
Point-of-Sale
Developer Guide

Store360
Release 7.2.0 LA February 2006

Confidential

This document and the information it contains are the property of 360Commerce, Inc. This
document contains confidential and proprietary information that is not to be disclosed to
other parties. The information in this document may not be used by other parties except in
accordance with a written agreement signed by an officer of 360Commerce, Inc.

©2005 360Commerce. All rights reserved. 360Commerce and third-party specifications are sub-
ject to change without notice. Although every precaution has been taken in the preparation of
this paper, 360Commerce assumes no responsibility for errors or omissions, and no warranty or
fitness is implied. 360Commerce shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the use of the information contained in
this paper. Trademarks: 360Commerce (both word and logo), 360Store, 360Enterprise,
Unleashed, Warm-Start Optimization. All terms mentioned in this paper that may be trade-
marks or service marks have been appropriately capitalized or otherwise designated.
11400 Burnet Road, Suite 5200, Austin, Texas 78758
(512) 491-2600 • (800) 897-8663 • (512) 491-0078 (fax)

www.360Commerce.com

http://www.360commerce.com

TABLE OF CONTENTS
Preface xix

Chapter 1: Architecture
Overview 1-1
Point-of-Sale Architecture 1-2
Frameworks 1-3

Manager/Technician 1-3
User Interface 1-4
Business Object 1-6
Data Persistence 1-7
Tour 1-8

Design Patterns 1-8
MVC Pattern 1-8
Factory Pattern 1-9
Command Pattern 1-9
Singleton Pattern 1-10

Chapter 2: Development Environment
Overview 2-1
Preparation 2-1
Setup 2-1

Install Point-of-Sale 2-2
Build the Database 2-2
Create a Sandbox 2-2
Configure the IDE 2-2
Update Java Security and Policy files 2-3
Configure the Version Control System 2-4

Run Point-of-Sale 2-4

Chapter 3: UI Framework
Overview 3-1
Screens 3-2
Beans 3-4

PromptAndResponseBean 3-4
Bean Properties and Text Bundle 3-5
Tour Code 3-6

DataInputBean 3-7
Bean Properties and Text Bundle 3-7
Tour Code 3-8

NavigationButtonBean 3-8
Bean Properties and Text Bundle 3-8

LocalNavigationPanel 3-9
GlobalNavigationPanel 3-9

Tour Code 3-10
DialogBean 3-11

Bean Properties and Text Bundle 3-11

T a b l e o f C o n t e n t s iii

Tour Code 3-11
Field Types 3-13

Connections 3-14
ClearActionListener 3-14
DocumentListener 3-14
ValidateActionListener 3-15

Text Bundles 3-15
receiptText 3-16
parameterText 3-16

Chapter 4: Tour Framework
Overview 4-1
Tour Components 4-1

Tour Metaphor 4-1
Service and Service Region 4-3
Bus 4-3
Tourmap 4-3
Cargo 4-5
Sites 4-5
System Sites 4-5
Letters 4-6
Roads 4-6
Common Roads 4-7
Aisles 4-7
Stations and Shuttles 4-8
Signals 4-9
Exception Region 4-9

Role of Java Classes 4-10
Tour Cam 4-11

Attributes 4-11
Letter Processing 4-14
Cargo Restoration 4-14

Tender Tour Reference 4-15

Chapter 5: Manager/Technician Framework
Overview 5-1
New Manager/Technician 5-3

Manager Class 5-4
Manager Configuration 5-4
Technician Class 5-5
Technician Configuration 5-5
Valet Class 5-6
Sample Code 5-6

Configuration 5-6
Tour Code 5-7
Manager 5-7
Valet 5-8
Technician 5-9

Manager/Technician Reference 5-9
i v P o i n t - o f - S a l e D e v e l o p e r G u i d e

Parameter Manager/Technician 5-9
UI Manager/Technician 5-10
Journal Manager/Technician 5-12

Chapter 6: Retail Domain
Overview 6-1
New Domain Object 6-2
Domain Object in Tour Code 6-3
Domain Object Reference 6-4

CodeListMap 6-4
Currency 6-5
Transaction 6-7

Chapter 7: Customization
Parameters 7-1

Parameter Hierarchy 7-1
Parameter Group 7-2
Parameter Properties 7-2

Devices 7-3
Set Up the Device 7-3
Test the Device 7-3
Create a Session and ActionGroup 7-4
Simulate the Device 7-5

Help Files 7-6
Modifying Help Files 7-6

Chapter 8: Store Database
ARTS Compliance 8-1
Understanding Data Managers and Technicians 8-1
How Data Transactions Work 8-3
Creating or Updating Database Tables 8-5
Example of Saving Data: Storing Tender Information 8-7

Research Table Requirements and Standards 8-7
Saving Data from Site Code 8-8
Locate Data Operation 8-8
Modify Data Operation 8-12
Test Code 8-14
Verify Data 8-14

Updating Flat File Configurations 8-14
Data Technician Script 8-15
Flat File Engine Configuration Script 8-16
Implementing FlatFileDataOperations 8-17

Other Query Types 8-20
Complex Query Expressions 8-20

Chapter 9: Extension Guidelines
Conventions 9-1

Terms 9-1
Filename Conventions 9-1
Modules 9-2
T a b l e o f C o n t e n t s v

Directory Paths 9-2
pos Package 9-3

Tour 9-3
Tour Map 9-3
Tour Scripts 9-4
Site 9-4
Lane—Road or Aisle 9-4
Shuttle 9-5
Signal 9-5
Cargo 9-6

UI Framework 9-7
Default UI Config 9-7
UI Script 9-7
Bean Model and Bean 9-8

Other 9-9
Internationalization 9-9
Localization 9-10
Conduit Scripts 9-11
PLAF 9-11
Receipts 9-11
Reports 9-12

domain Package 9-12
Retail Domain 9-13

DomainObjectFactory 9-13
Retail Domain Object (RDO) 9-13

Database 9-14
Data Manager and Technician Scripts 9-14
Data Actions and Operations 9-14
Data Transactions 9-15

Chapter 10: General Development Standards
Basics 10-1

Java Dos and Don’ts 10-1
Avoiding Common Java Bugs 10-2
Formatting 10-2
Javadoc 10-3
Naming Conventions 10-4
SQL Guidelines 10-4

DB2 10-5
MySQL 10-5
Oracle 10-6
PostgreSQL 10-6
Sybase 10-6

Unit Testing 10-7
Architecture and Design Guidelines 10-7

AntiPatterns 10-8
Designing for Extension 10-9

Common Frameworks 10-10
Internationalization 10-10
v i P o i n t - o f - S a l e D e v e l o p e r G u i d e

Logging 10-10
Guarding Code 10-11
When to Log 10-11
Writing Log Messages 10-11

Exception Messages 10-11
Heartbeat or Lifecycle Messages 10-12
Debug Messages 10-13

Exception Handling 10-13
Types of Exceptions 10-13
Avoid java.lang.Exception 10-13
Avoid Custom Exceptions 10-14
Catching Exceptions 10-14

Keep the Try Block Short 10-14
Avoid Throwing New Exceptions 10-14
Catching Specific Exceptions 10-15
Favor a Switch over Code Duplication 10-15

Chapter 11: Point-of-Sale Development Standards
Screen Design and User Interface Guidelines 11-1
Tour Framework 11-1

Tour Architectural Guidelines 11-1
General Tour Guidelines 11-2
Foundation 11-3
Tours and Services 11-3
Sites 11-4
Managers and Technicians 11-4
Roads 11-5
Aisles 11-5
Signals 11-5
Choosing among Sites, Aisles, and Signals 11-6
Renaming Letters 11-6
Shuttles 11-7
Cargo 11-7

Log Entry Format 11-8
Log Entry Description 11-8
Fixed Length Header 11-8
Additional Logging info 11-9
Example Log Entry 11-9
T a b l e o f C o n t e n t s vii

v i i i P o i n t - o f - S a l e D e v e l o p e r G u i d e

LIST OF TABLES
Table P-1 Conventions xx
Table 1-1 360Commerce Architecture Components 1-2
Table 1-2 Point-of-Sale Architecture Layers 1-3
Table 1-3 Manager/Technician Framework Components 1-4
Table 1-4 UI Framework Components 1-5
Table 1-5 Business Object Framework Components 1-7
Table 1-6 Data Persistence Framework Components 1-7
Table 2-1 Point-of-Sale Installation Options 2-2
Table 2-2 Build Path 2-3
Table 2-3 Launch Properties 2-3
Table 3-1 UI Framework Features 3-1
Table 3-2 UI Framework Components 3-2
Table 3-3 Display Types 3-3
Table 3-4 Template Types 3-3
Table 3-5 Default Screen Types 3-3
Table 3-6 PromptAndResponseBean Property Names and Values 3-5
Table 3-7 PromptAndResponseModel Important Methods 3-6
Table 3-8 DataInputBean Property Names and Values 3-7
Table 3-9 DataInputBeanModel Important Methods 3-8
Table 3-10 GlobalNavigationButtonBean Property Names and Values 3-10
Table 3-11 NavigationButtonBeanModel Important Methods 3-10
Table 3-12 DialogBeanModel Important Methods 3-11
Table 3-13 Dialog Types 3-12
Table 3-14 Button Types 3-12
Table 3-15 Field Types and Descriptions 3-13
Table 4-1 Metaphor Components 4-2
Table 4-2 Component Identification Strategies 4-2
Table 4-3 System-called Methods 4-10
Table 4-4 Road Tag Element Attributes 4-12
Table 4-5 Forward TourCam Settings 4-13
Table 4-6 Backup Tour Cam Settings 4-13
Table 4-7 Tender Package Components 4-15
Table 5-1 Manager/Technician Type Examples 5-2
Table 5-2 Manager Names and Descriptions 5-2
Table 5-3 ManagerIfc Methods 5-4
Table 5-4 TechnicianIfc Methods 5-5
Table 5-5 ValetIfc Method 5-6
Table 5-6 Important ParameterManagerIfc Methods 5-10
Table 5-7 Important POSUIManagerIfc Methods 5-11
Table 5-8 Important JournalManagerIfc Methods 5-12
Table 6-1 CodeListMap Object Classes and Interfaces 6-4
Table 6-2 Currency Object Classes and Interfaces 6-6
Table 6-3 Transaction Object Classes and Interfaces 6-8
Table 7-1 Parameter Directories, Files, and Descriptions 7-1
L i s t o f T a b l e s ix

Table 7-2 Parameter Definitions From application.xml 7-2
Table 7-1 Validator Types 7-3
Table 8-1 Database Tables Used in Credit Card Tender Option 8-7
Table 8-2 FlatFileEngine Query Types 8-20
Table 9-1 Required Modules in Dependency Order 9-2
Table 10-1 Common Java Bugs 10-2
Table 10-2 Naming Conventions 10-4
Table 10-3 DB2 SQL Code Problems 10-5
Table 10-4 Oracle SQL Code Problems 10-6
Table 10-5 Common AntiPatterns 10-8
Table 11-1 Tour Naming Conventions 11-2
Table 11-1 Shuttles 11-7
Table 11-3 11-8
x P o i n t - o f - S a l e D e v e l o p e r G u i d e

LIST OF FIGURES
Figure 1-1 360Platform Architecture 1-1
Figure 1-2 Point-of-Sale Architecture Layers 1-2
Figure 1-3 Manager/Technician Framework 1-4
Figure 1-4 UI Framework 1-5
Figure 1-5 Business Object Framework 1-6
Figure 1-6 Data Persistence Framework 1-7
Figure 1-7 MVC Pattern 1-9
Figure 1-8 Factory Pattern 1-9
Figure 1-9 Command Pattern 1-10
Figure 1-10 Singleton Pattern 1-10
Figure 4-1 Workflow Example: Tender with Credit Card Option 4-16
Figure 4-2 Workflow Symbols 4-16
Figure 5-1 Manager, Technician and Valet 5-1
Figure 6-1 CodeListMap Class Diagrams 6-5
Figure 6-2 Currency Class Diagram 6-7
Figure 8-1 Data Managers and Data Technicians 8-2
Figure 8-2 Updating the Database: Simplified Runtime View 8-4
Figure 8-3 Tender Tour to POS Tour Workflow 8-9
Figure 8-4 Diagram: Saving a Transaction 8-10
Figure 8-5 FlatFileQuery Classes 8-18
L i s t o f F i g u r e s xi

x i i P o i n t - o f - S a l e D e v e l o p e r G u i d e

LIST OF CODE SAMPLES
Code Sample 3-1 alterationsuicfg.xml: Overlay Screen Definition 3-4
Code Sample 3-2 defaultuicfg.xml: Bean Specification Using PromptAndResponseBean 3-5
Code Sample 3-3 tenderuicfg.xml: PromptAndResponseBean Property Definition 3-5
Code Sample 3-4 tenderText_en_US.properties: PromptAndResponseBean Text Bundle Example 3-6
Code Sample 3-5 GetPurchaseOrderAmountSite.java: Creating and Displaying PromptAndResponseModel 3-
6
Code Sample 3-6 PurchaseOrderNumberEnteredRoad.java: Retrieving Data From
PromptAndResponseModel 3-6
Code Sample 3-7 manageruicfg.xml: Bean Specification Using DataInputBean 3-7
Code Sample 3-8 managerText_en_US.properties: DataInputBean Text Bundle Example 3-7
Code Sample 3-9 SelectParamStoreSite.java: Creating and Displaying DataInputBeanModel 3-8
Code Sample 3-10 StoreParamGroupAisle.java: Retrieving Data from DataInputBeanModel 3-8
Code Sample 3-11 customericfg.xml: Bean Specification Using NavigationButtonBean 3-9
Code Sample 3-12 customerText_en_US.properties: NavigationButtonBean Text Bundle Example 3-9
Code Sample 3-13 defaultuicfg.xml: Bean Specification Using GlobalNavigationButtonBean 3-9
Code Sample 3-14 tenderuicfg.xml: GlobalNavigationButtonBean Property Definitions 3-10
Code Sample 3-15 PricingOptionsSite.java: Creating and Displaying NavigationButtonBeanModel 3-10
Code Sample 3-16 commonuicfg.java: Bean Specification Using DialogBean 3-11
Code Sample 3-17 InquirySlipPrintAisle.java: DialogBean Label Definition 3-11
Code Sample 3-18 dialogText_en_US.properties: DialogBean Text Bundle Example 3-11
Code Sample 3-19 LookupStoreCreditSite.java: Creating and Displaying DialogBeanModel 3-12
Code Sample 3-20 tender.xml: ClearActionListener XML tag 3-14
Code Sample 3-21 tender.xml: DocumentListener XML tag 3-14
Code Sample 3-22 tender.xml: ValidateActionListener XML tag 3-15
Code Sample 3-23 tenderuicfg.xml: ValidateActionListener Required Fields 3-15
Code Sample 3-24 customerText_en_US.properties: Text Bundle in English 3-15
Code Sample 3-25 customerText_es_PR.properties: Text Bundle in Spanish 3-15
Code Sample 3-26 BundleConstantsIfc.java: String Constant for receiptText 3-16
Code Sample 3-27 GiftCardInquirySlip.java: Tour Code to Print Receipt 3-16
Code Sample 3-28 receiptText_en_US.properties: Text Bundle 3-16
Code Sample 3-29 parameteruicfg.xml: Overlay Specification Using parameterText 3-16
Code Sample 3-30 GiftCardUtility.java: Tour Code to Retrieve Parameter 3-16
Code Sample 3-31 parameterText_en_US.properties: Text Bundle 3-17
Code Sample 3-32 application.xml: Definition of Parameter 3-17
Code Sample 4-1 tender.xml: Definition of Service and Service Region 4-3
Code Sample 4-2 GetCheckInfoSite.java: Retrieving Cargo from Bus 4-3
Code Sample 4-3 Sample Tourmap 4-4
Code Sample 4-4 tender.xml: Definition of Cargo 4-5
Code Sample 4-5 tourmap.xml: Example of Overriding Cargo Class 4-5
Code Sample 4-6 tender.xml: Definition of Site Class 4-5
Code Sample 4-7 tender.xml: Mapping of Site to SiteAction 4-5
Code Sample 4-8 tourmap.xml: Overriding Siteaction With Tourmap 4-5
Code Sample 4-9 tender.xml: Definition of System Sites 4-6
Code Sample 4-10 tender.xml: Definition of Letter 4-6
L i s t o f C o d e S a m p l e s xiii

Code Sample 4-11 tender.xml: Definition of Road Class 4-6
Code Sample 4-12 tender.xml: Mapping of Road to Site 4-6
Code Sample 4-13 tourmap.xml: Example of Overriding Site Laneaction 4-7
Code Sample 4-14 Example of Common Road 4-7
Code Sample 4-15 tender.xml: Definition of Aisle Class 4-7
Code Sample 4-16 tender.xml: Mapping of Aisle to Site 4-7
Code Sample 4-17 tourmap.xml: Example of Overriding Aisle Laneaction 4-8
Code Sample 4-18 tender.xml: Definition of Shuttle Class 4-8
Code Sample 4-19 tender.xml: Mapping of Station to Service and Shuttle Classes 4-8
Code Sample 4-20 tourmap.xml: Example of Mapping Servicename 4-8
Code Sample 4-21 tourmap.xml: Example of Overriding Shuttle Name 4-8
Code Sample 4-22 tender.xml: Definition of Traffic Signal 4-9
Code Sample 4-23 tender.xml: Signal Processing With Negate Tag 4-9
Code Sample 4-24 tender.xml: Definition of tourcam 4-11
Code Sample 4-25 tender.xml: Definition of Road With TourCam Attributes 4-12
Code Sample 4-26 GiftReceiptCargo.java: TourCamIfc Implementation 4-14
Code Sample 4-27 Sample Backupshuttle Definition 4-15
Code Sample 5-1 CollapsedConduitFF.xml: Data Manager Configuration 5-4
Code Sample 5-2 CollapsedConduitFF.xml: Tax Technician Configuration 5-6
Code Sample 5-3 ParameterManager.java: Valet Passed By Manager 5-6
Code Sample 5-4 Sample Manager and Technician Configuration 5-6
Code Sample 5-5 Sample Manager in Tour Code 5-7
Code Sample 5-6 Sample Manager Class 5-7
Code Sample 5-7 Sample Valet Class 5-8
Code Sample 5-8 Sample Technician Class 5-9
Code Sample 5-9 ClientConduit.xml: Code to Configure Parameter Manager 5-10
Code Sample 5-10 ClientConduit.xml: Code to Configure Parameter Technician 5-10
Code Sample 5-11 BrowserControlSite.java: Tour Code Using ParameterManagerIfc 5-10
Code Sample 5-12 ClientConduit.xml: Code to Configure UI Manager 5-11
Code Sample 5-13 ClientConduit.xml: Code to Configure UI Technician 5-11
Code Sample 5-14 GetCheckInfoSite.java: Tour Code Using POSUIManagerIfc 5-12
Code Sample 5-15 CollapsedConduitFF.xml: Code to Configure Journal Manager 5-12
Code Sample 5-16 CollapsedConduitFF.xml: Code to Configure Journal Technician 5-12
Code Sample 5-17 GetCheckInfoSite.java: Tour Code Using JournalManagerIfc 5-13
Code Sample 6-7 ItemInfoEnteredAisle.java: CodeListIfc in Tour Code 6-5
Code Sample 6-8 PurchaseOrderAmountEnteredAisle.java: CurrencyIfc in Tour Code 6-7
Code Sample 6-9 JdbcSaveTenderLineItems.java: SaleReturnTransactionIfc in Tour Code 6-8
Code Sample 7-1 Default Parameter Settings 7-2
Code Sample 7-2 Definition of Tender Group 7-2
Code Sample 7-5 Simulated Device Configuration 7-5
Code Sample 8-11 SaveTenderLineItemsAction: Set Data Operation Name 8-12
Code Sample 8-13 JdbcSaveTenderLineItems: Saving Tender Line Item 8-12
Code Sample 8-15 Sample SQL Statement 8-14
Code Sample 8-16 PosLFFDataTechnician.xml: Sample Data Technician Script for Flat Files 8-15
Code Sample 8-17 FFTableDefs.xml: Sample FlatFileEngine Configuration File 8-16
Code Sample 8-18 Item Retrieve Sample Code 8-18
Code Sample 10-1 Header Sample 10-2
Code Sample 10-2 SQL Code Before PostgresqlDataFilter Conversion 10-6
Code Sample 10-3 SQL Code After PostgresqlDataFilter Conversion 10-6

x i v P o i n t - o f - S a l e D e v e l o p e r G u i d e

Code Sample 10-4 Wrapping Code in a Code Guard 10-11
Code Sample 10-5 Switching Graphics Contexts via a Logging Level Test 10-11
Code Sample 10-6 JUnit 10-12
Code Sample 10-7 Network Test 10-14
Code Sample 10-8 Network Test with Shortened Try Block 10-14
Code Sample 10-9 Wrapped Exception 10-15
Code Sample 10-10 Declaring an Exception 10-15
Code Sample 10-11 Clean Up First, then Rethrow Exception 10-15
Code Sample 10-12 Using a Switch to Execute Code Specific to an Exception 10-15
Code Sample 10-13 Using Multiple Catch Blocks Causes Duplicate Code 10-16
L i s t o f C o d e S a m p l e s xv

x v i P o i n t - o f - S a l e D e v e l o p e r G u i d e

L i s t o f C o d e S a m p l e s xvii

x v i i i P o i n t - o f - S a l e D e v e l o p e r G u i d e

PREFACE

Audience

The audience for this document is developers who develop code for 360Store Point-of-Sale. Knowledge
of the following techniques is required:

• Java Programming Language
• Object-Oriented Design Methodology (OOD)
• Extensible Markup Language (XML)

Goals

A developer who reads this document will be able to:

• Understand existing Point-of-Sale code
• Create new Point-of-Sale code
• Extend existing Point-of-Sale code

Feedback

Please e-mail feedback about this document to 360University@360Commerce.com.

Trademarks

The following trademarks may be found in 360Commerce® documentation:

• 360Commerce, 360Store and 360Enterprise are registered trademarks of 360Commerce Inc.
• Unleashed is a trademark of 360Commerce Inc.
• BEETLE is a registered trademark of Wincor Nixdorf International GmbH.
• Dell is a trademark of Dell Computer Corporation.
• IBM, WebSphere and SurePOS are registered trademarks or trademarks of International Business

Machines Corporation in the United States, other countries, or both.
P r e f a c e xix

xx
• IceStorm is a trademark of Wind River Systems Inc.
• InstallAnywhere is a registered trademark of Zero G Software, Inc.
• Internet Explorer and Windows are registered trademarks or trademarks of Microsoft Corporation.
• Java is a trademark of Sun Microsystems Inc.
• Linux is a registered trademark of Linus Torvalds.
• Mac OS is a registered trademark of Apple Computer, Inc.
• Netscape is a registered trademark of Netscape Communication Corporation.
• UNIX is a registered trademark of The Open Group.

All other trademarks mentioned herein are the properties of their respective owners.

Text Conventions

The following table shows the text conventions used in this document:

Table P-1 Conventions
Sample Description
Courier Text Filenames, paths, syntax, and code
Bold text Emphasis
<Italics and angle
brackets>

Text in commands which should be supplied by
the user
P o i n t - o f - S a l e D e v e l o p e r G u i d e

C H A P T E R 1

ARCHITECTURE
This chapter contains information about the 360Store® Point-of-Sale architecture. It begins with a
general overview of the 360Commerce architecture. Then it describes the layers of the Point-of-Sale
architecture, its frameworks, and design patterns.

Overview
Retailers have an increasing demand for enterprise information and customer service capabilities at a
variety of points of service, including the Internet, kiosks and handheld devices. The retail environment
requires that new and existing applications can be changed quickly in order to support rapidly changing
business requirements. 360Platform and Commerce Services enable application developers to quickly
build modifiable, scalable, and flexible applications to collect and deliver enterprise information to all
points of service. Figure 1-1 shows a high level view of the 360Commerce architecture and components.
Figure 1-1 360Platform Architecture
A r c h i t e c t u r e 1- 1

1-2
The following table describes the components in the diagram:

Advantages of the 360Commerce architecture include its object-oriented design and scalability. The
system is designed to support existing systems and customer extensions. 360Platform frameworks
support integration by adhering to retail and technology standards. The multi-tier design of the
architecture allows the application to support numerous types of infrastructure.

Point-of-Sale Architecture
360Platform contains reusable, highly customizable components for building and integrating retail
applications with user interfaces, devices, databases, legacy systems, and third-party applications.
360Platform also contains integration points for communicating with external resources. The following
diagram shows how the Tour engine controls the Point-of-Sale system. This diagram is a more detailed
view of the components that form the Commerce Services and 360Platform tiers in the previous diagram.
Figure 1-2 Point-of-Sale Architecture Layers

Table 1-1 360Commerce Architecture Components
Component Description
360Platform 360Platform provides services to all 360Commerce applications. It contains

the tour framework, UI framework, and Manager/Technician frameworks.
360Platform is not retail-specific.

Commerce Services Commerce Services implement business logic. Commerce Services define
data and behavior for retail applications. This component is referred to as
Retail Domain in Point-of-Sale.

360Commerce
Applications

All 360Commerce applications leverage the frameworks and services
provided by 360Platform and Commerce Services.

External Interfaces Using frameworks and services, the applications are able to interface to
other applications and resources.

C
on

fig
ur

at
io

n

User Interface

Application Services

Technicians Retail Domain Objects

360Platform Container

In
te

gr
at

io
n

Custom

Java

HTTP

JMS

Config
Scripts

Tour Engine
P o i n t - o f - S a l e D e v e l o p e r G u i d e

Beginning with configuration of the UI and Managers/Technicians, events at the user interface are
handled by the tour engine, which interacts with tour code (Application Services) and Managers/
Technicians (foundation services) as necessary, capturing and modifying the data stored in Retail
Domain objects. Any communication with an integration point is handled by the 360Platform container.
The following table describes the layers of the Point-of-Sale architecture:

Frameworks
The 360Commerce architecture uses a combination of technologies that make it flexible and extensible,
and allow it to communicate with other hardware and software systems. The frameworks that drive the
application are implemented by the Java programming language, distributed objects, and XML scripting.
Described below, the User Interface, Business Object, Manager/Technician, Data Persistence, and
Navigation frameworks interact to provide a powerful, flexible application framework.

Manager/Technician
The Manager/Technician framework is the component of 360Platform that implements the distribution of
data across a network. A Manager provides an API for the application and communicates with its
Technician, which implements the interface to the external resource. The Manager is always on the same
tier, or machine, as the application, while the Technician is usually on the same tier as the external
resource. The following figure shows an example of the Manager/Technician framework distributed on
two different tiers.

Table 1-2 Point-of-Sale Architecture Layers
Component Description
Configuration Application and system XML scripts configure the layers of the application.
User Interface This layer provides client presentation and device interaction.
Tour Engine This mechanism handles the workflow in the application. The tour engine is the

controller for Point-of-Sale.
Application Services This layer provides application-specific business processes. A tour is an application

service for Point-of-Sale.
Foundation Services This layer provides stateless, application-independent technical services. Combined with

the Retail Domain objects, it forms the Commerce Services layer. Technicians provide
location-transparent services in Point-of-Sale.

Retail Domain Objects Pure retail-specific business objects that contain application data.
360Platform Container This is an execution platform and application environment. The Tier Loader is the

360Platform container for Point-of-Sale.
Integration This layer provides an integration framework for building standard and custom

interfaces using standard integration protocols.
A r c h i t e c t u r e 1- 3

1-4
Figure 1-3 Manager/Technician Framework

The following table describes the components:.

User Interface
The UI framework includes all the classes and interfaces in 360Platform to support the rapid
development of UI screens. In the application code, the developer creates a model that is handled by the
UI Manager in the application code. The UI Manager communicates with the UI Technician, which
accesses the UI Subsystem. The following figure illustrates components of the UI framework.

Table 1-3 Manager/Technician Framework Components
Component Description
Manager Managers provide a set of local calls to the application. There are various

types of managers to handle various types of activity. For example, the Data
Manager receives the request to save data from Point-of-Sale. It locates the
appropriate Technician that should perform the work and insulates the
application from the process of getting the work accomplished. The Manager
is available only on the local tier.

Valet The valet is the object that receives the instructions from the Manager and
delivers them to the Technician. The valet handles data transfer across
machines with RMI or JMS.

Technician The Technician is responsible for communicating with the external resource.
When a Technician receives a valet, it can handle it immediately or queue it
for later action. The Technician can be remote from the Manager or on the
local tier.

Application

Valet

Technician External
Resource

Database

Manager
RMI/JMS

Resource TierApplication Tier
P o i n t - o f - S a l e D e v e l o p e r G u i d e

Figure 1-4 UI Framework

The components of the UI framework are described in the following table.

Table 1-4 UI Framework Components
Component Description
Resource File(s) Resource files are text bundles that provide the labels for a screen. They are

implemented as properties files. Text bundles are used for localizing the application.
Bean Beans are reusable Java program building blocks that can be combined with other

components to form an application. They typically provide the screen components and
data for the workpanel area of the screen.

Specs Specifications define the components of a screen. Display specifications define the
width, height, and title of a window. Template specifications divide displays into areas.
Bean specifications define classes and configurators and additional screen elements for
a component. Default screen specifications map beans to the commonly used areas and
define listeners to the beans. Overlay screen specifications define additional mappings
of beans and listeners to default screens.

Specification
Loader

Loaders find external specifications and interpret them. The loader instantiates screen
specifications such as overlays, templates, and displays, and places the objects into a
spec catalog.

Catalog A Catalog provides the bean specifications by name. The UI Technician requests the
catalog from the loader to simplify configurations.

Configurator The UI framework interfaces with beans through bean configurator classes, which
control interactions with beans. A configurator is instantiated for each bean
specification. They apply properties from the specifications to the bean, configure a
bean when initialized, reset the text on a bean when the locale changes, set the bean
component data from a model, update a model from the bean component data, and set
the filename of the resource bundle.

UI Manager
API

UI Technician

UI Subsystem

Specification
Loader

Configurator

Catalog

Listeners

Model

Specs

Resource
File(s)

Swing

JavaPOS

Beans

A
dapters
A r c h i t e c t u r e 1- 5

1-6
Business Object
The Commerce Services layer of the architecture contains the Business Object framework that
implements the instantiation of business objects. The Business Object framework is used to create new
business objects for use by Point-of-Sale. The business objects contain data and logic that determine the
path or option used by an application.
Figure 1-5 Business Object Framework

Model The business logic communicates with beans through screen models. Each bean
configurator contains a screen model, and the configurator must determine if any action
is to be taken on the model. Classes exist for each model.

UI Manager The UI Manager provides the API for application code to access and manipulate user
interface components. The UI Manager uses different methods to call the UI Technician.

UI Technician The UI Technician controls the main application window or display. The UI Technician
receives calls from Point-of-Sale tours, locates the appropriate screen, and handles the
setup of the screens through the UI Subsystem.

UI Subsystem The UI Subsystem provides UI components for displaying and editing Point-of-Sale
screens. The UI subsystem enables application logic to be completely isolated from the
UI components. This component is specific to the technology used, such as Swing or
JSP.

Adapters Adapters are used to provide a specialized response to bean events. Adapters can handle
the events, or the event can cause the adapter to manipulate a target bean.
Adapters implement listener interfaces to handle events on the UI. Adapters come from
the Swing API of controls and support JavaPOS-compliant devices.

Listeners Listeners provide a mechanism for reacting to user interface events. Listeners come
from the Swing API of controls and support JavaPOS-compliant devices.

Table 1-4 UI Framework Components
Component Description

Properties

Domain
Object
FactoryIn
te

rfa
ce

Business
Object

In
te

rfa
ce

Gateway

Application

configures

return
interface

request
business object

uses

request
factory

return interface
instantiates
P o i n t - o f - S a l e D e v e l o p e r G u i d e

The components in the Business Object framework are described in the following table.

Data Persistence
A specific Manager/Technician pair is the Data Manager and Data Technician used for data persistence.
The Data Persistence framework illustrates how data gets saved to a persistent resource, such as the
database or flat files on the register.
Figure 1-6 Data Persistence Framework

The components in the Data Persistence framework are described in the following table.

Table 1-5 Business Object Framework Components
Component Description
DomainGateway The DomainGateway class provides a common access point for all business

object classes. It also configures dates, times, decimals, percentages,
currency, and numbers.

Domain Object Factory The Domain Object Factory returns instances of business object classes. The
application requests a Factory from the DomainGateway.

Business Object Business objects define the attributes for application data. New instances are
created using the Domain Object Factory.

Table 1-6 Data Persistence Framework Components
Component Description
Data Manager The Data Manager defines the application entry point into the Data

Persistence Framework. Its primary responsibility is to contact the Data
Technician and transport any requests to the Data Technician.

Data Manager
Configuration Script

The Data Manager processes data actions from the application based on the
configuration information set in the Data Manager Configuration Script. The
Configuration Script defines transactions available to the application.

Application Data Manager

Data Technician

Data Technician

Local Database

Data
Manager

Configuration
Script

Data
Technician

Configuration
Script

Transaction
Queue

Flat File
A r c h i t e c t u r e 1- 7

1-8
Tour
The Tour framework establishes the workflow for the application. It models application behavior as
states, events and transitions. The 360Platform engine is modeled on finite state machine behavior. A
finite state machine has a limited number of possible states. A state machine stores the status of
something at a given time and, based on input, changes the status or causes an action or output to occur.
The Tour framework provides a formal method for defining these nested state machines as a traceable
way to handle flow through an application.

Design Patterns
Design patterns describe solutions to problems that occur repeatedly in object-oriented software
development. A pattern is a repeatable, documented method that can be applied to a particular problem.
This section describes four patterns used in the architecture of Point-of-Sale: MVC, Factory, Command,
and Singleton.

MVC Pattern
The MVC Pattern divides the functionality of an application into three layers: model, view, and
controller. Different functionality is separated to manage the design of the application. A model
represents business objects and the rules of how they are accessed and updated. The model informs views
when data changes and contains methods for the views to determine its current state. A view displays the
contents of a model to the user. It is responsible for how the data is presented. Views also forward user
actions to the controller. A controller directs the actions within the application. The controller is
responsible for interpreting user input and triggering the appropriate model actions. The following
diagram illustrates the MVC Pattern.

Data Technician The Data Technician provides the interface to the database or flat file. This
class is part of the 360Platform framework. It provides entry points for
application transactions sent by the Data Manager and caches the set of
supported data store operations. It also contains a pool of physical data
connections used by the supported data operations.

Data Technician
Configuration Script

The Data Technician Configuration Script specifies the types of connections
to be pooled, the set of operations available to the application, and the
mapping of an application data action to a specific data operation.

Transaction Queue The Transaction Queue holds data transactions and offers asynchronous data
persistence and offline processing for Point-of-Sale. When the database is
offline, the data is held in the queue and posted to the database when it comes
back online. When the application is online, the Data Manager gets the
information from the Transaction Queue to send to the database.

Table 1-6 Data Persistence Framework Components
Component Description
P o i n t - o f - S a l e D e v e l o p e r G u i d e

Figure 1-7 MVC Pattern

Factory Pattern
Another design pattern used in Point-of-Sale code is the Factory pattern. The intent of the Factory pattern
is to provide an interface for creating families of related or dependent objects without specifying their
concrete classes. The application requests an object from the factory, and the factory keeps track of which
object is used. Since the application does not know which concrete classes are used, those classes can be
changed at the factory level without impacting the rest of the application. The following diagram
illustrates this pattern.
Figure 1-8 Factory Pattern

Command Pattern
Sometimes it is necessary to issue requests to objects without knowing anything about the operation
being requested or the receiver of the request. The Command pattern encapsulates a request as an object.
The design abstracts the receiver of the Command from the invoker. The command is issued by the
invoker and executed on the receiver. The following diagram illustrates the Command pattern. It is used
in the design of the Manager/Technician framework.

Controller

View Model

Factory

Object A

Client Code

creates

requests

returns

Object A

Client Code

creates

requests

returns

Object
Type Info
A r c h i t e c t u r e 1- 9

1-1
Figure 1-9 Command Pattern

Singleton Pattern
The Singleton pattern ensures a class only has one instance and provides a single, global point of access.
It allows extensibility through subclassing. Singletons allow retailers to access the subclass without
changing application code. If a system only needs one instance of a class across the system, and that
instance needs to be accessible in many different parts of a system, making that class a Singleton controls
both instantiation and access. The following patterns illustrates the Singleton pattern:
Figure 1-10 Singleton Pattern

Receiver
Invoker

Command

Data

Behavior

Creates

Executes

Sends Command reference

SingletonFactory

Object A

creates

Application
code

Reference
to Object A

Requests object
0 P o i n t - o f - S a l e D e v e l o p e r G u i d e

C H A P T E R 2

DEVELOPMENT ENVIRONMENT

Overview
A development environment for Point-of-Sale includes all files, tools and resources necessary to build
and run the Point-of-Sale application. While development environments may vary depending on the
choice of IDE, database, and version control system, configuration of the development environment
involves some common steps. This document addresses components that various development
environments have in common.

Preparation
The following software resources must be installed and configured before the Point-of-Sale development
environment can be set up. Ensure that the following are in place:

• Version control system—The Point-of-Sale source code must be available from a source control
system.

• 360Store database—The 360Store database should be installed.
• Eclipse version 3.0 or another IDE—If installing Eclipse, downloads and instructions are available

from http://www.eclipse.org/downloads/.
• JDK 1.4—Downloads and instructions are available at http://java.sun.com/downloads/.

Setup
Setting up the development environment requires installing the Point-of-Sale application, populating the
database, creating a sandbox, configuring the IDE, and configuring the version control system.
D e v e l o p m e n t E n v i r o n m e n t 2- 1

http://www.eclipse.org/downloads/
http://java.sun.com/downloads/

2-2

d

Install Point-of-Sale
Install Point-of-Sale using the installation script. While running the Point-of-Sale installation script,
accept the default options even when nothing is selected, except for the options discussed in the following
table.

Build the Database
The tables should be populated with the item, employee, coupon and other retail data that the store needs.
If a database is being built from scratch, it needs to be populated with data. The following command can
be executed to build the tables and insert a minimal data set.

C:\>360store\pos\bin\dbbuild.bat

Create a Sandbox
If you plan to retrieve all the source code with the version control system, create a local sandbox with
only one directory such as the following.

C:\mySandbox\

Otherwise, create a local working directory with src, config, and locales\en_US subdirectories. This
allows the application code to find all the top-level directories. The following lists the directories that
should be created.

C:\mySandbox\
C:\mySandbox\src
C:\mySandbox\config
C:\mySandbox\locales\en_US

Configure the IDE
The following configuration enables your IDE to build and run the Point-of-Sale application.

1. Set the JRE System Library. In the IDE preferences, point to the JRE included in the JDK installed
earlier.

Table 2-1 Point-of-Sale Installation Options
Option Instruction
Server Tier Type Choose the Server Tier Type from the following options.

• Stand-alone/Collapsed—Choose this option to run the Point-of-Sale client an
server functions in one JVM.

• N-Tier Client and N-Tier Store Server—Choose both of these options to run
client and server components on the same machine in separate JVMs.

Database Information Specify the database type and its location. The default is MySQL 4 in C:\mysql.
P o i n t - o f - S a l e D e v e l o p e r G u i d e

Point to the root of the Java directory in which JDK 1.4 was installed, not the JRE directory in the
Point-of-Sale installation directory. For example, if the JDK directory is named C:\jdk1.4.1, the
JRE Home Directory would be C:\jdk1.4.1.

2. Specify the path for the source directories on the build path to be the same as the directory or
directories created for the sandbox.

3. Specify the following jars on the build path in the order described in the following table. These
directories are the same as the directories in C:\360store\pos\logs\classpath.log.

Table 2-2 Build Path

4. Set the launch properties listed in the table below.
The program arguments differ depending on the Server Tier type chosen during the Point-of-Sale
installation. This option is determined by the Server Tier Type selected.

Update Java Security and Policy files
Copy the java.security and java.policy files dropped by the Point-of-Sale installation, located in C:\
360Store\jre\lib\security. Paste these files in the java\jre\lib\security directory for the JDK that the
IDE is referencing.

Order Directory
1 C:\360store\pos\lib

2 C:\360store\pos\lib\locales

3 C:\360store\pos\3rdparty\lib

4 C:\360store\pos\3rdparty\lib\ibm\surepos750

5 C:\360store\pos\3rdparty\special_jars

6 C:\360store\360common\lib

7 C:\360store\360common\jms\jboss\lib

8 C:\360store\360common\3rdparty\lib

9 C:\360store\360common\3rdparty\special_jars

Table 2-3 Launch Properties
Property Value
main class com.extendyourstore.foundation.config.TierLoader

program
arguments

If the Tier type is Stand-alone, the program argument is classpath:\\config\conduit\
CollapsedConduitFF.xml.
If the Tier type is N-Tier Client and N-Tier Server, there are two sets of launch
properties. The Store Server launch setting has its program argument set to
classpath:\\config\conduit\StoreServerConduit.xml. The Client launch setting has
its program argument set to classpath:\\config\conduit\ClientConduit.xml. Wait
for the StoreServerConduit to finish starting before launching the ClientConduit.

classpath Add the database runtime directory to the classpath. To find this path, open C:\
360store\pos\logs\classpath.log and search for the local database directory.
Also, add the installation config directory. Choose C:\360Store\posconfig.
D e v e l o p m e n t E n v i r o n m e n t 2- 3

2-4
Configure the Version Control System
Each file from the source code repository should be retrieved to the proper location in your sandbox. To
do this, set the workfile location of the root of each of the product components displayed in the version
control system, such as 360common. Each workfile location should be set to the local sandbox. For
example, if your sandbox is named C:\mySandbox, the root of the product components should point to C:\
mySandbox.

Run Point-of-Sale
To verify the setup, run the Point-of-Sale application using the following steps.

1. Start the 360Store Database.
Regardless of where the database is located, the service should be started before the Point-of-Sale
application is started. If the database was just built, the database server is already running. If it is
not running, the batch file provided by the installation script can be executed as follows:
C:\>360Store\pos\bin\dbstart.bat

2. Build the project.
3. Run Point-of-Sale from the IDE.
P o i n t - o f - S a l e D e v e l o p e r G u i d e

C H A P T E R 3

UI FRAMEWORK
This chapter describes the User Interface (UI) Framework that is part of the 360Platform architecture.
The UI Framework encompasses all classes and interfaces included in 360Platform to support rapid
development of UI screens. It enables the building of custom screens using existing components.

Overview
For ease of development, the UI Framework hides many of the implementation details of Java UI classes
and containment hierarchies by moving some of the UI specification from Java code into XML. This
eases screen manipulation and layout changes affecting the look and feel of the entire screen, subsets of
screens, and portions of a screen. This table provides a general description of features of the UI
Framework.

Table 3-1 UI Framework Features
Feature Description
Common Design All UI implementations share code and extend or implement base UI classes that

are provided as part of 360Platform. The UI Framework provides basic
functionality that does not need to be duplicated within each application.

Reuse The UI Framework allows bean classes to be independent, thereby supporting their
reuse. A UI Technician can be used with multiple applications and UI Framework
components can be used across multiple features in an application.

Externally
Configurable Screens

The UI Framework enables you to configure screens outside the code to
accommodate applications that change frequently. The external screen
configurations can be updated to use new 360Platform or application-specific
components as they are developed.

Support for
Internationalization

The UI Framework provides hooks for implementing internationalization,
including language and locale independence.

Extensibility and
Flexibility

Additional formats for specifications can be defined without affecting the internal
UI Framework classes. Portability is achieved through the use of the Java language
and flexible layout managers.
U I F r a m e w o r k 3- 1

3-2
The UI Framework is the set of classes and interfaces that define the elements and behavior of a window-
based UI Subsystem. It defines a structure for defining user interfaces. The following table briefly
describes the components of the framework. This chapter discusses these components in more detail.

Screens
Generally, for each package in an application, one UI script in the form of an XML file is created to
define the screens for the given package. However, because many screens share basic components,
certain components are defined in a default UI script. These basic screen components, including displays,
templates, and default screens, are defined in src\com\extendyourstore\pos\config\defaults\
defaultuicfg.xml. Overlay screens are then defined in the UI script for the given package. This section
describes the components that are used to build Point-of-Sale screens, except for beans which are
described in the next section.
Displays define window properties. They are basic containers with dimensions and a title defined. In
Point-of-Sale, only two types of windows can be displayed at the same time—the main application

Table 3-2 UI Framework Components
Name Description
Display A display is the root container for the UI application window. Displays are

any subclass of java.awt.Container that implement EYSRootPaneContainer.
Screen A screen is a user-level snapshot of a UI window as it relates to an

application. The screen is composed of displays, template areas, assignment
beans, and listeners. Each of these parts can be individually configured and
reassembled to compose the screen.

Template A template divides the display into areas that contain the layout information
used to place the information on the display. Templates can be interchanged
to define screen layouts within an application. Each screen specifies the
template that is associated with the screen.

Area An area is a layout placeholder for UI components that operate together to
perform a function. Each area contains a layout constraint that dictates how
the area is placed on the display.

Bean A bean is a user interface component or group of components that operate
together to provide some useful functionality. For example, a bean could be
an input form or group of navigation buttons.

Connection A connection captures relationships between beans, or between devices and
beans. When a bean or device generates an event, another bean responds
with a change in behavior or visual display.

Listener A listener provides a mechanism for reacting to user interface events.
P o i n t - o f - S a l e D e v e l o p e r G u i d e

window and a window displaying the Help browser. The following table describes the two types of
displays.

Templates divide displays into geographical areas. The GridBagLayout is used to define the attributes of
each area. The following table describes the typical use of each template.

Default screens are partially-defined screens that represent elements common to multiple screens. Default
screens are based on one display and one template. Default screens map beans to the commonly used
areas of the template and define listeners for the bean. These screens are used by overlay specifications
that define more specific screen components. For example, almost all screens in the Point-of-Sale
application display a status area region. The text displayed in the status region changes, but the
StatusPanelSpec bean is the same from screen to screen, so a default screen would assign this bean to the
StatusPanel area defined by a template. The following table lists the areas of the template to which beans
are assigned, and the display and template used by each of the six types of default screens.

Each screen in Point-of-Sale has an overlay screen defined in a UI script in the package to which it
belongs or in a package higher in the hierarchy. For example, the Authorization tour script is found in

Table 3-3 Display Types
Name Description
EYSPOSDisplaySpec A 600x800 container for all application screens
HelpDialogDisplaySpec A 600x800 container for Point-of-Sale Help screens

Table 3-4 Template Types
Name Typical Use
BrowserTemplateSpec Back Office screens within the Point-of-Sale application
EYSPOSTemplateSpec Point-of-Sale screens without required fields
HelpBrowserTemplateSpec Point-of-Sale help screens
ValidatingTemplateSpec Point-of-Sale screens with required fields that display an information panel

below the work area

Table 3-5 Default Screen Types
Name Typical Use Display Template
BrowserDefaultSpec Back Office screens within

the Point-of-Sale application
EYSPOSDisplaySpec BrowserTemplateSpec

DefaultHelpSpec Point-of-Sale help screens HelpDialogDisplaySp
ec

HelpBrowserTemplateS
pec

DefaultValidatingSpec Point-of-Sale screens with
required fields that display an
information panel below the
work area

EYSPOSDisplaySpec ValidatingTemplateSpec

EYSPOSDefaultSpec Point-of-Sale screens without
required fields

EYSPOSDisplaySpec EYSPOSTemplateSpec

ResponseEntryScreen
Spec

Point-of-Sale screens with
information captured in the
response area at the top of the
screen

EYSPOSDisplaySpec EYSPOSTemplateSpec
U I F r a m e w o r k 3- 3

3-4
src\com\extendyourstore\pos\services\tender\authorization but the UI script is located in src\com\
extendyourstore\pos\services\tender. This overlay screen is based on a default screen and defines
additional properties for the beans on the areas of the screen. The overlay screen may also specify
connections, which are described in “Connections” on page 3-14. The following code sample shows the
definition of the ALTERATION_TYPE screen defined in src\com\extendyourstore\pos\services\
alterations\alterationsuicfg.xml.
Code Sample 3-1 alterationsuicfg.xml: Overlay Screen Definition
<OVERLAYSCREEN

 defaultScreenSpecName="EYSPOSDefaultSpec"
 resourceBundleFilename="alterationsText"
 specName="ALTERATION_TYPE">

 <ASSIGNMENT
 areaName="StatusPanel"
 beanSpecName="StatusPanelSpec">
 <BEANPROPERTY
 propName="screenNameTag" propValue="AlterationTypeScreenName"/>
 </ASSIGNMENT>

 <ASSIGNMENT
 areaName="PromptAndResponsePanel"
 beanSpecName="PromptAndResponsePanelSpec">
 <BEANPROPERTY
 propName="promptTextTag" propValue="AlterationTypePrompt"/>
 </ASSIGNMENT>

 <ASSIGNMENT
 areaName="LocalNavigationPanel"
 beanSpecName="AlterationsOptionsButtonSpec">
 </ASSIGNMENT>

</OVERLAYSCREEN>

Beans
A screen is composed of beans mapped to specific areas on the screen. All beans are defined in src/com/
extendyourstore/pos/ui/beans. The beans described in this section are commonly used in screen
definitions. Each description provides bean properties that can be defined in assignments of beans to
areas. By the Java reflection utility, properties defined in XML files invoke set() or create() methods in
the bean class that accept a single string parameter or multiple string parameters.
The following section covers the PromptAndResponseBean, DataInputBean, NavigationButtonBean, and
DialogBean.

PromptAndResponseBean
The PromptAndResponseBean configures and displays the text in the top areas of a Point-of-Sale screen
called the prompt region and the response region. This bean is implemented by src\com\extendyourstore\
pos\ui\beans\PromptAndResponseBean.java and its corresponding model PromptAndResponseModel.java.
P o i n t - o f - S a l e D e v e l o p e r G u i d e

Bean Properties and Text Bundle
PromptAndResponsePanelSpec is the name of a bean specification that defines the implementation of the
PromptAndResponseBean class. The following code sample shows the bean specification available to all
screens, defined in src\com\extendyourstore\pos\config\defaults\defaultuicfg.xml.
Code Sample 3-2 defaultuicfg.xml: Bean Specification Using PromptAndResponseBean
<BEAN

specName="PromptAndResponsePanelSpec"
beanClassName="PromptAndResponseBean"
beanPackage="com.extendyourstore.pos.ui.beans"
configuratorPackage="com.extendyourstore.pos.ui"
configuratorClassName="POSBeanConfigurator"
cachingScheme="ONE">

</BEAN>

The following property names and values can be defined in overlay specifications when specifying
attributes of a PromptAndResponseBean.

These properties can be defined in UI scripts. The following code sample defines an overlay specification
that assigns the PromptAndResponsePanelSpec defined above to the PromptAndResponsePanel. This
example from src\com\extendyourstore\pos\services\tender\tenderuicfg.xml defines the
COUPON_AMOUNT overlay screen for the Tender service. The property that retrieves text from a text
bundle is highlighted.
Code Sample 3-3 tenderuicfg.xml: PromptAndResponseBean Property Definition
<OVERLAYSCREEN>
 defaultScreenSpecName="ResponseEntryScreenSpec"
 resourceBundleFilename="tenderText"
 specName="COUPON_AMOUNT">

<ASSIGNMENT
 areaName="PromptAndResponsePanel"
 beanSpecName="PromptAndResponsePanelSpec">
 <BEANPROPERTY
 propName="promptTextTag" propValue="CouponAmountPrompt"/>
 <BEANPROPERTY

 propName="responseField"
 propValue="com.extendyourstore.pos.ui.beans.CurrencyTextField"/>

 <BEANPROPERTY

Table 3-6 PromptAndResponseBean Property Names and Values
Item Description Example
enterData Indicates whether data can be entered in the

response area
true

promptTextTag The label tag that corresponds to the text bundle GiftCardPrompt
responseField The type of field expected in the response area (see

Field Type section for available types)
com.extendyourstore.pos.ui.bea
ns.AlphaNumericTextField

maxLength Maximum length of response area input 15
minLength Minimum length of response area input 2
zeroAllowed Indicates whether a zero value is allowed in the

response area
true

negativeAllowed Indicates whether a negative value is allowed in the
response area

false

grabFocus Indicates whether focus should be grabbed when the
screen is first displayed

true
U I F r a m e w o r k 3- 5

3-6
 propName="maxLength" propValue="9"/>
</ASSIGNMENT>

...
</OVERLAYSCREEN>

The string that should be displayed as the prompt text is defined in a resource bundle. In the resource
bundle for the Tender service, which for the en_US locale is defined in locales\en_US\config\ui\bundles\
tenderText_en_US.properties, the following includes a line that defines the CouponAmountPrompt.
Code Sample 3-4 tenderText_en_US.properties: PromptAndResponseBean Text Bundle Example
PromptAndResponsePanelSpec.CouponAmountPrompt=Enter coupon amount and press Next.

Tour Code
In the Tour code, bean models are created to hold the data on the bean components. The following table
lists some of the important methods in the PromptAndResponseModel class.

The following sample from src\com\extendyourstore\pos\services\tender\GetPurchaseOrderAmountSite.java
shows creation of a PromptAndResponseModel, prefilling of data in the model, and display of the model
on which the PromptAndResponseModel is set.
Code Sample 3-5 GetPurchaseOrderAmountSite.java: Creating and Displaying PromptAndResponseModel
PromptAndResponseModel responseModel = new PromptAndResponseModel();
Locale locale = LocaleMap.getLocale(LocaleConstantsIfc.USER_INTERFACE;
responseModel.setResponseText(balance.toFormattedString(locale));
POSBaseBeanModel baseModel = new POSBaseBeanModel();
baseModel.setPromptAndResponseModel(responseModel);
ui.showScreen(POSUIManagerIfc.PURCHASE_ORDER_AMOUNT, baseModel);

For internationalization, Point-of-Sale can use multiple locales at any given time at a register. There is
one default locale, one UI locale based on employee-specific locale, and one customer display and
customer receipt locale based on customer-specific locale.
The screen constant, PURCHASE_ORDER_AMOUNT, is mapped to an overlay screen name found in
the UI script for the package. The screen constants are defined in src\com\extendyourstore\pos\ui\
POSUIManagerIfc.java.
The following sample from PurchaseOrderNumberEnteredRoad.java in the same directory shows how to
retrieve data from the PromptAndResponseModel in a previous screen. To arrive at this code, a purchase
order number is entered and the user presses Next. This line of code gets the purchase order number from
the previous screen.
Code Sample 3-6 PurchaseOrderNumberEnteredRoad.java: Retrieving Data From

PromptAndResponseModel
String poNumber = ui.getInput();

Table 3-7 PromptAndResponseModel Important Methods
Method Description
boolean isSwiped() Returns the flag indicating whether a card is swiped
void setsScanned(boolean) Sets the flag indicating whether a code is scanned
boolean isResponseEditable() Returns the flag indicating whether the response area is editable
void setGrabFocus(boolean) Sets the flag indicating whether focus should stay on the response field
P o i n t - o f - S a l e D e v e l o p e r G u i d e

DataInputBean
The DataInputBean is a standard bean that displays a form layout containing data input components and
labels. This bean is implemented by src\com\extendyourstore\pos\ui\beans\DataInputBean.java and its
corresponding model DataInputBeanModel.java. Field components are commonly defined with the FIELD
element when defining a bean with the DataInputBean, as shown in the code sample below.

Bean Properties and Text Bundle
The DataInputBean has two properties that can be defined in UI scripts, which override the settings in the
field specifications.

The label tag is used for internationalization purposes, so the application can look for the correct text
bundle in each language. The label tag overrides the value of the labelText field. The following code
from manageruicfg.xml shows a field specification defined in a DataInputBean bean specification.
Code Sample 3-7 manageruicfg.xml: Bean Specification Using DataInputBean
<BEAN
 specName="RegisterStatusPanelSpec"
 configuratorPackage="com.extendyourstore.pos.ui"
 configuratorClassName="POSBeanConfigurator"
 beanPackage="com.extendyourstore.pos.ui.beans"
 beanClassName="DataInputBean">

 <FIELD fieldName="storeID"
 fieldType="displayField"
 labelText="Store ID:"
 labelTag="StoreIDLabel"
 paramList="storeNumberField"/>

 ...
</BEAN>

The strings that should be displayed as labels on the screen are defined in a resource bundle. In the
resource bundle for the Manager service, which for the en_US locale is defined in locales\en_US\config\
ui\bundles\managerText_en_US.properties, the following line of code defines the StoreIDLabel.
Code Sample 3-8 managerText_en_US.properties: DataInputBean Text Bundle Example
RegisterStatusPanelSpec.StoreIDLabel=Store ID:

Fields do not have to be defined in the UI script. They can be defined in the beans and models instead. In
the overlay screen specification, two bean properties that can be set are OptionalValidatingFields and
RequiredValidatingFields. If the fields are optional and the user enters information in them, then they are
validated. If the user does not enter any information, the fields are not validated. On the other hand,
required fields are always validated.

Table 3-8 DataInputBean Property Names and Values
Item Description Example
labelTags Sets the property bundle tags for the

component labels
NameLabel,AddressLabel,StateLabel

labelTexts Sets the text on the component labels Name,Address,State
U I F r a m e w o r k 3- 7

3-8
Tour Code
Bean models are created to hold the data managed by the bean. This protects the bean from being
changed. A bean can only be accessed by a model in the Tour code. The following table lists some of the
important methods in the DataInputBeanModel class.

The following sample from src\com\extendyourstore\pos\services\admin\parametermanager\
SelectParamStoreSite.java shows creation of a DataInputBeanModel and prefilling of data in the model.
Code Sample 3-9 SelectParamStoreSite.java: Creating and Displaying DataInputBeanModel

DataInputBeanModel beanModel = new DataInputBeanModel();
 beanModel.setSelectionChoices("choiceList", vChoices);
 beanModel.setSelectionValue("choiceList", (String)vChoices.firstElement());

The following sample from Tour code shows how to retrieve data from the DataInputBeanModel. In this
example from src\com\extendyourstore\pos\services\admin\parametermanager\StoreParamGroupAisle.java,
after the model is created and displayed by the code from the previous code sample, the model is
retrieved from the UI Manager, and data is retrieved from the model.
Code Sample 3-10 StoreParamGroupAisle.java: Retrieving Data from DataInputBeanModel

DataInputBeanModel model =
(DataInputBeanModel)ui.getModel(POSUIManagerIfc.PARAM_SELECT_GROUP);

ParameterCargo cargo = (ParameterCargo)bus.getCargo();
 String val = (String)model.getSelectionValue("choiceList");

cargo.setParameterGroup(val);

NavigationButtonBean
The NavigationButtonBean represents a collection of push buttons and associated key stroke equivalents.
This bean is implemented by src\com\extendyourstore\pos\ui\beans\NavigationButtonBean.java and its
corresponding model NavigationButtonBeanModel.java. The global navigation area and the local navigation
area both use the NavigationButtonBean.

Bean Properties and Text Bundle
The LocalNavigationPanel and GlobalNavigationPanel bean specifications both use the
NavigationButtonBean. Bean properties are described only for the GlobalNavigationPanelSpec because
the LocalNavigationPanelSpec typically sets its properties in the bean specification and not the overlay
specification.

Table 3-9 DataInputBeanModel Important Methods
Method Description
String getValueAsString(String) Returns the value of the specified field as a string
int getValueAsInt(String) Returns the value of the specified field as an integer
void setSelectionValue(String,
Object)

Sets the value of the specified field in a vector to the specified value

void setSelectionChoices(String,
Vector)

Sets the value of the specified field to the specified vector of choices

void clearAllValues() Clears the values of all the fields
P o i n t - o f - S a l e D e v e l o p e r G u i d e

LocalNavigationPanel
The only property available to the NavigationButtonBean in XML is used to enable and disable buttons.
When setting the states of buttons on a LocalNavigationPanel, the buttons are usually defined with the
BUTTON element in the bean specification as in the following code sample. In fact, any bean that
extends NavigationButtonBean, such as ValidateNavigationButtonBean, can define its buttons in the
bean specification.
This example from src\com\extendyourstore\pos\services\customer\customericfg.xml, defining the
CustomerOptionsButtonSpec bean specification for the Customer service, shows how button text on a
NavigationButtonBean is defined in a UI script.
Code Sample 3-11 customericfg.xml: Bean Specification Using NavigationButtonBean
<BEAN
 specName="CustomerOptionsButtonSpec"
 configuratorPackage="com.extendyourstore.pos.ui"
 configuratorClassName="POSBeanConfigurator"
 beanPackage="com.extendyourstore.pos.ui.beans"
 beanClassName="NavigationButtonBean">

<BUTTON
 actionName="AddBusiness"
 enabled="true"
 keyName="F4"
 labelTag="AddBusiness"/>
...
</BEAN>

The string that should be displayed on the buttons on the GlobalNavigationPanel is defined in a resource
bundle. In the resource bundle customerText_en_US.properties, the following entry defines the label for the
AddBusiness button.
Code Sample 3-12 customerText_en_US.properties: NavigationButtonBean Text Bundle Example
CustomerOptionsButtonSpec.AddBusiness= Add Business

GlobalNavigationPanel
The GlobalNavigationButtonBean extends the NavigationButtonBean. The following code sample shows
the GlobalNavigationPanel bean specification defined in src\com\extendyourstore\pos\config\defaults\
defaultuicfg.xml. The bean class is a subclass of NavigationButtonBean.
Code Sample 3-13 defaultuicfg.xml: Bean Specification Using GlobalNavigationButtonBean
<BEAN

 specName="GlobalNavigationPanelSpec"
 configuratorPackage="com.extendyourstore.pos.ui"
 configuratorClassName="POSBeanConfigurator"
 beanPackage="com.extendyourstore.pos.ui.beans"
 beanClassName="GlobalNavigationButtonBean"
 cachingScheme="ONE">

...
</BEAN>
U I F r a m e w o r k 3- 9

3-1
The following property names and values can be defined in UI scripts when specifying attributes of a
GlobalNavigationButtonBean.

These properties can be defined in overlay specifications, as in the following code sample from
tenderuicfg.xml.
Code Sample 3-14 tenderuicfg.xml: GlobalNavigationButtonBean Property Definitions
<OVERLAYSCREEN>

defaultScreenSpecName="EYSPOSDefaultSpec"
 resourceBundleFilename="tenderText"

specName="TENDER_OPTIONS">
 <ASSIGNMENT

 areaName="GlobalNavigationPanel"
 beanSpecName="GlobalNavigationPanelSpec">
 <BEANPROPERTY
 propName="manageNextButton"
 propValue="false"/>
 <BEANPROPERTY
 propName="buttonStates"
 propValue="Help[true],Clear[false],Cancel[false],Undo[true],Next[false]"/>
 </ASSIGNMENT>
...
</OVERLAYSCREEN>

Tour Code
In the Tour code, bean models are created to hold the data on the bean components. The following table
lists some of the important methods in the NavigationButtonBeanModel class.

The following sample from src\com\extendyourstore\pos\services\tender\PricingOptionsSite.java shows
creation of a NavigationButtonBeanModel, prefilling of data in the model, and display of the model on
which the NavigationButtonBeanModel is set.
Code Sample 3-15 PricingOptionsSite.java: Creating and Displaying NavigationButtonBeanModel
NavigationButtonBeanModel navModel = new NavigationButtonBeanModel();
navModel.setButtonEnabled("TransDiscAmt",true);
navModel.setButtonEnabled("TransDiscPer",true);
model.setLocalButtonBeanModel(navModel);
ui.showScreen(POSUIManagerIfc.PRICING_OPTIONS, model);

Table 3-10 GlobalNavigationButtonBean Property Names and Values
Item Description Example
manageNextButton Indicates whether the bean should manage the

enable property of the Next button
true

buttonStates Sets the buttons with the action names listed to
the specified state

Help[true],Clear[false],Cancel[fal
se],Undo[true],Next[false]

Table 3-11 NavigationButtonBeanModel Important Methods
Method Description
ButtonSpec[] getNewButtons() Returns an array of new buttons
void setButtonEnabled(String,
boolean)

Sets the state of the specified action name of the button (the name of
the letter the button mails)

void setButtonLabel(String,
String)

Sets the label of the button using the specified action name of the
button (the name of the letter the button mails)
0 P o i n t - o f - S a l e D e v e l o p e r G u i d e

The screen constant, PRICING_OPTIONS, is mapped to an overlay screen name found in the UI script
for the package. The screen constants are defined in src\com\extendyourstore\pos\ui\POSUIManagerIfc.java.

DialogBean
The DialogBean provides dynamic creation of dialog screens. This bean is implemented by src\com\
extendyourstore\pos\ui\bundles\DialogBean.java and its corresponding model DialogBeanModel.java.

Bean Properties and Text Bundle
DialogSpec is the name of a bean specification that defines an implementation of the DialogBean class.
The following code sample shows the bean specification defined in src\com\extendyourstore\pos\services\
common\commonuicfg.java.
Code Sample 3-16 commonuicfg.java: Bean Specification Using DialogBean
<BEAN

specName="DialogSpec"
configuratorPackage="com.extendyourstore.pos.ui"
configuratorClassName="POSBeanConfigurator"
beanPackage="com.extendyourstore.pos.ui.beans"
beanClassName="DialogBean">
<BEANPROPERTY propName="cachingScheme" propValue="none"/>

</BEAN>

The DialogBean does not have any properties that can be defined in UI scripts. Therefore, all its
properties are defined in Tour code discussed in the next section. The following code sample defines the
message displayed in the dialog. This example from src\com\extendyourstore\pos\services\inquiry\
InquirySlipPrintAisle.java shows how text on a DialogBean is defined in Java code.
Code Sample 3-17 InquirySlipPrintAisle.java: DialogBean Label Definition
DialogBeanModel model = new DialogBeanModel();
model.setResourceID("Retry");

The resourceID corresponds to the name of the text bundle. For all dialog screens in the en_US locale,
dialogText_en_US.properties contains the bundles that define the text on the screen, as shown in the
following code.
Code Sample 3-18 dialogText_en_US.properties: DialogBean Text Bundle Example
DialogSpec.Retry.title=Device is offline
DialogSpec.Retry.description=Device offline
DialogSpec.Retry.line2=<ARG>
DialogSpec.Retry.line5=Press the Retry button to attempt to use the device again.

Tour Code
In the Tour code, bean models are created to hold the data on the bean components. The following table
lists some of the important methods in the DialogBeanModel class.

Table 3-12 DialogBeanModel Important Methods
Method Description
setResourceID(String) Used to locate screen text in the text bundle
setArgs(String []) Sets a string of arguments to replace <ARG> tags in the text bundle
U I F r a m e w o r k 3- 11

3-1
The following sample from src\com\extendyourstore\pos\services\tender\LookupStoreCreditSite.java
shows creation of a DialogBeanModel, prefilling of data in the model, and display of the model on which
the DialogBeanModel is set.
Code Sample 3-19 LookupStoreCreditSite.java: Creating and Displaying DialogBeanModel
DialogBeanModel dialogModel = new DialogBeanModel();
DialogModel.setResourceID(“InvalidCashAmount”);
dialogModel.setArgs(new String[] ={cashAmt});
dialogModel.setType(DialogScreensIfc.ACKNOWLEDGEMENT);
dialogModel.setButtonLetter(BUTTON_OK, "Failure");
ui.showScreen(POSUIManagerIfc.DIALOG_TEMPLATE, dialogModel);

The screen constant, DIALOG_TEMPLATE, is mapped to an overlay screen name found in the UI script
for the package. The screen constants are defined in src\com\extendyourstore\pos\ui\POSUIManagerIfc.java.
When setting the dialog type, refer to the following table that lists the available dialog types as defined by
constants in src\com\extendyourstore\pos\ui\DialogScreensIfc.java. For each dialog type, the buttons on
the dialog are specified. In most cases, the letter sent by the button has the same name as the button,
except for the two types noted.

When setting a letter to a button, refer to the following table that lists the available button types also
defined in DialogScreensIfc.java. These constants are used as arguments to DialogBean methods that
modify button behavior.

setButtonLetter(int, String) Sets the specified letter to be sent when the specified button is pressed
setType(int) Sets the flag indicating whether focus should stay on the response

field

Table 3-13 Dialog Types
Dialog Type Button(s) Details
ACKNOWLEDGEMENT Enter Button sends OK letter
CONFIRMATION Yes, No
CONTINUE_CANCEL Continue, Cancel
ERROR Enter Button sends OK letter, Screen

displays red in the title bar
RETRY Retry
RETRY_CANCEL Retry, Cancel
RETRY_CONTINUE Retry, Continue
SIGNATURE Places a signature panel to capture

the customer’s signature

Table 3-14 Button Types
Button ButtonID
Enter, OK BUTTON_OK
Yes BUTTON_YES
No BUTTON_NO

Table 3-12 DialogBeanModel Important Methods
Method Description
2 P o i n t - o f - S a l e D e v e l o p e r G u i d e

Field Types
This section defines field types available to all beans. The following field types may be used by all the
beans, but DataInputBean is the only bean that understands the FIELD element. In other words,
DataInputBean is the only bean that defines fields in bean specifications.
These field types correspond to create() methods in UIFactory.java, such as createCurrencyField() and
createDisplayField(). The application framework uses reflection to create the fields. Therefore, the field
names in the following table can be set as the fieldType attribute in an XML bean specification using the
DataInputBean class. The corresponding parameter list is a list of strings that can be set as the paramList
attribute.

Continue BUTTON_CONTINUE
Retry BUTTON_RETRY
Cancel BUTTON_CANCEL

Table 3-15 Field Types and Descriptions

Name Description
Parameter List Strings (no
spaces allowed)

alphaNumericField allows letters and/or numbers, no
spaces or characters

name,minLength,maxLength

constrainedPasswordField text where the view indicates
something was typed, but does not
show the original characters

name,minLength,maxLength

constrainedTextAreaField multi-line area that allows plain text,
with restrictions on length

name,minLength,maxLength,co
lumns,wrapStyle,lineWrap

constrainedField allows letters, numbers, special
characters, and punctuation, with
restrictions on length

name,minLength,maxLength

currencyField allows decimal numbers only,
representing currency, with two spaces
to the right of the decimal

name,zeroAllowed,negativeAll
owed,emptyAllowed

decimalField allows decimal numbers only name,maxLength,negativeAllo
wed,emptyAllowed

displayField display area that allows a short text
string or an image, or both

name

driversLicenseField allows alphanumeric text that can
contain ‘*’ or ‘ ‘

name

EYSDateField allows only whole numbers and the
special character / —the format is
MM/DD/YYYY

name

EYSTimeField allows only whole numbers and the
special character:—the format is
HH:MM

name

nonZeroDecimalField allows non-zero decimal numbers only name,maxLength

Table 3-14 Button Types
Button ButtonID
U I F r a m e w o r k 3- 13

3-1
Connections
Connections configure the handling of an event in the UI Framework. They are used to define inter-bean
dependencies and behavior and to tie the bean event responses back to the business logic. When one bean
generates an event, another bean can be notified of the event. Connections have a source bean, a Listener
Type for the target, and a target bean.
Connections attach a source bean to a target bean, which receives event notifications from the source
bean. The Listener Type specifies which type of events can be received. The XML in the following
sections are found in com\extendyourstore\pos\services\tender\tenderuicfg.xml. Other listeners used in
Point-of-Sale include ConfirmCancelAction, HelpAction, and CloseDialogAction.

ClearActionListener
ClearActionListener is an interface that extends ActionListener in Swing to make it unique for its use in
Point-of-Sale. The following code shows how this listener is used in an overlay specification. Adding the
ClearActionListener allows the Clear button to erase the text in the selected field in the work area when
the Clear button on the GlobalNavigationPanelSpec is clicked.
Code Sample 3-20 tender.xml: ClearActionListener XML tag
<CONNECTION

listenerInterfaceName="ClearActionListener"
listenerPackage="com.extendyourstore.pos.ui.behavior"
sourceBeanSpecName="GlobalNavigationPanelSpec"
targetBeanSpecName="CreditCardSpec"/>

DocumentListener
DocumentListener is an interface defined in Swing. The following code shows how this listener is used in
an overlay specification. Adding the DocumentListener allows the Clear button on the
GlobalNavigationPanelSpec to be disabled until input is entered in the selected field on the work area.
Code Sample 3-21 tender.xml: DocumentListener XML tag
<CONNECTION

listenerInterfaceName="DocumentListener"
listenerPackage="javax.swing.event“

numericField allows integers only, no special
characters or letters

name,maxLength,minLength

nonZeroNumericField allows non-zero integers only name,maxLength,minLength
textField allows letters, numbers, special

characters, and punctuation
name

validatingTextField line of text that can be validated by
length requirements

name

Table 3-15 Field Types and Descriptions

Name Description
Parameter List Strings (no
spaces allowed)
4 P o i n t - o f - S a l e D e v e l o p e r G u i d e

sourceBeanSpecName="CreditCardSpec"
targetBeanSpecName="GlobalNavigationPanelSpec"/>

ValidateActionListener
ValidateActionListener is an interface that extends ActionListener in Swing to make it unique for its use
in Point-of-Sale. The following code shows how this listener is defined in an overlay specification.
Adding the ValidateActionListener allows the CreditCardSpec to recognize when the Next button on the
GlobalNavigationPanelSpec is clicked, resulting in the validation of the required fields on the work area.
If the required fields are empty, an error dialog appears stating that the required field(s) must have data.
Code Sample 3-22 tender.xml: ValidateActionListener XML tag
<CONNECTION

listenerInterfaceName="ValidateActionListener"
listenerPackage="com.extendyourstore.pos.ui.behavior"
sourceBeanSpecName="GlobalNavigationPanelSpec"
targetBeanSpecName="CreditCardSpec"/>

The fields that are required must be specified for this listener in the overlay specification for the target
bean, as in the following XML from tenderuicfg.xml.
Code Sample 3-23 tenderuicfg.xml: ValidateActionListener Required Fields
<ASSIGNMENT
 areaName="WorkPanel"
 beanSpecName="CreditCardSpec">
 <BEANPROPERTY
 propName="RequiredValidatingFields" propValue="CreditCardField,ExpirationDateField"/>
 </ASSIGNMENT>

Text Bundles
Currently, over forty text bundles exist for the Point-of-Sale application. Many of these bundles are
service-specific. A properties file with the same name exists for every language, located in locales\
<locale name>\config\ui\bundles with the locale name appended to the filename. For example, the
Customer service would have its text defined in the customerText_en_US.properties file in English, and the
text would be similarly defined in the customerText_es_PR.properties file in Spanish. The following
examples show the same text bundle in different languages.
Code Sample 3-24 customerText_en_US.properties: Text Bundle in English
Common.Add=Add Customer
Common.AddBusiness=Add Business

Code Sample 3-25 customerText_es_PR.properties: Text Bundle in Spanish
Common.Add=Añadir Cliente
Common.AddBusiness=Añadir Negocio

A similarly named properties file would exist for each locale. Because they are discussed earlier in the
chapter, service-specific bundles and the dialogText bundle are not described in this section.
U I F r a m e w o r k 3- 15

3-1
receiptText
From src\com\extendyourstore\pos\config\bundles\BundleConstantsIfc.java, the following code sets a string
constant for the receiptText bundle.
Code Sample 3-26 BundleConstantsIfc.java: String Constant for receiptText
public static String RECEIPT_BUNDLE_NAME = "receiptText";

In Tour Code, methods to print the receipt exist which call methods on the Utility Manager to get
specified text. The following code is from the printDocument() method in src\com\extendyourstore\pos\
receipt\GiftCardInquirySlip.java.
Code Sample 3-27 GiftCardInquirySlip.java: Tour Code to Print Receipt
UtilityManager utility = (UtilityManager)

Gateway.getDispatcher().getManager(UtilityManagerIfc.TYPE);
Properties slipProps = utility.getBundleProperties(BundleConstantsIfc.RECEIPT_BUNDLE_NAME,
 UtilityManagerIfc.RECEIPT_BUNDLES,
 LocaleMap.getLocale(LocaleConstantsIfc.RECEIPT));
String title = slipProps.getProperty("GiftCardTitle", "Gift Card Inquiry").toString();
String giftCardNumber = slipProps.getProperty("GiftCardAccount", "Gift Card #").toString();
...define additional properties...
printLineCentered(title);
printLine("");
printLine(blockLine(new StringBuffer(" " + giftCardNumber), new StringBuffer(cardNumber)));

In the receiptText_<locale>.properties file, the corresponding text is defined.
Code Sample 3-28 receiptText_en_US.properties: Text Bundle
Receipt.GiftCardTitle=BALANCE INQUIRY
Receipt.GiftCardAccount=Account #

parameterText
In overlay specifications, the parameterText bundle is specified to define the text for particular screens.
For example, the following code from src\com\extendyourstore\pos\services\admin\parametermanager\
parameteruicfg.xml defines text for the PARAM_SELECT_PARAMETER overlay screen. On this screen,
the names of the parameters found in the parameterText properties file are displayed.
Code Sample 3-29 parameteruicfg.xml: Overlay Specification Using parameterText
<OVERLAYSCREEN
 defaultScreenSpecName="EYSPOSDefaultSpec"
 resourceBundleFilename="parameterText"
 specName="PARAM_SELECT_PARAMETER">

In the utility package, the ParameterManager is used to retrieve parameter values. The following code
from src\com\extendyourstore\pos\utility\GiftCardUtility.java shows how a parameter is retrieved from
the ParameterManager. The handle to the ParameterManager, pm, is passed into the method but originally
retrieved by the code ParameterManagerIfc pm =
(ParameterManagerIfc)bus.getManager(ParameterManagerIfc.TYPE);

Code Sample 3-30 GiftCardUtility.java: Tour Code to Retrieve Parameter

public static final String DAYS_TO_EXPIRATION_PARAMETER = "GiftCardDaysToExpiration";
daysToExpiration = pm.getIntegerValue(DAYS_TO_EXPIRATION_PARAMETER);

In the parameterText_<locale>.properties file, the corresponding text is defined. This text is displayed on
the Parameter List screen when viewing Security options and choosing the Tender parameter group.
6 P o i n t - o f - S a l e D e v e l o p e r G u i d e

Code Sample 3-31 parameterText_en_US.properties: Text Bundle
Common.GiftCardDaysToExpiration=Days To Giftcard Expiration

The value of the parameter is defined in config\parameter\application\application.xml by the code sample
below. Each parameters belongs to a group, a collection of related parameters.
Code Sample 3-32 application.xml: Definition of Parameter
<PARAMETER name="GiftCardDaysToExpiration"
 type="INTEGER"
 final="N"
 hidden="N">
 <VALIDATOR class="IntegerRangeValidator"
 package="com.extendyourstore.foundation.manager.parameter">
 <PROPERTY propname="minimum" propvalue="1" />
 <PROPERTY propname="maximum" propvalue="9999" />
 </VALIDATOR>
 <VALUE value="365"/>
</PARAMETER>
U I F r a m e w o r k 3- 17

3-1
8 P o i n t - o f - S a l e D e v e l o p e r G u i d e

C H A P T E R 4

TOUR FRAMEWORK

Overview
The Tour framework is a component of the 360Platform layer of the Point-of-Sale architecture. The Tour
framework implements a state engine that controls the workflow of the application. Tour scripts are a part
of this framework; they define the states and transitions that provide instructions for the state engine that
controls the workflow. Java classes are also part of this framework; they implement the behavior that is
accessed by the tour engine, based on instructions in the tour scripts. The Tour Guide application assists
with this development effort by generating the tour scripts rapidly and creating stubs of the necessary
Java classes.

Tour Components
The tour metaphor helps the user visualize how the 360Platform engine interacts with application code.
In the following description of the metaphor, the words in italics are part of a simple tour script language
that 360Platform uses to represent the application elements.

Tour Metaphor
For a moment, imagine that you are a traveler about to embark on a journey. You have the itinerary of a
business traveler (changeable at any time), your luggage, and transportation. In addition, you have a
video camera (TourCam) to record your tour so you can remember it later.
You leave on your journey with a specific goal to achieve. Your itinerary shows a list of tours that you
can choose from to help you accomplish your task. Each tour provides a tour bus with a cargo
compartment and a driver. Each driver has a map that shows the various service regions that you can
visit. These regions are made up of sites (like cities) and transfer stations (bus stations, airports, etc.). The
maps show a finite number of lanes, which are either roads joining one site to another or aisles within one
site. To notify the driver to start the bus and drive, you must send a letter to the driver. The driver reads
the name on the letter and looks for a lane that matches the letter.
When a matching letter is found, the driver looks for a traffic signal on the road. If there is no signal, the
driver can traverse the road. If there is a signal, the driver can traverse the road only if the signal is green.
T o u r F r a m e w o r k 4- 1

4-2

et

es

t
If the signal is red, the driver attempts to traverse the next alternative road that matches the letter. If the
driver cannot find any passable road, he or she returns to the garage. When you arrive at a site or traverse
a lane, you may perform an action to achieve your goal, like take a picture of the countryside.
Upon arriving at a transfer station, you immediately transfer to another service, and you load a portion of
your cargo onto a shuttle and board the shuttle. The shuttle takes you and your cargo to the bus that runs
in the map of the other tour. Upon arrival at the new bus, you unload the shuttle and load the new bus.
Then the new driver starts the bus and your journey begins in the new tour. When the transfer tour
itinerary is complete, you load whatever cargo you want to keep onto a shuttle and return to the original
tour bus. At that time, you unload the shuttle and continue your tour.
These tour script components map to terms in the metaphor. The tour metaphor provides labels and
descriptions of these components that improve understanding of the system as a whole. The following
table includes a metaphor description and a technical description for the basic metaphor components.

When given a use case, create a tour script by identifying components for the tour metaphor. Strategies
for identifying components are listed in the table below. The following sections describe each component
in more detail.

Table 4-1 Metaphor Components
Name Metaphor Description Technical Description
Service A group of related cities, for example “A

Mediterranean Tour”
An implementation of workflow and behavior for a s
of functionality

Bus The vehicle that provides transportation
from city to city

The entity that follows the workflow between the sit

Cargo The baggage that the traveler takes with
him/her from city to city

The data that follows the workflow, modified as
necessary

Site A city A function point in the workflow
Road A path the bus takes to get from one city

to another
A transition that takes place based on an event that
changes the state

Aisle A path the traveler takes while staying on
the same bus in the same city

An action that takes place based on an event, withou
leaving the current state

Letter A message the bus driver receives
instructing him/her to perform an action

A message that causes a road or aisle to be taken

Table 4-2 Component Identification Strategies
Component How to Identify
Service A service generally corresponds to a set of related functionality.
Site Sites generally correspond to points in the workflow that need input from outside the

tour. Outside input sources include the user interface, the database, and devices among
others.

Road At a site, look at the ways control can be moved to another site. There is one road for
each of these cases.

Aisle At a site, there might be a task that you want to handle in a separate module and then
return to the site when the task is complete. There is one aisle for each of these cases.

Letter Letters generally correspond to buttons on a UI screen and responses from the database
and devices. Look for the events that move control from one site to another or prompt
additional behavior within a site to help identify letters.
P o i n t - o f - S a l e D e v e l o p e r G u i d e

Follow the naming conventions in the Development Standards when deciding the names for the
components. It is important to understand that the tour metaphor is not only used to describe the
interaction of the components, but the component’s names are used in the code. By convention, a site
named GetTender has a Java class in the package named GetTenderSite.java that performs the work done
at the site.

Service and Service Region
Tours provide a way of grouping related functionality to minimize maintenance and increase reusability.
All tours provide a bus to maintain state and cargo for data storage. All sites, lanes, and stations contained
within a tour have access to these resources. A service is essentially a tour, but the terms service and
service region are used by the Tour Guide application to refer to a tour. Furthermore, in the Point-of-Sale
source code, the tours are found in the src\com\extendyourstore\pos\services directory. Generally, this
chapter uses the word tour to refer to a tour. The word service and phrase service region are used in this
section because they are elements in the XML code.
The service region contains all functionality related to running the application when no exceptions are
encountered. The following code sample from src\com\extendyourstore\pos\services\tender\tender.xml
shows the definition of a service and service region in a tour script.
Code Sample 4-1 tender.xml: Definition of Service and Service Region
<SERVICE name="Tender" package="com.extendyourstore.pos.services.tender" tourcam="ON">

<SERVICECODE>
...definition of letters, siteaction classes, and laneaction classes...
</SERVICECODE>
<MAP>

<REGION region="SERVICE" startsite="GetTender">
...definition of sites, stations, and lanes...
</REGION>

</MAP>
</SERVICE>

As shown in the code sample, there are two main sections of a tour script. The SERVICECODE element
defines the Java classes in the tour and the letters that may be sent in the tour code or by the user. The
MAP element links the classes and letters to the sites and lanes. In the following sections, code samples
are shown from both sections of the tour script.

Bus
The bus object is passed as a parameter to all tour methods called by the tour engine. Methods can be
called on the bus to get access to the cargo, managers and other state information. The following code
sample from src\com\extendyourstore\pos\services\tender\GetCheckInfoSite.java shows a reference to the
bus.
Code Sample 4-2 GetCheckInfoSite.java: Retrieving Cargo from Bus
TenderCargo cargo = (TenderCargo) bus.getCargo();

Tourmap
One problem of tour scripts is that they can be difficult to customize for a particular retailer’s installation.
The new tourmap feature allows customizations to be made more easily on existing tour scripts. Tour
T o u r F r a m e w o r k 4- 3

4-4
components and tour scripts can be referenced by logical names in the tour script and mapped to physical
names in a tourmap file, making it easier to use the product tour and just change the pieces that need to be
changed for a customer implementation. In addition, with tourmaps, components and scripts can be over-
ridden based on a country, so files specific to a locale are implemented when appropriate.

The tourmap does not allow you to modify the structure of the tour, specifically the following:
• does not allow you to add or remove sites
• does not allow you to add or remove roads and aisles
• does not allow you to specify a tour spanning multiple files (i.e. “tour inheritance”)

Of particular note is the last bullet: the tourmap does not allow you to assemble fragments of xml into one
cohesive tour script. After the application is loaded, there is only be one tour script that maps to any logi-
cal name.

The functionality of tourmapping is implemented via one or more tourmap files. Multiple tourmap files
can be specified via the config\tourmap.files properties. tourmap.files is a comma delimited list of tour-
map files. As each file is loaded, the application checks the country property of the tourmap file. The
order of files is significant because later files override any values specified in previous files. A file that
overrides a similarly-named file is called an overlay.

Each tourmap file begins with a root element, tourmap, which has an optional country attribute. The
tourmap elements contains multiple tour elements, each one of which describes a tour's logical name, its
physical file, and any overlays to apply. For instance, a simple tourmap might look like the following:
Code Sample 4-3 Sample Tourmap
<?xml version="1.0" encoding="UTF-8"?>
<tourmap
 country="CA"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="com/extendyourstore/foundation/tour/dtd/tourmap.xsd">

 <tour name="testService">
 <file>classpath://com/extendyourstore/foundation/tour/engine/tourmap.testservice.xml</file>
 <SITE
 name="siteWithoutAction"
 useaction="com.extendyourstore.foundation.tour.engine.actions.overlay.OverlaySiteAction"/>
 <SITEACTION
 class="SampleSiteAction"
 replacewith="com.extendyourstore.foundation.tour.engine.actions.overlay.OverlaySiteAction"/>

 </tour>
</tourmap>

In this instance, the tour with the logical name “testService” references the file com\extendyourstore\
foundation\tour\engine\tourmap.testservice.xml. Additionally, the values for SITE and SITEACTION are
replaced. Note, however, that because of the country in the tourmap element, this only happens when
the default locale of the application is a Canadian locale, if locale=Locale.CANADA_FRENCH or
locale=Locale.CANADA.
Tourmaps are used not only to override XML attributes, but they are used also when the workflow needs
to be changed.
P o i n t - o f - S a l e D e v e l o p e r G u i d e

Cargo
Cargo is data that exists for the length of the tour in which it is used. Any data that needs to be used at
different tour components such as sites and aisles needs to be stored on the cargo. Cargo always has a
Java class. The following code sample from tender.xml defines the Tender cargo.
Code Sample 4-4 tender.xml: Definition of Cargo
<CARGO class="TenderCargo">
</CARGO>

With the concept of a tourmap, a cargo class can be overridden with another class. This allows you to
override the class name for a customer implementation yet still keep the same workflow for the customer
as in the product. The following tourmap definition specifies the class to override and the new class to use
in place of the original class. Note that replacewith is a fully qualified classname, with both package and
classname specified, unlike the class attribute.
Code Sample 4-5 tourmap.xml: Example of Overriding Cargo Class
<CARGO class="TenderCargo" replacewith="com.extendyourstore.cargo.SomeCargo"/>

Sites
Sites correspond to nodes in a finite state machine and cities in the tour metaphor. Sites are usually used
as stopping places within the workflow. Arrival at a site usually triggers access to an external interface,
such as a graphical user interface, a database, or a device. Sites always have a corresponding siteaction
class.
The tender.xml code sample below contains the site information from the two main parts of a tour script:
the XML elements SERVICECODE and MAP, respectively.
Code Sample 4-6 tender.xml: Definition of Site Class
<SITEACTION class="GetTenderSite"/>

Code Sample 4-7 tender.xml: Mapping of Site to SiteAction
<SITE name="GetTender" siteaction="GetTenderSite">
 ...definition of lanes...
</SITE>

With the concept of Tourmap, a site’s siteaction can be overridden with another class. This allows you to
override the class name for a customer implementation yet still keep the same workflow for the customer
as in the product. The following tourmap definition specifies the class to override and the new class to use
in place of the original class. Note that replacewith is a fully qualified classname, with both package and
classname specified, unlike the class attribute.
Code Sample 4-8 tourmap.xml: Overriding Siteaction With Tourmap
<SITEACTION class="GetTenderSite" replacewith="com.extendyourstore.actions.SomeOtherSiteAction"/>

System Sites
System sites are defined by the 360Platform engine but can be referenced within a tour script. For
example, a road defined by a tour script can have a system site as its destination. Each system site must
have a unique name in the tour script file. The following code from tender.xml shows the definition of two
system sites. The Final system site stops a bus and returns it to the parent bus, and LastIndexed resumes
the normal bus operation after an exception.
T o u r F r a m e w o r k 4- 5

4-6
Code Sample 4-9 tender.xml: Definition of System Sites
<REGION>

<MAP>
...definition of sites, lanes, and stations...
<SYSTEMSITE name="Final" action="RETURN" />
<SYSTEMSITE name="LastIndexed" action="BACKUP" />
</MAP>

</REGION>

Letters
Letters are messages that get sent from the application code or the user interface to the tour engine.
Letters indicate that some event has occurred. Typically, letters are sent by the external interfaces, such as
the graphical user interface, database, or device to indicate completion of a task.
Lanes are defined as roads and aisles. When the system receives a letter, it checks all lanes defined within
the current site or station to see if the letter matches the letter for a lane. If no matching lane is found, the
letter is ignored. Letters do not have a Java class associated with them.
Standard letter names are used in the application, such as Success, Failure, Undo, and Cancel. The
following code sample shows tender.xml code that defines letters. The definition is added to the
SERVICECODE XML element.
Code Sample 4-10 tender.xml: Definition of Letter
 <LETTER name="Credit"/>

Roads
Roads provide a way for the bus to move between sites and stations. Each road has a name, destination,
and letter that activates the road. A road may or may not have a laneaction class, depending on whether
the road has behavior; only roads that have behavior require a class. Roads are defined within site
definitions because they handle letters received at the site.
Following is tender.xml code that shows the definition of a road. The definition is added to the
SERVICECODE XML element. After the first code sample is another sample that maps the road to a site
and letter, which is contained in the MAP section of the tour script.
Code Sample 4-11 tender.xml: Definition of Road Class
<LANEACTION class="ValidCreditInfoEnteredRoad"/>

Code Sample 4-12 tender.xml: Mapping of Road to Site
<SITE name="GetCreditInfo" siteaction="GetCreditInfoSite">
 <ROAD
 name="ValidCreditInfoEntered"
 letter="Valid"
 laneaction="ValidCreditInfoEnteredRoad"
 destination="GetTender"
 tape="ADVANCE"
 record="OFF"
 index="OFF">
 </ROAD>
 ...other lanes defined...
</SITE>

With the concept of Tourmap, a road’s laneaction can be overridden with another class. This allows you
to override the class name for a customer implementation yet still keep the same workflow for the
P o i n t - o f - S a l e D e v e l o p e r G u i d e

customer as in the product. The following tourmap definition specifies the class to override and the new
class to use in place of the original class. Note that replacewith is a fully qualified classname, with both
package and classname specified, unlike the class attribute.
Code Sample 4-13 tourmap.xml: Example of Overriding Site Laneaction
<LANEACTION class="ValidCreditInfoEnteredRoad"
replacewith="com.extendyourstore.actions.SomeOtherLaneAction"/>

Common Roads
The COMMON element is defined in the REGION element of the tour script. The COMMON element
can contain roads that are available to all sites and stations in a tour. Common roads have the same
attributes as roads defined within a site, but they are defined outside of a site so they can be accessed by
all sites. If a common road and a tour road are both activated by the same letter, the site road is taken. The
following is an example that differentiates common roads from tour roads.
Code Sample 4-14 Example of Common Road
<MAP>
 <REGION region="SERVICE" startsite="Example">
 <COMMON>
 <ROAD name="QuitSelected" letter="exit"
 destination="NamedIndex"
 tape="REWIND"/>
 <COMMENT>
 </COMMENT>
 </ROAD>
 </COMMON>
 <SITE name="RequestExample" siteaction="RequestExampleSite">
 <ROAD name="ExampleSelected" letter="next"
 laneaction="ExampleSelectedRoad"
 destination="ShowExample"
 tape="ADVANCE"
 record="OFF"
 index="ON"/>
 <COMMENT>
 </COMMENT>
 </ROAD>
 </REGION>
</MAP>

Aisles
Aisles provide a means for moving within a site and executing code. Aisles are used when a change is
required but there is no reason to leave the current site or station. Each aisle contains a name, a letter, and
a laneaction. Aisles always require a Java class because they must have behavior since they do not lead to
a different site or station like roads.
Following is the tender.xml code that shows the definition of an aisle. The definition is added to the
SERVICECODE XML element. The second code sample from the same tour script maps an aisle to the
site and letter, which is contained in the MAP section.
Code Sample 4-15 tender.xml: Definition of Aisle Class
<LANEACTION class="CardInfoEnteredAisle"/>

Code Sample 4-16 tender.xml: Mapping of Aisle to Site
<SITE name="GetCreditInfo" siteaction="GetCreditInfoSite">
 <AISLE
T o u r F r a m e w o r k 4- 7

4-8
 name="CardInfoEntered"
 letter="Next"
 laneaction="CardInfoEnteredAisle">
 </AISLE>
...other lanes defined...
</SITE>

With the concept of Tourmap, an aisle’s laneaction can be overridden with another class. This allows you
to override the class name for a customer implementation yet still keep the same workflow for the
customer as in the product. The following tourmap definition specifies the class to override and the new
class to use in place of the original class. Note that replacewith is a fully qualified classname, with both
package and classname specified, unlike the class attribute.
Code Sample 4-17 tourmap.xml: Example of Overriding Aisle Laneaction
<LANEACTION class="CardInfoEnteredAisle" replacewith="com.extendyourstore.actions.SomeOtherLaneAction"/
>

Stations and Shuttles
Transfer stations are used to transfer workflow to another tour and return once the tour workflow has
completed. A transfer station describes a location where another tour is started and the passenger exits
one bus and enters the bus for another tour.
Transfer stations specify the name of the nested tour and define data transport mechanisms called
shuttles. Shuttles are used to transfer cargo to and from the nested tour. These shuttles are either launch
shuttles or return shuttles. Launch shuttles transfer cargo to the nested tour and the return shuttles transfer
newly acquired cargo from the nested tour to the calling tour. Shuttles have Java classes associated with
them, but stations do not.
The following code samples from src\com\extendyourstore\pos\services\tender\tender.xml contain the
station and shuttle information from the SERVICECODE and MAP elements in the tour script,
respectively.
Code Sample 4-18 tender.xml: Definition of Shuttle Class
 <SHUTTLE class="TenderAuthorizationLaunchShuttle"/>

Code Sample 4-19 tender.xml: Mapping of Station to Service and Shuttle Classes
 <STATION
 name="AuthorizationStation"
 servicename="classpath://com/extendyourstore/pos/services/tender/authorization/Authorization.xml"
 targettier="APPLICATIONTIER"
 launchshuttle="TenderAuthorizationLaunchShuttle"
 returnshuttle="TenderAuthorizationReturnShuttle">
 ...lane definitions to handle exit letter from nested service...
 </STATION>

The servicename can be defined as a logical name like “authorizationService” and mapped to a filename
is the tourmap file. The shuttle names can also be overridden in the tourmap file. This allows you to
override the class name for a customer implementation yet still keep the same workflow for the customer
as in the product. The code samples below illustrate this.
Code Sample 4-20 tourmap.xml: Example of Mapping Servicename
<tour name=”authorizationService”>

<file>classpath://com/extendyourstore/pos/services/tender/authorization/Authorization.xml</file>
</tour>

Code Sample 4-21 tourmap.xml: Example of Overriding Shuttle Name
P o i n t - o f - S a l e D e v e l o p e r G u i d e

<SHUTTLE class="TenderAuthorizationLaunchShuttle"
replacewith="com.extendyourstore.shuttles.NewShuttle"/>

Nested tours operate independently, with their own XML script and Java classes. Stations and shuttles
simply provide the functionality to transfer control and data between two independent tours.

Signals
Signals direct the tour to the correct lane when two or more lanes from the same site or station are
activated by the same letter. The lane that has a signal that evaluates to true is the one that is traversed.
Each signal has an associated Java class. Signal classes evaluate the contents of the cargo and do not
modify data.
The following code sample lists the tender.xml code that relates to the definition of two roads with Light
signals defined. The definition is added to the SERVICECODE XML element, whereas the road
description is added to the MAP XML element. The negate tag negates the Boolean value returned by the
specified signal class.
Code Sample 4-22 tender.xml: Definition of Traffic Signal
 <SIGNAL class="IsAuthRequiredSignal"/>

Code Sample 4-23 tender.xml: Signal Processing With Negate Tag
<STATION>
 name=”AuthorizationStation”
 <ROAD
 name="AuthorizationRequested"
 letter="Next"
 destination="AuthorizationStation"
 tape="ADVANCE"
 record="OFF"
 index="OFF">
 <LIGHT signal="IsAuthRequiredSignal"/>
 </ROAD>
 <ROAD
 name="BalancePaid"
 letter="Next"
 destination="CompleteTender"
 tape="ADVANCE"
 record="OFF"
 index="OFF">
 <LIGHT signal="IsAuthRequiredSignal" negate="Y"/>
 </ROAD>
 ...additional lane definitions...
</STATION>

Exception Region
Continuing the tour metaphor, the bus could break down at any time. If the bus driver detects that the bus
has broken down, the bus driver takes the bus to the nearest Garage system site. Once the bus is in the
garage, the mechanic assumes control of and diagnoses the breakdown.

• If the mechanic is able to restore the cargo to a valid state, the mechanic informs the bus driver by
traversing to the Resume system site. The bus driver subsequently resumes driving by resetting the bus
at the site where the breakdown occurred.

• If the mechanic is not successful in repairing the bus, the mechanic stops the bus, and mails the parent
tour a letter informing it of the breakdown.
T o u r F r a m e w o r k 4- 9

4-1
• If there is no mechanic within the tour, the bus driver stops the bus, and mails the parent tour a letter
informing it of the breakdown. The bus completes its tour when it arrives at the final site.

The exception region includes the functionality for handling exceptions. It can contain sites, roads, and
stations just like the service region. There are two ways to exit the exception region: at the Return system
site or the Resume system site. Return shuts down the application, and Resume starts the application at
the last visited site or station in the service region.
The mechanic operates within the exception region of the tour. Any exception that occurs within the tour
region where the bus driver operates is converted to an Exception letter and is passed to the mechanic.
When the exception is being processed, the mechanic assumes control of the bus and processes all
incoming letters. If the application developer has created an exception region for the mechanic, the
Exception letter is processed using application-specific actions and traffic lights. However, if the
exception region does not exist, the mechanic stops the bus and informs the parent bus of the problem.
Depending on the application definition, recovery from exceptions can result in a rollback, resumption, or
a restart of the bus.

Role of Java Classes
All the code samples in this chapter have been from tour scripts. Tour scripts exist in the form of one
XML file per tour. The tour script refers to Java classes that implement specific behavior, such as the
siteaction and laneaction attributes. A tour has the following Java classes:

• One for the cargo
• One for each site
• One for each aisle
• One for each road that implements behavior
• One for each shuttle
• One for each signal

The Tour Guide application can generate Java stubs for these classes, but the code in the methods for the
sites, roads, aisles, and cargo classes needs to be written. The following table lists methods that the tour
engine looks for when it arrives at a specified place in the tour.

Table 4-3 System-called Methods
Class Method(s)
Site arrive(),

depart()

Road (if behavior) traverse()

Aisle traverse()

Shuttle load(), unload()

Signal roadClear()

Cargo <none>
0 P o i n t - o f - S a l e D e v e l o p e r G u i d e

Tour Cam
TourCam allows you to navigate backward through your application in a controlled manner while
requiring minimal programming to accomplish the navigation. It provides the ability to back up from a
tour or process by tracking the state of the cargo and the location of the tours. TourCam is turned on or off
at the tour level. If there is no reason to back up, TourCam should not be turned on.
The ability to backup or restore data to a previous state is accomplished using TourCam. TourCam is
used to record the bus path through the map, as well as the associated cargo changes. TourCam is
described using the TourCam metaphor. The words in italics in the following paragraphs are the
TourCam-specific terms.
A bus driver records the progress along the bus route using TourCam. The bus driver records snapshots
of the passenger cargo immediately before traversing a road. Each snapshot is mounted in a frame within
the current tape. The frame is stamped with the current road. Using this method, the bus driver can retrace
steps through the map. If the frame is indexed, the driver stops at that index when retracing his steps.
The bus driver may adjust the TourCam tape while the bus traverses a road between sites.

• The bus driver can advance the current TourCam tape, and add the next road and snapshot of the cargo
as a frame in the tape.

• The bus driver can discard the current TourCam tape, and replace it with a blank tape.
• The bus driver can rewind the current tape to restore the cargo to be consistent with a previously

visited site.
• The bus driver can splice the current TourCam tape by removing all frames that were recorded since a

previously visited site.
When the passenger wants to back up, they instruct the bus driver to traverse a road whose destination is
the Backup system site. The backup road can inform the bus driver to rewind or splice the TourCam tape
while retracing its path along the last recorded road. Similarly, the passenger can instruct the bus driver to
traverse a road to a specific, previously visited site. That road effectively backs up the bus when it
instructs the bus driver to rewind or splice the TourCam tape.
When the passenger wants to end the trip, they instruct the bus driver to travel down a road whose
destination is the Return system site. The final road may advance or discard the TourCam tape. A
passenger may return to the tour if they back into the parent transfer station. If the TourCam tape is
advanced, a return visit retraces the path through the map in reverse order. If the TourCam tape is
discarded, all return visits start at the start site, as if the passenger were visiting the tour for the first time.

Attributes
The TourCam processing model places all undo actions on roads and treats sites and stations as black
boxes. The tour attribute that turns TourCam on or off is tourcam. The following code from tender.xml
shows the location in the tour script where the tourcam is set. The default value is OFF.
Code Sample 4-24 tender.xml: Definition of tourcam
<SERVICE
 name="Tender"
T o u r F r a m e w o r k 4- 11

 package="com.extendyourstore.pos.services.tender"
 tourcam="ON">

The rest of the TourCam attributes are set on the road element in the MAP section of the tour script. The
following code from tender.xml shows a road definition with these attributes set.
Code Sample 4-25 tender.xml: Definition of Road With TourCam Attributes

<SITE name="GetGiftCertificateInfo" siteaction="GetGiftCertificateInfoSite">
 <ROAD name="GiftCertificateInfoEntered"
 letter="Next"
 laneaction="GiftCertificateInfoEnteredRoad"
 destination="GetTender"
 tape="ADVANCE"
 record="OFF"
 index="OFF">

...definitions of lanes...
</SITE>

The following table lists TourCam attributes and their values.

Table 4-4 Road Tag Element Attributes
Tag Description Values Default
tape Indicates what tour action to

take when traversing the road.
ADVANCE – Adds a frame representing
this road to the tourcam tape
DISCARD – Discards the entire tour cam
tape
REWIND – Back up to the site specified by
the ‘destination’ while calling the backup
method on all roads
SPLICE – Back up to the site specified by
the ‘destination’ without calling the backup
method on any roads

ADVANCE

record Indicates that a snapshot of
the cargo should be recorded
and saved on the tourcam tape

ON—Record a snapshot
OFF – Do not record a snapshot

ON

index Indicates that an index should
be placed on the tourcam tape
when this road is traversed

ON—Place an index on the tape
OFF—Do not place an index on the tape

ON

namedIndex Indicates that a named index
should be placed on the
tourcam tape when this road is
traversed

Any string value is allowed None

destination Used when the tape has a
value of REWIND or SPLICE
to indicate where the tourcam
should back the bus up to

<SITENAME>—The name of a site to
back up to. The site must be in the current
tour.
LastIndexed – The backup should end at
the site that is the origin of the first road
found with an unnamed index.
NamedIndex – The backup should end at
the at the site that is the origin of the first
road found with the named index specified
by the named Index.

None
T o u r F r a m e w o r k 4- 12

Each of the following combinations describes a combination of settings and how it is useful in different
situations. The following tables describe the forward and backward TourCam settings:

Table 4-5 Forward TourCam Settings
Settings Behavior
ADVANCE
index=ON
record=ON

This combination permits you to return to the site without specifying it as a
destination and storing the state of the cargo. Use this combination if you are
entering data and making decisions. The UI provides a method for backing up to the
previous step.

tape=ADVANCE
index=OFF
record=ON

This combination allows you to track visited sites, and allows you to attach undo
behavior. However, you cannot back up to this site. A common scenario for use
would be for performing external lookups and the user must backup to the site that
started the lookup. This combination is used, rather than the following combination,
when changes made to the cargo that must be reversible.

tape=ADVANCE
index=OFF
record=OFF

This combination is useful for sites that require external setup from another site, but
do not result in a significant change in cargo. You cannot back up to a site that uses
these settings and you cannot restore cargo at this site. As with the previous
combination, these settings are used for sites that perform external lookups.

tape=ADVANCE
index=ON
record=OFF

This combination is used when a site does not do anything of significance to cargo.
You would use this setting if a site prompts to choose an option from a list and there
is a default, or to respond to a yes/no dialog and you want to ensure the data
collected at the site is reset.

tape=ADVANCE
namedIndex=LOGIN

This combination is used when you want the application to be able to return to a
specific index, even if the backup begins in a child tour.

tape=DISCARD This combination is used when you want the application flow only to go forward
from this site. For example, after a user tenders a credit card for a sale, the user
cannot backup to enter, delete or modify items. This setting does not permit you to
backup or restore cargo to a previously recorded site.

Table 4-6 Backup Tour Cam Settings
Settings Behavior
destination=BACKUP
tape=REWIND

This combination returns the application to the previously marked site and makes the
snapshot available for undo. This is the preferred method of performing a full backup
with restore.

destination=site
tape=REWIND

This combination backs up the application until it reaches the specified site. It is only
used if the site to which you want to backup does not directly precede the current site
or you know that you always want to backup to the specified site. These settings
could produce unpredictable results if new sites are later inserted in the map between
the current site and the target backup site.

destination=LastIndexed
tape=SPLICE

This combination returns the application to the previously marked site without
restoring the cargo. These settings are used in scenarios when the cargo is
inconsequential.
T o u r F r a m e w o r k 4- 13

Letter Processing
In the absence of TourCam, processing of letters is straightforward. If the letter triggers a lane, the bus
simply traverses the lane. With TourCam enabled, the processing of letters must consider the actions
required to retrace the path of the bus. If the letter triggers an aisle, the bus traverses the aisle. There is no
backup over an aisle. If the letter triggers a road, tape=advance or tape=discard indicate a forward direction,
and tape=rewind or tape=splice indicate a backward direction. The destination of the road element is used
to indicate the backup destination when tape=rewind or tape=splice. It can be one of the following values:
“LastIndexed”, “NamedIndex”, or <sitename>.

Cargo Restoration
One of the primary strengths of TourCam is the ability to restore the bus’ cargo to a previous state.
TourCamIfc provides a mechanism for the bus driver to make and subsequently restore a copy of the
cargo when specified by road attributes. Classes that implement TourCamIfc must implement the
makeSnapshot() and restoreSnapshot() methods. An example of this is src\com\extendyourstore\pos\
services\inquiry\giftreceipt\GiftReceiptCargo.java.
Code Sample 4-26 GiftReceiptCargo.java: TourCamIfc Implementation
public class GiftReceiptCargo implements CargoIfc, TourCamIfc
{

...body of GiftReceiptCargo class...
public SnapshotIfc makeSnapshot()

 {
 return new TourCamSnapshot(this);
 }

public void restoreSnapshot(SnapshotIfc snapshot) throws ObjectRestoreException
{

GiftReceiptCargo savedCargo = (GiftReceiptCargo) snapshot.restoreObject();
this.setPriceCode(savedCargo.getPriceCode());
this.setPrice(savedCargo.getPrice());

 }
}

SnapshotIfc provides a mechanism to create a copy of the cargo. The class that implements SnapshotIfc is
responsible for storing information about the cargo and restoring it later, by calling restoreObject().

destination=site
tape=SPLICE

This combination backs up the application to the specified site without restoring the
cargo. It is used when the cargo is inconsequential, or when you want to loop back to
a base site in a tour without permitting backup or undoing cargo after returning to the
base site.
For example, the application starts from a menu and permits the user to back up until
a series of steps are complete, but not afterward. In this case, the final road from the
last site returns to the menu. The need to use this combination might indicate a design
flaw in the tour. The developer should question whether the series of sites that branch
from the menu should be a separate tour. If the answer is no, this combination is the
solution.

destination=NamedIndex
namedIndex=LOGIN

This combination backs up the application to the origin of the road with the specified
named index. This is used to back up to a specific index, even if it was set in a parent
tour.

Table 4-6 Backup Tour Cam Settings
Settings Behavior
T o u r F r a m e w o r k 4- 14

r

e.

e

r

n
A shuttle allows the optional transfer of cargo from the calling tour to the nested tour during backups. If
defined, this shuttle is used during rewind and splice backup procedures. The classname for the shuttle is
specified in the tour script via the backupshuttle attribute of the station element.
Code Sample 4-27 Sample Backupshuttle Definition
<STATION servicename="foo.xml"
 launchshuttle="MyLaunchShuttle"
 backupshuttle="MyBackupShuttle"\/>

Tender Tour Reference
The files in the Tender package can be found in src\com\extendyourstore\pos\services\tender. The
following table provides resources in the Tender package that are common to all tours.

The Tender package is unique in that the workflow is generally similar for all the tender type options
available from the main site. For example, if the user chooses to pay by check or credit card, the
workflow is similar. When the user cancels the form of payment, the 360Platform engine is directed to
the ReverseAuthorizedTenders site. When the user decides to undo the operation, the engine is directed
back to the GetTender site. The workflow for the credit card tender option is shown in the following
figure.

Table 4-7 Tender Package Components
Resource Filename Description
Tour script tender.xml This file defines the components (sites, letters, roads, etc.) of the Tende

tour and the map of the Tender tour.
Tour screens tenderuicfg.xml This configuration file contains bean specifications and overlay screen

specifications for the Tender tour.
Starting site GetTenderSite.java Tender types are displayed from this site. If the selected tender requires

input, it is entered via another site, which then returns control to this sit
When the balance due is paid, control is returned to the calling service.

Cargo TenderCargo.java This class represents the cargo for the Tender tour.
Stations Names (stations do not

have classes):
AuthorizationStation
PINPadStation
AddCustomer
AddBusinessCustomer
FindCustomer
SecurityOverrideStation
LinkCustomerStation

These stations provide access to other tours. Each of these stations defin
one or more shuttle classes which are part of the Tender package. The
workflows are defined in other packages, but can be called from the
Tender tour. For example, AuthFailedRoad is defined in the Tender tou
because it handles the exit letter from the Authorization tour. However,
Authorization.xml, the workflow for the Authorization tour, is located i
src\com\extendyourstore\pos\services\tender\authorization.
T o u r F r a m e w o r k 4- 15

4-1
Figure 4-1 Workflow Example: Tender with Credit Card Option

The symbols are explained in the figure below.
Figure 4-2 Workflow Symbols

GetTender

UndoCreditSelected [Undo]

ValidCreditInfoEntered [Valid]

CreditSelected [Credit]

InvalidCreditInfoEntered [Invalid]

GetCreditInfo

CardInfoEntered

 ReverseAuthorizedTenders

BalancePaid [Next] CompleteTender

CancelCreditSelected[Cancel]

Aisle

Site= Transfer Station

= Site

= Start Site

= Final Site

= Sample Site with Aisle

= Sample Road with LetterRoad
[Letter]
6 P o i n t - o f - S a l e D e v e l o p e r G u i d e

C H A P T E R 5

MANAGER/TECHNICIAN FRAMEWORK
This chapter describes the Manager/Technician pair relationship and how it is used to provide business
and system services to the application. It also describes how to build a Manager and Technician and
provides sample implementation and sample code.

Overview
360Platform provides the technology for distributing business and system processes across the enterprise
through plug-in modules called Managers and Technicians. Manager and Technician classes come in
pairs. A Manager is responsible for communicating with its paired Technician on the same or different
tiers. The Technician is responsible for performing the work on its tier. By design, Managers know how
to communicate with Technicians through a pass-through remote interface called a valet. The valet is the
component that handles data transfer. The valet can travel across networks. It receives the instructions
from the Manager and delivers them to the Technician. A valet follows the Command design pattern,
described in the Architecture chapter.
Figure 5-1Manager, Technician and Valet

There is a M:N relationship between instances of Managers and Technicians. Multiple Managers may
communicate with a Technician, or one Manager may communicate with multiple Technicians. While
most Managers have a corresponding Technician, there are cases such as the Utility Manager where no
corresponding Technician exists.

Application

Valet

Technician External
Resource

Database

Manager
RMI/JMS

Resource TierApplication Tier
M a n a g e r / T e c h n i c i a n F r a m e w o r k 5- 1

5-2
There are three Manager/Technician categories. These types have different usages and are started
differently. The three types are:

• Global—These Managers and Technicians are shared by all tours. They provide global services to
applications.

• Session—These Managers and Technicians perform services for a single tour. They are started by
each tour and exist for the length of the tour.

• Embedded—Thread Manager is embedded inside the 360Platform engine. It is essential to the
operation of the engine. This is currently the only embedded Manager.

Examples of each type are listed in the following table.

Session Managers are started up by the tour bus when a tour is invoked and can only be accessed by the
bus in the tour code. Global Managers, on the other hand, can be used at any time and are not specific to
any tour. Each type of Manager has a specific responsibility. This table lists the functions of some of the
Managers.

Table 5-1 Manager/Technician Type Examples
Manager/Technician Type Examples
Global Data

Journal
Log
Resource
Tax
Timer
Tier
Trace
XML

Session Device
Parameter
Session
UI
Web
DomainInterface
TenderAuth

Embedded Thread

Table 5-2 Manager Names and Descriptions
Manager Name Description
Data The Data Manager is the system-wide resource through which the application

can obtain access to persistent resources. The Data Manager tracks all data
stores for the system, and is the mechanism by which application threads
obtain logical connections to those resources for persistence operations.

Device The Device Manager defines the Java interfaces that are available to an
application or class for accessing hardware devices, like printers and scanners.
P o i n t - o f - S a l e D e v e l o p e r G u i d e

New Manager/Technician
When creating a new Manager and Technician pair, you must create a Manager and Technician class, a
Valet class, and interfaces for each class. Managers are the application client to a Technician service,
Technicians do the work, and the valet tells the Technicians what work to do. Managers can be
considered proxies for the services provided by the Technicians. Technicians can serve as the interfaces
to resources. Managers communicate with Technicians indirectly using valets. Valets can be thought of
as commands to be executed remotely by the Technician. Samples for the new classes that need to be
created are organized together in the next section.
Requesting services from the Managers only requires familiarity with the interface provided by
Managers. However, building a new Manager/Technician pair requires implementing the interfaces for
both the new Manager and Technician, as well as creating a Valet class.

Journal The Journal Manager is the interface that is used to write audit trail
information, such as start transaction, end transaction, and other interesting
register events.

Log The Log Manager is the interface that places diagnostic output in a common
location on one tier for an application, regardless of where the actual tours
run.

Parameter The Parameter Manager is the interface that provides access to parameters
used for customization and runtime configuration of applications.

Thread The Thread Manager is a subsystem that provides system threads as a pooled
resource to the system.

Tier The Tier Manager interface starts a tour session and mails letters to existing
tour sessions. The Tier Manager enables the engine to start a tour on any tier
specified in a transfer station, regardless of where that tier runs. In addition,
the Tier Manager enables a bus to mail a letter to any other existing Bus in the
system on any tier.

Timer The Timer Manager provides timer resources to applications that require
them. It does not have a Technician because all timers are local on the tier
where they are used.

User Interface The UI Manager is a mechanism for accessing and manipulating user
interface components. The user interface subsystem within a state machine
application must also maintain a parallel state of screens, so the appropriate
screens can be matched with the application state at all times. The user
interface subsystem within a distributed environment must enable application
logic to be completely isolated from the user interface components.

XML The XML Manager locates a specified XML file, parses the file, and returns
an XML parse tree.

Table 5-2 Manager Names and Descriptions
Manager Name Description
M a n a g e r / T e c h n i c i a n F r a m e w o r k 5- 3

5-4
Manager Class
A Manager merely provides an API to tour code. It behaves like any other method except that the work it
performs may be completed remotely. The input to a Manager is usually passed on to the valet that in
turn, passes it on to the Technician, which actually performs the work.
The Manager class provides methods for sending valets to the Technician. The sendValet() method makes
a single attempt to send a valet to the Manager’s Technician. The sendValetWithRetry() method attempts to
send the valet to the Manager’s Technician, and if there is an error, reset the connection to the Technician
and then try again.
Managers must implement the ManagerIfc, which requires the following methods:

Often, a subclass of Manager can use these methods exactly as written. Unlike the Technicians, Managers
seldom require special startup and shutdown methods, because most Managers have no special resources
associated with them.

Manager Configuration
You can provide runtime configuration settings for each Manager using a conduit script. The Dispatcher
that loads Point-of-Sale configures the Managers by reading properties from the conduit script and
calling the corresponding set() method using the Java reflection utility. All properties are set by the
Dispatcher before the Dispatcher calls startUp() on the Manager.
Every Manager should have the following.

• Name—Tour code typically locates a Manager using its name. Often this name is the same as the
name of the class and may be defined as a constant within the Manager. This is what the getName()
method returns.

• Class—This is the name of the class, minus its package.
• Package—This is the Java package where the class resides.

Managers may have an additional property file defined that specifies additional information such as the
definition of transaction mappings. If a separate configuration script is defined, the startup() method
must read and interpret the configuration script. The following sample from config\conduit\
CollapsedConduitFF.xml shows this.
Code Sample 5-1 CollapsedConduitFF.xml: Data Manager Configuration

<MANAGER name="DataManager" class="DataManager"

Table 5-3 ManagerIfc Methods
Method Description
MailboxAddress getAddress() Gets address of Manager
Boolean getExport() Returns if this Manager is exportable
String getName() Gets name of Manager
void setExport(Boolean) Sets whether the Manager is exportable
void setName(String) Sets name of Manager
void shutdown() Shuts this Manager down
void startUp() Starts this Manager
P o i n t - o f - S a l e D e v e l o p e r G u i d e

 package="com.extendyourstore.foundation.manager.data">
 <PROPERTY propname="configScript"
 propvalue="classpath://config/manager/PosDataManager.xml" />

</MANAGER>

Technician Class
Technicians implement functions needed by Point-of-Sale to communicate with external or internal
resources, such as the UI or the store database. Technicians must implement the TechnicianIfc, which
requires the following methods:

Often, a subclass of Technician can use these methods exactly as written. The most likely methods to
require additional implementation are startUp() and shutdown(), which needs to handle connections with
external systems.

Technician Configuration
The Technician is configured within the conduit script. Each Technician should have the following:

• Name—A Manager typically locates its Technician using its name. Often this name is the same as the
name of the class and may be defined as a constant within the Technician. This is what
Technician.getName() returns.

• Class—The name of the class, minus its package
• Package—The Java package where the class resides
• Export—This should be Y if the Technician may be accessed by an external Java process; N

otherwise. The value returned by Technician.getExport() is based on this. In Technicians, it indicates
whether the Technician can be remotely accessed from another tier.

• commScheme (optional) —Specifies the communication scheme used to communicate with the
Technician. The default is RMI.

• encryptValets (optional) —Specifies whether the valets should be encrypted during network
transmission. The default is N.

• compressValets (optional) —Specifies whether the valets should be compressed during network
transmission. The default is N.

Some Technicians may require complex configuration. In cases like this, it may be preferable to define an
XML configuration script specific to the Technician, rather than to rely on the generic property
mechanism. Therefore, Technicians may have an additional property defined that specifies additional
information such as log formats or parameter validators. If a separate configuration script is defined, the

Table 5-4 TechnicianIfc Methods
Method Description
MailboxAddress getAddress() Gets address of Technician
Boolean getExport() Checks if this Technician is exportable
String getName() Gets name of Technician
void shutdown() Shuts this Technician down
void startUp() Starts up Technician process
M a n a g e r / T e c h n i c i a n F r a m e w o r k 5- 5

5-6
startup() method must read and interpret the configuration script. The following sample from config\
conduit\CollapsedConduitFF.xml shows an additional script defined in the configuration of the Tax
Technician.
Code Sample 5-2 CollapsedConduitFF.xml: Tax Technician Configuration

<TECHNICIAN name="TaxTechnician" class = "TaxTechnician"
package = "com.extendyourstore.domain.manager.tax"
export = "Y" >

 <PROPERTY
 propname="taxSpecScript"
 propvalue="classpath://config/tax/TaxTechnicianRates.xml"
 />

</TECHNICIAN>

Valet Class
The valet is the intermediary between the Manager and Technician. Valets act as commands and transport
information back and forth between the Manager and Technician. Valets must implement ValetIfc, which
contains a single method.

The execute method is called by the Technician after the valet arrives at its destination as a result of the
Manager’s sendValet() or sendValetWithRetry() methods, as in the following example from src\com\
extendyourstore\foundation\manager\parameter\ParameterManager.java.
Code Sample 5-3 ParameterManager.java: Valet Passed By Manager
MailboxAddress techAddress = getParameterTechnicianAddress();
retVal = sendValetWithRetry(valet, techAddress);

Sample Code
The examples below illustrate the primary changes that need to be made to create a Manager/Technician
pair. Note that interfaces also need to be created for the new Manager, Technician, and Valet classes.

Configuration
The conduit script needs to define the location of the Manager and Technician. This code would be found
in a conduit script such as config\conduit\ClientConduit.xml. These code samples would typically be in
different files on separate machines. It would include snippets like the following.
Code Sample 5-4 Sample Manager and Technician Configuration
 <MANAGER name="MyNewManager"
 class="MyNewManager"
 package="com.extendyourstore.foundation.manager.mynew">
 </MANAGER>

 <TECHNICIAN name="MyNewTechnician"
 class="MyNewTechnician"
 package="com.extendyourstore.foundation.manager.mynew"
 export="Y" >
 <PROPERTY propname="techField" propvalue="importantVal"/>

Table 5-5 ValetIfc Method
Method Description
Serializable execute(Object) Executes the valet-specific processing on the object
P o i n t - o f - S a l e D e v e l o p e r G u i d e

 <PROPERTY propname="configScript"
 propvalue="classpath://com/extendyourstore/pos/config/myconfigscript.xml"/>
 </TECHNICIAN>

Tour Code
Tour code might include a snippet like the following, which might be located in src\com\extendyourstore\
pos\services.
Code Sample 5-5 Sample Manager in Tour Code
 try
 {
 MyNewManagerIfc myManager = (MyNewManagerIfc)bus.getManager("MyNewManager");
 myManager.doSomeClientWork("From site code ");
 catch (Exception e)
 {
 logger.info(bus.getServiceName(), e.toString());
 }

Manager
This is a minimal Manager class to illustrate how to create a new Manager. A new Manager interface also
needs to be created for this class. Note that this class references the sample MyNewTechnician class
shown in a later code sample.
Code Sample 5-6 Sample Manager Class
package com.extendyourstore.foundation.manager.mynew;

import com.extendyourstore.foundation.manager.log.LogMessageConstants;
import com.extendyourstore.foundation.tour.manager.Manager;
import com.extendyourstore.foundation.tour.manager.ValetIfc;

public class MyNewManager extends Manager implements MyNewManagerIfc
{
 //--
 /**
 Constructs MyNewManager object, establishes the manager's address, and
 identifies the associated technician.
 */
 //--

 public MyNewManager()
 {
 getAddressDispatcherOptional();
 setTechnicianName("MyNewTechnician");
 }

 //--
 /**
 This method processes the input argument (via its technician).
 @param input a String to illustrate argument passing.
 @return a transformed String
 **/
 //--

 public String doSomeClientWork(String input)
 {
 String result = null;
 ValetIfc valet = new MyNewValet(input);
 try
 {
 result = (String)sendValetWithRetry(valet);
M a n a g e r / T e c h n i c i a n F r a m e w o r k 5- 7

5-8
 }
 catch (Exception e) // usually ValetException or CommException
 {
 logger.error(LogMessageConstants.SCOPE_SYSTEM,
 "MyNewManager.doSomeClientWork, " +
 "could not sendValetWithRetry: Exception = {0}", e);
 }
 logger.debug(LogMessageConstants.SCOPE_SYSTEM,
 "MyNewManager.doSomeClientWork, returns {0}", result);
 return result;
 }
}

Valet
The following code defines a valet to send input to MyNewTechnician.
Code Sample 5-7 Sample Valet Class
package com.extendyourstore.foundation.manager.mynew;

import com.extendyourstore.foundation.tour.manager.ValetIfc;
import java.io.Serializable;

public class MyNewValet implements ValetIfc
{
 /** An input used by the Technician. **/
 protected String input = null;
 //--
 /**
 The constructor stores the input for later use by the Technician.
 @param input the input to be stored.
 **/
 //--

 public MyNewValet(String input)
 {
 this.input = input;
 }

 //--
 /**
 This method causes the MyNewTechnician to "doSomething" with the input
 and returns the results.
 @param techIn the technician that will do the work
 @return the results of "MyNewTechnician.doSomething"
 **/
 //--

 public Serializable execute(Object techIn) throws Exception
 {
 if (!(techIn instanceof MyNewTechnician))
 {
 throw new Exception("MyNewTechnician must passed into execute.");
 }
 MyNewTechnician tech = (MyNewTechnician)techIn;
 String result = tech.doSomething(input);
 return result;
 }
}

P o i n t - o f - S a l e D e v e l o p e r G u i d e

Technician
The following code provides an example of a minimal Technician class. A new Technician interface also
needs to be created for this class.
Code Sample 5-8 Sample Technician Class
package com.extendyourstore.foundation.manager.mynew;

import com.extendyourstore.foundation.manager.log.LogMessageConstants;
import com.extendyourstore.foundation.tour.manager.Technician;
import com.extendyourstore.foundation.tour.manager.ValetIfc;

public class MyNewTechnician extends Technician implements MyNewTechnicianIfc
{
 /** A value obtained from the config script. **/
 protected String techField = null;

 public void setTechField(String value)
 {
 techField = value;
 }

 public void setConfigScript(String value)
 {
 // Complicated configuration could go here
 }

 //--
 /**
 This method processes the input argument (via its Technician).
 @param input a String to illustrate argument passing.
 @return a transformed String
 **/
 //--

 public String doSomething(String input)
 {
 String result = null;
 result = "MyNewTechnician processed " + input + " using " + techField;
 logger.debug(LogMessageConstants.SCOPE_SYSTEM,
 "MyNewTechnician.doSomething, returns {0}", result);
 return result;
 }
}

Manager/Technician Reference
The following sections describe a Manager/Technician pair, important methods on the Manager, and an
example of using the Manager in the application code.

Parameter Manager/Technician
The Parameter Manager is the interface that allows parameters to be used for customization and runtime
configuration of applications. The following code from config\conduit\ClientConduit.xml specifies the
location and properties of the Parameter Manager and Technician. Note that the Parameter Manager is a
M a n a g e r / T e c h n i c i a n F r a m e w o r k 5- 9

5-1
Session Manager because it is defined with a PROPERTY element inside the APPLICATION tag. This
means it can only be accessed via a tour bus.
Code Sample 5-9 ClientConduit.xml: Code to Configure Parameter Manager

<APPLICATION name="APPLICATION"
 class="TierTechnician"
 package="com.extendyourstore.foundation.manager.tier"
 startservice="classpath://com/extendyourstore/pos/services/main/main.xml">

<PROPERTY propname="managerData"
propvalue="name=ParameterManager,managerpropname=className,managerpropvalue=com.extendyourstore.foundat
ion.manager.parameter.ParameterManager"/>

<PROPERTY propname="managerData"
 propvalue="name=ParameterManager,managerpropname=useDefaults,managerpropvalue=Y"/>

...
</APPLICATION>

Code Sample 5-10 ClientConduit.xml: Code to Configure Parameter Technician
<TECHNICIAN name="ParameterTechnician" class = "ParameterTechnician"

 package = "com.extendyourstore.foundation.manager.parameter"
 export = "Y" >
 <PROPERTY propname="paramScript"
 propvalue="classpath://config/manager/PosParameterTechnician.xml"/>

</TECHNICIAN>

The Parameter Manager classes contain methods to retrieve parameter values. The following table lists
the important ParameterManagerIfc methods, implemented in src\com\extendyourstore\foundation\manager\
parameter\ParameterManager.java. The Customization chapter describes details about where and how
parameters are defined. A list of parameters can be found in the Parameter Names and Values
Addendum.

The following code sample from src\com\extendyourstore\pos\services\browser\BrowserControlSite.java
illustrates the use of the Parameter Manager to retrieve parameter values.
Code Sample 5-11 BrowserControlSite.java: Tour Code Using ParameterManagerIfc

ParameterManagerIfc pm = (ParameterManagerIfc)bus.getManager(ParameterManagerIfc.TYPE);
Serializable homeUrl[] = pm.getParameterValues("BrowserHomeUrl");
String cookieString = pm.getStringValue("CookiesEnabled");

UI Manager/Technician
The UI Manager/Technician is used to abstract the UI implementation. User events captured by the
screen are sent to the UI Manager. The UI Manager communicates with a UI Technician, which updates
the screen for a client running the UI. The UI Technician provides access to the application UI
Subsystem. There is one UITechnician per application.

Table 5-6 Important ParameterManagerIfc Methods
Method Description
Serializable[] getParameterValues(String paramName) Returns the values of the specified parameter
String[] getStringValues(String parameterName) Returns as an array of Strings the values of the specified

parameter
String getStringValue(String parameterName) Returns as a String the value of the specified parameter
Integer getIntegerValue(String parameterName) Returns as an Integer the value of the specified parameter
Double getDoubleValue(String parameterName) Returns as a Double the value of the specified parameter
0 P o i n t - o f - S a l e D e v e l o p e r G u i d e

The model is an object that is used to transport information between the screen and the UI Manager via
the UI Technician. Models and screens have a one-to-one relationship. The UI Manager allows you to set
the model for a screen and retrieve a model for a screen; it knows which screen to show and which model
is associated with the screen. The model has data members that map to the entry fields on the given
screen. It can also contain data that dictates screen behavior, such as the field that has the starting focus or
the state of a specific field.
The following code samples from config\conduit\ClientConduit.xml specify the UI Manager and
Technician properties. Like the Parameter Manager, the UI Manager can only be accessed via a tour bus.
Code Sample 5-12 ClientConduit.xml: Code to Configure UI Manager

<APPLICATION name="APPLICATION"
 class="TierTechnician"
 package="com.extendyourstore.foundation.manager.tier"
 startservice="classpath://com/extendyourstore/pos/services/main/main.xml">

 <PROPERTY propname="managerData"
propvalue="name=UIManager,managerpropname=className,managerpropvalue=com.extendyourstore.pos.ui.POSUIMa
nager"/>

...configuration of other Managers...
</APPLICATION>

Code Sample 5-13 ClientConduit.xml: Code to Configure UI Technician
<TECHNICIAN
 name="UITechnician"
 class="UITechnician"
 package="com.extendyourstore.foundation.manager.gui" export="Y">

 <CLASS
 name="UISubsystem"
 package="com.extendyourstore.pos.ui"
 class="POSJFCUISubsystem">

 <CLASSPROPERTY
 propname="configFilename"
 propvalue="classpath://com/extendyourstore/pos/config/defaults/defaultuicfg.xml"
 proptype="STRING"/>

...
</TECHNICIAN>

The UI is configured in XML scripts. Each tour has its own uicfg file in which screen specifications are
defined. The screen constants that bind to screen specification names are defined in src\com\
extendyourstore\pos\ui\POSUIManagerIfc.java. The UI Framework chapter discusses screen configuration
in more detail.
POSUIManager is the UI Manager for the Point-of-Sale application. One is started for each tour that is
created. The following table lists important POSUIManagerIfc methods, implemented in src\com\
extendyourstore\pos\ui\POSUIManager.java.

Table 5-7 Important POSUIManagerIfc Methods
Method Description
void showScreen(String screenId, UIModelIfc
beanModel)

Displays the specified screen using the specified model

UIModelIfc getModel(String screenId) Gets the model from the specified screen
String getInput() Gets the contents of the most recent Response area as a

string
void setModel(String screenId, UIModelIfc
beanModel)

Sets the model for the specified screen
M a n a g e r / T e c h n i c i a n F r a m e w o r k 5- 11

5-1
These methods are used in tour code to display a screen, as in the following code from src\com\
extendyourstore\pos\services\GetCheckInfoSite.java.
Code Sample 5-14 GetCheckInfoSite.java: Tour Code Using POSUIManagerIfc

POSUIManagerIfc ui = (POSUIManagerIfc) bus.getManager(UIManagerIfc.TYPE);
CheckEntryBeanModel model = new CheckEntryBeanModel();
model.setCountryIndex(countryIndex);
...set additional attributes...
ui.showScreen(POSUIManagerIfc.CHECK_ENTRY, model);

Journal Manager/Technician
The Journal Manager provides location abstraction for journal facilities by implementing the
JournalManagerIfc interface. By communicating with a JournalTechnicianIfc, the Journal Manager
removes your need to know the location of resources. The Journal Technician is responsible for providing
journal facilities to other tiers. The Journal Manager must be started on each tier that uses it. There must
be a LocalJournalTechnician running on the local tier or an exported JournalTechnician running on a
remote tier, or both. Transactions should be written to E-journal only when completed.
The following code samples from config\conduit\CollapsedConduitFF.xml specify the Journal Manager and
Technician properties. Note that this Manager is a Session Manager; it is defined outside of the
APPLICATION element in which the UI Manager and Parameter Manager were defined. This allows the
Journal Manager to be accessed outside of the bus, meaning it is more accessible and flexible.
Code Sample 5-15 CollapsedConduitFF.xml: Code to Configure Journal Manager

<MANAGER name="JournalManager"
 class="JournalManager"
 package="com.extendyourstore.foundation.manager.journal"
 export="N">

</MANAGER>

Code Sample 5-16 CollapsedConduitFF.xml: Code to Configure Journal Technician
 <TECHNICIAN name="LocalJournalTechnician"
 class="JournalTechnician"
 package="com.extendyourstore.foundation.manager.journal"
 export="Y">
 </TECHNICIAN>

The Journal Manager must be started on each tier that uses it. The Journal Manager sends journal entries
in the following order: (1) Console if consolePrintable is set, (2) LocalJournalTechnician if defined, (3)
JournalTechnician if defined. The following table lists important JournalManagerIfc methods,
implemented in src\com\extendyourstore\foundation\manager\journal\JournalManager.java.

Table 5-8 Important JournalManagerIfc Methods
Method Description
void journal(String user, String
transaction, String text)

Adds a new entry to the journal

void setConsolePrintable(String
printable)

Sets whether journal entries are sent to the console

void index(String transaction,
String key)

Adds a new entry to the index to provide search
capabilities to the transaction

void setRegisterID(String
registerID)

Sets a register ID associated with the journal entry
2 P o i n t - o f - S a l e D e v e l o p e r G u i d e

These methods are used in tour code to configure the E-journal. This code is from src\com\
extendyourstore\pos\services\GetCheckInfoSite.java.
Code Sample 5-17 GetCheckInfoSite.java: Tour Code Using JournalManagerIfc

JournalManagerIfc journal =
(JournalManagerIfc) Gateway.getDispatcher().getManager(JournalManagerIfc.TYPE);

journal.journal(trans.getCashier().getLoginID(),
 trans.getTransactionID(),
 purchaseOrder.toJournalString());
M a n a g e r / T e c h n i c i a n F r a m e w o r k 5- 13

5-1
4 P o i n t - o f - S a l e D e v e l o p e r G u i d e

C H A P T E R 6

RETAIL DOMAIN
This chapter contains an overview of the 360Commerce business objects, including steps to create,
extend, and use them. The Retail Domain is the set of classes that represent the business objects used by
Point-of-Sale, which are contained in the Commerce Services layer of the architecture. Typical domain
classes are Customer, Transaction, and Tender.

Overview
The Retail Domain is a set of business logic components that implement retail-oriented business
functionality in Point-of-Sale. The Retail Domain is the part of the Commerce Services layer of the
360Commerce architecture that is retail-specific. The Retail Domain provides a common vocabulary that
enables the expression of retail functionality as processes that can be executed by the 360Platform
engine.
The Retail Domain is a set of retail-oriented objects that have a set of attributes. They do not implement
work flow or a user interface. The Tour scripts executed by 360Platform provide the work flow, and the
UI subsystem provides the user interface. The Retail Domain objects simply define the attributes and
logic for application data.
A significant advantage of Retail Domain objects is that they can be easily used as-is or can be extended
to include attributes and logic that are specific to a retailer’s business requirements. The Domain objects
could be used as a basis for many different types of retail applications. The objects serve as containers for
the transient data used by the applications. Domain objects do not persist themselves, but they are
persisted via the 360Store Data Manager interface.
Retail Domain is packaged as domain360.jar, domain360res.jar, and domain360config.jar, which are
installed with the Point-of-Sale application. The Data Managers and Technicians, along with the related
Data Transactions and Data Operations classes that they require, are also packaged within the Retail
Domain jars.
All Retail Domain classes extend EYSDomainIfc. This interface ensures the following interfaces are
implemented:

• Serializable—This communicates Java's ability to “flatten” an object to a data stream and, conversely,
reconstruct the object from a data stream, when using RMI.

• Cloneable—This communicates that it is legal to make a field-for-field copy of instances of this class.
R e t a i l D o m a i n 6- 1

http://www.microsoft.com

6-2
The EYSDomainIfc interface also requires that the following methods be implemented:

• equals()—This method accepts an object as a parameter. If the object passed has data attributes equal
to this object, the method returns true, otherwise it returns false.

• clone()—This method creates a new instance of the class of this object and initializes all its fields with
exactly the contents of the corresponding fields of this object.

• toString()—This method returns a String version of the object contents for debugging and logging
purposes.

New Domain Object
When an existing Retail Domain object contains attributes and methods that are a subset of those
required, a new Retail Domain object can extend the existing object. For example, if a new Domain
object is necessary for the Tender service, the AbstractTenderLineItem class can be extended. This class
implements TenderLineItemIfc, which extends the generic EYSDomainIfc interface. If no similar Domain
object exists in the application, create a new Domain object. The usual coding standards apply; reference
the Development Standards document.

1. Create a new interface extending EYSDomainIfc.
All Retail Domain objects extend EYSDomainIfc, but existing Services have an interface available
for Domain objects related to that Service. For example, TenderLineItemIfc, which extends
EYSDomainIfc, is the interface implemented by each Retail Domain object interface in the Tender
service. The following code sample shows the header of TenderPurchaseOrderIfc, found in src\
com\extendyourstore\domain\tender\TenderPurchaseOrderIfc.java.
Code Sample 6-1 TenderPurchaseOrderIfc.java: Class Header
public interface TenderPurchaseOrderIfc extends TenderLineItemIfc
{

public static final String revisionNumber = "$Revision: 1.0 $";
// begin TenderPurchaseOrderIfc

}

2. Create a new Java class that implements the interface created in the previous step. The class of a
brand new object that does not fit an existing pattern should extend AbstractRoutable, which
defines a “luggage tag” for EYS domain classes; otherwise, the class should extend the existing
class that represents a similar type of object.
The following code sample shows the header for the TenderPurchaseOrder Domain object from
src\com\extendyourstore\domain\tender\TenderPurchaseOrder.java.
Code Sample 6-2 TenderPurchaseOrder.java: Class Header
public class TenderPurchaseOrder extends AbstractTenderLineItem implements TenderPurchaseOrderIfc
{

public static final String revisionNumber = "$Revision: 1.0 $";
//begin TenderPurchaseOrder

}

In the implementation of the class, make sure to do the following:
• Define attributes for the class
P o i n t - o f - S a l e D e v e l o p e r G u i d e

Check the superclass to see if an attribute has already been defined. For example, the
AbstractTenderLineItem class defines the amountTender attribute, so amountTender should not
be redefined in a new Tender Domain object.
If the new domain object has numerous constants, you might consider defining
ObjectNameConstantsIfc.java

• Define get and set methods for the attributes as necessary
• Implement methods required by EYSDomainIfc: equals(), clone(), toString(), and

getRevisionNumber(). Reference the superclass as appropriate. toString() should indicate the
class name and revision number.

3. To return a new instance of the Domain object, add a method to src\com\extendyourstore\domain\
factory\DomainObjectFactoryIfc.java called getObjectNameInstance().
Domain objects should always be instantiated by the factory. The following code sample shows
the method interface to return an instance of the TenderPurchaseOrder object.
Code Sample 6-3 DomainObjectFactoryIfc.java: Method For Instantiating TenderPurchaseOrder
public TenderPurchaseOrderIfc getTenderPurchaseOrderInstance();

4. To return a new instance of the Domain object, implement the method src\com\extendyourstore\
domain\factory\DomainObjectFactory.java called getObjectNameInstance().
The following code sample shows the method definition to return an instance of the
TenderPurchaseOrder object.
Code Sample 6-4 DomainObjectFactory.java: Method For Instantiating TenderPurchaseOrder
public TenderPurchaseOrderIfc getTenderPurchaseOrderInstance()
{

// begin getTenderPurchaseOrderInstance()
return(new TenderPurchaseOrder());

}

Domain Object in Tour Code
Once a Retail Domain class is identified for use, the Java code needs to be written to instantiate the object
and call the object’s methods. This code is typically located in site, road and aisle classes of application
tours. There are two very important things to keep in mind when using Domain objects in Tour code:

• Retail Domain objects cannot be instantiated directly. They must be generated by the factory.
• All interaction with Domain objects take place through the object’s interface, even interaction

between objects.
The steps to use the object involve the following.

1. Get an instance of the DomainObjectFactory and request the instance of the object from the
factory.
The factory class is instantiated once for the application and returns instances of Retail Domain
objects. Since different implementations use different classes to implement the objects, the factory
keeps track of which class implements the requested object.
R e t a i l D o m a i n 6- 3

6-4
The following line of code from src\com\extendyourstore\services\tender\GetCheckInfoSite.java
gets an instance of a Check object.
Code Sample 6-5 GetCheckInfoSite.java: Instantiating Check from DomainObjectFactory
check = DomainGateway.getFactory().getTenderCheckInstance();

2. Call methods on the object.
Now that an instance of the object exists, methods of the class can be called. The following lines of
code from GetCheckInfoSite.java sets attributes on the Check object.
Code Sample 6-6 GetCheckInfoSite.java: Setting Attributes of Check
check.setTenderLimits(cargo.getTenderLimits());
check.setAmountTender(amount);

Domain Object Reference
The Domain Objects discussed below include a description of the purpose of the object, classes and
interfaces involved in its construction, a class diagram, and examples in Tour code.

CodeListMap
To implement Point-of-Sale metadata such as reasons for return, shipping methods, and departments, the
CodeList objects are used. This data is referred to as “reason codes” from the UI. Codes are read in from
the database at application startup. They are available from the Utility Manager. The following files are
involved in the formation of CodeLists. All are found in src\com\extendyourstore\domain\utility.

Table 6-1 CodeListMap Object Classes and Interfaces
Class or Interface Description Important Methods
CodeEntry This class handles the functions

associated with an entry in a list
of codes.

void setText(String)
void setCode(int)
void setEnabled(boolean)
String getCodeString()

CodeList This class is used for handling
lists of codes which map to
strings, such as reason codes.

CodeEntryIfc[] getEntries()
void setEntries(CodeEntryIfc[])
void addEntry(CodeEntryIfc)
CodeEntryIfc findListEntry(String)

CodeListMap This class is used for the
collection of code lists used in
applications.

CodeListIfc[] getLists()
CodeListIfc getCodeListInstance(String)
CodeListIfc add(CodeListIfc)

CodeConstantsIfc This class defines constants
used for the implementation of
CodeList and CodeEntry. It
includes the constants for the
lists currently defined, such as
TimekeepingManagerEditReaso
nCodes and
TillPayOutReasonCodes.

This class does not contain methods.
P o i n t - o f - S a l e D e v e l o p e r G u i d e

The following class diagram illustrates the relationship between these classes.
Figure 6-1 CodeListMap Class Diagrams

To use the CodeListMap, the Utility Manager provides two methods:
• CodeListMapIfc getCodeListMap()
• void setCodeListMap(CodeListMapIfc)

Tour code that requires a code entry would retrieve it as in the following code from src\com\
extendyourstore\pos\services\common\ItemInfoEnteredAisle.java.
Code Sample 6-7 ItemInfoEnteredAisle.java: CodeListIfc in Tour Code

CodeListIfc list = utility.getCodeListMap().get(CodeConstantsIfc.CODE_LIST_UNIT_OF_MEASURE);
CodeEntryIfc uomCodeEntry = list.findListEntry(uomString);
String uomCode = uomCodeEntry.getCodeString();

Currency
All currency representation and behavior is abstracted, so any currency can be implemented. Currency is
a Domain Object that handles the behaviors and attributes of money used as a medium of exchange. It is
important to use Currency objects and methods to compare and manipulate numbers instead of primitive
R e t a i l D o m a i n 6- 5

6-6
types. Currency is implemented by the following classes. They can be found in src\com\extendyourstore\
domain\currency.

All Currency types extend AbstractCurrency and implement CurrencyIfc. For example, if creating a class
to support Canadian currency, the class should extend CurrencyDecimal and implement CurrencyIfc.

Table 6-2 Currency Object Classes and Interfaces
Class or Interface Description Important Methods
CurrencyIfc This interface defines a common

interface for currency objects.
CurrencyIfc add(CurrencyIfc)
CurrencyIfc negate()
String getCountryCode()

AbstractCurrency This abstract class contains the
behaviors and attributes common to all
currency.

BigDecimal getBaseConversionRate()
void setNationality(String)
String getNationality()

CurrencyDecimal This class contains the behaviors and
attributes common to all decimal-based
currency.

CurrencyIfc add(CurrencyIfc)
CurrencyIfc negate()
String getCountryCode()
P o i n t - o f - S a l e D e v e l o p e r G u i d e

Figure 6-2 Currency Class Diagram

The following code is an example of the Currency object used in src\com\extendryourstore\pos\services\
tender\PurchaseOrderAmountEnteredAisle.java.
Code Sample 6-8 PurchaseOrderAmountEnteredAisle.java: CurrencyIfc in Tour Code

CurrencyIfc balanceDue = totals.getBalanceDue();
CurrencyIfc amount = DomainGateway.getBaseCurrencyInstance(poAmount);

 if (!(amount.compareTo(balanceDue) == CurrencyIfc.EQUALS)) {
...display invalid PO Amount message...
}

Transaction
A Transaction is a record of business activity that involves a financial and/or merchandise unit exchange
or the granting of access to conduct business with an external device. There are various types of
Transactions found in src\com\extendyourstore\domain\transaction such as LayawayTransaction,
StoreOpenCloseTransaction, and BankDepositTransaction. SaleReturnTransaction is a commonly used
R e t a i l D o m a i n 6- 7

6-8

fc)

c)

te()
Domain Object that extends AbstractTenderableTransaction. The classes involved in the implementation
of a SaleReturnTransaction and its behaviors are described in the following table.

The following code sample from src\com\extendyourstore\domain\arts\JdbcSaveTenderLineItems.java shows
how SaleReturnTransaction is used in Tour code.
Code Sample 6-9 JdbcSaveTenderLineItems.java: SaleReturnTransactionIfc in Tour Code
public void saveTenderLineItems(JdbcDataConnection dataConnection,
 TenderableTransactionIfc transaction) throws DataException
{
 if (transaction instanceof SaleReturnTransactionIfc)
 {

SaleReturnTransactionIfc srt = (SaleReturnTransactionIfc) transaction;
int numDiscounts = 0;
if (srt.getTransactionDiscounts() != null)
{

numDiscounts = srt.getTransactionDiscounts().length;
}
lineItemSequenceNumber = srt.getLineItems().length + 1 + numDiscounts;

 }
...code to handle different transaction types...
}

Table 6-3 Transaction Object Classes and Interfaces
Class or Interface Description Important Methods
SaleReturnTransaction This class is a sale or return

transaction.
void addTender(TenderLineItemIfc)
CustomerIfc getCustomer()
TransactionTotalsIfc
getTenderTransactionTotals()

AbstractTenderableTransaction This class contains the behavior
associated with a transaction that
involves the tendering of money.

void addLineItem(SaleReturnLineItemIfc)
void linkCustomer(CustomerIfc)
void
addLineItem(AbstractTransactionLineItemI

Transaction This class represents a record of
business activity that involves a
financial and/or merchandise unit
exchange or the granting of access
to conduct business at a specific
device, at a specific point in time for
a specific employee.

CustomerInfoIfc getCustomerInfo()
String getTillID()
void setCashier(EmployeeIfc)

TenderableTransactionIfc This is the interface for all
transactions that involve the
tendering of money.

void addTender(TenderLineItemIfc)
TenderLineItemIfc[] getTenderLineItems()
void
setTransactionTotals(TransactionTotalsIf

SaleReturnTransactionIfc This is the interface for all sale/
return transactions.

void addTender(TenderLineItemIfc)
CustomerIfc getCustomer()
TransactionTotalsIfc
getTenderTransactionTotals()

RetailTransactionIfc This is the interface for all retail
transactions.

EmployeeIfc getSalesAssociate()
AbstractTransactionLineItemIfc[]
getLineItems()
String getOrderID()

UpdatableInventoryIfc This interface defines a transaction
for which inventory can be updated.

InventoryTransactionIfc getInventoryUpda
P o i n t - o f - S a l e D e v e l o p e r G u i d e

C H A P T E R 7

CUSTOMIZATION
This chapter covers additional customization options. Frequently, it is necessary to customize Point-of-
Sale to integrate with existing systems and environments.

Parameters
Parameters are used to control flow, set minimums and maximums for data, and allow flexibility without
recompiling code. A user can modify parameter values from the UI without changing code. Parameter
values can be modified by Point-of-Sale, and the changes can be distributed by other 360Commerce
applications. For example, the maximum cash refund allowed and the credit card types accepted are
parameters that can be defined by Point-of-Sale. To configure parameters, you need to understand the
parameter hierarchy, define the group that the parameter belongs to, and define the parameter and its
properties.

Parameter Hierarchy
Parameters are defined in XML files that are organized in a hierarchy. Different XML files represent
different levels in a retail setting at which parameters may be defined. Understanding the parameter
hierarchy helps you define parameters at the appropriate level. The following table lists the parameter
directories, XML filenames, and file descriptions.

Higher-level parameters by default are overridden by lower-level parameter settings. For example, store-
level configuration parameters override application-level parameters. The FINAL element in a parameter

Table 7-1 Parameter Directories, Files, and Descriptions
Directory Parameter-Related XML File Description
application application.xml default parameter information

provided by the base product
corporate corporate.xml company information
store store.xml local store information
register workstation.xml register-level information
userrole operator.xml user-level information
C u s t o m i z a t i o n 7- 1

7-2
definition signifies whether the parameter can be overridden. Below is an excerpt from config\manager\
PosParameterTechnican.xml, showing the order of precedence from highest level to lowest level.
Code Sample 7-1 Default Parameter Settings

<SELECTOR name="defaultParameters">
 <SOURCE categoryname="application" alternativename="application">
 <SOURCE categoryname="corporate" alternativename="corporate">

<SOURCE categoryname="store" alternativename="store">
<SOURCE categoryname="service" alternativename="NO_OP">
<SOURCE categoryname="uidata" alternativename="NO_OP">
<SOURCE categoryname="register" alternativename="workstation" >

 <SOURCE categoryname="userrole" alternativename="operator" >
 <SELECTOR

The categoryname specifies the directory name and the alternativename specifies the name of the XML file.
All parameter subdirectories reside in config\parameter.

Parameter Group
Each parameter belongs to a group, which is a collection of related parameters. The groups are used when
modifying parameters within the UI. The user selects the group first, then has the option to modify the
related parameters that belong to that group. Examples of groups are Browser, Customer, Discount, and
Employee.
Adding a parameter requires adding it to the proper group. The following excerpt from application.xml
shows the Tender group and a parameter definition inside the group. The “hidden” attribute indicates
whether or not the group is displayed in the UI.
Code Sample 7-2 Definition of Tender Group

<GROUP name="Tender"
 hidden="N">
 <PARAMETER name="MaximumCashChange"
 ...
 <PARAMETER>
...
<GROUP>

Parameter Properties
Each parameter file contains parameter definitions organized by group. The following shows an example
of two parameter definitions from config/parameters/application/application.xml.
Table 7-2 Parameter Definitions From application.xml

<PARAMETER name="CashAccepted"
 type="LIST"
 default="USD"
 final="N"
 hidden="N">
 <VALIDATOR class="EnumeratedListValidator"
 package="com.extendyourstore.foundation.manager.parameter">
 <!-- Use ISO 3 letter currency code -->
 <PROPERTY propname="member" propvalue="None" />
 <PROPERTY propname="member" propvalue="USD" />
 <PROPERTY propname="member" propvalue="CAD" />
 </VALIDATOR>
P o i n t - o f - S a l e D e v e l o p e r G u i d e

 <VALUE value="USD"/>
 <VALUE value="CAD"/>

<PARAMETER name="StoreCreditRefundByAmount"
 type="CURRENCY"
 final="N"
 hidden="N">
 <VALIDATOR class="FloatRangeValidator"
 package="com.extendyourstore.foundation.manager.parameter">
 <PROPERTY propname="minimum" propvalue="0.00" />
 <PROPERTY propname="maximum" propvalue="99999.99" />
 </VALIDATOR>
 <VALUE value="25.00"/>
 </PARAMETER>

The FINAL attribute indicates whether the property definition is final, meaning it cannot be overridden
by lower-level parameter file settings. The VALUE element is the current setting of the parameter. If
multiple values are set, that means the value of the parameter is a list of values. The three types of
VALIDATOR classes are listed in the following table.

Devices
POS devices are configured with the posdevices.xml file, device-specific property files, and other
JavaPOS configuration files. The device vendor typically provides a JavaPOS configuration file to
support the JavaPOS standards. If necessary, you can create your own configuration file to meet your
device requirements. Interaction of the Point-of-Sale application with devices is managed by the Device
Manager and Device Technician.

Set Up the Device
To configure a device to work with Point-of-Sale, first consult the user manual for that device for specific
setup requirements. Set up the device drivers and configuration file so the device is available to
applications.

Test the Device
Use the POStest application available internally or at http:www.javapos.com to determine if a device
adheres to existing JavaPOS standards. POStest is a GUI-based utility for exercising POS devices using

Table 7-1 Validator Types
Validator Description
EnumeratedListValidator Determines whether a value supplied is one of an allowable set

of values
FloatRangeValidator Ensures that the value lies within the specified minimum and

maximum float range
IntegerRangeValidator Ensures that the value of a parameter lies within the specified

minimum and maximum integer range
C u s t o m i z a t i o n 7- 3

http:www.javapos.com

7-4
JavaPOS. Currently it supports the following devices: POSPrinter, MICR, MSR, Scanner, Cash Drawer,
Line Display, Signature Capture, and PIN Pad. Perform the following steps to use POStest. See
http:www.javapos.com for more details.

1. Configure the classpath for JavaPOS. This means that the classpath should include the location of
POStest, jpos.jar, jcl.jar and the JavaPOS services for the devices.

2. To build POStest, compile the classes in <location of POStest>\upos\com\jpos\POStest.
3. To run POStest, enter the following at a command line:

java com.jpos.POStest.POStest

Sometimes, the hardware vendor provides test utilities that come with the JavaPOS implementation. You
should test with these tools as well.

Create a Session and ActionGroup
In Point-of-Sale code, devices require a Session and an ActionGroup. If you need to interact with a new
JavaPOS device, you must create a new Session and ActionGroup.
Sessions capture input for the application. In UI scripts, device connections are defined that allow the
application code to receive input from a device by connecting the Session with the screen specification.
The Session listens to JavaPOS controls on the device.
ActionGroups provide the commands that can be used to control the device. ActionGroups are
instantiated by Tour code. When a method on an ActionGroup is called in Tour code, the
DeviceTechnician talks to JavaPOS controls on the device.
To create or modify a Session and ActionGroup, perform the following steps.

1. Configure the Session and ActionGroup in config\pos\posdevices.xml.
To do this, enter the name of the Session and ActionGroup in posdevices.xml. You must specify the
name of the object, its class and its package. In addition, you can set some attributes available in
the corresponding class in posdevices.xml. This file creates a hash table of ActionGroups and
Sessions, which are part of the DeviceTechnician. Below is a definition of an ActionGroup and
Session from posdevices.xml.
Code Sample 7-1 ActionGroup Configuration

<ACTIONGROUP name="LineDisplayActionGroupIfc"
 class="LineDisplayActionGroup"
 package="com.extendyourstore.pos.device"/>

Code Sample 7-2 Session Configuration

<SESSION name="ScannerSession"
 devicename = "defaultScanner"
 class="ScannerSession"
 package="com.extendyourstore.foundation.manager.device"
 defaultmode = "MODE_RELEASED"
 />

2. Define a Session class to get input that extends InputDeviceSession or DeviceSession.
P o i n t - o f - S a l e D e v e l o p e r G u i d e

http:www.javapos.com

Each type of device has a Session class defined in src\com\extendyourstore\foundation\manager\
device. A device session like CashDrawerSession would extend DeviceSession, whereas an input
device session like a ScannerSession would extend InputDeviceSession.
Sessions are not instantiated in Tour code but are accessed by UI scripts in device connections.

3. Define an ActionGroupIfc interface that extends DeviceActionGroupIfc.
This class should also be located in src\com\extendyourstore\pos\device. The following line of code
shows the header of the CashDrawerActionGroupIfc class.
public interface CashDrawerActionGroupIfc extends DeviceActionGroupIfc

4. Create the ActionGroup class. This class should be located in src\com\extendyourstore\pos\device,
and its purpose is to define specific device operations available to Point-of-Sale. The following line
of code shows the header of the CashDrawerActionGroup class.

public interface CashDrawerActionGroup extends CashDrawerActionGroupIfc

5. If one does not already exist, create a device connection in the UI Subsystem file. Device
connections in the UI Subsystem files allow the application to receive input data from the Session.
The DeviceSession class is referenced in the device connections for the relevant screen
specifications. For example, the following code is an excerpt from src\com\extendyourstore\pos\
services\tender\tenderuicfg.xml.
Code Sample 7-3 Example of Device Connection

<DEVICECONNECTION
 deviceSessionName="ScannerSession"
 targetBeanSpecName="PromptAndResponsePanelSpec"
 listenerPackage="java.beans"
 listenerInterfaceName="PropertyChangeListener"
 adapterPackage="com.extendyourstore.foundation.manager.gui"
 adapterClassName="InputDataAdapter"
 adapterParameter="setScannerData"
 activateMode="MODE_SINGLESCAN">

6. Access the device manager and input from the Session in the application code.
Using the bean model, data from the Session can be accessed with methods in the device’s
ActionGroupIfc. Other devices such as the printer are accessed through a device manager as in the
following code from src\com\extendyourstore\pos\services\tender\CompleteTenderSite.java.
Code Sample 7-4 ActionGroup in Tour code

POSDeviceActions pda = new POSDeviceActions((SessionBusIfc) bus);
pda.clearText();
pda.displayTextAt(1,0,displayLine2);

Simulate the Device
It is often practical to simulate devices for development purposes until the hardware is available or the
software is testable. Switching to a simulated device is easily accomplished by editing config\pos\
posdevices.xml. In fact, when you install Point-of-Sale and choose the option to run in Simulated mode,
posdevices.xml is modified accordingly. By default, unselected devices are set up as simulated. The
following code sample shows the configuration of SimulatedPrinterSession.
Code Sample 7-5 Simulated Device Configuration
C u s t o m i z a t i o n 7- 5

<SESSION name="SimulatedPrinterSession"
 devicename = "defaultPrinter"
 class="SimulatedPrinterSession"
 package="com.extendyourstore.foundation.manager.device"
 defaultmode = "MODE_RELEASED"
 />

Help Files
The 360Store Point-of-Sale application includes help files to provide information to assist the end-user.
When the user chooses Help or F1 from the global navigation panel, a help browser appears in Point-of-
Sale to describe the current screen. An index is provided on the left so the user may choose additional
topics to view. The help is implemented as JavaHelp and includes these components:

• One HTML help file for each screen. The product help files are Microsoft Word files saved as HTML.
They can be edited with Word, an HTML editor or a text editor.

• A Table Of Contents file that defines the index that displays on the left.
• A properties file that associates overlay screen names with the corresponding HTML filenames.

Refer to http://www.java.sun.com for more information on JavaHelp.

Note: If the base product help files are modified, upgrades for help files will not be available, and you
will not be able to take advantage of updates provided with future maintenance releases of the
application.

Modifying Help Files
1. Locate the name of the help file associated with the overlay screen name that needs to be modified.

The help file names are defined in helpscreens.properties located in config\ui\help.
Code Sample 7-6 JavaHelp—helpscreens.properties
REFUND_OPTIONS refundoptionshelp.htm

2. Locate the help file in the locales\en_US\config\ui\help directory. Open the file in Microsoft Word
or an HTML editor and edit the content. If you are using Word to edit, be sure to save the file as
HTML when the edits are complete.

3. Make identical modifications to the help file for each of the supported languages. For example, the
base product also has help files in locales\es_PR\config\ui\help and locales\fr_CA\config\ui\help.

4. If the index location or text descriptions needs to be modified, change toc.xml located in locales\
en_US\config\ui\help. The order of the items in the index is also defined by this file.
Code Sample 7-7 JavaHelp—toc.xml
 <tocitem target="REFUND_OPTIONS" text="Refund Options" />
7-6 P o i n t - o f - S a l e D e v e l o p e r G u i d e

http://www.java.sun.com

C H A P T E R 8

STORE DATABASE
This chapter describes the database used with Point-of-Sale and how to interface with it,
including:

• Updating tables
• Rebuilding the database
• Creating new tables
• Updating flat file configurations

The chapter includes an example of writing code to store new data in the database using the
Tender function.

ARTS Compliance
The 360Commerce Point-of-Sale system uses an Association of Retail Technology Standards
(ARTS)-compliant database to store transactions and settings. The ARTS standard (see http://
www.nrf-arts.org/) is a key element in maintaining compatibility with other hardware and
software systems.
Although the Point-of-Sale system complies with the ARTS guidelines, it does not implement
the entire standard, and contains some tables which are not specified by ARTS. For example,
ARTS tables for store equipment and recipe are not included, while tables for tender types and
reporting have been added.
The ARTSDatabaseIfc.java file defines the mapping of ARTS names to constants in application
code.

Understanding Data Managers and Technicians
The following diagram shows how Data Managers and Data Technicians handle
communication with the database in the Point-of-Sale application.
S t o r e D a t a b a s e 8- 1

http://www.nrf-arts.org/
http://www.nrf-arts.org/

8-2
Figure 8-1 Data Managers and Data Technicians

The Point-of-Sale system uses the following components to write to the database:

• The Data Manager’s primary responsibilities are to provide an API to the application code
and to contact the Data Technician and pass it data store requests. Typically, there are
multiple Data Manager instances (one per register).

• The Data Manager Configuration Script is an XML file that specifies the properties of the
Data Manager.

• The Data Technician handles the database connection. Configure the Data Technician with
an XML script. The Data Transaction class is the valet from the manager to the technician.
The Data Transaction class has the add, find, and update methods to the database. Typically,
there is one Data Technician that communicates with the local database and one that
communicates with flat files.

Note: Most managers create valets when they need talk to technicians. Data
Manager works a little differently: the Data Transaction class calls the Data
Manager and passes itself as a valet. The valet finds the data operation class,
then the valet knows which technician it is associated with and calls its
execute method.

• The Data Technician configuration script is an XML file that specifies the properties of the
Data Technician.

• The Transaction Queue collects data transactions and guarantees delivery.
• Flat Files are local register files that are used when the register is offline.
• The Local Database is the store database.

Application Data Manager

Data Technician

Data Technician

Local Database

Data
Manager

Configuration
Script

Data
Technician

Configuration
Script

Transaction
Queue

Flat File
P o i n t - o f - S a l e D e v e l o p e r G u i d e

How Data Transactions Work
This section gives an overview of how 360Platform, Data Manager, and Data Technician
components work together to store data in the database.

Note: The notation TXN refers to a data transaction, which can be any guaranteed
transmission of data, not necessarily a sales transaction in the retail sense.

360Platform is responsible for configuring the system so that the Data Manager, Data
Technician, configuration scripts, and conduit scripts work together to provide the mechanism
to update, store, and retrieve data from a database.

1. The client conduit script defines the name and package for the Data Manager and Data
Manager configuration script, POSDataManager.xml.

2. The server conduit script defines the name and package for the Data Technician and
Data Technician configuration script, DefaultDataTechnician.xml.

3. At runtime, the tour code requests a data transaction object from the Data Transaction
Factory.

4. The Data Transaction Factory verifies that the transaction is defined in
POSDataManager.xml and the transaction object is returned to the tour code.

5. The tour code calls a method on the transaction object that creates a vector of data
actions. A data action corresponds to a set of SQL commands that are executed as a unit.
(Data actions are reused by different transactions.)

6. The method in the transaction object gets a handle to the Data Manager and calls
execute(), sending itself as a parameter. This instructs the Data Manager to send the
Transaction object (a valet) across the network to the Data Technician.

Note: Most Manager/Technician pairs work differently. The standard pattern is for
the tour code to get a handle to the Manager, then call a method on the
manager that will create the valet object and send it to the technician. For the
Data Manager/Technician pair, the transaction object (the valet class), gets
the handle to the Data Manager. The tour code is only responsible for getting
a transaction object from the factory and calling the appropriate method.

7. On the server side, the Data Technician configuration script,
DefaultDataTechnician.xml, lists all available transactions. It also defines an operation
class for each data action. Each data action is then processed by the appropriate data
operation class.
S t o r e D a t a b a s e 8- 3

8-4
Figure 8-2 Updating the Database: Simplified Runtime View

A
pp

lic
at

io
n

C
on

du
its

D
at

a
St

or
ag

e

Si
te

 C
od

e

D
ef

au
ltD

at
aT

ec
hn

ic
ia

n.
xm

l

D
at

aT
X

N

A
ll

D
at

a
Tx

ns

A
ll

D
at

a
C

om
m

an
ds

D
at

a
C

on
ne

ct
io

n
JD

B
C

 P
oo

l
co

nn
ec

tio
ns

JD
B

C
Sa

ve
D

at
a

{
JD

B
C

 A
ct

io
n

#1
{ ex

ec
ut

e(
)

Se
tO

bj
ec

t()
...

SQ
L

st
at

em
en

ts

 ..
.

G
et

 a
 D

om
ai

nO
bj

ec
t d

o
--

>
G

et
 fr

om
 D

om
ai

n
O

bj
ec

t F
ac

to
ry

G
et

 v
al

ue
s f

ro
m

 in
pu

t s
cr

ee
n.

Se
t D

om
ai

n
O

bj
ec

t w
ith

 v
al

ue
s.

D
at

aT
X

N
 d

t -
->

 G
et

 fr
om

 D
at

a
Tr

an
sa

ct
io

n
Fa

ct
or

y
dt

.sa
ve

D
at

a(
do

)

D
at

aT
X

N
 O

bj
ec

t
X

X
X

 sa
ve

D
at

a(
O

bj
ec

t)

se
tD

at
aC

om
m

an
d(

“N
A

M
E”

)
re

tu
rn

(X
X

X
)

{ }
sa

ve
D

at
a

N
A

M
E

--
>J

D
B

C
Sa

ve
D

at
a

JD
B

C
D

riv
er

 --
>

Sy
ba

se

D
B

36
0P

la
tfo

rm

 }

}

Sy
ba

se
JD

B
C

 D
riv

er

D
B

2
JD

B
C

 D
riv

er

D
B

2
JD

B
C

 D
riv

er

Va
le

t

P o i n t - o f - S a l e D e v e l o p e r G u i d e

Creating or Updating Database Tables
Use this procedure when creating a new database table or updating an existing one. Refer to
the ARTS standards when designing tables.

Note: When you add or change a table, you need to rebuild the database for your local copy
of Point-of-Sale before you can test your changes. The Point-of-Sale system includes
scripts for building the database; the main script, dbbuild.bat, runs multiple
subordinate scripts to create all the necessary tables and populate them with initial
data. The script automatically includes all files in the sql directory, so the build
scripts do not have to be modified in order to build your files. However, you may
have to edit a build script in order to test foreign key constraints; see step 6.

1. Edit the appropriate database script, or write a new one.
Database scripts can be found in the source directory
commerceservices\trunk\db\sql. In a Point-of-Sale installation, see C:\360store\360common\
db\sql.

Start a new file (or edit the appropriate existing file) in the db/sql source directory file to
store SQL commands for creating the new table. Code Sample 8-1 shows the SQL
commands for creating the table that stores the credit card data.
Code Sample 8-1 CreateTableCreditDebitCardTenderLineItem.sql
DROP TABLE TR_LTM_CRDB_CRD_TN;

CREATE TABLE TR_LTM_CRDB_CRD_TN
(
 ID_STR_RT char(5) NOT NULL,
 ID_WS char(3) NOT NULL,
 DC_DY_BSN char(10) NOT NULL,
 AI_TRN integer NOT NULL,
 AI_LN_ITM smallint NOT NULL,
 TY_TND varchar(20),
 ID_ISSR_TND_MD varchar(20),
 TY_CRD VARCHAR(40),
 ...additional column lines omitted here...
);

ALTER TABLE TR_LTM_CRDB_CRD_TN ADD PRIMARY KEY (ID_STR_RT, ID_WS, DC_DY_BSN, AI_TRN,
AI_LN_ITM);

COMMENT ON TABLE TR_LTM_CRDB_CRD_TN IS 'Credit/Debit Card Tender Line Item';

COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.ID_STR_RT IS 'Retail Store ID';
COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.ID_WS IS 'Workstation ID';
COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.DC_DY_BSN IS 'Business Day Date';
COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.AI_TRN IS 'Transaction Sequence
Number';
COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.AI_LN_ITM IS 'Retail Transaction Line
Item

Sequence Number';
COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.ID_ISSR_TND_MD IS 'Tender Media Issuer ID';
COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.TY_TND IS TenderTypeCode';
COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.TY_CRD IS 'Card Type';
...additional comment lines omitted...
S t o r e D a t a b a s e 8- 5

8-6
2. Create or edit the insert files (also in the db/sql source directory) for inserting initial
data into the new database table.
This step is used only to insert data into the database table for purposes of initially
logging on, testing, and so on. Code Sample 8-2 contains three inserts from the db/sql/
InsertTableTenderLineItem.sql file.
Code Sample 8-2 InsertTableTenderLineItem.sql
INSERT INTO TR_LTM_TND
(ID_STR_RT, ID_WS, AI_TRN, AI_LN_ITM, DC_DY_BSN, TY_TND, MO_ITM_LN_TND,
 TS_CRT_RCRD, TS_MDF_RCRD)
VALUES ('04241', '149', 1000, 2, '1999-09-23', 'CASH', 54.11,
 TIMESTAMP('1999-09-05 12:53:06.536'), TIMESTAMP('1999-09-05 12:53:06.536'));

INSERT INTO TR_LTM_TND
(ID_STR_RT, ID_WS, AI_TRN, AI_LN_ITM, DC_DY_BSN, TY_TND, MO_ITM_LN_TND,
 TS_CRT_RCRD, TS_MDF_RCRD)
VALUES ('04241', '149', 1000, 2, '1999-09-30', 'CASH', 4.32,
 TIMESTAMP('1999-09-05 12:53:06.536'), TIMESTAMP('1999-09-05 12:53:06.536'));

INSERT INTO TR_LTM_TND
(ID_STR_RT, ID_WS, AI_TRN, AI_LN_ITM, DC_DY_BSN, TY_TND, MO_ITM_LN_TND,
 TS_CRT_RCRD, TS_MDF_RCRD)
VALUES ('04241', '129', 1, 2, '1999-09-05', 'CASH', 54.11,
 TIMESTAMP('1999-09-05 12:53:06.536'), TIMESTAMP('1999-09-05 12:53:06.536'));

3. Make updates to foreign keys in CreateForeignKeys.sql.
4. If you are creating a new table, add a string constant to the src/com/_360commerce/domain/

arts/ARTSDatabaseIfc.java file. Use a string constant with a meaningful name to store the
official ARTS name of the database table.
Code Sample 8-3 shows two examples of meaningful String constants found in
ARTSDatabaseIfc.java.
Code Sample 8-3 String Constant in ARTSDatabaseIfc.java
public static final String TABLE_TENDER_LINE_ITEM = "tr_ltm_tnd";
public static final String TABLE_CREDIT_DEBIT_CARD_TENDER_LINE_ITEM =
"tr_ltm_crdb_crd_tn";

5. Update the flat file configuration XML files, if needed.
If you are creating a new table, consult functional specifications to determine whether
the table needs to be represented in the flat files.
For existing tables, you can inspect the file pos/config/manager/FFTableDefs.xml to
determine whether the table is represented in the flat files.
See “Updating Flat File Configurations” on page 8-14 for information on updating the
configuration files.

6. Check foreign key constraints.
For performance reasons, the database build scripts do not turn on foreign key
constraints until late. If you make inserts which break foreign key constraints, you will
not be notified. To check this, test all inserts with foreign key constraints in place, by
editing the appropriate database build script. In the following example, the locations of
the CreateK.sql and InsertD.sql scripts have been swapped:
Code Sample 8-4 mysql_builddb.bat: Changes to Implement Foreign Key Checking
P o i n t - o f - S a l e D e v e l o p e r G u i d e

COPY /B %_360COMMON_MYSQL_PATH%\mysql_prologue.sql + %_360COMMON_LOGS_PATH%\CreateS.sql
+ %_360COMMON_LOGS_PATH%\CreateK.sql + %_360COMMON_LOGS_PATH%\InsertD.sql +
%_360COMMON_DB2_PATH%\mysql_epilogue.sql %_360COMMON_LOGS_PATH%\FinalSQL.sq

7. Run c:\360store\pos\bin\dbbuild.bat to rebuild the database.
The dbbuild.bat script performs the following operations:
• Executes CreateTable*.sql scripts
• Performs inserts and adds keys
• Creates flat files in C:\360store\pos\bin*.dat

8. After you verify that the table builds successfully and the code referencing the table
works, check your updates into source control.

Example of Saving Data: Storing Tender
Information

This section describes how to save data to the database, using credit card tender information as
an example.
When completing a retail transaction, a customer can offer multiple forms of payment for a
purchase. Each form of payment is a different tender, and the system stores each one as a
tender line item. For example, the customer may pay for a $100 purchase with a $50 gift card
payment, a $20 store credit payment, and a $30 credit card payment. There are three forms of
payment and three tender line items, each potentially requiring different types of data. The
following subsections describe how to store the credit card tender data.

Research Table Requirements and Standards
To plan your database code, refer to functional requirements documents to determine what
data must be stored. For example, the Credit Functional Requirements specify that the credit
card number and expiration date be stored.
Next, review the ARTS database standards for tables and columns. Determine whether you
need to create a new table. If you need to create a table defined by ARTS but not currently used
in the Store database, follow the ARTS standard. For instructions on creating a new table, see
“Creating or Updating Database Tables” on page 8-5.
For the credit card tender transaction, there are two tables that need to be addressed: the tender
line item table and the credit/debit card transaction table.

Table 8-1 Database Tables Used in Credit Card Tender Option
ARTS Table Name Description
tr_ltm_tnd Tender line item
tr_ltm_crdb_crd_tn Credit/debit card transactions
S t o r e D a t a b a s e 8- 7

8-8
Saving Data from Site Code
To save data to the database from a site:

1. Create and populate the domain object to be saved.
2. Save the data to the cargo’s transaction.

For the credit card tender option, the TenderCargo contains a retail transaction object
that keeps track of all the data for each tender line item, as well as other pertinent data.
TenderCargo is the cargo for the Tender Tour.
In Code Sample 8-5, credit is a domain object that stores the credit card data such as
number, expiration date, type of card, and so on. Credit was already stored in the cargo
as a pending line item in GetCreditInfoSite.java. In the following code, credit is retrieved
from the cargo and added to the cargo’s retail transaction as a tender line item.
Code Sample 8-5 ValidCreditInfoEnteredRoad.java: Transaction Object
public void traverse(BusIfc bus)
{
 // Get the pending line item
 TenderCargo cargo = (TenderCargo) bus.getCargo();
 TenderChargeIfc credit = (TenderChargeIfc) cargo.getPendingLineItem();
 TenderableTransactionIfc trans = cargo.getTransaction();
 ...
 // Add the credit line item to the transaction
 trans.addTender(credit);
 ...
}

3. Call a method to save the transaction object.
After the credit object is added to the Tender Cargo transaction, the collected data is
saved to the database. In Code Sample 8-6, the com/extendyourstore/pos/services/common/
SaveRetailTransactionAisle.java file uses the Utility Manager to call the
saveTransaction() method.
Code Sample 8-6 SaveRetailTransactionAisle.java: Save Transaction
public void traverse(BusIfc bus)
{
 ...
 UtilityManagerIfc utility =(UtilityManagerIfc)
bus.getManager(UtilityManagerIfc.TYPE);
 ...
 utility.saveTransaction(trans, totals, till, register);
 ...
}

Locate Data Operation
The Data Manager and Data Technician work together to provide access to the database from
the application. The developer rarely modifies these. Typically, the site code and the JDBC
code are updated. To identify which JDBC class should be used, trace through the site code
until the DataAction sets the operation name.
As an example, Figure 8-3 shows the tour workflow that occurs when a tender is complete and
the data is ready to be saved.
P o i n t - o f - S a l e D e v e l o p e r G u i d e

Figure 8-3 Tender Tour to POS Tour Workflow

After the Tender Tour has completed, the program returns to the POS Tour via the
WriteTransactionSite to the SaveRetailTransactionAisle. The SaveRetailTransactionAisle
initiates the save process.
The conceptual diagram in Figure 8-4 illustrates the basic communication path from the
SaveRetailTransactionAisle to the database. For more detail, refer to the source code.

CompleteTenderSite

SaveRetailTransactionAisle

WriteTransactionSite

ValidCreditInfoEnteredRoad
Tender Tour

POS Tour
S t o r e D a t a b a s e 8- 9

8-1
Figure 8-4 Diagram: Saving a Transaction

The following descriptions explain the labels in the figure. When creating the credit card
tender option, only the site and road classes for the Tender Tour and the
JdbcSaveTenderLineItems class were changed.

1. SaveRetailTransactionAisle uses the Utility Manager to call the saveTransaction()
method as shown in Code Sample 8-6. The utility.saveTransaction() method uses the
data transaction class TransactionWriteDataTransaction to save the retail transaction.
The following code samples show details for Figure 8-4.
Code Sample 8-7 UtilityManager.java: Save Data Transaction
TransactionWriteDataTransaction dbTrans = new
TransactionWriteDataTransaction(tranName);
dbTrans.saveTransaction(trans, totals, till, register);

Code Sample 8-8 TransactionWriteDataTransaction.java: Save Transaction

SaveRetailTransactionAisle

utility.saveTransaction(...)
UtilityManagerIfc utility

TransactionWriteDataTransaction
Scope: Domain

Scope: POS

Application Configuration Script

Data Storage

DefaultDataTechnician.xml

TransactionWriteDataTransaction
Data Transaction

Data Command

DB

JDBC Driver

DataAction-->SaveRetailTransaction

dbTrans.saveTransaction(...)

DataAction-->SaveRetailTransactionLineItems
DataAction-->SaveTenderLineItems
DataAction-->SaveStoreCredit

 SaveRetailTransaction
 --> JdbcSaveReatilTransaction
 SaveRetailTransactionLineItems
 --> JdbcSaveRetailTransactionLineItems
 SaveTenderLineItems
 --> JdbcSaveTenderLineItems

 SaveStoreCredit

. . .

. . .

execute(this)

Scope: POS

JdbcSaveTenderLineItems

1

UtilityManagerIfc

new TransactionWriteDataTransaction
saveTransaction {

Scope: POS

}
2

3

4

5

0 P o i n t - o f - S a l e D e v e l o p e r G u i d e

public void saveTransaction(TransactionIfc transaction,
 FinancialTotalsIfc totals,
 TillIfc till,
 RegisterIfc register)
 throws DataException
{
 ...
 int transactionType = transaction.getTransactionType();
 ...
 switch(transactionType)
 { // begin add actions based on type
 case TransactionIfc.TYPE_SALE:
 case TransactionIfc.TYPE_RETURN:
 addSaveSaleReturnTransactionActions((SaleReturnTransactionIfc)
transaction,totals,till,
 register);
 break;
 ...
}

2. The com/extendyourstore/domain/arts/DefaultDataTechnician.xml file is the configuration
file for the Data Technician and is used to configure the links between the application
and the JDBC class that performs the work. All Data Transaction classes must be
defined in this file, including TransactionWriteDataTransaction.
Code Sample 8-9 DefaultDataTechnician.xml: Define Data Transaction Class
<DATATECHNICIAN
 package="com.extendyourstore.domain.arts">
 ...
 <TRANSACTION name="TransactionWriteDataTransaction" command="jdbccommand"/>
 ...

3. The TransactionWriteDataTransaction class instantiates the DataAction object and sets
the data operation name to SaveTenderLineItems. Other data actions occurred before
these tender data actions. Data Actions are added in the specific order in which they
should occur.
Code Sample 8-10 TransactionWriteDataTransaction: DataAction
protected void addSaveSaleReturnTransactionActions(SaleReturnTransactionIfc
transaction,
 FinancialTotalsIfc totals,
 TillIfc till,
 RegisterIfc register)
{
 artsTransaction = new ARTSTransaction(transaction);

 // Add a DataAction to save the SaleReturnTransactionIfc
 DataAction dataAction = new DataAction();
 dataAction.setDataOperationName("SaveRetailTransaction");
 dataAction.setDataObject(artsTransaction);
 actionVector.addElement(dataAction);

 // Add a DataAction to save all the line items in the Transaction
 dataAction = new DataAction();
 dataAction.setDataOperationName("SaveRetailTransactionLineItems");
 dataAction.setDataObject(artsTransaction);
 actionVector.addElement(dataAction);

 // Add a DataAction to save all the tender line items in the Transaction
 DataActionIfc da = new SaveTenderLineItemsAction(this, artsTransaction);
 actionVector.addElement(da);

 //Add a DataAction to save store credit in the Transaction
S t o r e D a t a b a s e 8- 11

 dataAction = createDataAction(artsTransaction, "SaveStoreCredit");
 actionVector.addElement(dataAction);
 ...
 dataAction =
createDataAction(transaction.getInventoryUpdate(),"UpdateInventoryBalances");
 actionVector.addElement(dataAction);
 ...
}

Code Sample 8-11 SaveTenderLineItemsAction: Set Data Operation Name
protected static final String OPERATION_NAME = "SaveTenderLineItems";

4. The DefaultDataTechnician uses the data command to list several data operation names.
The data operation name SaveTenderLineItems points to the name of the JDBC class,
which is JdbcSaveTenderLineItems.
Code Sample 8-12 DefaultDataTechnician.xml: Define Data Operation Class
<DATATECHNICIAN
 package="com.extendyourstore.domain.arts">
 ...
 <TRANSACTION name="TransactionWriteDataTransaction" command="jdbccommand"/>
 ...
 <COMMAND name="jdbccommand"
 class="DataCommand"
 package="com.extendyourstore.foundation.manager.data"

 <COMMENT>
 This command contains all operations supported on a JDBC
 database connection.
 </COMMENT>
 <POOLREF pool="jdbcpool"/>
 ...
 <OPERATION class="JdbcSaveTenderLineItems"
 package="com.extendyourstore.domain.arts"
 name="SaveTenderLineItems">
 <COMMENT>
 This operation saves all tender line items associated with the transaction.
 </COMMENT>
 </OPERATION>

...
</DATATECHNICIAN>

5. The JdbcSaveTenderLineItems class is used to write the credit card data to the database
table. See the next section, “Modify Data Operation.”

Modify Data Operation
Use this procedure to modify the data operation class to access the database.

1. Add a save method to the data operation class.
The com/extendyourstore/domain/arts/JdbcSaveTenderLineItems.java file creates the JDBC
code that saves the tender line items to the database via the saveTenderLineItem()
method, shown in Code Sample 8-13. This code checks the type of a line item. If the
tender line item is an instance of the TenderChargeIfc, then it calls the
insertCreditDebitCardTenderLineItem() method.

Code Sample 8-13 JdbcSaveTenderLineItems: Saving Tender Line Item
public void saveTenderLineItem(JdbcDataConnection dataConnection,
 TenderableTransactionIfc transaction,
 int lineItemSequenceNumber,
S t o r e D a t a b a s e 8- 12

 TenderLineItemIfc lineItem) throws DataException
{

 if (lineItem instanceof TenderCashIfc)
 {
 insertTenderLineItem(dataConnection,
 transaction,
 lineItemSequenceNumber,
 lineItem);
 }
 else if (lineItem instanceof TenderGiftCardIfc)
 {
 insertGiftCardTenderLineItem(dataConnection,
 transaction,
 lineItemSequenceNumber,
 (TenderGiftCardIfc) lineItem);
 }
 else if (lineItem instanceof TenderChargeIfc)
 {
 /*
 * Charge tender updates the Credit/Debit Card Tender Line Item,
 * Tender Line Item, and Retail Transaction Line Item tables.
 */
 insertCreditDebitCardTenderLineItem(dataConnection,
 transaction,
 lineItemSequenceNumber,
 (TenderChargeIfc)lineItem);
 }
 ...
}

2. Write an implementation for methods written for the data operation class.
Code Sample 8-14 lists the source code for the insertCreditDebitCardTenderLineItem(),
called in Code Sample 8-13. First, the tender line item must be saved to the tender table
using the insertTenderLineItem() method. This code already existed for the other tender
options.
Second, the credit data must be saved to the new database table using SQL factory
methods.
Code Sample 8-14 JdbcSaveTenderLineItems.java: SQL Factory Methods
public class JdbcSaveTenderLineItems extends JdbcSaveRetailTransactionLineItems
 implements ARTSDatabaseIfc
{
 public void insertCreditDebitCardTenderLineItem(JdbcDataConnection dataConnection,
 TenderableTransactionIfc transaction,
 int lineItemSequenceNumber,
 TenderChargeIfc lineItem)
 throws DataException
 {
 /*
 * Update the Tender Line Item table first.
 */
 insertTenderLineItem(dataConnection,
 transaction,
 lineItemSequenceNumber,
 lineItem);

 SQLInsertStatement sql = new SQLInsertStatement();

 // Table
 sql.setTable(TABLE_CREDIT_DEBIT_CARD_TENDER_LINE_ITEM);
 // Fields
S t o r e D a t a b a s e 8- 13

 sql.addColumn(FIELD_RETAIL_STORE_ID, getStoreID(transaction));
 sql.addColumn(FIELD_WORKSTATION_ID, getWorkstationID(transaction));
 sql.addColumn(FIELD_BUSINESS_DAY_DATE, getBusinessDayString(transaction));
 sql.addColumn(FIELD_TENDER_AUTHORIZATION_DEBIT_CREDIT_CARD_ACCOUNT_NUMBER,
 getCardNumber(lineItem));
 sql.addColumn(FIELD_TENDER_AUTHORIZATION_CARD_NUMBER_SWIPED_OR_KEYED_CODE,
 getEntryMethod(lineItem));
 sql.addColumn(FIELD_TENDER_AUTHORIZATION_DEBIT_CREDIT_CARD_EXPIRATION_DATE,
 getExpirationDate(lineItem));
 }
 ...
}

Test Code
To test the new code:

1. Run Point-of-Sale.
2. Select the path to the screen.
3. Enter the data.
4. Complete the retail transaction.

Verify Data
To verify that the correct data exists in the database table, use a database access program to
view the table that should contain the new information. Verify that the data in the database
table matches the data entered. Code Sample 8-15 shows a sample SQL statement you can use
to retrieve the data.
Code Sample 8-15 Sample SQL Statement
select * from tr_ltm_crdb_crd_tn

Updating Flat File Configurations
A Point-of-Sale flat file is a simple database system in which each table is contained in one
file. The Point-of-Sale system uses flat files created by the Store Server to provide access to
minimal data when the network or server is down. With the help of the flat files, the Point-of-
Sale system can continue to process transactions without access to the network.
The information provided in flat files includes:

• Item data, such as price, tax group, SKU
• Tax rules for the local store
• User logon and role information
• Reason codes
S t o r e D a t a b a s e 8- 14

When a register is opened at the start of a new business day, the system updates the flat files on
the register. The files can also be updated periodically during the business day if an optional
parameter is set.
The 360Platform FlatFileEngine provides access to flat file tables. The FlatFileEngine
integrates with the Data Technician using the DataConnectionIfc and DataOperationIfc
interfaces. A wrapper class, FlatFileDataConnection, implements the DataConnectionIfc
interface. The application developer must provide the classes implementing the
DataOperationIfc interface for the application-specific operations. Two configuration scripts
are required, the Data Technician configuration script and the FlatFileEngine configuration
script.

Data Technician Script
The Data Technician script specifies the data connection class and the data operation
mappings. Two sections of the XML script are highlighted, the first containing the OPERATION
tags and the second containing the CONNECTION and CONNECTIONPROPERTY tags.

• The first highlighted section specifies the mapping of the data actions to data operations.
For the FlatFileEngine, the FlatFilePLUOperation and FlatFileEmployeeLookupOperation
are classes that implement the DataOperationIfc interface.

• The second highlighted section declares the use of the FlatFileConnection class for the data
connection and specifies the configSource property for the connection. Specification of the
configSource provides the location of the FlatFileEngine configuration script and is
required for the FlatFileEngine to operate.

Code Sample 8-16 PosLFFDataTechnician.xml: Sample Data Technician Script for Flat Files
<!DOCTYPE DATATECHNICIAN SYSTEM "classpath://com/extendyourstore/foundation/toru/dtd/
datascript.dtd">

<DATATECHNICIAN
 package="com.extendyourstore.domain.arts">

 <TRANSACTION name="PLU" command="flatfilecommand"/>
 <TRANSACTION name="employee" command="flatfilecommand"/>

 <COMMAND name="flatfilecommand"
 class="DataCommand"
 package="com.extendyourstore.foundation.manager.data" >
 <COMMENT>
 This command contains all operations supported
 on a flat file database connection.
 </COMMENT>
 <POOLREF pool="flatfilepool"/>

 <OPERATION class="FlatFilePLUOperation" package="flatfileops"
 name="PLULookup">
 <COMMENT>
 This operation retrieves a priced item from a
 flat file database, given a string lookup key.
 </COMMENT>
 </OPERATION>

... operation omitted here...
 </COMMAND>
 <POOL name="flatfilepool"
 class="DataConnectionPool"
S t o r e D a t a b a s e 8- 15

8-1
 package="com.extendyourstore.foundation.manager.data" >
 <COMMENT>
 This pool defines a FlatFile connection to the gift registry database.
 </COMMENT>
 <POOLPROPERTY propname="numConnections"
 propvalue="1" proptype="INTEGER"/>
 <CONNECTION class="FlatFileDataConnection"
 package="com.extendyourstore.foundation.manager.data.flatfile">
 <CONNECTIONPROPERTY propname="configSource"
 propvalue="classpath://datafiles/TableDefs.xml" />
 </CONNECTION>
 </POOL>
</DATATECHNICIAN>

Flat File Engine Configuration Script
The FlatFileEngine configuration script is required for 360Commerce applications to access
the FlatFileEngine. This script specifies the files where the information is stored, the physical
schema of the file, and the supported indexes on the files. Code Sample 8-17 is a sample
FlatFileEngine configuration script that specifies two tables with associated fields and indexes.
The XML blocks beginning with the tag FWTABLE declare two fixed-width tables with table
names Item and Employees. The example configuration in FWFIELDS provides the
definitions of the fields within the tables. The field definitions use one base indexing for the
starting positions.
After the fields are declared, the following script defines two indexes for the table (indexes are
optional). The index names are ItemID_Index and ItemName_Index. The files to store the
index information are specified along with the index. Within the individual index
specifications, the fields used to generate the index are specified by field name. During
configuration, the FlatFileEngine validates the index files and rebuilds the index files if
necessary.
Code Sample 8-17 FFTableDefs.xml: Sample FlatFileEngine Configuration File
<?xml version='1.0' ?>
<!DOCTYPE FFENGINE SYSTEM "classpath://com/extendyourstore/foundation/tour/dtd/flatfile.dtd">

<!—Configuration Script for FlatFileEngine -->

<FFENGINE>
 <FWTABLE>
 <TABLE tablename="Items"
 datasource="datafiles/Items.txt"
 />

 <FWFIELDS>
 <FWFIELD fieldname="ItemID"
 startpos="1" width="10" />

<FWFIELD fieldname="Name"
 startpos="11" width="80" />

 <FWFIELD fieldname="SupplierID"
 startpos="91" width="10" />

<FWFIELD fieldname="CategoryID"
 startpos="101" width="10" />

 ...additional fields omitted...
 </FWFIELDS>
6 P o i n t - o f - S a l e D e v e l o p e r G u i d e

 <INDEXES>
 <INDEX indexname="ItemID_Index"
 indexfile="datafiles/item_id.idx" >
 <INDEXFIELD fieldname="ItemID"/>
 </INDEX>
 <INDEX indexname="ItemName_Index"
 indexfile="datafiles/item_name.idx" >
 <INDEXFIELD fieldname="Name"/>
 </INDEX>
 </INDEXES>

</FWTABLE>

<FWTABLE>
 <TABLE tablename="Employees" datasource="datafiles/Employees.txt"/>

<FWFIELDS>
 <FWFIELD fieldname="EmployeeID"

 startpos="1" width="10" />
 <FWFIELD fieldname="LastName"

 startpos="11" width="20" />
 <FWFIELD fieldname="FirstName"

 startpos="31" width="10" />
 <FWFIELD fieldname="Title"

 startpos="61" width="10" />
...additional fields omitted...

</FWFIELDS>

<INDEXES>
 <INDEX indexname="Employee_Name"

 indexfile="datafiles/emp_name.idx" >
 <INDEXFIELD fieldname="LastName"/>
 <INDEXFIELD fieldname="FirstName"/>
 </INDEX>
 <INDEX indexname="Employee_HireDate"

 indexfile="datafiles/emp_hire.idx">
 <INDEXFIELD fieldname="HireDate"/>
 </INDEX>
</INDEXES>

</FWTABLE>
</FFENGINE>

Implementing FlatFileDataOperations
To create a FlatFileDataOperation, you create a class that extends the FlatFileDataOperation
class and implements the execute method. You must create a FlatFileQuery to communicate
with the FlatFileEngine via the FlatFileDataConnection.execute() method. The following
diagram shows the class relationships.
S t o r e D a t a b a s e 8- 17

8-1
Figure 8-5 FlatFileQuery Classes

The types of FlatFileQueries are: insert, update, delete, retrieve, clear table, and rebuild
indexes. The query type and the target table are specified in the constructor for the
FlatFileQuery. Some of the query types (update, delete, and retrieve) require the creation of a
selection clause to identify the set of records on which the operation is to be performed. The
sample code shown below creates a retrieve query, the most common of the queries that you
implement. Differences for other query types are shown following the sample code (see “Other
Query Types” on page 8-20).
The sample code shown below is an implementation for an item retrieve operation:

1. The first lines of the method simply cast the connection and get the relevant selection
criteria from the dataTransaction object.

2. The major work of the method occurs within the try-catch block. Refer to the comments
within the sample code. The input to the FlatFileEngine is a FlatFileQuery. The
FlatFileQuery(Instance) is created in the statements immediately following the try. First,
a new FlatFileQuery instance is created, and then the target data table is specified.
Lastly, the selection clause is set to create a new SimpleQueryExpression using the
target data fields and the item number supplied in the Data Transaction.

3. Calling the connection.execute() method with the FlatFileQuery as a parameter returns a
FlatFileResultSet or throws a FlatFileException. If an exception is thrown, it is
translated to a DataException by the parent class. If a result set is returned, the set is
iterated record by record and the field values within the records are translated to
appropriate domain objects.

Code Sample 8-18 Item Retrieve Sample Code
 public void execute(DataTransactionIfc dataTransaction,
 DataConnectionIfc dataConnection,
8 P o i n t - o f - S a l e D e v e l o p e r G u i d e

 DataActionIfc action)
 throws DataException
 {
 FlatFileDataConnection connection =
 (FlatFileDataConnection)dataConnection;

 String prodId = (String)action.getDataObject();
 PLUItems[] pluItems = null;

 try
 {

// Create a new query of type retrieve for table Items
 FlatFileQuery query =
 new FlatFileQuery(FlatFileQuery.QUERY_RETRIEVE,
 "Items");
 query.setSelectionClause(
 new SimpleQueryExpression("ItemID",
 QueryExpressionIfc.EQ, itemId));

 connection.execute(query);

 FlatFileResultSet rs =
 (FlatFileResultSet)connection.getResult();

 int recCount = rs.getRecordCount();

 if (recCount == 0)
 {
 throw new DataException(DataException.NO_DATA,
 "No PLU was found proccessing the result "
 + set in FlatFilePLUOperation.");
 }

 items = new PLUItem[recCount];

 FlatFileRecord record = rs.getFirstRecord();
 for (int i = 0; i < recCount; i++)
 {
 /*
 * Grab the fields selected from the database
 */
 // Sting fldValue = record.getFieldValue("FIELDNAME");

 // TRANSFER ATTRIBUTES HERE

 record = rs.getNextRecord();
 }
 }

 catch (FlatFileException eff)
 {
 throw translateToDataException(eff);
 }

 dataTransaction.setResult((Serializable)items);
 }
S t o r e D a t a b a s e 8- 19

8-2
Other Query Types
The following table provides additional information for creating the query types supported by
the FlatFileEngine:

Complex Query Expressions
Complex Query Expressions allow the creation of selection clauses with multiple criteria. To
select an employee based on last name and first name, create a ComplexQueryExpression. The
logical operation joining the associated expressions is set using the constants AND and OR
from the QueryExpressionIfc class as the parameter in the setJoinCondition() method. Two
SimpleQueryExpression objects are created, one for the last name criteria and one for the first
name criteria. These two SimpleQueryExpressions are added to the expressions vector in the
ComplexQueryEpression. The selection clause association of the FlatFileQuery is set to the
ComplexQueryExpression. The ComplexQueryExpression can contain both Simple and
Complex expressions, and supports nested conditions.

Table 8-2 FlatFileEngine Query Types
Update The update query allows the application to update field values within a table. The table

name is specified and a selection clause is created to identify the record(s) to apply the
updated field values. The field values are placed in a hash table, keyed by field name
that contains the new field values. The FlatFileQuery.setValues() method is called and
passes the values hashtable as a parameter. The query is passed as a parameter to the
execute method of the collection. The number of records updated is returned via the
getUpdated() method.

Insert The insert query inserts a new record into the flat file table. The table name and the
values are specified in the query. Values are transmitted using a hashtable keyed by
field name. Not all fields require values. A confirmation of the insertion is accessed
using the getInserted() method.

Delete The delete query marks the records matching the selection clause for deletion. The table
name and a selection clause must be specified in this query. After executing the query,
the number of records deleted is available using the getDeleted() method. Deleting
records invalidates the indexes. To rebuild the indexes, a rebuild query must be
executed.

Clear Table A clear table query removes all the records in a specified table. Only the table name is
required. Completion status is available from the FlatFileResultSet.getCleared()
method.

Rebuild The rebuild query type removes records marked for deletion from the table and rebuilds
the associated indexes. Only the table name is required.
0 P o i n t - o f - S a l e D e v e l o p e r G u i d e

C H A P T E R 9

EXTENSION GUIDELINES
Customers who purchase Point-of-Sale extend the product to meet their particular needs. These
guidelines speed implementation and simplify the upgrade path for future work.
Developers on customer projects should also refer to the Development Standards. The Development
Standards address how to code product features to make them less error-prone and more easily
maintained. They are especially important if code from the customer implementation may be rolled back
into the base product.

Conventions
This section describes conventions used throughout this chapter.

Terms
The following definitions are used throughout the document:

• Product source tree—A directory tree that contains the 360Commerce product code. The contents of
this tree do not change, with the exception of product patches. In production code, these files are
accessed as external .jar files.

• Customer source tree—A directory tree separate from the product code that contains customer-specific
files. Some of these files are new files for customer-specific features; others are extensions or
replacements of files from the product source tree. The customer tree should not contain packages
from the product tree.

• Customer abbreviation—A short name that represents the customer. For example, a company named
My Bike Store might use MBS as their customer abbreviation. The MBS example is used throughout
this chapter; replace MBS with the customer abbreviation for your own project when writing code.
The customer abbreviation is added to filenames to clarify that the file is part of the customized code,
and is used as part of the package name in the customer source tree.

Filename Conventions
Filenames in the customer source tree usually include the customer abbreviation. Name files according to
the following rules:
E x t e n s i o n G u i d e l i n e s 9- 1

9-2
• If a class in the customer source tree extends or replaces a class in the product source tree, use the
customer abbreviation followed by the original filename as the new filename(i.e., SaleReceipt.java
becomes MBSSaleReceipt.java).

• New Java classes should also begin with the customer abbreviation.
• Script or properties file names that are hard-coded in Foundation classes must use the same filename in

the customer source tree as was used in the product source tree (for example,
posfoundation.properties).

Modules
The Point-of-Sale system is divided into a number of different modules, and each module corresponds to
a project in an integrated development environment (IDE). When setting up a development environment
for modifying code, building Point-of-Sale, and testing changes, you must configure your system to make
MBSpos dependent on all the other modules.
To set up your development environment:

1. Check out each of the required customer modules as shown in Table 9-1.
2. Reference each of the standard modules as external .jar files.
3. Add the required modules to your CLASSPATH environment variable in the order shown in Table

9-1, with all of the customer modules preceding the set of standard modules.

Directory Paths
Paths given in this chapter are relative, starting either with the module or with the source code, as
follows:

• Paths beginning with a module name start from the module location. pos\config refers to the config
directory within the pos module, wherever that module is located on your system.

• Paths beginning with com refer to source code. Source code paths are nested within modules, in \src
directories. Multiple \src\com file hierarchies are built together into one file structure during
compilation. For example, a reference to com_360commerce\pos\services\tender can be found in the pos
module’s src directory. If your pos module is in c:\workspace\360store, then the full path is:
C:\workspace\360store\pos\src\com_360commerce\pos\services\tender

Table 9-1 Required Modules in Dependency Order
Customer Modules Standard Modules
MBS pos (root, src, locales_US
and other language directories)1

MBS domain (root and src)
MBS commerce services
MBS common
MBS 3rd-party

1. Directory names in parentheses must be specified individually in the classpath.

pos (root, src, locales_US and
other language directories)
domain (root and src)
360common
commerce services
foundation
3rd party
P o i n t - o f - S a l e D e v e l o p e r G u i d e

pos Package
This section addresses extension of files in the pos package.

Note: The pos module may be nested within a 360store directory in the source code control system.

Tour
You extend tours mainly by editing proprietary XML scripts developed by 360Commerce. This section
describes how to customize tours, beginning with replacing the Tour Map, and continuing with
customization of individual tours or parts of tours.

Tour Map
The product code references tours at transfer stations by logical names, so that you can change a single
tour without having to update references to that tour in various tour scripts. Tour maps tell the system the
specific tour files to use for each logical name.
The tour map also enables overlays of tour classes. If a tour script does not need to be customized, but
some of the Java classes do, the tour map can specify individual classes to customize. Note that any class
files must still use their own unique names (such as MBScashSelectedAisle.java for a new Aisle used in
place of CashSelectedAisle.java).
Typically, the base product Tour Map file, tourmap.xml, does not change. Instead, you create a custom
Tour Map for your project, and an additional one for each supported locale beyond your default locale.
Each of these Tour Map files contains only the differences it adds to the base Tour Map.
Follow these steps to add new Tour Map files:

1. Create one custom Tour Map file for each supported country in the pos\config directory of the
customer source tree. Initially, these Tour Map files may be empty; as you customize tour
components, you can add tags. The following sample shows the initial state of the file:
Code Sample 9-1 MBStourmap_CA.xml: Sample initial tourmap file for Canadian locale
<?xml version="1.0" encoding="UTF-8"?>
<tourmap
 country="CA"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="com/extendyourstore/foundation/tour/dtd/tourmap.xsd">

...Tour tags can be added here...

</tourmap>

2. Copy the pos\config\posfoundation.properties file to the customer source tree. Modify the
tourmap.files property in this file, adding the names of the new Tour Map files. Do not rename the
posfoundation.properties file, since this filename is referenced by Foundation classes. It is
important to keep the customized tour map files after the product tour map file in the list, since the
files listed later override earlier files.
Code Sample 9-2 posfoundation.properties: Adding new Tour Maps
comma delimited list of tourmap files to overlay
tourmap.files=tourmap.xml, MBStourmap.xml, MBStourmap_CA.xml
E x t e n s i o n G u i d e l i n e s 9- 3

9-4
3. Refer to the procedures that follow to modify tour scripts and Java components of a tour.

Tour Scripts
If you need to change the workflow of a tour, you must replace the tour script; you cannot extend a tour
script. To replace a tour script, follow these steps:

1. Create a new XML tour script in the customer source tree.
2. Modify the tour map in the customer source tree to specify the correct package and filename for

the new tour script. The logical tour name must stay the same.
Code Sample 9-3 tourmap_CA.xml: Replacing one tour script
<tour name="tender">
 <file>classpath://com/mbs/pos/services/tender/tender.xml</file>
</tour>

3. Copy and modify sites, roads, aisles, shuttles and signals.

Site
Extending siteactions in the traditional object-oriented sense is not recommended; letters mailed in the
original arrive method would conflict with the arrive method in the extended class. Since siteactions
represent relatively small units of code, they should be replaced instead of extended. Follow these steps:

1. Create a new siteaction class in the customer source tree, such as MBScashSelectedSite.java.
2. If you are overlaying a siteaction class, but not modifying the tour script, then all letters that were

mailed from the product version of the siteaction class should also be mailed from the new version.
Do not mail new letters that are not handled by the product code, unless the tour script and related
Java classes are also modified.

3. Edit the appropriate Tour Map for the locale, using the replacewith property in the <SITEACTION> tag
to define the new package and filename for the siteaction class.
Code Sample 9-4 tourmap_CA.xml: Replacing a siteaction
 <tour name="tender">
 <file>classpath://com/mbs/pos/services/tender</file>
 <SITE
 name="cashSelected"
 useaction="com.extendyourstore.pos.services.tender.cashSelectedSite"/>
 <SITEACTION
 class="cashSelectedSite"
 replacewith="com.mbs.pos.services.tender.MBScashSelectedSite"/>

 </tour>

Lane—Road or Aisle
As with siteactions, extending laneactions in the traditional object-oriented sense is not recommended, as
letters from the original and extended classes could conflict. Replace laneactions instead of extending
them, using the following steps:

1. Create a new laneaction class in the customer source tree, such as MBSOpenCashDrawerAisle.java.
2. If you are overlaying a siteaction class, but not modifying the tour script, then all letters that were

mailed from the product version of the laneaction class should also be mailed from the new
version. Do not mail new letters that are not handled by the product code, unless the tour script and
related Java classes are also modified.
P o i n t - o f - S a l e D e v e l o p e r G u i d e

3. Edit the appropriate Tour Map for the locale, using the replacewith property in the <LANEACTION> tag
to define the new package and filename for the laneaction.
Code Sample 9-5 tourmap_CA.xml: Replacing a laneaction
<tour name="tender”>
 <file>classpath://com/mbs/pos/services/tender</file>
 <SITE
 name="RefundDueUI"
 useaction="com.mbs.pos.services.tender.refundDueUISite">"/>
 <LANEACTION
 class="OpenCashDrawerAisle"
 replacewith="com.mbs.pos.services.tender.MBSOpenCashDrawerAisle"/>

 </tour>

Shuttle
Since shuttles do not mail letters, they may be extended or replaced; however extending them is
recommended. Follow these steps in either case:

1. Modify the shuttle class.
Create a new class in the customer source tree. If it extends or replaces the product bean class, add
the customer abbreviation to the filename. For example, TenderAuthorizationLaunchShuttle.java
becomes MBSTenderAuthorizationLaunchShuttle.java.

2. Edit the appropriate Tour Map for the locale, using the replacewith property in the <SHUTTLE> tag to
define the new package and filename for the shuttle.
Code Sample 9-6 tourmap_CA.xml: Replacing or Extending a shuttle
<tour name="tender”>
 <file>classpath://com/mbs/pos/services/tender</file>
 <SITE
 name="RefundDueUI"
 useaction="com.mbs.pos.services.tender.refundDueUISite">"/>
 <SHUTTLE
 class="TenderAuthorizationLaunchShuttle"
 replacewith="com.mbs.pos.services.tender.MBSTenderAuthorizationLaunchShuttle"/>

 </tour>

3. Modify the calling and nested tour scripts as necessary to adjust to the change.

Signal
Extending signals in the traditional object-oriented sense is not recommended. This is because signals are
typically so small that extending an original signal class makes them overly complex.
The REPLACEWITH tag of the TourMap does not work for Signals. The tour script must be customized
to refer to the package and filename of the new signal. Follow these steps:

1. Create a new signal class in the customer source tree. For example, create a replacement for
IsAuthRequiredSignal.java in the Tender service by creating a class file com\mbs\pos\services\tender\
MBSIsAuthRequiredSignal.java.

2. Customize the appropriate tour script:
Code Sample 9-7 MBStender.xml: Tender tour script with customized signal
<SERVICECODE>
... non-signal declarations omitted...
 <SIGNAL class="IsReturnTransactionSignal" />
E x t e n s i o n G u i d e l i n e s 9- 5

9-6
 <SIGNAL class="IsSaleTransactionSignal" />
 <SIGNAL class="IsNotVoidTransactionSignal" />
 <SIGNAL class="IsAuthNotRequiredSignal" />
 <SIGNAL class="MBSIsAuthRequiredSignal" package="com.mbs.pos.services.tender" />
 <SIGNAL class="IsRemoveTenderSignal" />
 <SIGNAL class="IsNoRemoveTenderSignal" />
 <SIGNAL class="IsValidDriverLicenseSignal" />
 <SIGNAL class="IsInvalidDriverLicenseSignal" />
... more declarations omitted...
</SERVICECODE>
... code omitted...
<ROAD name="AuthorizationRequested"
 letter="Next"
 destination="AuthorizationStation"
 tape="ADVANCE"
 record="OFF"
 index="OFF">
 <LIGHT signal="MBSIsAuthRequiredSignal"/>

Cargo
Since cargos do not mail letters, they may be extended or replaced. Cargo classes are typically part of a
hierarchy of classes. Follow these steps:

1. Modify the cargo class by doing one of the following:
• To extend the cargo, create a new class in the customer source tree that extends the cargo in the

product source tree. Be sure to extend from the lowest-level subclass. Add the customer
abbreviation to the beginning of the filename.

• To replace the cargo, create a new cargo class in the customer source tree.
2. Edit the appropriate Tour Map for the locale, using the replacewith property in the <CARGO> tag to

define the new package and filename for the cargo.
Code Sample 9-8 tourmap_CA.xml: Replacing a Cargo
<tour name="tender”>
 <file>classpath://com/mbs/pos/services/tender</file>
 <SITE
 name="RefundDueUI"
 useaction="com.mbs.pos.services.tender.refundDueUISite">"/>
 <CARGO
 class="TenderCargo"
 replacewith="com.mbs.pos.services.tender.MBSTenderCargo"/>

 </tour>

3. Modify the tour map and/or tour scripts and shuttles of the calling and nested tours to adapt to the
cargo modifications. Be sure to address:
• Classes in the same tour as the modified cargo
• All tours for which this tour is a nested tour
• All tours which are called by this tour
P o i n t - o f - S a l e D e v e l o p e r G u i d e

UI Framework
The UIManager and UITechnician classes are provided by Foundation. They are configurable through
the Conduit Script and should not be modified directly. This section describes customization to the
default UI configuration and individual screens.

Default UI Config
The product file pos\config\defaults\defaultuicfg.xml contains the building blocks for the UI (displays,
templates and specs) and references to all tour-specific uicfg.xml files. If you change any UI script in the
customer implementation, the defaultuicfg.xml file must be replaced. It also needs to be replaced if the
displays, templates, and basic bean specs need to be replaced. Follow these steps to replace the file:

1. Copy the file defaultuicfg.xml to the pos\config\defaults directory in the customer source tree, and
rename it (for example, to MBSdefaultuicfg.xml).

2. Modify the displays, templates, default screens, and specs as necessary to represent the customer’s
user interface.

3. Verify that the conduit script for the client tier has been customized and is located in the customer
source tree.

4. Modify the client conduit script to include the new filename and package name for the
MBSdefaultuicfg.xml file, in the configFilename property value in the UISubsystem section of the
UITechnician tag.
Code Sample 9-9 ClientConduit.xml: Conduit script modified to use custom UI configuration file
<TECHNICIAN
 name="UITechnician"
 class="UITechnician"
 package="com.extendyourstore.foundation.manager.gui" export="Y">

 <CLASS
 name="UISubsystem"
 package="com.extendyourstore.pos.ui"
 class="POSJFCUISubsystem">

 <CLASSPROPERTY
 propname="configFilename"
 propvalue="classpath://com/mbs/pos/config/defaults/MBSdefaultuicfg.xml"
 proptype="STRING"/>
...additional class properties omitted...

</CLASS>
</TECHNICIAN>

UI Script
A UI script changes if the overlays or unique bean specifications of one or more screens in a tour need to
be modified. Follow these steps:

1. Create a new UI script in the customer source tree. For example, copy the tenderuicfg.xml file from
the product source tree to the customer source tree and rename it MBStenderuicfg.xml.

2. Modify the MBSdefaultuicfg.xml file in the customer source tree to refer to the new filename and
package for the UI script.
Code Sample 9-10 MBSdefaultuicfg.xml: Customized Default UI Configuration File
... other include statements omitted...
E x t e n s i o n G u i d e l i n e s 9- 7

9-8
<INCLUDE filename="classpath://com/_360commerce/pos/services/sale/saleuicfg.xml"/>
 <INCLUDE filename="classpath://com/mbs/pos/services/tender/MBStenderuicfg.xml"/>
 <INCLUDE filename="classpath://com/_360commerce/pos/services/tender/capturecustomerinfo/
capturecustomerinfouicfg.xml"/>
 <INCLUDE filename="classpath://com/extendyourstore/pos/services/inquiry/
inquiryoptionsuicfg.xml"/>
... other include statements omitted...

Bean Model and Bean
The Point-of-Sale product code provides generalized beans that are designed to be reused as-is, such as
GlobalNavigationButtonBean.java for the global navigation button bar and DataInputBean.java for the work
area of form layout screens. These classes are not intended to be extended for a specific implementation,
though they may be extended if the general behavior or data must change in all cases.
The classes can be used for different screens within the application without changing to Java code by
modifying parameter values and calling methods on the bean. Use the generalized beans whenever
possible and avoid beans specialized for only one screen. However, bean and bean model classes in the
product code that are specific to an individual screen, such as CheckEntryBean.java and
CheckEntryBeanModel.java, may be customized. Follow these steps to modify a bean model:

1. Create a new bean model class.
Create a new class in the customer source tree, and add the customer abbreviation to the filename.

2. Copy tour files that need to reference the new bean model into the customer source tree. Modify
them to create and manipulate data for the new bean model.

Follow these steps to modify the bean:

1. Create a new bean class.
Create a new class in the customer source tree, and add the customer abbreviation to the filename.

2. Modify the UI config scripts that reference the bean class in the customer source tree to refer to
the new bean class filename and package.
Code Sample 9-11 MBStenderuicfg.xml: Tender UI Configuration with Customized Bean Reference
<UICFG>

 <BEAN
 specName="TenderOptionsButtonSpec"
 configuratorPackage="com.extendyourstore.pos.ui"
 configuratorClassName="POSBeanConfigurator"
 beanPackage="com.mbs.pos.ui.beans"
 beanClassName="MBSNavigationButtonBean">

 <BUTTON
 actionName="Cash"
 enabled="true"
 keyName="F2"
 labelTag="Cash"/>
...other buttons omitted...
 </BEAN>
...other UI objects omitted...
</UICFG>
P o i n t - o f - S a l e D e v e l o p e r G u i d e

Other
This section covers customization of components other than the tour and the UI framework, including
internationalization and localization changes as well as conduit scripts, PLAF, receipts, and reports.

Internationalization
The process of internationalization includes modifications to the code so that a single code base can
support multiple languages. The base product supports US English, Canadian French and Puerto Rican
Spanish. If additional languages need to be supported, additional internationalization steps need to be
completed by the customer.

1. For each non-product-supported language, create a new directory in the pos\trunk\locales directory
within the customer source tree. Locale names consist of a two-letter lowercase code for the
country, an underscore, and a two-letter uppercase code for language. Examples are en_US for
United States English and fr_CA for Canadian French. Copy the resource bundles from pos\trunk\
locales\en_US\config\ui\bundles to the config\ui\bundles directory for the given country. Modify the
text for that language and country combination.

2. Create help files for each of the supported languages similar to those for English located in
locales\en_US\config\ui\help. Refer to the Point-of-Sale Administrator’s Guide for more detail on
writing help files.

3. Create images for each of the supported locales similar to those located for English in locales\
en_US\config\ui\images.

4. Maximum lengths for input fields may need to be increased for languages that generally have
longer words (for example, German) or for double- and multi-byte character set support. The
maximum lengths are found in UI scripts located in pos\trunk\src\com\extendyourstore\pos\services
directories, and parameter files, located in pos\trunk\config\parameter.

5. Maximum lengths for database fields in internationalized tables may need to be increased for
languages that generally have longer words or for double- and multi-byte character set support.
This requires modifying the field length in the database and the CreateTableX.sql build script. Data
operations classes that refer to the fields should be checked for length dependencies and modified
if necessary.

6. Metadata stored in the database also needs to be internationalized. Tables that contain text that
should be represented for each supported language have a corresponding table to store text for the
non-default languages. For example, the ORDER table includes fields for all ORDER information
including text fields for the default language. The ORDER_I8 table includes a row for each text
field and locale combination for the ORDER table. If a new language is added, rows could be
added to the _I8 table for the new language.

7. If double- or multi-type character sets are to be supported, I8 tables must be translated into UTF-8
format. Follow these steps:
• Install fonts if not installed on the current operating system.
• Use a translation editor such as NJStar to translate text and save translations in UTF-8 format.
• Use the <JAVA_HOME>/bin/native2ascii executable to process the UTF-8 file and save it as

properly named resource bundle file. For example, posText_zh_CN.properties is the filename for
simplified Chinese as Unicode.
E x t e n s i o n G u i d e l i n e s 9- 9

9-1
• Modify the font.properties files located in the <JAVA_HOME>/jre/lib directory. Search for
‘font.properties’ on the http://ww.java.sun.com Web site for more information on what can be
modified in the font.properties files.

• Refer to the client side conduit script to determine the look-and-feel property file. The file is
defined as a uiPropertyFile classproperty of the UISubSystem tag. The product default is
named tigerplaf.properties. Modify this file to use only the Helvetica font. This system font
allows the double- and multi-byte character sets to be rendered properly.

Localization
Once the application has been internationalized to support all necessary languages, it must be customized
to reflect default and alternate locales. These modifications affect default and alternate locales and
various formats (for example, date and currency). Follow these steps:

1. If one does not already exist, place a copy of the conduit script for the client tier in the customer
source tree, where it can be customized.

2. Modify the customer version of the conduit script to update the <LOCALE> element to specify the
default language and country. Also modify the tag to specify any alternate language and countries.

3. Copy application.properties, located in config, to the customer source tree. Modify the
default_locale and supported_locales properties.

4. Copy domain.properties, located in domain\trunk\config, to the customer source tree in the domain
package. (Most references to the domain package are in the following section. This reference is
kept here to include all localization efforts in one location.) Modify currency, date, address and
other formats.

5. Modify the default and alternate currencies. Edit the InsertTableCurrency.sql file located in the db\
sql directory of the commerceservices package. There is one INSERT statement for each type of
currency. Set the value of the DE_CNY field to ‘1’ for the default currency only. If a supported
currency does not have an INSERT statement in this file, you must add one and also add a
corresponding Java class in the currency package. After the .sql file is updated, rebuild the
database so that the change can take effect.

6. Set the exchange rate. Edit the InsertTableExchangeRate.sql file located in the db\sql directory of the
commerceservices package. This file contains exchange rates for each entry in the currency table.
After this .sql file has been updated, the database needs to be rebuilt for the change to take effect.

7. Set the taxes. The base product supports US and Canadian taxes. To add support for additional
country’s taxes requires custom code. Modify InsertTableAddress.sql to update the lo_ads table
similar to the following, for the tax locale to be British Columbia, Canada, perform the following
SQL statements.
Code Sample 9-12 InsertTableAddress.sql: Sample lo_ads table updates
update lo_ads set ST_CNCT = 'BC' where id_prty = <party id number>;
update lo_ads set CO_CNCT = 'CA' where id_prty = <party id number>;

Run dbbuild.bat to include the new data in the database.
8. Configure devices. They should be updated to reflect the target locale.
0 P o i n t - o f - S a l e D e v e l o p e r G u i d e

http://www.java.sun.com

Conduit Scripts
The conduit scripts provided with 360Store applications define a typical tier configuration and are
usually replaced with customer conduit scripts for a given implementation. Conduit scripts include an
XML file and a .bat and .sh file to execute the XML; both .bat and .sh versions of the batch file are
provided to support Windows and Linux.
Follow these steps to set up customer conduit scripts:

1. Copy the conduit scripts (client, server, and collapsed) to the customer source tree.
Copy the XML and .bat and .sh files for each type of conduit script. Rename the scripts using the
customer abbreviation (ClientConduit.xml becomes MBSClientConduit.xml).

2. Edit each XML file to include only the managers and technicians that should be loaded on the
given tier.

3. Modify the class and package names for any managers, technicians and configuration scripts that
have been customized.
Code Sample 9-13 MBSClientConduit.xml: Customized with New Data Manager
 <MANAGER name="DataManager" class="MBSDataManager"
 package="com.mbs.foundation.manager.data">
 <PROPERTY propname="configScript"
 propvalue="classpath://config/manager/PosDataManager.xml" />
 </MANAGER>

4. Modify your development environment to pass in the new conduit XML file as a parameter to the
TierLoader.

5. Edit the .bat and .sh files to pass the correct conduit XML files to the Java environment.

PLAF
Point-of-Sale implements a pluggable look-and-feel (PLAF) so that customers may modify the look of
the application including screen colors and images. To modify the PLAF, follow these steps:

1. Create a new properties file that is a copy of one of the following files. Place the file in the com\mbs\
pos\config directory in the customer source tree.
• tigerplaf.properties—yellow-and-purple, text-based LAF
• imagePlaf.properties—blue and gold image-based LAF

2. Update the conduit scripts in the customer source tree to specify the package and filename for the
new LAF file in the UI Technician tag.

3. Have new UI beans call uiFactory.configureUIComponent(this, UI_PREFIX) in the initialize()
method to set the look-and-feel.

Receipts
Receipts are composed of two levels:

• A base receipt that manages data and behavior for all receipts
• Specific receipt types such as Layaway and Return

The receipt class names are specified in the tour code and there is no factory for creating receipts.
Therefore, modifications to the tour code that accesses the receipts are required.
E x t e n s i o n G u i d e l i n e s 9- 11

9-1
If the base receipt and specific receipt classes are both going to be extended, typical inheritance is not
sufficient since Java does not support multiple inheritance. For example, the MBSLayawayReceipt.java class
cannot extend both MBSPrintableDocument.java and MBSLayawayReceipt.java. The recommended approach is
to extend both classes, and have MBSLayawayReceipt.java extend LayawayReceipt.java.
MBSLayawayReceipt.java then includes an instance of MBSPrintableDocument.java and methods can be called
on the extended class.
Follow these steps to customize receipts:

1. If modifications are required to the base receipt, create a class in the customer source tree named
MBSPrintableDocumentUtility.java. This class is a utility class since the receipt classes delegate
common functionality to it.

2. For each receipt type that needs to be customized, do one of the following:
• To modify an existing receipt type, create a Java class in the customer source tree that extends

the receipt class in the product code. Add the customer abbreviation to the beginning of the
filename.

• To create a new receipt type, create a Java class in the customer source tree that extends
MBSPrintableDocument.java.

3. For extended classes, include an instance of the MBSPrintableDocumentUtility.java class. Call
methods on the utility class when a customized method is required.

4. Modify tours in the customer source tree as necessary to call new() for the customized receipt types.
5. Modify parameters for the receipt header and footer as necessary.

Reports
Point-of-Sale has a set of reports that print on the slip printer. These reports are in a proprietary format
and do not use a reporting engine. The report class names are specified in the tour code and there is no
factory for creating reports. Therefore, modifications to tours that access the reports are required.
To modify existing Point-of-Sale reports, the report Java files can be extended. Follow these steps:

1. For each report, do one of the following:
• To modify an existing report, create a Java class in the customer source tree that extends the

reports class in the product code (found in pos\trunk\srb\com\extendyourstore\pos\reports).
• To create a new report, create a Java class in the customer source tree that extends the abstract

RegisterReport class in the product code. Use the customer abbreviation in the filename.
2. Create, modify or override data and methods as necessary to modify the report.
3. Modify the tour code that creates the report object to call new() for the new report class.

domain Package
This section addresses customization of files in the domain package. The domain package can be found in
the \360store\domain directory in your source control system.
2 P o i n t - o f - S a l e D e v e l o p e r G u i d e

Retail Domain
The Retail Domain provides a retail-specific implementation of business objects. These objects are easily
extended to meet customer’s requirements.

DomainObjectFactory
If any Retail Domain Objects (RDOs) are added or extended, the DomainObject Factory must be
extended. This needs to be done only one time for the application. The extended class must include
getXinstance() methods for all new and extended RDOs, where X is the name of the RDO. Follow these
steps:

1. Create a new Java class that extends DomainObjectFactory.java. It should be named with the
customer abbreviation in the filename MBSDomainObjectFactory.java and be located in the customer
source tree.

2. Copy the domain.properties file to the domain\config directory of the customer source tree. Modify
the setting for the DomainObjectFactory to refer to the new package and class name created in the
previous step.
DomainObjectFactory=com.acmebrick.domain.factory.MBSDomainObjectFactory;

3. Add getXInstance() methods as necessary for new Retail Domain Objects.

Retail Domain Object (RDO)
Follow these steps to create or extend an RDO:

1. Complete one of the following steps:
• To create a new RDO, create a Java class in the customer source tree in the appropriate

subdirectory of domain\src\com\mbs\domain. Extend an appropriate superclass from the product
code. At a minimum, the new class must extend EYSDomainIfc.java.

• To modify an existing RDO, create a Java class in the customer source tree that extends an
RDO in the product code.

Include the customer abbreviation in the filename; for example, you might name your class file
MBSCustomer.java.

2. Add data attributes and methods required by the customer-specific functionality.
3. Create setCloneAttributes(), equals() and toString() methods to address the new data attributes and

then reference the corresponding superclass method.
4. Complete one of the following steps:

• For a new RDO, add a new getXInstance() method to MBSDomainObjectFactory.java for the new
RDO.

• For an extended RDO, ovverride the existing getXInstance() method in
MBSDomainObjectFactory.java to return an object of the new class type.

5. Access the new RDO data and methods from tours located in the customer source tree. If product
tours need to access the new RDO data and methods, the tours must be modified.

6. If the RDO data is represented on a screen, modify the UI script, bean and bean model classes to
reflect the change.
E x t e n s i o n G u i d e l i n e s 9- 13

9-1
7. If the RDO is saved to the database, modify the data operation to save the new data attributes.

Database
This section details how to extend database behavior through changes to the data operations. The
architecture of the Data Technician simplifies this somewhat, because changes to data operations can be
implemented without changes to the Point-of-Sale application code.

Data Manager and Technician Scripts
The Data Manager and Data Technician Scripts, DefaultDataManager.xml and DefaultDataTechnician.xml, are
routinely customized when transactions, data actions, and data operations are customized. See the next
section for details.

Data Actions and Operations
When a new or modified RDO contains data that need to be saved to the database, a data operation class
must be created or extended. A Data Action must be modified if a unit of database work is changed.

1. Create class files.
Create new class files for each new or modified item in the customer source tree. If an item extends
a product class, add the customer abbreviation to the filename.

2. If a customized version of POSDataManager.xml does not already exist, copy it to the customer source
tree and give it a new name, such as MBSPOSDataManager.xml.

3. For customized transactions with new filenames, modify the transaction name.
4. If a customized version of DefaultDataTechnician.xml does not already exist, copy it to the customer

source tree and give it a new name, such as MBSDefaultDataTechnician.xml.
5. Edit the customized MBSDefaultDataTechnician.xml file, updating package and class names for data

actions and data operations that have been modified.
Code Sample 9-14 MBSDefaultDataTechnician.xml: Customizing a Data Operation
 <OPERATION class="JdbcSaveTenderLineItems"
 package="com.mbs.domain.arts"
 name="MBSSaveTenderLineItems">
 <COMMENT>
 This operation saves all tender line items associated
 with the transaction.
 </COMMENT>
 </OPERATION>

6. Modify the conduit scripts to reference the new package and/or filename of the technician script.
Code Sample 9-15 CollapsedConduitFF.xml: Customizing the Data Technician
<TECHNICIAN name="LocalDT" class="DataTechnician"
 package="com.mbs.foundation.manager.data"
 export="Y">
 <PROPERTY
 propname="dataScript"
 propvalue="classpath://config/manager/MBSDefautlDataTechnician.xml"
 />
 </TECHNICIAN>
4 P o i n t - o f - S a l e D e v e l o p e r G u i d e

Data Transactions
Data transactions are the valet classes that carry requests from the client to the server. A data transaction
factory implements the factory pattern for data transaction classes. The application code asks the factory
for a transaction object and the factory determines which Java class is used to create the object. To create
or extend a data transaction class, follow these steps:

1. Create new or modified data transactions.
Create a Java class in the customer source tree and prepend the customer abbreviation to the
filename. If you are modifying an existing transaction, have the class extend the transaction class
in the product code, and overwrite the methods you are modifying.

2. Copy POSDataManager.xml to the customer source tree.
3. For customized transactions with new filenames, modify the transaction name.
4. Copy DefaultDataTechnician.xml to the customer source tree.
5. Modify package and class names for data actions and data operations that have been modified.
6. If not already done, modify the conduit scripts to reference the new package and/or filename of the

technician script.
7. Extend DataTransactionKeys.java as MBSDataTransactionKeys.java in the customer source tree to add

or modify the static final String for each transaction (the file serves as a list of string constants).
Code Sample 9-16 MBSDataTransactionKeys.java: Adding Strings
public static final String
DATA_MAINTENANCE_TRANSACTION=”data.transaction.DATA_MAINTENANCE_TRANSACTION
public static final String PLU_RETURN_TRANSACTION” =data.transaction.PLU_RETURN_TRANSACTION”

8. Update domain.properties in the customer source tree to add or modify the name/value pairs for
each transaction.
Code Sample 9-17 domain.properties: Sample Modified and New Data Transactions
Registry of DataTransactionIfc implementations
(try to keep in alphabetical order)
#

data.transaction.ADVANCED_PRICING_DATA_TRANSACTION=com.extendyourstore.domain.arts.AdvancedPricin
gDataTransaction
...code omitted here...
data.transaction.REGISTER_STATUS_TRANSACTION=com.MBS.domain.data.transactions.RegisterStatusTrans
action
data.transaction.REGISTRY_DATA_TRANSACTION=com.extendyourstore.domain.arts.RegistryDataTransactio
n
data.transaction.STORE_LOOKUP_DATA_TRANSACTION=com.MBS.domain.data.transactions.StoreLookupDataTr
ansaction

MBSdata.transaction.DATA_MAINTENANCE_TRANSACTION=com.MBS.domain.data.transactions.DataMaintenance
Transaction
MBSdata.transaction.PLU_RETURN_TRANSACTION=com.MBS.domain.data.transactions.ReturnPluTransaction
E x t e n s i o n G u i d e l i n e s 9- 15

9-1
6 P o i n t - o f - S a l e D e v e l o p e r G u i d e

C H A P T E R 1 0

GENERAL DEVELOPMENT STANDARDS
The following standards have been adopted by 360Commerce product and service development teams.
These standards are intended to reduce bugs and increase the quality of the code. The chapter covers
basic standards, architectural issues, and common frameworks. These guidelines apply to all
360Commerce applications.

Basics
The guidelines in this section cover common coding issues and standards.

Java Dos and Don’ts
The following dos and don’ts are guidelines for what to avoid when writing Java code.

• DO use polymorphism.
• DO have only one return statement per function or method; make it the last statement.
• DO use constants instead of literal values when possible.
• DO import only the classes necessary instead of using wildcards.
• DO define constants at the top of the class instead of inside a method.
• DO keep methods small, so that they can be viewed on a single screen without scrolling.
• DON’T have an empty catch block. This destroys an exception from further down the line that might

include information necessary for debugging.
• DON’T concatenate strings. 360Commerce products tend to be string-intensive and string

concatenation is an expensive operation. Use StringBuffer instead.
• DON’T use function calls inside looping conditionals (for example, while (i <=name.len())). This calls

the function with each iteration of the loop and can affect performance.
• DON’T use a static array of strings.
• DON’T use public attributes.
• DON’T use a switch to make a call based on the object type.
G e n e r a l D e v e l o p m e n t S t a n d a r d s 10- 1

10
Avoiding Common Java Bugs
The following fatal Java bugs are not found at compile time and are not easily found at runtime. These
bugs can be avoided by following the recommendations in Table 10-1.

Formatting
Follow these formatting standards to ensure consistency with existing code.

Note: A code block is defined as a number of lines proceeded with an opening brace and ending with
a closing brace.

• Indenting/braces—Indent all code blocks with four spaces (not tabs). Put the opening brace on its own
line following the control statement and in the same column. Statements within the block are indented.
Closing brace is on its own line and in same column as the opening brace. Follow control statements
(if, while, etc.) with a code block with braces, even when the code block is only one line long.

• Line wrapping—If line breaks are in a parameter list, line up the beginning of the second line with the
first parameter on the first line. Lines should not exceed 120 characters.

• Spacing—Include a space on both sides of binary operators. Do not use a space with unary operators.
Do not use spaces around parenthesis. Include a blank line before a code block.

• Deprecation—Whenever you deprecate a method or class from an existing release, mark it as
deprecated, noting the release in which it was deprecated, and what methods or classes should be used
in place of the deprecated items; these records facilitate later code cleanup.

• Header—The file header should include the PVCS tag for revision and log history.
Code Sample 10-1 Header Sample
/* *

 Copyright (c) 1998-2003 360Commerce, Inc. All Rights Reserved.

 Log

* */
package com._360commerce.samples;

// Import only what is used and organize from lowest layer to highest.
import com.ibm.math.BigDecimal;
import com._360commerce.common.utility.Util;

//--

Table 10-1 Common Java Bugs
Bug Preventative Measure
null pointer
exception

Check for null before using an object returned by another method.

boundary
checking

Check the validity of values returned by other methods before using them.

array index out of
bounds

When using a value as a subscript to access an array element directly, first
verify that the value is within the bounds of the array.

incorrect cast When casting an object, use instanceof to ensure that the object is of that type
before attempting the cast.
-2 P o i n t - o f - S a l e D e v e l o p e r G u i d e

/**
 This class is a sample class. Its purpose is to illustrate proper
 formatting.
 @version $Revision$
**/
//--
public class Sample extends AbstractSample
implements SampleIfc
{
 // revision number supplied by configuration management tool
 public static String revisionNumber = "$Revision$";
 // This is a sample data member.
 // Use protected access since someone may need to extend your code.
 // Initializing the data is encouraged.
 protected String sampleData = "";

 //---
 /**
 Constructs Sample object.
 Include the name of the parameter and its type in the javadoc.
 @param initialData String used to initialize the Sample.
 **/
 //---
 public Sample(String initialData)
 {
 sampleData = initialData;
 // Declare variables outside the loop
 int length = sampleData.length();
 BigDecimal[] numberList = new BigDecimal[length];

 // Precede code blocks with blank line and pertinent comment
 for (int i = 0; i < length; i++)
 {
 // Sample wrapping line.
 numberList[i] = someInheritedMethodWithALongName(Util.I_BIG_DECIMAL_ONE,

 sampleData,
 length - i);

 }
 }
}

Javadoc
• Make code comments conform to Javadoc standards.
• Include a comment for every code block.
• Document every method’s parameters and return codes, and include a brief statement as to the

method’s purpose.
G e n e r a l D e v e l o p m e n t S t a n d a r d s 10- 3

10
Naming Conventions
Names should not use abbreviations except when they are widely accepted within the domain (such as the
customer abbreviation, which is used extensively to distinguish customized code from product code).
Additional naming conventions follow:

SQL Guidelines
The following general guidelines apply when creating SQL code:

• Keep SQL code out of client/UI modules. Such components should not interact with the database
directly.

• Table and column names must be no longer than 18 characters.

Table 10-2 Naming Conventions
Element Description Example
Package Names Package names are entirely lower case

and should conform to the documented
packaging standards.

com.extendyourstore.packagename
com.mbs.packagname

Class Names Mixed case, starting with a capital letter.
Exception classes end in Exception;
interface classes end in Ifc; unit tests
append Test to the name of the tested
class.

DatabaseException
DatabaseExceptionTest
FoundationScreenIfc

File Names File names are the same as the name of
the class.

DatabaseException.java

Method Names Method names are mixed case, starting
with a lowercase letter. Method names
are an action verb, where possible.
Boolean-valued methods should read
like a question, with the verb first.
Accessor functions use the prefixes get
or set.

isEmpty()
hasChildren()
getAttempt()
setName()

Attribute Names Attribute names are mixed case, starting
with a lowercase letter.

lineItemCount

Constants Constants (static final variables) are
named using all uppercase letters and
underscores.

final static int NORMAL_SIZE =
400

EJBs—entity Use these conventions for entity beans,
where ‘Transaction’ is a name that
describes the entity.

TransactionBean
TransactionIfc
TransactionLocal
TransactionLocalHome
TransactionRemote
TransactionHome

EJBs—session Use these conventions for session beans,
where ‘Transaction’ is a name that
describes the session.

TransactionService
TransactionAdapter
TransactionManager
-4 P o i n t - o f - S a l e D e v e l o p e r G u i d e

• Comply with ARTS specifications for new tables and columns. If you are creating something not
currently specified by ARTS, strive to follow the ARTS naming conventions and guidelines.

• Document and describe every object, providing both descriptions and default values so that we can
maintain an up-to-date data model.

• Consult your data architect when designing new tables and columns.
• Whenever possible, avoid vendor-specific extensions and strive for SQL-92 compliance with your

SQL.
• While Sybase-specific extensions are common in the code base, do not introduce currently unused

extensions, because they must be ported to the DataFilters and JdbcHelpers for other databases.
• All SQL commands should be uppercase because the DataFilters currently only handle uppercase.
• If database-specific code is used in the source, move it into the JdbcHelpers.
• All JDBC operations classes must be thread-safe.

To avoid errors:

• Pay close attention when cutting and pasting SQL.
• Always place a carriage return at the end of the file.
• Test your SQL before committing.

The subsections that follow describe guidelines for specific database environments.

DB2
Table 10-3 shows examples of potential problems in DB2 SQL code.

MySQL
MySQL does not support sub-selects.

Table 10-3 DB2 SQL Code Problems
Problem Problem Code Corrected Code
Don’t use quoted integers or
unquoted char and varchar
values; these cause DB2 to
produce errors.

CREATE TABLE BLAH
(
 FIELD1 INTEGER,
 FIELD2 CHAR(4)
);
INSERT INTO BLAH (FIELD1,
FIELD2) VALUES ('5', 1020);

CREATE TABLE BLAH
(
 FIELD1 INTEGER,
 FIELD2 CHAR(4)
);
INSERT INTO BLAH (FIELD1,
FIELD2) VALUES (5, '1020');

Don’t try to declare a field
default as NULL.

CREATE TABLE BLAH
(
 FIELD1 INTEGER NULL,
 FIELD2 CHAR(4) NOT NULL
);

CREATE TABLE BLAH
(
 FIELD1 INTEGER,
 FIELD2 CHAR(4) NOT NULL
);
G e n e r a l D e v e l o p m e n t S t a n d a r d s 10- 5

10
Oracle
Table 10-4 provides some examples of common syntax problems which cause Oracle to produce errors.

PostgreSQL
PostgreSQL does not currently support the command ALTER TABLE BLAH ADD PRIMARY KEY. However, it does
support the standard CREATE TABLE command with a PRIMARY KEY specified. For this reason, the
PostgresqlDataFilter converts SQL of the form shown in Code Sample 10-2 into the standard form shown
in Code Sample 10-3.
Code Sample 10-2 SQL Code Before PostgresqlDataFilter Conversion
CREATE TABLE BLAH
(
 COL1 INTEGER NOT NULL,
 COL2 INTEGER NOT NULL,
 COL3 INTEGER,
);

ALTER TABLE ADD PRIMARY KEY (COL1, COL2)

Code Sample 10-3 SQL Code After PostgresqlDataFilter Conversion
CREATE TABLE BLAH
(
 COL1 INTEGER NOT NULL,
 COL2 INTEGER NOT NULL,
 COL3 INTEGER,
 PRIMARY KEY (COL1, COL2)
);

Note: There must be a new line and “(“ after the CREATE TABLE command for the PostgresqlDataFilter’s
conversion to work, properly formatting the SQL.

Sybase
Sybase does not throw errors if a table element is too large; it truncates the value. If using a
VARCHAR(40), use less than 40 characters.

Table 10-4 Oracle SQL Code Problems
Problem Problem Code Corrected Code
Blank line in code
block causes error.

CREATE TABLE BLAH
(
 FIELD1 INTEGER,
 FIELD2 VARCHAR(20)

);

CREATE TABLE BLAH
(
 FIELD1 INTEGER,
 FIELD2 VARCHAR(20)
);

When using NOT
NULL with a default
value, NOT NULL
must follow the
DEFAULT statement.

CREATE TABLE BLAH
(
 FIELD1 INTEGER NOT NULL DEFAULT
0,
 FIELD2 VARCHAR(20)
);

CREATE TABLE BLAH
(
 FIELD1 INTEGER DEFAULT 0 NOT
NULL,
 FIELD2 VARCHAR(20)
);

In a CREATE or
INSERT, do not place
a comma after the
last item.

CREATE TABLE BLAH
(
 FIELD1 INTEGER,
 FIELD2 VARCHAR(20),
);

CREATE TABLE BLAH
(
 FIELD1 INTEGER,
 FIELD2 VARCHAR(20)
);
-6 P o i n t - o f - S a l e D e v e l o p e r G u i d e

Unit Testing
For details on how to implement unit testing, see separate guidelines on the topic. Some general notes
apply:

• Break large methods into smaller, testable units.
• Although unit testing may be difficult for tour scripts, apply it for Java components within the Point-

of-Sale code.
• If you add a new item to the codebase, make sure your unit tests prove that the new item can be

extended.
• In unit tests, directly create the data/preconditions necessary for the test (in a setup() method) and

remove them afterwards (in a teardown() method). JUnit expects to use these standard methods in
running tests.

Architecture and Design Guidelines
This section provides guidelines for making design decisions which are intended to promote a robust
architecture.
G e n e r a l D e v e l o p m e n t S t a n d a r d s 10- 7

10
AntiPatterns
An AntiPattern is a common solution to a problem which results in negative consequences. The name
contrasts with the concept of a pattern, a successful solution to a common problem. The following
AntiPatterns introduce bugs and reduce the quality of code.

Table 10-5 Common AntiPatterns
Pattern Description Solution
Reinvent the
Wheel

Sometimes code is developed in an
unnecessarily unique way that
leads to errors, prolonged
debugging time and more difficult
maintenance.

The analysis process for new features
provides awareness of existing solutions
for similar functionality so that you can
determine the best solution.
There must be a compelling reason to
choose a new design when a proven
design exists. During development, a
similar pattern should be followed in
which existing, proven solutions are
implemented before new solutions.

Copy-and-paste
Programming,
classes

When code needs to be reused, it is
sometimes copied and pasted
instead of using a better method.
For example, when a whole class is
copied to a new class when the
new class could have extended the
original class. Another example is
when a method is being overridden
and the code from the super class is
copied and pasted instead of
calling the method in the super
class.

Use object-oriented techniques when
available instead of copying code.

Copy-and-paste
Programming,
XML

A new element (such as a Site class
or an Overlay XML tag) can be
started by copying and pasting a
similar existing element. Bugs are
created when one or more pieces
are not updated for the new
element. For example, a new
screen might have the screen name
or prompt text for the old screen.

If you copy an existing element to create
a new element, manually verify each
piece of the element to ensure that it is
correct for the new element.
-8 P o i n t - o f - S a l e D e v e l o p e r G u i d e

Designing for Extension
This section defines how to code product features so that they may be easily extended. It is important that
developers on customer projects whose code may be rolled back into the base product follow these
standards as well as the guidelines in Chapter 9, “Extension Guidelines.”

• Separate external constants such as database table and column names, JMS queue names, port
numbers from the rest of the code. Store them in (in order of preference):
- Configuration files
- Deployment descriptors
- “Constant” classes/interfaces

• Make sure the SQL code included in a component does not touch tables not directly owned by that
component.

• Consider designing so that any fine grained operation within the larger context of a coarse grain
operation can be factored out in a separate “algorithm” class, so that it can be replaced without
reworking the entire activity flow of the larger operation.

Project
Mismanagement/
Common
Understanding

A lack of common understanding
between managers, Business
Analysts, Quality Assurance and
developers can lead to missed
functionality, incorrect
functionality and a larger-than-
necessary number of defects. An
example of this is when code does
not match Functional
Requirements, including details
like maximum length of fields and
dialog message text.

Read the Functional Requirement before
you code. If there is disagreement with
content, raise an issue with the Product
Manager. Before you consider code for
the requirement finished, all issues must
be resolved and the code must match the
requirements.

Stovepipe Multiple systems within an
enterprise are designed
independently. The lack of
commonality prevents reuse and
inhibits interoperability between
systems. For example, a change to
till reconcile in Back Office may
not consider the impact on Point-
of-Sale. Another example is a
making change to a field in the
360Store database for a Back
Office feature without handling the
Point-of-Sale effects.

Coordinate technologies across
applications at several levels. Define
basic standards in infrastructures for the
suite of products. Only mission-specific
functions should be created
independently of the other applications
within the suite.

Table 10-5 Common AntiPatterns
Pattern Description Solution
G e n e r a l D e v e l o p m e n t S t a n d a r d s 10- 9

10
Common Frameworks
This section provides guidelines which are common to the 360Commerce applications.

Internationalization
The following are some general guidelines for maintaining an internationalized code base which can be
localized when needed. Refer to other documents for detailed instructions on these issues.

• All displayed text must be referenced from the appropriate resource bundle and properties file, so that
the text can be changed when needed.

• Numbers, currency, and amounts must be displayed using Java internationalization conventions, so
that appropriate symbols and number dividers can be used for the current locale.

• Formats and conventions related to dates, times and calendars are locale sensitive. All the date, time
and calendar related operations must use DateFormat, SimpleDateFormat and Calendar classes,
instead of the Date class. Remove hardcoded dates (mm/dd/yyyy, etc). Use the formats available as
part of the DateFormat class.

• Properties in the application.properties file specify default and supported locales:
default_locale=en_US
supported_locales=en_US,fr_CA,en_CA

• Help files for new screens must be created in the appropriate locale directory, and pos\config\ui\help\
helpscreens.properties must be updated.

• Display database driven locale sensitive data according to the current locale.

Logging
360Commerce’s systems use Log4J for logging. When writing log commands, use the following
guidelines:

• Use calls to Log4J rather than System.out from the beginning of your development. Unlike
System.out, Log4J calls are naturally written to a file, and can be suppressed when desired.

• Log exceptions where you catch them, unless you are going to rethrow them. This is preserves the
context of the exceptions and helps reduce duplicate exception reporting.

• Logging uses few CPU cycles, so use debugging statements freely.
• Use the correct logging level:

- FATAL—crashing exceptions
- ERROR—nonfatal, unhandled exceptions (there should be few of these)
- INFO—lifecyle/heartbeat information
- DEBUG—information for debugging purposes

The following sections provide additional information on guarding code, when to log, and how to write
log messages.
-10 P o i n t - o f - S a l e D e v e l o p e r G u i d e

Guarding Code
Testing shows that logging takes up very little of a system’s CPU resources. However, if a single call to
your formatter is abnormally expensive (stack traces, database access, network IO, large data
manipulations, etc.), you can use Boolean methods provided in the Logger class for each level to
determine whether you have that level (or better) currently enabled; Jakarta calls this a code guard:
Code Sample 10-4 Wrapping Code in a Code Guard
 if (log.isDebugEnabled()) {
 log.debug(MassiveSlowStringGenerator().message());
 }

An interesting use of code guards, however, is to enable debug-only code, instead of using a DEBUG
flag. Using Log4J to maintain this functionality lets you adjust it at runtime by manipulating Log4J
configurations.
For instance, you can use code guards to simply switch graphics contexts in your custom swing
component:
Code Sample 10-5 Switching Graphics Contexts via a Logging Level Test
protected void paintComponent(Graphics g) {

 if (log.isDebugEnabled()) {
 g = new DebugGraphics(g, this);
 }

 g.drawString("foo", 0, 0);
}

When to Log
There are three main cases for logging:

• Exceptions—Should be logged at an error or fatal level.
• Heartbeat/Lifecycle—For monitoring the application; helps to make unseen events clear. Use the

info level for these events.
• Debug—Code is usually littered with these when you are first trying to get a class to run. If you use

System.out, you have to go back later and remove them. With Log4J, you can simply raise the log
level. Furthermore, if problems pop up in the field, you can lower the logging level and access them.

Writing Log Messages
When Log4J is being used, any log message might be seen by a user, so the messages should be written
with users in mind. Cute, cryptic, or rude messages are inappropriate. The following sections provide
additional guidelines for specific types of log messages.

Exception Messages
A log message should have enough information to give the user a good shot at understanding and fixing
the problem. Poor logging messages say something opaque like “load failed.”
Take this piece of code:

try {
 File file = new File(fileName);
G e n e r a l D e v e l o p m e n t S t a n d a r d s 10- 11

10
 Document doc = builder.parse(file);

 NodeList nl = doc.getElementsByTagName("molecule");
 for (int i = 0; i < nl.getLength(); i++) {
 Node node = nl.item(i);
 // something here
 }

} catch {
 // see below
}

and these two ways of logging exceptions:

} catch (Exception e){
 log.debug("Could not load XML");
}

} catch (IOException e){
 log.error("Problem reading file " + fileName, e);
} catch (DOMException e){
 log.error("Error parsing XML in file " + fileName, e);
} catch (SAXException e){
 log.error("Error parsing XML in file " + fileName, e);
}

In the first case, you get an error that just tells you something went wrong. In the second case, you're
given slightly more context around the error, and you get that key piece of data: the filename.
The log lets you augment the message in the exception itself. Ideally, with the messages, the stack trace,
and type of exception, you'll have enough to be able to reproduce the problem at debug time. Given that,
the message can be reasonably verbose.
For instance, the fail() method in JUnit really just throws an exception, and whatever message you pass
to it is in effect logging. It’s useful to construct messages that contain a great deal of information about
what you are looking for:
Code Sample 10-6 JUnit
if (! list.contains(testObj)) {
 StringBuffer buf = new StringBuffer();
 buf.append("Could not find object " + testObj + " in list.\n");
 buf.append("List contains: ");
 for (int i = 0; i < list.size(); i++) {
 if (i > 0) {
 buf.append(",");
 }
 buf.append(list.get(i));
 }
 fail(buf.toString());
}

Heartbeat or Lifecycle Messages
The log message here should succinctly display what portion of the lifecyle is occurring (login, request,
loading, etc.) and what apparatus is doing it (is it a particular EJB, are there multiple servers running, etc.)
These message should be fairly terse, since you expect them to be running all the time.
-12 P o i n t - o f - S a l e D e v e l o p e r G u i d e

Debug Messages
Debug statements are going to be your first insight into a problem with the running code, so having
enough, of the right kind, is important.
These statements are usually either of an intra-method-lifecycle variety:
 log.debug("Loading file");
 File file = new File(fileName);
 log.debug("loaded. Parsing...");
 Document doc = builder.parse(file);
 log.debug("Creating objects");
 for (int i ...

or of the variable-inspection variety:
 log.debug("File name is " + fileName);
 log.debug("root is null: " + (root == null));
 log.debug("object is at index " + list.indexOf(obj));

Exception Handling
The key guidelines for exception handling are:

• Handle the exceptions that you can (FileNotFound, etc.)
• Fail fast if you can’t handle an exception
• Log every exception with Log4J, even when first writing the class, unless you are rethrowing the

exception
• Include enough information in the log message to give the user or developer a fighting chance at

knowing what went wrong
• Nest the original exception if you rethrow one

Types of Exceptions
The EJB specification divides exceptions into the following categories:
JVM Exceptions—You cannot recover from these; when one is thrown, it’s because the JVM has
entered a kernel panic state that the application cannot be expected to recover from. A common example
is an Out of Memory error.
System Exceptions—Similar to JVM exceptions, these are generally, though not always, “non-
recoverable” exceptions, also described as “unexpected” exceptions. The canonical example here is
NullPointerException. The idea is that if a value is null, often you don't know what you should do. If you
can simply report back to your calling method that you got a null value, do that. If you cannot gracefully
recover, say from an IndexOutOfBoundsException, treat it as a system exception and fail fast.
Application Exceptions—These are the expected exceptions, usually defined by specific application
domains. It is useful to think of these in terms of recoverability. A FileNotFoundException is sometimes
easy to rectify by simply asking the user for another file name. But something that's application specific,
like JDOMException, may still not be recoverable. The application can recognize that the XML it is
receiving is malformed, but it may still not be able to do anything about it.

Avoid java.lang.Exception
Avoid throwing the generic Exception; choose a more specific (but standard) exception.
G e n e r a l D e v e l o p m e n t S t a n d a r d s 10- 13

10
Avoid Custom Exceptions
Custom exceptions are rarely needed. The specific type of exception thrown is rarely important; don’t
create a custom exception if there is a problem with the formatting of a string
(ApplicationFormatttingException) instead of reusing IllegalArgumentException.
The best case for writing a custom exception is if you can provide additional information to the caller
which is useful for recovering from the exception or fixing the problem. For example, the
JPOSExceptions can report problems with the physical device. An XML exception could have line
number information embedded in it, allowing the user to easily detect where the problem is. Or, you
could subclass NullPointer with a little debugging magic to tell the user what method of variable is null.

Catching Exceptions
The following sections provide guidelines on catching exceptions.

Keep the Try Block Short
The following example, from a networking testing application, shows a loop that was expected to require
approximately 30 seconds to execute (since it calls sleep(3000) ten times):
Code Sample 10-7 Network Test
 for (int i = 0; i < 10; i++) {
 try {
 System.out.println("Thread " + Thread.currentThread().getName() + " requesting number " +
i);
 URLConnection con = myUrl.openConnection();
 con.getContent();
 Thread.sleep(3000);
 } catch (Exception e) {
 log.error("Error getting connection or content", e);
 }
 }

The initial expectation was for this loop to take approximately 30 seconds, since the sleep(3000) would be
called ten times. Suppose, however, that con.getContent() throws an IOException. The loop then skips the
sleep() call entirely, finishing in 6 seconds. A better way to write this is to move the sleep() call outside
of the try block, ensuring that it is executed:
Code Sample 10-8 Network Test with Shortened Try Block
 for (int i = 0; i < 10; i++) {
 try {
 System.out.println("Thread " + Thread.currentThread().getName() + " requesting number " +
i);
 URLConnection con = myUrl.openConnection();
 con.getContent();
 } catch (Exception e) {
 log.error("Error getting connection or content", e);
 }
 Thread.sleep(3000);
 }

Avoid Throwing New Exceptions
When you catch an exception, then throw a new one in its place, you replace the context of where it was
thrown with the context of where it was caught.
A slightly better way is to throw a wrapped exception:
-14 P o i n t - o f - S a l e D e v e l o p e r G u i d e

Code Sample 10-9 Wrapped Exception
1: try {
2: Class k1 = Class.forName(firstClass);
3: Class k2 = Class.forName(secondClass);
4: Object o1 = k1.newInstance();
5: Object o2 = k2.newInstance();
6:
7: } catch (Exception e) {
8: throw new MyApplicationException(e);
9: }

However, the onus is still on the user to call getCause() to see what the real cause was. This makes most
sense in an RMI type environment, where you need to tunnel an exception back to the calling methods.
The better way than throwing a wrapped exception is to simply declare that your method throws the
exception, and let the caller figure it out:
Code Sample 10-10 Declaring an Exception
 public void buildClasses(String firstName, String secondName)
 throws InstantiationException, ... {

 Class k1 = Class.forName(firstClass);
 Class k2 = Class.forName(secondClass);
 Object o1 = k1.newInstance();
 Object o2 = k2.newInstance();
 }

However, there may be times when you want to deal with some cleanup code and then rethrow an
exception:
Code Sample 10-11 Clean Up First, then Rethrow Exception
 try {
 someOperation();
 } catch (Exception e) {
 someCleanUp();
 throw e;
 }

Catching Specific Exceptions
There are various exceptions for a reason: so you can precisely identify what happened by the type of
exception thrown. If you just catch Exception (rather than, say, ClassCastException), you hide
information from the user. However, methods should not generally try to catch every type of exception.
The rule of thumb is the related to the fail-fast/recover rule: catch as many different exceptions as you are
going to handle.

Favor a Switch over Code Duplication
The syntax of try and catch makes code reuse difficult, especially if you try to catch at a granular level. If
you want to execute some code specific to a certain exception, and some code in common, you're left
with either duplicating the code in two catch blocks, or using a switch-like procedure. The switch-like
procedure, shown below, is preferred because it avoids code duplication:
Code Sample 10-12 Using a Switch to Execute Code Specific to an Exception
 try{
 // some code here that throws Exceptions...
 } catch (Exception e) {
 if (e instanceof LegalException) {
 callPolice((LegalException) e);
 } else if (e instanceof ReactorException) {
G e n e r a l D e v e l o p m e n t S t a n d a r d s 10- 15

10
 shutdownReactor();
 }
 logException(e);
 mailException(e);
 haltPlant(e);
 }

This example is preferred, in these relatively rare cases, to using multiple catch blocks:
Code Sample 10-13 Using Multiple Catch Blocks Causes Duplicate Code
 try{
 // some code here that throws Exceptions...
 } catch (LegalException e) {
 callPolice(e);
 logException(e);
 mailException(e);
 haltPlant(e);
 } catch (ReactorException e) {
 shutdownReactor();
 logException(e);
 mailException(e);
 haltPlant(e);
 }

Exceptions tend to be the backwater of the code; requiring a maintenance developer, even yourself, to
remember to update the duplicate sections of separate catch blocks is a recipe for future errors.
-16 P o i n t - o f - S a l e D e v e l o p e r G u i d e

C H A P T E R 1 1

POINT-OF-SALE DEVELOPMENT STANDARDS
The following standards specific to the Point-of-Sale architecture have been adopted by 360Commerce
product and service development teams. These standards are intended to reduce bugs and increase the
quality of the code.

Screen Design and User Interface Guidelines
• Avoid creating new screen beans and screen models for every new screen. Look for ways to reuse

existing or generic beans, such as the Data Input Bean, to avoid complicating the code base.
• For detailed user interface standards, see the UI Guidelines document, found in the _resources

directory provided with your documentation.

Tour Framework
This section includes general guidelines as well as subsections on specific tour components.

Tour Architectural Guidelines
Consult these guidelines when making architecture decisions in tour framework designs.

• Services—When designing services, consider their size and reusability. Services that are overlarge
create additional work when a portion must be extended.

• Utility Manager—Put methods used by multiple services in this manager so they can be easily
extended.

• If the reusable behavior contains flow-dependent behavior, then it is best implemented as a Site and
the Site action can be reused within a Service or across Services.

• Large bodies of reusable behavior can be implemented as Managers and Technicians. This pattern is
especially useful if the user might offload the processing to a separate CPU.
P o i n t - o f - S a l e D e v e l o p m e n t S t a n d a r d s 11- 1

11
General Tour Guidelines
• Code that uses bus resources must reside in a Site action, Lane action, Signal or Shuttle.
• Never mail a letter from a Road. This causes unpredictable results.
• Never define local data in a Site, Aisle, Road or Signal. Local data is not guaranteed when processing

across multiple tiers. Sites and Lanes must be stateless. This is the purpose of Cargo.
• Traffic Signals should not modify Cargo. Signals should only be used to evaluate a condition as true or

false. Anything else is a side effect, reducing the maintainability of the system.
• Never implement just one Signal. Always implement Signals when there is more than one Road that

responds to the same letter, or when there is an Aisle and a Road that respond to the same letter. See
“Signals” on page 11-5.

• Send letters at the end of methods. If the choice of which letter to send depends on conditions which
occur during the method, store the method name and mail it at the end of the method.

• Do not mail letters from depart() and undo() in Sites, backup() and traverse() in Roads, roadClear() in
Signals, and load() and unload() in Shuttles. Letters can be mailed from traverse() in Aisles.

• Define Shuttles in the calling Service package. If they are reusable Shuttles, define them in a common
package.

Use the following naming conventions for Tour components:

Table 11-1 Tour Naming Conventions
Element Description Example
Service description of the related functionality Login
Site element VerbNoun—indicating the action taking

place at the Site
EnterID

Site class The same as the Site name, with Site as a
suffix

EnterIDSite.java

Road element NounVerb—indicating the event that caused
the Road to be taken

IDEntered

Road class The same as the Road name, with Road as a
suffix

IDEnteredRoad.java

Aisle element NounVerb- indicating the event that caused
the Aisle to be taken

PasswordEntered

Aisle class The same as the Aisle name, with Aisle as a
suffix

PasswordEnteredAisle.java

Cargo ServiceNameCargo LoginCargo.java
-2 P o i n t - o f - S a l e D e v e l o p e r G u i d e

Foundation
• The best reuse in the Foundation engine takes place at the Service level. Sites require extra thought

because they can affect flow. Lane actions can be reused without flow implications. Signals and
Shuttles are very well suited to reuse especially when interfaces are developed for accessing Cargo.

• If validation and database lookup are coded in Aisles, they may be good candidates for reuse in several
Sites as well as in multiple Services.

• All component pieces need to be designed with care for reuse: they must be context insensitive or must
do a lot of checking to make sure that the managers they access exist for the bus that is active, the
Cargo contains the data they need, etc.

• Trying to maximize reuse can result in confusing code with too many discrete parts. If the reusable
unit consists of one or two lines of code, consider whether there is sufficient payoff in reusing the unit
of code. If the code contains a complex calculation that is subject to change over time, then isolating
this logic in one place may be well worth the effort.

Tours and Services
• There is often a one-to-one mapping between a Use Case and a Service. The Service should provide

the best opportunity for reuse. If you design for reuse, it should be focused at the Service level. This is
where you get your best return on investment.

Letter One word action name indicating the event;
see list defined in commonLetterIfc.java

Success
Failure
Continue
Next
Cancel
OK
Retry
Invalid
Add
Yes
No
Undo
Done

Transfer Station
element

NestedServiceNameStation FindCustomerStation

Shuttle class NestedServiceNameLaunchShuttle
NestedServiceNameReturnShuttle

FindCustomerLaunchShuttle.j
ava
FindCustomerReturnShuttle.ja
va

Traffic Signal
class

IsCondition.java—indicating the condition
being tested

IsAuthRequiredSignal.java

Table 11-1 Tour Naming Conventions
Element Description Example
P o i n t - o f - S a l e D e v e l o p m e n t S t a n d a r d s 11- 3

11
• Maintenance is a matter of choosing a style and implementing it consistently within a Service and
sometimes within an entire application. When you are comfortable with how TourCam works,
maintaining TourCam Services is easy. Maintenance is more difficult in general for TourCam
Services, since these Services are more complex. However, the simulation feature in Tour Guide helps
with this process.

• Aisles help reduce the total number of Sites in a Service, but they may be harder to see because they
are contained within a Site.

• When making choices, give making an application as consistent and easy to maintain as possible the
top priority.

• Consider the performance costs of using TourCam or creating additional Sites when designing a
Service.

• A Service can often be simplified by reducing the number of individual Sites. You can do this by using
Aisles to replace Sites; Sites with one exit Road can be good candidates, and Aisles are good
candidates for reuse. However, Aisles are less visible than Roads.

Sites
• Reusing a Site has flow implications. Site classes can be reused whenever the exit conditions are

identical. Reusable Sites should be packaged in a common package as opposed to one of the packages
that use them. A reusable Site must refer to a reusable Cargo or a common Cargo interface.

• Treat the sending of a letter like a return code: put it at the end of your arrive() or traverse() method.
Sending letters in the middle of the arrive() method may cause duplicate letters (with unpredictable
results), or no letters (with no results).

• Do not try to store state information in instance variables. Pass in state information through arguments.
• Do not put a lot of functionality in arrive(), traverse() methods. Decompose them into logical

methods that each have one job. For methods not called from outside the package, protect the methods.

Managers and Technicians
• There is a high degree of reuse of Managers and Technicians across the applications. For example, the

DataTransactions and DataActions are reusable. By design, it is the DataOperations that change with
different database implementations. The UIManager and UITechnician expect a lot of reuse of beans,
adapters, and specification objects. In fact, the UISubsystem looks in the UI Script for most of the
configuration information that effects changes in screen layout, bean interactions and even bean
composition.

• Utility methods can be useful for capturing behavior that is used by many Services, but does not lend
itself to Site or Aisle behavior. Put Utility methods in a UtilityManager so they can be easily extended.
The Point-of-Sale application contains an example of this called the POSUtilityManager. Service
developers can access these methods through the POSUtilityManagerIfc. The UtilityManager and
UtilityManagerIfc classes can be extended and the new class is specified through the Conduit Script.
For general-purpose behavior that can be called from a Site, Lane, or even from a Signal, use utility
methods to capture the common reusable behavior rather than extending a common Site.

• Large bodies of reusable behavior can be implemented as Managers and Technicians. This pattern is
especially useful if the user might off-load the processing to a separate CPU.
-4 P o i n t - o f - S a l e D e v e l o p e r G u i d e

Roads
It is sometimes useful to define multiple Roads from an origin Site to the same destination if they capture
different Road traversal conditions.
Do not trap and change the name of a letter just to reduce the number of Roads in a Service. This is a poor
use of system resources and also hides useful information from the reader of the Tour Script. Do not
rename letters except as noted in “Renaming Letters” on page 11-6.
For example, the Return Transaction Service has two Roads with the same origin (LookupItem) and the
same destination (EnterReturnItemInformation), but the letters that invoke these two Roads are different.
The use of Road actions is dependent on a number of factors: use of TourCam, developer conventions for
an application, number of classes generated, and maintainability.
Use Road actions for outcome-specific behavior. If you need to store some data in Cargo on the sending
of a specific letter, do the Cargo storage in the traverse() method of the Road that is associated with that
letter. If the data must be stored in Cargo before leaving a Site, put the logic in the Site’s depart() method.
Code in a Site or Aisle’s depart() method should not check to see what letter was sent before taking an
action; use a Road in that case.

Aisles
Aisles are used to implement behavior that occurs within a Site. When there is interaction with an
external source (e.g. user, database) use a Site. When you are doing business validation which may keep
you in the same screen, use an Aisle.
While it makes sense to create Roads without corresponding Road actions, Aisles are useless without an
Aisle action. The important thing about an Aisle is that it is not part of a transition from one Site to
another, so the only code that gets executed in an Aisle is the traverse() method. The arrive() and
depart() methods are never executed on a Site when an Aisle is processed. The Aisle can initiate an action
that causes a transition to another Site, but it cannot transition itself.
Aisle actions can be used to validate data, compute values, provide looping behavior, and do database
lookups. Aisle actions are useful for capturing repeatable behavior that can occur while the bus is still in
a Site.
For example, suppose you define a Site that gathers data from the user. The data validation is
implemented as an Aisle. Because it is an Aisle, the user can repeat the process of entering data,
validating, and re-entering until the data is correct, with little system overhead. The Aisle behavior can be
triggered over and over without calling the arrive() method on the Site (a Road back to the Site calls the
arrive() method).
Aisles are also useful for looping through a list of items when each item may require error handling. This
is done by placing the loop index in the Cargo.

Signals
You cannot use a signal alone; they must be used in groups of two or more. If there is more than one Lane
that responds to the same letter, each Lane must implement a Signal. The logic in the Signals must be
P o i n t - o f - S a l e D e v e l o p m e n t S t a n d a r d s 11- 5

11
mutually exclusive; there should be only one valid Road that can be traversed at any time; otherwise,
unexpected (and difficult to debug) behavior could occur.
When there are more than two Signals, each of the Signals should evaluate in such a way that only one
Signal is green at any given time. But the presence of more than two Signals should raise a red flag. Track
down the source of the following issues; determine if the UI or other letter generator needs to be sending
more unique letters.

• Why are there so many Signals?
• What are they checking?
• Is the same letter being sent for many different conditions?

Use a Signal only to decide which road to take when you could go to two different places (such as Sites)
with the same Letter, based on Cargo information. It should not be used to update cargo. The road you
take after making a decision at the Signal should do the updating.

Choosing among Sites, Aisles, and Signals
There are many times when an Aisle can do the same work as a Site. Sometimes a Signal can contain
behavior that could be implemented in an Aisle. Sometimes a separate Service does the work that was
once a Site if the Site needs to be reused or becomes too complicated. Consult the guidelines for your
application development team in order to be consistent with the rest of your team.
If you have the following customer requirement:

Display a UI screen that gathers search criteria to be used in a database lookup (for example, customer
lookup). After the user enters the data, validate the data. Once the data has been validated, do the
database lookup.

you have the following design choices:

• Implement as separate Sites and take advantage of TourCam to back up when the data is invalid or
database lookup results are not correct.

• Implement as one Site with Aisles that do the validation and lookup.
The database lookup may result in a success or failure letter whether it is coded as a Site or an Aisle.
When using an Aisle for database lookup, the failure letter triggers another Aisle that could display an
error message but allow the user to re-enter the data and retry the lookup. This can occur without exiting
the original Site. When using a Site, the failure condition can trigger a flow change to back up through the
lookup Site back to the data entry Site.
If the validation and database lookup are coded in Aisles, they may be good candidates for reuse in
several Sites as well as in multiple Services. Reusing the Site is also possible, especially if the TourCam’s
ability to back up to the last indexed Site is used. But there may be more considerations involving flow
when trying to reuse a Site.

Renaming Letters
Use the following guidelines when deciding whether to rename letters:
-6 P o i n t - o f - S a l e D e v e l o p e r G u i d e

• Do rename Letters when the application developer does not have power over the Letter that is mailed
and there is more than one event associated with a single Letter.
For example: a single Letter is sent from a button on the UI (such as dialog box OK), but the content of
the retrieved data associated with the UI signals a different event notification (such as error message
notification).

• Do rename Letters when a common exit Letter from a nested Service is needed.
• Don’t rename Letters to reduce the number of Roads in a Service.

Shuttles
If you are creating a sub-tour (i.e. a tour called from other tours via a Station) from scratch, use only the
following final letters:

• Success
• Failure
• Cancel
• Undo

If you need to provide a reason for a Failure or need to return data to the calling service on a Success, use
the Return Shuttle to update the calling service's cargo. Do not use letters to reflect sub-tour results.
Within the Tour Framework, Shuttles are used to transfer data in and out of Services. Shuttles are good
candidates for reuse given a common Cargo interface.

Cargo
All Cargo classes should implement the CargoIfc interface.

Table 11-1 Shuttles
Shuttle Type Launch Shuttle Return Shuttle
Description Used to send

parameter data
to a sub-service

Used to return
data to the
parent service.

Methods load()—can only
see the parent
Service's Cargo
unload()—can
only see the sub-
service's Cargo

load()—can only
see the sub-
service's Cargo
unload()—can
only see the
parent service's
Cargo
P o i n t - o f - S a l e D e v e l o p m e n t S t a n d a r d s 11- 7

11
Log Entry Format
This section describes the format and layout of log entries for the Point-of-Sale application.

Log Entry Description
Log entries adhere to the following format:
LLLLL yyyyy-mm-dd hh:mm:ss,ttt bbbbbbb (<classname>):

 [<classname>.<methodname>(<filename>:<linenumber>)]

 <Log entry content>

Fixed Length Header
The entry begins with a fixed length record header (38 bytes) that adheres to the following layout:
LLLLL yyyyy-mm-dd hh:mm:ss,ttt bbbbbbb

12345678901234567890123456789012345678

LLLLL is the log message level and consists one of the substrings in the following table:

yyyy-mm-dd is the date.
hh:mm:ss,ttt bbbbbbb is the time stamp of the entry, comprised of the sub-fields described in the following
table:

Table 11.2 Log Message Level

Log Message
Level Description
ERROR Highest severity entry; critical
WARN Application warning; serious
INFO For information only
DEBUG For developer use (not displayed by default

application configuration

Table 11-3

Field Description
hh Time of entry in hours, in 24-hour format
mm Minutes past the full hour
ss Seconds past the last full minute
ttt Milliseconds past the last full second
bbbbbbb Milliseconds since the application was started.

Left justified and blank filled on the right, out to
7 places.
-8 P o i n t - o f - S a l e D e v e l o p e r G u i d e

Additional Logging info
The fixed length record header is followed by a blank space followed by the parenthesized, fully qualified
class name of the logging entity followed by a colon followed by a carriage return/line feed pair.
(<classname>):<cr><lf>

The next line in a log entry begins with 6 blank spaces and a square-bracketed sequence containing the
following information: <classname>.<methodname>(<filename>:<linenumber>)
Parentheses are included in the sequence. This sequence reflects the fully qualified name of the method
invoking the logging action and the source line number in the file where the logging call was made.
The next line(s) in a log entry are the log entry content. The content is comprised of freeform text
supplied by the calling routine. The content reflected in the freeform text may be multiple lines in length.
The next log entry is delineated with another 38 byte fixed length header beginning in column one of the
text log file.

Example Log Entry
INFO 2004-09-02 11:12:41,253 23697
(main:com.extendyourstore.foundation.manager.gui.DefaultBeanConfigurator):

[com.extendyourstore.foundation.manager.gui.DefaultBeanConfigurator.applyProperties(DefaultBeanConfigur
ator.java:198)]

 Applying property cachingScheme to Class: DialogBean (Revision 1.9) @12076742
P o i n t - o f - S a l e D e v e l o p m e n t S t a n d a r d s 11- 9

11
-10 P o i n t - o f - S a l e D e v e l o p e r G u i d e

	Table of Contents
	Preface
	Architecture
	Overview
	Point-of-Sale Architecture
	Frameworks
	Manager/Technician
	User Interface
	Business Object
	Data Persistence
	Tour

	Design Patterns
	MVC Pattern
	Factory Pattern
	Command Pattern
	Singleton Pattern

	Development Environment
	Overview
	Preparation
	Setup
	Install Point-of-Sale
	Build the Database
	Create a Sandbox
	Configure the IDE
	Update Java Security and Policy files
	Configure the Version Control System

	Run Point-of-Sale

	UI Framework
	Overview
	Screens
	Beans
	PromptAndResponseBean
	Bean Properties and Text Bundle
	Tour Code

	DataInputBean
	Bean Properties and Text Bundle
	Tour Code

	NavigationButtonBean
	Bean Properties and Text Bundle
	Tour Code

	DialogBean
	Bean Properties and Text Bundle
	Tour Code

	Field Types

	Connections
	ClearActionListener
	DocumentListener
	ValidateActionListener

	Text Bundles
	receiptText
	parameterText

	Tour Framework
	Overview
	Tour Components
	Tour Metaphor
	Service and Service Region
	Bus
	Tourmap
	Cargo
	Sites
	System Sites
	Letters
	Roads
	Common Roads
	Aisles
	Stations and Shuttles
	Signals
	Exception Region

	Role of Java Classes
	Tour Cam
	Attributes
	Letter Processing
	Cargo Restoration

	Tender Tour Reference

	Manager/Technician Framework
	Overview
	New Manager/Technician
	Manager Class
	Manager Configuration
	Technician Class
	Technician Configuration
	Valet Class
	Sample Code
	Configuration
	Tour Code
	Manager
	Valet
	Technician

	Manager/Technician Reference
	Parameter Manager/Technician
	UI Manager/Technician
	Journal Manager/Technician

	Retail Domain
	Overview
	New Domain Object
	Domain Object in Tour Code
	Domain Object Reference
	CodeListMap
	Currency
	Transaction

	Customization
	Parameters
	Parameter Hierarchy
	Parameter Group
	Parameter Properties

	Devices
	Set Up the Device
	Test the Device
	Create a Session and ActionGroup
	Simulate the Device

	Help Files
	Modifying Help Files

	Store Database
	ARTS Compliance
	Understanding Data Managers and Technicians
	How Data Transactions Work
	Creating or Updating Database Tables
	Example of Saving Data: Storing Tender Information
	Research Table Requirements and Standards
	Saving Data from Site Code
	Locate Data Operation
	Modify Data Operation
	Test Code
	Verify Data

	Updating Flat File Configurations
	Data Technician Script
	Flat File Engine Configuration Script
	Implementing FlatFileDataOperations
	Other Query Types
	Complex Query Expressions

	Extension Guidelines
	Conventions
	Terms
	Filename Conventions
	Modules
	Directory Paths

	pos Package
	Tour
	Tour Map
	Tour Scripts
	Site
	Lane-Road or Aisle
	Shuttle
	Signal
	Cargo

	UI Framework
	Default UI Config
	UI Script
	Bean Model and Bean

	Other
	Internationalization
	Localization
	Conduit Scripts
	PLAF
	Receipts
	Reports

	domain Package
	Retail Domain
	DomainObjectFactory
	Retail Domain Object (RDO)

	Database
	Data Manager and Technician Scripts
	Data Actions and Operations
	Data Transactions

	General Development Standards
	Basics
	Java Dos and Don’ts
	Avoiding Common Java Bugs
	Formatting
	Javadoc
	Naming Conventions
	SQL Guidelines
	DB2
	MySQL
	Oracle
	PostgreSQL
	Sybase

	Unit Testing

	Architecture and Design Guidelines
	AntiPatterns
	Designing for Extension

	Common Frameworks
	Internationalization
	Logging
	Guarding Code
	When to Log
	Writing Log Messages

	Exception Handling
	Types of Exceptions
	Avoid java.lang.Exception
	Avoid Custom Exceptions
	Catching Exceptions

	Point-of-Sale Development Standards
	Screen Design and User Interface Guidelines
	Tour Framework
	Tour Architectural Guidelines
	General Tour Guidelines
	Foundation
	Tours and Services
	Sites
	Managers and Technicians
	Roads
	Aisles
	Signals
	Choosing among Sites, Aisles, and Signals
	Renaming Letters
	Shuttles
	Cargo

	Log Entry Format
	Log Entry Description
	Fixed Length Header
	Additional Logging info
	Example Log Entry

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

