, or
both when you release the product. You can also use this feature
to deactivate a constraint but retain it in a released version of the
product. For more information, see “Activating and Deactivating
Configuration Constraints” on page 186.
Product Administration Guide Version 7.8, Rev. B 185

Configuration Constraints ■ Creating Groups of Related Configuration Constraints
Creating Groups of Related
Configuration Constraints
Related constraints have the same basic construction but differ only in content. For example, you
need to create a dozen exclude constraints of the form Product A excludes Product B. For each
constraint the products will be different, but the basic construction is the same.

There are several processes you can use to create groups of related constraints. For example, you
create twelve exclude constraints in the following ways:

■ Create each constraint using the Exclude template in the “Pick a Constraint” tab of the
Constraints view.

■ Create the first constraint and save it. Then edit the constraint so that it becomes the second
constraint and save the constraint. In the Save Rule form, click “Save changes as new Rule.” This
creates the second of the twelve constraints. Repeat these steps to create the remaining
constraints.

■ Create the first constraint and save it. Then copy the constraint 11 times. Edit each of the copies.
In the Save Constraint form, click Save to overwrite the copy with the changes.

■ Create a constraint and save it as a template. Then select this template to create the remaining
constraints.

Activating and Deactivating
Configuration Constraints
When you create a constraint, it may be active or inactive by default:

■ If you save the constraint using quick save the Active flag is checked automatically by default.

■ If you save the constraint using the Save Constraint menu option, the user must select the Active
check box, or else the rule is inactive.

An active constraint is used to compute all solutions (if the date is within the start and end date of
the constraint).

When you deactivate a constraint, it is not used to compute solutions. One reason for deactivating
a constraint is to help you test constraints in Validate mode. You can deactivate a group of constraints
and then activate them one at a time to see how each affects the product’s behavior when it is being
configured.

Another reason to deactivate constraints, is when you want to release a version of a product that
does not require a constraint to be active. You can deactivate the constraint and then release the
product. The constraint is inactive in the released version and is not used to compute solutions.

To deactivate a constraint

1 Navigate to the Administration - Product screen.

2 Select and lock the desired customizable product or product class.
Product Administration Guide Version 7.8, Rev. B186

Configuration Constraints ■ About Managing Configuration Constraints
3 Navigate to the Constraints view.

4 In the Constraints list, select the desired constraint and deselect the Active checkbox.

5 From the Constraints List menu, select Validate.

This starts a configuration session. Verify that the customizable product works correctly.

To activate an inactive constraint

1 In the Constraints list, select the desired constraint and select the Active checkbox.

2 From the Constraints List menu, select Validate.

This starts a configuration session. Verify that the customizable product works correctly.

About Managing Configuration
Constraints
You can manage constraints in the following ways:

■ “Editing Configuration Constraints” on page 187

■ “Copying Configuration Constraints” on page 188

■ “Deleting Configuration Constraints” on page 188

Editing Configuration Constraints
In the Constraints List, you cannot edit the definition of the constraint in the Constraint column. To
edit the definition, you must display the constraint in the Constraint Statement form, make your
changes, and save the constraint. When you save the constraint, you can overwrite the constraint
with the changes or save the changes as a new constraint.

The following procedure explains how to edit a constraint definition and overwrite the constraint with
the changes.

To edit a constraint

1 Navigate to the Administration - Product screen.

2 Select and lock the desired customizable product or product class.

3 Navigate to the Constraints view.

In the Constraints list, select the desired constraint.

4 From the Constraints list menu, select Edit Record.

The Constraint Statement and “Insert a” tabs appear.

5 Edit and save the constraint.
Product Administration Guide Version 7.8, Rev. B 187

Configuration Constraints ■ About Managing Configuration Constraints
6 From the Constraints List menu, select Validate.

This starts a configuration session. Verify that the edited constraint works correctly.

Copying Configuration Constraints
When you copy a constraint, the application creates an exact duplicate of the constraint and displays
it in the Constraints view. You can then edit the constraint definition as desired.

If you copy a constraint and make no changes to the copy, two exactly equivalent constraints are
used to compute each solution. This does not cause a problem, and solutions are computed as if
there was only one constraint.

Use the copy feature to create groups of constraints that are similar. Start by creating the basic
constraint. Then copy it once for each constraint in the group. Finally, edit the copies to create the
constraints in the group.

To copy a constraint

1 Navigate to the Administration - Product screen.

2 Select and lock the desired customizable product or product class.

3 Navigate to the Constraints view.

4 In the Constraints List, select the constraint you want to copy.

5 From the Constraints List menu, select Copy Constraint.

A copy of the constraint appears in the Constraints List. Its name begins with “Copy of.”

6 In the Name field, edit the constraint name as desired.

7 Edit the constraint statement, explanation, and start/end dates as desired.

8 From the Constraints List menu, select Validate.

This starts a configuration session. Verify that the new constraint works correctly.

Deleting Configuration Constraints
Deleting a constraint removes it from the customizable product. The template on which the
constraint was based is not removed and remains available.

To delete a constraint

1 Navigate to the Administration - Product screen.

2 Select and lock the desired customizable product or product class.

3 Navigate to the Constraints view.

4 In the Constraints List, select the constraint you want to delete.
Product Administration Guide Version 7.8, Rev. B188

Configuration Constraints ■ Creating Siebel Configurator Constraint Templates
5 From the Constraints List menu, select Delete Record, and click OK when asked if you want to
delete the record.

6 From the Constraints List menu, select Validate.

This starts a configuration session. Verify that the customizable product constraints function
correctly.

Creating Siebel Configurator Constraint
Templates
When you create and save a constraint, the constraint becomes part of the customizable product or
product class. The constraint is not visible in other customizable products or product classes.

When you create and save a constraint as a template, it is added to the list of templates. The list of
templates is visible in all customizable products or product classes. Create templates for those
constraints that you will use with several customizable products. There is a single template list for
customizable products and product classes, so any templates you create are available for both.

Templates that refer to items in one customizable product or product class cannot be used to refer
to items in another customizable product or product class. Items include products, relationships,
links, links and resources. For example, you write the following constraint for customizable product
CP1 and save the constraint as a template called A Requires B:

Product A requires Product B

You also have customizable product CP2, that includes Product A and Product B. You want to write
the same constraint for CP2.

If you use the template A Requires B in CP2, you will receive a validation error when you validate
CP2. This is because each item in a customizable product receives a unique item ID. This item ID is
what the application stores as the item name when you create a constraint or a constraint template
in a customizable product. This ID is not transferable to other products with components.

NOTE: Constraint Templates cannot be edited or deleted. This is to prevent unintended problems
across multiple products with components or product classes where templates have been used.

To create a constraint template

1 Navigate to the Administration - Product screen.

2 Select and lock the desired customizable product or product class.

3 Navigate to the Constraints view.

4 From the Constraints List menu, choose New Template.

The Pick a constraint list appears.

5 Create the desired constraint that you want to use as a template.
Product Administration Guide Version 7.8, Rev. B 189

Configuration Constraints ■ Creating a Siebel Configurator Constraint Summary Report
6 Click Save Template and complete the necessary fields in the Custom Template Definition form,
described in the following table.

7 Click Save to save the template.

The new template appears in the Pick a constraint list.

Creating a Siebel Configurator
Constraint Summary Report
You can obtain a report that lists all the configuration constraints in a customizable product or
product class. The report shows the following information:

■ Constraint name

■ Constraint Statement

■ Explanation

■ Start date

■ End date

■ Active

■ Updated date

■ Updated by

The Constraint Summary displays in the Siebel Report Viewer. You can print the report or create an
email attachment.

This report must be enabled on the report server before performing the following procedure.

TIP: The on-screen display of the report typically lists more products on each page than the
Products list. Use the report to scan quickly through the product table.

Field Comments

Name Enter the template name. This name displays in the Pick a
constraint list.

Template Identifier Displays a text string that uniquely identifies the template. It
does not display to users.

Description Enter a description of what the template does. The description
displays in the Pick a Constraint list.

Translation Displays the internal translation of the template. This field is
automatically populated by the application and can be used to
construct the Spec.

Spec Enter the constraint syntax. The constraint syntax can be derived
from the Translation field.
Product Administration Guide Version 7.8, Rev. B190

Configuration Constraints ■ Creating a Siebel Configurator Constraint Summary Report
To create a constraint summary report

1 Navigate to the Administration - Product screen.

2 Select and lock the desired customizable product or product class.

If you omit this step, the most recently released version of the customizable product is loaded
in the Constraints view.

3 Navigate to the Constraints view.

4 In the application icon bar, click the Reports icon.

5 In the Reports dialog box, select Rule Summary.

6 To run the report now, click Run Now.

The report window appears, and you can view the report and print the report as desired.

7 To schedule the report to run at a scheduled time, click Schedule.

A form appears for scheduling the report.
Product Administration Guide Version 7.8, Rev. B 191

Configuration Constraints ■ Creating a Siebel Configurator Constraint Summary Report
Product Administration Guide Version 7.8, Rev. B192

15 Configuration Links
This chapter describes how to use the Links view to define and manage links. Links allow you to
extract information from Siebel business components and from system variables and use it to write
constraints. For information about constraints, see Chapter 14, “Configuration Constraints.”

This chapter includes the following topics:

■ “About Configuration Links” on page 193

■ “Creating a Business Component Configuration Link” on page 195

■ “Creating a Context Variable Link” on page 197

■ “Creating a System Variable Configuration Link” on page 198

■ “About Managing Configuration Links” on page 199

About Configuration Links
Links provide a way to use Siebel data in constraints that you write for a customizable product or
product class.

For example, if you have clients outside the U.S., you could create a link that stores the account
location. You could then write a constraint that uses the account location to determine what kind of
power supply and plug types to include with a computer configuration.

The value of a link is determined when the user starts a configuration session and is not dynamically
updated during the session.

Links can store the following types of information:

■ Business component links store the value of a field in a Siebel business component.

■ Context variable links store the value of a variable-map variable.

■ System variable links store the value of a specific system variable.

Business Component Links
Business component links map a Siebel business component data field to a link name. The link name
can then be used when writing constraints for a customizable product.

To create a business component link, you must have a thorough understanding of Siebel business
components and be able to use Siebel Tools to identify business objects, business components, and
field names.
Product Administration Guide Version 7.8, Rev. B 193

Configuration Links ■ About Configuration Links
When you define a business component link, the goal is to retrieve only one record. Several fields
are provided in the link definition to help you do this. If more than one record is retrieved by the
query, the link data is extracted from the first record in the group. If no records are retrieved by the
query, the value entered in the default value field in the link definition is used.

You have the option to extract information from the current instance of a business component or
from a new instance. For example, you select an account as part of creating a quote. You have
defined a link for a complex product that extracts information from the business component that
displays this record. When the user begins configuring the product, the link information will be
extracted from the account record being used in the quote. The link uses the current instance of the
business component.

You can also define the link on a new instance of the business component. The information will be
extracted from the first record returned by the business component. You can control which record is
returned by specifying search and sort parameters.

Context Variable Links
Context variable links allow you to extract information from the current context by using the variable
map. For example, if a variable in the variable map represents the Country field, you can use the
context variable link to extract the name of the country in the current record.

To use context variable links, you must have an understanding of variable maps. For more
information, see Siebel Order Management Infrastructure Guide.

In versions 7.8 and later, when Siebel Configurator is launched, the Context Service passes a
property set to Siebel Configurator that is used for eligibility calculations and for pricing. The values
in the property set are defined through Context Service administration, and they can be mapped so
they are the same for quotes and orders.

Business component links are retained for backward compatibility, but context variable links are
preferable because:

■ They do not require an additional query to the database, improving performance.

■ They do not require you to define separate links for quotes and orders.

System Variable Links
Links can be defined to extract information from two system variables:

■ TODAY. Returns today’s date.

■ WHO. returns the log-in name of the user who started the configuration session.

You can use the TODAY system variable to write time-sensitive constraints. For example, you create
a link named TodayDate that stores the value of the TODAY system variable. You could then write a
constraint that says if today’s date is later than December 23, 2001, then the product 64 MB RAM is
required in computer configurations.
Product Administration Guide Version 7.8, Rev. B194

Configuration Links ■ Creating a Business Component Configuration Link
You can use the WHO system variable to customize configuration constraints based on the user log-
in name. For example, you create a link named UserName that stores the value of the WHO system
variable. You could write a constraint that says if the user’s log-in account name is jsmith, then 64
MB RAM is required in computer configurations.

Creating a Business Component
Configuration Link
A business component link lets you extract information from Siebel business components and use it
to write constraints.

To create a business component link you must know the business component name and field name
containing the information you want to extract.

You must select and lock a customizable product before creating a link. When you create a link, it is
automatically added to a picklist. You can then add the link to other customizable products by
selecting it from the picklist.

When you create a link, it is added to a dialog box. You can copy this link definition to other
customizable products and edit the link as needed. In turn, the edited link is added to the dialog box.
When you remove a link from a customizable product, it is removed from the dialog box.

To create a business component link

1 Navigate to the Administration - Product screen.

2 Select and lock the desired customizable product or product class.

3 Navigate to the Links view for the Work Space version.
Product Administration Guide Version 7.8, Rev. B 195

Configuration Links ■ Creating a Business Component Configuration Link
4 In the Link Definitions list, add a new record and complete the necessary fields, described in the
following table.

NOTE: To use an already-existing definition, click in the Name field and select the desired link

Field Comments

Name Enter the name of the link. Use this name to refer to the link when
you write constraints. This field is required.

BusObj Name Enter the business object in which the business component
resides. This field is required for business component links.

BusComp Name Select the business component from which you want to extract
information. This field is required for business component links.

BusComp Field Name Select the field in the business component that contains the data
you want to extract. This field is required for business component
links.

Expression Displays an XML expression that is automatically generated by
your entries in the other fields.

Needs Execution Select this check box to retrieve the link information from a new
instance of the business component. Deselect it to retrieve
information about the current instance of the business
component.

Search Spec Enter a Siebel query expression to narrow the search to one
record. This field is evaluated only if you put a check mark in
Needs Execution. An entry in this field is highly recommended.

Sort Spec Enter a sort specification so that the desired record appears first
if more than one record is retrieved. This field is evaluated only if
you put a check mark in Needs Execution. An entry in this field is
highly recommended.

Default Value Enter the value that you want to assign to the link if the query
returns no records. This field is highly recommended if you put a
check mark in Needs Execution.

Keyword For business component links, leave this field blank. This field is
used for context variable links. For more information, see
“Creating a Context Variable Link” on page 197.

Context Variable For business component links, leave this field blank. This field is
used for context variable links. For more information, see
“Creating a Context Variable Link” on page 197.

Context Variable Type For business component links, leave this field blank. This field is
used for context variable links. For more information, see
“Creating a Context Variable Link” on page 197.

Description Enter a description of what the link does. This description is not
displayed to customers.
Product Administration Guide Version 7.8, Rev. B196

Configuration Links ■ Creating a Context Variable Link
definition from the dialog box.

Creating a Context Variable Link
A context variable link lets you extract information from the variable map "Cfg Eligibility Variable Map
- Context" and use it to write constraints.

To create a context variable link you must use an existing variable definition from the variable map
or add a new entry to the variable map. For more information, see “Context Variable Links” on
page 194.

To create a context variable link

1 Navigate to the Administration - Product screen.

2 Select and lock the desired customizable product or product class.

3 Navigate to the Links view for the Work Space version.

In the Link Definitions list, add a new record and complete the necessary fields, described in the
following table.

Field Comments

Name Enter the name of the link. Use this name to refer to the link when
you write constraints. This field is required.

BusObj Name For context variable links, leave this field blank. This field is used
for business component links. For more information, see “Creating
a Business Component Configuration Link” on page 195.

BusComp Name For context variable links, leave this field blank. This field is used
for business component links. For more information, see “Creating
a Business Component Configuration Link” on page 195.

BusComp Field Name For context variable links, leave this field blank. This field is used
for business component links. For more information, see “Creating
a Business Component Configuration Link” on page 195.

Expression Displays an XML expression that is automatically generated by
your entries in the other fields.

Needs Execution Select this check box to retrieve the link information from a new
instance of the business component. Deselect it to retrieve
information about the current instance of the business
component.

Search Spec For context variable links, leave this field blank. This field is used
for business component links. For more information, see “Creating
a Business Component Configuration Link” on page 195.
Product Administration Guide Version 7.8, Rev. B 197

Configuration Links ■ Creating a System Variable Configuration Link
Creating a System Variable
Configuration Link
A system variable link lets you obtain the value of the following system variables and use it to write
constraints:

■ TODAY. Provides the system date. The data type is Date and can be used for date computations.

■ WHO. Provides the user’s login name. The data type is Text.

To create a system variable link

1 Navigate to the Administration - Product screen.

2 Select and lock the desired customizable product or product class.

3 Navigate to the Links view for the Work Space version.

Sort Spec For context variable links, leave this field blank. This field is used
for business component links. For more information, see “Creating
a Business Component Configuration Link” on page 195.

Default Value Enter the value that you want to assign to the link if the query
returns no records. This field is highly recommended if you put a
check mark in Needs Execution.

Keyword To create a context variable link, choose Context Variable.

Context Variable To create a context variable link, enter the name of the variable
in this field. The variable must be in the variable map that is
currently being used.

Context Variable Type To create a context variable link, enter the variable type in this
field.

Description Enter a description of what the link does. This description is not
displayed to customers.

Field Comments
Product Administration Guide Version 7.8, Rev. B198

Configuration Links ■ About Managing Configuration Links
4 In the Link Definitions list, add a new record and complete the necessary fields, described in the
following table.

NOTE: Leave all the other fields blank. They are only used for business component links.

About Managing Configuration Links
You can manage links in the following ways:

■ “Editing a Configuration Link Definition” on page 199

■ “Deleting a Configuration Link” on page 199

Editing a Configuration Link Definition
You must select and lock a customizable product before editing a link definition. If you change the
name of a link, the name is not changed in configuration constraints where it appears.

Editing the name of a link changes its name in the Pick Linked Item dialog box.

Deleting a Configuration Link
You delete a link for a customizable product by deleting the record from the Link Definitions list.

You must select and lock a customizable product before deleting a link.

Field Comments

Name Enter the name of the link. Use this name to refer to the link when
you write constraints. This field is required.

Keyword Select either TODAY or WHO. This field is required for system
variable links.

Description Optionally, enter a description of what the link does. This
description is not displayed to customers.
Product Administration Guide Version 7.8, Rev. B 199

Configuration Links ■ About Managing Configuration Links
Product Administration Guide Version 7.8, Rev. B200

16 Configuration Resources
This chapter explains how to create resources, which are variables that keep track of important
configuration information when the user configures a customizable product. These variables can be
used in configuration constraints. For information about constraints, see Chapter 14, “Configuration
Constraints.”

This chapter includes the following topics:

■ “About Configuration Resources” on page 201

■ “Creating Configuration Resources” on page 202

■ “Managing Resources Using Configuration Constraints” on page 202

■ “About Managing Configuration Resources” on page 203

About Configuration Resources
Resources keep track of configuration variables that increase or decrease as the user configures a
product. For example, suppose you are defining a desktop computer customizable product. The
product includes several types of chassis. Each chassis has a different number of slots for expansion
cards. Allowable configurations also include several types of expansion cards, such as disk
controllers, and graphics cards.

You do not know in advance which chassis the customer will select or how many expansion cards.
However, you do know that you must keep track of the number of slots during the configuration
process to make sure that the customer configures the computer correctly.

Resources are the way you do this:

1 First define a resource to keep track of slots, for example slots-resource.

2 For the class containing all the chassis, define an attribute, slots-provided, that tells how many
slots are in the chassis. Typically, this attribute will have a single-value domain and the data type
will be Number.

3 For each class containing expansion cards, define an attribute, slots-required, that tells how
many slots each card needs, usually 1. Typically, this attribute will have a single-value domain,
and the data type will be Number.

4 Finally, write provide and consume constraint to manage the slots-resource.

When the user selects a chassis, a provide constraint adds the amount of the chassis’ slots-provided
attribute to the slots-resource. When the user selects an expansion card, a consume constraint
subtracts the amount of the card’s slots-required attribute from the slots-resource. In this fashion,
the slots-resource keeps track of available slots in the computer chassis.

Resources definitions have the data type Number. This means that they can only have numeric,
integer, or floating point values.
Product Administration Guide Version 7.8, Rev. B 201

Configuration Resources ■ Creating Configuration Resources
Creating Configuration Resources
When you create a resource, it is automatically added to a picklist. You can then add the resource to
other customizable products by selecting it from the picklist.

When you create a resource, it is added to a dialog box. You can copy this resource definition to other
customizable products and edit the definition as needed. In turn, the edited definition is added to
the dialog box. When you remove a resource from a customizable product, it is removed from the
dialog box.

To create a resource

1 Navigate to the Administration - Product screen.

2 Select and lock the desired customizable product or product class.

3 Navigate to the Resources view for the Work Space version.

4 In the Resource Administration list, add a new record and complete the necessary fields,
described in the following table.

Managing Resources Using
Configuration Constraints
The most common way to manage a resource is to write provide and consume constraints that add
or subtract the value of an attribute from the resource. For example, you could write a configuration
constraint that contributes the number of slots in a chassis to a resource called slots available. You
could also write configuration constraints that consume slots from the resource when the user picks
an expansion card.

By convention, the value of a resource must exactly equal the sum of all the contributors to the
resource. Constraints that consume or reduce the amount of a resource are negative contributors.
The value of a resource is a computed value and cannot be directly set by a configuration constraint.

Field Comments

Name Enter the resource name. Use this name to refer to the resource
in configuration constraints. The resource name does not display
to the user.

Since a resource name can be used by more than one product,
avoid making the name product-specific.

Type Select Number. Resources all have the data type number, and
they can only have numeric, integer, or floating point values

Description Enter a description of the resource. This description does not
display to the user.
Product Administration Guide Version 7.8, Rev. B202

Configuration Resources ■ About Managing Configuration Resources
For example you define resource R. You then write a configuration constraint that sets the value of
R to 5:

R ==5

When you validate the customizable product, this constraint will be rejected by the application
because it sets the value of R at an arbitrary value rather than allowing the value of R to be computed
as the sum of all its contributors.

About Managing Configuration
Resources
You can manage resources in the following ways:

■ “Editing Configuration Resource Definitions” on page 203

■ “Deleting Configuration Resources” on page 203

Editing Configuration Resource Definitions
You must select and lock a customizable product before editing a resource definition. If you change
the name of a resource, the name is not changed in configuration constraints where it appears.

Editing the name of a resource changes its name in the Pick Resource dialog box.

Deleting Configuration Resources
You delete a resource by deleting the resource record from the Resource Administration list. Deleting
a resource from a customizable product deletes it from the Pick Resource dialog box.

You must select and lock a customizable product before deleting a resource.
Product Administration Guide Version 7.8, Rev. B 203

Configuration Resources ■ About Managing Configuration Resources
Product Administration Guide Version 7.8, Rev. B204

17 Configuration Constraint
Template Reference
This chapter explains the templates used when you create configuration constraints.

Before you read this chapter, you should understand the information about creating constraints in
Chapter 14, “Configuration Constraints,” Chapter 15, “Configuration Links,” and Chapter 16,
“Configuration Resources.”

This chapter includes the following topics:

■ “About Configuration Constraint Processing” on page 206

■ “About Configuration Constraint Conditions” on page 207

■ “Compound Logic and Comparison Operators in Configuration Constraints” on page 208

■ “Arithmetic Operators in Configuration Constraints” on page 210

■ “Attribute Value (Advanced) Template” on page 211

■ “Conditional Value Template” on page 212

■ “Constrain Template” on page 213

■ “Constrain Attribute Conditions Template” on page 213

■ “Constrain Attribute Value Template” on page 213

■ “Constrain Conditionally Template” on page 214

■ “Constrain Product Quantity Template” on page 215

■ “Constrain Relationship Quantity Template” on page 215

■ “Constrain Resource Value Template” on page 216

■ “Display Message Template” on page 217

■ “Display Recommendation Template” on page 217

■ “Exclude Template” on page 218

■ “Provide and Consume Templates” on page 223

■ “Simple Provide and Consume Templates” on page 226

■ “Relationship Item Constraint Template” on page 228

■ “Require Template” on page 229

■ “Require (Mutual) Template” on page 234

■ “Set Initial Attribute Value Template” on page 235

■ “Set Initial Resource Value Template” on page 236

■ “Set Preference Template” on page 236
Product Administration Guide Version 7.8, Rev. B 205

Configuration Constraint Template Reference ■ About Configuration Constraint
Processing
About Configuration Constraint
Processing
Unlike procedural languages like Siebel eScript or C++, constraints are elements of constraint
programming. Constraint programming differs from procedural logic in several important ways.

In a procedural language, you write statements that are executed one after another. Control can be
transferred to other parts of a program, but the method of execution remains serial. Procedural logic
relies on groups of statements executed in order.

In constraint logic, you write constraints that describe what must be true about the solution. The
Siebel Configurator engine organizes these constraints into a search plan and then searches
systematically, trying different item values, until a solution that satisfies all the constraints is found.
Constraints are evaluated in parallel rather than serial fashion. Their order of evaluation is
unimportant.

For example, you write a series of configuration constraints that define all the ways a desktop
computer can be configured. This is called the declarative portion of the customizable product, and
the constraints are constraints on every solution. The Siebel Configurator engine requires that all
constraints are observed in every solution. This is the key to understanding constraint programming:
all constraints must be observed in every solution.

You then release this customizable product to users. Users interact with it by selecting components
to configure a computer. Each item the user selects is treated by the Siebel Configurator engine as
another constraint on the solution. These user-constraints are added to the constraints in the
declarative portion of the product and are used to further narrow down the solutions the engine can
create. If a user-constraint conflicts with a constraint in the declarative portion of the product, the
user receives a message that provides options for resolving the conflict.

The Siebel Configurator engine must find a configuration that satisfies all the constraints in the
declarative portion of the product, plus all those created by the user’s choices (user-constraints).
After the user adds or removes an item, the Siebel Configurator engine searches until it finds a
solution that satisfies all the constraints, including the constraint created by the user’s action. The
Siebel Configurator engine then presents the solution. In many cases, the only thing that changes is
that the item is added or removed.

However, other items may be added or removed depending on constraints in the declarative portion
of the product. If the user selects an item and the Siebel Configurator engine cannot create a solution
that satisfies all the constraints, the user is presented with an option to undo the current selection
or previous selections so that all constraints can be satisfied.

Note that constraints are created both by the modeler and by the user. In the declarative portion of
the product, the product administrator writes configuration constraints that define the relationships
between items. For example, if item A is picked, item B is required. The user creates constraints by
adding items. For example, picking item A creates a constraint that item A must be in the solution.
The constraints that drive the solution are thus jointly provided by both the product administrator
and the user.
Product Administration Guide Version 7.8, Rev. B206

Configuration Constraint Template Reference ■ About Configuration Constraint
Conditions
It is important to understand that to produce a solution, the Siebel Configurator engine is free to do
what is necessary to find a valid solution that satisfies all the constraints (declarative portion
constraints and user-constraints). For example, the following are the only two constraints on items
A and B in a customizable product:

The quantity of A < the quantity of B

The quantity of B != 4

If the user picks one A, the Siebel Configurator engine will require that there are at least two Bs in
the solution. If the user then increases the quantity of A to two, the Siebel Configurator engine
generates a solution in which there are at least three Bs. However, when the user adds the third A,
instead of a solution that increases B by one, the new solution will have two more Bs, making the
total number of Bs at least five. This occurs because both constraints must be satisfied, and because
there is no constraint preventing the Siebel Configurator engine from generating solutions that
increment B by more than one.

The following example illustrates that when there are several possible alternatives, the Siebel
Configurator engine may choose any one of them. You have a customizable product with only the
following two constraints on items A, B, and C:

Constrain A + B = C to be true
Constrain C = 1 to be true

In this example, either A or B can be zero, but not both. Neither can both be 1. The Siebel
Configurator engine will choose either A or B and will actively exclude the other from the solution.
For example, it could choose A and actively exclude B from the solution. It could also choose B and
actively exclude A.

It is important when creating constraints to consider the domain of solutions the engine could
produce. Otherwise, users may encounter unexpected results when they make selections. In the
example above, you could write a constraint that prints a message to the user that A + B must equal
1 and then let users choose which one they want.

About Configuration Constraint
Conditions
Many of the constraint templates contain conditions or expressions. For example:

■ Exclude template: [Item or condition] excludes [item or condition]

■ Require template: [Item or condition] requires [item or condition]

A condition is an explicit statement about the configuration. Conditions can play several roles in a
constraint template. First, they can act as a test that determines whether a constraint is enforced.
For example, you write the following constraint:

Item A > 4 excludes Item B

This constraint states that when the quantity of Item A is greater than 4 in the solution, then Item
B cannot be present (is excluded). In this constraint, “Item A > 4” is a condition that, when true,
causes Item B to be excluded.
Product Administration Guide Version 7.8, Rev. B 207

Configuration Constraint Template Reference ■ Compound Logic and Comparison
Operators in Configuration Constraints
When a condition is used as a test, the Siebel Configurator engine evaluates the condition and
returns true or false. If the condition is true, the constraint is enforced.

Secondly, conditions can define a constraint. For example, you write the following constraint:

Item B excludes Item A > 4

This constraint states that when Item B is present in the solution, then the quantity of Item A in the
solution cannot be greater than 4. In this constraint, “Item A > 4” is a condition that defines a
constraint.

Conditions can take several forms:

■ Quantity comparisons. The preceding examples are quantity comparisons.

■ Item values. The value of attributes, linked items, and resources can be used as conditions.

■ Constraint Templates. Constraint templates can be used as conditions. When constraint
templates are used as conditions, the Siebel Configurator engine does not enforce the constraint
as a constraint but instead evaluates the template as true or false. This is discussed further
below.

Boolean operators (AND, OR, NOT) are provided in the Constraints List to allow combining conditions
together or to negate an expression used in a condition.

A third way to use conditions is when writing require or exclude constraints about relationships. In
the constraint “item A requires Relationship B” the Siebel Configurator engine has no way to
determine which items in Relationship B to add to the solution if the user picks item A. So when the
user picks item A, the Siebel Configurator engine prints a message in the user’s message area stating
that a selection from Class B is required.

Compound Logic and Comparison
Operators in Configuration Constraints
Both Compound Logic and Comparison operators test for the truth of their operands. They return a
true or false rather than a quantity.

Compound Logic operators, such as AND, NOT, OR, are used to link expressions together when
creating a constraint. For example: (Condition A AND Condition B) requires Item C. Compound Logic
operators are also called Boolean operators.
Product Administration Guide Version 7.8, Rev. B208

Configuration Constraint Template Reference ■ Compound Logic and Comparison
Operators in Configuration Constraints
Table 15 presents the Compound Logic operators you can use with constraint templates.

Comparison operators compare their operands and return a true or false. In the following constraint,
when the quantity of item A is less than item B (when the comparison is true), then item C is
required.

(Item A < Item B) requires C

If you specify an item as an operand in a comparison, the quantity of the item in the solution is used
to make the comparison. If you specify an expression as an operand, the expression must resolve to
a number.

If you specify an expression that resolves to true or false, then true is assigned the value 1 and false
is assigned the value 0.

Table 16 presents the Comparison operators you can use with constraint templates.

Table 15. Compound Logic Operators

Operator Example Description

Not NOT A Logical negation. True when A is false and false when A is true.
A can be an item or sub-expression.

And A AND B Both A and B. True only when both A and B are true. When used
as a top-level constraint, means that only solutions where both
A and B are true are allowed. A and B can be items or sub-
expressions.

 Or A OR B Either A or B or both. False only when both A and B are false. A
and B can be items or sub-expressions.

Exclusive Or A XOR B A or B but not both. A and B must have opposite truth states.
False when A and B are either both true or both false. A and B
can be items or sub-expressions.

NAND NOT (A AND B) Converse of A AND B. False only when both A and B are true.
When used as a top-level constraint, means that A and B cannot
both be present. A and B can be items or sub-expressions.

Table 16. Comparison Operators

Operator Example Description

Greater than A > B A is greater than B

Not less than A >= B A is greater than or equal to B

Equals A == B A equals B

Equals (compound) A==B==C==D True if A=B AND A=C And A=D

Not equal to A <> B A does not equal B
Product Administration Guide Version 7.8, Rev. B 209

Configuration Constraint Template Reference ■ Arithmetic Operators in Configuration
Constraints
When you are building a constraint, you can compound the comparison operators. For example, you
could build the following expression:

(A>B>C>D)

This expression is equivalent to the following expression:

A>B AND A>C AND A>D

Arithmetic Operators in Configuration
Constraints
An arithmetic operator allows you to perform an arithmetic operation on two items. If an operand is
a product, the value refers to the quantity of the product in the solution.

The operands in the expression can be two items or can be one item and a constant. For example,
you can increase the quantity of an item by a constant amount.

If you specify an expression as one of the items, it must resolve to a quantity. If the expression
resolves to true or false, then 1 is assigned to true, and 0 to false.

Results of calculations are handled differently for resources values than for product quantities.
Calculation results for resources are expressed exactly, including a decimal point if necessary.
Because product quantities represent discrete units, results involving them are rounded to the
nearest integer.

Table 17 shows the arithmetic operators.

Not greater than A <= B A is less than or equal to B

Less than A < B A is less than B

Table 17. Arithmetic Operators

Operator Example Description

Addition A + B Sum of A and B. A and B can be items or expressions. Result is
floating point if A or B is floating point.

Subtraction A - B Subtracts B from A. A and B can be items or expressions. Result is
floating point if A or B is floating point.

Negation -(A) Additive inverse of A. Uses only one operand. A can be an item or
expression.

Multiplication A * B Product of A and B. Result is floating point if A or B is floating point.
A and B can be items or expressions.

Table 16. Comparison Operators

Operator Example Description
Product Administration Guide Version 7.8, Rev. B210

Configuration Constraint Template Reference ■ Attribute Value (Advanced) Template
Table 18 shows additional arithmetic operators that also take numeric operands and produce numeric
results. Use them to control numeric accuracy or change numeric characteristics.

Attribute Value (Advanced) Template
The Attribute Value (Advanced) template has the following form:

(for [any] items)

You can toggle between [any] and [all]. The Attribute Value (Advanced) template can be used only
within a require constraint, and it changes the logic for conditions involving attributes. This template
does not display in the Pick a Constraint list. Instead, it displays in the list for inserting a condition.

The following require constraint contains two attribute conditions:

Attribute C = M in Relationship A requires Attribute D=P in Relationship B

Division A / B Quotient of A divided by B. Truncates ratio to integer if both A and B
are integers. Result is floating point if A or B is floating point. A and
B can be items or expressions.

Modulo %(A, B) Remainder of A divided by B. For example, %(1900, 72) results in 28.
If A or B is floating point, the value is first rounded to the nearest
integer; then the remainder is computed as for integers. A and B can
be items or expressions.

Minimum min(A, B) Result is the smaller of A and B and is floating point if A or B is
floating point. A and B can be items or expressions.

Maximum max(A, B) Result is the larger of A and B and is floating point if A or B is floating
point. A and B can be items or expressions.

Table 18. Additional Arithmetic Operators

Operator Example How Used

Integer int(A) Truncates A down to an integer. For example, if operand is 6.7, returns
6. A can be an item or expression. Useful only with properties.

Float flo(A) Converts A to floating point. Same as multiplying operand by 1.0. A can
be an expression.

Absolute
value

abs(A) Returns the absolute value of A. A can be an item or expression.

Sign test sgn(A) Returns -1 if the quantity of A <0, 0 if A=0, 1 if A>0. A can be an
expression.

Table 17. Arithmetic Operators

Operator Example Description
Product Administration Guide Version 7.8, Rev. B 211

Configuration Constraint Template Reference ■ Conditional Value Template
This constraint works as follows: If any item from Relationship A has Attribute C=M in the solution,
then all the items from Relationship B must have Attribute D=P in the solution. This is the default
behavior of the require template when it contains attribute conditions and is called the Any-All form.

By inserting the Attribute (Advanced) template into the constraint, you can create all the other
combinations of Any-All logic:

■ Attribute C = M in Relationship A requires Attribute D=P (for any items) in Relationship B

If any item from Relationship A has Attribute C=M in the solution, then there must be at least
one item from Relationship B that has Attribute D=P in the solution (Any-Any form).

■ Attribute C = M (for all items) in Relationship A requires Attribute D=P in Relationship B

If all the items from Relationship A have Attribute C = M in the solution, then all the items from
Relationship B must have Attribute D = P in the solution (All-All form).

■ Attribute C = M (for all items) in Relationship A requires Attribute D=P (for any items) in
Relationship B

If all the items from Relationship A have Attribute C=M in the solution then there must be at least
one item from Relationship B that has Attribute D=P in the solution (All-Any form).

To create this logic in other constraint types, such as exclude constraints, use one of the Advanced
Constraint Templates to create the constraint. Then insert a numAttr condition in the constraint.

Conditional Value Template
The Conditional Value Template has the following form:

([value] when [condition] is true, otherwise [value])

This template allows you constrain a value based on a condition. The [value] can be any number or
item in the customizable product.

This template does not display in the Pick a Constraint list. Instead, it displays in the lists for inserting
arguments in a constraint. You can insert the Conditional Value template anywhere you can insert a
number. The most common use for this template is with provide and consume constraints.

For example, you want product P1 to provide 2 to the resource R when the quantity of product P2 is
greater than 10. If the quantity of P2 is not greater than 10, you want product P1 to provide 1 to
resource R. You would write this constraint as follows:

P1 provides (2 when P2 >10, otherwise 1) to R

If you wanted product P1 to provide 2 to resource R only when product P2 is greater than 10, you
would write this constraint as follows:

P1 provides (2 when P2 >10, otherwise 0) to R
Product Administration Guide Version 7.8, Rev. B212

Configuration Constraint Template Reference ■ Constrain Template
Constrain Template
The Constrain template has the form:

Constrain [an expression] to be true

The constraint template is useful for making simple comparison or quantity expressions into top-level
constraints. For example, you want make sure that there are exactly 4 of Item B in every solution:

Constrain [Item B = 4] to be true

You can also use the Constraint template to create exclude and require constraints that have only
one operand. For example the following constraint excludes Item B from the solution:

Constrain [Item B =0] to be true

To require at least 1 Item B in the solution:

Constrain [Item B >= 1] to be true

By using Compound Logic operators, you can yoke conditions together and then allow or disallow the
combination. For example, you want to make sure that if the quantity of Item A > 4 in the solution,
then Item B must be less than 5, and vice versa:

Constrain [Item A > 4 AND Item B < 5] to be true

Constrain Attribute Conditions Template
The Constrain Attribute Conditions template has the following form:

An attribute] [=] [a value] [requires or excludes] [an attribute] [=] [a value]

This template allows you to constrain the selectable values for one attribute based on the value the
user selects for another attribute. The requires and excludes operators in this template work the
same way as those in the Require and the Exclude templates.

Use this template when attribute choices for one item affect allowable attribute choices for another
item. For example, you sell shirts in small, medium and large sizes. The user picks the size by
selecting a value for the Size attribute. These shirts come in red, green, and blue for small and
medium sizes. Large size shirts come in red only. The user picks the color by selecting a value for
the Color attribute.

Use this template to write constraints that restrict the choices available to users when they pick size
or color. For example, you would write a constraint that both blue and green colors exclude the large
size. If the user selects Size large, the blue and green attributes cannot be selected for Color. If the
user selects Color blue, then large cannot be selected for Size.

Constrain Attribute Value Template
The Constrain Attribute Value template has the form:

[An attribute] [=] [a value]
Product Administration Guide Version 7.8, Rev. B 213

Configuration Constraint Template Reference ■ Constrain Conditionally Template
The Constrain Attribute Value template sets the value of an attribute so that it cannot be overridden
by the user during a configuration session. If you write a constraint that sets the attribute equal to
a value, this has the same effect as setting the attribute value and saving the record in the
Administration - Product screen, Customizable Product, Product Attributes view. By setting the
comparison operator to other than equals (=), you can constrain the allowable ranges for numeric
attribute values. For example you could write a constraint that constrains an attribute value to
greater than 100. In this fashion you can use the Constrain Attribute Value template to validate user
input for range-of-values attribute domains.

Depending on the data type of the attribute domain, the attribute value can be set to one of the
enumerated types, to the value of a linked item, the value of another item’s attribute, to a string, or
to a number.

You can use this template to restrict attribute values based on conditions that occur during a
configuration session. For example, you could write a constraint that restricts one attribute’s value
if the user chooses a specified value for another attribute.

This template cannot be used to constrain the attributes of customizable products that are
components in a customizable product. For example, customizable product CP1 has as one of its
components customizable product CP2. You cannot use this template to constrain the values of
attributes in CP2.

If the product administrator has set the value of an attribute in the Product Attributes list, this value
cannot be overridden by a configuration constraint, or by the Siebel Configurator engine.

Constrain Conditionally Template
The Constrain Conditionally template has the form:

When [condition A is true] [enforce constraint B], otherwise
[enforce constraint C]

This template provides if-then-else logic. When the condition is true the first expression is enforced
as a constraint. If the condition is false, the second expression is enforced as a constraint.

Another way to view the logic is as a relationship between a condition and two constraints:

■ If condition A is true, then B is enforced as a constraint, and C can be either true or false.

■ If condition A is false, then C is enforced as a constraint, and B can be either true or false.

The condition can be defined as a quantity comparison of a product, relationship, or resource. It can
also be the value of a linked item. Compound logic operators (AND, OR, and so on) are provided to
link conditions together.

The constraints can also be quantity comparisons of products, relationships, or resources. The value
of a linked item can also be used.
Product Administration Guide Version 7.8, Rev. B214

Configuration Constraint Template Reference ■ Constrain Product Quantity Template
Constrain Product Quantity Template
The Constrain Product Quantity template has the form:

[The quantity of a product] [=] [a value]

The template has three parts. The first operand names the product.

The operator, [=], defines how the product quantity is related to the third operand, [a value]. The
operator is limited to numeric comparisons (=, <, >, and so on).

The [a value] operand can be any of the following:

■ The quantity of a product in the solution

■ The quantity of items from another relationship in the solution

■ The quantity of items in the solution from a class within a relationship

■ The value of an attribute (the data type for the attribute must be number or integer)

■ A number

The “Insert a” tab provides two sets of arithmetic functions that allow you to combine these items.
For example, you could write the following constraint:

The quantity of Item A from Items Class <= the quantity of Products-Class items

In this constraint, “the quantity of item A from Items Class” is the first operand. It names Item A in
the Items class. The second operand is “<=”.

The third operand is “the quantity of Products-Class items” and refers to items in the Products class.
This class is contained within a relationship in the customizable product.

The constraint states that the quantity of Item A in the solution must be less than or equal to the
number of items from the Products-Class in the solution.

Use Constrain Product Quantity constraints to set limits on the quantity of products that can be in
the solution. The limits can be defined as a number or as the quantity of other items, or the value
of an attribute.

Constrain Relationship Quantity
Template
The Constrain Relationship Quantity template has the form:

[The quantity of a relationship] [=] [a value]

The quantity of a relationship is the total number of items that have been added to the solution from
the relationship. For example, a relationship contains Item A and Item B. If there is one Item A and
one Item B in the solution, then the relationship quantity is two. If there are two of Item A in the
solution and no Item Bs, the relationship quantity is also two.

The operator, [=], defines how the relationship quantity is related to the third operand, [a value].
The operator is limited to numeric comparisons (=, <, >, and so on).
Product Administration Guide Version 7.8, Rev. B 215

Configuration Constraint Template Reference ■ Constrain Resource Value Template
The [a value] operand can be any of the following:

■ The quantity of a product in the solution

■ The quantity of items from another relationship in the solution

■ The quantity of items in the solution from a class within a relationship

■ The value of an attribute (the data type for the attribute must be number or integer)

■ A number

The “Insert a” tab provides two sets of arithmetic functions that allow you to combine these items
into expressions. For example, you could write the following constraint:

The quantity of Items from Items relationship <= (2 * [Training Classes “Intro Course” Items-limit-

attribute])

The first operand is the relationship: “The quantity of Items from Items relationship.” The operator
is “<=”. The second operand is the “Items-limit-attribute.”

This constraint states that the quantity of items from the Items relationship must be less than or
equal to twice the value of the “Items-limit-attribute” of the Intro Course. The Intro Course is located
in the Training Classes relationship.

Use Constrain Relationship Quantity constraints to set limits on the quantity of products from a
relationship that can be in the solution. The limits can be defined as a number or as the quantity of
other items, or the value of an attribute.

Constrain Resource Value Template
The Constrain Resource Value template has the form:

[A resource] [=] [a value]

The template has three parts. The first operand names the resource.

The operator, [>], defines how the resource is related to the second operand, [a value]. The operator
is limited to numeric comparisons (=, <, >, and so on).

The [a value] operand can be any of the following:

■ The quantity of a product in the solution

■ The quantity of items from another relationship in the solution

■ The quantity of items in the solution from a class within a relationship

■ The value of an attribute (the data type for the attribute must be number or integer)

■ A number

The “Insert a” tab provides two sets of arithmetic functions that allow you to combine these items
into expressions.

Use the Constrain Resource Value template to define limits on the value of a resource. For example,
you can constrain a resource to be greater than 0 and less than 5.
Product Administration Guide Version 7.8, Rev. B216

Configuration Constraint Template Reference ■ Display Message Template
Display Message Template
The Display Message template has the following form:

[Item or condition] displays this rule’s explanation

The Display Message template is one of two ways to communicate messages to the user. The other
is the Display Recommendation template.

In the Display Message template, when the condition is true, the explanation you entered for the
constraint is displayed to the user in the Message area. The explanation must describe the condition
in the constraint and can add additional information.

Use the Display Message template to display messages when a defined condition is true.

For example, you write the following Display Message constraint:

When [Product A is selected], display this rule’s explanation.

You then save the constraint and enter the following in the Explanation field:

Product A has been selected. You can purchase only two of these items.

During a configuration session, when the user selects Product A, the constraint explanation appears
in the message area.

Display Recommendation Template
The Display Recommendation template has the following form:

[Item or condition] recommends [item or condition] by displaying this rule’s explanation.

The Display Recommendation template displays the constraint’s explanation based on the truth state
of its two item/condition operands, as shown in Table 19.

The table shows that the constraint explanation displays only when the first item/condition is true
and the second is false. The recommendation displays in the user’s message area.

Table 19. Truth Table for Display Recommendation Template

First Item/
Condition

Second Item/
Condition

Message
Displays?

True True No

False True No

True False Yes

False False No
Product Administration Guide Version 7.8, Rev. B 217

Configuration Constraint Template Reference ■ Exclude Template
The Boolean equivalent of how the Display Recommendation template works is shown below. The
expression is true only when A is true and B is false. When the expression is true, the message
displays.

NOT ((NOT A) OR B)

Use Display Recommendation constraints to up-sell or cross-sell other configuration options, to
inform the user of configuration restrictions, or to offer configuration suggestions.

For example, when the user picks Product A, you want to display a message recommending Product
B. If the user then picks Product B, you want to stop displaying the message.

You would write this constraint as follows:

Product A recommends Product B by displaying this rule’s explanation.

In the constraint’s Explanation field: When you select Product A, we recommend you also purchase
Product B.

Exclude Template
The Exclude template has the form:

[item or condition] excludes [item or condition]

The exclude constraint is mutual. For example, if Item A is present in the solution, Item B cannot be
present. Conversely, if Item B is present, Item A cannot be present.

The excludes operator is functionally equivalent to a Boolean NAND (NOT of A AND B). In Table 20,
a T (true) means the item is present in the solution. An F (false) means it is not present or is
excluded.

The truth table shows that an exclude constraint is always true except when both operands are
present in the solution.

Use an exclude constraint to:

■ Prevent technical configuration errors. For example, a computer operating system or
software application may be incompatible with certain microprocessors.

Table 20. Truth Table for Exclude

A B A AND B A NAND B

T F False True

F T False True

F F False True

T T True False
Product Administration Guide Version 7.8, Rev. B218

Configuration Constraint Template Reference ■ Exclude Template
■ Prevent configurations that are undesirable or ineffective. For example, in a financial
model, an exclude constraint could prevent adding a low quality bond fund to a retirement
portfolio.

Items
An item in an exclude constraint can be any of the following:

■ A relationship or class within a relationship

■ A product within a relationship or class

Here is how the exclude constraint works with items:

■ Product A excludes Product B

If Product A is present in the solution, then Product B cannot be present. If Product B is present
in the solution, then Product A cannot be present.

■ Relationship A excludes Product B

If any product in Relationship A is present in the solution, then Product B is excluded. If Product
B is present, then no product from Relationship A can be present.

■ Relationship A excludes Relationship B

If any Product in Relationship A is present in the solution, then no product in Relationship B can
be present. If any product in Relationship B is present in the solution, then no product from
Relationship A can be present.

Conditions
Conditions in an exclude constraint can take many forms. For example, an attribute condition
specifies an attribute value. Here is a summary of how the exclude constraint works with conditions
in general. How exclude constraints work with specific types of conditions is covered in the topics
following this one.

■ Product A excludes Condition B

If Product A is present in the solution, then Condition B cannot be true. If Condition B is true in
the solution, then product A cannot be present.

■ Relationship A excludes Condition B

If any product in Relationship A is present, Condition B cannot be true. If Condition B is true in
the solution, then no product from Relationship A can be present.

■ Condition A excludes Product B

If Condition A is true in the solution, then Product B is excluded. If Product B is present in the
solution, then Condition A cannot be true in the solution.

■ Condition A excludes Relationship B

If Condition A is true in the solution, then all products in relationship B are excluded. If any
product from Relationship B is present in the solution, then Condition A cannot be true in the
solution.
Product Administration Guide Version 7.8, Rev. B 219

Configuration Constraint Template Reference ■ Exclude Template
■ Condition A excludes Condition B

If Condition A is true in the solution, then Condition B cannot be true in the solution. If Condition
B is true in the solution, then Condition A cannot be true in the solution.

Attribute Conditions
Attribute conditions are used to exclude specific attribute values for an item or group of items. For
example, if the user picks item A, then the “Large” attribute value for item B is excluded.

In the constraint examples below, the attributes are defined on items in relationships within the
customizable product. You can also define exclude constraints on the attributes of the customizable
product itself.

In the following constraint examples, excluded means the user can no longer select the item. If the
excluded item is a relationship, the user can no longer select any of the products in the relationship.
Excluded also means the Siebel Configurator engine will not create solutions that contain the
excluded item.

■ Product A excludes Attribute C = M in Relationship B

If Product A is present in the solution, then the value M will not be selectable for Attribute C in
Relationship B.

If any product with Attribute C = M in Relationship B is present in the solution, then Product A is
excluded from the solution.

■ Relationship A excludes Attribute C = M in Relationship B

If any product in Relationship A is present in the solution, then the value M will not be selectable
for Attribute C in Relationship B.

If any product with Attribute C = M in Relationship B is present in the solution, then all the
products in Relationship A are excluded from the solution.

■ Attribute C = M in Relationship A excludes Product B

If any product with Attribute C = M in Relationship A is present in the solution, then Product B is
excluded from the solution.

If Product B is present in the solution, then the value M will not be selectable for Attribute C in
Relationship B.

■ Attribute C = M in Relationship A excludes Relationship B

If any product with Attribute C = M in Relationship A is present in the solution, then all the
products in Relationship B are excluded from the solution.

If any products from Relationship B are present in the solution, then the value M will not be
selectable for Attribute C in Relationship B.
Product Administration Guide Version 7.8, Rev. B220

Configuration Constraint Template Reference ■ Exclude Template
■ Attribute C = M in Relationship A excludes Attribute D = P in Relationship B

If any of the products with Attribute C = M in Relationship A are present in the solution, then the
value P for Attribute D will not be selectable in Relationship B.

If any products with Attribute D=P in Relationship B are present in the solution, then the value
M will not be selectable for Attribute C in Relationship A.

Quantity Conditions
Quantity conditions compare the quantities of two items. Depending on the session context in which
a quantity condition is evaluated, it either returns true/false or is enforced as a constraint.

For example you write the following configuration constraint,

(Product A > Product B) excludes Product C

Context A. If the user picks Product A so that its quantity is greater than Product B, then Product C
is excluded. In this case, the quantity condition is evaluated as true/false, and Product C is excluded
when it is true.

Context B. If the quantity of Product A in the solution is not greater than Product B and the user
picks Product C, then the quantity condition is enforced as a constraint. In all further solutions, the
Siebel Configurator engine will require that the quantity of Product A is < = Product B if Product C
is present.

Other Item Constraints
Several other types of conditions can also be used in exclude rules. In some cases these conditions
do not make sense when used as the second operand in an exclude rule. Table 21 summarizes how
to use item constraints.

Table 21. Item Constraint Usage in Exclude Rules

Item Constraint First Operand Second Operand

Attribute Value Yes Yes

Consumes No No

Provides No No

Excludes Yes Yes

Excludes List Yes Yes

Requires Yes Yes

Requires List Yes Yes

Linked Item Value
condition

Yes Yes

Message, Recommends No No
Product Administration Guide Version 7.8, Rev. B 221

Configuration Constraint Template Reference ■ Exclude Template
Nested Expressions as Conditions
The Exclude Template can itself be used as a condition in other constraints. The most common
templates used for writing nested constraints are the Exclude and Require templates. For example
you could write the configuration constraint:

Product A excludes (Product B excludes Product C)

The Boolean form of this constraint is as follows:

A NAND (B NAND C)

In Table 22, a T (true) means the item is present in the solution. An F (false) means the item is not
present or is excluded.

The truth table lets you analyze what happens when the user picks items. For example, there are no
Product A, Product B, or Product C in the solution. The user picks Product B. You evaluate how the
Siebel Configurator engine will respond as follows:

1 Picking B means that B is true, so eliminate all rows from the table where B is False. This leaves
rows 3, 4, 7, and 8.

2 The engine returns solutions in which all constraints are true, so you can eliminate any of the
remaining rows where the whole constraint is false. This means you can eliminate row 7. This
leaves rows 3, 4, and 8.

Product Quantity Yes Yes

Relationship Quantity Yes Yes

Class Quantity Yes Yes

Table 22. A NAND (B NAND C)

Row A B C (B NAND C)
A NAND (B
NAND C)

1 F F F T T

2 F F T T T

3 F T F T T

4 F T T F T

5 T F F T F

6 T F T T F

7 T T F T F

8 T T T F T

Table 21. Item Constraint Usage in Exclude Rules

Item Constraint First Operand Second Operand
Product Administration Guide Version 7.8, Rev. B222

Configuration Constraint Template Reference ■ Provide and Consume Templates
3 Now examine the truth conditions for Product A and Product C in the rows 3. 4, and 8. The table
shows that A is false in row 3 and 4 but true in row 8. This means that if the user picks B, then
A can be either present or absent. It is not constrained. The table shows that C is false in row 3
but true in rows 4, and 8. This also means that C is not constrained. Thus, the user can pick B
without A or C being excluded or required.

If A or C had been true in all three remaining rows, this means A or C is required. If A or C had been
false in all three rows, this means A or C is excluded.

Multiple Operands
You can add multiple operands to an exclude constraint by clicking the Compound Field button when
you create the constraint.

For example, you could create the constraint:

Item A excludes Item B > 2, Item C < 5

This constraint means the following:

■ If Item A is present in the solution, Item B cannot be greater than 2

■ If item A is present in the solution, Item C cannot be less than 5

■ If Item B is greater than 2 in the solution, Item A cannot be present

■ If item C is less than 5 in the solution, Item A cannot be present

Using commas to separate expressions is the same as writing two constraints:

Item A excludes Item B > 2

Item A excludes Item C < 5

If you want to write a constraint where you exclude the combination of two conditions you would do
it as follows:

Item A excludes (Item B > 2 AND Item C < 5)

This constraint means that if Item A is present in the solution, the two conditions cannot be
simultaneously true in the same solution. If Item A is present, the quantity of Item B can be greater
than 2 as long as the quantity of Item C is not less than 5 and vice versa.

Provide and Consume Templates
The Provide template has the form:

[An item] provides [a value] to [a target]

The Consume template has the form:

[An item] consumes [a value] from [a target]
Product Administration Guide Version 7.8, Rev. B 223

Configuration Constraint Template Reference ■ Provide and Consume Templates
Provide and consume constraints positively or negatively increment the amount of the target operand
each time the specified item is added to the solution. Provide constraints contribute a positive
amount, that is they increase the amount of the target. Consume constraints contribute a negative
amount, that is they reduce the amount of the target.

Contrast this with the behavior of require constraints. For example, Item A requires Item B. The first
time the user picks Item A, if no item B is in the solution, the Siebel Configurator engine will add at
least one Item B. The second time the user picks Item A, the engine does not increment Item B
because the require constraint does not consider the quantity of Item A in the solution, only that
Item A is present.

Now consider the constraint Item A provides 1 to Item B. Each time the user picks Item A, the Siebel
Configurator engine increments the number of Item B in the solution by 1. This constraint ties the
quantities of Item A and Item B together so that each Item A requires an Item B. Provide and
consume constraints work directly with quantities expressed as resource or attribute values, while
require constraints consider only the presence or absence of an item.

NOTE: Provide and Consume constraints work properly when the resource is defined in the parent
product. For modeling scenarios that require embedding resources in the child product, use
attributes of type Integer instead.

Item
The Item operand can be a product, a relationship, a product class within a relationship, a resource
or an attribute. If the item is a relationship or class, the constraint applies to all the items in the
relationship or class. For example, Relationship A provides 1 to Item B. Each time an item from
Relationship A is added to the solution, Item B is added to the solution.

Value
The value operand defines the quantity to be contributed to the target. The Constraints view provides
several methods for determining this quantity:

■ You can explicitly state the quantity, for example Item A consumes 1 from Item B. This constraint
means that each Item A added to the solution decreases the amount of Item B in the solution by
1.

■ You can define the value as the quantity of another item, or the value of an attribute, linked item
or resource. For example, Item A provides three times the quantity of Item B to Item C. This
constraint means that for each Item A added to the solution, the quantity of Item C is
incremented by three times the quantity of Item B.

■ You can define an expression that determines which products in the relationship or class specified
in Item will increment the target. For example: Any item of Relationship A provides Relationship
A, Attribute Color = Red to Item B. This constraint means that for each item in Relationship A for
which the attribute Color = Red that is added to the solution, the quantity of Item B is
incremented by one.
Product Administration Guide Version 7.8, Rev. B224

Configuration Constraint Template Reference ■ Provide and Consume Templates
Target
The target operand is incremented by the amount specified in the value operand. The target can be
a product, resource, or product attribute. It cannot be a relationship, a class, or an expression.

Product Target
When the target operand is a product, the quantity of the product is incremented. For example,
Product A provides 2 to Product B. This constraint means that each Product A added to the solution
increases the quantity of Product B (the target) by 2.

The consume constraint works the same way. For example, Product A consumes 2 from Product B.
This constraint means that each Product A added to the solution decreases the quantity of Product
B (the target) by 2.

Resource Target
When the target is a resource, the value of the resource is incremented. One of the most common
uses of provides and consume constraints is to manage resources.

Resources keep track of configuration variables that increase or decrease as the user makes
selections. For example, suppose you are creating a customizable product rule for configuring
desktop computers. Your product includes several types of chassis. Each chassis has a different
number of slots for expansion cards. The product also includes several types of expansion cards, such
as disk controllers, and graphics cards.

You do not know in advance which chassis the customer will select or how many expansion cards.
However, you do know you must keep track of the number of slots available in a chassis during the
configuration process to verify that the computer is configured correctly.

Using provide and consume constraints to increment a resource is the way to handle this:

■ First define a resource to keep track of slots, for example Slots Available.

■ Then define an attribute called Slots on the chassis class. Create a enumerated values of data
type integer. Create one record for each chassis type. The value for each record is an integer
equal to the number of slots in the chassis type. This creates a menu of choices for setting the
number of slots in a chassis. Assign the list of values to the Slots attribute definition.

■ Display the attributes for each chassis and set the value of the Slots attribute and save the
record. This sets the number of slots in the chassis and prevents it from being changed by the
user or the Siebel Configurator engine.

■ Add the chassis class to a relationship, Chassis.

■ Define an attribute called Slots Required on the expansion card class. Use a range of values
domain and set the data type to Integer. Enter: ==1 as the validation expression. Enter 1 as the
default value.

■ Display the attributes for each expansion card and save the Slots Required record. This sets the
number of slots required at 1 and prevents it from being changed by the user or the Siebel
Configurator engine.

■ Add the expansion card class to a relationship, Expansion Card.
Product Administration Guide Version 7.8, Rev. B 225

Configuration Constraint Template Reference ■ Simple Provide and Consume Templates
■ Write the following constraint: Chassis provides Chassis Slots to Slots Available.

■ Write the following constraint: Expansion Card consumes Expansion Card Attribute = Slots
Required from Slots Available.

■ Write constraints as needed to determine what happens if Slots Available is 0 or if it becomes
negative.

When the user selects a chassis, the provide constraint increases the Slots Available resource by the
number of slots in the chassis. Each time the user selects an expansion card, the consume constraint
decreases the Slots Available resource by one. Thus, the Slots Available resource maintains a record
of how many slots are available in the chassis during the configuration session.

If a resource has the same name in two different customizable products, the Siebel Configurator
engines treats them as the same resource. You can take advantage of this in cases where one product
with components is contained within another. For example, product with components CP2 is
contained within product with components CP1. You define resource R1 in both products. Constraints
in either product with components that contribute to R1, affect the value of R1 in both products. Use
this behavior to allow a parent product with components to contribute to a resource in a child product
with components.

Attribute Target
When the target is an attribute, the value of the attribute is incremented. Attribute targets are very
similar in behavior and use as resource targets. There are several restrictions on using provide and
consume constraints to manipulate attribute values:

■ The data type of the attribute must be numeric (Integer or Number).

■ The attribute must be available for manipulation. You must not have set the value of the
attribute. You do this by selecting an attribute value and saving it in the Administration - Product
screen, Customizable Products, Product Attributes view.

■ A child product with components can contribute to attributes defined on the parent. The parent
cannot contribute to attributes defined on the child product. For example, product with
components CP2 is contained within product with components CP1. CP2 can contribute to
attributes defined within CP1. CP1 cannot contribute to attributes defined within CP2.

Use attributes as targets instead of defining multiple resources that keep track of similar variables.
This ties the variables directly to a class and makes it easier to keep track of the variables’ roles.

Simple Provide and Consume Templates
The Simple Provide template has the form:

Provides [a value] to [a target]

The Simple Consume template has the form:

Consume [a value] from [a target]
Product Administration Guide Version 7.8, Rev. B226

Configuration Constraint Template Reference ■ Simple Provide and Consume Templates
The Simple Provide and Simple Consume templates positively or negatively increment the amount
of the target operand. These templates are intended for use as the action portion of a conditional
constraint. If the condition is true, then a value is provided or consumed from the specified target.

The Simple Provide template contributes a positive amount, that is it increases the amount of the
target. The Simple Consume template contributes a negative amount, that is it reduces the amount
of the target.

Value
The value operand defines the quantity to be contributed to the target. The Constraints view provides
several methods for determining this quantity:

■ You can explicitly state a number as the value.

■ You can define the value as the quantity of another item, or the value of an attribute, linked item
or resource. For example, you can provide three times the quantity of Item B to Item C.

■ The value can be an expression that resolves to an amount. This amount is then contributed to
the target. For example: When a condition is true, it provides Relationship A, Attribute Color =
Red to Item B. This constraint means that when the condition is true, then each item in
Relationship A for which the attribute
Color = Red that is added to the solution, increments the quantity of Item B by one.

Target
The target operand is incremented by the amount specified in the value operand. The target can be
a product, resource, or product attribute. It cannot be a relationship, a class, or an expression.

Product Target
When the target operand is a product, the quantity of the product is incremented in the solution.

Resource Target
When the target is a resource, the value of the resource is incremented.

Attribute Target
When the target is an attribute, the value of the attribute is incremented. Attribute targets are similar
in behavior and use as resource targets. There are several restrictions on using provide and consume
constraints to manipulate attribute values:

■ The data type of the attribute must be numeric (Integer or Number).

■ The attribute must be available for manipulation. You must not have set the value of the
attribute. You set the value of an attribute by selecting an attribute value and saving it in the
Administration - Product screen, Customizable Products, Product Attributes view.
Product Administration Guide Version 7.8, Rev. B 227

Configuration Constraint Template Reference ■ Relationship Item Constraint Template
■ A child product with components can contribute to attributes defined on the parent. The parent
cannot contribute to attributes defined on the child product. For example, product with
components CP2 is contained within product with components CP1. CP2 can contribute to
attributes defined within CP1. CP1 cannot contribute to attributes defined within CP2.

Relationship Item Constraint Template
The Relationship Item Constraint template has the form:

For each item [in a relationship], constrain [an expression] to be true

The “in a relationship” operand can be a whole relationship, a subclass of items in a relationship, or
a product in a relationship. The “an expression” operand can be any constraint template or any
constraint you construct from templates.

The purpose of the Relationship Item Constraint template is to allow you to write a constraint for
items in a relationship as if you had written the constraint separately for each instance of the items.
For example, you define Relationship A that contains the product with components desktop PC. The
desktop PC is a product with components that includes two relationships: CPU and Hard Drive. You
then write the following constraint:

For each item in Relationship A, constrain CPU requires Hard Drive to be true

This constraint enforces “CPU requires Hard Drive” separately on each instance of desktop PC in
Relationship A. All the desktop PCs from Relationship A must have a hard drive if they have a CPU.

A require constraint does not do this. Suppose you had written the following constraint:

CPU requires Hard Drive

This constraint means if any desktop PC has a CPU from the CPU relationship then at least one
desktop PC must have a hard drive from the Hard Drive relationship.

This means, for example, that if the user configures three desktop PCs, all with CPUs, then only one
of them must have a hard drive. If the user removes the hard drive, the Siebel Configurator engine
would add a hard drive to another desktop PC in the solution or add a new desktop PC that contains
only a hard drive. The require constraint defines a constraint that is true about the group of desktop
PCs in the solution rather than about individual desktop PCs.

Another problem with the require constraint is that it does not limit enforcement of the constraint to
the items in Relationship A. If, in the require constraint example, desktop PCs were also contained
in Relationship B, then desktop PCs configured from Relationship B would also be considered when
enforcing the require constraint for desktop PCs configured from Relationship A.

An important use of this template is to write constraints that apply to products with components only
when these products are contained in a relationship within another product with components.
Product Administration Guide Version 7.8, Rev. B228

Configuration Constraint Template Reference ■ Require Template
Require Template
The Require template has the form:

[item or condition] requires [item or condition]

A require constraint is a logical implies. If the first operand is true then the second operand is implied
(must be true). For example, Item A requires Item B. This constraint means that if Item A is present
in the solution, then Item B must be present. Another example: Condition A requires Item B. This
constraint means that if Condition A is true, then Item B must be present in the solution.

A require constraint is not mutual. The constraint Item A requires Item B does not imply Item B
requires Item A. However, if Item B is excluded then Item A is also excluded. This is because when
Item B is excluded, the constraint can never be true.

The require operator is functionally equivalent to the following Boolean expression:

(NOT A) OR B

In the first two columns of Table 23, a 1 means the item is present in the solution. A 0 means it is
absent or excluded.

The table shows that a require constraint behaves as follows:

■ False when Item A is present and Item B is not. (If Item B cannot be present, Item A cannot be
present).

■ True when Item B is present and Item A is not.

■ True when neither is present.

■ True when both are present.

Use require constraints to:

■ To create a requires relationship for items in different relationships. For example, you can write
a constraint that if Item A in relationship 1 is picked, then Item B in relationship 2 is required.

■ To add items to the configuration if a condition is true.

■ To create relationships between other items (conditions) when a product is added to the solution.

Table 23. Truth Table for Require Expressions

A B NOT A (NOT A) OR B

1 0 0 False

0 1 1 True

0 0 1 True

1 1 0 True
Product Administration Guide Version 7.8, Rev. B 229

Configuration Constraint Template Reference ■ Require Template
Items
An item can be any of the following:

■ A relationship or class within a relationship. For example, Relationship A requires Item B. This
constraint means that when any product in relationship A is present in the solution, then Item B
must be present.

■ A product within a relationship

When items are the operands, require constraints are concerned only with presence or absence, not
quantity. For example, Item A requires Item B. When the first Item A is added to the solution, the
Siebel Configurator engine will add at least one Item B if none are present. When the second Item
A is added, the engine does not add any more Item B, since at least one is already present.

Here is how the require constraint works with items:

■ Product A requires Product B

If Product A is present in the solution, then Product B is required. If Product B is excluded, then
Product A is excluded.

■ Relationship A requires Product B

If any product in Relationship A is present in the solution, then Product B is required. If Product
B is excluded, then all the products in Relationship A are excluded.

■ Relationship A requires Relationship B

If any Product in Relationship A is present in the solution, then at least one product in
Relationship B must be present. If all the products in Relationship B are excluded, then all the
products in Relationship A are excluded.

Conditions
Conditions can take many forms. Here is a summary of how the require constraint works with
conditions in general. How require constraints work with specific types of conditions is covered in the
topics following this one.

■ Product A requires Condition B

If Product A is present in the solution, then Condition B is required to be true. If Condition B is
false, then Product A is excluded.

■ Relationship A requires Condition B

If any product in Relationship A is present in the solution, Condition B is required to be true. If
Condition B is false, then all the products in Relationship A are excluded.

■ Condition A requires Product B

If Condition A is true in the solution, then Product B is required. If Product B is excluded, then
Condition A is required to be false.
Product Administration Guide Version 7.8, Rev. B230

Configuration Constraint Template Reference ■ Require Template
■ Condition A requires Relationship B

If Condition A is true in the solution, then at least one product in relationship B must be present
in the solution. If all the products in Relationship B are excluded, then Condition A is required to
be false.

■ Condition A requires Condition B

If Condition A is true in the solution, then Condition B must also be true. If Condition B is false,
then Condition A is required to be false.

Attribute Conditions
An attribute condition specifies an attribute value and uses it to identify the items in a relationship
to which the constraint applies. In the constraint examples below, the attributes are defined on items
in relationships within the product with components. You can also define require constraints on the
attributes of the product with components itself.

In the constraints examples below, the equals operator is used in the attribute expressions. You can
use all the math operators (<, >, and so on) when writing this type of constraint.

■ Product A requires Attribute C = M in Relationship B

If Product A is present in the solution, then M is the only value selectable for Attribute C for all
items in Relationship B.

■ Relationship A requires Attribute C = M in Relationship B

If any product in Relationship A is present in the solution, then M is the only value selectable for
Attribute C for all items in Relationship B.

■ Attribute C = M in Relationship A requires Product B

If any product with Attribute C = M in Relationship A is present in the solution, then Product B
must be present.

■ Attribute C = M in Relationship A requires Relationship B

If any product with Attribute C = M in Relationship A is present in the solution, then at least one
of the products in Relationship B must be present.

■ Attribute C = M in Relationship A requires Attribute D = P in Relationship B

If any of the products with Attribute C = M in Relationship A are present in the solution, then P
is the only value selectable for Attribute D in Relationship B.

Quantity Conditions
Quantity conditions compare the quantities of two items. Depending on the session context in which
the quantity condition is evaluated, it either returns true/false or is enforced as a constraint.

For example you write the following constraint:

(Product A > Product B) requires Product C
Product Administration Guide Version 7.8, Rev. B 231

Configuration Constraint Template Reference ■ Require Template
If the user picks Product A so that its quantity is greater than Product B, then Product C is required.
In this case, the quantity condition is evaluated as true/false, and Product C is required when it is
true.

Contrast this with the following constraint:

Product C requires (Product A > Product B)

When the user picks Product C, the condition (Product A > Product B) is enforced as a constraint. In
all further solutions, the quantity of Product A must be greater than the Product B. Also, if the
quantity of Product B is greater than Product A in the solution, Product C is excluded.

Other Item Constraints
Several other types of conditions can also be used in require constraints. In some cases these
conditions do not make sense when used as the second operand in a require constraint. This is
because some conditions are always true (message conditions), or the condition cannot be enforced
to be true (linked item conditions).

Table 24 summarizes how to use item constraints

.

Table 24. Item Constraint Usage in Require Constraints

Item Constraint First Operand Second Operand

Attribute Value Yes Yes

Consumes No Yes

Provides No Yes

Excludes Yes Yes

Excludes List Yes Yes

Require Yes Yes

Require List Yes Yes

Linked Item Value
condition

Yes No

Message, Recommends No Yes

Product Quantity Yes Yes

Relationship Quantity Yes Yes

Class Quantity Yes Yes
Product Administration Guide Version 7.8, Rev. B232

Configuration Constraint Template Reference ■ Require Template
Nested Expressions as Conditions
The Require template can itself be used as a condition in other constraints. The most common
templates used for writing nested constraints are the Require and Exclude templates. For example,
you could write the following configuration constraint:

Product A requires (Product B requires Product C)

The Boolean form of this constraint is as follows:

(NOT A) OR ((NOT B) OR C)

Table 25 shows the truth table for this constraint.

The table lets you analyze what happens when the user picks items. Use the following steps to do
this:

1 The engine must return solutions in which all constraints are true. Eliminate any rows where the
top-level expression is False. In the table above, eliminate row 7.

2 To determine what happens when the user picks an item, look at all rows that list true for that
item. For example, to analyze what happens when the user picks Product A, you would look at
rows 5, 6, and 8 in the table above.

3 To determine what happens when a combination of items are picked, look at all the rows that list
true for both items at once. For example, to analyze what happens when the user picks both
Product A and Product B, you would look at only row 8 in the table above. (Row 7 is not
considered since the top-level expression is false.)

4 If only one row has the correct truth conditions, this means the Siebel Configurator engine will
return the result shown in that row. For example, look at row 8. This is the only remaining row
that lists item A and B as both true. Since this row lists C as true, this means that when both A
and B are present, C must be present.

Table 25. (NOT A) OR ((NOT B) OR C)

Row A B C NOT A
(NOT B)
OR C

(NOT A) OR
((NOT B OR C)

1 F F F T T T

2 F F T T T T

3 F T F T F T

4 F T T T T T

5 T F F F T T

6 T F T F T T

7 T T F F F F

8 T T T F T T
Product Administration Guide Version 7.8, Rev. B 233

Configuration Constraint Template Reference ■ Require (Mutual) Template
5 If several rows have the condition you are analyzing, look at the truth conditions for each
unpicked item in the rows. If they are all true, the unpicked item is required. If they are all false,
the unpicked item is excluded. If an unpicked item lists true in some rows and false in others,
this means the unpicked item is neither excluded nor required and is available.

The table reveals that the constraint has the following behavior:

■ When none of the products are present, the user can pick any of the three, and the other two
will not be required.

■ If the user picks Product A and B, then Product C is required.

Thus, the constraint’s behavior can be summarized this way: when the user picks Product A, the
condition “Product B requires Product C” is enforced as a constraint.

Multiple Operands
You can add multiple operands to a require constraint by clicking the Compound Field button when
you create the constraint.

For example, you could create the constraint:

Item A requires Item B > 2, Item C < 5

This constraint means the following:

■ If Item A is present in the solution, the quantity of Item B must be greater than 2

■ If item A is present in the solution, the quantity of Item C must be less than 5

■ If Item B cannot be greater than 2 in the solution, Item A is excluded

■ If item C cannot be less than 5 in the solution, Item A is excluded

This is the same as writing two constraints:

Item A requires Item B > 2

Item A requires Item C < 5

Require (Mutual) Template
The Require (Mutual) template has the following form:

[Item or Condition] and [Item or Condition] mutually require each other

Use this template when the requires relationship between items or conditions is mutual. For example,
Product A requires Product B, AND Product B requires
Product A.

When using components as the operands, you can specify global paths for either or both
components.
Product Administration Guide Version 7.8, Rev. B234

Configuration Constraint Template Reference ■ Set Initial Attribute Value Template
The Boolean equivalent of the Require (Mutual) template is NOT(A XOR B). Table 26 shows the truth
table for this template.

The behavior of the Require (Mutual) template is the same as the Exclude template, except that
operands are required instead of excluded.

Set Initial Attribute Value Template
The Set Initial Attribute Value template has the form:

[An attribute] has an initial value of [a number]

The Set Initial Attribute Value template sets the numeric value of an item’s attribute at the beginning
of a configuration session. The attribute must be of data type Number or Integer. The attribute can
have either an enumerated types or range of values type domain.

Setting an attribute value in this fashion brings the attribute value under the control of all its
contributors. This means that the attribute value must exactly equal the sum of all its contributors.
For example, if during the configuration session, the amount contributed by provide and consume
constraints exactly equals the attribute value, users will not be able to change the attribute value.
If not, the user can adjust the value, but only if this also adjusts the amount contributed by the
provide and consume constraints.

To set the initial value of an attribute that has a non-numeric data type, use the Set Preference
template.

This template cannot be used to set the attributes of customizable products that are components in
a customizable product. For example, customizable product CP1 has as one of its components
customizable product CP2. You cannot use this template to set the values of attributes in CP2.

If the product administrator has set the value of an attribute in the Product Attributes list, this value
cannot be overridden by a configuration constraint or by the Siebel Configurator engine.

Attributes value set through Set Initial Attribute Value Constraint template can not be changed at
run time by the user. They can only be changed by Provide and Consume rules.

Table 26. Truth Table for Require (Mutual)

A B A XOR B NOT(A XOR B)

T F True False

F T True False

F F False True

T T False True
Product Administration Guide Version 7.8, Rev. B 235

Configuration Constraint Template Reference ■ Set Initial Resource Value Template
Set Initial Resource Value Template
The Set Initial Resource Value template has the form:

[A resource] has an initial value of [a number]

The Set Initial resource Value template functions as a provide constraint and sets the numeric value
of a resource at the beginning of a configuration session.

Before specifying a resource using this template, items must be present in the solution that
contribute (provide or consume) to the resource. During a configuration session, other constraints
can increase or decrease the value.

Resource values are under the exclusive control of provide and consume constraints. Users cannot
set the value of a resource by entering a value in a selection page.

Set Preference Template
The Set Preference template has the form:

When possible, constrain [an expression] to be true with a [specified priority]

The expression in a preference constraint is enforced as a constraint only if it does not conflict with
any other constraint type or with any user selections. The purpose of the Set Preference template is
to allow you to create soft constraints that guide the Siebel Configurator engine in producing
solutions but which the engine can ignore if needed to avoid conflicts or performance problems.

A key use for preference constraints is to cause a default selection of Item B based on the selection
of Item A. This is called a dynamic default. You can set a default dynamically based on a previous
user selection. The user can then override the default if desired by choosing a different item than
the dynamic default.

For example, you could write the following constraint:

When possible, constrain [Item A requires Item B] to be true with a priority
of [0].

When the user picks Item A, the engine will attempt to create a solution containing Item B. However,
the engine is free not to include Item B in order to avoid conflicts and performance problems.

If users do not want Item B, they can remove it without creating a conflict. If you had written the
constraint as “Item A requires Item B”, Item B would be added when users pick Item A. If users try
to remove Item B, they receive a conflict message.

Another use for the Set Preference Template is to set or modify the default value for an attribute. To
do this, you would write a preference constraint where the expression, is Attribute A = value. The
attribute would then be displayed with this value unless overridden by another constraint.

The priority operand in preference constraints determines the order in which multiple preference
constraints for an item are evaluated. Preference constraints with priority 0 that apply to a specific
item are evaluated first. Those with priority 1 that apply to that item are evaluated next, and so on.
Product Administration Guide Version 7.8, Rev. B236

Configuration Constraint Template Reference ■ Set Preference Template
For example, you have written two preference constraints that apply to a specific relationship.
PrefConstraint A has a priority of 0. PrefConstraint B has a priority of 1. The Siebel Configurator
engine will attempt to add PrefConstraint A to the solution before attempting to add PrefConstraint B.

Here is how the Siebel Configurator engine creates solutions containing preference constraints:

■ The engine generates a solution that enforces all constraints and user choices but does not
include preference constraints.

■ The engine then adds the preference constraints one at a time for each item. It begins by adding
the highest priority preference constraints for an item first. Preference constraints with the same
priority are added in arbitrary order.

■ If the solution remains valid when a preference constraint is added, then the expression in the
preference constraint is enforced as a constraint and becomes part of the solution.

■ If adding a preference constraint creates a conflict so that the solution fails, the preference
constraint is skipped, and its expression is not enforced. The engine then goes on to the next
preference constraint.

■ Preference constraints are evaluated after all other constraint types and before the engine
searches for and sets default attribute values.

Saved Values for Dynamic Default
Behavior of the Set Preference template depends on whether the Dynamic Default UI property for
the product is set to Y during product definition.

If the Dynamic Default property is not specified or is set to N, child components that are deleted are
reset to the default value specified in the Set Preference template when a user works on a
configuration that was saved earlier.

If Dynamic Default property is set to Y, then child components that are deleted are not reset to the
default value specified in the Set Preference template when the user works on a configuration that
was saved earlier. The child components are still deleted when the user works on the configuration
again.

For example, there is a Set Preference constraint rule that states: Item A requires Item B. When
Siebel Configurator is launched, the user selects Item A and the preference constraint triggers the
selection of Item B. The user removes Item B by setting its quantity to 0 and then saves the quote.
At a later time, the user works on the quote and configures the product again:

■ If dynamic default is off, the child component is added to the product, because this is the default
in Set Preference, even though the user removed it during the earlier Siebel Configurator session.

■ If dynamic default is on, the child component is not added to the product. It is still removed,
because the user removed it during the earlier Siebel Configurator session.

Dynamic default applies only to items that are deleted. If the user changes the quantity to a non-
zero value or changes any attribute value, the change remains in the next configuration session, and
it is not reset to the default value, regardless of whether dynamic default is used.
Product Administration Guide Version 7.8, Rev. B 237

Configuration Constraint Template Reference ■ Set Preference Template
New Tables for Dynamic Default
If you are upgrading the Siebel application to use dynamic default, this list of the new tables used
for dynamic default can be helpful to you for data migration and troubleshooting. The following new
tables were added to capture the deleted items between configuration sessions:

■ S_ASSET_DEL

■ S_ORDER_ITM_DEL

■ S_QUOTE_ITM_DEL
Product Administration Guide Version 7.8, Rev. B238

18 Siebel Configurator Rule
Assembly Language
This chapter explains how to create configuration constraints using Rule Assembly Language. You
can use Rule Assembly Language to enter constraints instead of using constraint templates.

This chapter includes the following topics:

■ “Why Use Rule Assembly Language?” on page 239

■ “About Rule Assembly Language” on page 239

■ “Creating Constraints Using the Assisted Advanced Constraint Template” on page 240

■ “Creating Constraints Using the Advanced Constraint Template” on page 241

■ “Managing Constraints Written in Rule Assembly Language” on page 244

■ “About Specifying Data in Rule Assembly Language” on page 245

■ “About Operators in Rule Assembly Language” on page 245

■ “Examples of Constraints Using Rule Assembly Language” on page 259

Why Use Rule Assembly Language?
Rule Assembly Language (RAL) is intended for those users who are more comfortable working in a
programming environment rather than using templates. Those with experience using this language
in previous releases can continue to use it in this release.

In many cases, a combination of RAL and constraint templates can be effectively employed as
follows.

1 Use the existing templates to create basic configuration constraints.

2 Create specialized templates and use them to create constraints to handle configuration areas
that are similar.

3 Use RAL to create highly complex or unusual constraints not easily handled by templates.

About Rule Assembly Language
All rules in the Rule Assembly Language (RAL) consist of expressions. Expressions consist of an
operator and its operands. The number and type of operands depend on the operator. All expressions
have the following form:

operator(A,B...)

For example, the following expression evaluates to the sum of A plus B.

+(A,B)
Product Administration Guide Version 7.8, Rev. B 239

Siebel Configurator Rule Assembly Language ■ Creating Constraints Using the Assisted
Advanced Constraint Template
Most operators allow their operands to be expressions. In the expression above, both A and B can
themselves be expressions.

Spaces, tabs, and new-lines are ignored in expressions.

In Rule Assembly Language, a constraint is a list of one or more top-level expressions. A top-level
expression is the top-level operator and its associated operands in RAL statements.

For example, in the following statement, +(A,B) is a sub-expression and is not a top-level
expression. The top-level expression is “==” and its operands. So the constraint on all solutions is
that the sum of the quantities of A and B must equal the quantity of C in all solutions.

==(+(A,B),C)

A sub-expression is an expression that functions as an operand. Depending on the operator, a sub-
expression returns a quantity or a logical true or false. The sub-expression itself is not a constraint.

Creating Constraints Using the Assisted
Advanced Constraint Template
A special constraint template is provided for creating constraints using Rule Assembly Language. This
template provides a dialog box for picking components, resources, and links. It also provides a list
of RAL operators.

When you create a constraint and save it using this template, the Constraints view displays the
constraint syntax in the Constraint field. The Constraints view capitalizes the first letter of operator
names in the constraint for display purposes only. Operator names are case-sensitive, and the
Constraints view stores them in the correct format.

To create a constraint using the Assisted Advanced Constraint template

1 Navigate to the Administration - Product screen.

2 Select and lock the desired customizable product or product class.

3 Navigate to the Constraints view for the Work Space version.

4 Click New Constraint.

The Pick a Constraint list appears.

5 In the Pick a Constraint list, select the Assisted Advanced Rule template, and click Continue.

The Rule Statement and “Insert a” tabs appear.

6 Select operators and arguments from the displayed lists to build a rule.

The operators list contains all the operators in the Rule Assembly Language. The arguments list
changes depending on the operator you select and contains all the items in the customizable
product. Use the Compound Field button to create sub-expressions.

7 Click Save Constraint to save the constraint.

The Save Rule form appears.
Product Administration Guide Version 7.8, Rev. B240

Siebel Configurator Rule Assembly Language ■ Creating Constraints Using the Advanced
Constraint Template
8 Fill out the fields in the Save Constraint form, and then click Save. Some fields are described in
the following table.

9 From the Constraints List menu, select Validate.

This starts a configuration session. Verify that the new rule works correctly.

Creating Constraints Using the
Advanced Constraint Template
The Advanced Constraint template is similar to the Assisted Advanced Constraint Template. You can
create constraints using Rule Assembly Language with either template. The Advanced Constraint
template does not provide a dialog box for picking products, resources, or links. It also does not
provide a list of operators.

Field Comments

Name Enter a name for the constraint.

You should use names that help you to locate the constraint using
the Find button. For example, consider including the constraint
type (excludes, requires and so on) in the constraint name, so
you can search the Name field to find groups of constraints having
the same constraint type, for example, all the exclude
constraints.

Explanation Enter an explanation of how the constraint works.

You should enter explanations that help you to locate the
constraint using the Find button. For example, consider including
information that uniquely identifies the constraint, such as item
names, so you can search the Name and Explanation fields to find
a specific constraint.

Rule Statement Displays the constraint statement that you built.

Start Date Optionally, specify a start date on which the constraint becomes
effective.

End Date Optionally, specify an end date after which a constraint becomes
inactive.

Active Select this checkbox to activate the constraint, so it is used to
compute solutions.

Use this feature in the current work space to simulate the
behavior of constraints that will have a start date, end date, or
both when you release the product. You can also use this feature
to deactivate a constraint but retain it in a released version of the
product.
Product Administration Guide Version 7.8, Rev. B 241

Siebel Configurator Rule Assembly Language ■ Creating Constraints Using the Advanced
Constraint Template
The Advanced Constraint Template is intended primarily for upgrade users who want to edit the rules
in models created in release 6.x.

You must manually enter the path to items when using this template. Table 27 provides examples of
paths.

When you create a constraint and save it using this template, the Constraints view displays the
constraint syntax in the Constraint field. The Constraints view capitalizes the first letter of operator
names in the constraint for display purposes only. Operator names are case-sensitive, and the
Constraints view stores them in the correct, format.

Observe the following guidelines when writing paths:

■ The @ sign specifies the instance of the product or group of products on which the constraint is
defined. Use the @ sign at the beginning of paths that refer to items inside the structure of a
customizable product.

■ The $ refers to a special object called the basket that is associated with each customizable
product. This object maintains a non-hierarchical, flat view of the whole customizable product.
Use the $ at the beginning of a path to specify links and resources. Since links and resources are
defined for the whole customizable product, they are stored in the basket.

Upgrade Users. Users upgrading from release 6.x will have rules containing paths that include
syntax such as $.[product]. These paths should function normally. However, you should avoid
using this syntax to create new rules. This syntax can cause solutions that contain unintended
instances of products.

■ Use periods (.) to specify the next property in the path. A property can be a relationship name
or attribute name. Do not put spaces before or after the period.

■ Use parentheses immediately after a relationship name to specify a subset of the items in a
relationship. Parentheses act as a filter. The most common use for parentheses is to specify a
subclass within the relationship. Do not put a period before the parentheses. For example
@.[P]([X]).[Color] refers to the Color attribute of all the products in subclass X within
relationship P.

Table 27. Examples of Paths

Path Explanation

@.[Relationship A]([Product SubClass]) All the products in SubClass in Relationship A.

@.[Relationship A]([Product 1]).[Color] The color attribute of all the instances of Product 1
in Relationship A.

@.[Relationship A].[Color] The Color attribute of all the products in
Relationship 1.

$.[Resource 1] Resource 1.

$.[Link 1] Link 1.
Product Administration Guide Version 7.8, Rev. B242

Siebel Configurator Rule Assembly Language ■ Creating Constraints Using the Advanced
Constraint Template
■ Enter names exactly as they are displayed in the lists where they were defined. Do not use
display names. You can use subclass names to filter products within a relationship even though
the subclass names do not display in the Structure view.

■ The path syntax always refers to the actual set of items specified in the path, however many
instances are present. For example, @.[X]. [Color] refers to the color attribute of all the
instances of products actually present in relationship X in a given configuration. A path only
refers to actual instances, not the possible instances as defined by cardinality settings.

■ If you create a constraint containing a path to location that contains no items, the constraint is
ignored until items are present.

■ All paths you specify in rules must be unique and unambiguous. For example, if you have multiple
relationships with the same name, paths to them may be ambiguous. If this occurs, use the
Assisted Advanced Constraint template to write rules. This template uses underlying, unique
identifiers to identify items.

■ The maximum length of a constraint is 900 characters. The UI allows rules that are longer, but
they cannot be stored in the database. Using Siebel Tools, you can revise the UI to enforce the
900 character limit. See “Enforcing the Field Length for Entering Advanced Rules” on page 355.

To create a constraint using the Advanced Constraint Template

1 Navigate to the Administration - Product screen.

2 Select and lock the desired customizable product or product class.

3 Navigate to the Constraints view for the Work Space version.

4 Click New Constraint.

The Pick a Constraint list appears.

5 In the Pick a Constraint list, select the Advanced Rule template, and click Continue.

The Rule Statement and “Insert a” tabs appear.

6 Select operators and arguments from the displayed lists to build a constraint.

The operators list contains all the operators in the Rule Assembly Language. The arguments list
changes depending on the operator you select and contains all the items in the customizable
product. Use the Compound Field button to create sub-expressions.

7 Click Save Constraint to save the constraint.

The Save Rule form appears.
Product Administration Guide Version 7.8, Rev. B 243

Siebel Configurator Rule Assembly Language ■ Managing Constraints Written in Rule
Assembly Language
8 Fill out the fields in the Save Constraint form, and then click Save. Some fields are described in
the following table.

9 From the Constraints List menu, select Validate.

This starts a configuration session. Verify that the new rule works correctly.

Managing Constraints Written in Rule
Assembly Language
Use the same procedures for copying, editing, and deleting constraints written in Rule Assembly
Language that you use for constraints written using constraint templates.

Field Comments

Name Enter a name for the constraint.

You should use names that help you to locate the constraint using
the Find button. For example, consider including the constraint
type (excludes, requires and so on) in the constraint name, so
you can search the Name field to find groups of constraints having
the same constraint type, for example, all the exclude
constraints.

Explanation Enter an explanation of how the constraint works.

You should enter explanations that help you to locate the
constraint using the Find button. For example, consider including
information that uniquely identifies the constraint, such as item
names, so you can search the Name and Explanation fields to find
a specific constraint.

Rule Statement Displays the rule statement that you built.

Start Date Optionally, specify a start date on which the constraint becomes
effective.

End Date Optionally, specify an end date after which a constraint becomes
inactive.

Active Select this checkbox to activate the constraint, so it is used to
compute solutions.

Use this feature in the current work space to simulate the
behavior of constraints that will have a start date, end date, or
both when you release the product. You can also use this feature
to deactivate a constraint but retain it in a released version of the
product.
Product Administration Guide Version 7.8, Rev. B244

Siebel Configurator Rule Assembly Language ■ About Specifying Data in Rule Assembly
Language
You can modify the Constraints list to display the RAL version of each constraint you create using
constraint templates. This is a useful way to learn RAL and to understand more fully how constraint
templates work. To modify the Constraints list, see “Displaying RAL in the Constraints View” on
page 356.

About Specifying Data in Rule Assembly
Language
This topic describes how to specify numbers, strings, names, data types, and property types in Rule
Assembly Language.

Numbers
You can use both integers and floating point numbers. Floating point numbers contain a decimal
point.

■ Example of integers: 1, 100, -239

■ Example of floating point: 3.14, 1.0, 10.567

Strings
Enclose strings in double quotes. For example:

"Parker Data Systems recommends a DSL modem"

White space in a string is treated as a character. Use a back-slash (\) as an escape character to
include double quotes or a back-slash in a string. For example:

"Install these fonts in C:\\psfonts on your system"

If you put quotes around a number or anything else, it is treated as a string.

Links
Links store data extracted from Siebel databases. Links can also store the value of specific system
variables. Links can be used only to define conditions. Enclose link names in square brackets.

About Operators in Rule Assembly
Language
In expressions, operators define operations or relationships between operands. Operator names are
case sensitive. For example, Req(A, B) is not the same as req(A, B) and will result in a syntax error.

Most operator names are entirely lowercase. However, a few contain capital letters and are noted in
later topics.
Product Administration Guide Version 7.8, Rev. B 245

Siebel Configurator Rule Assembly Language ■ About Operators in Rule Assembly
Language
Some operators expect logical operands. Others expect numeric operands. When an operand is of a
type different than the operator expects, the Siebel Configurator engine forces the operand to the
correct type.

■ When integers are used where floating point is expected, integers are converted to their double-
precision floating point equivalent.

■ When floating point numbers are used where integers are expected, floating point numbers are
rounded to their nearest integer value.

■ Numbers greater than zero are interpreted by logical operators as true.

■ Numbers less than or equal to zero are interpreted by logical operators as false.

■ When used as numeric operands, true is 1 and false is 0.

The different types of Rule Assembly Language operators are described in the following topics:

■ “Data Operators in Rule Assembly Language” on page 247. Data operators support expressions
involving data that originates elsewhere in the Siebel application.

■ “Boolean Operators in Rule Assembly Language” on page 247. Boolean operators take logical
operands and return logical results. For example: and(A, B).

■ “Comparison and Pattern Matching Operators in Rule Assembly Language” on page 250. and pattern
matching operators take numeric operands and return logical results. For example: >(A, B).

■ “Arithmetic Operators in Rule Assembly Language” on page 251. Arithmetic operators take numeric
operands and return numeric results. They provide math operations such as addition and
subtraction.

■ “Attribute Operators in Rule Assembly Language” on page 253. Attribute operators do comparisons
and particular math operations on attribute values.

■ “Conditional Operators in Rule Assembly Language” on page 255. Conditional operators provide
conditional logical and numerical relationships, such as if-then-else.

■ “Special Operators in Rule Assembly Language” on page 255. Special operators interpret their
operators in a special way. Some provide access to the configuration session: for example, to
signal messages or retrieve property values. They also provide binding and iteration services.

■ “Customizable Product Access Operators in Rule Assembly Language” on page 259. Customizable
product access operators allow you to obtain information about other areas of the customizable
product.
Product Administration Guide Version 7.8, Rev. B246

Siebel Configurator Rule Assembly Language ■ About Operators in Rule Assembly
Language
Data Operators in Rule Assembly Language
Use the following operators, shown in Table 28, when working with Siebel data types.

Boolean Operators in Rule Assembly Language
When you specify this type of operator, the Siebel Configurator engine interprets it as true when the
item is in the solution, and as false if the item is not in the solution. If you specify a resource or an
arithmetic sub-expression as an operand, the Siebel Configurator engine interprets it as true if the
expression is greater than zero, and false if the expression is less than or equal to zero.

The requires operator (req()) is an example of this type of operator. The Siebel Configurator engine
interprets the following constraint to mean item A requires item B. In other words, if A is in the
solution, B must be in the solution.

req([A], [B])

The Siebel Configurator engine does not interpret this constraint to mean the current quantity of item
A requires the same quantity of item B. That constraint would be written as follows:

==([A], [B])

Table 28. Siebel Data Operators

Operator Syntax Properties

Number Number(A) Converts the operand to a number. Operand can be an
expression.

String String(A) Converts the operand to a string. Operand can be an
expression.

Date Date(A) Converts string to a date. Operand can be an expression.

Time Time(A) Converts the operand to a time. Operand can be an expression.

UtcDateTime UtcDateTime(A) Converts the operand to the UTC date and time. Operand can
be an expression.

DateTime DateTime(A) Converts the operand to a date and time. Operand can be an
expression. Not recommended for use. Use UtcDateTime
instead.

Currency Currency(A) Converts the operand to currency. Operand can be an
expression.

Phone Phone(A) Converts the operand to a phone number. Operand cannot be
an expression. Can be used only with Equals (==) and Not
Equal To (!=) operators to compare two phone numbers.
Product Administration Guide Version 7.8, Rev. B 247

Siebel Configurator Rule Assembly Language ■ About Operators in Rule Assembly
Language
The Boolean operators are shown in Table 29.

Table 30 provides the truth-state definition of how the Boolean operators work. The first two columns
contain the operands A and B. These could be items or arithmetic expressions, in which case A>0
means that A is in the solution.

More on the Requires Operator
The requires operator is not an incremental add. For example, you write the constraint req(A, B). If
the user picks A and there are no B’s in the solution, the Siebel Configurator engine will add at least
one B. The next time the user picks A, the engine does not add another B.

Table 29. Boolean Operators

Operator Syntax Properties

Not !(A) Logical negation. True when A is false and false when A is true. A
can be an item or sub-expression.

Requires req(A, B) A implies B. False only when A is true and B is false. B does not
require A. However, excluding B, excludes A. A and B can be items
or sub-expressions.

Excludes excl(A, B) A excludes B and B excludes A. Same as “not both A and B.” False
only when A and B are both true. A and B can be items or sub-
expressions.

And and(A, B) Both A and B. True only when both A and B are true. When used as
a top-level constraint, means that only solutions where both A and
B are true are allowed. A and B can be items or sub-expressions.

Inclusive Or or(A, B) Either A or B or both. False only when both A and B are false. A and
B can be items or sub-expressions.

Exclusive Or xor(A, B) A or B but not both. A and B must have opposite truth states. False
when A and B are either both true or both false. A and B can be
items or sub-expressions.

Logically
Equivalent

eqv(A, B) A requires B and B requires A. True only when A and B are either
both true or both false. A and B can be items or sub-expressions.

Table 30. Truth Table for Boolean Operators

A >0? B>0? req(A, B) excl(A, B) and(A, B) or(A, B) xor(A, B) eqv(A, B)

T T T F T T F T

T F F T F T T F

F T T T F T T F

F F T T F F F T
Product Administration Guide Version 7.8, Rev. B248

Siebel Configurator Rule Assembly Language ■ About Operators in Rule Assembly
Language
If you want to add a B each time an A is added, use the inc() operator.

More on the Logical Equivalence Operator
As a top level constraint, the logical-equivalence operator (eqv()) creates a mutually-requires
relationship between its operands. The operands can be either items or sub-expressions. For
example eqv([A], [B]) means than if item A is in the solution, then at least one item B must be in
the solution. Also, if item B is in the solution, then at least one item A must be in the solution. Note
that the relationship between [A] and [B] is noncumulative. (Use the inc() operator to create
cumulative-requires relationships.)

For example, the following constraint states that if the quantity of [A]>2, then [B] is required.

eqv(>([A],2),[B])

This expression constrains the solution as follows:

■ If there are more than two A’s in the solution, there must be at least one B.

■ If there cannot be any B’s in the solution, there cannot be any more than two A’s.

■ If B is in the solution, there must be more than two A’s.

■ If A is limited to two or less, B is excluded.

More on the Excludes Operator
As a top-level constraint, the excludes operator (excl(A, B)) creates a mutually exclusive
relationship. The expression excl([A], [B]) means that if item A is in the solution, item B cannot be
in the solution. It also means that if item B is in the solution, item A cannot be in the solution.

The exclude constraint can also be used with sub-expressions. For example, the following constraint
excludes item B when item A’s quantity is greater than 2. It also prevents item A from being greater
than 2 when item B is in the solution.

excl(>([A],2),[B])

Multiple Operands for Require and Exclude Operators
You can use multiple operands in requires and exclude constraints. For example, you could write the
following constraint:

excl([A],[B],[C])

This syntax is interpreted by the Siebel Configurator engine as if you had written two constraints:

excl([A],[B])

excl([A],[C])

In other words, [A] excludes both [B] and [C]. Note that [A] is the first operand in both the
constraints. The Siebel Configurator takes the first operand and creates expressions between it and
each remaining operands.
Product Administration Guide Version 7.8, Rev. B 249

Siebel Configurator Rule Assembly Language ■ About Operators in Rule Assembly
Language
This works the same way for require constraints:

req([A],[B],[C])

This syntax is interpreted by the Siebel Configurator engine as if you had written two constraints:

req([A],[B])

req([A],[C])

In other words, [A] requires both [B] and [C]. There is no limitation on the number of operands you
can use in this type of expression.

Comparison and Pattern Matching Operators in Rule
Assembly Language
Comparison operators expect numeric operands. This means when you specify an item or arithmetic
expression, the Siebel Configurator engine uses the quantity of the item or the value of the
expression. These operators produce a logical result. This means the operator evaluates and
compares the quantities of the operands and returns a true or false result.

The greater-than operator (>) is an example. The Siebel Configurator engine interprets the following
top-level constraint to mean the quantity of item A must be larger than the quantity of item B in the
solution. The Siebel Configurator engine enforces this constraint by adjusting the quantity of A or B
as needed to make sure that the constraint is always true.

>([A],[B])

When used as sub-expressions, comparison operators return true or false. For example, if the
quantity of item A in the solution is not greater than the quantity of item B, the example above
returns false. This is then acted on by the associated top-level expression.

Pattern matching operators compare two strings. You can test whether the strings are a match or a
mismatch. Pattern matching operators return true or false.

Comparison operators are shown in Table 31.

Table 31. Comparison and Pattern Matching Operators

Operator Syntax Properties

Greater than >(A, B) A and B can be items or sub-expressions.

Not less than >=(A, B) A and B can be items or sub-expressions.

Equals ==(A, B) A and B can be items or sub-expressions.

Not equal to !=(A, B) A and B can be items or sub-expressions.

Not greater
than

<=(A, B) A and B can be items or sub-expressions.

Less than <(A, B) A and B can be items or sub-expressions.
Product Administration Guide Version 7.8, Rev. B250

Siebel Configurator Rule Assembly Language ■ About Operators in Rule Assembly
Language
Multiple Operands for Comparison Operators
You can use multiple operands in constraints containing comparison operators. For example, you
could write the following constraint:

>([A],[B],[C])

This syntax is interpreted by the Siebel Configurator engine as if you had written two constraints:

>([A],[B])

>([A],[C])

Note that [A] is the first operand in both the constraints. The Siebel Configurator takes the first
operand and creates expressions between it and each remaining operands. There are no limitations
on the number of operands you can use in this type of expression.

Note that the expression are interpreted by the Siebel Configurator engine as pairs that always
include the first operand. This type of expression does not create implied constraints between other
operands. For example, you write the following constraint:

!=([A],[B],[C])

This constraint expression is interpreted as A !=B and A!=C. It does not imply that
B !=C.

Arithmetic Operators in Rule Assembly Language
Arithmetic operators expect numeric operands and produce a numeric result. They are most
frequently used in sub-expressions. The following top-level expression means that the quantity of
item C in the solution must be the same as the sum of the quantities of items A and B.

==(+([A],[B]),[C])

Selected sel(A) Returns true if A is positive, false if A is not. Same as >(A, 0). If
used as top-level expression, means that A must be in the
solution in any quantity. A can be an item or sub-expression.

Pattern match Like(A, B) Result is true when string A pattern-matches string B. Similar to
Siebel search specification. For example B could be “Pentium*”.
Note capitalization of operator. A and B must be constants. For
example, A and B cannot be attribute names.

Pattern
mismatch

NotLike(A, B) Result is true when string A does not pattern-match string B.
Similar to Siebel search specification. For example B could be
“Pentium*”. Note capitalization of operator. A and B must be
constants. For example, A and B cannot be attribute names.

Table 31. Comparison and Pattern Matching Operators

Operator Syntax Properties
Product Administration Guide Version 7.8, Rev. B 251

Siebel Configurator Rule Assembly Language ■ About Operators in Rule Assembly
Language
Assuming no other constraints on item A, B, or C; if you add A or B to the solution, then C will be
added as well to match the sum. If you add a large number of C’s, the Siebel Configurator engine
will add A and B in arbitrary quantities so that their sum equals the amount of C.

When used in sub-expressions, these operators should return a numeric result. If a sub-expression
returns a logical result, true is interpreted as a 1, and false is interpreted as a 0. In the example
above, if B is an expression that returns the logical result true, then the expression is equivalent to
the following:

==(+([A],1),[C])

Arithmetic operators are shown in Table 32.

Table 32. Arithmetic Operators

Operator Syntax Properties

Addition +(A, B) Sum of A and B. A and B can be items or sub-expressions. Result is
floating point if A or B is floating point.

Subtraction -(A, B) Subtracts B from A. A and B can be items or sub-expressions. Result
is floating point if A or B is floating point.

Negation -(A) Additive inverse of A. Uses only one operand. A can be an item or
expression.

Multiplication *(A, B) Product of A and B. Result is floating point if A or B is floating point.
A and B can be items or sub-expressions.

Division /(A, B) Quotient of A divided by B. Truncates ratio to integer if both A and
B are integers. Result is floating point if A or B is floating point. A
and B can be items or sub-expressions.

Modulo %(A, B) Remainder of A divided by B. For example, %(1900, 72) results in
28. If A or B is floating point, the value is first rounded to the
nearest integer; then the remainder is computed as for integers. A
and B can be items or sub-expressions.

Minimum min(A, B) Result is the smaller of A and B and is floating point if A or B is
floating point. A and B can be items or sub-expressions.

Maximum max(A, B) Result is the larger of A and B and is floating point if A or B is
floating point. A and B can be items or sub-expressions.
Product Administration Guide Version 7.8, Rev. B252

Siebel Configurator Rule Assembly Language ■ About Operators in Rule Assembly
Language
The following operators, shown in Table 33, also take numeric arguments and produce numeric
results. Use them to control numeric accuracy or change numeric characteristics.

Attribute Operators in Rule Assembly Language
Rule Assembly Language includes special operators for doing comparisons and particular math
operations on attribute values. These operators extract information about the attributes of all the
products that have been selected in a relationship. For example, you can determine the number of
relationship items that have been selected that have an attribute value greater than a specified
amount.

Attribute Comparison Operators
These operators return the number of relationship items that have been selected for which the
comparison is true. For example, you can use numAttr> to find out how many items with Length
greater than 5 feet in a relationship have been selected.

The operators count all the items selected from the relationship, not the number of different items.
In the preceding example, if the user selects two of the same item and enters a length greater than
5 feet, the numAttr> operator will return 2.

The operators take two arguments, A and B. Argument A is the full path from the root of the product
to the attribute. Argument B is the comparison value. This value can be of type Integer, Number,
Date, or Time. Type DateTime is not supported. Argument B can also be a sub-expression that
resolves to one of these data types.

In addition, for the numAttr== and numAttr!= operators, argument B can be a text string.

Table 33. Additional Arithmetic Operators

Operator Syntax Properties

Quantity qty(A) Result is the quantity of A rounded to nearest integer. For example,
if A is 6.7, returns 7. If A is 6.3, returns 6. A can be an item or sub-
expression. Useful only with resources.

Integer int(A) Truncates A down to an integer. For example, if operand is 6.7,
returns 6. A can be an item or sub-expression.

Float flo(A) Converts A to floating point. Same as multiplying operand by 1.0. A
can be a sub-expression. Not useful with resources.

Absolute value abs(A) Returns the absolute value of A. A can be an item or sub-expression.

Sign test sgn(A) Returns -1 if the quantity of A <0, 0 if A=0, 1 if A>0. A can be a sub-
expression.
Product Administration Guide Version 7.8, Rev. B 253

Siebel Configurator Rule Assembly Language ■ About Operators in Rule Assembly
Language
Use attribute comparison operators to create subexpressions that form conditions. Attribute
comparison operators are shown in Table 34.

You can use the numAttr operators to create “any/all” conditions in constraints involving attributes:

■ You create the condition “any instance of products in R has attribute A=X” as follows:

>=(numAttr==(@.[R].[A], X), 1)

■ You create the condition “all instances of products in R have attribute A=X” as follows:

==(numAttr==(@.[R].[A], X), @.[R])

For example, you want to write the constraint, when all the instances of products in P have attribute
A=X then exclude any instance of products in Q that have attribute B =Y. You would write this
constraint as follows:

excl(==(numAttr==(@.[P].[A], X), @[P]),

>=(numAttr(==(@.[Q].[B], Y), 1)))

Table 34. Attribute Comparison Operators

Operator
Syntax

Properties

Greater than numAttr>(A, B) Returns the number of items in the
relationship for which the value of
attribute A is greater than B.

Not less than numAttr>=(A, B) Returns the number of items in the
relationship for which the value of
attribute A is greater than or equal to
B.

Equals numAttr==(A, B) Returns the number of items in the
relationship for which the value of
attribute A is equal to B.

Not equal to numAttr!=(A, B) Returns the number of items in the
relationship for which the value of
attribute A is not equal to B.

Not greater
than

numAttr<=(A, B) Returns the number of items in the
relationship for which the value of
attribute A is less than or equal to B.

Less than numAttr<(A, B) Returns the number of items in the
relationship for which the value of
attribute A is less than or equal to B.
Product Administration Guide Version 7.8, Rev. B254

Siebel Configurator Rule Assembly Language ■ About Operators in Rule Assembly
Language
Attribute Arithmetic Operators
The arithmetic operators allow you to determine the maximum and minimum value of an attribute
for items that have been selected in a relationship. You can also sum the values of the attributes.

The operators take one argument, which is the path to the attribute. Attributes can be of type
Number, Integer, Date, or Time. DateTime and Text are not supported. If the type is Date or Time,
minAttr returns the time or date closest to the present. The maxAttr operator, returns the time or
date furthest from the present.

Use attribute arithmetic operators to create subexpressions that form conditions. Attribute
arithmetic operators are shown in Table 35.

Conditional Operators in Rule Assembly Language
Conditional logic operators are shown in Table 36.

Special Operators in Rule Assembly Language
Special operators provide functions that manipulate the Siebel Configurator engine directly, rather
than the underlying customizable product. They also provide defined types of access to the
components of a customizable product.

The inc() operator is used to implement provide and consume constraints. It has two important
characteristics:

Table 35. Attribute Arithmetic Operators

Operator Syntax Properties

Minimum minAttr(A) For items selected from a relationship,
returns the smallest value for attribute A.

Maximum maxAttr(A) For items selected from a relationship,
returns the largest value for attribute A.

Sum sumAttr(A) Returns the sum of attribute A for all items
selected from a relationship.

Table 36. Conditional Operators

Operator Syntax Properties

Logical
conditional

if (A, B, C) If A then B, else C. If C is not specified, it defaults to true (1).

Numeric
conditional

?(A, B, C) If A then B, else C. If C is not specified, it defaults to false (0).
This means the expression returns false if A is false and C is not
specified. Rarely used.
Product Administration Guide Version 7.8, Rev. B 255

Siebel Configurator Rule Assembly Language ■ About Operators in Rule Assembly
Language
■ It returns a null value.

■ When it is evaluated in a subexpression, this causes the Siebel Configurator engine to contribute
the value requested.

This means that writing constraints with the inc() operator as a subexpression based on a condition
do not work. The contribution will always occur. For example, you write the following constraint.

req(X, inc(Y, Z))

The Siebel Configurator engine will contribute the value of Y to Z, regardless of whether X is present
in the solution. This is because the Siebel Configurator must evaluate the two arguments to req()
before determining what action to take. Evaluating the inc() argument causes the engine to
contribute the value of Y to Z.

In addition, regardless of the value of X, the inc() argument always evaluates to null, which makes
the constraint meaningless.

To write constraints that contribute conditionally, use the numeric conditional operator, ?().

Special operators are shown in Table 37 on page 256.

Table 37. Special Operators

Operator Syntax Properties

Constraint con(A) Makes A a constraint. Returns no result. A can be an
item or sub-expression. Use to make sub-expressions
into constraints. Redundant for top-level expressions.
Rarely used.

Increment inc(A,B) Each A requires a B. A can be a number, item, or sub-
expression but must resolve to a number. B must be an
item and cannot be a sub-expression. inc(1, B)
increments the quantity of B in the solution by 1. Use
inc(A,B), where A and B are items, to implement
cumulative require constraints.

Message msg(A) “string” Causes message signal when A is true (selected).
User-defined message displays in user message area.
Returns no result. A can be an item or sub-expression.

Check chk(A) “string” Causes a message-signal when A is false (not
selected). User-defined message displays in user
message area. Returns no result. A can be an item or
sub-expression.
Product Administration Guide Version 7.8, Rev. B256

Siebel Configurator Rule Assembly Language ■ About Operators in Rule Assembly
Language
More on withTuples
The withTuples operator lets you provide more than one set of operands to a constraint. It has the
following syntax:

withTuples (((A, B, C),(D,E F),...), ruleA(%1,%2,%3,...),...)

For example, you have the following two constraints:

req(and([A],[B]),excl([C],[G]))

Preference prefer(expression,
priority)

The expression is enforced as a constraint only if it
does not conflict with any other constraint type or with
any user selections. The priority determines the order
in which multiple preference constraints for an item
are evaluated. Preference constraints with priority 0
that apply to a specific item are evaluated first. Those
with priority 1 that apply to that item are evaluated
next, and so on.

With
Members

withMembers(A,B) Enforce the constraint B only on instances in A.

This operator allows you to move the context for
enforcement of a constraint from the root of a
customizable product to a location within it. For
example, A can be a path to a relationship within the
customizable product. This causes the constraint B to
be enforced only within that relationship.

A can be a relationship, a class within a relationship, or
a single product. B can be any expression or
constraint.

In B, the path must be specified relative to the path in
A. For example, if A specifies relationship R1, the paths
to items in B, must be specified relative to R1, not the
product root. When specifying items in B, do not
include any part of the path specified in A.

When adding items to B using the pick applet in the
Assisted Advanced Constraint template, you must
manually edit the item paths in B to make them
relative to the path specified in A.

With Tuples withTuples (((A, B, C),
(D,E F), ...), ruleA(%1,
%2, %3,...),...)

This operator allows you to specify multiple sets of
operands for one or more constraints. The first
operand in a group is assigned to the variable %1, the
second to %2, and so on. You can specify more than
one constraint.

Table 37. Special Operators

Operator Syntax Properties
Product Administration Guide Version 7.8, Rev. B 257

Siebel Configurator Rule Assembly Language ■ About Operators in Rule Assembly
Language
When both A and B are present, C and G exclude each other

req(and([D],[E]),excl([F],[G]))

When both D and E are present, F and G exclude each other.

The above two constraints can be thought of as one require constraint that has two sets of operands.
The withTuples operator lets you write the constraint in this fashion. This makes constraint
maintenance easier. If the operands change, you can edit them in one location, rather than having
to locate all the constraints in which they appear. Here is one way to combine the two constraints
using withTuples:

withTuples((([A],[B],[C]),([D],[E],[F])),req(and(%1,%2),

excl(%3,[G]))

Notice that each group of operands is enclosed in parentheses. Also notice that the whole section
where the operands are specified is itself enclosed in parentheses.

You can also use the withTuples operator to specify the operands for multiple constraints. For
example, you have the following two constraints:

req(and([A],[B]),[C])

inc([C], [Resource1])

If both A and B are present, C is required, and contribute the value of C to Resource1.

The above two constraints are different but they make use of the same operands. You could use the
withTuples operator to show that these two constraints use the same operands as follows:

withTuples((([A],[B],[C])),req(and(%1,%2),%3),inc(%3,[Resource1]))

More on withMembers
The withMembers operator shifts the context for application of a constraint from the root of the
customizable product to a specified location within the product. This means the constraint applies
only to the items in the specified path, rather than wherever these items appear in the product.

The withMembers operator adds no other functionality and does not alter the function of other
operators.

For example, you define Relationship A that contains only the customizable product desktop PC. The
desktop PC includes two relationships: CPU and Hard Drive. You want to write the constraint CPU
requires Hard Drive and enforce the constraint for each instance of the desktop PC. If the user adds
a CPU and hard drive to a desktop PC but later removes the hard drive, you want the user to receive
a configuration error for that PC.

You would write this constraint as follows:

withMembers(@.Relationship A, req(@.CPU, @.Hard Drive))

This constraint enforces “CPU requires Hard Drive” separately on each instance of desktop PC in
Relationship A. All the desktop PCs from Relationship A must have a hard drive if they have a CPU.
The constraint is not enforced for PCs that appear elsewhere in the customizable product other than
Relationship A.
Product Administration Guide Version 7.8, Rev. B258

Siebel Configurator Rule Assembly Language ■ Examples of Constraints Using Rule
Assembly Language
Customizable Product Access Operators in Rule
Assembly Language
Customizable Product access operators, shown in Table 38, allow you to obtain information about
other areas of the customizable product. For example, you can obtain the name of an item’s parent.

Examples of Constraints Using Rule
Assembly Language
This topic contains examples of how to use the Siebel Configurator Rule Assembly Language to create
constraints. Some of the constraints show item names consisting of both the product name and its
configuration ID (Cfg ID).

Basic Constraints
The following table shows how create basic constraints using Rule Assembly Language.

Table 38. Customizable Product Access Operators

Operator Syntax Properties

Product root root() Result is root of the customizable product. Takes no arguments.

Constraint
Type Advanced Rule Language

A requires B noncumulatively req(A, B)

A requires B cumulatively inc(A,B)

A excludes B excl(A,B)

A provides the amount B to C inc(*(A,B),C)

A consumes the amount B from C inc(*(A,-(B)),C)

A’s minimum quantity is B, enforced >=(A,B)

A’s maximum quantity is B, enforced <=(A,B)

A recommends B rec(req(A,B))
Product Administration Guide Version 7.8, Rev. B 259

Siebel Configurator Rule Assembly Language ■ Examples of Constraints Using Rule
Assembly Language
Boolean and Comparison Operators
The following table shows how to create constraints using Boolean and comparison operators.

Constraint Template Translations
Table 39 shows examples of the constraint templates translated into Rule Assembly Language.

Constraint
Type Advanced Rule Language

A AND B =C ==(and(A,B),C)

A OR B = C ==(or(A,B),C)

NOT (A = B) xor(A,B)

(A < B) requires C req(<(A,B),C)

(A <= B) requires C req(<=(A,B),C)

(A = B) requires C req(==(A,B),C)

(A != B) requires C req(!=(A,B),C)

(A >=B) requires C req(>=(A,B),C)

(A >B) requires C req(>(A,B),C)

(A + B) contributes to C inc(+(A,B),C)

(A - B) contributes to C inc(-(A,B),C)

(A * B) contributes to C inc(*(A,B),C)

(A/B) contributes to C inc(/(A,B),C)

(A MIN B) contributes to C inc(min(A,B),C)

(A MAX B) contributes to C inc(max(A,B),C)

Table 39. Constraint Template Translations to Rule Assembly Language

Template
RAL
Equivalent Explanation

Constrain con(>(Item A),1)) Constrain (quantity of
Item A> 1) to be true.

Constrain
Conditionally

if(>(Item A), 1), >=
(Item B), 2), excl(Item C, Item D))

When (quantity of
Item A> 1)(quantity of Item B >=
2), otherwise Selection of Item C
excludes selection of
Item D.

Constrain Product
Quantity

==(Item A, 2) The quantity of Item A = 2.
Product Administration Guide Version 7.8, Rev. B260

Siebel Configurator Rule Assembly Language ■ Examples of Constraints Using Rule
Assembly Language
Consume inc(*(Item A), -(1)), Resource B) Each Item A consumes 1 from
Resource B.

Exclude excl(Item A, Item B) Selection of Item A excludes
selection of Item B.

Exclude List excl(Item A, Item B, Item C)) Item A excludes (selection of Item
B, selection of Item C).

Message msg(>(Item A, 1)) When (Item A > 1), display this
constraint's description.

Preference prefer(Item A, 1) When possible, constrain Item A is
selected to be true with a priority of
1.

Provide inc(*(Item A), 1),
Resource B)

Each Item A provides 1 to Resource
B.

Recommends chk(req(Item A, Item B), "Item B is
recommended")

Selection of Item A recommends
selection of at least one Item B by
displaying "Item B is
recommended".

Requires req(Item A, Item B) Item A requires Item B.

Requires (Mutual) eqv(Item A, Item B) Item A requires Item B AND Item B
requires Item A.

Constrain Attribute
Value

==(@.[Class A]
([Item B]).[Day], "Monday")

The attribute Class A
“Item B” Attribute C = Monday.

Table 39. Constraint Template Translations to Rule Assembly Language

Template
RAL
Equivalent Explanation
Product Administration Guide Version 7.8, Rev. B 261

Siebel Configurator Rule Assembly Language ■ Examples of Constraints Using Rule
Assembly Language
Product Administration Guide Version 7.8, Rev. B262

19 Siebel Configurator Scripts
This chapter explains how to use the Scripts view to enhance the behavior of Siebel Configurator. To
use scripting events and methods you must be familiar with Siebel Visual Basic or Siebel eScript
programming.

This chapter includes the following topics:

■ “About Siebel Configurator Scripts” on page 263

■ “About Siebel Configurator Script Processing” on page 264

■ “About Product Names in Siebel Configurator Scripts” on page 266

■ “About Product Path in Siebel Configurator Scripts” on page 267

■ “Siebel Configurator Script Events and Methods” on page 268

■ “Creating Siebel Configurator Event Scripts” on page 283

■ “Creating Siebel Configurator Declarations Scripts” on page 284

■ “Reviewing the Siebel Configurator Script Log File” on page 285

■ “About Managing Siebel Configurator Scripts” on page 285

About Siebel Configurator Scripts
A script is a Siebel Visual Basic or Siebel eScript program that runs when a predefined event to which
it is assigned occurs during a configuration session. These events occur at specific points when
opening or closing a session or processing a user request. You can also place scripts in a declarations
area for use by other event-based scripts.

A script can refer to any product that has been added from the product table to a product with
components. These are called component products. Scripts can also be used to set attribute values
of component products and of the product with components, and of product classes. Scripts cannot
be used to refer to relationships or links.

NOTE: Scripting is not supported on the Product Administration business object. It is recommended
that you use the Siebel Business Application for product administration, and create scripts to work
with those products.

Scripts have full access to the Siebel API. You can use scripts to call Siebel business components and
to provide information to back-end databases through Siebel business services. For a description of
basic API methods, see Chapter 26, “Siebel Configurator API Reference.”
Product Administration Guide Version 7.8, Rev. B 263

Siebel Configurator Scripts ■ About Siebel Configurator Script Processing
In addition, several special Siebel Configurator methods are described in this chapter. These can be
included in scripts and allow you to obtain information about the current solution. You can also use
them to submit requests to the Siebel Configurator engine. For example, you can write a script and
insert it into an event that is called each time an item quantity changes in the current solution. When
the user selects or removes an item, this event is called and your script runs. The script can use
Siebel Configurator methods to determine the amount of the item or of other items in the current
solution and can submit a request to the Siebel Configurator engine to modify item amounts. The
script could also perform special computations or update an external application based on
information obtained from the Siebel Configurator methods.

The items and rules that comprise the product are called the declarative portion. The declarative
portion cannot be modified by scripts. For example, you cannot add or delete rules from a
customizable product using scripts.

Scripts are intended to add additional behaviors or features and can be used in several ways:

■ Arithmetic functions. You can use scripting to perform more complex mathematical operations
that cannot feasibly be created using configuration rules. For example, if you are configuring a
solution for a chemical manufacturing process, you can use calculations based on viscosity,
average ambient temperature, and desired throughput to arrive at the correct configuration of
pumps and other equipment.

■ External program calls. You can use scripts to make calls to external programs. For example,
you can pass information about the current session to external programs.

■ Accessing Siebel objects. You can use all the standard features of Siebel VB and Siebel eScript,
including reading and editing Siebel databases and calling Buscomps, BusObjects, and other
Siebel objects.

About Siebel Configurator Script
Processing
Several events control script processing:

■ The Cfg_InstInitialize event occurs when the user begins a configuration session and an instance
of the customizable product is created. This occurs when the user clicks Customize in the Quote
interface or when the user selects a customizable product for configuration in a Web page. This
event is called once at the beginning of the session. Scripts associated with this event are
processed after the declarative portion of the product is instantiated but before it is displayed to
the user.

■ The Cfg_ChildItemChanged event occurs each time the user selects or removes an item during
the configuration session. Scripts associated with this event are processed after the new solution
is created but before it is displayed to the user. If you insert a method to add or remove items
in this event, this causes another solution to be generated.
Product Administration Guide Version 7.8, Rev. B264

Siebel Configurator Scripts ■ About Siebel Configurator Script Processing
■ The Cfg_ItemChanged event occurs each time the user selects or removes an item during the
configuration session. Scripts associated with this event are processed after the new solution is
created but before it is displayed to the user. If you insert a method to add or remove items in
this event, this causes a second solution to be generated. The script associated with this event
must be associated with a component customizable product.

■ The Cfig_AttributeChanged event occurs each time the user selects or changes an attribute value
during the configuration session. Scripts associated with this event are processed after the new
solution is created but before it is displayed to the user. If you insert a method to add or remove
items in this event, this causes a second solution to be generated.

■ The Cfg_OnConflict event occurs when a conflict happens during the processing of a user request.
You can resolve the conflict by undoing the last request or by keeping the last request and
removing previous requests that conflict with it. Use this event to resolve conflicts without
prompting the user for action. This event is called after the new solution is created but before
calling Cfg_ChildItemChanged or Cfig_AttributeChanged. If you insert a method to add or
remove items in this event, this causes a second solution to be generated.

■ The Cfg_InstPostSynchronize event occurs when you select Save or Done to end the
configuration section. This event is called once at the end of the configuration session.

You can write event scripts or declarations scripts. Declarations scripts contain methods that can be
called by event scripts and other declarations scripts.

A script instance is created at the beginning of the associated event and destroyed at the end of the
script execution. Variables defined in the declarations section of the script are meaningful only during
script execution and do not persist after the script exits. For example, if a script is called because an
item has changed, its variable values do not persist. The next time an item changes and the script
runs again, the values of variables from the first script execution are not available.
Product Administration Guide Version 7.8, Rev. B 265

Siebel Configurator Scripts ■ About Product Names in Siebel Configurator Scripts
Figure 12 shows when each event occurs during a configuration session. The Cfg_Instinitialize event
occurs at the beginning of the configuration session. When the user picks an item, a new solution is
generated and new baselines are set. Then the Cfg_On_Conflict event is called if there is conflict.
Otherwise the Cfg_ChildItemChanged, Cfg_ItemChanged, and Cfg_AttributeChanged events are
called. When the user clicks Save, Done, or updates the quote, the Cfg_InstPostSynchronize event
is called.

About Product Names in Siebel
Configurator Scripts
Several scripting methods have product name as an argument. Product name in this context means
the name of a component product you have added from the product table to a customizable product.
You must specify product names in a way that makes them unique. You do this by specifying the
product name, vendor name, vendor location, and attribute values.

Figure 12. Order of Event Processing
Product Administration Guide Version 7.8, Rev. B266

Siebel Configurator Scripts ■ About Product Path in Siebel Configurator Scripts
Specify product names using the following syntax:

{ProductName; VendorName; VendorLocation}; AttributeName1=Value1;
AttributeName2=Value2; ...

Observe the following guidelines when specifying product names:

■ ProductName is required. All other arguments are optional.

■ The order of items in the name is important. ProductName must be followed by VendorName.
VendorName must be followed by VendorLocation. You cannot specify ProductName followed by
VendorLocation.

■ If ProductName is unique, you do not have to include VendorName or VendorLocation, and you
do not need to enclose ProductName in braces.

■ Do not use the sequence #1 inside the product path. This sequence is invalid. For example, the
following product path will not work: $.[EXH SLCT-#1101 10X10 INLINE]#1.[CARPET, SPECIAL
CUT (EX SEL10x10)]#[CARPET, SPECIAL CUT (EX SEL10x10)]

The following are examples of product names:

■ {ProductName; VendorName}; AttributeName=Value

■ ProductName; AttributeName=Value

■ ProductName

About Product Path in Siebel
Configurator Scripts
The product path is the path from the root of a product with components to a component product
within it. The path is a string that specifies the product with components root and all relationship
names leading to the component product. All or part of the product path are arguments to several
scripting methods.

The syntax for product paths is as follows:

$.[Root Product]#1.[Relationship]#[Component Product]

Observe the following guidelines for product paths:

■ The $ before .[Root Product] refers to a special configuration object called the basket. The basket
contains all the objects in the product with components.

■ The #1 after [Root Product] refers to the first instance of the root product in the basket.

■ Use a dot (.) to specify a relationship.

■ Use a # to specify a component product within a relationship.

■ Enclose relationship names and component product names in square brackets
([]). Use product name syntax to specify the name of a component product.

■ All paths must end with a product name.
Product Administration Guide Version 7.8, Rev. B 267

Siebel Configurator Scripts ■ Siebel Configurator Script Events and Methods
Figure 13 shows the structure of product with components CP1.

Product with components CP1 has two relationships R1 and R2. Relationship R1 contains two
component products P1 and P2. Relationship R2 contains the product with components CP2. CP2
contains one relationship R3, which has two component products P3 and P4.

The product paths for this product with components are as follows:

■ For P1. $.[CP1]#1.[R1]#[P1]

■ For P2. $.[CP1]#1.[R1]#[P2]

■ For CP2. $.[CP1]#1.[R2]#[CP2]

■ For P3. $.[CP1]#1.[R2]#[CP2].[R3]#[P3]

■ For P4. $.[CP1]#1.[R2]#[CP2].[R3]#[P4]

Here are examples of using product paths in script methods:

1 To add 1 P1:

AddItem(“$.[CP1]#1”, “R1”, “P1”, “1”)

2 To add 1 P3:

AddItem(“$.[CP1]#1.[R2]#[CP2]”, “R3”, “P3”, “1”)

3 To reduce the quantity of P3 to 0:

RemoveItem(“$.[CP1]#1.[R2]#[CP2].[R3]#[P3]”)

4 To set the attribute Color to Red for P1:

SetAttribute(“$.[CP1]#1.[R1]#[P1]”, “Color”, “Red”)

Siebel Configurator Script Events and
Methods
Configuration constraint scripts use the following events and methods:

Figure 13. Product with Components Structure
Product Administration Guide Version 7.8, Rev. B268

Siebel Configurator Scripts ■ Siebel Configurator Script Events and Methods
■ “Cfg_InstInitialize Event” on page 269

■ “Cfg_ChildItemChanged Event” on page 270

■ “Cfg_AttributeChanged Event” on page 272

■ “Cfg_InstPostSynchronize Event” on page 274

■ “Cfg_ItemChanged Event” on page 275

■ “Cfg_OnConflict Event” on page 276

■ “GetInstanceId Method” on page 277

■ “GetCPInstance Method” on page 278

■ “GetObjQuantity Method” on page 280

■ “AddItem Method” on page 281

■ “RemoveItem Method” on page 281

■ “SetAttribute Method” on page 282

Cfg_InstInitialize Event
This event is called once for each session after the customizable product is instantiated and before
any user requests are accepted. The customizable product selection pages do not display until all
scripts associated with this event have finished.

Syntax
Cfg_InstInitialize (RootProd as String)

Returns
None.

Usage
Use this event to store global variables that will be reused, such as BusObjects and BusComps. This
event is also useful for reading information from external sources such as forms or SmartScript.

The Cfg_InstInitialize event is always triggered for Root Customizable Products. However, it can also
be triggered for child customizable products under the scenarios described here. For example, you
have the following product structure.

Root Customizable Product

|_Relationship

Argument Description

RootProd String. The name of the customizable product.
Product Administration Guide Version 7.8, Rev. B 269

Siebel Configurator Scripts ■ Siebel Configurator Script Events and Methods
 |_Child Customizable Product

When the default cardinality on the relationship is greater than 0 (that is, a child customizable
product is initialized as part of the root customizable product) and the user customizes the root
customizable product, the following events are triggered:

■ For the root customizable product: Cfg_InstInitialize - Root CP

■ For the child customizable product: Cfg_InstInitialize - Root CP

NOTE: Cfg_InstInitialize - Root CP means that this event is triggered when it is defined with the
root product = Root CP.

When the default cardinality on the Relationship is set to 0 (that is, a child customizable product is
not initialized as part of the root customizable product) and the user customizes the root
customizable product, the following event is triggered:

For the root customizable product: Cfg_InstInitialize - Root CP

If you try to add the child customizable product manually after the configuration session is loaded
then Cfg_InstInitialize - Root CP is not triggered for the child customizable product.

Cfg_ChildItemChanged Event
After a user request is processed and the Siebel Configurator engine computes a new solution, this
event is called for the product root. The event returns a property set containing all the products
whose quantities have changed.

This event is also called if the user changes an item’s quantity and the Request Conflict dialog box
displays:

■ If the user selects OK in the dialog box, this submits a request that reverses the last request.
Since this revises the item’s baseline quantity, the event is called for the item.

■ If the user selects Cancel, previous conflicting requests are removed from the session. Since the
current baseline values do not require revision, the event is not called for the item.

This event does not return items for which only attribute values have changed. For example, if the
total number of 100 GB disk drives in a solution changes, this event returns a property set containing
the 100 GB disk drive because the item quantity changed.

If the user enters or selects 10 feet as the desired value of the length attribute for power supply
wiring, the returned property set does not contain power supply wiring since this is an attribute
change.

In the selection pages for a customizable product, this event is called when the user selects an item.
It is also called when the user increases or decreases the quantity of an item. This event is called
before the Cfg_ItemChanged event.

Syntax
Cfg_ChildItemChanged (ChangedItem as Property Set)
Product Administration Guide Version 7.8, Rev. B270

Siebel Configurator Scripts ■ Siebel Configurator Script Events and Methods
The ChangedItem argument is passed as type PropertySet. This is a named XML element:

<ChangedItem ObjName= “objname” OldQty= “oldqty”
NewQty= “newqty”/>

The properties of this XML element are defined in the following table:

Several Siebel API-related methods are needed to read data from the property set:

■ GetChildCount(). Returns the total number of changed items in the property set. Use this
method to set the counter for a while-loop that reads the property set.

■ GetChild(n). Returns the nth record in the property set. Use this method within a while-loop to
read records from the property set.

■ GetProperty(“argument”). Returns the value of argument. Allowed arguments are ObjName,
OldQty, and NewQty. Arguments must be in quotes. Use this method to read the property values
from each record in the property set.

Returns
None

Usage
Use this event to determine what changes have been made to products in the solution and to submit
additional requests as needed. For example, you could track the memory requirements for software
the user selects and submit requests to add the correct amount of RAM to a computer configuration.

When you submit a request that changes item quantities, the submission causes the event to be
called and the script runs again. Be sure to insert logic in the script that prevents an infinite loop of
request submissions.

Example
The following Siebel Visual Basic example writes to a file the item name, the old quantity, and the
new quantity of all the items whose quantities change in each solution.

Sub Cfg_ChildItemChanged (ChangedItem As PropertySet)
dim psItem as PropertySet
dim n as Integer
dim nCnt as Integer
dim sObjName as String
dim sOldQty as String

Property Description

ObjName String. The item name.

OldQty String. The item quantity prior to the request.

NewQty String. The new baseline item quantity.
Product Administration Guide Version 7.8, Rev. B 271

Siebel Configurator Scripts ■ Siebel Configurator Script Events and Methods
dim sNewQty as String
dim sMsg as String
dim hndl as Long

hndl = Freefile
REM use a relative path to open cfgtest.log
Open "..\cfgtest.log" for append as #hndl
nCnt = ChangedItem.GetChildCount()
For n = 0 to (nCnt -1)

set psItem = ChangedItem.GetChild(n)
With psItem

sObjName = .GetProperty("ObjName")
sOldQty = .GetProperty("OldQty")
sNewQty = .GetProperty("NewQty")

End With
sMsg = "ObjName = " & sObjName
sMsg = sMsg & "; OldQty = " & sOldQty
sMsg = sMsg & "; NewQty = " & sNewQty
Write #hndl, sMsg
set psItem = Nothing

Next
Close #hndl

End Sub

Cfg_AttributeChanged Event
After a user request is processed and the Siebel Configurator engine computes a new solution, this
event is called for the product root. The event returns a property set containing all the products
whose attributes have changed.

This event is also called if the user changes an item’s attribute and the Request Conflict dialog box
displays:

■ If the user selects OK in the dialog box, this submits a request that reverses the last request.
Since this revises the item’s baseline attribute value, the event is called for the item.

■ If the user selects Cancel, previous conflicting requests are removed from the session. Since the
current baseline values do not require revision, the event is not called for the item.

In the selection pages for a customizable product, this event is called when the user enters or
changes an attribute value.

Syntax
Cfg_AttributeChanged (ChangedAttribute as Property Set)

The ChangedAttribute argument is passed as type PropertySet. This is a named XML element:

<Id ObjName =“objname”>

<AttName = “attribute name” OldVal= “old value”
NewVal= “newvalue”>
Product Administration Guide Version 7.8, Rev. B272

Siebel Configurator Scripts ■ Siebel Configurator Script Events and Methods
...

</Id>

The properties of this XML element are defined in the following table:

Several Siebel API-related methods are needed to read data from the property set:

■ GetChildCount(). Returns the total number of changed items in the property set. Use this
method to set the counter for a while-loop that reads the property set.

■ GetChild(n). Returns the nth record in the property set. Use this method within a while-loop to
read records from the property set.

■ GetProperty(“argument”). Returns the value of argument. Allowed arguments are ObjName,
OldQty, and NewQty. Arguments must be in quotes. Use this method to read the property values
from each record in the property set.

■ GetType(). Retrieves the object ID of the item for which the attribute was changed.

Returns
None

Usage
Use this event to determine what changes have been made to product attributes in the solution and
to submit additional requests as needed. For example, you could track the attributes selected for a
product and submit requests based on them.

Example
The following example, writes to a file the item name, the old attribute value, and the new attribute
value of all the items whose attribute values change in each solution.

{
var item;
var log = Clib.fopen("c:\\attchgd.log", "a");

 var id = ChangedAttribute.GetType();
Clib.fputs(id, log);

Property Description

ObjName String. The item name.

AttName String. The attribute name.

OldVal String. The attribute value prior to the request.

NewVal String. The new baseline attribute value.

Id String. The object ID of the item whose attribute
value has changed.
Product Administration Guide Version 7.8, Rev. B 273

Siebel Configurator Scripts ■ Siebel Configurator Script Events and Methods
var nCnt = ChangedAttribute.GetChildCount();
Clib.fputs(nCnt, log);

for (var i = 0; i<ChangedAttribute.GetChildCount(); i++)

 {
item = ChangedAttribute.GetChild(i);
var attName = item.GetType();
var oldV = item.GetProperty("OldVal");
var newV = item.GetProperty("NewVal");
var s = "AttName = " + attName;
s = s + "; OldVal = ";
s = s + oldV;
s = s + "; NewVal = ";
s = s + newV;
Clib.fputs(s, log);

}
Clib.fclose(log);

}

Cfg_InstPostSynchronize Event
This event is called for the product root after the user clicks Done in the selection pages to end a
configuration session. No further processing by the Siebel Configurator engine occurs in connection
with this event. Using this event to adjust item quantities or attribute values is not recommended.

NOTE: This event is not supported for asset-based ordering. For asset-based ordering the Product
Manipulation Toolkit Business Service (SIS OM PMT Service) handles the Synchronize call. For asset-
based ordering, use the PMT service methods and the asset-based ordering workflows to write
scripts.

Syntax
Cfg_InstPostSynchronize (RootProd as String)

Returns
None

Usage
Use this event to add or modify line item information before it is stored. You can also use this event
to modify pricing or do other activities associated with quote line items.

Argument Description

RootProd String. The name of the customizable product.
Product Administration Guide Version 7.8, Rev. B274

Siebel Configurator Scripts ■ Siebel Configurator Script Events and Methods
Cfg_ItemChanged Event
After a user request is processed and the Siebel Configurator engine computes a new solution, this
event is called for each component customizable product whose quantity has changed. The script
associated with this event must be associated with the component customizable product.

For example, CP1 is a customizable product. One of its component products is customizable product
CP2. A script inserted in the Cfg_ItemChanged event in CP2 runs when the quantity of CP2 changes
while CP1 is being configured.

To set up a Cfg_ItemChanged script for the component customizable product CP2 you must do the
following:

■ Select CP2 in the product table and lock its work space.

■ Open the script editor and select the Cfg_ItemChanged event.

■ Specify CP1 as the root product for the script.

■ Write the script, check its syntax, and save the script.

■ Release a new version of CP2.

This event provides a simple way to write scripts for a customizable product that run only when that
product is a component of another customizable product. This event is called after the
Cfg_ChildItemChanged event.

Upgrade users: Use the Cfg_ChildItemChanged event to obtain functionality similar to the
Cfg_ItemChanged event in release 6.x.

In the selection pages for a customizable product, this event is called when the user selects the
component customizable product. It is also called when the user increases or decreases the quantity
of that product.

Syntax
Cfg_ItemChanged (ProdName, OldQty, NewQty)

Items
Use this event only to write scripts in customizable products that will be components of other
customizable products.

Argument Description

ProdName String. The name of the component customizable product.
Use product name syntax

OldQty Integer. The component customizable quantity prior to the
request.

NewQty Integer. The new baseline quantity for the component
customizable product.
Product Administration Guide Version 7.8, Rev. B 275

Siebel Configurator Scripts ■ Siebel Configurator Script Events and Methods
Returns
Returns the component customizable product name, the quantity of it in the solution prior to the user
request, and the quantity after the user request. This event does not return changes in the quantity
of the products comprising a component customizable product.

Cfg_OnConflict Event
This event is called for the product root when the Siebel Configurator engine encounters a conflict
while computing a solution. A conflict is when a user action violates a constraint. The constraint can
be in the declarative portion of the product or can be a user pick.

When this event is called, if no script is defined, the application’s normal conflict resolution messages
display. Typically, the user must add or remove items to resolve the conflict. The user can retain the
last user-pick and undo a previous user-pick, or the user can undo the last user pick.

If a script is defined, you can resolve the conflict in the script. The application does not prompt the
user with a conflict message. Submitting a request in a script on this event is not recommended.

Syntax
Cfg_OnConflict (Explanation, Resolution)

Returns
Returns the application error message and accepts one of two values as output. The outputs are
forwarded to the Siebel Configurator engine and are used to resolve the conflict.

Usage
Use this event to manage conflict resolution in the background. For example, you can could create
If-then statements that pass one of the outputs depending on a configuration condition in the model.
If the conditions for handling the output do not exist, then passing no value causes the normal
conflict resolution message.

Argument Description

Explanation String. Passes in the application message explaining the conflict

Resolution String. Accepts as output one of the following values:

■ UndoLastRequest. This argument causes an undo of the last user request.

■ RemoveFailedRequests. This argument causes an undo on all user requests
that cause the last request to fail. The last request is retained.

If neither of the previous arguments is passed as output, the application presents
the user with the normal conflict messages.
Product Administration Guide Version 7.8, Rev. B276

Siebel Configurator Scripts ■ Siebel Configurator Script Events and Methods
OnAttributeSelected Event
This event is triggered when an attribute has been selected and the model update is about to occur.

Syntax
Cfg_AttributeSelected (SelectedAttribute)

Returns
None

OnChildItemSelected Event
This event is triggered before the Item is added to the Instance.

Syntax
Cfg_ChildItemSelected (SelectedItem)

Returns
None

GetInstanceId Method
This method returns the row ID of the product root in the source object, such as the quote or order.
The row ID of the product root will be different for each quote or order.

Syntax
GetInstanceId() as String

Items
Not applicable.

Returns
Returns the row ID of the customizable product root.

Argument Description

None
Product Administration Guide Version 7.8, Rev. B 277

Siebel Configurator Scripts ■ Siebel Configurator Script Events and Methods
GetCPInstance Method
This method returns the entire structure of a customizable product as a property set.

Syntax
GetCPInstance(ps)

Items
Not applicable.

Returns
Returns the structure of the customizable product as a property set. Depending on the structure of
the customizable product, the property set can be complex. To learn how to access the property set,
use the following JavaScript code to dump the property set to a file. You can then study the property
set structure to determine how to access it using a script.

/*

Use the PropertySetToFile(PropSet, fileName, title) API in your script.

Note that fileName must be double slashed, as demonstrated in the example below:

PropertySetToFile(InputsPS, "..\\temp\\testPSexport.txt", Inputs into “ +
MethodName);

This will write the property set to a text file in the Siebel temp directory.

*/

function PropertySetToFile (PropSet, fileName, title)

{

var file = Clib.fopen(fileName, "at");

LogData(("\n---"), file);

LogData(("Start Process " + Clib.asctime(Clib.gmtime(Clib.time()))), file);

LogData(title, file);

LogData("PROVIDED PROPERTY SET", file);

WritePropertySet(PropSet, file, 0);

Clib.fclose(file);

return (CancelOperation);

Argument Description

var ps = TheApplication().NewPropertySet();
Product Administration Guide Version 7.8, Rev. B278

Siebel Configurator Scripts ■ Siebel Configurator Script Events and Methods
}

function WritePropertySet(PropSet, file, Level)

{

if ((Level == "") || (typeof(Level) == "undefined")){

Level = 0;

}

var indent = "";

for (var x = 0; x < Level; x++){

indent += "\t";

}

var psType = PropSet.GetType();

var psValue = PropSet.GetValue();

LogData((indent + "Type: " + psType + " Value: " + psValue), file);

var propName = PropSet.GetFirstProperty();

while (propName != ""){

var propValue = PropSet.GetProperty(propName);

LogData((indent + propName + " = " + propValue), file);

propName = PropSet.GetNextProperty();

}

var children = PropSet.GetChildCount();

for (var x = 0; x < children; x++){

LogData((indent + "CHILD PROPERTY SET " + x), file);

WritePropertySet(PropSet.GetChild(x), file, (Level + 1));

}

}

function LogData(DataString, file)

{

try {

Clib.fputs((DataString + "\n"), file);
Product Administration Guide Version 7.8, Rev. B 279

Siebel Configurator Scripts ■ Siebel Configurator Script Events and Methods
Clib.fflush(file);

}

catch (e){

// no action

}

}

GetObjQuantity Method
This method returns the quantity of the specified component product in the current solution.

Syntax
GetObjQuantity (ProdName) as Integer

Items
Can be used only for component products within the customizable product.

Returns
Quantity of the component product in the current solution as an integer. If multiple instances of the
component exist, the quantity of all instances are added together and the sum is returned. For
example if there are two instances of an item one with quantity five and the other with quantity
three, the return is eight.

Example
This script fragment obtains the quantity of 10 GB Drive (vendor = Sony) in the current solution and
assigns it to the variable iItemQty.

Dim iItemQty as Integer

iItemQty = GetObjQuantity(“{10 GB Drive; Sony}”)

Argument Description

ProdName String. The name of the component product. Use product name
syntax to identity the component product.
Product Administration Guide Version 7.8, Rev. B280

Siebel Configurator Scripts ■ Siebel Configurator Script Events and Methods
AddItem Method
This method creates a new instance of an item and adds the specified quantity to the solution. For
example, Item A exists in the solution and has quantity three. You use AddItem to add two more
Item A to the solution. The new solution will contain two instances of Item A, one with quantity three,
and one with quantity two.

Syntax
AddItem (ParentObjPath, RelName, ProdName, Quantity) as Integer

Items
Can be used only for component products within the customizable product.

Returns
Returns the integration id of the item added if the add was successful. Returns 0 if the add fails.

Example
For an example of using AddItem, see “About Product Path in Siebel Configurator Scripts” on page 267.

RemoveItem Method
This method reduces the quantity of the specified item to 0 in the current solution. If multiple
instances of an item have the same path, the Siebel Configurator engine randomly picks one of the
instances and removes it.

NOTE: This method cannot be used to remove the item that the user has selected if the selection is
invalid. The best practice is to use alternative methods to prevent the user from selecting the invalid
product.

Argument Description

ParentObjPath String. The product path to, but not including, the relationship in which the
component product resides. Use product path syntax to specify the path. If the
component product is located at the product root, then specify the product root
as the ParentObjPath.

RelName String. The name of the relationship containing the component product you want
to add. If the component product is located at the product root, then specify the
customizable product name as the RelName.

ProdName String. The name of the product you want to add. Use product name syntax to
specify the product name.

Quantity String. The amount of the product you want to add.
Product Administration Guide Version 7.8, Rev. B 281

Siebel Configurator Scripts ■ Siebel Configurator Script Events and Methods
Syntax
RemoveItem (ObjPath) as Integer

Items
Can be used only for component products within the customizable product.

Returns
Returns 1 if the item removal was successful. Returns 0 if the removal fails.

Example
For an example of using RemoveItem, see “About Product Path in Siebel Configurator Scripts” on
page 267.

SetAttribute Method
This method sets the value of an attribute for an item in the customizable product. This method can
also be used to set attribute values for attributes of the customizable product. If multiple instances
of an item have the same path, the Siebel Configurator engine randomly picks one instance and
changes its attribute values.

Syntax
SetAttribute (ObjPath, AttName, AttVal) as Integer

For LOV domains, the AttValue must be one of the values in the list of values. Validation expressions
defined for LOV domains are ignored.

For range of value domains, the AttValue must be within the domain defined by the validation
expression.

Argument Description

ObjPath String. The full path of the component product you want
to remove. Use product path syntax to specify the path.

Argument Description

ObjPath String. The full path of the component product. For attributes of the customizable
product, specify the product root. Use product path syntax to specify the path.

AttName String. The name of an attribute of the component product or customizable product.

AttValue String. The value to which you want to set the attribute.
Product Administration Guide Version 7.8, Rev. B282

Siebel Configurator Scripts ■ Creating Siebel Configurator Event Scripts
Items
Can be used only for component products within the customizable product.

Returns
Returns 1 if setting the attribute was successful. Returns 0 if setting the attribute failed.

Example
For an example of using SetAttribute, see “About Product Path in Siebel Configurator Scripts” on
page 267.

Creating Siebel Configurator Event
Scripts
Event scripts run when defined events are called during a configuration session. You create an event
script by selecting an event method and writing the script within it.

Event scripts can call methods and objects defined in the Siebel API. They can also call methods
assigned to the declarations area.

To create an event script

1 Navigate to the Administration - Product screen.

2 Select and lock the desired product or product class.

3 Navigate to the Scripts view for the Work Space version.

4 In the Scripts list, add a new record and complete the necessary fields, described in the following
table.

5 Enter the script in the area in the Script Definition form.

The Script Definition form is located below the Scripts list.

Field Comments

Name Select the desired event.

If this is not the first script for this event, overwrite the event
name with a script name. All scripts for a customizable product
must have a unique script name.

Program Language If this is the first script you are creating for this product, select
Visual Basic or eScript.

If this is not the first script, and select the same programming
language used for previous scripts.

Root Product Select the current customizable product.
Product Administration Guide Version 7.8, Rev. B 283

Siebel Configurator Scripts ■ Creating Siebel Configurator Declarations Scripts
6 When you have finished entering the script, click Check Syntax.

If there are errors, they will display at the top of the Customizable Product Scripts form. Correct
any errors before saving the script.

7 In the Script Definition form, click Save.

Creating Siebel Configurator
Declarations Scripts
Declaration scripts are methods that you want to make available to event scripts or other declaration
scripts. Declaration scripts are stored in a common area accessible by event scripts. Declaration
scripts can call methods and objects defined in the Siebel API.

Use declaration scripts to write methods that are common to more than one event script. Instead of
repeating the method in each event script, you can write one declaration script and call it from within
the event scripts that use it.

To create a declarations script

1 Navigate to the Administration - Product screen.

2 Select and lock the desired product or product class.

3 Navigate to the Scripts view for the Work Space version.

4 In the Scripts list, add a new record and complete the necessary fields, described in the following
table.

5 Enter the script in the area in the Script Definition form.

The Script Definition form is located below the Scripts list.

6 When you have finished entering the script, click Check Syntax.

If there are errors, they will display at the top of the Customizable Product Scripts form. Correct
any errors before saving the script.

Field Comments

Name Choose “(declarations).”

If this is not the first declarations script, overwrite
“(declarations)” with a script name. All scripts for a customizable
product must have a unique script name.

Program Language If this is the first script you are creating for this product, select
Visual Basic or eScript.

If this is not the first script, and select the same programming
language used for previous scripts.

Root Product Select the current customizable product.
Product Administration Guide Version 7.8, Rev. B284

Siebel Configurator Scripts ■ Reviewing the Siebel Configurator Script Log File
7 In the Script Definition form, click Save.

8 From the Scripts view menu, select Validate.

This starts a configuration session. Verify that the new script works correctly.

Reviewing the Siebel Configurator Script
Log File
If a method within a script fails or the script contains syntax errors, you can obtain valuable
diagnostic information by reviewing the script log file.

To review the script log file

1 Navigate to \log\cfgscript.log. It is located in the Siebel installation directory.

2 Open the file with a text editor.

3 Locate the entries for the date and time the script ran.

About Managing Siebel Configurator
Scripts
You can manage scripts in the following ways:

■ “Editing Siebel Configurator Scripts” on page 285

■ “Deleting Siebel Configurator Scripts” on page 286

Editing Siebel Configurator Scripts
You can edit scripts by selecting the script in the Scripts view. If you edit declaration scripts, verify
that the changes do not adversely affect event scripts.

To edit a script

1 Navigate to the Administration - Product screen.

2 Select and lock the desired product or product class.

3 Navigate to the Scripts view for the Work Space version.

4 Highlight the script you want to edit.

The script displays in Script Definition form, located below the list of scripts.

5 In the Script Definition form, edit the script.
Product Administration Guide Version 7.8, Rev. B 285

Siebel Configurator Scripts ■ About Managing Siebel Configurator Scripts
6 When you have finished editing the script, click Check Syntax.

If there are errors, they will display at the top of the Customizable Product Scripts form. Correct
any errors before saving the script.

7 In the Script Definition form, click Save.

Deleting Siebel Configurator Scripts
After deleting a script, test the customizable product in validation mode to verify that the product
works correctly.

To delete a script

1 Navigate to the Administration - Product screen.

2 Select and lock the desired product or product class.

3 Navigate to the Scripts view for the Work Space version.

4 In the Scripts list, select the script you want to delete.

5 In the Scripts list, click Delete.

6 Open the Scripts view list menu and click Validate.

This starts a configuration session. Verify that the customizable product functions correctly.
Product Administration Guide Version 7.8, Rev. B286

20 Testing Products and Using
Workspace Projects
This chapter describes the two ways to test products:

■ Validation Mode. Allows you to test the product by working with the same Siebel Configurator
user interface that end users would use. This applies to products with components.

■ Scenario Tester. Allows you to test multiple scenarios for the product, which you create in
Workspace Projects view, and it returns the results in an XML file. This applies to products with
components and products with attributes.

This chapter includes the following topics:

■ “Testing a Product with Components in Validation Mode” on page 287

■ “About Scenario Tester and Workspace Projects” on page 289

■ “Process of Testing Products with Scenario Tester” on page 291

■ “Working with the Scenario XML File” on page 296

■ “Batch Validating Scenarios” on page 297

Testing a Product with Components in
Validation Mode
You can test a product with components in validation mode. This creates an instance of the product
with components and presents its selection pages. You can test configuration constraints, the user
interface, and pricing exactly as if you were a user.

Validation mode can create an instance of the product with components based on the work space or
on any released version of the product

Validation mode uses a specific quote with following name convention:

Customizable Product Validation Quote_[username]

For example, if the username is SADMIN, the quote must be named Customizable Product Validation
Quote_SADMIN.

NOTE: If you make any fields required in the Quote business component, create the quote manually
for each user (using the naming convention described here) and populate the required fields on each
Quote before validating customizable products for the first time.

Test the product with components in the following ways:

■ To test a specific group of configuration rules, set all the rules you do not want to test to inactive
and then go to validation mode to test the desired rules. Then activate configuration constraints
one at a time as needed and return to validation mode to test the result.
Product Administration Guide Version 7.8, Rev. B 287

Testing Products and Using Workspace Projects ■ Testing a Product with Components
in Validation Mode
■ If you have purchased Siebel Pricer, be sure to fully validate all component-based pricing
adjustments. If you are using automatic pricing updates, verify that selection pages redisplay
fast enough after each user action. If redisplay is too slow, consider switching to a base theme
for the user interface that uses manual price updates. When in validation mode, the application
uses the price list assigned to a special quote called Customizable Product Validation
Quote_[username]. You can test the product with multiple price lists by assigning each of the
price lists to this special quote.

■ Verify that user access is set up correctly for all the components of the product with components.
Do this by checking the categories to which the product with components and all its components
are assigned. Then check the access control groups assigned to these categories and associated
catalogs. Users who will configure the product must have access permission to the product and
all its components. You can check category assignments in the Administration - Product screen,
Category view or in Catalog Administration.

Validate a product with components at regular intervals while you are developing it. For example,
after you enter a block of related configuration rules or after customizing the selection pages, go to
validation mode and check your work.

If your products with components are complex, consider developing written test plans that exercise
all the configuration rules and all expected user behaviors. In particular, be sure to test for
unexpected or incorrect user behaviors in order to rule out unexpected responses from the Siebel
Configurator engine.

You enter validation mode by clicking the Validate button, which located in the views where you work
with products with components, such as the Product Versions view, and the Constraints view.

To test a product with components in validation mode

1 Make changes to the product with components.

For example, add configuration rules in the Constraints view.

2 Navigate to the Administration - Product screen, then the Product Definitions view.

3 In the Products list, select the desired product with components.

4 In the Versions list, select either the Work Space record or the record for a released version of
the product.

5 In the Versions list, click Validate.

The application creates an instance of the product and displays it in Siebel Configurator.

Testing Product with Components Pricing
If you want to test pricing, you must associate a price list with the Customizable Product Validation
Quote_[username] .quote. This is a special quote provided for validating products with components.

To test product with components pricing

1 Navigate to the Quotes screen.

2 In the Quotes list, query for the Customizable Product Validation Quote_[username] quote.
Product Administration Guide Version 7.8, Rev. B288

Testing Products and Using Workspace Projects ■ About Scenario Tester and Workspace
Projects
3 Assign the desired price list to the Customizable Product Validation Quote_[username] quote.

4 Navigate to the Administration - Product screen, then the Product Definitions view.

5 In the Versions list, select either Work Space or a released version of the product.

6 Click Validate.

The application creates an instance of the product and displays it in Siebel Configurator.

About Scenario Tester and Workspace
Projects
Scenario Tester allows you to test the validity of your customizable product or simple product with
attributes at any time that you specify (past, current, or future) and to create a number of quotes,
orders, and agreements that will be used to test your customizable product. Each quote, order,
agreement or asset is a scenario used for testing.

Before you test products using Scenario Tester, you must create a workspace project, which includes:

■ Contents list. Add the objects you want to test.

■ Scenarios list. Define the test Quotes, Sales Orders, Service Orders, and Agreements that you
are using to test these objects.

Working with Versioned and Unversioned Objects
Scenario Tester can test:

■ Versioned objects. You can test customizable products, classes, and attribute definitions.

■ If the objects are part of the active Workspace Project, Scenario Tester uses the version in
the Workspace Project, even if it is unreleased.

■ If objects are not part of the Workspace Project, Scenario Tester uses the released version
of the object.

NOTE: Scenario Tester uses objects that are not part of the Workspace Project if objects that
are part of the Workspace Project are dependent on them. For example, if you add a product
with attributes to the Workspace Project, but do not add the Class that the product inherits
its attributes, Scenario Tester uses the released version of that Class.

■ Unversioned objects. Scenario Tester tests the eligibility, compatibility, and pricing rules for
unversioned objects, using the Base Date to determine whether a particular item should be
retrieved.

Administering Data in Test Mode
Administering data in test mode allows the administrator to create data that use either unreleased
or future data. For example, in test mode, the administrator can enter a future price for an
unreleased product or future-effective product.

You work in slightly different ways in these two modes:
Product Administration Guide Version 7.8, Rev. B 289

Testing Products and Using Workspace Projects ■ About Scenario Tester and Workspace
Projects
■ Test mode. The mode that the application is in when the Use Project checkbox is selected for a
workspace project. This mode gives the administrator access to unreleased objects included in
the workspace project and other objects not in the workspace project based on Base Date.

■ Normal mode. The mode that the application is in when the Use Project checkbox is not selected
for a workspace project. The application uses released objects based on the system’s internal
date.

When you are administering a Workspace Project in test mode, you can see unreleased products and
tie them to other objects in the application for administration purposes, as follows:

■ Tying a Versioned Object to a Versioned Object. You can associate a versioned object with
another versioned object in test mode. An example is associating an attribute definition to a
product class.

■ Tying a Versioned Object to a Unversioned Object. You can view all unversioned objects
regardless of test date and whether you are in Test Mode. For instance, you can view all price list
items regardless of their effectivity dates and regardless of test date or mode. You can associate
versioned objects with unversioned objects as follows:

■ Price Lists, Cost Lists, Rate Lists, Aggregate Discounts, Discount Matrices, Eligibility
and Compatibility Rules, Bundled Products, Product Recommendations. In Test Mode,
the application shows records if the item has been added to the Workspace Project, and
shows records that are in effect on the test date if the item has not been added to the
Workspace Project. In Normal Mode, the application shows records for products or classes
that have released versions as of today.

■ CP Pricing Designer. In Test Mode, the application shows the component products of the
version added to the Workspace Project, and shows the version of the product that is in effect
on the Test Date if the item has not been added to the Workspace Project. In Normal Mode,
the application shows the union of all component products across versions of a customizable
product within the effective date period of the root customizable product price list item.

■ Catalog Product Items. In Test Mode, the application shows records if the item has been
added to the Workspace Project, and shows records that are in effect on the test date if the
item has not been added to the Workspace Project. In Normal Mode, the application shows
records for products or classes that have released versions as of today. The record counter
for products in a given category are based on today's date. While testing, you should run the
counter update periodically on the production environment.

■ Product Promotions. In Test Mode, the application allows the user to add products and
classes contained in a Workspace Project as products and classes covered by the promotion.
After testing, the user must ensure that the objects referred from the promotion are released
during the effectivity dates of the promotion, so there are no integrity problems to run-times
in Normal Mode.

■ Catalog Categories. This object is used based on effective dates. It behaves the same way
in Test Mode as in Normal Mode, because it does not have to associated with another object
to be used.

■ Compound Product Rules, Simple Validation Rules, Cardinality Rules, Smart Part
Numbers, Favorites, Attribute Adjustments, Data Validation Rules. These objects are
not supported by Scenario Tester.
Product Administration Guide Version 7.8, Rev. B290

Testing Products and Using Workspace Projects ■ Process of Testing Products with
Scenario Tester
Process of Testing Products with
Scenario Tester
To use Scenario Tester Project to test products, perform the following tasks:

■ “Defining a Workspace Project for Scenario Testing” on page 291

■ “Defining the Contents for Scenario Testing” on page 292

■ “Creating Scenarios for Scenario Testing” on page 293

■ “Validating Scenarios” on page 295

■ “Correcting Product Definitions and Retesting” on page 296

Defining a Workspace Project for Scenario Testing
The workspace project is a container that holds all the other information needed for scenario testing.
It also is used to specify the date that will be tested.

This task is a step in “Process of Testing Products with Scenario Tester” on page 291.

To define a workspace project for the scenario

1 Navigate to the Administration - Product screen, then the Workspace Projects view.

2 In the Workspace Projects list, add a new record and complete the necessary fields. Some fields
are described in the following table.

Field Comments

Name Enter a name for the scenario.

Effective Start Date Enter the date that is used to set the Start Date of the versions
released from the Workspace Project.

This value is also the date that the application uses to determine
what versions should be exported for dependent items when the
user chooses to export the full structure of the items in the
Workspace Project.
Product Administration Guide Version 7.8, Rev. B 291

Testing Products and Using Workspace Projects ■ Process of Testing Products with
Scenario Tester
Defining the Contents for Scenario Testing
When you define the contents for the scenario, you specify all the products, attributes, classes,
signals, and variable maps that will be tested.

For example, this list can include one customizable product plus all the component products, product
attributes, and product classes that are part of that customizable product. In more complex cases,
it can include several customizable products and component products, product attributes, and
product classes that are part of it.

This task is a step in “Process of Testing Products with Scenario Tester” on page 291.

Base Date Enter the date for the test. All the Quotes, Orders, and other
scenarios that you create will be tested using the released
versions, pricing, eligibility, compatibility, recommendations,
promotions, and other specifications effective on this date.

If this date is entered, it is used as the date for dependent items
for full structure export. If both Effective Starting Date and Base
Date are filled, Base Date is used, as long as the data is not in the
workspace itself.

Use Project Select this checkbox to enter test mode. For more information
about test mode and normal mode, see “Administering Data in Test
Mode” on page 289.

You must select this checkbox to display test quotes and other
test documents in the Scenarios view. If you uncheck it, these
test documents will disappear from Scenarios view.

When you select this check box, the application uses the items in
the Workspace Project as if they are currently active. The
Scenario Tester uses the workspaces of the items in the
Workspace Project as the active versions, allowing the user to test
them without releasing them.

Selecting this check box makes the Workspace Project active only
for the duration of the session for the current login.

The user can select this check box to associate items in the
Workspace project with one another without having to release
them.

If the user exports data, if the Use Projects flag is set, the objects
in this workspace are exported.

This field controls whether test documents are visible to the user.
When it is selected, the test documents become visible. When
not, the documents are not visible.

Field Comments
Product Administration Guide Version 7.8, Rev. B292

Testing Products and Using Workspace Projects ■ Process of Testing Products with
Scenario Tester
To define the contents for the scenario test

1 Navigate to the Administration - Product screen, then the Workspace Projects view.

2 In the Workspace Projects list, select the workspace project for this scenario test.

3 Click the Contents view tab.

4 In the Contents list, click Add to add a new record.

5 In the Select Versioned Object dialog box, select an object.

6 Continue to add new records and to select new versioned objects until you have selected all the
objects to be tested.

Creating Scenarios for Scenario Testing
Next, you create quotes, orders, and agreements. These scenarios are created as test documents,
so that you can distinguish them from actual documents. These are the scenarios that will be run
under the conditions that you specified for this scenario testing.

This task is a step in “Process of Testing Products with Scenario Tester” on page 291.

To create a quote for scenario testing

1 Navigate to the Administration - Product screen, then the Workspace Projects view.

2 In the Workspace Projects list, select the workspace for this scenario test.

3 Click the Scenarios view tab.

4 In the Scenarios view link bar, click Test Quotes.

5 Add a record to the Test Quotes list and complete the necessary fields. Some fields are described
in the following table.

6 Click the hyperlink in the Name field of the test quote.

The standard Quotes screen appears.

7 Enter the details of the quote in the usual way.

For more information about entering a quote see Siebel Order Management Guide.

8 Optionally, when you are creating the quote, click the price fields to display a pricing waterfall
which shows how the final price was arrived at. Verify that this is the pricing behavior that you
want.

9 Optionally, when you are creating the quote, click Customize to display the product in Siebel
Configurator. Verify that this is the interface that you want.

Field Comments

Name Enter a name for the test quote

Account Select an account to be used in the test quote.
Product Administration Guide Version 7.8, Rev. B 293

Testing Products and Using Workspace Projects ■ Process of Testing Products with
Scenario Tester
To create a service order for scenario testing

1 Navigate to the Administration - Product screen, then the Workspace Projects view.

2 In the Workspace Projects list, select the workspace for this scenario test.

3 Click the Scenarios view tab.

4 In the Scenarios view link bar, click Test Service Orders.

5 Add a record to the Test Service Orders list and complete the necessary fields. Some fields are
described in the following table.

6 Click the hyperlink in the Order # field of the test service order.

The standard Service Orders screen appears.

7 Enter the details of the service order in the usual way.

For more information about entering an order, see Siebel Order Management Guide.

To create a sales order for scenario testing

1 Navigate to the Administration - Product screen, then the Workspace Projects view.

2 In the Workspace Projects list, select the workspace for this scenario test.

3 Click the Scenarios view tab.

4 In the Scenarios view link bar, click Test Sales Orders.

5 Add a record to the Test Service Orders list and complete the necessary fields. Some fields are
described in the following table.

6 Click the hyperlink in the Order # field of the test service order.

The standard Sales Orders screen appears.

7 Enter the details of the sales order in the usual way.

For more information about entering an order see Siebel Order Management Guide.

Field Comments

Order # Displays an application generated number used to identify the
service order.

Account Select an account to be used in the test quote.

Field Comments

Order # Displays an application generated number used to identify the
service order.

Account Select an account to be used in the test quote.

Price List Select a price list to be used in the test quote.
Product Administration Guide Version 7.8, Rev. B294

Testing Products and Using Workspace Projects ■ Process of Testing Products with
Scenario Tester
To create an agreement for scenario testing

1 Navigate to the Administration - Product screen, then the Workspace Projects view.

2 In the Workspace Projects list, select the workspace for this scenario test.

3 Click the Scenarios view tab.

4 In the Scenarios view link bar, click Test Agreements.

5 Add a record to the Test Agreements list and complete the necessary fields. Some fields are
described in the following table.

6 Click the hyperlink in the Name field of the test agreement.

The standard Quote screen appears.

7 Enter the details of the agreement in the usual way.

For more information about entering an agreement, see Siebel Field Service Guide.

Validating Scenarios
After setting up the scenarios, you can validate them.

NOTE: In addition to the verification described here, you can batch validate scenarios, as described
in “Batch Validating Scenarios” on page 297.

This task is a step in “Process of Testing Products with Scenario Tester” on page 291.

To validate scenarios

1 Navigate to the Administration - Product screen, then the Workspace Projects view.

2 In the Workspace Projects list, select the workspace for this scenario test and select the Use
Project check box.

3 Click the Scenarios view tab.

4 In the link bar of the Scenarios view, click either Test Quotes, Test Service Orders, Test Sales
Orders, or Test Agreements.

5 In the Scenarios list, select one or more test quotes, test service orders, test sales orders, or
test agreements.

6 Double click the test scenario and perform the usual tasks for that type of document.

For example, if you are testing a quote, you should add products to the quote, look at the
products, look at the prices, and so on.

Field Comments

Name Enter a name for the test agreement.

Account Select an account to be used in the test agreement.
Product Administration Guide Version 7.8, Rev. B 295

Testing Products and Using Workspace Projects ■ Displaying Only the Project in Use
Correcting Product Definitions and Retesting
If the scenario is invalid, you must correct the definitions of products and prices and retest the
scenario.

For example, if one of the component products is not available on the date that this scenario is
testing, you must modify your product list so the product is available on that date.

This task is a step in “Process of Testing Products with Scenario Tester” on page 291.

Displaying Only the Project in Use
If you have a long list of projects in the Workspace Projects list, it can be useful to display only the
project you are currently working on and to hide the other projects.

To display only the project in use

1 Navigate to the Administration - Product screen, then the Workspace Projects view.

2 In the Workspace Projects list, in the record for the project you are currently using, select the
Use Project checkbox.

Select this checkbox in only one record.

3 Click Show Project in Use.

Only the project you are currently using is displayed in the list.

To display all workspace projects again after displaying only the project in use

1 In Workspace Projects list, click Query.

2 Without entering any query criteria, click Go.

All projects are displayed.

Working with the Scenario XML File
When you verify a scenario, the you can export that scenario as an XML file. The XML file contains
the property set for that scenario, with all the properties that define the quote, order, asset, or
agreement.

After the XML file has been saved, you can use any text editor to edit the property set in the XML
file rather than changing the definition in the Quotes, Orders, or Agreements screen.

Then you can import the XML file into the application to update the scenario with the changes you
made in the XML file.

To export a scenario to an XML file

1 Navigate to the Administration - Product screen, then the Workspace Projects view.
Product Administration Guide Version 7.8, Rev. B296

Testing Products and Using Workspace Projects ■ Batch Validating Scenarios
2 In the Workspace Projects list, select the workspace for this scenario test.

3 Click the Scenarios view tab.

4 In the link bar of the Scenarios view, click either Test Quotes, Test Service Orders, Test Sales
Orders, or Test Agreements.

5 In the Scenarios list, select a test quotes, test service order, test sales order, or test agreement.

6 From the menu in the Scenarios view, select Manage Scenario.

7 In the Manage Scenario dialog box, click Export Scenario.

8 In the File Download dialog box, click Save.

9 In the Save As dialog box, specify the file name and directory and click OK.

To import a scenario from an XML file

1 Navigate to the Administration - Product screen, then the Workspace Projects view.

2 In the Workspace Projects list, select the workspace for this scenario test.

3 Click the Scenarios view tab.

4 In the link bar of the Scenarios view, click either Test Quotes, Test Service Orders, Test Sales
Orders, or Test Agreements.

5 From the menu in the Scenarios view, select Manage Scenario.

6 In the Manage Scenario dialog box, click Browse, and use the Choose File dialog box to select
the XML file you want to import.

7 In the Manage Scenario dialog box, click Import Scenario.

CAUTION: If there is a scenario with the same name and type, the scenario being imported from
XML overwrites the existing scenario.

Batch Validating Scenarios
The topic “Validating Scenarios” on page 295 describes how to validate one or more scenarios in one
of the scenario lists. Using this method, all the scenarios you validate must be either in Test Quotes,
Test Service Orders, Test Sales Orders, or Test Agreements list.

You can also batch verify scenarios across these lists.

To batch validate scenarios

1 Navigate to the Administration - Product screen, then the Workspace Projects view.

2 In the Workspace Projects list, select the workspace for this scenario test.

3 Click the Scenarios view tab.

4 From the menu in the Scenarios view, select Manage Scenario.
Product Administration Guide Version 7.8, Rev. B 297

Testing Products and Using Workspace Projects ■ Batch Validating Scenarios
5 In the Manage Scenario dialog box, click Batch Validate.

If there are errors, the application displays error messages in popup applets.
Product Administration Guide Version 7.8, Rev. B298

21 Releasing Products and Other
Versioned Objects
This chapter discusses how to release new versions of products. For users who use separate
development and production environments, it also covers how to migrate products between these
two environments. It includes the following topics:

■ “About Versions of C/OM Objects” on page 299

■ “Releasing Products for Use” on page 301

■ “Deleting Product Versions” on page 302

■ “Replacing Earlier Product Versions” on page 302

■ “Displaying Product Versions that Are Available to Customers” on page 302

■ “Making Products Unavailable to Customers” on page 303

■ “Displaying Product Versions that Are Available to Customers” on page 302

■ “Reverting to Earlier Versions of Products” on page 303

■ “Releasing Multiple Products Using Workspace Projects” on page 304

■ “Managing Products Using Workspace Projects” on page 304

■ “Migrating Products Among Environments” on page 305

About Versions of C/OM Objects
The information in this chapter applies to how versioning works for the following customer order
management objects:

■ Customizable Products. For general information about customizable products, see Chapter 6,
“Products with Attributes” and Chapter 9, “Designing Products with Components.”

■ Product Classes. For general information about product classes, see Chapter 6, “Products with
Attributes.”

■ Attribute Definitions. For general information about attribute definitions, see Chapter 6,
“Products with Attributes.”

■ Variable Maps. For general information about variable maps, see Siebel Order Management
Infrastructure Guide.

■ Signals. For general information about signals, see Siebel Order Management Infrastructure
Guide.

This chapter discusses how to work with versions of products with components, but the instructions
also apply to the other objects, using the appropriate view.
Product Administration Guide Version 7.8, Rev. B 299

Releasing Products and Other Versioned Objects ■ Creating Time Slice Reports for
Product Versions
This type of versioning allows you to create and administer multiple development and production
versions of an item can be created and administered independently. It allows you to develop, test,
and deploy items either in your production environment or in a separate development environment.
It support a four-stage process for introducing new items: development, testing, approval, and
production.

NOTE: Simple products are also versioned objects and must be released to make them visible to
users, but they work in a way that is simpler than the versioned objects described in this chapter.
For more information, see “Releasing a Simple Product” on page 36.

Creating Time Slice Reports for Product
Versions
You can produce time slice report for a customizable product versions. This report lists dependent
objects that expire prior to the end date of the version.

If dependent objects expire, the product version may not work as intended. After viewing the time
slice report, if necessary, you can change the end dates of existing versions of the dependent objects
or create new versions of the dependent objects with later end dates.

The time slice report produced in Customizable Products, then the Versions view only takes account
of objects that have already been released. To produce the report for objects that have not been
released, you must use Workspace Projects view and select the Use Project checkbox for the objects.

The time slice system preference determines the output format of time slice reports (XML or CSV).
For information about setting system preferences, see Application Administration Guide.

To create a time slice report for objects that have been released

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select the desired customizable product.

3 In the Versions list, select the version you want to run the report on.

4 From the Versions list menu, select Create Time Slice Report.

To create a time slice report for objects that have not been released

1 Navigate to the Administration - Product screen, then the Workspace Projects view.

2 In the Workspace Projects list, add a new record and complete the necessary fields.

The Use Project checkbox must be selected.

3 In the Contents view, add all the objects that you want to run the report on.

4 From the Workspace Projects list menu, select Create Time Slice Report.
Product Administration Guide Version 7.8, Rev. B300

Releasing Products and Other Versioned Objects ■ Releasing Products for Use
Releasing Products for Use
To make a customizable product available to users, you must release it. Releasing a customizable
product creates a new version of it and makes this version available for use. Releasing a version also
refreshes the work space.

When you release a product, the application refreshes it in the current work space first, and then
releases the refreshed instance. This means that all released versions contain the most recent
information, such as class structure, available at the time of release. You cannot modify or delete a
released version of a customizable product. However, after you release a version, the workspace
retains the image of that version so it can be used as a starting point for the next version.

Before you release a customizable product, whether it is available to users depends on these fields:

■ Start Date. When you release a product, it becomes available to users on the start date, and it
remains available until the next start date of a version of the product. Start date is precise to the
minute and second. For example, if you release a product with the start date of January 1, 2006
12:00:00 and another released version of the same product has the start date of July 1, 2006
12:00:00, then the newly released version will be available to customers from January 1
12:00:00 through June 30, 2006 12:00:00. This lets you release several versions of a product
and have them become available based on dates.

■ End Date. The end date for a version is entered automatically, based on the start date for the
version that is next chronologically.

■ Active. When you release a product, it is only available to users if the Active checkbox is
selected.

When remote users synchronize databases, they receive all released versions of a customizable
product not already on the local computer.

Observe the following guidelines when using start dates for products with components:

■ Carefully coordinate configuration rules that have effective dates with the start date of the
customizable product. If you know that you must release a new version of the product because
of time-sensitive configuration rules, consider using a version start date rather than effective
dates on configuration rules.

■ If you want to release two versions such that the second version supersedes the first version on
its start date, be sure to fully analyze the possible business impacts of the new version on in-
process, and existing quotes.

■ The start date cannot be modified after a version is released. Instead, you can release a new
version to replace or intercede an existing version.

To release a customizable product

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select and lock the desired customizable product.

3 In the Versions list, enter a date in the Start Date field of the Work Space record.
Product Administration Guide Version 7.8, Rev. B 301

Releasing Products and Other Versioned Objects ■ Deleting Product Versions
4 Click Release to release a new version of the product.

A new record appears in the Versions list. Its version number displays in the Version field. The
Required State Date field becomes read-only.

Deleting Product Versions
If you no longer want to use a product version, you can release a new version to replace the version
that you do not want to use. See “Replacing Earlier Product Versions” on page 302.

If you have a large number of inactive versions for a given product, you can delete the versions using
the CleanupSingleObject method of the ISS Authoring Import Export Service. For more information,
see Siebel Order Management Guide.

Replacing Earlier Product Versions
Product versions are visible to customers on the dates between the values in the start date and the
end date. You enter a value in the Start Date field when you create the version. The value in the End
Date field is entered automatically, based on the start date of other versions that come after the start
date of this version.

If you create a new version with the same start date as an existing version, the existing version will
have a end date that is the same as its start date, so it will never be visible to customers. The version
is never visible to customers, because there is no time between its start date and its end date.

To replace an earlier version of a customizable product

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select and lock the desired customizable product.

3 Enter a date in the Start Date field of the Work Space record in the Versions list that is identical
to the Start Date of the version you want to replace.

You can copy the start date from the version you want to replace and paste it in to the Work
Space record.

4 Click Release to release the Work Space record as a new version of the product.

Displaying Product Versions that Are
Available to Customers
When you replace earlier versions of a product, you create version records that are never visible to
customers because their start date and end date are the same.

In the Versions list, you can use the Time Filter button to filter out versions these versions that have
been replaced and view only versions that will be visible to customers.
Product Administration Guide Version 7.8, Rev. B302

Releasing Products and Other Versioned Objects ■ Making Products Unavailable to
Customers
This button is a toggle. After you have used it to hide versions that have been replaced, click it again
to display all versions.

To display only product versions that are visible to customers

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select the desired customizable product.

3 In the Versions list, click Time Filters.

Versions whose Start Date and End Date are identical disappear, so only versions that will be
visible to customers appear.

4 In the Versions list, click Time Filters again.

All versions appear.

Making Products Unavailable to
Customers
Some products are only available to customers at certain times. For example, a seasonal product
used during the summer may be available for purchase only during the months of May through
August.

You cannot make these products unavailable by entering a End Date for versions of these products,
because values are entered in this field automatically, based on the start date of subsequent
versions.

Instead, release a new version of the product with the Active checkbox deselected, so this version is
not visible to customers. The start date for this version will become the end date for the previous
version.

For example, for a product that is only available for purchase from May through August:

■ Create a version with the start date of May 1, 2006 with the Active checkbox selected.

■ Create a version with the start date of September 1, 2006 with the Active checkbox deselected.

This product is only visible between May 1, 2006 and August 31, 2006.

Reverting to Earlier Versions of Products
If you release a customizable product and then make changes to its current work space, you can
discard all the changes and revert to a version of the product that you released earlier.

When you revert, the entire contents of the current work space is discarded. This includes the
product’s structure, attributes user interface, rules, links, resources, and scripts. You choose an
earlier version, and an instance of it is then loaded into the current work space.
Product Administration Guide Version 7.8, Rev. B 303

Releasing Products and Other Versioned Objects ■ Releasing Multiple Products Using
Workspace Projects
To revert to an earlier version

1 Navigate to the Administration - Product screen, then the Product Definitions view.

2 In the Products list, select the desired customizable product.

3 In the Versions list, select the version you want to revert to.

4 In the Versions list, click Revert to Released.

5 Save the current work space.

Releasing Multiple Products Using
Workspace Projects
The instructions in earlier topics of this chapter describe how to release versioned items one at a
time. You can also release a number of versioned items at the same time by using the Workspace
Projects view.

If you are modifying and releasing products one at a time, use the methods described in the earlier
topics of this chapter.

If you are modifying many products and other versioned items as part of one project and you want
to release them all at one time, use the method described in this topic.

To release multiple products simultaneously

1 Navigate to the Administration - Product screen, then the Workspace Projects, then the Contents
view.

2 In the Contents list, select all the items you want to release.

3 Click Release New Version.

To release all locked products

1 Navigate to the Administration - Product screen, then the Workspace Projects, then the Contents
view.

2 In the Contents view, click Release All.

Managing Products Using Workspace
Projects
You can also use the Workspace Projects view to manage objects and create relations among them,
without having to release them.

To manage objects using Workspace Projects view, perform the tasks in the following high-level
process:
Product Administration Guide Version 7.8, Rev. B304

Releasing Products and Other Versioned Objects ■ Migrating Products Among
Environments
■ Create any new objects you need in the appropriate views for each object.

For example, create products in the Administration - Products, then the Products view, product
classes in the Administration - Products, then the Product Classes view, and so on.

■ Navigate to the Administration - Products, then the Workspace Projects view and add a new
record to the Workspace Projects list.

■ In the Administration - Products screen, Workspace Projects, Contents view, create new records
and add all these objects to this Workspace Project.

■ In the Workspace Project record, select the Use Project check box.

Selecting this check box activates the Workspace Project and makes the workspaces of these
objects visible to each other for the duration of the session, even though the objects have not
been released.

■ Drill down on the item in the Contents list, and associate the objects to each other, as needed.

After drilling down on them, the objects appear in the usual views you use to work with them,
and you can associate them in the usual ways.

■ Test the objects using Scenario Tester, as described in “Process of Testing Products with Scenario
Tester” on page 291.

■ Release the objects together using Workspace Projects, or release the objects individually, as
needed.

Migrating Products Among
Environments
Some businesses develop new versions of products in the same environment that they use for
product that are already in production. Other businesses use separate environments for development
and for production.

If you use separate environments for development and production, you can migrate product data
from the development to the production environment in either one of two ways:

■ “Migrating Products Using Import and Export in Workspace Projects View.” This method allows you
to move versioned data and related objects.

■ “Migrating Products Using Application Deployment Manager (ADM).” This method allows you to
move both versioned and unversioned data.

Migrating Products Using Import and Export in Workspace Projects
View
Using import and export in Workspace Projects view, you can migrate the versioned data that you
can add to the Workspace Projects list, and you have the option of migrating related objects. When
you export objects, a dialog box appears with these options:

■ Object(s) Only. Exports only the objects in the Workspace Projects list.
Product Administration Guide Version 7.8, Rev. B 305

Releasing Products and Other Versioned Objects ■ Migrating Products Among
Environments
■ Full Structure. Exports the objects in the Workspace Projects list and related objects, such as
attribute definitions and product classes. If you use this option, the related objects are imported
automatically when you import the objects in the Workspace Projects list.

In either case, all the objects are exported to a single XML file. When you import this XML file, they
are imported as separate objects.

The data that is exported depends on the value in the Testing Date field of the Workspace Project
header. If no base date is entered, it depends on the value in the Effective Start Date field.

NOTE: To extend the import/export XML schema, extend integration objects under the project ISS
VOD Import Export.

To migrate product data using export and import in Workspace Projects view

1 In the development environment, navigate to the Administration - Product screen, then the
Workspace Projects view.

2 In the Workspace Projects list, in the record for workspace containing the objects you want to
migrate, enter the necessary information in the fields shown in the following table.

3 In the Workspace Projects menu, select Export Contents.

4 In the Export Versioned Object dialog box, click Object(s) Only or Full Structure.

5 Save the files that are exported.

6 In the target environment, navigate to the Administration - Product screen, then the Workspace
Projects view.

7 In the Workspace Projects list, add a new record and complete the necessary fields.

The contents will be imported into this new Workspace Project.

8 In the Workspace Projects menu, select Import Contents.

Field Comments

Effective Start Date If no Testing Date is entered, this value is the date that the
application uses to determine what versions should be exported
for dependent items when the user chooses to export the full
structure of the items in the Workspace Project

Base Date Enter the date used as the date for dependent items for full
structure export. If both Effective Starting Date and Testing Date
are filled, Testing Date is used.

Use Project If Use Project is checked, the workspaces of the objects in the
Contents list are not exported.

If Use Project is not checked, the relevant versions of those
objects are exported.
Product Administration Guide Version 7.8, Rev. B306

Releasing Products and Other Versioned Objects ■ Migrating Products Among
Environments
9 In the VOD Import dialog box, click Browse and select the file to import, and then click Import.

The imported file appears in the Workspace Projects list.

10 Repeat Step 9 until you have imported all the files that you exported.

Migrating Products Using Application Deployment Manager (ADM)
Using Application Deployment Manager, you can move the objects shown in Table 40.

Table 40. Objects Moved by ADM

Business Component Data Moved

JointWorkspace Versioned Product Data, Attributes Definitions, Product Classes,
Context Signals, Context Variable Maps

ProductCatalog Catalog, Catalog Category, Category Products

PriceList Price List, Price List Items, Pricing Adjustments

VolumeDiscount VolumeDiscount, Volume Discount Items

DynamicMatrix Attribute Adjustments, Attribute Adjustments Dimensions, Attribute
Adjustments Domains, Attribute Adjustments Rules, Attribute
Adjustments Variable Maps,

AdjGroup Adjustment Group, Adjustment Dimension, Entitlement-Based
Adjustment, Training-Based Adjustment, Promotion-Based
Adjustment, Product-Based Adjustment, Product Eligibility
Adjustment, Product Compatibility Adjustment

DataMapObject Data Map Object, Data Map Components, Data Map Component Fields

MessageType Message Type, Type Response, Type Response Translation, Type
Translation, Payload

ProdData Internal Product - Recommended Products, Compound Products,
Product Validation Rules

ProdFeature Product Feature

ProdLine Product Line

CostList Cost list, Products

AccntPromo Account Promotions, Account Promotion Products

Fund Funds

Promo Promotions

BundleSeq Siebel Pricer Bundle Sequence, Siebel Pricer Bundle Sequence Items

BundleDiscount Siebel Pricer Bundle Discount, Siebel Pricer Bundle Discount
Product Administration Guide Version 7.8, Rev. B 307

Releasing Products and Other Versioned Objects ■ Migrating Products Among
Environments
You can use any field from the business component and operators (such as AND, OR) to construct
an expression for the Deployment Filter, as follows:

[<field name>]=<field value>

[<field name 1>]=<field value 1> AND/OR [field name 2]=<field value 2>...

For instance, use the following syntax for Workspace Project:

[<field_name>]= <my_joint_workspace_name> AND [<field_name>]=’Y’

Use the following syntax for other objects:

[<field_name>]= <my_object_name>

If you want to use multiple parameters, as shown in the example above, you must string the
parameters together using the AND and OR operators. For example, if you want to use the fields Full
and Name as parameters, use the syntax shown in the following example:

[Description]='N' AND [Full] ='Y' AND [Name]='TestADM'

In this example, the field name [Full] means to request Full Structure.

For information about how to use ADM, see Going Live with Siebel Business Applications.
Product Administration Guide Version 7.8, Rev. B308

22 Product and Promotion
Eligibility and Compatibility
This chapter describes eligibility and compatibility rules for products and product promotions. It
includes the following subjects:

■ “About Product and Promotion Eligibility” on page 309

■ “About Eligibility Rules and Configuration Rules for Siebel CRM Version 7.7 and Earlier” on page 310

■ “Defining How Eligibility Output Displays” on page 311

■ “Defining Eligibility Groups”

■ “Defining Product and Promotion Eligibility Rules”

■ “Defining Eligibility for Products with Components and for Component Products” on page 315

■ “Creating Eligibility Matrices” on page 315

■ “About Product and Promotion Compatibility” on page 317

■ “About Compatibility Rules” on page 317

■ “Defining Compatibility Groups” on page 318

■ “Defining Compatibility Rules for Products and Promotions” on page 319

■ “Creating Compatibility Matrices” on page 322

■ “Verifying Quotes and Orders for Eligibility and Compatibility” on page 323

■ “Eligibility and Compatibility Workflow Reference” on page 324

About Product and Promotion Eligibility
Product and promotion eligibility allows you to create rules specifying which customers are eligible
to buy a product and which customers are eligible for product promotions.

NOTE: Eligibility supports product promotions, which are created in the Promotions view of the
Administration - Product screen, but not other types of promotions. For more information, see the
topic about product promotions in Pricing Administration Guide.

Some examples of product eligibility are:

■ A telecommunications company may have different wireless plans available for different
geographical areas.

■ An internet service provider may have certain DSL services only to customers who live within a
specified distance of certain cities.

Some examples of promotion eligibility are:

■ An airline may offer a free upgrades only to customers who live in certain cities.
Product Administration Guide Version 7.8, Rev. B 309

Product and Promotion Eligibility and Compatibility ■ About Eligibility Rules and
Configuration Rules for Siebel CRM Version 7.7 and Earlier
■ A cable television company may offer extra channels at no extra cost only to new customers who
live in certain states.

Eligibility is based on the PSP engine, so it is fully configurable. For more information about PSPs,
see Siebel Order Management Infrastructure Guide. For more information about the PSP used for
eligibility, see “Eligibility and Compatibility Workflow Reference” on page 324.

About Eligibility Rules and Configuration
Rules for Siebel CRM Version 7.7 and
Earlier
In Siebel CRM versions 7.5 and 7.7, you may have used configuration rules, linked items, and
scripting to create rules controlling which customers could buy a product. In version 7.8 and later
versions, you can do this much more efficiently using eligibility rules.

For example, you want to limit the availability of a product named 104 USB Keyboard to customers
who have a type of Commercial:

■ In version 7.5, you may have done this by creating a linked item to bring the customer type into
the Siebel Configurator session. Then you write Siebel Configurator exclude rules to exclude this
product if the type is not Commercial. You must write these rules many times, once for every
product that can use this keyboard as a component.

■ In version 7.5, you may also have done this by assigning all component products are assigned a
Siebel Configurator UI property named Commercial Only with values of Yes or No. Then, you
modify the JavaScript code that displays the available selections to evaluate the condition: Is
customer type NOT "Commercial" and does this "Commercial Only" UI property for this product
equal "YES." If this condition is true, the JavaScript does not display that product or displays it
differently.

■ In 7.8 and later versions, you can do this by creating an eligibility rule. You write this rule once,
and it applies to all configuration models. By setting the Eligibility Display Mode, you can control
whether ineligible products are displayed in red, as a warning, or not displayed at all. You do not
have to use any scripting.

Without configuration, compatibility rules do not necessarily substitute for Siebel Configurator
requires and excludes rules. The difference is that the compatibility rules would work against the
Projected Asset Cache, which includes all assets for the customer, all open orders for the customers
and the current quote for the customer. This broad scope may be unacceptable if you want the scope
of the rule to just be the components within one customizable product instance, as it is for
configuration rules. For more information about the Projected Asset Cache, see Siebel Order
Management Infrastructure Guide.

By default, the Projected Asset Cache, with its extended scope, is used in workflows, whereas
configuration rules apply only to the loaded product. If you want workflows to have a more limited
view, identical to configuration rules, you must change the default Eligibility and Compatibility
Procedure by modifying the Projected Asset Cache query. As an example, see the step Initialize PAC
and the following steps in “Eligibility and Compatibility Workflow Reference” on page 324.
Product Administration Guide Version 7.8, Rev. B310

Product and Promotion Eligibility and Compatibility ■ Defining How Eligibility Output
Displays
However, if you are using linked items and attributes and configuration rules to control product
eligibility, then eligibility rules are a preferred replacement for these configuration rules.

By using eligibility rules instead of the modeling approaches used in earlier versions, you achieve:

■ Greater scalability

■ Faster performance

■ Simplified administration

■ Less customization, easier upgrades

■ More consistent behavior across the application

Defining How Eligibility Output Displays
Eligibility is checked before the product or promotion is displayed in a catalog, Product picklist, or
elsewhere in the interface.

Eligibility information is displayed when you are selecting products to add to quotes, orders, or
agreements. You can define how this information is displayed.

Eligibility Display Options for Catalogs
In catalogs, there are three options for how eligibility information is displayed:

■ Show Products Only. All products are displayed, whether or not the user is eligible to purchase
them. Eligibility information is not displayed to the user. This option also turns off product
effectivity, price list and contract visibility.

■ Hide Products. Products are not displayed if the user is not eligible to purchase them.

■ Show Products with Comments. All products are displayed. A comments displayed with each
product says whether the user is eligible to purchase it.

If customers are eligible for only a small percentage of the total products, then choosing the Hide
Products option gives slower performance than the Show Products with Comments option. This is
because a large number of records must be read before enough records are found to fill a page. This
performance trade-off should be considered when selecting the Display Mode during implementation
design.

Eligibility Display in Siebel Configurator
In Siebel Configurator, if the customer is ineligible to buy the product, then the application displays
an error message if the user selects the product. The user can click Undo to undo the selection that
caused the error, or select Proceed to go ahead with the configuration using the ineligible product.
If the user selects Proceed, Siebel Configurator adds this error message to its message list.

Siebel Configurator also enforces the value set for the Display Mode parameter. If this parameter is
set not to show ineligible products, then these products are not in the Siebel Configurator session
and the user cannot choose them.

NOTE: This setting can be set at the workflow level, the applet level, or the server parameter level.
Product Administration Guide Version 7.8, Rev. B 311

Product and Promotion Eligibility and Compatibility ■ Defining Eligibility Groups
To define how eligibility output displays on the mobile or dedicated client

1 Use any text editor to edit the CFG file for the application.

2 In the [PSPEngine] section, set the value of the parameter EligibilityDisplayMode to one of the
following values:

■ EligibilityDisplayMode=0. No eligibility comments are displayed, and all products (eligible
or not) appear in all product selection applets

■ EligibilityDisplayMode=1. Default value. Ineligible products appear in the product
selection applets with the eligibility status of N and with comments explaining why they are
ineligible.

■ EligibilityDisplayMode=2. Only eligible products appear in the product selection applets,
so the user cannot see and pick ineligible products.

To define how eligibility output displays on a server-based application
■ Modify the value of the server or component parameter named EligibilityDisplayMode, using the

same values as in the previous procedure.

Defining Eligibility Groups
Eligibility groups are used to group eligibility rules that you create, for your own purposes.

For example, you can create one group for product eligibility rules and one group for promotion
eligibility rules. Alternatively, you may decide to create one group for each product line. You can use
any logical group that makes sense to your business.

NOTE: Whatever the grouping, when eligibility is evaluated, all rules of type eligibility will be
evaluated against all products, regardless of how the products are logically grouped into Eligibility
Groups. The same is true of rules of type compatibility.

Choose how to group eligibility rules based on your business needs.

To define an eligibility group

1 Navigate to the Administration - Product screen, then the Eligibility and Compatibility Matrices
view.

2 In the Eligibility and Compatibility Matrices list, add a new record and complete the necessary
fields. Some fields are described in the following table.

Field Comments

Name Enter a name for a group.

Matrix Type To make this an eligibility rule group, select Eligibility Rules.
Product Administration Guide Version 7.8, Rev. B312

Product and Promotion Eligibility and Compatibility ■ Defining Product and Promotion
Eligibility Rules
Defining Product and Promotion
Eligibility Rules
Before you can define product eligibility, you must define the product, as described in Product
Administration Guide. Then add eligibility rules to it.

Before you can define promotion eligibility, you must define the product promotion, as described in
the topic on product promotions in Pricing Administration Guide. Then add eligibility rules to it.

You can create two types of rules:

■ Inclusive Rules. specify the customers who are eligible to buy the product.

■ Exclusive Rules. specify the customers who are not eligible to buy the product.

Defining Inclusive or Exclusive Eligibility for Products
A given product can use only inclusive or exclusive eligibility rules. Before you define the rule, you
must define which type of eligibility the product uses.

To define inclusive or exclusive eligibility for a product

1 Navigate to the Administration - Product screen, then the Products view.

2 In the Products list, in the record for the product, select or deselect the Inclusive Eligibility
checkbox, if necessary.

Defining Product Eligibility Rules
You can define eligibility rules for products or product lines.

This procedure describes how to define rules for products. To define rules for product lines, use a
similar procedure, but instead of adding a record to the Eligibility Rules list, add a record to the
Product Line Eligibility list, which is further down on the screen.

To define product eligibility rules

1 Navigate to the Administration - Product screen, then the Products view.

2 In the Products list, select the product you are defining rules for.

3 Click the Eligibility and Compatibility Rules view tab.

4 In the link bar of the Eligibility and Compatibility Rules view, click Eligibility.
Product Administration Guide Version 7.8, Rev. B 313

Product and Promotion Eligibility and Compatibility ■ Defining Product and Promotion
Eligibility Rules
5 In the Eligibility Rules list, add a new record and complete the necessary fields, described in the
following table.

6 Continue to add records until you have specified all eligibility rules that determine whether
customers are eligible to buy this product.

Defining Promotion Eligibility Rules
This procedure describes how to define eligibility rules for product promotions.

To define promotion eligibility rules

1 Navigate to the Administration - Product screen.

Field Comments

Matrix Name Select the eligibility group used for grouping this rule. For more
information about eligibility groups, see “Defining Eligibility
Groups” on page 312.

Rule Type Select the type of the rule. Options are:

■ Inclusive. The rule specifies customers who are eligible to
buy. For example, if the criteria depends on State, the rule
specifies a state where customers are allowed to buy the
product.

■ Exclusive. The rule specifies the customers who are not
eligible to buy. For example, if the criteria depends on State,
the rule specifies a state where customers are not allowed to
buy the product.

Account If the rule depends on account, select the name of an account
that is or is not eligible to buy the product.

Account Type If the rule depends on account type, select the name of an
account that is or is not eligible to buy the product.

City If the rule depends on city, enter the name of a city where
customers are or are not eligible to buy the product.

State If the rule depends on state, select the name of a state where
customers are or are not eligible to buy the product.

Country If the rule depends on country, select the name of a country
where customers are or are not eligible to buy the product.

Postal Code If the rule depends on postal code, enter the name of a postal
code where customers are or are not eligible to buy the product.

Effective Start Enter the date when this rule goes into effect.

Effective End Enter the date when this rule is no longer in effect.
Product Administration Guide Version 7.8, Rev. B314

Product and Promotion Eligibility and Compatibility ■ Defining Eligibility for Products
with Components and for Component Products
2 In the link bar, select Product Promotions.

3 In the Product Promotions list, select the promotion you are defining rules for.

4 Click the Eligibility and Compatibility Rules view tab.

5 In the link bar of the Eligibility and Compatibility Rules view, click Eligibility.

6 Add records to the eligibility rules list and enter criteria in the same way that you do when you
are defining product eligibility rules.

Defining Eligibility for Products with
Components and for Component
Products
Eligibility for products with components is checked at the following times:

■ Product Selection. When a new product with components is selected, the application checks
the customer’s eligibility to buy the product with default options. For example, eligibility is
checked when an eSales user clicks Add to Cart.

■ Siebel Configurator Launch. When the customer launches a new Siebel Configurator session,
the application checks the customer’s eligibility to put the product in the saved quote, since
eligibility may have changed since the quote was saved.

■ Component Products. There is an eligibility check on component products that the customer
can add to the configurable product.

Eligibility for products with components is defined in the same way as eligibility for other products:

■ You can define eligibility for individual component products of the product with components, as
described in “Defining Compatibility Rules for Products and Promotions” on page 319.

■ You can define eligibility for the entire product with components, as described in “Defining
Compatibility Rules for Products and Promotions” on page 319.

If you define eligibility for component products, the customer may not be eligible to buy all the
default components of a product with components but may be eligible to buy the product with
components with substitute components. In this case, the product with components can be flagged
as ineligible, so customers can select substitutes for the default components that they are not eligible
to buy.

Creating Eligibility Matrices
When you create an eligibility matrix, you enter data similar to the data entered in an eligibility rule,
but you enter the data under the matrix.

You must use eligibility to create eligibility rules for product classes.
Product Administration Guide Version 7.8, Rev. B 315

Product and Promotion Eligibility and Compatibility ■ Creating Eligibility Matrices
Eligibility and compatibility rules are shown in the Eligibility and Compatibility Matrices view,
regardless of how you created them. If you create them in Eligibility and Compatibility Rules view
and grouped them under a matrix, they are displayed under this matrix. This procedure describes
how to create them directly under the matrix.

To create an eligibility matrix

1 Navigate to the Administration - Product screen, then the Eligibility and Compatibility Matrices
view.

2 In the Eligibility and Compatibility Matrices list, add a new record and complete the necessary
fields. Some fields are described in the following table.

3 Click the name of the new record.

The Eligibility Matrix form and Eligibility Rules list appear.

4 Add a new record to the Eligibility Rules list and complete the necessary fields. Some fields are
described in the following table.

Field Comments

Name Enter a name for a group.

Matrix Type Select Eligibility Rules.

Field Comments

Product Select the subject product.

NOTE: You may use only one field of Product, Product Line, and
Product Class.

Product Line Select the subject product line.

Product Class Select the subject product class.

Type Select the type of the rule. Options are:

■ Compatibility - Requires. If the subject product is
purchased, the object product must be purchased.

■ Compatibility - Excludes. If the subject product is
purchased, the object product must not be purchased.

Account, Account Type,
City, State, Postal Code,
Country

In one of these fields, enter the account, account type, city, state,
postal code, or country that the rule applies to. Depending on the
Rule Type that you chose, this is required to buy the product or
excludes you from buying the product.

Effective Start Enter the date when the rule goes into effect.

Effective End Enter the date when the rule is no longer in effect.
Product Administration Guide Version 7.8, Rev. B316

Product and Promotion Eligibility and Compatibility ■ About Product and Promotion
Compatibility
About Product and Promotion
Compatibility
Compatibility allows you to define rules specifying which combinations of products, product
attributes, or product promotions are required and which combinations are not allowed. These rules
are simpler than Siebel Configurator rules and can be defined by the marketing administrator.

NOTE: Compatibility supports product promotions, which are created in the Promotions view of the
Administration - Product screen, but not other types of promotions. For more information, see the
topic about product promotions in Pricing Administration Guide.

Compatibility rules are global. Once they are defined for a product or promotion, they apply
whenever it is added to quotes, orders, or agreements.

If the end user selects a product that has a compatibility rule associated with it, the application
displays a message describing the rule. The message may say that the selected product requires
purchase of another product or that the selected product is not compatible with a previously selected
product.

The application does not enforce compatibility rules, as it enforces Siebel Configurator rules. It just
displays these messages.

Eligibility and compatibility checks are performed by the same workflow and the same engine at the
same time. Compatibility is one step in the overall determination of eligibility. Compatibility rules are
just one of a number of different criteria that the eligibility procedure checks to determine whether
a product can be sold to a customer given the customer’s profile.

Compatibility is based on the PSP engine, so it is fully configurable. For more information about PSPs,
see Siebel Order Management Infrastructure Guide. For more information about the PSP used for
compatibility, see “Eligibility and Compatibility Workflow Reference” on page 324.

About Compatibility Rules
Compatibility rules state that products require or exclude other products. You can create rules for
products, product lines, and product classes.

As a simple example, assume that customers who buy a computer must buy a monitor, and there
are only two monitors available. The Turbo computer supports the Standard monitor but not the Flat-
screen monitor. Then you would create two different rules:

■ Turbo computer requires Standard monitor.

■ Turbo computer excludes Flat-screen monitor.

The Subject and Object of Compatibility Rules
As you can see in this example, compatibility rules consist of:

■ Subject. The product that requires or excludes another product. In the examples, the computer
is the subject.

■ Type of Rule. The type is either requires or excludes.
Product Administration Guide Version 7.8, Rev. B 317

Product and Promotion Eligibility and Compatibility ■ Defining Compatibility Groups
■ Object. The product that is required or excluded. In the examples, the monitor is the object.

Requires rules apply in only one direction. If the subject requires the object, the object does not
necessarily require the subject. For example, the Turbo computer requires a Standard monitor.
However, the Standard monitor does not necessarily require the Turbo computer; it can also be used
with other computers.

Excludes rules apply in both directions. If the subject excludes the object, the object necessarily
excludes the subject. For example, the Turbo computer does not work with the Flat-screen monitor,
and that necessarily means that the Flat-screen monitor does not work with the Turbo computer.

Subject Compatibility Rules and Object Compatibility Rules
For product compatibility:

■ When you create a subject compatibility rule, you choose a product as the subject of the rule,
and you can choose either a product, product line, or product class as the object of the rule.

■ When you create an object compatibility rule, you choose a product as the object of the rule, and
you can choose either a product, product line, or product class as the subject of the rule.

For product line compatibility:

■ When you create a subject compatibility rule, you choose a product line as the subject of the
rule, and you can choose either a product, product line, or product class as the object of the rule.

■ When you create an object compatibility rule, you choose a product line as the object of the rule,
and you can choose either a product, product line, or product class as the subject of the rule.

Defining Compatibility Groups
Compatibility groups are used to group compatibility rules that you create, for your own purposes.

For example, you can create one group for product compatibility rules and one group for promotion
compatibility rules. Alternatively, you can create one group for each product line. You can use any
logical group that makes sense to your business.

NOTE: Whatever the grouping, when compatibility is evaluated, all rules of type compatibility will be
evaluated against all products, regardless of how they are logically grouped into Compatibility
Groups. The same is true of rules of type eligibility.

To define an compatibility group

1 Navigate to the Administration - Product screen, then the Eligibility and Compatibility Matrices
view.
Product Administration Guide Version 7.8, Rev. B318

Product and Promotion Eligibility and Compatibility ■ Defining Compatibility Rules for
Products and Promotions
2 In the Eligibility and Compatibility Matrices list, add a new record and complete the necessary
fields. Some fields are described in the following table.

Defining Compatibility Rules for
Products and Promotions
You can define compatibility rules for products, product lines, product classes, or promotions.

NOTE: If you create compatibility rules for product lines, they only apply to the primary product line
of each product.

All of these types of compatibility rules allow subject compatibility rules and object compatibility
rules. For more information about subject and object compatibility rules, see “About Compatibility
Rules” on page 317.

Defining Compatibility Rules for Products, Product Lines, or Product
Classes
Before you can define a product compatibility rule, you must define the products, and if necessary,
the product lines and product classes, that it applies to, as described in Product Administration
Guide.

To define compatibility rules for a product

1 Navigate to the Administration - Product screen.

2 Click the Eligibility and Compatibility Rules view tab.

3 In the Eligibility and Compatibility Rules link bar, click Product Compatibility.

Field Comments

Name Enter a name for a group.

Matrix Type To make this an compatibility rule group, select Compatibility
Rules.
Product Administration Guide Version 7.8, Rev. B 319

Product and Promotion Eligibility and Compatibility ■ Defining Compatibility Rules for
Products and Promotions
4 If you are creating a rule that has the current product record as the subject, then add a new, add
a new record to the Subject Compatibility Rules list and complete the necessary fields. Some
fields are described in the following table.

Field Comments

Subject Product Select the subject product. The default is the product that is
selected in the Products list, but you can select any product to
replace it.

Type Select the type of the rule. Options are:

■ Compatibility - Requires. If the subject product is
purchased, the object product must be purchased.

■ Compatibility - Excludes. If the subject product is
purchased, the object product must not be purchased.

Scope You can configure the product so this field can be used to select
the scope of the rule, the set of products that the rule applies to.
It displays the option:

■ Projected Asset Cache. If you are using asset-based
ordering, select this to apply the rule to the Account Projected
Assets. For more information about projected asset cache,
see Siebel Order Management Infrastructure Guide.

You can add other options by configuring the product using Siebel
Tools. In addition, the application does not evaluate the scope
field unless you configure the product using Siebel Tools.

You must select Column Displayed from the menu to display this
field.

Object Product Select the object product.

NOTE: Make an entry in only one of the fields Object Product,
Object Product Line, Object Product Class.

Object Product Line Select the object product line.

Object Product Class Select the object product class.

Start Date Enter the date when the rule goes into effect.

End Date Enter the date when the rule is no longer in effect.

Matrix Name Select the compatibility group used for grouping this rule. For
more information about compatibility groups, see “Defining
Compatibility Groups” on page 318.
Product Administration Guide Version 7.8, Rev. B320

Product and Promotion Eligibility and Compatibility ■ Defining Compatibility Rules for
Products and Promotions
5 If you are creating a compatibility rule that has the current product as object, add a new record
to the Object Compatibility Rules list and complete the required fields. These are similar to the
fields used for defining subject compatibility rules, except that for the fields described in the
following table.

6 Click Clear Cache.

Defining Compatibility Rules for Product Lines
Before you can define a product line compatibility rule, you must define the product lines, and if
necessary the products and product classes, it applies to, as described in Product Administration
Guide.

To define compatibility rules for a product lines

1 Navigate to the Administration - Product screen.

2 Click the Eligibility and Compatibility Rules view tab.

3 In the Eligibility and Compatibility Rules link bar, click Product Line Compatibility.

4 Add a record to the Subject Compatibility Rules list or the Object Compatibility Rules list, and
complete the necessary fields.

These fields are similar to the fields used for product compatibility, except that you must choose
a product line instead of a product as the subject product of a subject compatibility rule and as
the object product of an object compatibility rule.

Defining Compatibility Rules for Promotions
Before you can define promotion compatibility rule, you must define the product promotions it
applies to, as described in the topic on product promotions in Pricing Administration Guide.

To define promotion compatibility rules

1 Navigate to the Administration - Product screen.

2 In the link bar, select Product Promotions.

3 In the Product Promotions list, select the promotion you are defining rules for.

Field Comments

Subject Product Select the subject product.

NOTE: Make an entry in only one of the fields Subject Product,
Subject Product Line, Subject Product Class.

Subject Product Line Select the subject product line.

Subject Product Class Select the subject product class.

Object Product Select the object product.
Product Administration Guide Version 7.8, Rev. B 321

Product and Promotion Eligibility and Compatibility ■ Creating Compatibility Matrices
4 Click the Eligibility and Compatibility Rules view tab.

5 In the link bar of the Eligibility and Compatibility Rules view, click Product Compatibility.

6 Add records to the Subject Compatibility Rules list and Object Compatibility Rules list, and define
the rules in the same way that you do when you are defining product compatibility rules.

Creating Compatibility Matrices
When you create a compatibility matrices, you enter data similar to the data entered in a
compatibility rule, but you enter it directly under the matrix record.

You must use compatibility matrices to create compatibility rules where the subject is a product
class.

Eligibility and compatibility rules are shown in the Eligibility and Compatibility Matrices view,
regardless of how you created them. If you create them in Eligibility and Compatibility Rules view
and grouped them under a matrix, they are displayed under this matrix. This procedure describes
how to create them directly under the matrix.

To create a compatibility matrix

1 Navigate to the Administration - Product screen, then the Eligibility and Compatibility Matrices
view.

2 In the Eligibility and Compatibility Matrices list, add a new record and In the Eligibility and
Compatibility Matrices list, add a new record and complete the necessary fields. Some fields are
described in the following table.

3 Click the name of the new record.

The Compatibility Matrix form and the Compatibility Rules list appear.

Field Comments

Name Enter a name for a group.

Matrix Type Select Compatibility Rules.
Product Administration Guide Version 7.8, Rev. B322

Product and Promotion Eligibility and Compatibility ■ Verifying Quotes and Orders for
Eligibility and Compatibility
4 Add a new record to the Compatibility Rules list and complete the necessary fields. Some fields
are described in the following table.

Verifying Quotes and Orders for
Eligibility and Compatibility
You can verify the eligibility and compatibility for all the products in a quote or order or for individual
line items.

It is useful to verify all products before a quote changes status or is taken to a different stage of the
order management process. This is especially important for products that have compatibility rules
written against them.

When a product is added to a quote or order, eligibility and compatibility is evaluated only for the
added line item. Thus, if the added item is incompatible with a product already in a quote, only the
added item will show this, not the item already on the quote.

Field Comments

Subject Product Select the subject product. The default is the product that is
selected in the Products list, but you can select any product to
replace it.

NOTE: Make an entry in only one of the fields Subject Product,
Subject Product Line, and Subject Product Class.

Subject Product Line Select the subject product. The default is the product that is
selected in the Products list, but you can select any product to
replace it.

Subject Product Class Select the subject product. The default is the product that is
selected in the Products list, but you can select any product to
replace it.

Type Select the type of the rule. Options are:

■ Compatibility - Requires. If the subject product is
purchased, the object product must be purchased.

■ Compatibility - Excludes. If the subject product is
purchased, the object product must not be purchased.

Object Product Select the object product.

NOTE: Make an entry in only one of the fields Object Product,
Object Product Line, Object Product Class.

Object Product Line Select the object product line.

Object Product Class Select the object product class.

Effective Start Enter the date when the rule goes into effect.

Effective End Enter the date when the rule is no longer in effect.
Product Administration Guide Version 7.8, Rev. B 323

Product and Promotion Eligibility and Compatibility ■ Eligibility and Compatibility
Workflow Reference
For example, a compatibility-excludes rule says that product A and product B are incompatible. The
user adds product A to the quote, and its eligibility status is marked as Y. Then the user adds product
B to the quote, and B’s eligibility status is marked as N, but A’s status is still Y. When you click the
Verify button, all items on the quote are evaluated, so product A’s eligibility status also becomes N.

To verify eligibility and compatibility for all products in a quote or order

1 Navigate to the Quotes or Orders screen, then the List view.

2 In the list, select the desired quote or order.

3 Drill down on the name of the quote or order.

4 Click the Line Items view tab.

5 In the Quote or Order header form, click Verify.

To verify eligibility and compatibility for one product in a quote or order

1 Navigate to the Quotes or Orders screen, then the List view.

2 In the list, select the desired quote or order.

3 Drill down on the name of the quote or order.

4 Click the Line Items view tab.

5 In the Line Items list, select the desired line item.

6 From the Line Items menu, select Verify.

Eligibility and Compatibility Workflow
Reference
Eligibility and Compatibility workflows are covered in the following topics:

■ “Product Eligibility & Compatibility - Default Workflow” on page 325

■ “Product Compatibility - Default Workflow” on page 326

■ “Compatibility Multiple Popup Workflow” on page 328

■ “Configurator Eligibility Compatibility Workflow” on page 329

■ “Check Eligibility & Compatibility - Default Workflow” on page 330

■ “Pricing and Eligibility Procedure - Default Workflow” on page 331

The PSP Driver Workflow is the default controlling workflow for all these Eligibility and Compatibility
Procedures. When the code raises a signal to call the controlling workflow for eligibility and
compatibility, it passes the names of these Eligibility and Compatibility Procedures to the PSP Driver
Workflow. You can also configure your own controlling workflow to replace this default controlling
workflow. For more information about the PSP Driver Workflow, see Siebel Order Management
Infrastructure Guide.
Product Administration Guide Version 7.8, Rev. B324

Product and Promotion Eligibility and Compatibility ■ Eligibility and Compatibility
Workflow Reference
Eligibility and Compatibility Procedures are PSP procedures. For more information, see the topic
about PSP Procedures in Siebel Order Management Infrastructure Guide.

For more information about workflows, see Siebel Business Process Designer Administration Guide.

Product Eligibility & Compatibility - Default Workflow
Product Eligibility & Compatibility - Default workflow is responsible for determining the eligibility and
availability of a list of inputted row set of Products. Eligibility and availability are based on eligibility
rules setup in the administration views and in the procedure itself. The workflow takes a row set of
Products and flags each row with an eligibility status and also a comment detailing the reason for
ineligibility, if any.

This workflow is shown in Figure 14.

Workflow Description. This workflow does the following:

■ Primary Display Mode?. Verifies whether Primary Display Mode is specified.

■ Secondary Display Mode?. Verifies whether Secondary Display Mode is specified.

■ Use Secondary Display Mode. Assigns the Secondary Display Mode to the Display Mode
variable.

■ Use Default Display Mode. Sets Default Display Mode = 1 if both the Primary and Secondary
Display Modes are not specified.

■ Display Mode is Zero?. Verifies whether if Display Mode is zero and branches to the End of
procedure if zero.

■ Set Status of All to Eligible. Sets each Row's eligibility status to Yes. Defaults all products to
eligible. Subsequent steps will flag ineligible products.

Figure 14. Product Eligibility & Compatibility - Default Workflow
Product Administration Guide Version 7.8, Rev. B 325

Product and Promotion Eligibility and Compatibility ■ Eligibility and Compatibility
Workflow Reference
■ Current Product. Verifies dates associated with the current line item. If the line item is outside
of the effective dates, then sets the eligibility status to No and moves the product into the Output
Set. Ensures that each product can be sold today by checking its effective from and effective to
dates.

■ In Price List. Searches the Price Line Item Buscomp for the product and if the product does not
exist, sets eligibility status to No. Ensures that each product is in the current price list.

■ Contracted Product Only. Decides whether it needs to check for contract eligibility. Checks
against contracted products if the account Contracted Product Only Flag = Y.

■ Contracted?. Queries for the Context Account id under Agreement BC, and verifies the start and
end dates. Set eligibility status to No if no valid contracts are found. Ensures that each product
appears in a pricing contract for the account.

■ Inclusive Eligibility. Splits the Row Set based on the Inclusive Eligibility Flag. Only checks
inclusive eligibility rules for products whose Inclusive Eligibility Flag = Y.

■ Eligible for Customer. Queries the Product Eligibility BC and verifies that the row set items
satisfies the eligibility requirements (Inclusive). Ensures that each product satisfies an inclusive
eligibility rule (for example, that it is sold in the customer's state).

■ Merge Non-Inclusive. Merges the Non-Inclusive Eligibility Row Set into the Row Set.

■ InEligible for Customer. Queries the Product Eligibility BC and verifies that the row set items
satisfies the eligibility requirements (non-inclusive). Ensures that no ineligibility rules are broken
for each product (for example, that the product is not sold in customer's postal code).

■ Is Workflow Mode Pre-Pick?. Verifies whether Workflow Mode is Pre-pick and branches to
Compatibility workflow if not Pre-Pick.

■ Compatibility Workflow. Executes the Product Compatibility - Default Workflow to check for
compatibility of Products in Row-Set.

■ Display Mode 1 or 2?. Verifies the value of the Display Mode property.

■ Merge Eligible and Skip Rows. Merges Eligible and Skip Rows for Mode = 2.

■ Merge Elig, Inelig and Skip Rows. Merges Eligible, Ineligible and Skip Rows for Mode = 1.

Product Compatibility - Default Workflow
Product Compatibility - Default workflow is responsible for determining other required and excluded
products for a list of inputted row set of products. It determines required and excluded products
based on compatibility rules set up in the administration views. The workflow takes a row set of
Products and flags each row with compatibility status and with a comment detailing related products
that are either required or excluded.
Product Administration Guide Version 7.8, Rev. B326

Product and Promotion Eligibility and Compatibility ■ Eligibility and Compatibility
Workflow Reference
This workflow is shown in Figure 15.

Workflow Description. This workflow does the following:

■ Merge Ineligible Rows. Merges the row sets passed in by parent workflow Product Eligibility &
Compatibility - Default, which already determined Eligibility of the products and separated the
products into row sets depending on whether or not the products are eligible

■ Filter Duplicate Row Set. Filters out any duplicate products in the row set.

■ Post-Pick?. Determines if the workflow is run in post-pick or pre-pick mode. Skips steps Copy
Row Set, Merge Row Set to Scope and Filter Duplicate Projected Assets if in not in Post-Pick
mode.

■ Copy Row Set. Makes a copy of the unique row set created in the step Filter Duplicate Row Set.

■ Merge Row Set to Scope. Merges row sets to form the scope row sets. Scope row set is all the
products that the input row set will be checking Compatibility rules against. It includes the
Projected Assets as well as products in the Customizable Product.

■ Filter Duplicate Projected Assets. Filters any duplicate products in the Projected Assets row
set.

■ Get Incompatible Products. Loads A Excludes B rules for the products from the Compatibility
administration view.

■ Get Incompatible Products (Mutual). Load B Excludes A rules for the products.

■ Incompatible Products in Projected Assets?. Checks whether there are incompatible
products in the Project Asset row set based on rules retrieved in the two previous steps.

■ Flag Incompatible Rows Flags rows in the Row Set with Status and Comment for
incompatibilities found in the previous step.

■ Get Required Products. Loads A Requires B rules for the products.

■ Required Products in Projected Assets?. Checks if there are required product rule violated
for products in the Project Asset row set based on rules retrieved in the previous steps.

■ Flag Rows Missing Required Product. Flags rows in the Row Set with Status and Comment
for missing products based on violations found in the previous step. Moves all rows with
violations to the Incompatible Row Set

■ Fix Row Set with Incompatibility Status. Removes from the Row Set all the rows that exist
in the Incompatible Row Set.

Figure 15. Product Compatibility - Default Workflow
Product Administration Guide Version 7.8, Rev. B 327

Product and Promotion Eligibility and Compatibility ■ Eligibility and Compatibility
Workflow Reference
■ Merge Incompatible products. Merges the Incompatible Row Set with the Row Set.

■ Split Eligible Rows. Splits the rows with Compatibility violations from the Row Set to the
Ineligible Row Set. Ineligible Row Set now contains a row set of all the products that have
Eligibility violations or Compatibility violations.

Compatibility Multiple Popup Workflow
Compatibility Multiple Popup Workflow is responsible for displaying product compatibility violations
determined by the Eligibility and Compatibility workflows. This popup gives the user the option of
adding the incompatible products or removing them. The popup gets triggered in Quotes and Orders
unless the Skip Quote flag is set to N.

This workflow is shown in Figure 16.

Workflow Description. This workflow does the following:

■ Post-Pick Mode?. Skips this workflow completely if in Pre-pick mode.

■ Skip Quote. Ends this workflow if the Skip Quote flag is Y.

■ Set Even Type. Stores the full event name after reading the event prefix and the event type.
This event name is used later to resume the workflow.

■ Ineligible Exists?. If there are no Eligibility and Compatibility violations, goes to end of
workflow

■ Popup Message. Displays the popup with violating product and comment and waits for the user
to decide whether to continue to add this product or to remove this product.

■ Event Type?. Checks if the event for this workflow comes from Favorites, Search, or Catalog

Figure 16. Compatibility Multiple Popup Workflow
Product Administration Guide Version 7.8, Rev. B328

Product and Promotion Eligibility and Compatibility ■ Eligibility and Compatibility
Workflow Reference
■ Wait Favorites/Search/Catalog. Waits for a resume workflow event type from one of the 3
modules.

■ Loop

■ Get E&C Responses. Depending on user input from previous steps, deletes or keeps products.

Configurator Eligibility Compatibility Workflow
This Workflow is invoked by Siebel Configurator to check if there are any products or attributes that
violate Eligibility or Compatibility rules. There are 2 types of checking: Pre-Pick check on the domains
of products and attributes in Siebel Configurator, and Post-Pick check on the products and attributes
that are selected in the Siebel Configurator Instance.

This workflow is shown in Figure 17.

Workflow Description. This workflow does the following:

■ PrePick1. Determines whether this is a Pre-Pick or Post-Pick scenario.

■ Pre Pick Get Row Set. Creates a Row Set of all the Domain Products in Siebel Configurator.

■ Post Pick Get Row Set. Asks the Context Service to generate a Row Set of the current Siebel
Configurator Instance.

■ Get Delta RowSet. Generates a subset of the Row Set generated in the previous step. This
subset contains only the newly selected or deleted instance after a Siebel Configurator Submit
Request. The Compatibility Engine will use this Row Set and compare it with the Row Set
generated in the previous step to determine if any Compatibility Rules are violated.

Figure 17. Configurator Eligibility Compatibility Workflow
Product Administration Guide Version 7.8, Rev. B 329

Product and Promotion Eligibility and Compatibility ■ Eligibility and Compatibility
Workflow Reference
■ Initialize PAC?. Determines whether Projected Asset Cache (PAC) was already initilialized.

■ Construct PAC Params. Constructs the necessary input arguments that PAC business service
needs. This will control which buscomps (Quote, Order, or Asset) that will be queried by PAC.

■ Call PAC?. Based on the inputs set in the previous step, determines whether we need to call PAC.

■ Initialize Projected Asset. Creates the Projected Asset Cache.

■ Projected Asset Key. Creates a unique key for the Cache created in the previous step.

■ Query Projected Asset. Creates a Property Set of the items cached in the PAC.

■ Transform PAC Fields. Transforms the PAC fields to Variable Names that are recognized by the
Eligibility/Compatibility engine

■ E&C Workflow. Passes the control to the Product Eligibility & Compatibility - Default workflow.

■ PrePick2. Determines whether this is a Pre-Pick or Post-Pick scenario.

■ ProcessPostPickProduct. Updates Siebel Configurator instances that are Ineligible.

■ ProcessPostPickAttribute. Determines the eligibility of attributes that are already selected
(part of the Instance).

■ ProcessPrePickProduct. Updates Siebel Configurator Domain Products that are Ineligible.

■ CheckPrePickAttribute. Determines the eligibility of the domains of the attributes.

Check Eligibility & Compatibility - Default Workflow
This workflow is responsible for checking the eligibility and compatibility of a quote or order line item.

This workflow is shown in Figure 18.

Workflow Description. This workflow does the following:

■ Project Asset Key?. Determines whether the Projected Asset Key is present.

■ Query Projected Asset. If the Projected Asset Key is present, searches for the asset.

■ Name Change. Calls the Conditional Action Transform for the Business Service Row Set
Transformation Toolkit.

Figure 18. Check Eligibility & Compatibility - Default Workflow
Product Administration Guide Version 7.8, Rev. B330

Product and Promotion Eligibility and Compatibility ■ Eligibility and Compatibility
Workflow Reference
■ Product E & C. Calls the Product Eligibility & Compatibility - Default workflow.

■ Store Instance Information. Stores instance information that will be used in the Delete
RowSet Data step.

■ Multiple Popup Workflow. Calls the Compatibility Multiple Popup Workflow.

■ Delete RowSet?. Determines whether any Line Items in the Row Set have been marked for
deletion.

■ Delete RowSet Data. Deletes any Line Items that are marked for deletion.

Pricing and Eligibility Procedure - Default Workflow
Pricing and Eligibility Procedure - Default workflow will check the Eligibility and Compatibility of a
Line Item and then do Pricing.

This workflow is shown in Figure 19.

Workflow Description. This workflow does the following:

■ Product E + C. Calls the Check Eligibility & Compatibility - Default workflow, which checks
eligibility and compatibility for the Line Items.

■ Pricing. Calls the Pricing Procedure - Default workflow, which prices the line items.

Figure 19. Pricing and Eligibility Procedure - Default Workflow
Product Administration Guide Version 7.8, Rev. B 331

Product and Promotion Eligibility and Compatibility ■ Eligibility and Compatibility
Workflow Reference
Product Administration Guide Version 7.8, Rev. B332

23 Creating Validation Rules for
Customizable Products
This chapter covers product validation. It includes the following topics:

■ “About Validation for Customizable Products” on page 333

■ “Scenario for Product Validation Using Custom Validation Services” on page 334

■ “Activating Workflows for Product Validation” on page 335

■ “Setting Up Product Validation Using the Simple Expression Business Service” on page 336

■ “Setting Up Product Validation Using Custom Validation Services” on page 339

■ “About Creating Custom Rule Checkers” on page 341

About Validation for Customizable
Products
The Product Validation view:

■ Allows you to validate configurable products using the provided Simple Expression business
service.

■ Provides the infrastructure for validating products using custom validation business services that
that you create.

The product ships with one validation business service, named VORD CPVE Simple Validation, which
validates the components that make up a customizable product by using validation expressions.

The Product Validation service can be run in the following ways:

■ When the user selects Verify from the Line Item menu of the Quote or Order screens.

■ When the user clicks the Verify button within the Siebel Configurator user interface.

■ When the user selects Save or Done.

When the user verifies from the Quote or Order screen, the Product Validation service is run in
conjunction with other verification services. The messages it generates appear with the messages
from those services.

The messages from the Product Validation business service do not prevent the user from continuing,
past the messages.

The Product Validation provides two key benefits:

■ It provides the architecture to create custom validation business services that are processed in
conjunction with all other customizable product behavior. Depending on how the custom service
is written, it could use rules written in an administration applet, or it may have the validation
logic hard-coded into the script.
Product Administration Guide Version 7.8, Rev. B 333

Creating Validation Rules for Customizable Products ■ Scenario for Product Validation
Using Custom Validation Services
■ It fires only when called by clicking the Done, Save, or Verify button, so it makes batch validation
possible in a Siebel Configurator session. Product validation rules are not fired every time the
selection changes, as configuration constraints are.

NOTE: Product validation uses the Projected Asset Cache, which contains the customer's current
assets, current open order lines and the line items from the current quote. For more information
about the Projected Asset Cache, see Siebel Order Management Infrastructure Guide.

Scenario for Product Validation Using
Custom Validation Services
This scenario describes one hypothetical way that product validation can be used. You may use it
differently, depending on your business model.

An automotive wholesaler buys cars with many factory-installed options and configures them by
adding wholesaler-installed options.

Some factory-installed options are not compatible with some wholesaler-installed options. The
wholesaler must create requires and excludes rules such as:

■ Wholesaler-installed rear spoiler requires factory-installed V-6 engine.

■ Factory-installed sunroof excludes wholesaler-installed roof rack.

These are similar to the requires and excludes rules defined in Siebel Configurator. However, the
wholesaler cannot use Siebel Configurator to configure these products, because the wholesaler only
controls some of the components in the configuration.

For example, if you created a rule in Siebel Configurator saying that sunroof excludes roof-rack,
Siebel Configurator would remove the sunroof when a user adds a roof rack. However, the wholesaler
does not have control of the sunroof, and needs a rule saying that the roof rack cannot be installed
if there is a sunroof.

To solve this problem using product validation, the wholesaler:
Product Administration Guide Version 7.8, Rev. B334

Creating Validation Rules for Customizable Products ■ Activating Workflows for Product
Validation
■ Uses the Pricing Administration screen, then the Attribute Adjustments view to create dynamic
matrix tables of allowable combinations, as shown in Table 41 and Table 42.

■ Write a validation business service for each of these matrices. The services reference the matrix
to determine whether a combination that the end user selects is valid.

■ In the Product Validation view, add these business services and add the messages that are
displayed to the user if the rules are violated. There is no limit to the number of business services
that you can add for one validation.

Activating Workflows for Product
Validation
Product validation is based on Siebel Workflows. You must activate these workflows before using the
feature. For information about activating workflows, see Siebel Business Process Designer
Administration Guide.

Activate the following workflows:

■ VORD Validate (Order)

■ VORD Validate (Quote)

Table 41. Allowable Combinations of Rear Spoiler and Engine

Rear Spoiler Engine Type

Y 6

Y 6T

N *

Table 42. Allowable Combinations of Sunroof and Roof Rack

Sunroof Roof Rack

Y N

N Y

N N
Product Administration Guide Version 7.8, Rev. B 335

Creating Validation Rules for Customizable Products ■ Setting Up Product Validation
Using the Simple Expression Business Service
Setting Up Product Validation Using the
Simple Expression Business Service
To perform product validation using the simple expression business service, which is provided with
the product, perform the following tasks:

1 “Creating the Customizable Product for Validation” on page 336

2 “Creating the Messages for Product Validation” on page 336

3 “Adding the Validation Services Record” on page 337

4 “Creating Product Validation Expression Rules” on page 337

Creating the Customizable Product for Validation
Validation rules only work on products that have been defined as components of a product with
components. They use the Instance ID of the product with components as the key to retrieve
products to validate.

As the first step in creating validation rules, define a product with components whose components
include all the products that the rules will apply to. For more information, see Chapter 9, “Designing
Products with Components.”

Creating the Messages for Product Validation
You must use the Administration - Application screen, then the Message Types view to define the
error messages that the product validation rule will display.

For more information about defining messages, see Siebel Order Management Infrastructure Guide.

To create the messages for product validation

1 Navigate to the Administration - Order Management screen, then the Message Types view.

2 In the All Message Types list, add a new record for each message and complete the necessary
fields. Some fields are described in the following table.

Field Comments

Name Enter a name for the message record. When you add rules in the
Simple Validation Expression Rules list, this name will be used to
link the rule to a message.

Group If you are using the validation service VORD CPVE Simple
Validation, which ships with the product, as the group, you must
enter Simple Expression Rule.

Full Text Enter the error message that is displayed by the application.

NOTE: Only the Full Text field is used by the product validation
engine. The Short Text field is ignored.
Product Administration Guide Version 7.8, Rev. B336

Creating Validation Rules for Customizable Products ■ Setting Up Product Validation
Using the Simple Expression Business Service
Adding the Validation Services Record
The Validation Services record contains the name of the validation business service to call.

This task is a step in “Setting Up Product Validation Using the Simple Expression Business Service” on
page 336.

To add the Validation Services record

1 Navigate to the Administration - Product screen, then the Products view.

2 Click the Product Validation view tab.

3 In the link bar of Product Validation view, click Validation Services.

4 Add one or more new records to the Validation Services list and complete the necessary fields.
Some fields are described in the following table.

Creating Product Validation Expression Rules
The Product Validation Expression list allows you to create rules based on expressions that are true
or false. If the expression is true, the application displays the error message that you select in the
Message field.

This list allows you to create a number of different types of expressions. You may create only one
type of expression in each rule.

For example, you can use the Search Expression field to create an expression in Siebel Query
Language, such as [Quantity] > 2. If the value in the Quantity field is greater than 2, this expression
evaluates as true, and the error message is displayed.

To create product validation rules

1 Navigate to the Administration - Product screen, then the Products view.

2 Click the Product Validation view tab.

3 In the link bar of Product Validation view, click Product Validation Expression Rules.

Field Comments

Sequence Enter a number that controls the order in which the validation
services are executed. You can create an unlimited number of
validation services.

Business Service Select the business service used to execute this rule. In this case,
select VORD CPVE Simple Validation, the provided product
validation business service that ships with the product.

Rule Type Select Complex or All.
Product Administration Guide Version 7.8, Rev. B 337

Creating Validation Rules for Customizable Products ■ Setting Up Product Validation
Using the Simple Expression Business Service
4 Add new records to the Product Validation Expression Rules list and complete the necessary
fields.

Table 43 includes some sample simple expression rules that you could use to validate network
ordering. The first six columns contain the values you enter in each record, and the last column
contains an explanation of what this rule does.

In addition to the fields described in Table 43, use the Message field to select a message
associated with the expression.

Table 43. Samples of Simple Expression Rules

Seq Error Text Search Expression
Aggregate
Function

Group
By Fields

Having
Expression Explanation

1 [Count]
[Product]s
are missing
Service
Addresses

([Network Element
Type] = "Network
Node" AND [Service
Address] = "")

Count [Product
Name]

[Count]>0 Validates
that all
Nodes have a
Service
Address.

2 [Count]
[Product]
are missing
a "Service
Address"
and/or a
"To Service
Address"

([Network Element
Type] = "Network
Connection" AND
(([Service Address]
= "") OR ([To
Service Address] =
"")))

Count [Product
Name]

[Count]>0 Validates
that all
Connections
have a
Service
Address
associated
with each
end of the
connection.

3 [Product]
at [Service
Address]
must have
a different
"To Service
Address"

([Network Element
Type] = "Network
Connection" AND
([Service Address]
= [To Service
Address]))

Validates
that the
Addresses
for each end
of a
connection
are different.

4 [Count]
[Product]
are missing
a From
Node and/
or To Node

([Network Element
Type] = "Network
Connection" AND
([Node] = "" OR [To
Node] = ""))

Count [Product
Name]

[Count]>0 Validates
that all
connections
have a node
associated
with each
end of the
connection.
Product Administration Guide Version 7.8, Rev. B338

Creating Validation Rules for Customizable Products ■ Setting Up Product Validation
Using Custom Validation Services
After this is setup, whenever a customizable product is validated, for each item in that current
instance of the product, each expression rule is processed once. If any expression matches the
current row, then the message associated with that rule is displayed.

Setting Up Product Validation Using
Custom Validation Services
To create product validation rules, perform the following tasks:

1 “Creating the Customizable Product for Validation” on page 339

2 “Creating Messages for Product Validation” on page 339

3 “Creating a Custom Business Service for Product Validation” on page 340

4 “Adding the Validation Services Record” on page 340

Creating the Customizable Product for Validation
Validation rules only work on products that have been defined as components of a product with
components. They use the Instance ID of the customizable product as the key to retrieve products
to validate.

As the first step in creating validation rules, define a product with components whose components
include all the products that the rules will apply to. For more information, see Chapter 9, “Designing
Products with Components.”

Creating Messages for Product Validation
If your custom business service uses Universal Messaging Service, you must use the Administration
- Application screen, then the Message Types view to define the error messages that the product
validation rule will display.

For more information about defining messages, see Siebel Order Management Infrastructure Guide.

To create the messages for product validation

1 Navigate to the Administration - Application screen, then the Message Types view.

2 In the All Message Types list, add a new record for each message and complete the necessary
fields. Some fields are described in the following table.

Field Comments

Name Enter a name for the message record. When you add rules in the
Simple Validation Expression Rules list, this name will be used to
link the rule to a message.
Product Administration Guide Version 7.8, Rev. B 339

Creating Validation Rules for Customizable Products ■ Setting Up Product Validation
Using Custom Validation Services
Creating a Custom Business Service for Product Validation
You can create your own business services to solve specialized business problems, such as the
problem described in “Scenario for Product Validation Using Custom Validation Services” on page 334.
This business service should follow the guidelines described in “About Creating Custom Rule Checkers”
on page 341. For more information about creating business services, see Siebel eScript Language
Reference and Siebel VB Language Reference.

Adding the Validation Services Record
The Validation Services record contains the name of the validation business service to call. In this
case, you use it to call the custom business service that you created.

To create validation services

1 Navigate to the Administration - Product screen, then the Products view.

2 Click the Product Validation view tab.

3 In the link bar of Product Validation view, click Validation Services.

4 Add one or more new records to the Validation Services list and complete the necessary fields.
Some fields are described in the following table.

Group If you are writing a custom validation service, give the group the
name that you will call in the validation service.

Full Text Enter the error message that is displayed by the application.

NOTE: Only the Full Text field is used by the product validation
engine. The Short Text field is ignored.

Field Comments

Sequence Enter a number that controls the order in which the validation
services are executed. You can create an unlimited number of
validation services.

Field Comments
Product Administration Guide Version 7.8, Rev. B340

Creating Validation Rules for Customizable Products ■ About Creating Custom Rule
Checkers
About Creating Custom Rule Checkers
The Compound Product Validation Engine business service invokes a number of different rules
checker business services. Two rules checkers are provided with the product, but a customer can
build custom rules checker business services that comply with the following API specification.

The following rule checkers are provided with the product:

■ PreValidate. Returns the list of field names and attribute names used by the rules checker. The
list of required fields and attributes may be influenced by the Parameters passed to the rule. For
more information, see “PreValidate Method” on page 341.

■ Validate. Implements the logic of the specific rule and validates the contents of the Projected
Asset cache. It returns rules violations. For more information, see “Validate Method” on page 344.

PreValidate Method
The PreValidate method determines the list of fields and attributes that the rules checker requires
and returns them to the Compound Product Validation Engine. It may optionally use the product Id
to retrieve product specific data related to the rule, or other parameters that may influence the list
of fields and attributes.

Business Service Select the custom business service that you created to execute
this rule.

Rule Type Select a rule type. Options are:

■ Compound. This business service will run in the context of
the Network Validation routines. For information about
network validation, see Siebel Order Management Guide
Addendum for Industry Applications.

■ Complex. This business service will run in the context of the
Product Validation routines.

■ All. this business service will run in both contexts.

The option you should select depends on the custom validation
service.

Field Comments
Product Administration Guide Version 7.8, Rev. B 341

Creating Validation Rules for Customizable Products ■ About Creating Custom Rule
Checkers
Example
The Port Over-Subscription Checker business service checks that the sum of the bandwidths of the
connections going into or out of a node does not exceed the bandwidth of the node. The checker has
two parameters that specify the name of the Bandwidth attribute of the Node product and the name
of the bandwidth of the Connection product. The rules checker requires the Network Element Type,
Product Name, Node and To Node fields and the Bandwidth attributes to evaluate the rule. The
method returns a property set of type Field and a property set of type Attribute containing the list
of fields and attributes required by the rules checker.

NOTE: This sample code is provided for instructional purposes only. Different code may be needed,
depending on how your application is configured. This sample script contains some fields that may
not be present in your application, because they are only available in Siebel Industry Applications.

function PreValidate (Inputs, Outputs)

{

// Retrieve input arguments

var productId = Inputs.GetProperty("Product Id");

var parameter;

// Retrieve the rules checker specific parameters

// These parameter

for (var i = 0; i < Inputs.GetChildCount(); i++)

{

var child = Inputs.GetChild(i);

switch (child.GetType())

{

case 'Parameter':

parameter = child;

break;

default:

throw "Unknown argument: " + child.GetType();

break;

}

}
Product Administration Guide Version 7.8, Rev. B342

Creating Validation Rules for Customizable Products ■ About Creating Custom Rule
Checkers
if (parameter == undefined)

{

throw "Missing input argument 'Parameter'";

}

var connectionAttrib = parameter.GetProperty("Connection Attribute");

var nodeAttrib = parameter.GetProperty("Node Attribute");

// Define the fields used by this rules checker

var field = TheApplication().NewPropertySet();

field.SetType("Field");

field.SetProperty("Network Element Type", "");

field.SetProperty("Product Name", "");

field.SetProperty("Node", "");

field.SetProperty("To Node", "");

// Define the attributes used by this rules checker

var attribute = TheApplication().NewPropertySet();

attribute.SetType("Attribute");

attribute.SetProperty(connectionAttrib, "");

attribute.SetProperty(nodeAttrib, "");

// Return the required fields and attributes

Outputs.AddChild(attribute);

Outputs.AddChild(field);

}

Related Topics
“Validate Method” on page 344.
Product Administration Guide Version 7.8, Rev. B 343

Creating Validation Rules for Customizable Products ■ About Creating Custom Rule
Checkers
Validate Method
The Validate method implements the logic of the rules checker and returns rules violations. It may
optionally use the Product Id to retrieve product specific data related to the rule, or other parameters
that may influence the logic of the rule. It then queries the Projected Asset Cache using the supplied
Asset Cache Key for rule violations and returns an error string for each to the Compound Product
Validation Engine.

Example
The Port Over-Subscription Checker business service checks that the sum of the bandwidths of the
connections going into or out of a node does not exceed the bandwidth of the node. The checker has
two parameters that specify the name of the Bandwidth attribute of the Node product and the name
of the bandwidth of the Connection product. The Validate method first queries the Projected Asset
Cache using the Asset Cache Key passed as an input argument for all Network Node components and
sorts the output by Node name. It then queries the Projected Asset cache for the sum of the
bandwidth attribute for all Network Connection components grouped by the Node field. Finally, it
queries the Projected Asset cache for the sum of the bandwidth attribute for all Network Connection
components grouped by the To Node field. Using the results from the three queries, the Validate
method then calculates the sum of the sum of the bandwidths of the connections going into or out
of each node and constructs an error message string for each instance where the bandwidth of the
node is exceeded. The error strings are returned in the Rule Violation output argument.

NOTE: This sample code is provided for instructional purposes only. Different code may be needed,
depending on how your application is configured. This sample script contains some fields that may
not be present in your application, because they are only available in Siebel Industry Applications.

function Validate (Inputs, Outputs)

{

// Retrieve input arguments

var productId = Inputs.GetProperty("Product Id");

var product = Inputs.GetProperty("Product");

var assetCacheKey = Inputs.GetProperty("Asset Cache Key");

var parameter;

// Retrieve rules checker specific parameters

for (var i = 0; i < Inputs.GetChildCount(); i++)

{

var child = Inputs.GetChild(i);

switch (child.GetType())
Product Administration Guide Version 7.8, Rev. B344

Creating Validation Rules for Customizable Products ■ About Creating Custom Rule
Checkers
{

case 'Parameter':

parameter = child;

break;

default:

throw "Unknown argument: " + child.GetType();

break;

}

}

if (parameter == undefined)

{

throw "Missing input argument 'Parameter'";

}

var connectionAttrib = parameter.GetProperty("Connection Attribute");

var nodeAttrib = parameter.GetProperty("Node Attribute");

// Queries the Projected Asset Cache to retrieve a list of nodes sorted by node

// name.

var assetCacheSvc =

TheApplication().GetService("VORD Projected Asset Cache");

var svcInputs = TheApplication().NewPropertySet();

var svcOutputs = TheApplication().NewPropertySet();

svcInputs.SetProperty("Asset Cache Key", assetCacheKey);

svcInputs.SetProperty("Search Expression",

"([Network Element Type] = \"Network Node\")");

var sortByField = TheApplication().NewPropertySet();

sortByField.SetType("Sort By Field");
Product Administration Guide Version 7.8, Rev. B 345

Creating Validation Rules for Customizable Products ■ About Creating Custom Rule
Checkers
sortByField.SetProperty("Node", "ASC");

svcInputs.AddChild(sortByField);

assetCacheSvc.InvokeMethod("Query", svcInputs, svcOutputs);

// Retrieves the result from the output of the Query method

var nodePropSet;

for (var i = 0; i < svcOutputs.GetChildCount(); i++)

{

var child = svcOutputs.GetChild(i);

switch (child.GetType())

{

case 'Result':

nodePropSet = child;

break;

default:

throw "Unknown argument: " + child.GetType();

break;

}

}

if (nodePropSet == undefined)

{

throw "Missing output argument 'Result'";

}

// Since we cannot construct a single query to get the bandwidth of connections

// into and out of a node, we retrieve this in two queries, one for connections

// going in and one for connections going out. This maximizes the use of high
Product Administration Guide Version 7.8, Rev. B346

Creating Validation Rules for Customizable Products ■ About Creating Custom Rule
Checkers
// performance C++ code in the projected asset cache and minimizes the work

// done by this script.

// Get the bandwidth going into each node from the projected asset cache

var assetCacheSvc =

TheApplication().GetService("VORD Projected Asset Cache");

// Set up the inputs to the Query method

var svcInputs = TheApplication().NewPropertySet();

var svcOutputs = TheApplication().NewPropertySet();

svcInputs.SetProperty("Asset Cache Key", assetCacheKey);

svcInputs.SetProperty("Search Expression",

"([Network Element Type] = \"Network Connection\")");

svcInputs.SetProperty("Aggregate Field", connectionAttrib);

svcInputs.SetProperty("Aggregate Function", "Sum");

var groupByField = TheApplication().NewPropertySet();

groupByField.SetType("Group By Field");

groupByField.SetProperty("Node", "");

svcInputs.AddChild(groupByField);

var sortByField = TheApplication().NewPropertySet();

sortByField.SetType("Sort By Field");

sortByField.SetProperty("Node", "ASC");

svcInputs.AddChild(sortByField);

// Invoke the Projected Asset Cache Query method

assetCacheSvc.InvokeMethod("Query", svcInputs, svcOutputs);
Product Administration Guide Version 7.8, Rev. B 347

Creating Validation Rules for Customizable Products ■ About Creating Custom Rule
Checkers
// Get the Query result

var nodeFromPropSet;

for (var i = 0; i < svcOutputs.GetChildCount(); i++)

{

var child = svcOutputs.GetChild(i);

switch (child.GetType())

{

case 'Result':

nodeFromPropSet = child;

break;

default:

throw "Unknown argument: " + child.GetType();

break;

}

}

if (nodeFromPropSet == undefined)

{

throw "Missing output argument 'Result'";

}

// Get the bandwidth going out of each node from the projected asset cache

var assetCacheSvc =

TheApplication().GetService("VORD Projected Asset Cache");

ar svcInputs = TheApplication().NewPropertySet();

ar svcOutputs = TheApplication().NewPropertySet();

// Set up the inputs to the Query method

svcInputs.SetProperty("Asset Cache Key", assetCacheKey);
Product Administration Guide Version 7.8, Rev. B348

Creating Validation Rules for Customizable Products ■ About Creating Custom Rule
Checkers
svcInputs.SetProperty("Search Expression",

"([Network Element Type] = \"Network Connection\")");

svcInputs.SetProperty("Aggregate Field", connectionAttrib);

svcInputs.SetProperty("Aggregate Function", "Sum");

var groupByField = TheApplication().NewPropertySet();

groupByField.SetType("Group By Field");

groupByField.SetProperty("To Node", "");

svcInputs.AddChild(groupByField);

var sortByField = TheApplication().NewPropertySet();

sortByField.SetType("Sort By Field");

sortByField.SetProperty("To Node", "ASC");

svcInputs.AddChild(sortByField);

// Invoke the Projected Asset Cache Query method

assetCacheSvc.InvokeMethod("Query", svcInputs, svcOutputs);

// Get the Query result

var nodeToPropSet;

for (var i = 0; i < svcOutputs.GetChildCount(); i++)

{

var child = svcOutputs.GetChild(i);

switch (child.GetType())

{

case 'Result':

nodeToPropSet = child;

break;

default:

throw "Unknown argument: " + child.GetType();
Product Administration Guide Version 7.8, Rev. B 349

Creating Validation Rules for Customizable Products ■ About Creating Custom Rule
Checkers
break;

}

}

if (nodeToPropSet == undefined)

{

throw "Missing output argument 'Result'";

}

// Create a property set for the errors

var ruleViolation = TheApplication().NewPropertySet();

ruleViolation.SetType("Rule Violation");

// Check whether each node is over-loaded

var nodeFromIndex = 0;

var nodeToIndex = 0;

for (var i = 0; i < nodePropSet.GetChildCount(); i++)

{

// Get details for the current node

var thisNode = nodePropSet.GetChild(i);

var thisNodeName = thisNode.GetProperty("Node");

var thisNodeBandwidth = parseInt(thisNode.GetProperty(nodeAttrib));

var thisNodeProduct = thisNode.GetProperty("Product Name");

// Find the current node in the 'total from' property set

var fromNodeBandwidth = 0;

if (nodeFromPropSet.GetChild(nodeFromIndex).GetProperty("Node") == thisNodeName)

{

fromNodeBandwidth =
parseInt(nodeFromPropSet.GetChild(nodeFromIndex).GetProperty("Sum"));
Product Administration Guide Version 7.8, Rev. B350

Creating Validation Rules for Customizable Products ■ About Creating Custom Rule
Checkers
nodeFromIndex++;

}

// Find the current node in the 'total to' property set

var toNodeBandwidth = 0;

if (nodeToPropSet.GetChild(nodeToIndex).GetProperty("To Node") == thisNodeName)

{

toNodeBandwidth =

parseInt(nodeToPropSet.GetChild(nodeToIndex).GetProperty("Sum"));

nodeToIndex++;

}

// Raise an error if the bandwidth of the connections exceeds that of the node

if (thisNodeBandwidth < (fromNodeBandwidth + toNodeBandwidth))

{

ruleViolation.SetProperty(thisNodeProduct + " '"

+ thisNodeName + "' is overloaded (" + (fromNodeBandwidth

+ toNodeBandwidth) + " > " + thisNodeBandwidth + ")", "");

}

}

// Return any errors

Outputs.AddChild(ruleViolation);

}

Product Administration Guide Version 7.8, Rev. B 351

Creating Validation Rules for Customizable Products ■ About Creating Custom Rule
Checkers
Product Administration Guide Version 7.8, Rev. B352

24 Siebel Configurator Technical
Reference
This chapter provides technical information of use to server administrators and integrators. It
includes the following topics:

■ “Siebel Configurator Architecture” on page 353

■ “Siebel Configurator Server Deployment” on page 354

■ “Enabling Auto Match” on page 354

■ “Enforcing the Field Length for Entering Advanced Rules” on page 355

■ “Displaying RAL in the Constraints View” on page 356

■ “Turning Off Default Instance Creation” on page 357

■ “Revising the Application Default Cardinalities” on page 358

■ “Displaying Fields from S_PROD_INT in Selection Pages” on page 358

■ “ASIs for Managing Products” on page 361

■ “Auto Match Business Service for Siebel Configurator” on page 362

In addition, see Chapter 26, “Siebel Configurator API Reference.”

Siebel Configurator Architecture
The key components of the Siebel Configurator architecture are as follows:

■ Object Manager. All services that run within a Siebel application are bound by the Object
Manager they are running within. The same applies to all caches as well. Therefore services
cannot be shared across object managers and neither can cached objects.

■ UI Business Service. The UI Business service is used by Siebel Configurator to render the UI.
The UI business service binds the structure of the customizable product to the Web templates
and submits them to the Siebel Web Engine for rendering to the client browser. The UI service is
the means by which the user interacts with Siebel Configurator. A unique instance of the UI
service is required for each user.

■ Instance Broker. The Instance Broker is a service that interacts with the UI Business Service.
The Instance Broker maintains all the information about the current instance of the customizable
product that the user is configuring. The Instance Broker interacts with other services in
response to user requests during a configuration session.

■ Object Broker. The Object Broker is a service that extracts the customizable product definition
from the database for use by other Siebel Configurator services.

■ Config Services. Config Services consists of factories.
Product Administration Guide Version 7.8, Rev. B 353

Siebel Configurator Technical Reference ■ Siebel Configurator Server Deployment
■ Factory. A factory is a service that translates the customizable product definition retrieved by
the Object broker into a format the worker can understand.

■ Constraint Engine. The Constraint engine is also called the worker. It is also referred to as the
Siebel Configurator engine.

■ Worker. The worker is a service that computes solutions and enforces all the constraints
associated with the configuration. This includes the declarative portion of the customizable
product plus constraints added by the user (user picks).

Siebel Configurator Server Deployment
For more information about deploying Siebel Configurator, see Deployment Planning Guide.

For more information about Siebel Configurator performance tuning, see Performance Tuning Guide.

Enabling Snapshot Mode
To use SnapShot Mode, you must turn it on by setting a server parameter. When Snapshot Mode is
turned on, the Siebel Configurator server runs using cached objects, factories, and workers as much
as possible. This improves performance.

For more information about enabling Snapshot Mode, see Performance Tuning Guide.

Enabling Auto Match
When a new version of a customizable product is released, Auto Match adjusts the configuration of
the product in a quote, asset, or order to reflect the changes. Auto Match is disabled by default.

For Web Client users, you turn Auto Match on by setting its server parameter to TRUE. Table 44 shows
the Auto Match server parameter.

For Dedicated Web Client users (also called mobile client users), add the following entries to the
configuration file used to start the application, for example Siebel.cfg.

;; This section will be read for mobile clients only

[InfraObjMgr]

Table 44. Server Parameter for Auto Match

Parameter Name Display Name
Data
Type

Default
Value Description

eProdCfgAutoMatchInstance Product
Configurator -
auto match quote
on reconfigure.

Boolean FALSE When set to FALSE, Auto
Match is turned off. When
set to TRUE, Auto Match
is turned on.
Product Administration Guide Version 7.8, Rev. B354

Siebel Configurator Technical Reference ■ Specifying Keep Alive Time for Siebel
Configurator Sessions
eProdCfgAutoMatchInstance=TRUE

Specifying Keep Alive Time for Siebel
Configurator Sessions
By default, product configuration sessions remain active indefinitely. They do not time out.

You can specify how long product configuration sessions remain active by setting the server
parameter for Keep Alive Time. This parameter specifies the time in seconds that a session can
remain idle before the session is timed out. The default value of -1 means that the session can remain
idle indefinitely and will not be timed out. Table 45 shows this server parameter.

Enforcing the Field Length for Entering
Advanced Rules
The Advanced Rule template allows you to enter a rule containing several thousand characters.
However, the database can store rules that contain only up to 900 characters.

You can revise the business component associated with the Advanced Rule template so that you
cannot enter more than 900 characters. This business component is used for populating several lists.
Revising the business component enforces the 900 character limit on all these lists. Use Siebel Tools
to determine the other lists that are affected.

To enforce the field length

1 In Siebel Tools, locate the Rule Designer Dummy List VBC business component.

It is located in the Rule Designer project.

2 Locate the field called 0 (zero).

3 Set the Text Length value to 900.

4 Recompile the desired application and test.

Table 45. Server Parameter for Auto Match

Parameter Name Display Name
Data
Type

Default
Value Description

eProdCfgKeepAliveTime Product
Configurator -
Keep Alive Time
of Idle Session

Integer -1 The amount of time in
seconds that a configuration
session can remain inactive
before the session is killed.
Product Administration Guide Version 7.8, Rev. B 355

Siebel Configurator Technical Reference ■ Displaying RAL in the Constraints View
Displaying RAL in the Constraints View
You can revise the Constraints list to add a field that displays the Rule Assembly Language (RAL)
translation of your template rules. This is a useful way to learn how to use RAL to write configuration
rules.

You must use Siebel Tools to add the field to the Constraints record and then recompile the siebel.srf
file. You should be familiar with creating and modifying applets in Siebel Tools before performing this
procedure.

To revise the Constraints view, perform the following tasks:

1 “Locate the Constraints View Applet”

2 “Modify the Constraints View Applet”

3 “Recompile the Siebel.srf File”

Locate the Constraints View Applet
This task selects a target browser and queries for the Cfg SWE Rule Manager Applet.

To locate the Constraints View applet

1 Save a copy of the siebel.srf file. It is located in the objects subdirectory of your installation
directory.

2 Start Siebel Tools.

3 Select View, Toolbars, Configuration Context.

4 In the Target Browser Group drop-down menu, select Target Browser Config.

5 In Available browser groups, select ALL and click the right-arrow to transfer it to “Selected
browser groups for layout editing.”

6 Click OK.

7 Click Applet in the Object Explorer.

8 In the Applets list, query for the Cfg SWE Rule Manager Applet.

Modify the Constraints View Applet
This task adds the Rule Spec field to the Cfg SWE Rule Manager Applet.

To modify the Constraints View applet

1 With the SWE Rule Manager Applet highlighted, select Tools, Lock Project.

2 Right click the highlighted applet record and select Edit Web Layout.

3 In the window displaying the layout, right-click and select Preview from the pop-up menu.

4 Click the Template icon and select the Applet List (Base/EditList) template. It is the default.
Product Administration Guide Version 7.8, Rev. B356

Siebel Configurator Technical Reference ■ Turning Off Default Instance Creation
5 In the Mode drop-down menu, select 3: Edit List.

6 In the Controls/Columns window, click Rule Spec, and drag it to the [field] just to the right of
End date in the applet display.

7 Click Save. Click OK on the pop-up message that asks if you want to save your changes.

Recompile the Siebel.srf File
This task recompiles the application’s siebel.srf file.

To recompile siebel.srf

1 Click Tools, Compile.

2 Select Locked Projects.

3 Enter the path to the application siebel.srf file. It is located in the objects subdirectory of the
installation. Do not enter the path to the siebel.srf file in the Tools installation directory.

Turning Off Default Instance Creation
When you add a customizable product to a quote, order, or agreement, a default product instance is
created. This causes the default items in the customizable product to display as line items. When the
user clicks Customize, another instance is created for the configuration session. The default instance
is not used.

For large products with components, creating the default instance can significantly increase the time
required to add the customizable product to Line Items to the quote or order. To improve
performance, you can turn off default instance creation. When you add a customizable product, this
causes it to display as a single line item. The default components do not display as line items.

This will not affect performance when the user clicks Customize since this creates a new product
instance. Turning off default instance creation applies only to products with components. It does not
apply to bundles.

To turn off default instance creation

1 In Siebel Tools, locate the Quote, Agreements, or Orders business component.

2 Display user properties.

3 Set the Skip Loading Default Cfg Instance user property to Y.

4 Recompile the desired application and test.
Product Administration Guide Version 7.8, Rev. B 357

Siebel Configurator Technical Reference ■ Revising the Application Default Cardinalities
Revising the Application Default
Cardinalities
When a you create a relationship in a customizable product, you can specify a minimum, maximum,
and default cardinality. If you do not specify cardinalities, the application uses the following defaults:

■ Minimum cardinality = 0

■ Default cardinality = 0

■ Maximum cardinality = 999

If you do not specify cardinalities this means that users are not required to select any items from
the relationship and are limited to selecting a maximum of 999 items.

You can change these defaults as needed. For example, you can set the maximum application default
cardinality to a number larger than 999.

To revise the application default cardinalities

1 In Siebel Tools, locate the Complex Product Structure BusComp.

2 Within the business component, locate the desired field: Default Cardinality, Max Cardinality, or
Min Cardinality.

3 Display the user properties for the field.

4 Set the Pre Default Value user property to the desired amount.

The amount should be an integer that is greater than or equal to 0.

Configuring the Object Broker
If you modify assignment of Cfg UI Field properties on fields of the Cfg CX Products business
component, you must do the following:

■ After you have made the changes, manually clean the file system's CFGCache folder.

■ Run all installations of Siebel applications that use the same file system from the SRF where you
have made the changes.

Displaying Fields from S_PROD_INT in
Selection Pages
You can add fields from S_PROD_INT to selection pages in both the High Interactivity and the
Standard Interactivity interface.

To add the fields from the Product Master tables (S_PROD_INT) to selection pages, perform the
following steps:
Product Administration Guide Version 7.8, Rev. B358

Siebel Configurator Technical Reference ■ Displaying Fields from S_PROD_INT in
Selection Pages
1 Add Fields to the CFG CX Products Buscomp. Add the fields to the CFG CX Products Buscomp and
define user properties. This buscomp is part of the Object Broker and extracts data from
S_PROD_INT.

2 Add SWE Code to the Web Template. Add SWE code to the desired Web template. The SWE code
retrieves the field from the buscomp and displays it in selection pages. Fields display as text
boxes.

3 Delete Contents of CFGCache Directory. Delete the contents of the CFGCache directory. This forces
the application to create a new instance of the customizable product containing the fields.

You can display text fields only for product items or for the product root. This means you can insert
the SWE code only in the following places:

■ For-each loops that iterate on relationship domains or the children of relationship domains. You
cannot insert the code in for-each loops that iterate on attributes or on groups.

■ At the root level. The template in which you insert the SWE code must not be called from inside
a for-each in any other Web template.

The procedures in this topic require you to have a thorough knowledge of Siebel Tools. You must also
have a thorough understanding of Siebel Configurator Web template structure.

Add Fields to the CFG CX Products Buscomp
This procedure adds the fields you want to display to the Object Broker and recompiles the
application. This makes the fields available for display.

To add fields to the CFG CX Products Buscomp

1 Locate the CFG CX Products Buscomp in Siebel Tools.

2 Add the desired fields from S_PROD_INT to the buscomp.

3 For each field you add, define a user property called Cfg UI Field. Set the user property value to
TRUE.

4 Recompile the repository and copy it to the application installation directory.

Add SWE Code to the Web Template
The following example shows the SWE code you would insert in a Web template to retrieve the Part
Number field for display:

<swe:control id=“swe:101Id+4400” CfgUIControl=“CfgLabel” CfgHtmlType=“CfgLabel”
property=“FormattedHtml” CfgFieldName=”Part Number”/>

The “id” must be that specified in the for-each loop iteratorName, and the increment amount must
be unique within the for-each loop.
Product Administration Guide Version 7.8, Rev. B 359

Siebel Configurator Technical Reference ■ Displaying Fields from S_PROD_INT in
Selection Pages
If you want to display a field name next to the field value, insert an swe:control statement that
extracts the field name from the repository. This allows you to support localization. You can insert
the swe:control wherever needed in the template. It does not have to be inside a for-each loop. Here
is an example of an swe:control tag that extracts the field name for Part Number from the repository.
The “id” in the tag must be present but is not used for anything. The lblPartNumber value is the name
of the label control in the repository.

For the SI interface, insert the following code:

<swe:control id=“partnum” CfgUIControl=“lblPartNumber” property=“Displayname”/>

For the HI interface, insert the following code:

<!-- Template Start: eCfgRelationContentsPriceQuantityJS.swt -->

<table border="0" cellpadding="0" cellspacing="3" width="100%">

<swe:for-each id="500" CfgLoopType="Children" startValue="1500" count="Dynamic"
iteratorName="101Id"

CfgFieldList="CfgFieldName:Quantity, CfgUIControl:lblQuantity,
HtmlAttrib_width:80, HtmlAttrib_align:left, Default:Y*

CfgFieldName:Name, CfgUIControl:lblName, HtmlAttrib_width:250,
HtmlAttrib_align:left, Default:Y*

CfgFieldList="CfgFieldName:Part Number, CfgUIControl:lblPartNo, DataSource:Broker,
NeedRefresh:N, HtmlAttrib_align:center,

HtmlAttrib_width:80*

CfgFieldName:RequireMoreChild, Default:Y*

CfgFieldName:List Price, CfgUIControl:lblListPrice, DataType:DTYPE_CURRENCY,
NeedRefresh:N, HtmlAttrib_align:center, HtmlAttrib_width:80*

CfgFieldName:Current Price, CfgUIControl:lblYourPrice, DataType:DTYPE_CURRENCY,
HtmlAttrib_align:center, HtmlAttrib_width:80*

CfgFieldName:Explanation, CfgUIControl:lblExplanation, HtmlAttrib_width:70,
HtmlAttrib_align:center*

CfgFieldName:Customize, CfgUIControl:lblCustomize, HtmlAttrib_width:70,
HtmlAttrib_align:center"

>

To add SWE code to a template

1 Copy the desired template and give it a new filename.

2 Insert the SWE code into the new template.

3 Add the new template to the Pick UI Style dialog box.

4 Select the new template as the UI control for a relationship or an item.
Product Administration Guide Version 7.8, Rev. B360

Siebel Configurator Technical Reference ■ ASIs for Managing Products
Delete Contents of CFGCache Directory
You must delete the contents of this directory. This makes sure that the application loads your
changes when generating a customizable product, rather than loading the objects from the cache
directory.

To delete the contents of the CFGCache directory

1 Locate the Siebel File System directory.

To see the directory path or system name for the directory, from the Siebel application Help
menu, choose Technical Support.

2 In the Siebel File System directory, locate the CFGCache directory.

3 Delete all the files in the CFGCache directory.

ASIs for Managing Products
Siebel Systems provides a library of business services that allow Siebel applications to share
information with other applications through integration servers. This library is called the Universal
Application Network, and its business services are called Application Service Interfaces (ASIs).

There are two ASIs for managing products: External Simple Product and Siebel Simple Product.
These are briefly described below. For a full technical description of these ASIs, see Application
Services Interface Reference.

External Simple Product
This ASI sends information about simple products created in the Siebel application to an external,
third-party application. It allows you to create, update, query, and delete a product in the third-party
application. This ASI is intended for inclusion in Siebel workflows that automate exporting products.
It does not support sending information about products with components or bundles.

The export feature included in the Siebel Product Administration interface exports basic product
information to an XML file and is intended for Siebel-to-Siebel transfers of product records. The
External Simple Product ASI exports a much larger set of information about the product.

This information sent includes almost all of the fields in the product record.

This ASI receives the following information:

■ Confirmation

■ Error messages

■ Status

■ Product ID
Product Administration Guide Version 7.8, Rev. B 361

Siebel Configurator Technical Reference ■ Auto Match Business Service for Siebel
Configurator
Siebel Simple Product
This ASI receives information about simple products created in third-party applications. It allows
users to create, update, query, and delete products in the Siebel application. It ASI is intended for
use in automated business processes in third-party applications that need to synchronize the Siebel
application to external product masters. This ASI does not support receiving information about
products with components or bundles. The information accepted by this ASI includes the following:

■ Product name

■ Product description

■ Part number

■ Product attributes and attribute values

■ Product unit of measure

■ Product classification

■ Product type

■ Substitute product name

■ Literature

■ Product catalog

■ Product category

■ Price list

This ASI sends the following information:

■ Confirmation

■ Error messages

■ Status

■ Product ID

Auto Match Business Service for Siebel
Configurator
Within certain limitations, the Auto Match business service allows Siebel Configurator to
automatically match components in a quote, order, or asset with components in the current version
of the product model. This capability is important when the product components in a quote, order,
or asset were generated from an old version of a product model or when they were populated directly
from an external application with different product models.

This can occur in a few different situations. For example:

■ After a software upgrade, such as upgrading from Siebel 6.x to Siebel 7.x, it may be necessary
or desirable to regroup product components under different relationships in a product with
components.
Product Administration Guide Version 7.8, Rev. B362

Siebel Configurator Technical Reference ■ Auto Match Business Service for Siebel
Configurator
■ During an upgrade, if existing product models are converted to newer product models,
regrouping of product components may occur as part of the conversion.

In each of these situations, when product components are regrouped under different relationships,
there will be conflicts between the new version of the product with components and existing
transaction data in quotes, orders, and assets. Depending on how the products with components
have changed, it may be possible to use Auto Match to help resolve such conflicts.

Here is a high-level summary of how Auto Match works: Before Siebel Configurator is launched, the
order management workflows run Auto Match to ensure that the product instance from the quote,
order or asset is compatible with the latest version of the product with components definition. There
are three relationship criteria Auto Match validates. It looks for a product that meets any of these
criteria:

■ Has no component relationship foreign key

■ Has an invalid product relationship foreign key

■ No longer appears in a valid product relationship

If it finds a product component that fits any of these criteria then the Auto Match business service
looks to see whether that product component belongs to a different relationship under the same
parent component in the hierarchy. If it finds a valid relationship, the Auto Match business service
updates the relationship foreign key of the product component in the in-memory product instance.
If no valid relationship is found then the Auto Match business service generates a warning message
and deletes the component from the product instance.

For products with attributes, Auto Match business service looks to see whether any required
attributes are missing. If so, it returns an error message in the Auto Match report.
Product Administration Guide Version 7.8, Rev. B 363

Siebel Configurator Technical Reference ■ Auto Match Business Service for Siebel
Configurator
Product Administration Guide Version 7.8, Rev. B364

25 Siebel Configurator Workflow
and Method Reference
This chapter covers the Siebel workflows used by Siebel Configurator, and the methods called by
these workflows. It includes the following topics:

■ “Siebel Configurator Workflow Reference” on page 365

■ “Siebel Configurator Methods Reference” on page 368

Siebel Configurator Workflow Reference
Some features of the order management interface are based on Siebel workflows. You can modify
these workflows to suit your own business model using Siebel Business Process Designer. For more
information, see Siebel Business Process Designer Administration Guide.

The following topics cover Siebel Configurator workflow:

■ “Configurator Cleanup Workflow” on page 365

■ “Configurator Load Workflow” on page 366

■ “Configurator Save Workflow” on page 366

■ “Configurator Validate Workflow” on page 367

■ “Configurator External Validate Workflow” on page 367

Configurator Cleanup Workflow
Configurator Cleanup Workflow, shown in Figure 20, releases the memory that was used by complex
product data structures when the product was being customized. It is called when the user is done
with a configuration session.

Workflow Description. This workflow does the following:

Figure 20. Configurator Cleanup Workflow
Product Administration Guide Version 7.8, Rev. B 365

Siebel Configurator Workflow and Method Reference ■ Siebel Configurator Workflow
Reference
1 CleanupEAI. Frees the memory used by the EAI data structure. This step calls CleanupEAI
Method, which is described in the Copy Service reference in Siebel Order Management
Infrastructure Guide.

2 CleanupInstance. Frees the memory used by the CxObj data structure. This step calls
CleanupInstance Method, which is described in the Copy Service reference in Siebel Order
Management Infrastructure Guide.

Configurator Load Workflow
Configurator Load Workflow, shown in Figure 21, loads the complex product model into memory and
displays the Configurator user interface.

Workflow Description. This workflow does the following:

1 Load Instance. Loads the Product line item data structure through EAI and creates the CxObj
memory structure for it. This step calls LoadEAI Method, which is described in the Copy Service
reference in Siebel Order Management Infrastructure Guide.

2 Go to UI. Loads the Siebel Configurator user interface for the product.

Configurator Save Workflow
Configurator Save workflow, shown in Figure 22, saves the updated selections for the product that
was customized to the line items (database).

Workflow Description. This workflow does the following:

Figure 21. Configurator Load Workflow

Figure 22. Configurator Save Workflow
Product Administration Guide Version 7.8, Rev. B366

Siebel Configurator Workflow and Method Reference ■ Siebel Configurator Workflow
Reference
1 SetupLineNumbers. Sets up the line numbers for the Line Item being customized
corresponding to the CxObj. This step calls SetupLineNumbers Method, which is described in the
Copy Service reference in Siebel Order Management Infrastructure Guide.

2 SetupSyncUpsert. Updates EAI operation for performance. This step calls SetupSyncUpsert
Method, which is described in the Copy Service reference in Siebel Order Management
Infrastructure Guide.

3 Save Instance. Stores the CxObj to the database using EAI. This step calls StoreEAI Method,
which is described in the Copy Service reference in Siebel Order Management Infrastructure
Guide.

Configurator Validate Workflow
Configurator Validate Workflow, shown in Figure 23, is used to validate a product model during
product administration.

Workflow Description. This workflow does the following:

Go to UI. Loads the Customize UI for the product. This step calls “LoadInstance Method” on page 368.

Configurator External Validate Workflow
Configurator External Validate Workflow, shown in Figure 24, is responsible for releasing the memory
used by complex product data structures when the product was being customized. It is called when
the user is done with a Customize session.

Workflow Description. This workflow does the following:

1 CPVE. Frees the memory used by the EAI data structure. This step calls “Validate Complex
Product From Property Set Method” on page 370.

2 Append Messages. Frees the memory used by the CxObj data structure. This step calls
“AppendMessages Method” on page 371.

Figure 23. Configurator Validate Workflow

Figure 24. Configurator External Validate Workflow
Product Administration Guide Version 7.8, Rev. B 367

Siebel Configurator Workflow and Method Reference ■ Siebel Configurator Methods
Reference
Siebel Configurator Methods Reference
The following topics cover the methods that are called by the Siebel Configurator Workflows:

■ “LoadInstance Method” on page 368

■ “Validate Complex Product From Property Set Method” on page 370

■ “AppendMessages Method” on page 371

Siebel Configurator workflows also use many methods that are described in the Copy Service
reference in Siebel Order Management Infrastructure Guide.

LoadInstance Method
LoadInstance method is invoked on the Cfg UI Service to display Customize UI. It calls LoadInstance
on Complex Object Instance Service to initialize the instance service with CxObj created in the
LoadEAI step. The instance service also validates the CxObj against the product definition from Cfg
Broker. It also does Promotion validation and Eligibility & Compatibility violation checks. The session
with the Rule engine evaluator (ILOG) is also initialized if needed. The UI Service gets the updated
CxObj representation from Instance Service and displays the UI based on the product model
definition.

This method is part of the Cfg Web UI Service Loader business service. It should not be confused
with “LoadInstance Method” on page 375, which is part of Complex Object Instance business service.

NOTE: The LoadInstance method cannot be used without first calling the LoadEAI method, which is
described in the Copy Service reference in Siebel Order Management Infrastructure Guide.

Syntax
LoadInstance <inputArgs>, <outputArgs>

Input Arguments

Input Argument Description

AutoSync Sync the changes to the CxObj to the DB made during
LoadInstance (due to product model definition changes and so on)

Business Component Name Item BC Name

BusObjName Business Object name

CDA Pageset Id Used when Cfg Type is eAdvisor

Cfg Type eConfigurator / eAdvisor

ChangeView If set to Y, the Customize UI view will be displayed

ComplexProdutId Root Product Id

Currency Code Currency Code
Product Administration Guide Version 7.8, Rev. B368

Siebel Configurator Workflow and Method Reference ■ Siebel Configurator Methods
Reference
DISABLEPRICER If set to Y, pricing workflows are not called

DonotStartNewSession If set to Y, StartNewSession is not called on Instance Service

Exchange Date Exchange Date

HeaderBusCompName Header BC Name

InstanceName A string indicating the name of the instance

IntegrationObjName Integration Object for loading the Line Items

Mode Quote / Order / Agreement / Asset

NewRecord If set to Y, default instance will be created

Notify List The list of business components that need to be notified when the
Customize session is finished

ParentObjId Quote Id / Order Id / Agreement Id / Asset Id

PriceListId Price List associated with this line item or Quote

Refresh List The list of business components that need to re-executed when
the Customize session is finished

ReturnViewName View that should be displayed when the Customize session is
finished

RowId Root Line Item Id

SearchSpec Set this parameter to filter out all other hierarchical instances in
the child buscomp

SkipCfgEligibilityCheck If set to Y, the eligibility check will be skipped

SkipLoadingDefaultInstance If set to Y, the default instance will not be loaded during New
Record

Start Date Date to use for Broker StartNewSession

Sub Line Item Integration Id Needed when customizing sub line items

Sub Line Item Product Id Needed when customizing sub line items

TriggerEvent If set to Y, trigger the Initialize script event after LoadInstance is
done

Type CxInstService

UIOption [optional] UI option name

ValidateMode If set to Y, it indicates that a validation is being performed (no sync
when done)

ViewName View Name of the Siebel Configurator UI standard interactivity
view

Input Argument Description
Product Administration Guide Version 7.8, Rev. B 369

Siebel Configurator Workflow and Method Reference ■ Siebel Configurator Methods
Reference
Output Arguments

Usage
LoadInstance method is invoked on the Cfg UI Service to display the Customize UI. It calls
LoadInstance on Complex Object Instance Service to initialize the instance service with CxObj
created in the LoadEAI step.

Invoked From
Browser Script, COM Data Control, COM Data Server, Server Script, CORBA Object Manager, Java
Data Bean, Mobile/Dedicated Web Client Automation Server

Validate Complex Product From Property Set Method
Validate Complex Product From Property Set method runs validations against a given record set
captured in the form of a property set.

This method is part of the VORD CPVE Validation business service.

Syntax
Validate Complex Product From Property Set <inputArgs>, <outputArgs>

Input Arguments

ViewName (JS) View Name of the Siebel Configurator UI high interactivity view

XABusCompName XA BC Name

Input Argument Description

CxObj The property set corresponding to the
CxObj data structure in Instance service.

Input Argument Description

IdFieldName Identifier Field Name. For example, Asset Integration Id

RecordSet Property Set

RootProductId Id of the Root Complex Product

Input Argument Description
Product Administration Guide Version 7.8, Rev. B370

Siebel Configurator Workflow and Method Reference ■ Siebel Configurator Methods
Reference
Output Arguments

Usage
Validate Complex Product From Property Set method runs validations against a given record set
captured in the form of a property set.

Invoked From
Browser Script, COM Data Control, COM Data Server, Server Script, CORBA Object Manager, Java
Data Bean, Mobile/Dedicated Web Client Automation Server

AppendMessages Method
AppendMessages displays the messages on the Customize UI.

This method is part of the Siebel Configurator business service.

Syntax
AppendMessages <inputArgs>, <outputArgs>

Input Arguments

Usage
AppendMessages displays the messages on the Customize UI.

Invoked From
Browser Script, COM Data Control, COM Data Server, Server Script, CORBA Object Manager, Java
Data Bean, Mobile/Dedicated Web Client Automation Server

Output Argument Description

Messages A property set containing the list of messages to display

Input Argument Description

Messages A property set containing the list of messages to display
Product Administration Guide Version 7.8, Rev. B 371

Siebel Configurator Workflow and Method Reference ■ Siebel Configurator Methods
Reference
Product Administration Guide Version 7.8, Rev. B372

26 Siebel Configurator API
Reference
This chapter summarizes the APIs available to the Siebel Configurator, version 7.5.x and focuses on
a segment of those APIs. It includes the following topics:

■ “About Siebel Configurator APIs” on page 373

■ “Instance APIs for the Complex Object Manager” on page 373

■ “APIs to Interact with Conflicts and Messages” on page 384

■ “APIs to Set Product and Attribute Values” on page 387

■ “Object Broker Methods” on page 392

■ “API to Select the Siebel Configurator User Interface” on page 396

■ “API to Validate Customizable Products” on page 397

About Siebel Configurator APIs
This chapter introduces advanced users to Siebel Configurator APIs. It assumes that you know Siebel
Configurator and Siebel server architecture. Implementing the APIs described in this chapter also
requires proficiency in Siebel EAI and Siebel Object Interfaces.

To use these APIs, the user should be familiar with the following:

■ Siebel Business Process Designer

■ Runtime Events (personalization) if invoked from the UI

■ Siebel Object Interfaces

■ A Siebel scripting language (Siebel VB or Siebel eScript)

■ Recursive programming techniques

■ Constraint satisfaction theory

■ Underlying behavior of the Siebel Configurator

■ Siebel product definition data model

■ Siebel property set representation of data (creation and transformation)

■ EAI Transports and Interfaces

Instance APIs for the Complex Object
Manager
Instance APIs for the Complex Object Manager follow these general rules:
Product Administration Guide Version 7.8, Rev. B 373

Siebel Configurator API Reference ■ Instance APIs for the Complex Object Manager
■ The Remote Complex Object Instance Service (RCOIS) is a business service. It can be accessed
by anything in the Siebel architecture that can use a business service. As a business service, it
is used by invoking methods, passing in property sets with input arguments, and getting results
from the Outputs property set.

NOTE: Before 7.8 the RCOIS was the API for using remote Siebel Configurator while Complex
Object Instance Service (COIS) was the API for the embedded Siebel Configurator. In 7.8 and
later versions the COIS and RCOIS are both proxies to the internal business service Siebel
Configurator Service. All previous scripting efforts are still supported. Do all future scripting on
the RCOIS.

■ The Remote Complex Object Instance Service is a business service. It can be accessed by
anything in the Siebel architecture that can use a business service. As a business service, it is
used by invoking methods, passing in property sets with input arguments, and getting results
from the Outputs property set.

■ A session is uniquely identified by two ID values, the Object Id and the Root Id. In quotes, the
Object Id is the Quote Id and the Root Id is the Quote Item Id for the top-level parent (the root).
In assets, the Object Id and the Root Id are both the root Asset Id.

■ A session is unique only within its own user session on a given Object Manager.

■ A port is another name for a Relationship.

■ A complex product is another name for a customizable product.

■ The Port Id is the ID of the relationship as defined in the Complex Product Structure BusComp.

■ The Prod Item Id is the ID of the relationship item as defined in the Complex Product Structure
BusComp.

■ The Path for an item is the Integration ID of the specific item.

■ Version arguments are used only when testing a customizable product version that is different
from the currently released version.

NOTE: The parameters are property set and, unless indicated, all properties are on the root level
property set.

Instance APIs include the following methods:

■ “LoadInstance Method” on page 375

■ “CreateSession Method” on page 377

■ “SetInstance Method” on page 378

■ “SyncInstance Method” on page 378

■ “UnloadInstance Method” on page 378

■ “GetAllPorts Method” on page 379

■ “EnumObjects Method” on page 379

■ “GetAttribute Method” on page 380

■ “GetFieldValues Method” on page 381

■ “GetInstance Method” on page 381
Product Administration Guide Version 7.8, Rev. B374

Siebel Configurator API Reference ■ Instance APIs for the Complex Object Manager
■ “GetParents Method” on page 381

■ “GetPossibleDomain Method” on page 382

■ “GetPossibleValues Method” on page 382

■ “GetProductId Method” on page 383

■ “GetRootPath Method” on page 383

■ “HasGenerics Method” on page 384

■ “GetConditionVal Method” on page 384

LoadInstance Method
This method loads the complex object into memory. This is the starting point for all configurations.

You cannot use this method unless you have first called the LoadEAI method, which is part of the
Copy business service. For more information, see the topic about the Copy business service in Siebel
Order Management Infrastructure Guide.

NOTE: This method is part of the Complex Object Instance business service. It should not be
confused with “LoadInstance Method” on page 368, which is part of Cfg Web UI Service Loader
business service.

Input Arguments
■ ObjId. The unique identifier of the complex object header (for example, Quote ID).

■ RootId. The unique identifier of the complex object root (for example, Quote Line Item row id).

■ IntObjName. The name of the integration object specified in Siebel Tools.

■ TriggerEvent. The flag that determines if script events are triggered. Normally, it should be set
to Y. Set it to N for special uses of the API where customizable product model script events are
not desired.

■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.

■ (Optional) NewRecord. If set to Y, the instance will be populated with default values. The
default is N.

■ (Optional) AutoSync. If set to Y, the instance will be synchronized to the database immediately
after loading. The default is N.

■ (Optional) SearchSpec. Set this parameter to filter out all other hierarchical instances in the
child buscomp. The default is an empty search specification. This parameter must have the
following format:

“[Header Buscomp.Id] = ’Id’ AND [Item Buscomp.Root Id] = ‘Root Id’”

ex. [Quote.Id] = ’10-4FR6D’ AND [Quote Item.Root Id] = ’10-81DUX’
Product Administration Guide Version 7.8, Rev. B 375

Siebel Configurator API Reference ■ Instance APIs for the Complex Object Manager
■ (Optional) ExternalScript. Set this parameter to Y when running headless configurations (for
example, through Siebel COM Data Server). Anything other than the Cfg Web UI Service is
considered headless configuration. The difference is based on the Siebel user who is calling the
service. The default is N.

Output Arguments
The following properties will be returned from the output property set:

■ CreateSession. If this property is set to Y the method CreateSession must be called after
LoadInstance.

■ (Optional) IsConfig. If this property is present and set to Y the configuration model has
configuration rules defined.

■ (Optional) Links. If this property is set to Y the model has linked items.

■ (Optional) UnresolvedLinks. If this property is set to Y the model has unresolved linked items
that must be calculated by the caller.

■ If NewRecord is set to Y in the input property set and CreateSession is set to N in the output
property set, the output will have the instance property set returned as a child of type CxObj
(see the output example below). Here is an example of a return property set:

< IsConfig='Y' UnresolvedLinks='Y' CreateSession='Y' Links='Y'>

<Links 1-19D0X='10/19/2001' 1-1Z876='SADMIN' 1Z771='SADMIN'>

</Links>"

 <UnresolvedLinks>"

 <UnresolvedLink DispName='Quote Name' Definition='<CfgVariableDef BUS_OBJ
= ""Quote"" BUS_COMP = ""Quote"" FIELD_NAME = ""Name"" SEARCH_SPEC = """"
SORT_SPEC = """" DEFAULT_VAL = """" EXECUTE = ""N""/>' Description='' DefValue=''
Name='Quote Name' BusObj='Quote' Field='Name' ID='1-1Z875' BusComp='Quote'>

 </UnresolvedLink>

 </UnresolvedLinks>

 </>

Extracting the instance property set from LoadInstance. The instance property set can be
extracted by first getting the child property set of type CxObj and then extracting its only child.

Handling Links. A child property set of type Links is returned if the model has linked items. The
Links child property set must then be extracted and passed in to CreateSession’s OUTPUT arguments
as a child property set. In version 7.0.4 this changed to the INPUT property set for CreateSession.
Configuration rules may have been defined for these linked items, so the configuration session must
know the link values. The linked items are represented as property–value pairs with link IDs as
properties and link values as property values, as in this example:

<Links 1-19D0X='10/19/2001' 1-1Z876='SADMIN' 1-1Z771='SADMIN'>
Product Administration Guide Version 7.8, Rev. B376

Siebel Configurator API Reference ■ Instance APIs for the Complex Object Manager
A child property set of type UnresolvedLinks is returned if the model has linked items that the
business service could not resolve. The children of this property contain the information necessary
to calculate the value of the linked item.

 <UnresolvedLinks>"

 <UnresolvedLink DispName='Quote Name' Definition='<CfgVariableDef BUS_OBJ =
""Quote"" BUS_COMP = ""Quote"" FIELD_NAME = ""Name"" SEARCH_SPEC = """" SORT_SPEC = """"
DEFAULT_VAL = """" EXECUTE = ""N""/>' Description='' DefValue='' Name='Quote Name'
BusObj='Quote' Field='Name' ID='1-1Z875' BusComp='Quote'>

 </UnresolvedLink>

 </UnresolvedLinks>

Only links that have the execute flag set or pull system parameters such as TODAY will be resolved
by Siebel Configurator when used as headless configurations. The programmer must resolve all other
links.

NOTE: Make sure the unresolved links are calculated and their IDs and values are added to the Links
child property set as properties, with the link ID as the property and the link value as the property
value.

CreateSession Method
This method initializes a configuration session, which is necessary for products with components that
have constraint rules. It is called immediately following LoadInstance where required.

Input Arguments
■ ObjId. The unique identifier of the complex object header (for example, Quote Id).

■ RootId. The unique identifier of the complex object root (for example, Quote Line Item row id).

■ IntObjName. The name of the integration object specified in Siebel Tools.

■ TriggerEvent. The flag that determines if script events are triggered. Normally, it should be set
to Y. Set to N for special uses of the API where script events are not desired. LoadInstance and
CreateSession should have the same setting.

■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.

■ (Optional) NewRecord. If set to Y, the instance will be populated with default values. The
default is N.

■ (Optional) AutoSync. If set to Y, the instance will be synchronized to the database immediately
after loading. The default is N.

■ (Optional) ExternalScript. This parameter must be set to Y when running headless
configurations (for example, through Siebel COM Data Server). The default is N.
Product Administration Guide Version 7.8, Rev. B 377

Siebel Configurator API Reference ■ Instance APIs for the Complex Object Manager
Output Arguments
If NewRecord is set to Y in the input property, the output will have the instance property set returned
as a child of type CxObj. This is essentially the same output as the one that is returned from
GetInstance.

SetInstance Method
This method creates a configuration session with a supplied property set. This permits configuration
without directly writing to the database. The structure of the input property set does not need to
correspond to a Siebel object, such as a quote that is indicated by the integration object specified.

Input Arguments
Same arguments as LoadInstance but also requires the property set indicating the state to load. This
property set must have the SiebelMessage object as the only first level child.

Output Arguments
Same arguments as LoadInstance.

SyncInstance Method
This method saves the complex object instance where it originated.

Input Arguments

■ ObjId. The unique identifier of the complex object header.

■ RootId. The unique identifier of the complex object root (for example, Quote Line Item row Id).

■ IntObjName. The name of the integration object specified in Siebel Tools.

■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.

Output Arguments
None

UnloadInstance Method
This method removes the existing configuration session from memory. It should be called after
synchronizing the instance at the end of the configuration session.

Input Arguments
■ ObjId. The unique identifier of the complex object header.
Product Administration Guide Version 7.8, Rev. B378

Siebel Configurator API Reference ■ Instance APIs for the Complex Object Manager
■ RootId. The unique identifier of the complex object root.

■ IntObjName. The name of the integration object that was used to load the instance.

Output Arguments
None.

GetAllPorts Method
This method retrieves a list of all ports and (possibly) their contents for a product. It gets all ports
for a product but not for its child products. It retrieves the basic definition of the product and does
not consider any current configuration session state, so every possible port is retrieved.

Input Arguments
■ Product Id. The ID of the product in Internal Product.

■ (Optional) Version. Version is used only in validate mode.

■ GetPortDomain. The flag that determines whether or not to also retrieve the domain of each
port. Use Y or N to get the domain or not.

Output Arguments
All ports are returned as children of the output property set of type Port.

<Output>

<Port>

Port Information here

</Port>

</Output>

EnumObjects Method
This method returns either all immediate objects under an object or all immediate objects under a
specified port. This gets the items that are currently in the port, not the items that could be there.

Input Arguments
■ ObjId. The unique identifier of the complex object header (for example, Quote ID).

■ RootId. The unique identifier of the complex object root (for example, Quote Line Item row id).

■ IntObjName. The name of the integration object specified in Siebel Tools.
Product Administration Guide Version 7.8, Rev. B 379

Siebel Configurator API Reference ■ Instance APIs for the Complex Object Manager
■ Parent Path. The path to the parent object whose child objects you want to enumerate. The
path is the object’s Integration ID.

■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.

■ (Optional) Port Item Id. The ID of a specific port (for example, ORIG_ID of the port in
S_PROD_ITEM table). If specified, only the items in this port are enumerated; otherwise, all
items in all immediate ports are returned.

Output Arguments
Output can be in the form of two types of property sets, instance property sets and generic property
sets.

Instance property sets return information about child items, as follows:

<Output>

 < Name=”value” Product Id=”value” Path=”value” Sequence Number=”value” />

 …

</Output>

Generic property sets send notifications to the user that there is a violation of the minimum or
maximum required quantity for a one or more items within the relationship. A generic property set
follows each instance property set, if there is a violation of the minimum or maximum required
quantity for this instance.

GetAttribute Method
This method retrieves the value of an attribute.

Input Arguments
■ ObjId. The unique identifier of the complex object root.

■ RootId. The unique identifier of the complex object root.

■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.

■ Path. The path of the item where you are retrieving an attribute.

■ Name. The attribute name.

Output Arguments
The value is returned as a property of the output property set, as follows:

<Output Value=”value”>

</Output>
Product Administration Guide Version 7.8, Rev. B380

Siebel Configurator API Reference ■ Instance APIs for the Complex Object Manager
GetFieldValues Method
This method retrieves field values for a product that exists in the complex product.

Input Arguments
■ ObjId. The unique identifier of the complex object root (for example, Quote ID).

■ RootId. The unique identifier of the complex object root (for example, Quote Line Item row Id).

■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.

■ Path – the path to the item.

Output Arguments
The output property set returned will have the field names as properties, as follows:

< Field=”value” Field=”value” … Field=”value”/>

GetInstance Method
This method gets the loaded instance as a property set. It returns the full structure of products and
attributes.

Input Arguments
■ ObjId. The unique identifier of the complex object root.

■ RootId. The unique identifier of the complex object root.

■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.

Output Arguments
The entire property set output is the complex object instance.

GetParents Method
This method retrieves all the parents of an item.

Input Arguments
■ ObjId. The unique identifier of the complex object root.

■ RootId. The unique identifier of the complex object root.
Product Administration Guide Version 7.8, Rev. B 381

Siebel Configurator API Reference ■ Instance APIs for the Complex Object Manager
■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.

■ Path. The path of the item.

Output Arguments
The property set returned will have child property sets, each with the following properties:

< >

 < Product Id=”value” Name=”value” Sequence Number=”value” Path=”value”/>

 …

</ >

GetPossibleDomain Method
This method retrieves selectable items from the configuration engine for a port

Input Arguments
■ ObjId. The unique identifier of the complex object root (for example, Quote ID).

■ RootId. The unique identifier of the complex object root (for example, Quote Line Item row id).

■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.

■ Parent Path. The item parent path.

■ Port Item Id. The item port id.

Output Arguments
The property set returned will have the possible domain item product Ids as properties, each with
the value 0, as follows:

< ProdId1=”0” ProdId2=”0” … ProdIdn=”0” />

GetPossibleValues Method
This method retrieves selectable values from the configuration engine for an attribute.

Input Arguments
■ ObjId. The unique identifier of the complex object root (for example, Quote ID).

■ RootId. The unique identifier of the complex object root (for example, Quote Line Item row id).
Product Administration Guide Version 7.8, Rev. B382

Siebel Configurator API Reference ■ Instance APIs for the Complex Object Manager
■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.

■ IntObjName. The name of the integration object.

■ Path. The Integration ID of the port to which this attribute is attached.

■ XA Id. The ID of the attribute for which the values need to be determined.

Output Arguments
The property set returned will have the possible values as the property names, as follows:

< [PossibleValue1]=”Val1” [PossibleValue2]=”Val2”/>

GetProductId Method
This method gets the root Product ID of the complex object instance.

Input Arguments
■ ObjId. The unique identifier of the complex object header (for example, Quote ID).

■ RootId. The unique identifier of the complex object root (for example, Quote Line Item row Id).

■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.

Output Arguments
The product Id is returned as a property of the output property set, as follows:

< Product Id=”value” />

GetRootPath Method
This method returns the path of the complex object instance root.

Input Arguments
■ ObjId. The unique identifier of the complex object header (for example, Quote ID).

■ RootId. The unique identifier of the complex object root (for example, Quote Line Item row Id).

■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.

Output Arguments
The root path is returned as a property of the output property set, as follows:
Product Administration Guide Version 7.8, Rev. B 383

Siebel Configurator API Reference ■ APIs to Interact with Conflicts and Messages
< Path=”value” />

HasGenerics Method
This method returns generics and children flags for an item. A port has generics if the required
cardinality is greater than the current cardinality and no default product is specified.

Input Arguments
■ ObjId. The unique identifier of the complex object root (for example, Quote ID).

■ RootId. The unique identifier of the complex object root (for example, Quote Line Item row id).

■ IntObjName. The name of the integration object.

■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.

■ Port Item Id. The ID for the port item that will have either children or generics.

■ Path. The path to the parent item of interest.

Output Arguments
■ HasGenerics. Y is present if it does, not present if it does not.

■ HasChildren. Y is present if it does, not present if it does not.

GetConditionVal Method
This method allows users to call and retrieve the values of the named expression variables.

Input Arguments
■ CondName. The name of the condition variable.

■ IntId. The integration id of the product.

Output Arguments
If the condition variable is found and evaluates to true, the property Result is set to Y in the output
arguments. If not, the Result is set to N.

APIs to Interact with Conflicts and
Messages
APIs to Interact with Conflicts and Messages include the following methods:

■ “GetDetailedReqExpl Method” on page 385
Product Administration Guide Version 7.8, Rev. B384

Siebel Configurator API Reference ■ APIs to Interact with Conflicts and Messages
■ “GetExplanations Method” on page 385

■ “GetSignals Method” on page 386

■ “RemoveFailedRequests Method” on page 386

■ “UndoLastRequest Method” on page 387

NOTE: These methods apply only to products with components with constraint rules.

GetDetailedReqExpl Method
This method retrieves conflict messages.

Input Arguments
■ ObjId. The unique identifier of the complex object root (for example, Quote ID).

■ RootId. The unique identifier of the complex object root (for example, Quote Line Item row Id).

■ IntObjName. The name of the integration object.

Output Arguments
Expl#. The explanations for the conflicts. Substitute a number for #, such as Expl0, Expl1, and so
on.

GetExplanations Method
This method retrieves configuration explanations for an item.

Input Arguments
■ ObjId. The unique identifier of the complex object root (for example, Quote ID).

■ RootId. The unique identifier of the complex object root (for example, Quote Line Item row Id).

■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.

■ Path. The path of the item.

Output Arguments
The property set returned will have child property sets, each with the property Value as the
explanation, as follows:

<Output>

 <Expl Value=”Explanation”/>

 <Expl Value=”Explanation”/>
Product Administration Guide Version 7.8, Rev. B 385

Siebel Configurator API Reference ■ APIs to Interact with Conflicts and Messages
 …

 <Expl Value=”Explanation”/>

</Output>

GetSignals Method
This method retrieves configuration engine signals.

Input Arguments
■ ObjId. The unique identifier of the complex object root (for example, Quote ID).

■ RootId. The unique identifier of the complex object root (for example, Quote Line Item row Id).

■ (Optional) Path. The integration ID where the item gets signals.

■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.

Output Arguments
The property set returned will have child property sets, as follows:

< >

 <Signal Expl=”signal”/>

 <Signal Expl=”signal”/>

 …

 <Signal Expl=”signal”/>

</ >

RemoveFailedRequests Method
This method removes all failed requests sent to the configuration engine.

Input Arguments
■ ObjId. The unique identifier of the complex object root (for example, Quote ID).

■ RootId. The unique identifier of the complex object root (for example, Quote Line Item row Id).

■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.
Product Administration Guide Version 7.8, Rev. B386

Siebel Configurator API Reference ■ APIs to Set Product and Attribute Values
Output Arguments
None.

UndoLastRequest Method
This method removes the last request sent to the configuration engine.

Input Arguments
■ ObjId. The unique identifier of the complex object root (for example, Quote ID).

■ RootId. The unique identifier of the complex object root (for example, Quote Line Item row Id).

■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.

Output Arguments
None.

APIs to Set Product and Attribute Values
The following methods are used for setting product and attribute values:

■ “AddItem Method” on page 387

■ “CopyInstance Method” on page 388

■ “RemoveItem Method” on page 388

■ “ReplaceItem Method” on page 389

■ “RepriceInstance Method” on page 390

■ “SetAttribute Method” on page 390

■ “SetItemQuantity Method” on page 391

■ “SetFieldValue Method” on page 391

AddItem Method
This method adds an item to a specified port, creating a new instance of an item. If you want to
change the quantity of an existing instance of an item, use SetItemQuantity.

Input Arguments
■ ObjId. The unique identifier of the complex object header.

■ RootId. The unique identifier of the complex object root.
Product Administration Guide Version 7.8, Rev. B 387

Siebel Configurator API Reference ■ APIs to Set Product and Attribute Values
■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.

■ (Optional) AutoResolve. Automatically resolves port cardinality violations. The default is N.

■ Prod Item Id. The ID of the item (for example, ORIG_ID in S_PROD_ITEM table).

■ Name. The name of the item.

■ Product Id. The product id in S_PROD_INT table.

■ Port Item Id. The ID of the item’s port (for example, ORIG_ID of the port in S_PROD_ITEM
table).

■ Quantity. The item quantity.

■ List Price. The item list price from Pricing Manager, which can be empty.

■ Current Price. The current price from Pricing Manager, which can be empty.

■ Parent Path. The path of the parent item the port belongs to.

Output Arguments
None.

CopyInstance Method
This method copies an instance.

Input Arguments
■ ObjId. The unique identifier of the complex object header of the source instance.

■ RootId. The unique identifier of the complex object root of the source instance.

■ DestObjId. The unique identifier of the complex object header of the destination instance.

■ IntObjName. The name of the integration object specified in Siebel Tools.

Output Arguments
None.

RemoveItem Method
This method removes an item from the instance.

Input Arguments
■ ObjId. The unique identifier of the complex object header.

■ RootId. The unique identifier of the complex object root.
Product Administration Guide Version 7.8, Rev. B388

Siebel Configurator API Reference ■ APIs to Set Product and Attribute Values
■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.

■ Path. The path of the item.

Output Arguments
None.

ReplaceItem Method
This method replaces an existing item with the new item on a specified port, removing the existing
item from the port and creating a new instance for new item.

Input Arguments
■ ObjId. The unique identifier of the complex object header.

■ RootId. The unique identifier of the complex object root.

■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.

■ Path. Integration Id of the existing product (which is going to be replaced by new product)

■ Name. The name of the new item.

■ Product Id. The new product id in S_PROD_INT table.

■ Prod Item Id. The ID of the new item (for example, ORIG_ID in S_PROD_ITEM table).

■ Port Item Id. The ID of the item's port (for example, ORIG_ID of the port in S_PROD_ITEM
table).

■ Quantity. The new item quantity.

■ (Optional) AutoResolve. Automatically resolves port cardinality violations. The default is N.

■ (Optional) List Price. The item list price from Pricing Manager, which can be empty.

■ (Optional) Current Price. The current price from Pricing Manager, which can be empty.

■ (Optional) Parent Path. Integration Id of the parent item the port belongs to.

■ (Optional) Parent Display Name. Display name of the parent product. This parameter and the
display parameters that follow would be used in logging error messages in case of error.

■ (Optional) New Child Display Name. Display name of the new child product.

■ (Optional) Port Display Name. Display name of the Relationship of the child product.

Output Arguments
None.
Product Administration Guide Version 7.8, Rev. B 389

Siebel Configurator API Reference ■ APIs to Set Product and Attribute Values
RepriceInstance Method
This method updates the instance with values from the Pricing Manager service. A call to the Pricing
Manager service’s CalculatePriceCX method returns a property set that is the input to this method.

Input Arguments
■ ObjId. The unique identifier of the complex object header.

■ RootId. The unique identifier of the complex object root.

■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.

The input property set has child property sets containing the repricing information. The format of the
input property set is as follows:

< ObjId=”value” RootId=”value” Version=”value” >

 < IntId=”integration id” FieldName=”value”… FieldName=”value” >

 < IntId=”integration id” FieldName=”value”… FieldName=”value” >

 …

< />

In this context, the Integration ID is used to retrieve the instance item.

Output Arguments
None.

SetAttribute Method
This method sets the value of an item’s attribute.

Input Arguments
■ ObjId. The unique identifier of the complex object root.

■ RootId. The unique identifier of the complex object root.

■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.

■ Path. The path of the item with attribute to set.

■ Value. The attribute value.

■ Name. The attribute name.
Product Administration Guide Version 7.8, Rev. B390

Siebel Configurator API Reference ■ APIs to Set Product and Attribute Values
■ XA Id. The extended attribute ID. This is the row ID of the attribute in the XA Attribute business
component. This parameter is required, and you can use a dummy value instead of the actual
row ID.

■ Property Type Code. The attribute type.

Output Arguments
None.

SetItemQuantity Method
This method sets the quantity of an item.

Input Arguments
■ ObjId. The unique identifier of the complex object root.

■ RootId. The unique identifier of the complex object root.

■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version.

■ Path. The path of the item.

■ Quantity. The quantity to set.

Output Arguments
None.

SetFieldValue Method
This method updates the value of a field in a line item.

Input Arguments
■ Path. The Integration Id of the line item (or of the parent line item in the case of an attribute).

■ FieldName. The field name. This should not be a field that is used and controlled by Siebel
Configurator (such as: Quantity, Port Item Id, Integration Id, Attribute Value, and so on).

■ XA Id. (Optional) The attribute Id. Specify only if you are setting the value in an attribute field.

■ Value. The value of the field.

■ ObjId. A unique identifier of the complex object header (for example, quote ID).

■ RootId. A unique identifier of the complex object root (for example, quote line item row ID).
Product Administration Guide Version 7.8, Rev. B 391

Siebel Configurator API Reference ■ Object Broker Methods
Output Arguments
None.

Object Broker Methods
The following methods call the Cfg Object Broker business service, which functions as a wrapper for
the Object Broker:

■ “GetProdStruct Method” on page 392

■ “DeltaQuote Method” on page 393

GetProdStruct Method
This method returns the full structure of the customizable product.

Input Arguments
■ RootId. The unique identifier of the complex object root. If provided, RootName, Vendor, and

Org are ignored. If not provided, RootName, Vendor, and Org are used to uniquely identify the
product.

■ RootName. The root product name. Optionally, you can use Name together with Vendor and Org
to uniquely identify a product.

■ (Optional) Version. Version arguments are used only when testing a customizable product
version that is different from the currently released version. Specify 0 to return the work space.

■ (Optional) Vendor. Use with RootName to uniquely identify the product. By default, this is
empty.

■ (Optional) Org. Use with RootName to uniquely identify the product. By default, this is empty.

■ Full. Y returns the full product structure. N returns the first level of the product.

Output Arguments
 <ProdStruct> RootId

 <ProdId> Name ClassId

 <Port> Name ClassName ClassId OrigId Type MinCard MaxCard DefltCard LocalType
InternalType

 <Subobject Id/>

 ...

 </port>

 ...
Product Administration Guide Version 7.8, Rev. B392

Siebel Configurator API Reference ■ Object Broker Methods
 <Attribute> Name

 <Domain Value />

 ...

 </Attribute>

 ...

 </ProdId>

 ...

 </ProdStruct>

DeltaQuote Method
This method performs a recursive tree comparison of two property sets to determine the difference
between them based on supplied criteria. It returns a copy of the destination product instance,
marked up to indicate changes. This preconfigured API is called from an external service only in SIS
Order Management, which is the only way to see this API function for the API Discovery.

In one example, you start with a computer that has one hard drive and a 900 MHz processor. You
upgrade it to add a second hard drive (quantity now = 2) and replace the processor with a 1000 MHz
model. The result would be one existing hard drive, one new hard drive (the instance is split), one
900 MHz CPU removed, and one new 1000 MHz CPU.

If the output property set is empty and no error code is thrown, the most likely cause is that the
instances were not recognized. Check the RootId parameters and the indenting of your source and
destination SiebelMessages.

Input Arguments
■ SrcRootId. The root ID for the product in the source of the comparison. This is the “before”

property set.

■ DestRootId. The root ID for the product in the destination of the comparison. This is the “after”
property set.

■ DeltaSrcField. The Path field in the source instance.

■ DeltaDestField. The Path field in the destination instance.

■ SrcItemIntComp. The name of the integration component for the items in the source instance
(for example, Quote Item).

■ DestItemIntComp. The name of the integration component for the items in the destination
instance (for example, Quote Item).

■ SrcXAIntComp. The name of the integration component for the XA in the source instance (for
example, Quote Item XA).
Product Administration Guide Version 7.8, Rev. B 393

Siebel Configurator API Reference ■ Object Broker Methods
■ DestXAIntComp. The name of the integration component for the XA in the destination instance
(for example, Quote Item XA.)

■ ITEM_MAPPING. This is a property set with type= “ITEM_MAPPING.” It contains a list of those
fields that should be copied when creating a new instance of an item in the destination property
set. The property names are the fields in the source instance, and the property values are the
names in the destination instance. Here is an example output from the API sniffers:

CHILD PROPERTY SET 3
Type: ITEM_MAPPING Value:
Unit Price = Unit Price
Action Code = Action Code
Root Id = Root Id
Port Item Id = Port Item Id
Integration Id = Integration Id
Discount Amount = Discount Amount
Parent Id = Parent Id
Product Id = Product Id
Prod Item Id = Prod Item Id
Quantity = Quantity

■ XA_MAPPING. This is a property set with type= “XA_MAPPING.” It contains a list of those fields
that should be copied for each of the attributes when creating a new instance of an item in the
destination property set. The property names are the fields in the source instance, and the
property values are the names in the destination instance. Here is an example output from the
API sniffers:

CHILD PROPERTY SET 2
Type: XA_MAPPING Value:
Action Code = Action Code
Value = Value
Read Only = Read Only
Name = Name
Property Type Code = Property Type Code
XA Id = XA Id

■ ITEM_COMPARE. This is a property set with type= “ITEM_COMPARE.” It defines what
constitutes a unique instance of an item in the source and destination instances. For the service,
it answers the question “How do I know if these two things are the same?” Here is an example
output from the API sniffers:

CHILD PROPERTY SET 1
Type: ITEM_COMPARE Value:
Port Item Id = Port Item Id
Product Id = Product Id

■ XA_COMPARE. This is a property set with type= “XA_COMPARE.” It defines what constitutes a
unique instance of an attribute in the source and destination instances. For the service, it
answers the question “How do I know if these two things are the same?” Here is an example
output from the API sniffers:

CHILD PROPERTY SET 0
Type: XA_COMPARE Value:
Value = Value
Product Administration Guide Version 7.8, Rev. B394

Siebel Configurator API Reference ■ Object Broker Methods
Name = Name
Property Type Code = Property Type Code
XA Id = XA Id

■ SrcInst. This is the Source Instance (“before”) that will be used in the delta comparison. It is a
double-indented SiebelMessage with a type of SrcInst. The top section of the output from the
API sniffers is shown below for reference. Note the indenting of the SiebelMessage.

CHILD PROPERTY SET 4
Type: SrcInst Value:
CHILD PROPERTY SET 0

Type: Value:
CHILD PROPERTY SET 0

Type: SiebelMessage Value:
MessageId = 1-12949
IntObjectFormat = Siebel Hierarchical
MessageType = Integration Object
IntObjectName = CX Product Validation
CHILD PROPERTY SET 0

Type: ListOfCX Product Validation Value:
CHILD PROPERTY SET 0

Type: Product Header Value:
Name = 1-12950
Price List Id = 1-ZEC
Id = 1-12951
CHILD PROPERTY SET 0
 Type: ListOfProduct Item Value:
CHILD PROPERTY SET 0

Type: Product Item Value:
Action Code = Existing
Port Item Id =
Integration Id = 1-12744
Cfg Type = Configurator
Name = System Chassis
Product Id = 1-1M9Y
Prod Item Id = null
Quantity = 1.0
Id = 1-12744

■ DestInst. This is the Destination Instance (“after”) that will be used in the delta comparison. It
is a double-indented SiebelMessage with a type of DestInst. The top section of the output from
the API sniffers is shown below for reference. Note the indenting of the SiebelMessage.

CHILD PROPERTY SET 5
Type: DestInst Value:
CHILD PROPERTY SET 0

Type: Value:
CHILD PROPERTY SET 0

Type: SiebelMessage Value:
MessageId = 123
IntObjectFormat = Siebel Hierarchical
MessageType = Integration Object
IntObjectName = CX Product Validation
CHILD PROPERTY SET 0
Product Administration Guide Version 7.8, Rev. B 395

Siebel Configurator API Reference ■ API to Select the Siebel Configurator User Interface
Type: ListOfCX Product Validation Value:
CHILD PROPERTY SET 0

Type: Product Header Value:
Name = 1-12950
Price List Id = 1-ZEC
Id = 1-12951
CHILD PROPERTY SET 0

Type: ListOfProduct Item Value:
CHILD PROPERTY SET 0

Type: Product Item Value:
Has Generics Flag = Y
Action Code = Existing
Integration Id = 1-12744
Port Item Id =
Sequence Number =
Name = System Chassis
Cfg Type = Configurator
Product Id = 1-1M9Y
Quantity = 1.0
Prod Item Id = null
Id = 1-12744

Output Arguments
The destination instance is returned as a SiebelMessage, modified and marked up with status
information. The status (new, modified, existing, removed) is indicated in the Action Code field of
each item and attribute.

API to Select the Siebel Configurator
User Interface
The following method allows you to select the Siebel Configurator User Interface: “SetUIOption
Method” on page 396.

SetUIOption Method
SetUIOption Method is used to display the Siebel Configurator with either the high-interactivity or
the standard-interactivity interface.

Syntax
ErrCode

CSSCfgUIServiceLoader::SetUIOption (const CCFPropertySet& inputArgs, CCFPropertySet&
outputArgs)
Product Administration Guide Version 7.8, Rev. B396

Siebel Configurator API Reference ■ API to Validate Customizable Products
Input Arguments
A property set that contains name/value pairs representing the value of the Product Id and UI Option
Name fields.

Usage
Because this method is part of a cached Business Service, you can call this method at any time before
Siebel Configurator is called.

The values you use as input arguments indicate which UI option to use for each product you specify.

Example
Add a workflow step at the beginning of the Siebel Configurator Load Workflow. This step calls a
custom business service that determines which UI option to use for the Product that is being
customized. After determining this, it uses SetUIOption method to set the appropriate UI option.

API to Validate Customizable Products
The following method allows you to batch validate customizable products: “BatchValidate Method” on
page 397.

BatchValidate Method
There are three options for using this method:

■ LoadInstance option where the instance is already loaded in the context service. This is for
validating an existing quote, order, agreement, or asset. A workflow step to load the instance
into the context service should be done before calling BatchValidate.

■ LoadInstance option where the BatchValidate API will handle loading the instance into the
context service. This is for validating an existing quote, order, agreement, or asset. The instance
does not have to be in the context service already.

■ SetInstance option. This option allows the user to pass in the customizable product instance as
a property set.

Input Arguments
■ Mode. Quote, Order, Agreement, or Asset.

■ IntObjName. The name of the integration object specified in Oracle’s Siebel Tools (for example,
7.7 Quote Integration Object, 7.7 Order Entry Integration Object, 7.7 Asset Integration Object,
7.7 Service Agreement Integration Object, SIS OM Asset, SIS OM Quote, SIS OM Order).

■ ProductId. The unique identifier of the product. This ID is required when using Siebel
Configurator with remote enabled.

■ ObjId. The unique identifier of the complex object header (for example, Quote Id, Asset Id,
Order Id).). This is optional if the SetInstance option is used.
Product Administration Guide Version 7.8, Rev. B 397

Siebel Configurator API Reference ■ API to Validate Customizable Products
■ RootId. The unique identifier of the complex object root (for example, Quote Line Item Id, when
Mode = Asset, Obj Id and Root Id point to Asset Id). This is optional if the SetInstance option
is used.

■ InstanceName. The name of the instance being pushed to the context service. The value of this
argument should be a) the name of the instance in the context service if using Option 1, b) empty
if using Option 2, c) optional for Option 3.

■ SetInstance. (Optional) Specifies whether to use the SetInstance or LoadInstance option. Value
can be Y or N. If set to Y, the first child property set of the input argument should be the CP
instance being validated in its property set representation form. N by default.

■ DetailedExpl. (Optional) Specifies whether to return a detailed explanation if there is a conflict.
Value can be Y or N. N by default.

■ AutoSync. (Optional) Specifies whether to sync changes back to db. Value can be Y or N. N by
default.

■ DisablePricing. (Optional) Specifies whether to do pricing or not. Value can be Y or N. N by
default.

■ OutOriginalInstance. (Optional) Specifies whether to return the original instance as a property
set. Value can be Y or N. Y by default.

■ OutCompletedInstance. (Optional) Specifies whether to return the validated instance as a
property set. Value can be Y or N. Y by default.

■ OutDelta. (Optional) Specifies whether to return a delta quote representing the difference
between the original and validated instance as a property set. Value can be Y or N. Y by default.

■ IgnoreNewOptionalAttr (Optional). Specifies whether to ignore Optional Attributes. If the
value is Y, then the output status is Valid even if optional attributes are omitted. If the value is
not Y, then the status is Incomplete and an error message is displayed if optional attributes are
omitted.

Output
The output of BatchValidate is a Siebel Message containing:

■ Batch Validation Status. This property returns the status of BatchValidate. The return values
can be:

■ Valid. No violations were found.

■ Invalid. The engine has found and corrected errors. The engine returns Invalid only if it can
make a clear decision about how to correct the errors, which is the case for:

❏ All violations of the maximum quantity where the engine detects unnecessary child
products and deleting these child products brings the quantity below the maximum.

■ All violations of the minimum quantity where the there is only one child product (that is,
Domain = Product or Domain = Class/Dynamic Class where the domain has one product as
a member). Incomplete. The engine does not have enough information to correct errors. This
is true of violations of the minimum quantity where the there is more than one child product
that can be used to correct the error.

■ Original Instance. A property set representation of the original instance being validated.
Product Administration Guide Version 7.8, Rev. B398

Siebel Configurator API Reference ■ API to Validate Customizable Products
■ Completed Instance. A property set representation of the validated instance.

■ DeltaQuote. A property set representation of the difference between the original instance and
the completed instance.

■ Generic Info. A property set containing generics and children relationship information for all
ports. For example, batch validate the following three children as part of a parent product:

Parent prod

Child prod 1

Child prod 2

Child prod 3

The generic information in batch validate output is as follows:

<Generic_spcInfo>

<<_6SIA-4HSO8 _6SIA-4HQ0M="01" _6SIA-4HQ0L="01" _6SIA-4HQ0K="01" />

<<_6SIA-4HSR5 />

<<_6SIA-4HSR6 />

<<_6SIA-4HSR7 />

where:

■ 6SIA-4HSO8 is the order line item ROW_ID of the Parent Product.

■ 6SIA-4HQ0M, 6SIA-4HQ0L, 6SIA-4HQ0K are the relationship ROW_IDs for the child
products.

The code mapped against the relationship ROW_ID's indicates whether the relationship has
generics and children.

■ When 1st bit is set, relationship has generics

■ When 2nd bit is set, relationship has children

for example:

■ 01. no generics, has children

■ 11. has generics, has children

Use this code to determine minimum cardinality violations.

■ MissingRequiredAttr. A property set returning required attribute violations.

■ Error Message. A property set containing the error messages, if any, encountered during batch
validation.

NOTE: Eligibility & Compatibility is automatically enforced by BatchValidate based on the
EligibilityDisplayMode parameter setting on Object Manager. There is no additional parameter needed
to enforce eligibility and compatibility during batch validate.
Product Administration Guide Version 7.8, Rev. B 399

Siebel Configurator API Reference ■ API to Validate Customizable Products
In addition, if PRESERVE_ENGINE_AND_USER_PICKS environment variable is enabled, the value in
the CFG_STATE_CD column will affect the Batch Validate result. The
PRESERVE_ENGINE_AND_USER_PICKS environment variable is enabled by default for Siebel CRM
version 8.1 and later.

For information about the user pick and engine pick setting in CFG_STATE_CD column, see 477087.1
(Doc ID) on My Oracle Support. This document was previously published as Siebel Alert 749.

Reset CFG_STATE_CD for all line items and attributes to user pick or leave empty if you want to
preserve the content in the input instance.

Sample Code
The following code is an example of how BatchValidate can be used.

function Service_PreInvokeMethod (MethodName, Inputs, Outputs)

{

if (MethodName == "BatchValidate_Quote")

{

var head = "8SIA-81CQ4"; //QuoteId

var item = "8SIA-81CVG"; // Line Item Id

var io = "7.7 Quote Integration Object"; // Integration Object

var s = TheApplication().GetService("Remote Complex Object Instance Service");

var inp = TheApplication().NewPropertySet();

var out = TheApplication().NewPropertySet();

inp.SetProperty("Mode","Quote");

inp.SetProperty("IntObjName", io);

inp.SetProperty("ObjId",head);

inp.SetProperty("RootId",item);

inp.SetProperty("DetailedExpl","Y");

s.InvokeMethod("BatchValidate",inp,out);

var s2 = TheApplication().GetService("EAI XML Write to File");

var inp2 = TheApplication().NewPropertySet();
Product Administration Guide Version 7.8, Rev. B400

Siebel Configurator API Reference ■ API to Validate Customizable Products
var out2 = TheApplication().NewPropertySet();

inp2.SetProperty("FileName","c:\\ab.xml");

inp2.AddChild(out);

s2. InvokeMethod("WritePropSet", inp2, out2);

TheApplication().RaiseErrorText("Finished ...");

}

Product Administration Guide Version 7.8, Rev. B 401

Siebel Configurator API Reference ■ API to Validate Customizable Products
Product Administration Guide Version 7.8, Rev. B402

27 Siebel Configurator in Release
6.x, 7.0 and 7.5
This chapter provides a conceptual mapping of release 6.x Siebel Configurator to release 7.0 and 7.5
Siebel Configurator features. Users of release 6.x of Siebel Configurator should use this chapter to
help them understand the similarities and differences between release 6.x and release 7.0 and 7.5
Siebel Configurator.

The mappings are intended to present features that are functionally similar. That one feature maps
into another does not mean that the release 7.0 and 7.5 feature is exactly equivalent or works in
exactly the same way.

This chapter includes the following topics:

■ “Managing Models in Release 6.x and 7.x” on page 403

■ “Designing the Catalog in Release 6.x and 7.x” on page 405

■ “Working with Properties in Release 6.x and 7.x” on page 406

■ “Working with Resources in Release 6.x and 7.x” on page 406

■ “Working with Linked Items in Release 6.x and 7.x” on page 406

■ “Designing Rules and Logical Expressions in Release 6.x and 7.x” on page 407

■ “Designing Scripts in Release 6.x and 7.x” on page 408

■ “Quote Integration and Configuration Assistant in Release 6.x and 7.x” on page 410

NOTE: This chapter does not compare release 6.x with release 7.8, because there is no direct
upgrade path from release 6.x to release 7.8. The upgrade from release 7.0 or 7.5 to release 7.8 is
a direct upgrade, which is not visible to the user.

Managing Models in Release 6.x and 7.x
The concept of a model in 6.x maps in release 7.0 and 7.5 to a customizable product with a work
space. Table 46 maps 6.x features to 7.0 and 7.5 for managing models.

Table 46. Managing Models

Release 6.x Release 7.0 and 7.5 Comment

Create a new model Create a customizable product with a
work space.

None

Delete a model Delete customizable product
structure.

Reverts customizable product to a
simple non-configurable product.

Copy a model Copy a customizable product. None
Product Administration Guide Version 7.8, Rev. B 403

Siebel Configurator in Release 6.x, 7.0 and 7.5 ■ Managing Models in Release 6.x and
7.x
Share a model Add a customizable product to
another customizable product.

None

Lock a model Lock a customizable product work
space.

None

Import a model Import a customizable product. None

Export a model Export a customizable product. Only the latest released version can
be exported.

Export a model
version

Only the latest released version can
be exported.

None

Validate a model Validate a customizable product. None

Release a model Release a customizable product. None

Revert to released
model

Revert to a released customizable
product.

None

Model versions Customizable product versions. None

Model
synchronization

Customizable product
synchronization.

None

Associating a model
with a product

Not applicable The structure of a customizable
product is stored with the product
definition. Associating a model with
a model-product is no longer
required.

Required start date Customizable product required start
date

The customizable product version
does not become available to users
until the specified date.

Table 46. Managing Models

Release 6.x Release 7.0 and 7.5 Comment
Product Administration Guide Version 7.8, Rev. B404

Siebel Configurator in Release 6.x, 7.0 and 7.5 ■ Designing the Catalog in Release 6.x
and 7.x
Designing the Catalog in Release 6.x and
7.x
The tree structure of catalogs and items in 6.x maps in release 7.0 and 7.5 to a hierarchy of
relationships within the customizable product. A relationship is roughly equivalent to a category and
functions as a named group that contains one or more items. Table 47 maps release 6.x features to
release 7.0 and 7.5 for designing a catalog.

Table 47. Designing the Catalog

Release 6.x Release 7.0 and 7.5 Comment

Design a tree structure Create a hierarchy of
relationships within a
customizable product.

The hierarchy defines component
relationships rather than being a
grouping mechanism.

Relationship definition includes
cardinality (maximum quantity,
minimum quantity, default quantity).

Create a category Create a relationship. A relationship is a named part of a
customizable product. Relationships
contain one or more items.

Add a product to a catalog Add a product to a
relationship.

None

Set item sequence in a
catalog

Set sequence of items in
Structure view and sequence
of group in Product UI
Designer.

None

Hide items in the catalog Can hide an item by not
adding it to a UI group in the
Product UI Designer.

All products included in a
customizable product, plus all
attributes, resources, and links can be
made visible to users.

Show all excluded items Select UI control in Product
UI designer that displays all
items.

Excluded items are unavailable.

Create virtual product Replaced with hidden
attributes.

Virtual product functionality can be
created by defining product attributes
and then marking them hidden.
Hidden attributes do not appear in
quotes, orders, or agreements.
Product Administration Guide Version 7.8, Rev. B 405

Siebel Configurator in Release 6.x, 7.0 and 7.5 ■ Working with Properties in Release 6.x
and 7.x
Working with Properties in Release 6.x
and 7.x
The properties feature has been replaced in release 7.0 and 7.5 with attributes. Attributes are
product characteristics that are defined for product classes. All products belonging to a class inherit
the attributes of the class. Subclasses inherit the attributes of the parent class. You put products into
the class hierarchy by assigning a class name in the product record. Attributes cannot be defined
directly on a product. They must be inherited from the class to which the product belongs.

When you define an attribute, you can define the allowed values for the attribute. You can specify
the allowed values, called an attribute domain, using a list of values or a range of values. The
administrator can then set this value for an individual product so that it cannot be changed by the
user.

Defining an attribute and setting its value so that it cannot be changed is functionally equivalent to
defining a property and assigning it a value in release 6.x.

Working with Resources in Release 6.x
and 7.x
Resources are implemented in the same fashion for customizable products in release 7.0 and 7.5 as
they were for models in release 6.x. You define resources in the Resource Designer, and then you
write provide rules and consume rules that adjust the value of the resource. In release 7.0 and 7.5,
you can also provide or consume amounts from a product attribute.

In release 7.0 and 7.5, to enforce a resource or attribute so that its value does not drop below zero,
you write a configuration rule that constrains the range of allowed values.

Working with Linked Items in Release
6.x and 7.x
In release 7.0 and 7.5, you define links within the context of a specific customizable product. You do
not define links in a single location and then associate the definition with a model, as in release 6.x.
Link definitions are added to a picklist so that you can add the definition to other customizable
products. If you delete a link definition from the only customizable product in which it occurs, it is
deleted from the picklist.

The things for which you can define a link, have not changed in release 7.0 and 7.5. You can define
links on Siebel business components, the system date/time, and on the login ID of the current users.
Product Administration Guide Version 7.8, Rev. B406

Siebel Configurator in Release 6.x, 7.0 and 7.5 ■ Designing Rules and Logical
Expressions in Release 6.x and 7.x
Designing Rules and Logical Expressions
in Release 6.x and 7.x
The release 6.x Basic Rule Designer, Logic Designer, and Advanced Rules Designer have been
replaced by the Rule Designer in release 7.0 and 7.5. The Rule Designer provides a series of natural-
language rule templates that you can use to create rules of any complexity. You can also create and
save your own rule templates.

The logical operators in the release 6.x Logic Designer are provided in picklists associated with the
rule templates.

A special rule template is provided to enter rules in Siebel Configurator Rule Language (renamed Rule
Assembly Language in release 7.0 and 7.5). The operators and syntax in 6.x Siebel Configurator Rule
Language are supported in release 7.0 and 7.5. Table 48 maps 6.x features to 7.0 and 7.5 for
designing rules.

Table 48. Designing Rules in the Rule Designer

Release 6.x Release 7.0 and 7.5 Comment

Create rule in Basic Rule
Designer

Create rule using rule template in
Rule Designer.

Rules can be created with or
without conditions.

Create expressions in
Logic Designer

Use logical operators associated with
rule templates in Rule Designer.

Rules can be created with or
without conditions.

Create rule in Advanced
Rules Designer

Enter rule into special template in
Rule Designer.

6.x operators and syntax are
supported in release 7.0 and
7.5.

Category-to-product rules Class-to-product rules. The product class must be part
of a relationship.

Category-to-category
rules

Class-to-class rules. The product classes must part
of relationships.

Product-to-product rules Product-to-product rules.

Copy and delete rules Copy and delete rules. Includes rules that are logical
expressions.

Activate and deactivate
rules

Activate and deactivate rules. Includes rules that are logical
expressions.

Application generates rule
explanations

Application generates rule
explanations or you can write
explanations.

Includes rules that are logical
expressions.

Rule Summary report Rule Summary report. None
Product Administration Guide Version 7.8, Rev. B 407

Siebel Configurator in Release 6.x, 7.0 and 7.5 ■ Designing Scripts in Release 6.x and
7.x
Designing Scripts in Release 6.x and 7.x
In release 7.0 and 7.5, the full Siebel API is accessible from within a script. See Siebel API
documentation for more information on the Siebel API. Because the Siebel API is available, the
number of Siebel Configurator-specific events and functions has been reduced in release 7.0 and 7.5.

In addition, the method for associating scripts with parts of a model has changed. In release 7.0 and
7.5, you associate a script with an item by writing the script on an event called for the product root.
The event returns a matrix of records, one for each item that has changed in the solution. An item
can be any product added to the customizable product from the product table. Events do not return
changes to relationship quantities or resources.

If a customizable product contains other products with components, another event is provided so
you can write scripts on the child customizable product directly.

The Script Designer in release 7.0 and 7.5. does not provide a hierarchical tree display of the
customizable product. In release 7.0 and 7.5, the Cfg ID of an item can no longer be passed as an
argument. Instead, the name of the item as a string is passed. A name syntax is provided to allow
you to uniquely specify a product name. Table 49 maps 6.x features to 7.0 and 7.5 for designing
scripts.

Enforce resource total by
placing check mark in
resource record

Write rules to prevent resources
from having negative values.

None

Syntax checker for Siebel
Configurator Rule
Language

Syntax checking is provided when
building rules using the Assisted
Advanced Rule template and all
other rule templates.

Siebel Configurator Rule
Language is called Rule
Assembly Language in release
7.0 and 7.5.

Table 49. Designing Scripts

Release 6.x Release 7.0 and 7.5 Comment

Create scripts Create scripts in the Script Designer. None

Script inheritance Scripts are not associated directly
with relationships and are not
inherited.

None

Copy, edit, and delete
scripts

Copy, edit, and delete scripts. None

Siebel Visual Basic and
Siebel eScript languages

Siebel Visual Basic and Siebel
eScript languages.

None

Syntax checking Syntax checking. None

Declaration area Declaration area. None

Table 48. Designing Rules in the Rule Designer

Release 6.x Release 7.0 and 7.5 Comment
Product Administration Guide Version 7.8, Rev. B408

Siebel Configurator in Release 6.x, 7.0 and 7.5 ■ Designing Scripts in Release 6.x and
7.x
Scripts can be written on
product root

Scripts can be written on product
root.

None

Events return changes to
categories

Events return changes only to items
added from product table. Events do
not return changes to relationship
quantities.

Relationships are a grouping
mechanism within a
customizable product and are
similar to categories.

Cfg_ItemInitialize Use Cfg_InstInitialize. Cfg_InstInitialize triggers once
when session is started.

Cfg_ItemPreRequestSub
mit

Not supported. Can be simulated in some cases
using the User Interface API.

Cfg_ItemChanged Use this event only for child-
products with components. Use
Cfg_ChildItemChanged for other
components.

None

Cfg_CategoryChanged Not supported. None

Cfg_SessionPostProcess Not supported. None

Cfg_ItemPreSynchronize Use Cfg_InstPostSynchronize. None

Cfg_ItemPostSynchroniz
e

Cfg_InstPostSynchronize. None

Cfg_SessionClosed Implemented at Instance Broker
level. Use Siebel API.

None

GetSessionId GetInstanceId. Returns the row ID of the
customizable product in the
source object, (quote, order and
so on).

GetCfgId Not supported. No longer
meaningful.

None

GetItemId Not supported. None

GetItemQuantity GetObjQuantity. Returns the quantity of a
component within the
customizable product. Cannot
be used for relationship
quantities.

GetPropertyValue Getting attribute value is supported
through the Siebel API.

None

Table 49. Designing Scripts

Release 6.x Release 7.0 and 7.5 Comment
Product Administration Guide Version 7.8, Rev. B 409

Siebel Configurator in Release 6.x, 7.0 and 7.5 ■ Quote Integration and Configuration
Assistant in Release 6.x and 7.x
Quote Integration and Configuration
Assistant in Release 6.x and 7.x
Creating a model product and associating a model with it is not required in release 7.0 and 7.5.
Instead, you create a customizable product work space, which is similar to creating a record in the
Model Manager in release 6.x. This work space associates the parts of the customizable product,
including its components, links, resources, and UI definition with the product record. When you
release a new version of the customizable product, it becomes available immediately for
configuration in quotes and in eSales Web pages.

In release 6.x, the Configuration Assistant view was used to display models, select items, and
transfer items to a quote. If you wanted to modify the way Configuration Assistant looked, you had
to use Siebel Tools to build a new view. In release 7.0 and 7.5, a Product UI Designer is provided
within Siebel Configurator to create the browser pages, called selection pages, that will display
during a configuration session. You can select from several base themes and product themes that
define basic page layout. You can also select the controls, such as radio buttons or check boxes, to
use for displaying items.

The base themes, product themes, and controls are stored in template files that you can customize
or use to create your own templates. In addition, you can use the User Interface Property Designer
to customize how individual items display. If you do not want to create a user interface for a
customizable product, the application provides intelligent defaults for creating selection pages
automatically. Table 50 maps release 6.x features to release 7.0 and 7.5 for quote integration and
Configuration Assistant.

GetItemState Supported through Siebel API None

SubmitRequest AddItem, RemoveItem None

Table 50. Quote Integration and Configuration Assistant

Release 6.x Release 7.0 and 7.5 Comment

Verify a solution Verify a customizable product
configuration.

None

Verify a quote Verify a quote. None

Update a quote Update a quote. None

Solution name Customizable product name. None

Solution quantity Customizable product quantity. None

Line item quantity Component quantity in a
customizable product.

None

Table 49. Designing Scripts

Release 6.x Release 7.0 and 7.5 Comment
Product Administration Guide Version 7.8, Rev. B410

Siebel Configurator in Release 6.x, 7.0 and 7.5 ■ Quote Integration and Configuration
Assistant in Release 6.x and 7.x
Reconfigure a solution with a
new version of a model

Reconfigure a stored session
with a newer version of a
customizable product

None

Create and manage Favorites Create and manage Favorites None

Add an item in a configuration
session

Same. Define item display in
Product UI Designer

You can also accept application
defaults for item display

Remove an item Same. Define item display in
Product UI Designer

You can also accept application
defaults for item display

Add a category Add a relationship in Structure
view

None

Unsatisfied category icon A flag displays when a
relationship is below its
minimum cardinality or is
required.

None

Finish It! Finish It! None

Item state explanation The user interface contains an
Explanation button.

Clicking the Explanation button
displays an explanation.

Item properties displayed in
applet

Properties have been replaced
by configurable attributes.
Attributes display in
configuration session or in the
Quotes screen, Dynamic
Attributes view.

None

Messages and
Recommendations

Messages and
Recommendations

None

Unsatisfied requirement
message

Unsatisfied requirement
message

None

Quantity out of range message Quantity out of range message None

Conflict-exists pop-up message Conflict-exists pop-up message Explanation and ability to
proceed or cancel user action is
supported

Edit quantity of an item Edit quantity of an item Requires UI control that allows
editing of quantity.

Table 50. Quote Integration and Configuration Assistant

Release 6.x Release 7.0 and 7.5 Comment
Product Administration Guide Version 7.8, Rev. B 411

Siebel Configurator in Release 6.x, 7.0 and 7.5 ■ Quote Integration and Configuration
Assistant in Release 6.x and 7.x
Product Administration Guide Version 7.8, Rev. B412

Product Administration Guide Version 7.8, Rev. B 413

Index

A
access group, about assigning 35
activating configuration constraints 187
AddItem 281, 410
AddItem method, about 387
Admin Product List report 46
Advanced Constraint Template 243
Advanced Rules Designer

compared to release 6.x 407
AppendMessages Method 371
arithmetic operators

configuration constraint assembly language,
about and table of 251

configuration constraint template
reference 210

assets
product models, changing versions of 362
untracked assets and requires rule 109

Assisted Advanced Constraint template 240
attribute conditions

in exclude constraint 220
require constraint 231

attribute domain
data types 63
defined 60
types of 62

Attribute Value (Advanced) template 211
attribute values

setting 70
setting with scripts 263

attribute-based pricing
compared to component-based pricing 59

attribute-based pricing, list of value
elements 62

attributes
about 60
analogous 6.x structures 406
attribute arithmetic operators 255
attribute comparison operators 253
business component domain, about 81
business component domain, about

associating with 81
business component, about associating

with 84
business component, associating with

(procedure) 85
in customizable product, displaying 155, 163

data types 63
defined 406
hidden attributes, about 63
hidden or required settings, changing 73
parent class attributes, deleting 70
provide template, target of provide and

consume constraint 226
simple provide template, target of provide and

consume constraints 227
user interface control compatibility 139
viewing product attributes 79

Auto Match (quotes and orders) 121
Auto Match business service

product model upgrades, role in 362
validation process, overview 363

Auto Match, enabling and parameters 354

B
base theme

about 133
menu-based theme 136
pricing integration 141
pricing, types of 134
selecting 143
system default 131

base theme template
about 161
creating 167
customizable product, adding to 168
customizable product, name change

process 166
layout 167
product name change example 169
UI property, defining 168

Boolean operators
comparison operators, using to create

constraints 260
in constraint conditions 208
Rule Assembly Language 247

bundles
controlling how forecast 129
controlling how taxed 128
converting a customizable product to 125
converting to customizable product 125
relationship to customizable products 124

business component domain (attribute)
about 81

Product Administration Guide Version 7.8, Rev. B

Index ■ C

414

about associating with 81
attribute value constraint, about creating 91
attribute, about associating the attribute with

a business component 84
attribute, adding to selection page 84
attribute, associating the attribute with a

business component (procedure) 85
buscomp field constraint, about creating 87
buscomp field constraint, creating

(procedure) 90
multiple fields, about setting up for

display 86
multiple fields, setting up for display

(procedure) 87
multiple fields, using predefined UI properties

for display (table) 86
UI properties 82

business component links
creating 195

C
cardinality

about 108
combinations, table 108
system default cardinalities, revising 358
user interface control considerations 139

catalogs, analogous 6.x structures
(table) 405

category, analogous release 6.x structure
(table) 405

Cfg_AttributeChanged event, about 272
Cfg_CategoryChanged, comparison 6.x to

release 7.x 409
Cfg_ChildItemChanged event

about 264, 270
ChangedItem argument 271, 272
selection pages 270, 272
syntax 270, 272
usage example 271, 273

Cfg_InstInitialize event
about 264
syntax and use 269

Cfg_InstInitialize, 6.x to 7.x mapping 409
Cfg_InstPostSynchronize event

about 265
syntax, returns, usage 274

Cfg_ItemChanged event
difference from release 6.x 275
syntax 275

Cfg_ItemChanged event, comparison 6.x to
release 7.x 409

Cfg_ItemChanged event, use of 275
Cfg_ItemInitialize, comparison 6.x to

release 7.x 409
Cfg_ItemPostSynchronize, comparison 6.x

to release 7.x 409
Cfg_ItemPreRequestSubmit, comparison 6.x

to release 7.x 409
Cfg_ItemPreSynchronize, comparison 6.x to

release 7.x 409
Cfg_OnConflict event, use of 276
Cfg_SessionClosed, comparison 6.x to

release 7.x 409
Cfg_SessionPostProcess, comparison 6.x to

release 7.x 409
ChangedItem argument 271, 272
Check Eligibility & Compatibility - Default

Workflow 330
class definitions

editing 75
class display name, translating 49
class hierarchies

about 61
managing, about 66

class structure
export-import process 77
exporting 77
importing 78

class, relationship domain
work space, refreshing 116

classes
attribute inheritance 60
class hierarchy vs. component hierarchy 107
defining 66
designating 32
dynamic class, relationship domain

connection 113
editing guidelines 44
exporting class structure, about 76
products, adding from multiple classes 115
uses of 60

class-product templates
creating 123

comparison operators
Boolean operators, using to create

constraints 260
configuration constraints template 209
multiple operands for 251
Rule Assembly Language 250

compatibility
about 317
creating compatibility matrices 322
defining compatibility groups 318
defining compatibility rules 319
rules 317

Compatibility Multiple Popup Workflow 328
component products

Index ■ C

Product Administration Guide Version 7.8, Rev. B 415

add quantity function 281
AddItem function 281
GetObjQuantity 280
RemoveItem function 281
scripts, role of 263
SetAttribute function 282
structure example 268

component-based pricing
compared to attribute-based pricing 59

components
component hierarchy vs. class hierarchy 107
customizable products, adding to 116

Compound Field button 223
compound logic operators 208
conditional operators, table 255
Conditional Value template 212
conditions

exclude constraint 219
require constraint 230

Configuration Assistant
analogous feature in release 7.x 410
analogous release 6.x processes 410

configuration constraint, templates
Provide (Simple) 226
Relationship Item Constraint 228

configuration constraints
activating and deactivating during

testing 180
compared to constraints template 179
constraint definition, deleting 188
constraint definition, editing 186, 187, 188
copying 188
creating 183
deactivating 186
defined 179
deleting 188
duplicate constraints 188
effective dates, about setting 180
inactive constraints, activating 187
inactive constraints, defined 180
links, value of 193
process overview 179
related constraints, process for creating 186
resource use 202
resource variables 201
solutions 206

configuration constraints, constraints
declarative portion and user-constraints,

interaction 206
configuration constraints, templates

Attribute Value (Advanced) 211
Conditional Value 212
Constrain 213
Constrain Attribute Conditions 213

Constrain Attribute Value 213
Constrain Conditionally 214
Constrain Product Quantity 215
Constrain Relationship Quantity 215
Constrain Resource Value 216
Consume 223
Consume (Simple) 226
creating 189
Display Message 217
Display Recommendation 217
editing and deleting 189
Exclude 218
Provide 223
Require 229
Require (Mutual) 234
Set Initial Attribute Value 235
Set Initial Resource Value 236
Set Preference 236

configuration process
resource amounts, tracking 25
resource definition, editing 203
user interface design, process overview 133

configuration rules
configuration rule explanation,

translating 51
testing 287

configuration sessions
customizing display 155, 163
solutions, creating 206
UI properties, changing 155, 163

Configurator
APIs available, list of 373
architecture components 353
Auto Match, enabling and parameters 354
conflicts and messages, APIs to interact 385
instance APIs, concepts 373
keep alive time, specifying for configurator

sessions 355
Object Broker methods 392
product and attribute values, APIs to set 387
server deployment, deployment options 354
snapshot mode, enabling and parameters

(table) 354
Configurator Eligibility Compatibility

Workflow 329
Configurator External Validate

Workflow 367
Configurator Load Workflow 366
Configurator Save Workflow 366
Configurator Validate Workflow 367
Constrain Attribute Conditions

template 213
Constrain Attribute Value template 213
Constrain Conditionally template 214

Product Administration Guide Version 7.8, Rev. B

Index ■ C

416

Constrain Product Quantity template 215
Constrain Relationship Quantity

template 215
Constrain Resource Value template 216
Constrain template 213
constraint conditions

about 207
Boolean operators 208
as require or exclude constraints 208
types of 208

Constraint Summary Report, obtaining 190
constraint templates

compared to configuration constraints 179
constraint statements 181
creating 189
defined 179
deleting 189
editing 189
translated into RAL, example 260

constraints
programming constraints, about 206
rule conditions as 208
user-constraints 206

consume constraint
attribute target 227
item operand 224
product target operand 225, 227
provide template, attribute target 226
quantity 224, 227
resource target 225, 227
sample scenario 225
target operand 225, 227
value operand 224, 227

Consume template 223, 226
copying

configuration constraints 188
customizable products 119

copying product records 44
CopyInstance method, about 388
CreateSession method 377
creating compatibility matrices 322
creating eligibility matrices 315
customizable asset, creating 127
customizable products

about and example 22, 23
adding 116
attribute-based vs. component-based 60
attributes vs. features 38
attributes, displaying 155, 163
attributes, viewing 79
Auto Match validation process 363
base theme, name change process 166
class hierarchy vs. component hierarchy 107
component-based vs. attribute-based 60

converting to bundle 125
converting to bundles 125
copying 119
creation, technical overview 163
deleting products from work space 118
effective dates, usage guidelines 301
group name change example 172
groups, displaying 155, 163
items displayed 155, 163
linked items, displaying 155, 163
modifying customizable assets (delta

quotes) 126
name change example 169
previous version, reverting to 303
as product components 116
product model upgrade considerations 362
product name, importance of 266
product version, deleting 302
records, copying 44
relationships, displaying 155, 163
resource amounts, tracking 25
resource definition, editing 203
resources, adding 202
resources, displaying 155, 163
same product, multiple occurrences 109
Siebel Web Engine display, overview 163
testing 287
UI property, group names 171
user interface design, process overview 133
web display groups 138

customizable products, constraining
declared constraints and user-constraints,

interaction 206
customizable products, relationships

editing 118
example 106
importance of 106
product path, structure example 268
structure example 268

customizable products, releasing
about 301
procedure 301, 302

customizable products, scripting
about writing 265
Cfg_ItemChanged event 275
declarations scripts, creating 284
declarative portion, changes to 264
deleting scripts 286
editing scripts 285
event scripts, creating 283
script errors, checking 285
script instance, defined 265
script log 285
scripts, defined 263

Index ■ D

Product Administration Guide Version 7.8, Rev. B 417

uses of 264
customizable products, templates

base theme template, adding 168
configuration constraints vs. constraint

templates 179
product theme template, adding 171
UI property, adding to base theme

template 168

D
data types, attributes 63
deactivating configuration constraints 186
declarations script, creating 284
default cardinality 108
defining compatibility groups 318
defining compatibility rules 319
defining eligibility groups 312
defining eligibility rules 313
deleting

configuration constraints 188
constraint templates 189
customizable products 302
scripts 286
simple product bundles 57

Delta quotes 126
DeltaQuote method, about 393
Description, predefined UI property 156
DHTML commands 164
Display Message template 217
Display Recommendation template 217
dynamic class, relationship domain

connection to class system 113
refreshing the work space 116

E
editing scripts 285
effective dates

configuration constraints 180
testing constraints, process 180

eligibility
about 309
and Configurator rules 310
and products with components 315
creating eligibility matrices 315
defining display 311
defining eligibility groups 312
defining eligibility rules 313

entitlements, creating 41
EnumObjects method 379
equivalent products

designating 40
features, comparing 40

events

Cfg_AttributeChanged, use of 272
Cfg_ChildItemChanged event, example 271,

273
Cfg_ChildItemChanged, syntax 270, 272
Cfg_ChildItemChanged, use of 270
Cfg_InstInitialize, syntax 269
Cfg_InstPostSynchronize, syntax 274
Cfg_ItemChanged, use of 275
Cfg_OnConflict, use of 276
comparison 6.x to release 7.x 409
event scripts, creating 283

exclude constraint
attribute conditions, use of 220
conditions, use of 219
excludes operator, about using 249
items, use of 219
multiple operands 223
multiple operands for exclude operators 249
quantity conditions, use of 221

exclude operator 218
Exclude template

format 218
nested conditions, use of 222
truth table 218

Excluded, predefined UI property 156
exporting

class structure (procedure) 78
class structure, about 76
product records for display, formats and

procedure 45
expressions (RAL) 239

F
features, new features 60
field length, enforcing for entering advanced

rules 355
Finish It (quotes and orders) 122
forecast

customizing products, controlling 129
product bundle components, controlling

how 57
Frame Code Engine 163
FullComputation, predefined UI

property 157
functions

AddItem function, syntax 281
GetInstanceId, syntax 277, 278
GetObjQuantity 280
RemoveItem, syntax 282
SetAttribute, syntax 282

G
GetAllPorts method 379

Product Administration Guide Version 7.8, Rev. B

Index ■ H

418

GetAttribute method 380
GetCfgId, comparison 6.x to release 7.x 409
GetDetailedReqExpl method, about 385
GetExplanations method, about 385
GetFieldValues 381
GetInstance method 381
GetInstanceId function, syntax 277, 278
GetInstanceId, comparison 6.x to release

7.x 409
GetItemId, comparison 6.x to release

7.x 409
GetItemQuantity, comparison 6.x to release

7.x 409
GetItemState, comparison 6.x to release

7.x 410
GetObjQuantity function, syntax 280
GetObjQuantity, comparison 6.x to release

7.x 409
GetParents method 381
GetPossibleDomain method 382
GetPossibleValues 382
GetProdStruct method, about 392
GetProductId method 383
GetPropertyValue, comparison 6.x to release

7.x 409
GetRootPath method 383
GetSessionId, comparison 6.x to release

7.x 409
GetSignals method, about 386
group name, translating 53
group theme template 161
groups

creating 144
in customizable product, displaying 155, 163
defined 138
display name changes, process 170
group styles, types of 138
names, modifying 170
process overview 144
product theme template, creating 170
products, adding 144

H
HasGenerics method 384
hidden attributes

about 63
settings, changing 73

hierarchy of relationships, analogous 6.x
structures (table) 405

HTML, web template
commands for item name displays 164
commands, UI property names 163
image retrieval test file 165

image tag 165
table commands 162
tables, use of 164
UI property name tags 164

I
Image, predefined UI property 156
images

associating with products viewing 43
retrieval test file 165
subdirectory 165

importing
class structure 78

inc() operator, about and example 255
inheritance

about 406
class-product templates 123
scripts, comparison 6.x to release 7.x 408

inherited attributes
defined 70
edit propagation 71
editing restrictions 71

instance creation, turning off default
instance creation 357

interface property definitions 123
inventory options, about managing 43
items

consume constraint 224
customizable product access operators 259
in customizable product, displaying 155, 163
defining UI properties 176
display customization 174
in exclude constraint 219
Link Designer 24
name change process 173
provide constraint 224
require constraint 230
UI control template 173

J
JavaScript commands

about 162
UI property names 163

K
key features, assigning 38

L
LearnMore, predefined UI property 156
license key requirements, about using 27
linked items

in customizable product, displaying 155, 163

Index ■ M

Product Administration Guide Version 7.8, Rev. B 419

user interface control selection 139
links

about 193
comparison 6.x to release 7.x 406
Link Designer 24
specifying in RAL 245

list of values (LOV)
element types 62

list of values (LOV) domain
defined 62
single-value list 62

literature, associating with products 42
LoadInstance Method 368
LoadInstance method 375
local attributes

about 70
editing, about 71

local database, warning about 27
logging on (Siebel administrator) 27
Logic Designer, compared to release

6.x 407
logical equivalence operator 249

M
maximum cardinality 108
measurements, about product

measurements 43
menu-based UI 136
methods

ReplaceItem 389
minimum cardinality 108
Model Product 31
models

comparison 6.x to release 7.x (table) 403
creating, analogous process in release

7.x 410
multilingual data, translating 47

N
NAND operator

Exclude template 218, 222
Require template 233

nested conditions
Exclude template 222
Require template 233

NewProductName 168
news items, adding to products 42
numbers, specifying in RAL 245

O
one-page theme template 161
operands, multiple

exclude constraint 223

require constraint 234
operators

arithmetic operators, configuration constraint
assembly language 251

arithmetic, configuration constraint template
reference 210

attribute arithmetic operators 255
attribute comparison operators 253
Boolean operators 247
comparison 209
comparison operators 250
comparison operators, multiple operands

for 251
compound logic 208
conditional operators, table 255
customizable product access operators 259
data operators, types of 247
exclude operator 249
logical equivalence operator 249
operators, types of 245
pattern-matching operators 250
require operator 248
special operators 255
special operators (table) 256
special operators, withMembers

operator 258
special operators, withTuples operator 257

orders
product models, changing versions of 362

P
page container 166
parent classes

attributes, deleting 70
class definitions, editing 75
product class name change preparation 75

parts, defective and substituting 43
path syntax, RAL 242
pattern-matching operators 250
price lists

products, associating 35
pricing

attribute-based pricing 62
base theme, types of 134
integration, about 141
pricing element sequence 141

Pricing and Eligibility Procedure - Default
Workflow 331

pricing models, component-based
compared to attribute-based 59

processes
configuration constraints, building 181
configuration constraints, creating 179

Product Administration Guide Version 7.8, Rev. B

Index ■ P

420

customizable product, base theme name
change 166

exporting and importing class structures 77
exporting and importing products and class

structure 77
group display name, changing 170
item names, changing 173
modifying group names 170
related configuration constraints 186
resource use 201
testing configuration constraints 180
user interface design 133
user interface design process 133

product bundles
bundle record fields, list of 55
deleting simple product bundles 57
forecast, about controlling how 57
simple product bundle, creating 55
simple product bundles, modifying 56
understanding 55

product classes
designating 32
dynamic updating, about 113
name change preparation 75
partial additions, about 112

Product Compatibility - Default
Workflow 326

product descriptions, translating 48
Product Eligibility & Compatibility - Default

Workflow 325
product features

compared to attributes 38
creating 38
equivalent products, comparing 40
feature comparisons 39
key features, assigning 38

product features, defined 60
product lines, creating 37
Product List report 46
Product Master tables, adding fields

from 358
product models, upgrade

considerations 362
product names

ProductName argument, syntax 267
scripting, role in 266

product path, structure example 268
product records

about 35
about and fields (table) 29
copying 44
creating 35
editing guidelines 44
exporting for display, formats and

procedure 45
field description table 32

product records, displaying
as quote line items 31

Product Relationship Report, obtaining 119
product root

about 267
Cfg_AttributeChanged event 272
Cfg_ChildItemChanged event 270
Cfg_InstPostSynchronize event 274
GetCPInstance function 278
GetInstanceId function 277

product theme
menu-based 136
selecting 143
system default 131

product theme template
about 161
creating 119, 170
customizable product, adding to 171
group display name, changing 170
group name change example 172
interaction with other themes 161
modifying group names, process 170
UI property, defining 171

Product UI Designer
about 133
analogous feature in 6.x 410

product, relationship domain
work space, refreshing 116

ProductHeaderImage, predefined UI
property 157

ProductName argument 267
products

attribute inheritance 60
Auto Match business service 362
bundle, about and example 21
cardinality, types of 108
class hierarchy 61
compensable, designating 30
controlling how forecast 129
controlling how taxed 128
customizable product access operators 259
customizable, about and example 22, 23
different classes, adding from 115
export-import process 77
grouping similar products 37
image file information, viewing 43
Link Designer 24
literature, associating with 42
measurements, about 43
news items, adding 42
price lists, associating with 35
product characteristics, inheritance of 406

Index ■ Q

Product Administration Guide Version 7.8, Rev. B 421

product lines, creating 37
product lines, organization of 61
product templates, creating 44
relations, defining 39
sales products, identifying 33
service products, identifying 33
simple products with attributes, about and

example 21, 22
simple products without attributes 21
as tools 34

programming, constraint vs. procedural 206
properties, analogous release 7.x

structure 406
property operator 259
provide constraint

attribute target 227
item operand 224
product target operand 225, 227
provide template, attribute target 226
quantity 224, 227
resource target 225, 227
sample scenario 225
target operand 225, 227
value operand 224, 227

Provide template 223, 226

Q
quantity conditions

exclude constraint 221
require constraint 231

quantity, provide and consume
constraint 224, 227

quote integration, analogous release 6.x
processes 410

quotes
line item products, displaying 31
product models, changing versions of 362
selection page display 133
service products 33
smart part numbers, viewing in a quote 102

R
range of values domain

defined 62
rate list, product availability 32
refreshing the work space

customizable products, releasing 301
Relationship Item Constraint Template 228
relationship name, translating 52
relationships, constraint behavior

exclude constraint 219
exclude constraint conditions 219
exclude constraint, attribute conditions 220

exclude constraint, items 219
require constraint attribute conditions 231
require constraint conditions 230
require constraint items 230
require constraint quantity conditions 231

relationships, customizable products
about 106
analogous 6.x structure (table) 405
component type relationships, defined 106
displaying 155, 163
editing 118
example 106
product classes, adding 112
role of 106
single product, adding 111
structure example 268
types of 39

released customizable products
deleting 118
editing product information 117
previous version, reverting to 303
release procedure 301, 302
troubleshooting 287

RemoveFailedRequests method, about 386
RemoveItem function 282
RemoveItem method, about 388
RemoveItem method, comparison 6.x to

release 7.x 410
ReplaceItem methods 389
reports

Admin Product List 46
Constraint Summary, obtaining 190
Product Relationship report 119

RepriceInstance method, about 390
Require (Mutual) template 234
require constraint

attribute conditions, use of 231
conditions, use of 230
items, use of 230
multiple operands 234
quantity conditions, use of 231
require operator 248

require constraints
logic table example 234
uses of 229

Require template
format 229
nested conditions, use of 233
truth tables 229

required attributes
changing 73

requires constraint
use with untracked 109

Resource Designer 25

Product Administration Guide Version 7.8, Rev. B

Index ■ S

422

resources
comparison 6.x to release 7.x 406
constraints governing 202
in customizable product, displaying 155, 163
customizable products, adding to 202
defined 201
process 201
provide and consume constraint 225, 227
resource definition, editing 203
resource definitions 201
Resource Designer 25
sample scenario, provide and consume

constraint 225
user interface control selection 139
value derivation 202

Rule Assembly Language (RAL)
about 239
attribute arithmetic operators 255
attribute comparison operators 253
basic constraint, examples 259
Boolean operators 247
constraint, defined 239
constraints, creating 240
constraints, managing 244
data operators, types of 247
exclude operator 249
link specifications 245
logical equivalence operator 249
number specifications 245
operators, types of 245
path syntax 242
require operator 248
string specifications 245
sub-expression, defined 240
using effectively 239

rule conditions
as constraints 208

Rule Designer
compared to release 7.x 407
Rule Assembly Language, displaying 356

Rule Manager, comparison to release
6.x 407

rules and logical expressions, version
comparison 407

S
S_PROD_INT tables, adding fields from 358
sales products, identifying 33
Script Designer 23, 25
scripts

about writing 265
comparison, 6.x to release 7.x (table) 408
customizable product templates 123

declarations scripts, creating 284
declarative portion 264
defined 263
deleting 286
editing 285
errors, checking 285
event scripts, creating 283
non-persistent variables, about 265
product name, importance of 266
script instance, defined 265
script log, reviewing 285
script processing, about 264
uses of 264

selection pages
basic layout 161
Cfg_ChildItemChanged event 270, 272
creation, example 162
defined 133, 410
display errors 163
Finish It! 122
groups, role of 138
hiding parts of a product 159
item and option display, control 161
item selection specification 138
look and feel, control of 133
themes, role of 133

service products
identifying 33
product parts, about 43

Set Initial Attribute Value template 235
Set Initial Resource Value template 236
Set Preference template 236
SetAttribute function 282
SetAttribute method, about 390
SetFieldValue method, about 391
SetInstance method 378
SetItemQuantity method, about 391
Siebel administrator, logging on as 27
Siebel API, availability 408
Siebel Configurator

constraints processing 206
Siebel Pricer integration 141
Siebel Web Engine

displaying customizable products 163
web template commands 162

simple product bundles
deleting 57
modifying 56

simple products
attributes, about with and example 21, 22
attributes, about without 21
product record, about and fields (table) 29

single product relationship, adding 111
smart part numbers

Index ■ T

Product Administration Guide Version 7.8, Rev. B 423

about 93
assign generation method to product 101
attribute value, defining a mapping for

each 98
attributes, selecting desired 100
dynamically generated 95
dynamically generated, editing 98
generation method, updating with attribute

changes 102
methods for generating 94
part number generation record, creating 96
part number matrix, creating 100
part number template, defining 97
predefined generation method, editing 101
predefined generation method, updating with

attribute changes 103
predefined part numbers, creating 99
quote, viewing 102

Snapshot mode
enabling and parameters (table) 354

special operators
about and the inc() operator 255
table 256
withMembers operator, about and

example 258
withTuples operator, about and example 257

strings, specifying in RAL 245
subclasses

characteristics of 61
defining 66
types of attributes 70

SubmitRequest, comparison 6.x to release
7.x 410

substitute products, about providing
information for 43

summary page 145
swe:control 162, 167
swe:for-each 162
swe:include 162, 174
SyncInstance method 378
system administration tasks, warning

about 27
system link definition

editing, about 199
system variable links

creating 198
operation of 194

T
tab theme template 161
taxes, controlling how products and bundles

are taxed 128
templates

class-product templates, creating 123
TODAY (system variable), about extracting

information from 194
translation

attribute list of values 51
class display name 49
configuration rule explanations 51
multilingual data 47
product descriptions 48
relationship name 52
UI group name 53
UI property value 54

troubleshooting, released product 287

U
UI control template

about 162
assigning to group 175
creating 174
defining UI property for item 176
item name changes 173
layout 174

UI group name, translating 53
UI properties

about defining 155
changing 155, 163
customizable product, defining for 159
defining for items 176
defining, about 155, 163
displaying images 165
predefined 156

UI property names 163, 164
UI property value, translating 54
UndoLastRequest method, about 387
Universal Application Network

about 361
external simple product 361
Siebel simple product 362

UnloadInstance method 378
untracked assets and requires

constraint 109
user access

setting up (procedure) 36
setting up, about 35

user interface
customizable product templates 123
designing, process overview 133
groups, role of 138
relationships, importance of 106

user interface controls
attribute compatibility 139
cardinality considerations 139
control type summary table 139

Product Administration Guide Version 7.8, Rev. B

Index ■ V

424

linked items 139
menu-based 136
resource items 139
system defaults 131
types of 138

user interface design
animation, use of 164
base theme, selecting 143
groups, about 143
groups, creating 144
hiding parts of a product 159
menu based approach 136
product theme, selecting 143
selection pages, about 143
summary page 145

User Interface Property Designer 163

V
Validate Complex Product From Property Set

Method 370
Validate mode

configuration constraints, deactivating 186
customizable product, testing 287

variables, non-persistent 265
Verifying quotes and orders for eligibility

and compatibility 323
version comparison

categories vs. relationships (table) 405
links 406
models (table) 403
resources, about working with 406
rules and logical expressions 407
scripts 408
tree vs. hierarchy of relationships

(table) 405

W
Web templates

base theme template, adding to customizable
product 168

configuration constraint templates,
creating 189

configuration constraint templates,
deleting 189

configuration constraint templates,
editing 189

group theme templates 161

groups, creating 144
groups, role of 143
location of 161
new Web template, creating 165
overview 161
selection page creation, example 162
Siebel web engine commands, listed 162
UI control template, about 162
UI control template, assigning 175
UI control template, creating 174
UI property variable, inserting 174
UI property, defining 176
UI property, defining for customizable

product 168
Web templates, base theme

base theme template, creating 167
default 131
described 161
pricing 134
product name change example 169
selecting 143

Web templates, product theme
about 134
creating 170
customizable products, adding to 171
default 131
described 161
group display name, changing 170
modifying group names, overview 170
name change example 172
selecting 143
UI property, defining 171

webtempl subdirectory 161
WHO (system variable), about extracting

information from 194
withMembers operator, about and

example 258
withTuples operator, about and

example 257
wizard theme template 161
work spaces

customizable products, releasing 301
products, deleting 118

X
XML files

class structure export and import 77

	Contents
	1 What’s New in This Release
	What’s New in Product Administration Guide, Version 7.8, Rev. B.
	What’s New in Product Administration Guide, Version 7.8, Rev. A.
	What’s New in Product Administration Guide, Version 7.8

	2 Overview of Product Administration
	Roadmap for Product Administration
	Simple Products Without Attributes
	Product Bundles
	Simple Products with Attributes
	Products with Components
	Product Compatibility
	Product Eligibility
	Product Validation Rules
	Translations

	Roadmap for Creating Simple Products with Attributes
	Roadmap for Creating Products with Components
	When to Use Configuration, Compatibility, Eligibility, and Product Validation Rules
	Configuration Rules
	Compatibility Rules
	Product Validation Rules
	Eligibility Rules

	About Working with Product Administration
	Logging On as the Siebel Administrator
	License Key Requirements

	3 Basic Product Administration
	About the Product Record
	Process of Creating Simple Products
	Creating a Product Record
	Associating a Product with Price Lists
	Setting Up User Access To a Product
	Releasing a Simple Product

	Setting Up Products with Recurring Prices
	Creating Product Lines
	Defining Product Features
	Defining Related Products
	Defining Equivalent Products
	Comparing Features of Equivalent Products
	Creating Product Entitlements
	Associating Literature with Products
	Associating Product News with Products
	Associating Images with Products
	Creating Product Field Service Details and Measurements
	Exporting and Importing Products
	About Managing Product Records
	Editing Product Records
	Copying Product Records
	Deleting Product Records
	Exporting Product Records for Display

	Creating a Product List Report

	4 Multilingual Translations for Product Data
	About Product Data Translation
	Translating the Product Description
	Translating Product Class Display Names
	Translating Attribute Names
	Translating Attribute Definition Names
	Translating Attribute Values
	Translating Configuration Rule Explanations
	Translating Relationship Names
	Translating UI Group Names
	Translating UI Property Values

	5 Product Bundles
	About Product Bundles
	Creating Simple Product Bundles
	Modifying Simple Product Bundles
	Deleting Simple Product Bundles
	Controlling How Bundle Components are Forecast

	6 Products with Attributes
	Component-Based Versus Attribute- Based Pricing
	About Product Attributes
	About Product Classes
	About the Product Class Hierarchy
	About Attribute Domains
	About Defining Attribute Domains
	Domain Data Types

	About Hidden Attributes
	Scenario for Creating Products with Attributes
	Process of Creating Products with Attributes
	Creating Attribute Definitions
	Creating Product Classes in a Hierarchy
	Associating Attributes with a Product
	Setting Up Attribute Pricing

	Setting Up Required Attributes
	Setting a Read-Only Value for an Attribute of a Product
	Changing Inherited Properties of Attributes
	Viewing Changes in the Inherited Properties of Attributes
	Restoring the Inherited Properties of an Attribute

	Changing the Hidden or Required Settings for a Product Attribute
	About Managing Product Classes
	Viewing Related Objects for Product Classes
	Editing a Product Class Definition
	Deleting a Product Class
	Exporting or Importing Product Classes

	About Managing Attribute Definition Records
	Viewing Related Objects for Attribution Definitions
	Editing Attribute Definitions
	Deleting Attribute Definitions

	Viewing Product Attributes

	7 Product Attributes with Business Component Domains
	About Attributes with Business Component Domains
	About the UI Properties for Attributes with Business Component Domains
	Process of Creating an Attribute with a Business Component Domain
	Adding the Attribute to a Selection Page
	Associating the Attribute with a Business Component
	Setting Up Multiple Fields for Display
	Creating a Business Component Field Constraint
	Creating an Attribute Value Constraint

	8 Smart Part Numbers for Products with Attributes
	About Smart Part Numbers
	Roadmap for Creating Smart Part Numbers
	Process of Creating Dynamically Generated Smart Part Numbers
	Creating a Part Number Generation Record
	Defining the Part Number Templates
	Mapping Attribute Values to the Template
	Testing the Part Number Templates

	Editing a Dynamic Generation Method
	Process of Creating Predefined Smart Part Numbers
	Creating a Part Number Generation Record
	Selecting the Attributes for Predefined Part Numbers
	Creating the Part Number Matrix
	Testing the Part Number Matrix

	Editing a Predefined Generation Method
	Assigning Smart Part Numbers to a Product
	Viewing a Product’s Smart Part Number in a Quote
	Updating a Generation Method with Attribute Changes

	9 Designing Products with Components
	About Products with Components
	About Products with Components and Product Classes
	About Relationships
	About Cardinality
	Combinations for Setting Cardinality
	About Generics

	Guidelines for Designing Products with Components
	Guidelines for Asset-Based Ordering

	Process of Designing a Product with Components
	Creating Product Records for a Product with Components and for Its Components
	Adding a Single Product as a Component
	Adding Products as Components Using the Class Domain
	Adding Products as Components Using the Dynamic Class Domain
	Adding a Group of Products from Different Classes as Components
	Adding a Product with Components as a Component

	Refreshing the Customizable Product Work Space
	Enabling the Customize Button
	About Managing the Structure of Products with Components
	Editing a Relationship Definition
	Deleting Products from Products with Components
	Copying Products with Components

	Creating a Report on a Product’s Structure

	10 Managing Products with Components
	About Auto Match
	About Finish It!
	Viewing Relationships for Products
	Using Product Classes as Templates for Products with Components
	About Bundles as Products with Components
	Converting a Bundle to a Regular Product with Components
	Converting a Regular Product with Components to a Bundle

	Defining an Asset with Components
	Controlling How Products with Components Are Taxed
	Controlling How Products with Components are Forecast

	11 Creating Custom Siebel Configurator User Interfaces
	About Default and Custom Siebel Configurator User Interfaces
	About the Siebel Configurator User Interface View
	About Themes for the Siebel Configurator UI
	About the Base Theme
	About Product Themes

	About Creating a Menu-Based Siebel Configurator UI
	About Siebel Configurator UI Groups
	About Siebel Configurator UI Controls
	About High Interactivity and Standard Interactivity Siebel Configurator UIs
	About Pricing Integration with Siebel Configurator
	Creating Custom UIs for Customizable Products
	Process of Creating a Custom Siebel Configurator User Interface
	Creating the Siebel Configurator User Interface Record
	Selecting the Base and Product Themes
	Grouping Items onto Pages of the Siebel Configurator User Interface
	Adding a Summary Page to the Siebel Configurator User Interface
	Assigning Siebel Configurator Interfaces to Users

	Tasks for Setting Up the Siebel Configurator HI User Interface
	Setting Up the Grandchild Display of the HI Siebel Configurator User Interface
	Using the Attribute Inline Display Control in the HI Siebel Configurator User Interface
	Validating the User Interface for Customizable Products

	About Managing Item Groups
	Editing Item Groups
	Deleting Item Groups

	12 Siebel Configurator UI Properties
	About Siebel Configurator UI Properties
	About Predefined UI Properties
	Using User-Defined UI Properties
	Defining a UI Property
	Hiding Parts of a Customizable Product

	13 Siebel Configurator Web Templates
	About Customizable Product Web Templates
	About UI Properties in Web Templates
	About UI Property Values
	HTML Text Formatting Commands
	Images

	Creating a New Web Template
	Modifying the Display Name of a Customizable Product
	Creating a New Base Theme Template
	Assigning the New Base Theme Template
	Defining a UI Property for the Customizable Product

	Example of Modifying the Display Name of a Customizable Product
	Modifying the Display Name of Groups
	Creating a New Product Theme Template
	Assign the New Product Theme Template
	Define a UI Property for all the Groups

	Example of Modifying the Display Name of Groups
	Modifying the Display Name of Items
	Creating a New UI Control Template
	Assigning the New UI Control Template
	Defining a UI Property for the Item

	Example of Modifying the Display Name of Items

	14 Configuration Constraints
	About Configuration Constraints
	About Start and End Dates for Configuration Constraints
	About the Siebel Configurator Constraints View
	Constraint Listing
	Constraint Template Listing
	Constraint Statement
	Overview of Using the Constraints view

	Guidelines for Creating Configuration Constraints
	Creating Configuration Constraints
	Creating Groups of Related Configuration Constraints
	Activating and Deactivating Configuration Constraints
	About Managing Configuration Constraints
	Editing Configuration Constraints
	Copying Configuration Constraints
	Deleting Configuration Constraints

	Creating Siebel Configurator Constraint Templates
	Creating a Siebel Configurator Constraint Summary Report

	15 Configuration Links
	About Configuration Links
	Business Component Links
	Context Variable Links
	System Variable Links

	Creating a Business Component Configuration Link
	Creating a Context Variable Link
	Creating a System Variable Configuration Link
	About Managing Configuration Links
	Editing a Configuration Link Definition
	Deleting a Configuration Link

	16 Configuration Resources
	About Configuration Resources
	Creating Configuration Resources
	Managing Resources Using Configuration Constraints
	About Managing Configuration Resources
	Editing Configuration Resource Definitions
	Deleting Configuration Resources

	17 Configuration Constraint Template Reference
	About Configuration Constraint Processing
	About Configuration Constraint Conditions
	Compound Logic and Comparison Operators in Configuration Constraints
	Arithmetic Operators in Configuration Constraints
	Attribute Value (Advanced) Template
	Conditional Value Template
	Constrain Template
	Constrain Attribute Conditions Template
	Constrain Attribute Value Template
	Constrain Conditionally Template
	Constrain Product Quantity Template
	Constrain Relationship Quantity Template
	Constrain Resource Value Template
	Display Message Template
	Display Recommendation Template
	Exclude Template
	Items
	Conditions
	Attribute Conditions
	Quantity Conditions
	Other Item Constraints
	Nested Expressions as Conditions
	Multiple Operands

	Provide and Consume Templates
	Item
	Value
	Target
	Product Target
	Resource Target
	Attribute Target

	Simple Provide and Consume Templates
	Value
	Target
	Product Target
	Resource Target
	Attribute Target

	Relationship Item Constraint Template
	Require Template
	Items
	Conditions
	Attribute Conditions
	Quantity Conditions
	Other Item Constraints
	Nested Expressions as Conditions
	Multiple Operands

	Require (Mutual) Template
	Set Initial Attribute Value Template
	Set Initial Resource Value Template
	Set Preference Template
	Saved Values for Dynamic Default
	New Tables for Dynamic Default

	18 Siebel Configurator Rule Assembly Language
	Why Use Rule Assembly Language?
	About Rule Assembly Language
	Creating Constraints Using the Assisted Advanced Constraint Template
	Creating Constraints Using the Advanced Constraint Template
	Managing Constraints Written in Rule Assembly Language
	About Specifying Data in Rule Assembly Language
	Numbers
	Strings
	Links

	About Operators in Rule Assembly Language
	Data Operators in Rule Assembly Language
	Boolean Operators in Rule Assembly Language
	More on the Requires Operator
	More on the Logical Equivalence Operator
	More on the Excludes Operator
	Multiple Operands for Require and Exclude Operators

	Comparison and Pattern Matching Operators in Rule Assembly Language
	Multiple Operands for Comparison Operators

	Arithmetic Operators in Rule Assembly Language
	Attribute Operators in Rule Assembly Language
	Attribute Comparison Operators
	Attribute Arithmetic Operators

	Conditional Operators in Rule Assembly Language
	Special Operators in Rule Assembly Language
	More on withTuples
	More on withMembers

	Customizable Product Access Operators in Rule Assembly Language

	Examples of Constraints Using Rule Assembly Language
	Basic Constraints
	Boolean and Comparison Operators
	Constraint Template Translations

	19 Siebel Configurator Scripts
	About Siebel Configurator Scripts
	About Siebel Configurator Script Processing
	About Product Names in Siebel Configurator Scripts
	About Product Path in Siebel Configurator Scripts
	Siebel Configurator Script Events and Methods
	Cfg_InstInitialize Event
	Cfg_ChildItemChanged Event
	Cfg_AttributeChanged Event
	Cfg_InstPostSynchronize Event
	Cfg_ItemChanged Event
	Cfg_OnConflict Event
	OnAttributeSelected Event
	OnChildItemSelected Event
	GetInstanceId Method
	GetCPInstance Method
	GetObjQuantity Method
	AddItem Method
	RemoveItem Method
	SetAttribute Method

	Creating Siebel Configurator Event Scripts
	Creating Siebel Configurator Declarations Scripts
	Reviewing the Siebel Configurator Script Log File
	About Managing Siebel Configurator Scripts
	Editing Siebel Configurator Scripts
	Deleting Siebel Configurator Scripts

	20 Testing Products and Using Workspace Projects
	Testing a Product with Components in Validation Mode
	Testing Product with Components Pricing

	About Scenario Tester and Workspace Projects
	Working with Versioned and Unversioned Objects
	Administering Data in Test Mode

	Process of Testing Products with Scenario Tester
	Defining a Workspace Project for Scenario Testing
	Defining the Contents for Scenario Testing
	Creating Scenarios for Scenario Testing
	Validating Scenarios
	Correcting Product Definitions and Retesting

	Displaying Only the Project in Use
	Working with the Scenario XML File
	Batch Validating Scenarios

	21 Releasing Products and Other Versioned Objects
	About Versions of C/OM Objects
	Creating Time Slice Reports for Product Versions
	Releasing Products for Use
	Deleting Product Versions
	Replacing Earlier Product Versions
	Displaying Product Versions that Are Available to Customers
	Making Products Unavailable to Customers
	Reverting to Earlier Versions of Products
	Releasing Multiple Products Using Workspace Projects
	Managing Products Using Workspace Projects
	Migrating Products Among Environments
	Migrating Products Using Import and Export in Workspace Projects View
	Migrating Products Using Application Deployment Manager (ADM)

	22 Product and Promotion Eligibility and Compatibility
	About Product and Promotion Eligibility
	About Eligibility Rules and Configuration Rules for Siebel CRM Version 7.7 and Earlier
	Defining How Eligibility Output Displays
	Eligibility Display Options for Catalogs
	Eligibility Display in Siebel Configurator

	Defining Eligibility Groups
	Defining Product and Promotion Eligibility Rules
	Defining Inclusive or Exclusive Eligibility for Products
	Defining Product Eligibility Rules
	Defining Promotion Eligibility Rules

	Defining Eligibility for Products with Components and for Component Products
	Creating Eligibility Matrices
	About Product and Promotion Compatibility
	About Compatibility Rules
	The Subject and Object of Compatibility Rules
	Subject Compatibility Rules and Object Compatibility Rules

	Defining Compatibility Groups
	Defining Compatibility Rules for Products and Promotions
	Defining Compatibility Rules for Products, Product Lines, or Product Classes
	Defining Compatibility Rules for Product Lines
	Defining Compatibility Rules for Promotions

	Creating Compatibility Matrices
	Verifying Quotes and Orders for Eligibility and Compatibility
	Eligibility and Compatibility Workflow Reference
	Product Eligibility & Compatibility - Default Workflow
	Product Compatibility - Default Workflow
	Compatibility Multiple Popup Workflow
	Configurator Eligibility Compatibility Workflow
	Check Eligibility & Compatibility - Default Workflow
	Pricing and Eligibility Procedure - Default Workflow

	23 Creating Validation Rules for Customizable Products
	About Validation for Customizable Products
	Scenario for Product Validation Using Custom Validation Services
	Activating Workflows for Product Validation
	Setting Up Product Validation Using the Simple Expression Business Service
	Creating the Customizable Product for Validation
	Creating the Messages for Product Validation
	Adding the Validation Services Record
	Creating Product Validation Expression Rules

	Setting Up Product Validation Using Custom Validation Services
	Creating the Customizable Product for Validation
	Creating Messages for Product Validation
	Creating a Custom Business Service for Product Validation
	Adding the Validation Services Record

	About Creating Custom Rule Checkers
	PreValidate Method
	Validate Method

	24 Siebel Configurator Technical Reference
	Siebel Configurator Architecture
	Siebel Configurator Server Deployment
	Enabling Snapshot Mode
	Enabling Auto Match
	Specifying Keep Alive Time for Siebel Configurator Sessions
	Enforcing the Field Length for Entering Advanced Rules
	Displaying RAL in the Constraints View
	Locate the Constraints View Applet
	Modify the Constraints View Applet
	Recompile the Siebel.srf File

	Turning Off Default Instance Creation
	Revising the Application Default Cardinalities
	Configuring the Object Broker
	Displaying Fields from S_PROD_INT in Selection Pages
	ASIs for Managing Products
	External Simple Product
	Siebel Simple Product

	Auto Match Business Service for Siebel Configurator

	25 Siebel Configurator Workflow and Method Reference
	Siebel Configurator Workflow Reference
	Configurator Cleanup Workflow
	Configurator Load Workflow
	Configurator Save Workflow
	Configurator Validate Workflow
	Configurator External Validate Workflow

	Siebel Configurator Methods Reference
	LoadInstance Method
	Validate Complex Product From Property Set Method
	AppendMessages Method

	26 Siebel Configurator API Reference
	About Siebel Configurator APIs
	Instance APIs for the Complex Object Manager
	LoadInstance Method
	CreateSession Method
	SetInstance Method
	SyncInstance Method
	UnloadInstance Method
	GetAllPorts Method
	EnumObjects Method
	GetAttribute Method
	GetFieldValues Method
	GetInstance Method
	GetParents Method
	GetPossibleDomain Method
	GetPossibleValues Method
	GetProductId Method
	GetRootPath Method
	HasGenerics Method
	GetConditionVal Method

	APIs to Interact with Conflicts and Messages
	GetDetailedReqExpl Method
	GetExplanations Method
	GetSignals Method
	RemoveFailedRequests Method
	UndoLastRequest Method

	APIs to Set Product and Attribute Values
	AddItem Method
	CopyInstance Method
	RemoveItem Method
	ReplaceItem Method
	RepriceInstance Method
	SetAttribute Method
	SetItemQuantity Method
	SetFieldValue Method

	Object Broker Methods
	GetProdStruct Method
	DeltaQuote Method

	API to Select the Siebel Configurator User Interface
	SetUIOption Method

	API to Validate Customizable Products
	BatchValidate Method

	27 Siebel Configurator in Release 6.x, 7.0 and 7.5
	Managing Models in Release 6.x and 7.x
	Designing the Catalog in Release 6.x and 7.x
	Working with Properties in Release 6.x and 7.x
	Working with Resources in Release 6.x and 7.x
	Working with Linked Items in Release 6.x and 7.x
	Designing Rules and Logical Expressions in Release 6.x and 7.x
	Designing Scripts in Release 6.x and 7.x
	Quote Integration and Configuration Assistant in Release 6.x and 7.x

	Index

