
Oracle® Communication and Mobility Server
Developer Guide

Release 10.1.3

B31511-01

March 2007

Oracle® Communication and Mobility Server Developer Guide Release 10.1.3

B31511-01

Copyright © 2007 Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... x
Conventions ... x

1 Overview

Introduction to Oracle Communication and Mobility Server... 1-1
Application Development in OCMS.. 1-1

SIP Servlet API.. 1-2
Parlay X Web Service Interface ... 1-2
Presence Web Services ... 1-2

Oracle Communication and Mobility Server Development Tools ... 1-2

2 SIP Servlets

Introduction to SIP Servlets ... 2-1
The SIP Container .. 2-2

Servlet Context ... 2-2
SIP Application Sessions ... 2-3
Protocol Sessions .. 2-3
Transactions .. 2-3
Servlets... 2-4

Increased Servlet Modularity .. 2-4
Listeners... 2-4

SIP Servlets and SIP Applications .. 2-4
SIP Servlet Environment... 2-5

Servlet Mapping ... 2-7
Classes and Methods .. 2-7

Request and Response Handling Methods .. 2-7
Messages... 2-8
Requests.. 2-8
Responses ... 2-9
Content ... 2-9
Manipulating SIP headers .. 2-10
SipURI.. 2-11

iv

Address.. 2-11
SIP Details ... 2-12

Storing Data as Session Attributes.. 2-12
Adding Configuration Parameters ... 2-13

Configuring SIP Applications in sip.xml ... 2-13
Setting and Accessing Global Init Parameters .. 2-13
Configuring Application Sessions .. 2-14
Defining a Servlet .. 2-14
Defining the Servlet Mapping ... 2-16

Creating Rules Using the Request Object Structure ... 2-16
Conditions... 2-17
Examples ... 2-17

SIP Servlets in OCMS .. 2-19
Handling Initial Requests .. 2-19
Implementation Decisions ... 2-21

Protocol Sessions.. 2-21
Extended doRequest Methods ... 2-21
Asynchronous Send... 2-21

Multi-Threading .. 2-21
Sip Servlet API Javadoc.. 2-22
External Access to SIP Servlets.. 2-22
OCMS Authentication and Login Modules .. 2-22

3 Advanced SIP Servlet Configuration

Addressing SIP Applications... 3-1
Identifying the appId... 3-2

Configuring Application Security .. 3-3

4 Programming Guidelines

Introduction ... 4-1
Marking Applications as Distributable ... 4-1
Storing Data in Application Sessions .. 4-2
Avoiding Static Data .. 4-2
Avoiding Blocking Calls ... 4-2
Invalidating the SipApplicationSession and SIPSession .. 4-2
Monitoring the Memory Usage ... 4-2
Avoiding Storing Shared Resources in Sessions ... 4-2
Avoiding Creating Threads .. 4-2
Creating B2BUA Applications ... 4-2

5 Building a SIP Servlet Application

Prerequisites .. 5-1
SIP Application Development Process .. 5-2
Creating a New Dynamic Web Project with SIP Support .. 5-3
Importing an Existing Project .. 5-3
Importing Example Projects ... 5-4

v

Importing the Basic Response SIP Application Example Project.. 5-5
Importing the Call Forward SIP Application Example Project ... 5-5
Importing the Message Sender SIP/Web Converged Application Example Project............... 5-5
Importing the Parlay X Web Services Client Example Project .. 5-6
Importing the Proxy/Registrar Example Project .. 5-6
Importing the Third Party Call Control Example Project .. 5-6

Deploying a SIP Application to OCMS ... 5-7
Testing an Application .. 5-9

Changing the Logging Level .. 5-9
Viewing the System Log File .. 5-9
Starting the OCMS Server in Eclipse... 5-9
Testing a Third Party Call Control Servlet ... 5-9

6 OCMS Parlay X Web Services

Introduction... 6-1
Installing the Web Services .. 6-2
Installing the Aggregation Proxy .. 6-2
Configuring Web Services with the Aggregation Proxy... 6-2
Presence Web Services Interface Descriptions ... 6-3
Using the Presence Web Services Interfaces ... 6-4

Interface: PresenceConsumer, Operation: subscribePresence... 6-4
Code Example.. 6-4

Interface: PresenceConsumer, Operation: getUserPresence.. 6-4
Code Example.. 6-4

Interface PresenceSupplier, Operation: publish and Oracle Specific "Unpublish" 6-5
Code Example.. 6-5

Interface: PresenceSupplier, Operation: getOpenSubscriptions ... 6-6
Code Example.. 6-6

Interface: PresenceSupplier, Operation: updateSubscriptionAuthorization............................. 6-6
Code Example.. 6-6

Interface: PresenceSupplier, Operation: getMyWatchers .. 6-6
Code Example.. 6-6

Interface: PresenceSupplier, Operation: getSubscribedAttributes ... 6-6
Code Example.. 6-6

Interface: PresenceSupplier, Operation: blockSubscription... 6-7
Code Example.. 6-7

OCMS Parlay X Presence Custom Error Codes .. 6-7

A Oracle Diameter Java APIs

Diameter Java Base Protocol API ... A-2
Base Protocol Diameter Java Interface ... A-2

Diameter Factory.. A-3
Diameter Stack.. A-3
Diameter Application .. A-3
Diameter Transport ... A-3
Diameter Attribute Value Pairs (AVPs).. A-3

vi

Diameter Session.. A-3
Diameter Event... A-4
Diameter Exception ... A-4

3GPP/Rf Diameter Java API .. A-5
3GPP/Rf Diameter Java Interface... A-5

Rf Provider .. A-5
Rf Listener ... A-5
Rf Message Factory .. A-5
Rf Events.. A-6
Rf Application Options ... A-7
Rf Application FSM ... A-8

3GPP/Ro DIAMETER JAVA API .. A-9
3GPP/Ro DIAMETER JAVA INTERFACE... A-9

Ro Provider ... A-9
Ro Listener .. A-10
Ro Message Factory ... A-10
3GPP/Ro Dictionary ... A-11
Ro Events... A-11
Ro Application Options .. A-12
Ro Application FSM... A-13

3GPP/Sh Diameter Java API.. A-14
3GPP/Sh Diameter Java Interface .. A-14

Sh Provider.. A-14
Sh Listener... A-15
Sh Message Factory.. A-15

3GPP/Sh Dictionary ... A-16
Sh Events .. A-16
Sh Application Options .. A-17

Diameter Application Example .. A-17
Accounting Call Flow... A-17

Application initialization .. A-18
Accounting Diameter message exchange... A-20
Cleanup ... A-22

B Programming Oracle Diameter Applications

IP and Routes Configuration .. B-1
Creating a Diameter Stack ... B-1
Binding to Local Transport Addresses .. B-1
Configuring Routes and Binding to Diameter Peers ... B-2
Realm State Availability... B-2

Counters Management ... B-3
MBeans Management Interface... B-3
Managing a Diameter Application with MBeans... B-4

Registering the Diameter MBeans ... B-4
Using jconsole to Monitor Diameter Applications.. B-4

Dictionary ... B-5
Dictionary Composition... B-5

vii

dictionary Element... B-5
vendor Element .. B-5
application Element ... B-5
command Element ... B-6
returnCode Element .. B-6
avp Element .. B-7
type Element ... B-7
enum Element... B-8
grouped Element.. B-9

Dictionary Extension .. B-9
Tracing and Logging Mechanism ... B-10

C Accounting Event API

Introduction.. C-1
logEvent(SipServletRequest req, Map<Object, Object> additional) Method C-2
logEvent(SipServletResponse resp, Map<Object, Object> additional) Method C-3
logEvent(Map <Object, Object> event, String category) Method ... C-3
Event Processing in Log4j .. C-4

Index

viii

ix

Preface

This preface contains the following topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This guide is intended for developers and programmers who want to use Oracle
Communication and Mobility Server to create custom applications.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

x

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see the following documents:

■ Oracle Communication and Mobility Server Installation Guide

■ Oracle Communication and Mobility Server Administrator’s Guide

■ Oracle Communication and Mobility Server Developer’s Cookbook (available at the
Oracle Technology Network at http://www.oracle.com/technology//index.html)

■ A.Kristensen, "SIP Servlet API Version 1.0", February 4, 2003. Available in the
OCMS SCE installation at C:\Program Files\Oracle\OCMS SCE\doc

■ G. Murray, et al., "Java Servlet Specification, Version 2.5", May 11, 2006

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Overview 1-1

1
Overview

This chapter through the following sections, describes application development for the
Oracle Communication and Mobility Server (OCMS):

■ "Introduction to Oracle Communication and Mobility Server"

■ "Application Development in OCMS"

Introduction to Oracle Communication and Mobility Server
Oracle Communication and Mobile Server (OCMS) is a carrier-grade SIP application
environment for the development, deployment, and management of SIP applications.
Built on a standard Java2 Enterprise Edition (J2EE) platform, OCMS is a flexible,
scalable environment enabling easy integration of SIP applications and services.

Among the applications that may be developed and deployed on SIP platforms:

■ Voice and video telephony, including call management services such as call
forwarding and call barring

■ Publication of and subscription to user presence information, such as online or
offline status, notifications, permission to access a user’s status

■ Instant messaging

■ Push-to-Talk applications, including Push-to-Talk over Cellular (PoC)

OCMS provides standard SIP applications out-of-the-box, including Presence, a
combination Proxy and Registrar (Proxy/Registrar), and a SIP message routing
application, the Application Router. An integral part of any SIP platform, these
applications are automatically installed to the OCMS platform, reducing development
resources and deployment time.

OCMS is distinguished by its standards-based, high performance Presence application
which is built according to the OMA/Simple Presence Enabler 1.0. The OCMS
Presence application is robust enough to support a significant amount of users, while
still being a viable solution for ISVs, system integrators, and enterprises requiring an
integration platform and an enterprise Presence Server.

Application Development in OCMS
The OCMS environment enables you to develop JSR-116-compliant applications
through its support of the following:

■ SIP Servlet API

■ Parlay X Web Service Interface

1-2 Oracle Communication and Mobility Server Developer’s Guide

SIP Servlet API
OCMS supports development of SIP servlets using the JSR-116 SIP Servlet API. Using
these interfaces, you can build a SIP Servlet to create customized SIP-based
components that terminate SIP messages, send SIP responses, and proxy SIP messages.
For an overview of SIP servlets and the OCMS extensions to the SIP Servlet API, see
Chapter 2, "SIP Servlets". For an overall view of developing applications in OCMS, see
Chapter 5, "Building a SIP Servlet Application".

Parlay X Web Service Interface
OCMS supports application development using the Parlay X Presence Web Service
interface as defined in Open Service Access, Parlay X Web Services, Part 14, Presence ETSI
ES 202 391-14. Using Parlay X interface, you can build a Web Service that acts as a
client for many users by providing them functions for publishing, subscribing and
listening to notifies. For more information on OCMS support of the Parlay X Web
Service interfaces and developing a Web Service using OCMS SCE as the IDE, see
Chapter 6, "OCMS Parlay X Web Services". For examples of building a Parlay X Web
Service for the Oracle WebCenter 10.1.3.2 platform, see the Oracle Communication and
Mobility Server Developer’s Cookbook.

Presence Web Services
You can use the Oracle JDeveloper 10g to test Presence Web Services. Oracle
JDeveloper Release 10.1.3.2 or higher is the preferred development tool for customers
creating applications for the WebCenter 10.1.3.2 platform. For more information on
using Oracle JDeveloper 10g within OCMS, refer to Oracle Communication and Mobility
Server Developer’s Cookbook.

Oracle Communication and Mobility Server Development Tools
OCMS provides OCMS Service Creation Environment (OCMS SCE) as the primary
development tool. Oracle JDeveloper is a secondary tool which is used to test Presence
Web Services.

OCMS SCE
OCMS provides the OCMS Service Creation Environment (OCMS SCE), a
development tool for SIP servlets and server-side applications. OCMS SCE (SCE),
intended for developers on the Windows operating systems, provides tools and APIs
for creating services using the OCMS platform. OCMS SCE, which runs on Eclipse,
supports your development effort through the Code, Build, Deploy and Debug phases of
the development cycle (Figure 1–1).

For information on building applications with OCMS SCE, see Chapter 5, "Building a
SIP Servlet Application".

Overview 1-3

Figure 1–1 OCMS SCE Application Development Support

1-4 Oracle Communication and Mobility Server Developer’s Guide

SIP Servlets 2-1

2
SIP Servlets

This chapter, though the following sections, provides an overview of SIP Servlets and
the SIP Servlet API as described in JSR-116.

■ "Introduction to SIP Servlets"

■ "The SIP Container"

■ "SIP Servlets and SIP Applications"

■ "SIP Servlet Environment"

■ "Classes and Methods"

■ "Configuring SIP Applications in sip.xml"

■ "SIP Servlets in OCMS"

Introduction to SIP Servlets
This chapter provides an overview the SIP Servlet API, the SIP container, the SIP
servlet environment, SIP classes and methods, and SIP application configuration.

The SIP Servlet API is defined in JSR116, [5] and describes a standard interface for
programming SIP services and applications. A SIP servlet can be compared with a Java
HTTP servlet [6] but with SIP protocol-related methods. In fact, the SIP servlet API
builds on the general Servlet API [6] in the same way as the HTTP Servlet API

SIP Servlets are grouped into four categories:

■ User Agent Server: A servlet that acts as a User Agent Server (UAS) receives
incoming requests and sends responses.

■ User Agent Client: A servlet that acts as a User Agent Client (UAC) initiates
outgoing requests and receives responses to these requests.

■ Proxy: A servlet that acts as a proxy receives incoming requests and proxies them
to other end-points (other proxies or a UAS). A proxy servlet will manipulate the
request URI and proxy the request to that destination.

■ Back to Back User Agent: A servlet that acts as a Back to Back User Agent (B2BUA)
acts as both a UAS and UAC on a request. It receives and answers back to one
request (first session) and initiates and receives responses on another request
(second session).

2-2 Oracle Communication and Mobility Server Developer’s Guide

The SIP Container
This section describes the SIP Container (Figure 2–1) by discussing the following
components:

■ Servlet Context

■ SIP Application Sessions

■ Protocol Sessions

■ Transactions

■ Servlets

■ Listeners

Figure 2–1 The SIP Container Object Model

Servlet Context
The Servlet Context is a servlet view of the SIP Application to which it belongs. Using
the Servlet Context, the servlet can access such global application services as listeners
and context init parameters.

The application global init parameters are set in the deployment descriptor, the
sip.xml file, and are marked with the <context-param> marker. Examples of
global appliciation parameters are common resource addresses, like addresses to a
database and backend applications.

The Servlet Context also holds all references to any implemented and configured
listeners. Session and proxy timeouts are held by the Servlet Context. These are
configured in the sip.xml file and the session timeout is found within the
<session-config> and marked in the <session-timeout> section. The proxy
timeout is found within the <proxy-config> and marked in the
<sequential-search-timeout> section.

The Servlet Context is retrieved by calling the getServletContext method from the
servlet. For example:

ServletContext servletContext = getServletContext();

SIP Servlets 2-3

SIP Application Sessions
While an application may involves several types of servlet sessions (for example, SIP
and HTTP), these sessions must be related to the same application. This is done
through a SIP Application Session. The SIP Application Session can hold multiple
protocol sessions and then the protocol sessions can be of the same type or different
types (SIP, HTTP).

A SIP Application Session can hold attributes available to all protocol sessions related
to that application session. A SIP Application Session can hold multiple protocol
sessions. For example, B2BUA creates two sessions that are located in the same SIP
Application Session.

A SIP Application Session exists until it times out or when the application explicitly
calls the invalidate method. A well-behaved application should always invalidate a
session when it does not need it anymore. If the SIP Application Session is invalidated,
all Protocol Session objects are invalidated together with it. The timeout value of a
session is set with the <session-timeout> parameter in the sip.xml file. If no
timeout value is defined within this element, then the default value for the container is
used (the default is 15 minutes).

If a subsequent request arrives after a session has been invalidated, then the server will
respond with a 481 "Call transaction does not exist" message. Requests and responses
that correspond to a SIP application session can be retrieved with the
getApplicationSession() method on the request (SipServletRequest) or the
response (SipServletResponse) object.

Protocol Sessions
A Protocol Session is a session for a certain protocol. If an application involves several
protocols, the SIP application session would then hold several protocol sessions.

A SipSession object can represent a point-to-point SIP relationship, an established
SIP dialog, or an initial state SIP dialog. The initial state is described as a request that
has been received or created with the createRequest method in the sipFactory
class. The SIP session object is created by the container when an initial request has
invoked one servlet.

A request or a response corresponding a SIP session can be retrieved with the
getSession() method on the request (SipServletRequest) or the response
(SipServletResponse) object.. All of the protocol sessions in an application session
can be retrieved with the getSessions() method on the
SipApplicationSession object.

Transactions
A SIP transaction consists of a single SIP request and all responses to that request,
including the provisional responses and a final response.

A SipServletRequest and a SipServletResponse always belong to a SIP
transaction. If a servlet tries to send a message that violates the SIP transaction state
model, the container throws an IllegalStateException. The SIP Servlet API is
designed in such a way that a developer does not need to think about transactions,
only about requests and responses.

2-4 Oracle Communication and Mobility Server Developer’s Guide

Servlets
Each servlet defined in the deployment descriptor has one instantiation. Because
servlets are run in a multi-threaded environment, only data that is common to all
requests and responses, such as init parameters, are stored as member variables.

Increased Servlet Modularity
Each servlet, which includes a <servlet> and a <servlet-mapping> section in
the deployment descriptor file (sip.xml) also has a <security-constraint>
section. OCMS makes these servlets reusable through the Servlet Creation wizard in
OCMS SCE, because these sections are created together with the servlet.

Listeners
Listeners can be registered to listen on events and invoke a method. Each deployment
descriptor can only have one defined listener of each type. Each of these listeners must
be implemented by the developer. The different types of listeners are as follows:

■ SipApplicationSessionListener: The listener for
SipApplicationSession creation and invalidation. It can be used to ask for a
session extension. The SipApplicationSessionListener interface must be
implemented and the sip.xml updated.

■ SipSessionListener: The listener for changes in active SipSessions in the SIP
servlet application. The SipSessionListener interface must be implemented
and configured in the sip.xml file.

■ SipSessionAttributeListener: The listener for SipSession attribute
changes. The SipSessionAttributeListener interface must be implemented.

■ TimerListener: The timer service enables delayed actions for a servlet if the
TimerListener interface has been implemented. Only one timer listener exists
per application (sip.xml).

■ SipSessionActivationListener: Objects that depend on a session can listen
on their status about being active or passive if the
SipSessionActivationListener interface is implemented.

SIP Servlets and SIP Applications
A SIP application is a J2EE-compliant application accessed over the SIP protocol.
Applications are triggered by an inbound SIP protocol request, just as Web
applications are triggered by an inbound HTTP protocol request.

An application has a protocol interface such as SIP or HTTP (presentation tier) that
reaches servlets and other business objects (logic tier) which in turn are managed and
have resource connections to the database (data tier). User and application data are
accessed through the data tier which is represented by applicable parts from the J2EE
specification. Applications are delimited by the scope of the deployment descriptor,
the sip.xml file.

SIP Servlets 2-5

SIP Servlet Environment
This section describes the environment of a SIP servlet and what occurs during both
the startup of the application server (AS) and when a request enters the SIP Container.

Figure 2–2 The SIP Container at Startup

1. The following occurs at startup:

a. The container reads the deployment descriptor (sip.xml).

b. A Servlet Context is created.

– The global init parameters are set. These are marked with
<context-param> in the sip.xml file.

– Session Configuration values are set. These are marked with
<session-config> in the sip.xml file.

– Proxy Configuration values are set. These are marked with
<proxy-config> in the sip.xml file.

– The container instantiates the TimerListener,
SipApplicationSessionListener,
SipSessionActivationListener,
SipSessionAttributeListener, and the SipSessionListener.
Each listener has one instantiation (if defined).

c. A Servlet Config object is created. The Servlet Config holds all init parameters
per servlet. These are marked with <init-param> and are set per servlet in
the sip.xml file. It also includes the global init parameters
(context-param).

d. The servlets are created and initiated with the init parameters prepared by the
Servlet Config. Each servlet is run as one instance. The init method in the
servlets is executed.

e. A SIP Application Manager, which contains a reference to
SipApplicationSessions and the SipFactory, is created.

2-6 Oracle Communication and Mobility Server Developer’s Guide

Figure 2–3 Initial Requests Processed by the SIP Container

2. The container distinguishes between initial requests and subsequent requests,
where initial requests invoke a servlet depending on the invoke conditions (or
rules) of the servlet and subsequent requests get forwarded directly to the same
servlet as invoked for the initial request. At an Initial Request, the following steps
occur:

a. The container chooses a specific application based on the handling described
in "Handling Initial Requests".

b. What servlet to invoke is decided by evaluating the rules of each servlet in the
servlet invocation order (Figure 2–3). The rule execution order is decided by
the order of the <servlet-mapping> order for each servlet in the sip.xml
file. The servlet with the top-most servlet mapping is the one that get the rules
checked first.) For more information, see "Servlet Mapping".

c. A SIP Application Session is created together with a SIP Session.

d. A transaction and a request are created and associated with the SIP session
object just created.

3. For a subsequent request, one for which the container already holds a dialog (a
dialog is defined by the Local-tag + Remote-tag + CallId), the request is forwarded
to the same servlet executed at the initial request. The request works with the same
Message Context (SIP-Application Session + SIP-Session) as it had in the initial
request.

SIP Servlets 2-7

Servlet Mapping
A SIP Application can contain one or more SIP Servlets. When the SIP container
receives SIP requests, the container selects a SIP application to serve the request. The
SIP application then evaluates its rules (that is, the servlet-mapping defined in the
sip.xml file) to find the appropriate SIP servlet that responds to the request. The SIP
application then uses the first SIP servlet that matches the request.

For example, if the SIP container receives an INVITE request, the container selects a
SIP Application containing the following SIP Servlets to match the request:

■ Servlet 1 - Invoked for INVITE requests.

■ Servlet 2 - Invoke for MESSAGE requests.

■ Servlet 3 - Invoked for all requests.

The SIP application then attempts to find a match by evaluating its rules from the top
to the bottom. In this case, Servlet 1 and Servlet 3 both match the INVITE request.
Since only one of these servlets can serve the request and since the application reviews
the rules sequentially, the application selects Servlet 1. Servlet 1 starves out Servlet 3. If
the SIP container receives a MESSAGE request, then the application invokes Servlet 2.
For REGISTER requests, the application invokes Servlet 3, the only servlet able to
serve this type of request. If the application did not include Servlet 3, the application’s
match method would return null for the REGISTER request and the SIP container
would issue a 403 response, Application choose not to service the request, which would be
written to the log file.

Classes and Methods
This section introduces the classes and methods in the SIP servlet API.

A SIP Servlet is a class that extends the javax.servlet.sip.SipServlet class
and thereby interacts with a SIP application server to send and receive SIP messages.

Request and Response Handling Methods
The servlet overrides the methods needed for the particular service. The two main
methods that the SIP Servlet uses to perform overrides are:

■ protected void doRequest(SipServletRequest req)

■ protected void doResponse(SipServletResponse resp)

The doRequest() method handles all of the requests and the doResponse()method
handles all of the responses.

Note: SIP servlets can forward the request to another SIP servlet by
using javax.servlet.ServletRequest.getRequestDispatcher()

Additionally, you can chain applications using the Application Router.
Refer to the Oracle Communication and Mobility Server Administrator’s
Guide.

Note: While a SIP application can invoke only one SIP Servlet for a
request, the SIP container can invoke more than one SIP application
for an incoming request using the Application Router.

2-8 Oracle Communication and Mobility Server Developer’s Guide

Outside of the service method, the doRequest() and doResponse() are the
broadest methods provided by the SipServlet class. These methods enable tasks
that are independent of the received method or response. You can extend methods to
perform specific request and response handling tasks.

Extend the following methods for request handling:

■ doInvite – for SIP INVITE requests

■ doAck – for SIP ACK requests

■ doCancel – for SIP CANCEL requests

■ doBye – for SIP BYE requests

■ doOptions – for SIP OPTIONS requests

■ doRegister – for SIP REGISTER requests

■ doSubscribe – for SIP SUBSCRIBE requests

■ doNotify – for SIP NOTIFY requests

■ doMessage – for SIP MESSAGE requests

■ doInfo – for SIP INFO requests

■ doPrack – for SIP PRACK requests

For response handling, extend the following:

■ doProvisionalResponse – for SIP 1xx informational responses

■ doSuccessResponse – for SIP 2xx responses

■ doRedirectResponses – for SIP 3xx responses

■ doErrorResponse – for SIP 4xx, 5xx, and 6xx responses

Messages
SIP Messages follow the RFC 822 standard. Headers, values and content can be
accessed through the methods in the javax.servlet.sip.SipServletMessage
interface.

public interface SipServletMessage

Both the SipServletRequest and SipServletResponse classes extend the
SipServletMessage interfaces:

■ public interface SipServletRequest extends
javax.servlet.ServletRequest,SipServletMessage

■ public interface SipServletResponse extends
javax.servlet.ServletResponse, SipServletMessage

Requests
SipServletRequest and SipServletResponse objects in the SIP servlet methods
doRequest and doResponse are implementations of the

Note: All of these response handling methods, as well as the doAck
and doCancel request handling methods, are empty. The remaining
request handling methods respond to a request with a 500 Response
(Internal Server Error).

SIP Servlets 2-9

javax.servlet.sip.SipServletRequest interface and the
javax.servlet.sip.SipServletResponse interface which both extends the
javax.servlet.sip.SipServletMessage interface.

A SIP request consists of the following:

■ Request line

■ Headers

■ Empty line

■ Message body

All parts of the SIP request for instance request URI, headers and parameters are
accessible through these interfaces. The SIP container handles many of these system
headers. Applications must not add, delete, or modify the following system headers:

■ From

■ To

■ Call ID

■ CSeq

■ Via

■ Route (except through pushRoute)

■ Record Route

■ Contact (Contact is a system header field in messages other than REGISTER
requests and responses, as well as 3xx and 485 responses)

Responses
Responses to incoming requests are created using the createResponse method on
the request object. It will automatically create a response with all SIP headers set
according to the request. A SIP response has the same structure as a SIP request, except
for a Status line instead of a request line. When receiving responses through, for
instance the doResponse method, methods like getStatus() can be used on the
response object to decide what action to take.

Content
The content in a request or a response can be set with the setContent() method as
illustrated in Example 2–1.

Example 2–1 Setting the Content of a Request with the setConent Method

// Copy of the content from request A to request B
requestB.setContent(requestA.getContent(),
requestA.getContentType());
// Create new content
try
{
 req.setContent("Hello!", "text/plain");
}
catch (UnsupportedEncodingException e)
{
 // Handle the exception
}

2-10 Oracle Communication and Mobility Server Developer’s Guide

Manipulating SIP headers
The javax.servlet.sip.SipServletMessage includes methods for
manipulating SIP headers. The getHeaderNames() method is the most general
method that returns an iterator of the SIP headers of the message. The setHeader
method sets or adds an address for a header. Specifying the name of the header in
getHeaders(name) method returns another iterator of String objects containing all
of the values for that header.

For those headers that conform to AddressHeader, the
getAddressHeader(name)method will return the header parsed as an Address
object.

Addresses can be added or set for a header by using setAddressHeader(name,
address), addAddressHeader(name, address, first), where name is the
name of the header, the address to add, and first is a Boolean. If first is set to true, then
the address will be added first, otherwise it will be added last.

Example 2–2 shows how to manipulate SIP headers:

Example 2–2 Manipulating SIP Headers

 javax.servlet.sip.SipServletRequest req;

// Set a header with the given name and value.
// Overwrites any previous header values.
 req.setHeader("Accept", "application/sdp");

// Add a header value to the end of a header
 req.addHeader("Accept", "text/html");

// Clear all header values
 req.removeHeader("Accept");

// Add a Route header value ahead of the existing Route header
// values.
 req.pushRoute(sipURI);

// Get the first route as an Address object
 Address first route = req.getAddressHeader("Route");

// Get all address header fields for a header
 Iterator addrIter = req.getAddressHeaders("Route");
 while (addrIter.hasNext())
 {
 Address addr = (Address) addrIter.next();
 // ...
 }

SIP Servlets 2-11

SipURI
A base class javax.servlet.sip.URI exists with two sub classes,
javax.servlet.sip.SipURI and javax.servlet.sip.TelURL which
represents SIP URIs and TEL URLs according to RFC 3261, and URLs defined by RFC
2806. The Address class stores a SipURI or a TelURL as the address of the user.

URIs can be described as user@host, where the user part is either a user name or a
telephone number, and the host is a domain name or an IP address.

Parameters can be accessed with getters and setters. The getParameterNames
method will return an iterator with the names of the parameters. A parameter can be
accessed either with the general getParameter method or with specific parameter
methods like getUser, getHost and getLrParam, which returns the user, the host,
and true if the loose route, lr is set. Parameters can be set with its corresponding
setMethod() as shown in Example 2–3.

Example 2–3 Accessing Parameters in SipURI

// Create a SipURI, set the port, the lr, and the transport
// protocol parameter
SipURI myURI;
myURI = sipFactory.createSipURI("bob", "10.0.0.10");
myURI.setPort(5072);
myURI.setLrParam(true);
myURI.setTransportParam("udp");

Address
SIP addresses found in headers, such as the From, To, and Contact headers, are stored as
javax.servlet.sip Address objects. As shown in Example 2–4, the object holds,
beside the URI, an optional display name and a set of name-value parameters.

Example 2–4 SIP Addresses Stored in java.servlet.sip Address Objects

Address contactAddress;
String displayName;
try
{
 // Get the contact address
 contactAdress = req.getAddressHeader("Contact");
 displayName = contactAdress.getDisplayName();
}
catch (ServletParseException spe)
{
 // Handle exception
}

// Create a new address
Address myNewAddress;
myNewAddress = sipFactory.createAddress(URI, "Bob's display
 name");
myNewAddress.setParameter("myparameter","42");

The content of myNewAddress in the preceding example is as follows:

DisplayName URI parameter myparameter
“Bob’s display name” <sip:bob@example.com;lr>; 42

2-12 Oracle Communication and Mobility Server Developer’s Guide

The Address class offers the following methods:

■ getDisplayName()

■ setDisplayName()

■ getURI()

■ setURI()

■ clone()

■ toString()

SIP Details
When working with the SIP Servlet API, many SIP details are hidden and performed
automatically by the OCMS SIP Application Server.

■ When the transport protocol is UDP, retransmissions are handled automatically.

■ Dialog-related information such as tags, contacts and CSeq in the SIP messages are
handled automatically.

■ On outgoing requests, the OCMS server performs DNS lookups and supports
NAPTR-, SRV- and A-records (according to RFC 3263).

Storing Data as Session Attributes
The SIP Servlet API enables data to be stored as session attributes. Session attributes
can be used to store session specific data to be used in responses and subsequent
requests or from a listener class. The attributes are stored and accessed through setters
and getters directly on the session object. The session can be either a
SipApplicationSession or a SipSession. An attribute can only be retrieved
from the same session it was set. For example:

session.setAttribute("key", "value");
session.getAttribute("key"); // Will return "value"
session.removeAttribute("key");

Although the session attributes can store any object, the attributes and their keys must
be serializable for applications that are distributable (for High Availability). Use the
getAttributeNames method to retrieve all of the set attributes. For example:

Enumeration attributes = session.getAttributeNames();
String attributeName = null;
while (attributes.hasMoreElements())
{
 attributeName = (String) attributes.nextElement();
 Object attribute = session.getAttribute(attributeName);
 log (attribute.toString());
}

SIP Servlets 2-13

Adding Configuration Parameters
A servlet can be configured by adding parameters to the <servlet> section in the SIP
Servlet application descriptor (sip.xml). The servlet can then access these parameters
through the getInitParameter method. Example 2–5 illustrates how to configure
the response code.

Example 2–5 Configuring Servlet Parameters

package com.mydomain.test;
import javax.servlet.sip.SipServlet;
import javax.servlet.sip.SipServletRequest;
import javax.servlet.sip.SipServletResponse;
import java.io.IOException;
public class MySipServlet extends SipServlet
{
 protected void doRequest(SipServletRequest req) throws IOException
 {
 int responseCode =
 Integer.parseInt(getInitParameter("responseCode"));
 SipServletResponse resp = req.createResponse(responseCode);
 resp.send();
 }
}

Configuring SIP Applications in sip.xml
SIP servlets must be declared in the application’s deployment descriptor, the sip.xml
file. The sip.xml file enables you to configure the init parameters and the rules that
match initial requests with SIP servlets.

The deployment descriptor is divided into the following sections:

■ Global init parameters (ServletContext init parameters)

<context-param>

■ Session configurations

<session-config>

■ Servlet definitions

<servlet>

■ Servlet mappings, contains the invocation rules

<servlet-mapping>

■ Listeners

<listener>

– Application life cycle listener classes

– Error handler

■ Security

Setting and Accessing Global Init Parameters
The <context-param> and the <env-entry> elements provide the means to set
and access the application’s global parameters, such as the database used with an

2-14 Oracle Communication and Mobility Server Developer’s Guide

application or other resources that are common to the entire application. These
elements differ in how the global parameters are accessed.

The <context-param> element declares the servlet’s init parameters that are global to
the entire Servlet Context. Example 2–6 illustrates setting the database for an
application within the <context-param> element.

Example 2–6 Setting a Database Name within the <context-param>

<context-param>
 <param-name>Database</param-name>
 <param-value>10.0.0.100</param-value>
 <description>The database to be used with this application.</description>
</context-param>

Configuring Application Sessions
SIP Application Sessions are configured within the <session-config> clause. The
session configuration can configure a session timeout value, which is done within the
<session-timeout> clause as shown in the following example. The timeout is set in
minutes; if it set to 0 or below, an application session will never timeout and must be
invalidated explicitly. If no value is set within <session-timeout>, the default
timeout session set for the sipservletcontainer is used instead (15 minutes).

<session-config>
 <session-timeout>10</session-timeout>
</session-config>

Defining a Servlet
The <servlet> element defines the SIP container’s servlets. A servlet requires a
servlet name <servlet-name>, and a servlet class, <servlet-class>. The name
must be unique within the application and the class must be the fully qualified name
of the servlet class, as illustrated in Example 2–7.

Example 2–7 Servlet Name and Servlet Class

<servlet>
 <servlet-name>MyServlet</servlet-name>
 <servlet-class>com.company.example.MyServlet</servlet-class>
</servlet>

SIP Servlets 2-15

A servlet can also have its own init parameters, <init-param> and a description
<description>. When the container starts, it only instantiates and calls the init()
method for the servlets which have set the <load-on-startup> element, as shown
in Example 2–8.

Example 2–8 Defining a Servlet

<servlet>
 <servlet-name>MyServlet</servlet-name>
 <servlet-class>com.mydomain.test.MySipServlet</servlet-class>
 <init-param>
 <param-name>logging</param-name>
 <param-value>true</param-value>
 <description>
 Set if logging should be switched on (true) or not (false).
 </description>
 </init-param>
 <init-param>
 <param-name>infotainment</param-name>
 <param-value>http://www.infotainmentsite.com</param-value>
 <description>
 The site to use as the infotainment content provider.
 </description>
 </init-param>
 <load-on-startup/>
</servlet>

2-16 Oracle Communication and Mobility Server Developer’s Guide

Defining the Servlet Mapping
The <servletmapping> element of the SIP servlet application deployment
descriptor defines the conditions for invoking a servlet. Example 2–9 illustrates how a
servlet named MySipServlet can only be invoked for incoming MESSAGE requests. For
more information, see "Servlet Mapping".

Example 2–9 Servlet Mapping

<!-- Servlet Mappings for incoming requests-->
<servlet-mapping>
 <servlet-name>My Sip Servlet</servlet-name>
 <pattern>
 <equal>
 <var>request.method</var>
 <value>MESSAGE</value>
 </equal>
 </pattern>
</servlet-mapping>

Creating Rules Using the Request Object Structure
The request object model enables you to define rules for processing SIP requests. This
section describes the object model and the predicates for building the rules.

The Request object contains many sub objects, for example SipURI which extends the
URI object.

The request object contains the following elements:

■ method: The method of the request is represented as String.

■ uri: The URI object of the request object, such as SipURI or a TelURI.

■ from: The From header address represented as Address.

■ to: The To header address represented as Address.

The URI object consists of the URI scheme.

The SipURI object consists of the following elements:

■ scheme: The string sip or sips (where sips indicates that TLS should be used).

■ user: The user part of the SIP or SIPS URI. If the SIP address is
sip:alice@example.com, then request.uri.user will return alice.

■ host: The host part of the SIP or SIPS URI. If the SIP address is
sip:alice@example.com, then request.uri.host will return
example.com.

■ port: The SIP URI port. If it is not present, then the default value for UDP and TCP
is 5060 and TLS is 5061.

■ tel: Returns the user part of the SIP or SIPS URI if the parameter user is set to
phone for the URI. The initial visual separators as + and - are stripped away. For
example, if the SIP URI is sip:+12345@example.com;user=phone, then the
request.uri.tel would return 12345.

■ param.name: The value of the SipURI parameter with the name name. For example,
given the following request URI: INVITE
sip:23479234@oracle.com;user=phone SIP/2.0, the
request.uri.param.user will return phone.

The TelURL consists of the following elements:

SIP Servlets 2-17

■ scheme: The string, tel.

■ tel: The tel URL subscriber name.

■ param.name: the value of the SipURI parameter with the name name.

Address consists of the following elements:

■ uri: The URI object

■ display-name: The To or From display name of the header.

Conditions
Table 2–1 lists the operators.

Table 2–2 lists the logical connectors.

Examples
Example 2–10 describes the parts of a request which are referenced with the different
types of variables.

Example 2–10 Referencing Request Elements

MESSAGE sip:bob@example.com SIP/2.0
Call-ID: a2412d22-161b-4cff-b4a5-a4c6c1f70f18
To: <sip:bob@example.com>
From: "Alice" <sip:alice@example.com>;tag=1234
Max-Forwards: 70
User-Agent: Oracle-CallTron/4.5.7.1445
Accept: text/plain
CSeq: 2 MESSAGE
Content-Type: text/plain; charset=UTF-8
Content-Length: 13

Table 2–1 Operators

Condition Name Description

Equal Compares the value of a variable with a literal value and
evaluates to true if the variable is defined and its value equals
that of the literal. Otherwise, the result is false.

Exists Takes a variable name and evaluates to true if the variable is
defined, or to false if the variable has not been defined.

Contains Returns true if the first argument, a variable, contains the literal
string specified as the second argument.

subdomain of If given a variable denoting a domain name (SIP/SIPS URI host)
or telephone subscriber (tel property of SIP or Tel URLs), and a
literal value, this operator returns true if the variable denotes a
sub domain of the domain given by the literal value.

Table 2–2 Logical Connectors

Logic Description

and Contains a number of conditions and evaluates to true if all of
the contained conditions evaluate to true.

or Contains a number of conditions and evaluates to true if and
only if at least one contained condition evaluates to true.

not Negates the value of the contained condition.

2-18 Oracle Communication and Mobility Server Developer’s Guide

Via: SIP/2.0/TCP 10.0.0.20:3094;branch=z9hG4bK-477709c9-c064-4b95-
90bc-7391d0154368.1;rport
Route: <sip:messageapp@sipappserver.com;lr>
Proxy-Authorization: Digest username="alice", realm="example.com",
nonce="MTEzNDQwMzkwMDc3NDJiM2JkY2E1ZmRiY2M4YzBjYzQ2M2VhMTM2NWFlM2Fm",
uri="sip:bob@example.com", qop=auth, nc=00000001, cnonce="443857DE",
response="e5c48d5d2982cf3974260511218a246a",
opaque="4a94690f435b9049b896dce0b6ddb8fe"

The message!

In the variables have the values described in Table 2–3.

Table 2–3 Variable Values

Variable Value

request.method MESSAGE

request.uri sip:bob@example.com

request.uri.scheme sip

request.uri.user bob

request.uri.host example.com

request.uri.port 5060

request.uri.tel

request.from "Alice" <sip:alice@example.com>;tag=1234

request.from.uri sip:alice@example.com

request.from.uri.scheme sip

request.from.user alice

request.from.port 5060

request.from.display-name Alice

request.to sip:bob@example.com

request.to.uri sip:bob@example.com

request.to.uri.scheme sip

request.to.uri.user bob

request.to.uri.port 5060

request.to.display-name

SIP Servlets 2-19

The following example evaluates to false.

<pattern>
 <and>
 <equal>
 <var>request.method</var>
 <value>MESSAGE</value>
 </equal>
 <contains>
 <var>request.from</var>
 <value>tag=1234</value>
 </contains>
 <equal>
 <var>request.uri.host</var>
 <value>otherexample.com</value>
 </equal>
 </and>
</pattern>

The first condition, equal, evaluates to true. The second condition, contains, also
evaluates to true. The third condition ensures that it only serves requests for the
otherexample.com but the request URI host is example.com and then it evaluates
to false as does the whole rule while the three conditions are all inside the and
condition.

SIP Servlets in OCMS
This section describes the OCMS extensions to the SIP Servlet API as well as its
implementation of it. Sections include:

■ "Handling Initial Requests"

■ "Implementation Decisions"

■ "Multi-Threading"

■ "Sip Servlet API Javadoc"

■ "External Access to SIP Servlets"

■ "OCMS Authentication and Login Modules"

Handling Initial Requests
When the SIP container receives an initial request, it attempts to invoke a SIP
application. The SIP container selects the application based on the appId parameter.
See Chapter 3, "Advanced SIP Servlet Configuration" for information on appId. The
workflow of the SIP container is as follows:

1. Check if the request contains an indication of which application to invoke.

2. If there is no name of an application to invoke, then the SIP container selects
default applications.

3. If the application is named by the request, then the SIP container locates the
application and then invokes it.

Note: The container selects a default application when initial
requests do not indicate which applications should be invoked.

2-20 Oracle Communication and Mobility Server Developer’s Guide

For example, to respond to an incoming request, a SIP servlet container evaluates the
following SIP applications:

■ Application A has the following two SIP servlets defined in its sip.xml:

– Servlet 1 matches INVITE requests.

– Servlet 2 matches MESSAGE requests.

■ Application B has the following SIP servlet defined in its sip.xml:

– Servlet 1 matches INVITE requests.

■ Application C has the following two SIP servlets defined in its sip.xml:

– Servlet 1 matches REGISTER requests.

– Servlet 2 matches all requests.

■ Application D has the following two SIP servlets defined in its sip.xml:

– Servlet 1 matches a SUBSCRIBE request.

– Servlet 2 matches a PUBLISH request.

■ Application E has the following SIP servlet defined in its sip.xml.

– Servlet 1 matches all requests.

All of these applications have been deployed into the SIP container, but no default
application has been specified. The SIP container then designates all of the SIP
applications that it locates as the default application. For example, when the SIP
container receives an INVITE request which does not designate which application to
invoke, the SIP container checks for default applications. However, because none of
the applications deployed to the container have been configured as default
applications, the container retrieves all of the applications. These applications are in
the following order:

■ Application B

■ Application D

■ Application C

■ Application E

■ Application A

The SIP container reviews the list of applications sequentially, starting with
Application B. It queries each application for a servlet that can process the incoming
request. If the application contains the appropriate servlet, then the servlet is invoked
and no other applications can be considered for this request. Example 2–11 illustrates
the concept code for the SIP container’s application evaluation process.

Example 2–11 Evaluating SIP Applications for Incoming Requests

List allDeployedApplications = retrieve all applications that have been deployed;
for each application in allDeployedApplications do:
 SipServlet servlet = application.match(incoming request);
 if servlet is not null then:
 servlet.processIncomingRequest(request);
 return;
 end if
end for

SIP Servlets 2-21

In this case, the SIP container selects Application B to serve the incoming INVITE
request. If the SIP container received a PUBLISH request, it retrieves the list again and
queries Application B (the first application). Since Application B does not match the
request, the SIP Container moves to the next application, Application D. Because this
application contains a servlet that processes this request, the SIP container selects
Application D.

Application A can never be invoked, as it is the last on the list of deployed
applications and will always be starved out by Application C, which accepts all
incoming events. Application C starves out all of the subsequent applications as well,
as its first servlet processes all REGISTER requests and its second servlet processes all
other requests.

Implementation Decisions
The following sections describe implementation options in the SIP Servlet
specification:

■ "Protocol Sessions"

■ "Extended doRequest Methods"

■ "Asynchronous Send"

Protocol Sessions
The SIP Servlet specification infers that other protocol sessions, such as HTTP, can be
placed in the same SIP Application Session. However, OCMS currently supports only
the SIP protocol.

Extended doRequest Methods
The OCMS SCE wizard offers a doPublish() method. The wizard extends the
doRequest methods by also dispatching the SIP PUBLISH request (RFC 3903).

For request handling, the doPublish() method is used for SIP PUBLISH requests.

See also "Request and Response Handling Methods".

Asynchronous Send
In OCMS, the send() method on a SipServletRequest never throws an
IOException. The container posts the request on a send queue and returns it
successfully. If the send operation later fails, a final response will be generated by the
container. Failure in a DNS lookup returns 408 (Request Timeout) or for other types of
failures, a 500 (Server Internal Error).

Multi-Threading
In OCMS, a servlet runs in a multi-threaded environment and multiple servlets may
have access to the same session object at the same time. The request and responses use
an available thread from the thread pool of the container. Therefore the developer may
be responsible for synchronizing access to sessions and their resources if required by
the application logic.

Note: This does not prevent you from creating converged SIP and
HTTP applications. Please refer to the Oracle Communication and
Mobility Server Developer's Cookbook for examples.

2-22 Oracle Communication and Mobility Server Developer’s Guide

Sip Servlet API Javadoc
The Javadoc can be downloaded from the jcp.org Web page,
http://jcp.org/aboutJava/communityprocess/final/jsr116/index.htm
l.

When the download of the zip file is complete, you can update the Javadoc location in
Eclipse to include the new location of the Javadoc.

External Access to SIP Servlets
To enable convergent applications between SIP and HTTP, the OCMS Container allows
you to get access to the javax.servlet.sip.SipFactory by looking it up through
JNDI. The SIP Factory will be registered under the same name as the display name of
your SIP servlet as illustrated in Example 2–12. The <display-name> in the sip.xml in
this case must be "My sip app".

Example 2–12 Accessing the Data for a SIP Session through JNDI

InitialContext ic = new InitialContext();
SipFactory sipFactory = (SipFactory)ic.lookup("sip/My sip app");

OCMS Authentication and Login Modules
OCMS provides digest authentication (HTTP) against the users, user roles, and user
data stored in the TimesTen In-Memory Database or against an external RADIUS
(Remote Authentication Dial-In User Service) server. OCMS also supports
authentication and authorization services for users provisioned to OID (Oracle
Internet Directory).

The login modules, OCMSLoginModule and the RADIUSLoginModule are custom
login modules that act as JAAS security providers to execute digest authentication for
SIP applications and basic authentication for J2EE applications. OCMSLoginModule
authenticates against user data stored in the TimesTen database, while
RadiusLoginModule authenticates against an external Radius server. Basic
authentication is only supported when using the file-based login module,
FileLoginModule, and is recommended only for test purposes.

For more information, see Oracle Communication and Mobility Server Administrator’s
Guide.

Advanced SIP Servlet Configuration 3-1

3
Advanced SIP Servlet Configuration

This chapter, describes advanced topics related to SIP Servlets. It contains the
following sections:

■ Addressing SIP Applications

■ Configuring Application Security

Addressing SIP Applications
Because JSR 116 does not state how to address a SIP Application, OCMS includes a
parameter called appId, which is located either in the URI of the top-most route
header (Example 3–1), or in the REQUEST URI (Example 3–2). The SIP container
checks both of these locations for this parameter.

If the SIP Container locates appId, it interprets the value defined for appId as the
name of the application to invoke. The value can be defined as either the full
application name, or the application alias that is set using the ApplicationAliases
attribute of the SipServletContainer MBean. For example, if the SIP container receives a
request that includes the appId parameter, the container searches for the value set for
the parameter, such as presence in Example 3–1. If the container cannot find an
application named presence, it returns a 403 response (Forbidden), because it cannot find
an application with this name. However, if the container locates the application
defined by the appId parameter, it requests this application to process the request
using the match method described in Servlet Mapping in Chapter 2. If the application
does not have a servlet with a matching rule, then the match method returns null and
the container replies with a 403 response.

Note: appId is case-sensitive.

3-2 Oracle Communication and Mobility Server Developer’s Guide

Identifying the appId
The container will only consider the appId if this parameter is included in the
top-most-route and this route points to the container, or if there are no route headers
present, the request-uri.

In Example 3–1, there is a route header present in the request and if the container has
been configured to acknowledge the ip-address 192.168.0.100 as an address pointing to
itself, it will use the appId in the route-header and invoke the application "presence".
However, if this IP address does not belong to the container, it will simply ignore the
appId and invoke the default application as previously described.

Example 3–1 appId Defined in the Route Header of an Incoming Request

SUBSCRIBE sip:bob@example.com
To: .
From: .
Route: <sip:192.168.0.100:5060;appId=presence>

It is important to realize that if the appId would have been present in the request-uri
instead, the container would not even had considered evaluating the request-uri for
the presence of an appId parameter since the request did contain route-headers.
Example 3–2 illustrates how the appId would have been ignored by the container even
though the request-uri is pointing to the container itself.

Example 3–2 appId in the Request URI of an Incoming Request

SUBSCRIBE sip:bob@192.168.0.100;appId=presence
To: .
From: .
Route: <sip:192.168.0.200:5060>

The reason for this is that even though the final destination would be the container
itself, this message must first be routed through the server at 192.168.0.200 before
coming back to this container where the application presence would be invoked. Of
course, depending on the application on the other server, this request may or may not
be proxied back to us (that application might e.g. terminate the request by sending a
final response to this message).

Note: You can configure the route to point to the SIP Container
through the SipServletContainer MBean.

Advanced SIP Servlet Configuration 3-3

Configuring Application Security
The deployment descriptor file enables application security through its
<security-constraint> element. Security is declared per servlet by adding a
<security-constraint> element to servlets that require authentication and
authorization.

The <proxy-authentication/> element defines servlet authentication. If a servlet
requires authentication, then it can request either 401 (Unauthorized), which is the
default, or a 407 (Proxy Authentication Required) .

A security constraint can hold one or more resource collections,
<resourcecollection>, each indicating that the servlet requires authentication
and the SIP methods that require authentication.

Users can have a single role, several roles, or no roles at all. Each security constraint
can set zero or one authorization constraints, <auth-constraint>, containing zero
or more role names, <role-name>, that the authenticated user is authorized against.
Authorization can, beside from inside the deployment descriptor, also be checked
programmatically from inside a servlet. For example, the isUserInRole method on
the SipServletRequest or the SipServletResponse object.

Example 3–3 illustrates a security constraint that requires authentication for
MyServlet when the request is either an INVITE or a MESSAGE. There are no
authorization constraints to any roles. An unauthenticated user receives 407 (Proxy
Authentication Required) on its request if <proxy-authentication/> is set.

Example 3–3 Configuring Application Security

<security-constraint>
 <display-name>MyServlet Security Constraint</display-name>
 <resource-collection>
 <resource-name>MyServletResource</resource-name>
 <description>Securing MyServlet</description>
 <servlet-name>MyServlet</servlet-name>
 <sip-method>MESSAGE</sip-method>
 <sip-method>INVITE</sip-method>
 </resource-collection>
 <proxy-authentication/>
 <auth-constraint>
 <role-name>*</role-name>
 </auth-constraint>
</security-constraint>

3-4 Oracle Communication and Mobility Server Developer’s Guide

If a SIP client sends a REGISTER request to a server as illustrated in Example 3–4, then
a 401 (Unauthorized) message is returned to the client. If the authentication succeeds,
then the roles of the user are checked against the role names set in the
<auth-constraint>.

Example 3–4 Configuring Security Constraints

<security-constraint>
 <display-name>MyServlet Security Constraint</display-name>
 <resource-collection>
 <resource-name>MyServletResource</resource-name>
 <description>Securing MyServlet</description>
 <servlet-name>MyServlet</servlet-name>
 <sip-method>REGISTER</sip-method>
 </resource-collection>
 <auth-constraint>
 <role-name>Location Service</role-name>
 </auth-constraint>
</security-constraint>

If the user re-sends the REGISTER request which is subsequently authenticated, then
then the container checks the roles of the user against the required Location
Service role. A 403 (Forbidden) message is sent as a response if the user does not have
the appropriate role.

Programming Guidelines 4-1

4
Programming Guidelines

This chapter, describes programming guidelines for SIP Servlet applications. It
contains the following sections:

■ Introduction

■ Marking Applications as Distributable

■ Storing Data in Application Sessions

■ Avoiding Static Data

■ Avoiding Blocking Calls

■ Invalidating the SipApplicationSession and SIPSession

■ Monitoring the Memory Usage

■ Avoiding Storing Shared Resources in Sessions

■ Avoiding Creating Threads

■ Creating B2BUA Applications

Introduction
For an application to take full advantage of OCMS as a JSR 116 SIP Servlet Application
platform, observe the following recommendations.

Marking Applications as Distributable
For stateful applications, that is applications that save state in SipSessions or
SipApplicationSessions, to be highly available in a SIP Application Server cluster, the
sip.xml as well as the web.xml file must contain the <distributable> element. Marking
applications as distributable will make sure that the application and session state is
replicated to cluster nodes that will be able to resume execution of the session in the
event of a failure of a cluster node.

There are performance implications related to how session state is replicated in a
distributable environment. Replication is triggered each time there is a setAttribute()
call on the session object, so large numbers of such calls in a servlet may impact
performance.

For OC4J there are additional requirements if the application is packaged as an
Enterprise Archive. See the Oracle Communication and Mobility Server Administration
Guide for details.

4-2 Oracle Communication and Mobility Server Developer’s Guide

Storing Data in Application Sessions
All data that must persist for a session must be stored in the SIP Application session
explicitly and must be serializable.

Avoiding Static Data
As a corollary, to the previous recommendation, avoid using static variables in an
application, instead use standard J2EE mechanisms such as EJB or database storage to
achieve persistent storage of data that can be made available to another cluster node in
the event of a failure.

Avoiding Blocking Calls
All blocking calls as part of the invocation of a SIP Servlet application should be
avoided. Blocking calls include Synchronous Remote procedure calls and synchronous
database calls.

Invalidating the SipApplicationSession and SIPSession
Remember to invalidate the SipApplicationSession in order to free up memory as soon
as possible when the application has finished. For individual SIP Sessions, you should
invalidate them as soon as they are finished as well. Make sure there are no active SIP
Sessions when you invalidate a SIP Application Session as the owned SIP Sessions will
be invalidated as well.

Monitoring the Memory Usage
Monitor the memory usage for the data you want to store in session objects. Make sure
there is sufficient memory for the number of sessions created before the sessions time
out.

Avoiding Storing Shared Resources in Sessions
Objects that are stored in the session objects will not be released until the session times
out (or is invalidated). If you hold any shared resources that have to be explicitly
released to the pool before they can be reused (such as a JDBC connection), then these
resources may never be returned to the pool properly and can never be reused.

Avoiding Creating Threads
Use the available mechanisms to create an event driven model for your application
instead of creating threads to perform work outside of the activation model for the
containers.

Creating B2BUA Applications
For B2BUA Applications, use the createRequest that clones the relevant fields of the
original request:

SipFactory.createRequest(SipServletRequest origRequest,
boolean sameCallId)

It will clone the request with the following modifications:

Programming Guidelines 4-3

■ The From header field of the new request has a new tag chosen by the container.

■ The To header field of the new request has no tag.

■ The Call-ID will be new (or duplicated in sameCallId is true)

■ The Record-Route and Via header fields are not copied. The container will add its
own Via header field to the request when it is actually sent outside the application
server.

■ For non-REGISTER requests, the Contact header field is not copied but is
populated by the container

4-4 Oracle Communication and Mobility Server Developer’s Guide

Building a SIP Servlet Application 5-1

5
Building a SIP Servlet Application

This chapter illustrates how to build a SIP Servlet application through OCMS SCE by
creating a new project, importing an existing project, or by importing one of the
example project provided with OCMS SCE. For more information on the OCMS SCE
example projects and other SIP servlets, including source code, refer to Oracle
Communication and Mobility Server Developer’s Cookbook.

This chapter consists of the following sections:

■ Prerequisites

■ SIP Application Development Process

■ Creating a New Dynamic Web Project with SIP Support

■ Importing an Existing Project

■ Importing Example Projects

– Importing the Basic Response SIP Application Example Project

– Importing the Call Forward SIP Application Example Project

– Importing the Message Sender SIP/Web Converged Application Example
Project

– Importing the Parlay X Web Services Client Example Project

– Importing the Proxy/Registrar Example Project

– Importing the Third Party Call Control Example Project

■ Deploying a SIP Application to OCMS

■ Testing an Application

Prerequisites
Before building a SIP servlet application, ensure that you have completed the
following prerequisite steps:

1. Installing Eclipse Web Tools Platform 1.5.

Refer to Oracle Communication and Mobility Server Installation Guide for installation
instructions. For information on Eclipse functionality, refer to the tutorial at
http://www.eclipse.org/webtools/community/communityresources.html.

2. Installing OCMS with the OCMS Service Creation Environment component. Select
from one of the following installation mode options: OC4J mode (Oracle
Containers for J2EE must already be installed) or standalone mode (a standalone
version of Oracle Containers for J2EE is installed with OCMS).

5-2 Oracle Communication and Mobility Server Developer’s Guide

Refer to Oracle Communication and Mobility Server Installation Guide for installation
instructions.

3. Initializing the OCMS Service Creation Environment, and adding OCMS as a
Server in OCMS SCE. Refer to Oracle Communication and Mobility Server Installation
Guide.

SIP Application Development Process
Applications developers can create a fully-converged SIP and HTTP application with
OCMS by performing the following tasks.

For more information on performing these tasks, refer to Chapter 5, "Building a SIP
Servlet Application".

1. Create a SIP servlet

a. Create a SIP Servlet Project.

– Create a SIP servlet.

– Define the SIP servlet’s initialization parameters (servlet definitions) and
invocation rules (servlet mappings) in the application of the SIP Servlet in
each of the deployment descriptors created.

2. Create a SIP application

a. Create a SIP Application Project (ssr).

b. Choose the servlets to include.

c. Update the deployment descriptor with the following:

– Servlet Context init parameters

– Session configurations

– Application lifestyle listener classes

– Error handler

3. Create Utility Classes (business logic)

a. Create an EJB Project.

b. Create EJBs.

4. Create static resources and content such as Text and speech announcement.

5. Create Web functionality

a. Create a Web Application Project.

b. Create servlets and JSPs.

6. Create an Enterprise Application

a. Create an Enterprise Application Project.

b. Choose your applications that should form the Enterprise Application. (SIP
Application, Business Logic, Web Application).

7. Test your application

a. Deploy the application to the application server.

b. Test and debug the application.

Building a SIP Servlet Application 5-3

Creating a New Dynamic Web Project with SIP Support
Perform the following procedure to create a new project in Eclipse for deployment to
OCMS:

1. Close the Welcome window of Eclipse if it is shown.

2. Select the Eclipse Java perspective by selecting Window, Open Perspective, and
Java.

3. Create a new project by selecting File, New, Project, OCMS SCE, Dynamic Web
Project with SIP Support.

4. Enter the project name.

5. Select the target runtime from the drop-down menu.

This runtime will be preconfigured if the OCMS Server has been added as
described in Prerequisites.

6. Click Finish.

A new Java Project is created in the Package Explorer. Access the Package Explorer
by selecting Window, Show View, Package Explorer. To deploy your project,
perform the steps described in Deploying a SIP Application to OCMS.

Importing an Existing Project
Perform the following procedure to import an existing project into Eclipse for
deployment to OCMS:

1. Close the “welcome” window of Eclipse if it is shown.

2. Select the Eclipse Java perspective by selecting Window, Open Perspective, and
Java.

3. Create a new project by selecting File, Import, Web, WAR file.

4. Navigate to the Eclipse workspace directory and locate the WAR file to be
imported.

5. Select the project.

6. Select "OCMS SipAS - OC4J 10.3.2" as the target runtime from the drop-down
menu.

This runtime will be preconfigured if the OCMS Server has been added as
described in Prerequisites.

7. Click Finish.

A new Java Project is created in the Package Explorer. Access the Package Explorer
by selecting Window, Show View, Package Explorer. To deploy your project,
perform the steps described in Deploying a SIP Application to OCMS.

Note: When importing a new project into Eclipse for use with the
OCMS SCE, the project must be located in the workplace directory.
Otherwise the deployment into OCMS will not work.

5-4 Oracle Communication and Mobility Server Developer’s Guide

Importing Example Projects
The section describes how to import and configure the example projects provided by
OCMS SCE. There is a Readme file provided with all the example projects (except the
Basic Response project) that includes steps to deploy and use the project. Refer to the
Readme file bundled with the project for additional information.

OCMS SCE provides the following six example projects (Figure 5–1):

■ Basic Response SIP Application Example Project: This SIP servlet receives an
incoming MESSAGE and sends back a response to the sender.

■ Call Forward SIP Application Example Project: This SIP servlet provides Call
Forward on No Answer functionality.

■ Message Sender SIP/WEB Converged Application Example Project: This
application includes the Message Sender SIP Servlet and a web page from which a
message can be sent to a SIP address.

■ Parlay X Web Services Client Example Project: This is a Parlay X Web Services
client example project that uses the Presence Supplier interface.

■ Proxy/registrar SIP Application Example Project: This SIP application can register
and authenticate users and can set up voice and video calls as well as allow instant
messaging between registered users.

■ Third Party Call Control SIP Application Example Project: This application is a
Third Party Call Control SIP example application that performs basic Click-to-Call
functionality, implements flow I in RFC 3725, and provides a Web interface.

Figure 5–1 OCMS SCE Example Projects

Building a SIP Servlet Application 5-5

Importing the Basic Response SIP Application Example Project
Perform the following procedure to import the Third Party CAll Control example
project into Eclipse SCE:

1. Close the “welcome” window of Eclipse if it is shown.

2. Select the Eclipse Java perspective by selecting Window, Open Perspective, and
Java.

3. Import the example SIP servlet project by selecting File, New, Project, OCMS
SCE, Example Projects, Basic Response SIP Application Example Project.

4. Enter basicresponseservlet as the project name and click Finish.

A new Java Project is created in the Package Explorer. Access the Package Explorer
by selecting Window, Show View, Package Explorer. To deploy your project,
perform the steps described in Deploying a SIP Application to OCMS.

Importing the Call Forward SIP Application Example Project
Perform the following procedure to import the Third Party CAll Control example
project into Eclipse SCE:

1. Close the “welcome” window of Eclipse if it is shown.

2. Select the Eclipse Java perspective by selecting Window, Open Perspective, and
Java.

3. Import the example SIP servlet project by selecting File, New, Project, OCMS
SCE, Example Projects, Call Forward SIP Application Example Project.

4. Enter callforwardservlet as the project name and click Finish.

A new Java Project is created in the Package Explorer. Access the Package Explorer
by selecting Window, Show View, Package Explorer. To deploy your project,
perform the steps described in Deploying a SIP Application to OCMS.

Importing the Message Sender SIP/Web Converged Application Example Project
Perform the following procedure to import the Third Party CAll Control example
project into Eclipse SCE:

1. Close the “welcome” window of Eclipse if it is shown.

2. Select the Eclipse Java perspective by selecting Window, Open Perspective, and
Java.

3. Import the example SIP servlet project by selecting File, New, Project, OCMS
SCE, Example Projects, Message Sender SIP/Web Converged Application
Example Project.

4. Enter messagesenderservlet as the project name and click Finish.

A new Java Project is created in the Package Explorer. Access the Package Explorer
by selecting Window, Show View, Package Explorer. To deploy your project,
perform the steps described in Deploying a SIP Application to OCMS.

Note: When importing a new project into Eclipse for use with the
OCMS SCE, the project must be located in the workplace directory.
Otherwise the deployment into OCMS will not work.

5-6 Oracle Communication and Mobility Server Developer’s Guide

Importing the Parlay X Web Services Client Example Project
Perform the following procedure to import the Third Party CAll Control example
project into Eclipse SCE:

1. Close the “welcome” window of Eclipse if it is shown.

2. Select the Eclipse Java perspective by selecting Window, Open Perspective, and
Java.

3. Import the example SIP servlet project by selecting File, New, Project, OCMS
SCE, Example Projects, Message Sender SIP/Web Converged Application
Example Project.

4. Enter messagesenderservlet as the project name and click Finish.

A new Java Project is created in the Package Explorer. Access the Package Explorer
by selecting Window, Show View, Package Explorer. To deploy your project,
perform the steps described in Deploying a SIP Application to OCMS.

Importing the Proxy/Registrar Example Project
Perform the following procedure to import the Third Party CAll Control example
project into Eclipse SCE:

1. Close the “welcome” window of Eclipse if it is shown.

2. Select the Eclipse Java perspective by selecting Window, Open Perspective, and
Java.

3. Import the example SIP servlet project by selecting File, New, Project, OCMS
SCE, Example Projects, Proxy/registrar SIP Application Example Project.

4. Enter proxyregistrarservlet as the project name and click Finish.

A new Java Project is created in the Package Explorer. Access the Package Explorer
by selecting Window, Show View, Package Explorer. To deploy your project,
perform the steps described in Deploying a SIP Application to OCMS.

Importing the Third Party Call Control Example Project
Perform the following procedure to import the Third Party CAll Control example
project into Eclipse SCE:

1. Close the “welcome” window of Eclipse if it is shown.

2. Select the Eclipse Java perspective by selecting Window, Open Perspective, and
Java.

3. Import the example SIP servlet project by selecting File, New, Project, OCMS
SCE, Example Projects, Third Party Call Control.

4. Enter TpccServlet as the project name and click Finish.

A new Java Project is created in the Package Explorer. Access the Package Explorer
by selecting Window, Show View, Package Explorer. To deploy your project,
perform the steps described in Deploying a SIP Application to OCMS.

Building a SIP Servlet Application 5-7

Deploying a SIP Application to OCMS
Perform the following procedure to deploy SIP applications to OCMS:

1. Associate the projects to be deployed to a server by performing the following
steps:

■ In the Servers view right-click "OCMS SipAS - OC4J 10.1.3" and select Add
and Remove Projects (Figure 5–2).

Figure 5–2 Adding Projects to a Server

■ In the Add or Remove Projects dialog box select the projects and use the Add
button to add your projects to the list on the right called "Configured projects."

■ Select Finish to complete the association of the projects to the OCMS server.

2. Right-click the server in the Servers view and select Publish to start and deploy
the SIP applications (Figure 5–3).

5-8 Oracle Communication and Mobility Server Developer’s Guide

Figure 5–3 Selecting Publish in the Servers View to Deploy Applications

The application is ready to be tested.

Building a SIP Servlet Application 5-9

Testing an Application
After you have built and deployed your application you must test its functionality.
When starting OCMS the application will automatically be started. Verify that the
application has started correctly by examining the system logging files.

Changing the Logging Level
Setting the log level to DEBUG provides a more detailed level of information for the
developer. Using the SIPServletContainerLogging MBean, set the system log level to
DEBUG by entering DEBUG as the value of the System attribute. See Oracle
Communication and Mobility Server Administrator's Guide for more information.

Viewing the System Log File
Start the log file viewer and view the system log file, system.log. Log files are
located under <ocms_home>/j2ee/home/log/sdp.

Starting the OCMS Server in Eclipse
Start the server by opening the Server view. Select Window, Show view, Other… and
select Server, Servers and click OK. Right click on the server and from the context
menu select Debug to start the server in debug mode.

Eclipse changes the active view to the console view. This view is active until the server
has changed the log output to the system.log file, as indicated by a message
(Configuring from URL:...) in the preceding Console view.

Eclipse will start when the server has changed back to the server view. Look for the
following message in the console: "<date> <time> Oracle Containers for J2EE 10g
(10.1.3.2) initialized."

Testing a Third Party Call Control Servlet
To test an application, open a Web browser and navigate to the URL of the application
on the OCMS server.

For example, to test the Third Party Call Control servlet perform the following steps:

1. Navigate to the following URL http://localhost:8888/tpcc (Figure 5–4).

2. Enter two SIP addresses.

If you have a PSTN Gateway, you can call a PSTN telephone, by entering the full
number with the PSTN gateway address. For example,
sip:16505555555@<ip-address-of-gateway>

Tip: You can obtain a tool to view frequently updated log files.
Install one of the following log viewers tools, if you do not already
have one:

■ LogWatcher, downloadable from
http://graysky.sourceforge.net or

■ Tail XP, downloadable from http://infiero.com/tailxp.

Note: Even if a SIP servlet fails to startup the server will display that
it is started. You must view the log file to verify whether the SIP
servlet deployed successfully.

5-10 Oracle Communication and Mobility Server Developer’s Guide

3. Click Connect.

The call is connected. Invitation 1 (the invitation to the first address/number) is
sent first. Invitation 2 is sent after a short delay. Verify that the communication is
successfully established.

Figure 5–4 Using Click-to-Call (Third-Party Call Control)

OCMS Parlay X Web Services 6-1

6
OCMS Parlay X Web Services

This chapter describes OCMS support for the Parlay X 2.0 Presence Web services
interfaces for developing applications. The Web service functions as a Presence
Network Agent which can publish, subscribe, and listen to notifies on behalf of the
users of the Web service. This chapter consists of the following sections:

■ "Introduction"

■ "Installing the Web Services"

■ "Installing the Aggregation Proxy"

■ "Configuring Web Services with the Aggregation Proxy"

■ "Presence Web Services Interface Descriptions"

■ "Using the Presence Web Services Interfaces"

■ "OCMS Parlay X Presence Custom Error Codes"

Introduction
OCMS provides support for Part 14 of the Parlay X Presence Web Service as defined in
the Open Service Access, Parlay X Web Services, Part 14, Presence ETSI ES 202 391-14
specification. The OCMS Parlay X Web service maps the Parlay X Web service to a
SIP/IMS network according to the Open Service Access, Mapping of Parlay X Web
Services to Parlay/OSA APIs, Part 14, Presence Mapping, Subpart 2, Mapping to
SIP/IMS Networks, ETSI TR 102 397-14-2 specification.

The presence Web service communicates directly with IMS presence network elements
using the SIP/SIMPLE protocol interface, and uses the JSR-32 UAC framework to
communicate with the SIP network.

The HTTP server that hosts the presence Web service is a Presence Network Agent or a
Parlay X to SIP gateway.

Note: Due to the synchronous nature of the Web service, to receive a
callback from the Web service the client must implement the Web
service callback interface. For presence, the required interface is the
PresenceNotification interface described in Open Service Access,
Parlay X Web Services, Part 14, Presence ETSI ES 202 391-14.

Because this implementation is not common or practical for most Web
service architectures, the PresenceNotification interface is not
currently supported.

Installing the Web Services

6-2 Oracle Communication and Mobility Server Developer’s Guide

Installing the Web Services
The Web services are packaged as a standard .ear file and can be deployed the same as
any other Web services through Enterprise Manager. The .ear file contains two .war
files that implement the two interfaces. If the Web services are deployed on the same
server as the presence server, they must be a child application of the Presence server.

Installing the Aggregation Proxy
The aggregation proxy is packaged as a standard .ear file and can be deployed through
Enterprise Manager. There are two requirements:

■ The application name must be "aggregationproxyear".

■ The parent application must be "subscriberdataservices". The aggregation proxy
uses the authentication functions of subscriberdataservices to authenticate Web
services.

Configuring Web Services with the Aggregation Proxy
The Web services operate within a trusted domain where another entity performs
authentication. To authenticate Web services and identify the user of the services,
OCMS uses the aggregation proxy to insert the HTTP X-3GPP-ASSERTED-IDENTITY
header as defined in 3GPP TS 33.222 Generic Authentication Architecture (GAA); Access
to network application functions using Hypertext Transfer Protocol over Transport Layer
Security (HTTPS).

To define a Web services deployment server:

1. Open the Enterprise Manager page for the aggregation proxy.

2. Configure the WebServiceHost and WebServicePort to the host and port of the Web
services deployment server.

3. Configure the XCAPHost, XCAPPort, and XCAPRoot to the location and
parameters of the XDMS.

Presence Web Services Interface Descriptions

OCMS Parlay X Web Services 6-3

Presence Web Services Interface Descriptions
The presence Web services consist of three interfaces:

■ PresenceConsumer: The watchers use these methods to obtain presence data
(Table 6–1).

■ PresenceNotification: The presence consumer interface uses the client callback
defined in this interface to send notifications. OCMS does not currently support
PresenceNotification (Table 6–2).

■ PresenceSupplier: The presentity uses these methods to supply presence data and
manage access to the data by its watchers (Table 6–3).

Table 6–1 PresenceConsumer Interface

Operation Description

subscribePresence The Web Services send a SUBSCRIBE to the presence server.

getUserPresence Returns the cached presence status because the status
changes of the presentity are asynchronously sent to the Web
services through a SIP NOTIFY. The Web services actually
have the subscription, not the Web services client.

startPresenceNotification Not supported.

endPresenceNotification Not supported.

Table 6–2 PresenceNotification Interface

Operation Description

statusChanged Not supported.

statusEnd Not supported.

notifySubscription Not supported.

subscriptionEnded Not supported.

Table 6–3 PresenceSupplier Interface

Operation Description

publish Maps directly to a SIP PUBLISH.

getOpenSubscriptions Called by the presentity (supplier) to check if any watcher
wants to subscribe to its presence data. No SIP message maps
to this method. Returns pending subscriptions currently in
the Web services server.

updateSubscriptionAuthorizati
on

The supplier uses this method to answer any open pending
subscriptions. An XCAP PUT message is sent to the XDMS
server to update the presence-rule document.

getMyWatchers Retrieves the local list of watchers from the Web services
server.

getSubscribedAttributes Retrieves the local list of subscribed attributes from the Web
services server. Currently, only returns Activity.

blockSubscription Causes the Web services server to end a watcher subscription
by modifying the XCAP document on the XDMS server (i.e.,
putting the watcher on the block list).

Using the Presence Web Services Interfaces

6-4 Oracle Communication and Mobility Server Developer’s Guide

Using the Presence Web Services Interfaces
This section describes how to use each of the operations in the interfaces, and includes
code examples.

Interface: PresenceConsumer, Operation: subscribePresence
This is the first operation the application must call before using another operation in
this interface. It serves two purposes:

■ It allows the Web services to associate the current HTTP session with a user.

■ It provides a context for all the other operations in this interface by subscribing to
at least one presentity (SUBSCRIBE presence event).

Code Example
// Setting the attribute to activity
PresenceAttributeType pa = PresenceAttributeType.Activity;
PresenceAttributeType[] pat = new PresenceAttributeType[]{pa};

// These inputs are required but not used.
SimpleReference sr = new SimpleReference();
sr.setCorrelator("unused_correlator");
sr.setInterfaceName("unused_interfacename");
sr.setEndpoint(new URI ("http://unused.com"));

// Calling the web service
consumer.subscribePresence (new URI
("sip.presentity@test.example.com") , pat, "unused", sr);

Interface: PresenceConsumer, Operation: getUserPresence
Call this operation to retrieve a subscribed presentity presence. If the person is offline,
it returns ActivityNone and the hardstate note will be written to
PresenceAttribute.note. If it returns ActivityOther, it returns the description in the
form of OtherValue. It also returns the note on a device as an OtherValue with
name = "DeviceNote".

Code Example
PresenceAttributeType pa = PresenceAttributeType.Activity;
PresenceAttributeType[] pat = new PresenceAttributeType[]{pa};

//Calling the Web service
URI Presentity = new URI("sip.presentity@test.example.com");
PresenceAttribute[] resultPA =
 consumer.getUserPresence(presentity,pat);

//Getting the result
for (int i = 0; i < resultPA.length; i++){
 PresenceAttribute attribute = resultPA[i];
 String note = attribute.getNote();
 if (attribute.getTypeAndValue().getUnionElement() ==
 PresenceAttributeType.Activity){
 String activity =
 attribute.getTypeAndValue().getActivity()
 .toString();

Using the Presence Web Services Interfaces

OCMS Parlay X Web Services 6-5

 }
 if (attribute.getTypeAndValue().getUnionElement() ==
 PresenceAttributeType.Other &&
 attribute.getTypeAndValue().getOther().getName() ==
 "DeviceNote"){
 String deviceNote =
 attribute.getTypeAndValue().getOther().getValue();
 }

}

Interface PresenceSupplier, Operation: publish and Oracle Specific "Unpublish"
This is the first operation the application must call before using another operation in
this interface. It serves three purposes:

■ It allows the Web services to associate the current HTTP session with a user.

■ It publishes the user’s presence status.

■ It subscribes to watcher-info so that the Web services can keep track of any
watcher requests.

Code Example
//publish
String note = "From Web Service Client";
PresenceAttributeType activity = ActivityValue.ActivityNone;
PresenceAttribute pa = new PresenceAttribute();
AttributeTypeAndValue typeValue = new AttributeTypeAndValue();
typeValue.setActivity(activity);
typeValue.setUnionElement(PresenceAttributeType.Activity);

//Fill up communication means to some default value
CommunicationMeans mean = new CommunicationMeans();
mean.setContact(new URI("sip:not.used@test.example.com"));
mean.setPriority(1);
mean.setType(CommunicationMeanType.Chat);
CommunicationValue commValue = new CommunicationValue();
commValue.setMeans(new CommunicationMeans[]{mean});
typeValue.setCommunication(commValue);

//Unpublish Functionality Implemented by OCMS
//To perform an "Unpublish", set OtherValue to (Expires, 0)
//OtherValue other = new OtherValue();
//other.setName("Expires");
//other.setValue(0);
//typeValue.setOther(other);
//typeValue.setUnionElement(PresenceAttributeType.Other);

//Set default values for other parameters
typeValue.setPrivacy(PrivacyValue.PrivacyNone);
typeValue.setPlace(PlaceValue.PlaceNone);
typeValue.setSphere(SphereValue.SphereNone);
pa.setTypeAndValue(typeValue);

//Set the note and time
pa.setNote(note);

Using the Presence Web Services Interfaces

6-6 Oracle Communication and Mobility Server Developer’s Guide

Calendar dateTime = Calendar.getInstance();
pa.setLastChange(dateTime);

//Calling the Web service
publish(new PresenceAttribute[]{pa});

Interface: PresenceSupplier, Operation: getOpenSubscriptions
This operation retrieves a list of new requests to be on your watcher list.

Code Example
SubscriptionRequest[] srArray = getOpenSubscriptions();
for (SubscriptionRequest sr:srArray) {
 System.out.println(sr.getWatcher() .toString());
}

Interface: PresenceSupplier, Operation: updateSubscriptionAuthorization
This operation allows you to place a watcher on either the block or allow list.

Code Example
PresencePermission pp = new PresencePermission();
pp.setDecision(true); //Put the user on the allow list

//You always pass in Activity
pp.set.PresenceAttribute(PresenceAttributeType.Activity);
updateSubscriptionAuthorization(new
URI("sip:allow@test.example.com"),
new PresencePermission[]{pp});

Interface: PresenceSupplier, Operation: getMyWatchers
This operation retrievesthe list of watchers in your allow list.

Code Example
URI[] uris;
uris = getMyWatchers();
for (URI uri:uris)
 System.out.println(uri.toString());

Interface: PresenceSupplier, Operation: getSubscribedAttributes
This operation returns only a single item of PresenceTypeAttribute.Activity. An
exception will be thrown if there is no existing subscription.

Code Example
PresenceAttributeType[] pat =
getSubscriberdAttributes("sip:watcher@test.example.com");

OCMS Parlay X Presence Custom Error Codes

OCMS Parlay X Web Services 6-7

Interface: PresenceSupplier, Operation: blockSubscription
This operation places a watcher into the block list.

Code Example
blockSubscription(new URI("sip:block.this.watcher@test.example.com"));

OCMS Parlay X Presence Custom Error Codes
OCMS introduces two extensions to the Parlay X standard exceptions:

■ PresencePolicyException extends PolicyException, and

■ PresenceServiceException extends ServiceException

Table 6–4 and Table 6–5 describe the error codes and their associated error message.

Table 6–4 OCMS Parlay X Presence Custom Error Codes: PresencePolicyException

Error Code Error Message

OPOL0001 Watcher is on the block, polite-block or pending list.

Table 6–5 OCMS Parlay X Presence Custom Error Codes: PresenceServiceException

Error Code Error Message

PRES0001 Invalid result from XDMS server.

PRES0002 Invalid HTTP session data.

PRES0003 Invalid URI.

PRES0004 Peer unavailable.

PRES0005 Unknown host.

PRES0006 Service unavailable.

PRES0007 Internal error.

PRES0008 User unauthenticated.

OCMS Parlay X Presence Custom Error Codes

6-8 Oracle Communication and Mobility Server Developer’s Guide

Oracle Diameter Java
A

Oracle Diameter Java APIs

This appendix describes the Oracle Diameter Java APIs, in the following sections:

■ "Diameter Java Base Protocol API"

■ "3GPP/Rf Diameter Java API"

■ "3GPP/Ro DIAMETER JAVA API"

■ "3GPP/Sh Diameter Java API"

■ "Diameter Application Example"

Figure A–1 Oracle Diameter Architecture

The Base Protocol library is the main element in the picture. It contains the base
protocol implementation, and is available as a standalone C++ shared library.
 APIs A-1

Diameter Java Base Protocol API
On its upper side, the Diameter Base Protocol library, provides an application
registration mechanism. The specific application subclass AcctApplication can be
derived by users depending on the state machine required to be used by the
application to be implemented. Each Application object can implement its own session
subclass. Specific session subclass (AuthSession and AcctSession) can be derived by
users depending on the state machine (Authentication, Authorization or Accounting)
implemented by the application.

On its lower side, the Diameter Base Protocol library also provides an API to interact
with its transport modules. This API enables the user application to instantiate any
subclass of the Transport class. These subclasses can be system dependant, and can
provide any kind of transport protocols for Diameter. Diameter comes with a socket
based transport module for TCP and SCTP kernel implementations in Unix-like
environments.

The Diameter Base Protocol library also provides a direct Core interface. This API
supports all the configuration needs, including dynamic realm-based routing table
configuration, generic tracing and logging callbacks, external memory manager
support, and dynamic dictionary extensibility.

Diameter Java Base Protocol API
The Diameter Java API is an API compliant with JAIN. The JAIN initiative represents a
community of communications experts defining the necessary Java interfaces as an
extension of the core Java platform to migrate proprietary communications networks
to open standardized based networks. The Diameter Java API wraps around the
Diameter C++ API.

This section defines the Java API for the Diameter Base Protocol. The Java interfaces
and classes described here enable Java developers to build application based on the
Diameter base protocol.

This Java API was designed to provide several implementations. The next section will
define and describe in detail one possible implementation: Rf Diameter Application.

Figure A–2 Oracle Diameter Java API Architecture

Through Diameter interfaces, a Diameter protocol stack provider is obtained from the
factory, and Diameter listeners are then attached to the providers created by the
Diameter stack.

Base Protocol Diameter Java Interface
The Diameter Java API is composed of several interfaces:
A-2 Oracle Communication and Mobility Server Developer’s Guide

Diameter Java Base Protocol API
Diameter Factory
The DiameterFactory interface is used by the Diameter applications to obtain specific
instances of different implementations of all interfaces defined in Diameter Java API.
The only instance of the DiameterFactory can be obtained using the getInstance()
method.

Diameter Stack
The DiameterStack interface represents a Diameter Protocol Stack as defined in [RFC
3588]. This interface is used also to create providers, routes and listening points. A
Diameter stack must be initialized and configured before any messages are exchanged.

Diameter Application
The DiameterProvider interface represents a Diameter Application (with one
Authorization/Authentication Application ID or one Accounting Application ID)
running on top of the Diameter base protocol.

The DiameterListener interface processes events that are triggered by an object
implementing the DiameterProvider interface. There can be only one listener per
provider. This interface must be implemented by the application programmer.

Diameter Transport
The DiameterRoute interface represents a route entry in the realm-based routing table.
A Diameter client application calls the createDiameterRoute method to declare remote
peers.

The DiameterListeningPoint interface represents a local transport address for a
Diameter stack and enables it to accept incoming connection from declared remote
peers.

Diameter Attribute Value Pairs (AVPs)
The DiameterMessageFactory interface provides factory methods that enable a
Diameter application to create AVPs and messages for a particular implementation of
this specification.

AVPs are defined by the following class types:

■ DiameterFloat32AVP: represents a 32-bit float AVP

■ DiameterFloat64AVP: represents a 64-bit float AVP

■ DiameterInteger32AVP: represents a 32-bit integer AVP

■ DiameterInteger64AVP: represents a 64-bit integer AVP

■ DiameterGroupedAVP: represents a grouped AVP

■ DiameterOctetStringAVP: represents an AVP which value is a raw byte array

■ DiameterGenericAVP: represents an AVP which has not been declared in the
protocol dictionary

The DiameterMessage interface represents a Diameter Message as defined in [RFC
3588]. The Diameter messages are composed from AVPs added by calling add()
method.

Diameter Session
The DiameterSession interface represents a Diameter session as per [RFC 3588]. A
Diameter application calls the createClientDiameterSession method from the
Oracle Diameter Java APIs A-3

Diameter Java Base Protocol API
DiameterProvider interface if it needs to send a request for a new Diameter session.
Then it can send the request by calling sendMessage method. Also, an incoming
request can be handled by calling createServerDiameterSession to create a new server
session, then using sendMessage to send the response.

Diameter Event
The DiameterEvent interface is the base class for all Diameter events. These events
specialize this interface:

■ DiameterMessageEvent: This event is generated when an incoming message is
available

■ DiameterRealmStateChangeEvent: This event notifies the application of the
reachability or unreachability of a remote realm, as a result of peers coming up or
down

■ DiameterSessionEvent: represents all the events which are related to a Diameter
session such as received messages, session timeouts, and session errors.

The Diameter stack delivers information to the user application by creating instances
of the Diameter Event class and passing these instances to the
DiameterListener.processEvent method.

Diameter Exception
The DiameterException interface represents the base class for all the Diameter
exceptions. These exceptions specialize this interface:

■ DiameterInvalidArgumentException: This exception is thrown or when a method
receives an invalid parameter value

■ DiameterInvalidMessageException: This exception is thrown when a Diameter
Message can’t be encoded

■ DiameterMessageException: This exception is thrown when a failure occurs
during a sending message

■ DiameterTransportFailureException: This exception is thrown when a
synchronous transport failure occurs during an API action

■ DiameterUnsupportedFeatureException: This exception is thrown by an
implementation when an operation is invoked that is not supported by this
implementation
A-4 Oracle Communication and Mobility Server Developer’s Guide

3GPP/Rf Diameter Java API
3GPP/Rf Diameter Java API
This section defines a Java API for the 3GPP [TS 32.299] Rf Interface over the Diameter
protocol ([TS 32.225], [TS 32.200] and [TS 32.240] in order to specify).

3GPP/Rf Diameter Java Interface
This section describes the Java interface.

Rf Provider
The DiameterRfProvider interface represents a Rf Diameter Application as defined in
3GPP Interfaces. An instance of a class implementing this interface can be obtained by
calling the DiameterStack.createDiameterRfProvider(Properties, refFSM). The different
values of refFSM are:

■ RFC_SRV_LESS for Rfc 3588 stateless server state machine

■ RFC_SRV_FULL for Rfc 3588 stateful server state machine

■ RFC_CL for Rfc 3588 client state machine

The Properties parameter specifies the features that will be handled by this Rf
provider. This is a list of properties which may contain a number of options.

Rf Listener
The DiameterRfListener interface processes accounting messages that are received by
the DiameterRfProviderImpl class implementing the DiameterRfProvider interface. A
DiameterRfListener instance is registered to a provider by the following method
DiameterRfProvider. setDiameterRfListener ().

This interface provides two principles methods: accountingRequestReceived() and
accountingAnswerReceived(). The first one must be implemented and called when the
option AUTO_ANSWER is set to false. In this case, the server must be able to create an
accounting answer corresponding to the received accounting request. The second one
processes the received accounting answer.

Rf Message Factory
The DiameterRfMessageFactory interface provides factory methods that enable an
application to create Diameter Rf messages as defined in 3GPP:
createAccountingRequest() and createAccountingAnswer(). An instance of a class
implementing this interface can be obtained by calling the
DiameterStack.getRfDiameterMessageFactory() method.

Messages created by this factory are as following:

■ Accounting-Request (ACR)--The first following method creates a basic ACR (with
only mandatory AVPs) and the second one creates a more sophisticated ACR with
the most used AVPs as defined in 3GPP:

■ DiameterMessage

createAccountingRequest (String Destination-Realm,
 int Accounting-Record-Type,
 int Accounting-Record-Number)

■ DiameterMessage

createAccountingRequest(String Destination-Realm,
 int Accounting-Record-Type,
 int Accounting-Record-Number,
Oracle Diameter Java APIs A-5

3GPP/Rf Diameter Java API
 String roleOfNode,
 String userSessionId,
 String callingPartyAddress,
 String calledPartyAddress)

■ Accounting-Answer (ACA)--The first following method creates a basic ACA (with
only mandatory AVPs) and the second one creates a more sophisticated ACA with
the most used AVPs as defined in 3GPP:

■ Diameter Message

createAccountingAnswer (String Result-Code,
 int Accounting-Record-Type,
 int Accounting-Record-Number)

■ Diameter Message

createAccountingAnswer (String Result-Code,
 int Accounting-Record-Type,
 int Accounting-Record-Number,
 String roleOfNode,
 String userSessionId,
 String callingPartyAddress,
 String calledPartyAddress)

3GPP/Rf Dictionary The 3GPP Rf Interface dictionary is returned by getRfDictionary()
and must be extended by the Diameter stack.

Rf Events
Like any Diameter application, an Rf application can receive/send accounting events
from/to the Diameter stack.

Process Event To receive an accounting event from the Diameter stack, user has to
implement the processEvent(DiameterEvent) callback in the DiameterRfListener
implementation.

The list of the possible received accounting events are as follows:

■ DiameterTimeoutEvent(Object, DiameterSession, int): This event is generated by
the Diameter implementation when one of the session timers elapses. Reasons to
trigger an event for the Rf Interface are:

■ SESSION_TIMEOUT_EXPIRED: The event is triggered by the stack on session
supervision timer expiration

■ TX_TIMEOUT_EXPIRED: The event is triggered by the stack on session
supervision timer expiration.

■ INTERIM_TIMEOUT_EXPIRED: The event is triggered when the time
specified by the interim interval duration has expired.

■ DiameterServiceEvent(Object, DiameterSession, int): This event is generated by
the Diameter implementation when one service is finished. Reasons to trigger an
event for the Rf Interface are:

■ TERMINATE_SERVICE: The event is triggered by the stack when service is
terminated by the stack or by server.

■ DiameterInvalidMessageReceivedEvent(Object, DiameterSession, Message): This
event is triggered by the stack when an invalid message has been received. This
event object contains the invalid received message.
A-6 Oracle Communication and Mobility Server Developer’s Guide

3GPP/Rf Diameter Java API
Raise Events To send an accounting event to the Diameter stack, the user must call the
accounting application eventRaised(DiameterEvent) method.The only accounting
event triggered by the Rf application is DiameterRfOutOfSpaceEvent(Object, int).

Events raised for an DiameterRfOutOfSpaceEvent are:

■ EVT_OUT_OF_SPACE: The event can be triggered by the application to inform the
stack that there is no more space to store the received/sent accounting message.
This event is created by instantiating the DiameterRfOutOfSpaceEvent class with
the type parameter set to EVT_OUT_OF_SPACE. When the Rf server AUTO_
ANSWER mode is activated and once the EVT_OUT_OF_SPACE event has been
triggered, the stack automatically responds with an answer message including the
Result-Code AVP set to DIAMETER_OUT_OF_SPACE and this until the EVT_
NOT_OF_OUT_SPACE event triggering.

■ EVT_END_OUT_OF_SPACE: The event can be triggered by the application to
inform the stack that there is space again to store the received/sent accounting
request message. This event is created by instantiating
DiameterRfOutOfSpaceEvent class with the type EVT_END_OUT_OF_SPACE.
Triggering such an event is relevant only after having triggered an EVT_OUT_OF_
SPACE event.

The DiameterRfOutOfSpaceEvent is relevant only when AUTO_ANSWER mode is
activated.

Rf Application Options
These options specify the features handled by the accounting Application. This is a list
of Properties (see java.util.properties) which may contain a number of options. An
option can be specific to an FSM. Here is the list of the Rf application configurable
options which can be set depending on the implemented FSM:

Rf Server Stateless FSM admits the following option settings:

■ AUTO_ANSWER

■ AUTO_DELETION

■ ENABLE_INVALID_COMMAND

■ ENABLE_SND_MISSING_AVP

Rf Server StateFul FSM permits the following option settings:

■ AUTO_ANSWER

■ AUTO_DELETION

■ DELETE_ON_TIMEOUT

■ SUPERVISION_TIMER_DURATION

■ ENABLE_INVALID_COMMAND

■ ENABLE_SND_MISSING_AVP

Rf Client FSM permits the following option settings:

■ AUTO_DELETION

■ ENABLE_INVALID_COMMAND

■ ENABLE_SND_MISSING_AVP

■ DELETE_ON_TIMEOUT
Oracle Diameter Java APIs A-7

3GPP/Rf Diameter Java API
■ SUPERVISION_TIMER_DURATION

■ INTERIM_INTERVAL

■ REALTIME_REQUIRED

The default value of the INTERIM_INTERVAL and REALTIME_REQUIRED options
can be overwritten dynamically by the application for a specific session by using the
setSessionParameter() method.

Rf Application FSM
As presented in [RFC 3588], different types of accounting records are sent depending
on the actual type of accounted service.

If the accounted service is a one-time event, meaning that the beginning and end of the
event are simultaneous, then the Accounting-Record-Type AVP must be set to the
value EVENT_RECORD.

If the accounted service is of a measurable length, then the AVP must use the values
START_RECORD, STOP_RECORD, and possibly, INTERIM_RECORD.

Here are the two different message flows which can be handled by the Rf Diameter
application.

One-time event accounting service:

■ Client > ACR (EVENT_RECORD) > Server

■ Client < ACA (EVENT_RECORD) < Server

Measurable length duration accounting service:

■ Client > ACR (START_RECORD) > Server

■ Client < ACA (START_RECORD) < Server

■ Client > ACR (INTERIM_RECORD) > Server

■ Client < ACA (INTERIM_RECORD) < Server

■ Client > ACR (INTERIM_RECORD) > Server

■ Client < ACA (INTERIM_RECORD) < Server

■ Client > ACR (STOP_RECORD) > Server

■ Client < ACA (STOP_RECORD) < Server

ACR(EVENT_RECORD) stands for Accounting-Request message with
Accounting-Record-Type AVP set to EVENT_RECORD and request flag set to true.

ACA(EVENT_RECORD) stands for Accounting-Answer message with
Accounting-Record-Type AVP set to EVENT_RECORD and request flag set to false.

Following are the types of FSM which can be implemented in an Rf application.

Rf Client FSM This FSM responds to [RFC 3588] requirements which define the client
side state machine.

A session instantiated by an application implementing this FSM expects to receive an
accounting request message including an Accounting-Record-Type AVP value set to
EVENT_RECORD or START_RECORD as first received message.

Once an accounting request message with the Accounting-Record-Type AVP value set
to START_RECORD is received, the FSM expects to receive other(s) accounting request
message(s) with the Accounting-Record-Type AVP value set to INTERIM_RECORD or
A-8 Oracle Communication and Mobility Server Developer’s Guide

3GPP/Ro DIAMETER JAVA API
STOP_RECORD. The reception of an accounting request message including an
Accounting-Record-Type AVP value set to STOP_RECORD corresponds to the end of
the session.

RF Stateful Server FSM This FSM responds to the [RFC 3588] requirements which define
the server side state machine that may be followed by applications that require
keeping track of the session state at the accounting server.

An application implementing this FSM waits for a request accounting message and
sends a response with the same Accounting-Record-Type AVP value as received in the
request message.

A session instantiated by an application implementing this FSM expects to receive an
accounting request message including an Accounting-Record-Type AVP value set to
EVENT_RECORD or START_RECORD as first received message. Once an accounting
request message with the Accounting-Record-Type AVP value set to START_RECORD
is received, the FSM expects to receive other(s) accounting request message(s) with the
Accounting-Record-Type AVP value set to INTERIM_RECORD or STOP_RECORD.
The reception of an accounting request message including an Accounting-Record-Type
AVP value set to STOP_RECORD represents the end of the session.

Rf Stateless Server FSM This FSM responds to the [RFC 3588] requirements which define
the default server side state machine requiring the reception of the accounting records
in any order and at any time, and doesn’t place any standard requirement on the
processing of the records.

An application implementing this FSM waits for a request accounting message and
sends a response with the same Accounting-Record-Type AVP value as received in the
request message.

3GPP/Ro DIAMETER JAVA API
This section defines a Java API for the 3GPP [TS 32.299] Ro Interface over the Diameter
protocol ([TS 32.225], [TS 32.200] and [TS 32.240] in order to specify).

3GPP/Ro DIAMETER JAVA INTERFACE
This section details the 3GPP/Ro Diameter Java Interface

Ro Provider
The DiameterRoProvider interface represents a Ro Diameter Application as defined in
3GPP Interfaces. An instance of a class implementing this interface can be obtained by
calling the DiameterStack.createDiameterRoProvider(Properties, refFSM). The
different value of refFSM are:

■ RFC_CL_LESS for Rfc 4006 event base client state machine

■ RFC_CL_FULL for Rfc 4006 session based client state machine

■ RFC_SRV for Rfc 4006 server state machine

The Properties parameter specifies the features that will be handled by this Ro
provider. This is a list of properties which may contain a number of options.

Ro Listener
The DiameterRoListener interface processes accounting messages that are received by
the DiameterRoProviderImpl class implementing the DiameterRoProvider interface. A
Oracle Diameter Java APIs A-9

3GPP/Ro DIAMETER JAVA API
DiameterRoListener instance is registered to a provider by the following method:
DiameterRoProvider. setDiameterRoListener ().

This interface provides four principle methods: creditControlRequestReceived(),
creditControlAnswerReceived(), reAuthRequestReceived() and
reAuthAnswerReceived().The first and third one must be implemented and called
when the option AUTO_ANSWER is set to false. In this case, the server must be able
to create an accounting answer corresponding to the received accounting request. The
second and last methods process the received accounting answers.

Ro Message Factory
The DiameterRoMessageFactory interface provides factory methods that enable an
application to create Diameter Ro messages as defined in 3GPP:
createCreditControlRequest(), createCreditConrolAnswer(), createReAuthRequest()
and createReAuthAnswer(). An instance of a class implementing this interface can be
obtained by calling the DiameterStack.getRoDiameterMessageFactory() method.

Messages created by this factory are:

■ Credit-Control-Request (CCR)

These methods create a basic CCR (with only mandatory AVPs). The first one
creates the CCR without the Requested-Action AVP (mandatory only in event
sessions). In the others, the method’s name specifies the Requested-Action value:

■ DiameterMessage

createCreditControlRequest (String destinationRealm,
 int authApplicationId,
 StringserviceContextId,
 String CCRequestType
 int CCRequestNumber)

■ DiameterMessage

createCreditControlRequestDirectDebiting(String destinationRealm,
 int authApplicationId,
 String serviceContextId,
 int CCRequestNumber)

■ DiameterMessage

createCreditControlRequestRefundAccount(String destinationRealm,
 int authApplicationId,
 String serviceContextId,
 int CCRequestNumber)

■ DiameterMessage

createCreditControlRequestCheckBalance(String destinationRealm,
 int authApplicationId,
 String serviceContextId,
 int CCRequestNumber)

■ DiameterMessage

createCreditControlRequestPriceEnquiry(String destinationRealm,
 int authApplicationId,
 String serviceContextId,
 int CCRequestNumber)

■ Credit-Control-Answer (CCA)

The first following method creates a basic CCA (with only mandatory AVPs) and
the second one creates an CCA from an CCR:
A-10 Oracle Communication and Mobility Server Developer’s Guide

3GPP/Ro DIAMETER JAVA API
■ DiameterMessage

createCreditControlAnswer(String resultCode,
 int authApplicationId,
 String CCRequestType,
 int CCRequestNumber)

■ Diameter Message

createCreditControlAnswer(String resultCode,
 DiameterMessage messageCCR)

■ Re-Auth-Request (RAR)

This method creates a basic RAR (with only mandatory AVPs)

■ Diameter Message

createReAuthRequest(String destinationRealm,
 String destinationHost,
 int authApplicationId,
 String reAuthRequestType)

■ Re-Auth-Answer (RAA)

This method creates an RAA, specifying only the Result-Code AVP.

■ Diameter Message

createReAuthAnswer(String resultCode)

3GPP/Ro Dictionary
The 3GPP Ro Interface dictionary is returned by getRoDictionary() and must be
extended by the Diameter stack.

Ro Events
Like any Diameter application, an Ro application can receive/send events from/to the
Diameter stack.

Process Events To receive an accounting event from the Diameter stack, user must
implement the processEvent(DiameterEvent) callback in the DiameterRoListener
implementation.

The list of the possible received accounting events are as follows:

■ DiameterTimeoutEvent(Object, DiameterSession, int): This event is generated by
the Diameter implementation when one of the session timers elapses. Reasons to
trigger an event for the Ro Interface are:

■ SESSION_TIMEOUT_EXPIRED: The event is triggered by the stack on session
supervision timer expiration

■ TX_TIMEOUT_EXPIRED: The event is triggered by the stack on session
supervision timer expiration.

■ TRA_TIMEOUT_EXPIRED: The event is triggered by the stack when the RAA
is not sent on time by the application.

■ DiameterServiceEvent(Object, DiameterSession, int): This event is generated by
the Diameter implementation when one service is finished. Reasons to trigger an
event for the Rf Interface are:
Oracle Diameter Java APIs A-11

3GPP/Ro DIAMETER JAVA API
■ TERMINATE_SERVICE: The event is triggered by the stack when the service
is terminated by the stack or by the server.

■ GRANT_SERVICE: The event is triggered by the stack when the service is
granted by server.

■ BACKUP_SERVICE: The event is triggered by the stack when the Tx2 timer
expires and the backup server needs to be contacted by the application.

■ ERROR_SERVICE: The event is triggered by the stack when a service error is
detected by the stack.

■ DiameterInvalidMessageReceivedEvent(Object, DiameterSession, Message): This
event is triggered by the stack when an invalid message has been received. This
event object contains the invalid received message.

Raise Events To send an accounting event to the Diameter stack, user has to call the
accounting application eventRaised(DiameterEvent) method. The only accounting
event triggered by the Rf application is DiameterBackupEvent(Object, int).

The different types of event for an DiameterBackupEvent are:

■ EVT_NOBACKUP_ACCEPTED: The event can be triggered by the application to
inform the stack that it doesn’t have any backup server address.

■ EVT_BACKUP_SUCCESS: The event can be triggered by the application to inform
the stack that it received a successful credit control answer from the backup server.

■ EVT_BACKUP_FAILED: The event can be triggered by the application to inform
the stack that it received a failed credit control answer from the backup server.

These events are relevant only when the stack has sent a BackupService event to the
application.

Ro Application Options
These options specify the features handled by the accounting Application. This is a list
of properties (see java.util.properties) which may contain a number of options. An
option can be specific to an FSM. Here is the list of the Ro application configurable
options which can be set depending on the implemented FSM:

Ro Server FSM permits the following option settings:

■ AUTO_ANSWER

■ AUTO_DELETION

■ SUPERVISION_TIMER_DURATION

■ DELETE_ON_TIMEOUT

■ ENABLE_INVALID_COMMAND

■ ENABLE_SND_MISSING_AVP

Ro StateFul Client FSM permits the following option settings:

■ AUTO_DELETION

■ DELETE_ON_TIMEOUT

■ TX_TIMER_DURATION

■ TRA_TIMER_DURATION

■ CCFH
A-12 Oracle Communication and Mobility Server Developer’s Guide

3GPP/Ro DIAMETER JAVA API
■ ENABLE_INVALID_COMMAND

■ ENABLE_SND_MISSING_AVP

Ro StateLess Client FSM admits following options setting

■ AUTO_DELETION

■ DDFH

■ TX1_TIMER_DURATION

■ TX2_TIMER_DURATION

■ BACKUP_TIMER_DURATION

■ RETRANSMISSION_INTERVAL

■ RETRANSMISSION_ATTEMPS

■ ENABLE_INVALID_COMMAND

■ ENABLE_SND_MISSING_AVP

Ro Application FSM
As presented in [RFC 4006], different types of credit control requests are sent
depending on the actual type of credit control service. If the credit control service is a
one-time event, meaning that the start and stop of the event are simultaneous, then the
CC-Request-Type AVP must be set to the value EVENT_REQUEST.

If the credit control service is of a measurable length, then the AVP must use the values
INITIAL_REQUEST, TERMINATION_REQUEST, and possibly, UPDATE_REQUEST.

Here are the two different message flows which can be handled by the Ro Diameter
application.

One-time event credit control service:

■ Client > CCR (EVENT_REQUEST) > Server

■ Client < CCA (EVENT_REQUEST) < Server

Measurable length duration accounting service:

■ Client > CCR (INITIAL_REQUEST) > Server

■ Client < CCA (INITIAL_REQUEST) < Server

■ Client > CCR (UPDATE_REQUEST) > Server

■ Client < CCA (UPDATE_REQUEST) < Server

■ Client > CCR (UPDATE_REQUEST) > Server

■ Client < CCA (UPDATE_REQUEST) < Server

■ Client > CCR (TERMINATION_REQUEST) > Server

■ Client < CCA (TERMINATION_REQUEST) < Server

CCR(EVENT_REQUEST) stands for Credit-Control-Request message with
CC-Request-Type AVP set to EVENT_REQUEST.

CCA(EVENT_REQUEST) stands for Credit-Control-Answer message with
CC-Request-Type AVP set to EVENT_REQUEST.

Following are the types of FSM which can be implemented in a Ro application.
Oracle Diameter Java APIs A-13

3GPP/Sh Diameter Java API
Ro Stateful Client FSM This FSM responds to the [RFC 4006] requirements which define
the session-based credit control client state machine when the first interrogation is
executed after the authorization and authentication process.

A session instantiated by an application implementing this FSM expects to send a
credit control request message including a CC-Request-Type AVP value set to
INITIAL_REQUEST as its first sent message. Once a credit control answer message
with the CC-Request-Type AVP value set to INITIAL_REQUEST is received, the FSM
expects to send either other(s)) credit control request message(s) with the
CC-Request-Type AVP value set to UPDATE_REQUEST or UPDATE_REQUEST or a
Re-Authentication request message. The reception of a credit control answer message
including a CC-Request-Type AVP value set to TERMINATION_REQUEST represents
the end of the session.

Ro StateLess Client FSM This FSM responds to the [RFC 4006] requirements which
define the event-based credit control client state machine.

An application implementing this FSM sends a credit control request message with the
CC-Request-Type AVP set to EVENT_REQUEST and waits for the credit control
answer with the CC-Request-Type AVP set to EVENT_REQUEST. The reception of a
credit control answer message including a CC-Request-Type AVP value set to EVENT_
REQUEST represents the end of the session.

Ro Server FSM This FSM responds to the [RFC 4006] requirements which define the
credit control server state machine. An application implementing this FSM waits for a
credit control request message and expects to send a response with the same
CC-Request-Type AVP value as received in the request message.

A session instantiated by an application implementing this FSM expects to receive an
accounting request message including an CC-Request-Type AVP value set to EVENT_
REQUEST or INITIAL_REQUEST as its first received message. Once a credit control
request message with the CC-Request-Type AVP value set to INITIAL_REQUEST is
received, the FSM expects to receive other credit control request messages with the
CC-Request-Type AVP value set to UPDATE_REQUESTor TERMINATION_REQUEST.
The emission of a credit control answer message including a CC-Request-Type AVP
value set to TERMINATION_REQUEST represents the end of the session.

3GPP/Sh Diameter Java API
This section defines a Java API for the 3GPP [TS 29.328] and [TS 29.329] Sh Interface
over the Diameter protocol.

3GPP/Sh Diameter Java Interface
This section provides information about the 3GPP/Sh Diameter Java Interface.

Sh Provider
The DiameterShProvider interface represents a Sh Diameter Application as defined in
3GPP Interfaces. An instance of a class implementing this interface can be obtained by
calling the DiameterStack.createDiameterShProvider(Properties)

The Properties parameter specifies the features that will be handled by this Sh
provider. This is a list of properties which may contain a number of options.
A-14 Oracle Communication and Mobility Server Developer’s Guide

3GPP/Sh Diameter Java API
Sh Listener
The DiameterShListener interface processes Diameter messages that are received by
the DiameterShProviderImpl class implementing the DiameterShProvider interface. A
DiameterShListener instance is registered to a provider by the following method
DiameterShProvider. setDiameterShListener ().

This interface provides the following methods:

■ profileUpdateRequestReceived()

■ profileUpdateAnswerReceived()

■ pushNotificationRequestReceived()

■ pushNotificationAnswerReceived()

■ subscribeNotificationRequestReceived()

■ subscribeNotificationAnswerReceived()

■ userDataRequestReceived()

■ userDataAnswerReceived()

These methods process the received Diameter messages.

Sh Message Factory
The DiameterShMessageFactory interface provides factory methods which enable an
application to create Diameter messages as defined by the 3GPP [TS 29.328]
specification (Sh interface): createProfileUpdateRequest(),
createProfileUpdateAnswer(), createPushNotificationRequest(),
createPushNotificationAnswer(), createSubscribeNotificationRequest(),
createSubscribeNotification Answer(), createUserDataRequest() and
createUserDataAnswer(). An instance of a class implementing this interface can be
obtained by calling the DiameterStack.getShDiameterMessageFactory() method.

Messages created by this factory are:

■ Profile-Update-Request (PUR)

DiameterMessage
createProfileUpdateRequest(String destinationRealm,
 String userIdentity,
 String userData)

■ Profile-Update-Answer (PUA)

DiameterMessage
createProfileUpdateAnswer(String resultCode)

■ Push-Notification-Request (PNR)

DiameterMessage
createPushNotificationRequest(String destinationRealm,
 String destinationHost,
 String userIdentity,
 String userData)

■ Push-Notification-Answer (PNA)

DiameterMessage
 createPushNotificationAnswer(String resultCode)

■ Subscribe-Notification-Request (SNR)
Oracle Diameter Java APIs A-15

3GPP/Sh Diameter Java API
DiameterMessage
 createSubscribeNotificationRequest(String destinationRealm,
 String userIdentity,
 String dataReference,
 String subsReqType)

DiameterMessage
 createSubscribeNotificationRequest(String destinationRealm,
 String userIdentity,
 String dataReference,
 String subsReqType,
 String serviceIndication,
 String serverName)

■ Subscribe-Notification-Answer (SNA)

DiameterMessage
 createSubscribeNotificationAnswer(String resultCode)

■ User-Data-Request (UDR)

DiameterMessage
 createUserDataRequest(String destinationRealm,
 String userIdentity,
 String userIdentityType,
 String dataReference)

DiameterMessage
 createUserDataRequest(String destinationRealm,
 String userIdentity,
 String userIdentityType,
 String dataReference,
 String requestedDomain,
 String currentLocation,
 String serviceIndication,
 String serverName,
 String destinationHost)

■ User-Data-Answer (UDA)

DiameterMessage
 createUserDataAnswer(String resultCode, String userData)

3GPP/Sh Dictionary
The 3GPP Sh Interface dictionary is returned by getShDictionary() and must be
extended by the Diameter stack.

Sh Events
Like any Diameter application, an Sh application can receive and send events to and
from the Diameter stack.

To receive an event from the Diameter application, users must implement the
processEvent(DiameterEvent) callback in the DiameterShListener implementation.
A-16 Oracle Communication and Mobility Server Developer’s Guide

Diameter Application Example
Sh Application Options
These options specify the features handled by the accounting Application. This is a list
of Properties (see java.util.properties) which may contain a number of options.
Following is the list of the Sh application configurable options which can be set
depending on the implemented FSM:

Values for the options are:

■ AUTO_SESSION_DELETION

■ SESSION_DELETED_EVENT

■ AUTO_SESSION_TERMINATION_REQUEST

■ AUTO_SESSION_ABORT_ANSWERAUTO_SESSION_TERMINATION_
ANSWER

■ SESSION_TIMEOUT_EVENT

■ AUTH_AUTHORIZATION_LIFETIME_EXPIRED_EVENT

■ AUTH_GRACE_PERIOD_EXPIRED_EVENT

■ LISTENER_SEND_HOOK

Diameter Application Example
This section presents an example of an accounting call flow and describes in detail the
steps that are performed by a typical Accounting Diameter application to represent it.
The aim is to show how to use the Rf Java API to exchange accounting information
between the Accounting Client and the Accounting Server.

Accounting Call Flow
The following figure shows the transactions that are required on the Diameter offline
interface in order to perform event based charging. Following is an example of a call
flow between an Accounting Client and an Accounting Server.

Figure A–3 Accounting Call Flow Example
Oracle Diameter Java APIs A-17

Diameter Application Example
The network element (acting as client) sends an Accounting-Request (ACR) with
Accounting-Record-Type AVP set to EVENT_RECORD to indicate service specific
information to the CDF (acting as server).

The server processes the received Accounting-Request and returns an
Accounting-Answer (ACA) message with Accounting-Record-Type AVP set to
EVENT_RECORD to the client.

The following section describes all the steps that must be performed to create an Rf
client/server Diameter Application. The steps where the side (client or server) is not
specified are common to both sides.

Several steps are required to initialize the Diameter stack before messages can be
exchanged.

■ Create a DiameterStack instance

■ Register the Rf Diameter application to the created Diameter stack

■ Create listening points to bind to local transport addresses (optional / server side)

■ Configure routes and connect to Diameter peers (optional / client side)

Application initialization
An instance of the Diameter stack can be created as follows:

Figure A–4 Oracle Diameter Stack Creation

1. Get an instance of the DiameterFactory class myFactory using the following
method: DiameterFactory.getInstance().

2. Create myStack, an instance of the DiameterStack class, using the following
method: myFactory.createDiameterStack().

Rf Diameter Application Once the Diameter stack is defined, the current accounting
application objects may be instantiated. An Accounting Diameter application is
represented by instances of the following interfaces: DiameterRfProvider and
DiameterRfListener. The former represents the Accounting Diameter application for
use by the higher-level user code; the latter represents the Accounting Diameter
application for use by the Diameter stack. The DiameterRfProvider interface is used by
the higher-level user code to send accounting messages (Accounting Request (ACR)
and accounting Answer (ACA)) and control application behavior. All the call back
methods defined in the DiameterRfListener interface are used by the Diameter stack to
deliver these accounting messages and some events to the user code.

The Rf provider is created as follows:
A-18 Oracle Communication and Mobility Server Developer’s Guide

Diameter Application Example
Figure A–5 Rf Provider Creation

3. Create my Rf Provider, an instance of DiameterRfProvider, using the following
method: myStack.createDiameterRfProvider(). The instantiation is done with the
application name matching the one configured in the dictionary, and attaching it
to a listener so that it receives all incoming messages. Among the parameters
passed during the provider creation, properties is a set of accounting options
previously defined.

The 3GPP Rf Interface dictionary is returned by getRfDictionary() and must be
extended by the Diameter stack.

For increased flexibility in a real accounting application, extend the dictionary
with application specific AVP and command codes. Use the
myStack.extendGrammar(myDictionnary) dictionary.

The Rf Listener is created and registered as follows:

Figure A–6 Rf Listener Creation and Registration

4. DiameterRfListenerImpl is an implementation of DiameterRfListener interface and
may be implemented by the application programmer. myRfListener is an instance
of DiameterRfListenerImpl.

5. Attach myRfProvider to the created listener myRfListener using the following
method: setDiameterRfListener().

Transport configuration The Accounting Application must create one or several instances
of the DiameterListeningPoint interface to listen for incoming connections on one or
several transport addresses. As soon as the listening point has been created, the
Diameter stack is ready to accept incoming connection from remote peers which can
be declared by using the createDiameterRoute() method.

Figure A–7 Routes and Listening Points Creation
Oracle Diameter Java APIs A-19

Diameter Application Example
6. Create a listening Point from a LocalURI, an instance of DiameterListeningPoint,
using the following method: myStack.createDiameterListeningPoint()

7. Create a route configuration using the following method:
myStack.createDiameterRoute(). This is not mandatory for server processes, if the
isUnknownPeerAuthorized() callback is implemented in the listener. This callback
is called if the Diameter stack receives a connection request from a peer that has
not been declared in the routing table. The connection is accepted only if this
method returns true.

Accounting Diameter message exchange
Once the initialization and configuration phase is over, the Accounting Diameter
application is able to send and receive Diameter accounting messages (ACR/ACA).

Accounting-Request (ACR) The Accounting Request is created as follows:

Figure A–8 ACR Creation

8. Get an instance of the DiameterRfMessageFactory class
myDiameterRfMessageFactory using the following method:
getDiameterRfMessageFactory() for the client side.

9. Create an Accounting Request for the client side, an instance of the
DiameterMessage class, using the following method: createAccountingRequest().

All incoming messages are delivered to the user accounting application through
the DiameterRfListener interface. When accounting messages (ACR/ACA) are
received by the client or server side, the corresponding callback implemented by
the programmer is called. For example, if an accounting Request (ACR) is
received, the accountingRequestReceived() callback is called. In all the other cases,
the received messages are delivered through the myRfListener.processEvent()
implemented by the accounting application programmer.
A-20 Oracle Communication and Mobility Server Developer’s Guide

Diameter Application Example
Figure A–9 ACR Reception

10. Create a client diameter session, an instance of DiameterSession, by using the
method: createClientDiameterAcctSession().

11. Send the created Accounting Request (ACR) myACR to the server side by using
the method: sendMessage().

12. Process an incoming Accounting Request (ACR) message contained in the
received event by using the following method: accountingRequestReceived(event).
Create a server session from the received request. This session, on server side, can
be deleted just after sending the answer.

Accounting-Answer (ACA) The Accounting Answer is created as follows:

Figure A–10 Creating the Corresponding ACA

13. Get an instance of the DiameterRfMessageFactory class
myDiameterRfMessageFactory by using the method:
getDiameterRfMessageFactory() on the server side.

14. Create an Accounting Answer for the server side, an instance of the
DiameterMessage class, by using the method: createAccountingAnswer().

All incoming messages are delivered to the user accounting application through
the DiameterRfListener interface.
Oracle Diameter Java APIs A-21

Diameter Application Example
Figure A–11 ACA Reception

15. Send the created Accounting Answer myACA to the client side.

16. Process the incoming Accounting Answer (ACA) message contained in the
received event by using the method: accountingAnswerReceived(event).

Cleanup
In the last step, a global cleanup of all created routes, providers and listening points is
done.

Figure A–12 Cleaning Up of Routes, Providers, and Listening Points

17. Cleaning:

■ Delete all the created listening points by using the method:
myStack.deleteDiameterListeningPoint(listeningPoint)

■ Delete the created provider by using
myStack.deleteDiameterRfProvider(myRfProvider).

■ Delete all the created routes by using myStack.deleteDiameterRoute(route).
A-22 Oracle Communication and Mobility Server Developer’s Guide

Programming Oracle Diameter Applications B-1

B
Programming Oracle Diameter Applications

This appendix describes programming Oracle Diameter applications in the following
sections:

■ "IP and Routes Configuration"

■ "Counters Management"

■ "Dictionary"

■ "Tracing and Logging Mechanism"

IP and Routes Configuration
Before a Java Diameter application is able to process messages exchanged with a
distant peer, the IP configuration and Diameter protocol-specific configuration have to
be done by the application as follows:

1. Create a DiameterStack instance.

2. Register the Diameter application to the Diameter stack.

3. Create listening points to bind to local transport addresses.

4. Configure routes and connect to Diameter peers.

Creating a Diameter Stack
An instance of the Diameter stack can be created as follows:

import oracle.sdp.diameter.*;
DiameterFactory myFactory;
DiameterStack myStack;
myFactory = DiameterFactory.getInstance();
myStack = myFactory.createDiameterStack("realm.domain.com",
 "server.realm.domain.com",
 null);

This code creates a Diameter stack for use by the local Diameter node in which Fully
Qualified Domain Name (FQDN) is server.realm.domain.com and Origin Realm
is realm.domain.net.

Binding to Local Transport Addresses
When a Diameter application needs to listen for incoming connections on one or
several transport addresses, it has to create one or several instances of the
DiameterListeningPoint interface:

IP and Routes Configuration

B-2 Oracle Communication and Mobility Server Developer’s Guide

String localURI = "aaa://server.realm.domain.com:41001";
myStack.createDiameterListeningPoint(localURI);

As soon as the listening point has been created, the Diameter stack is ready to accept
incoming connection from remote peers. If the Diameter stack receives a connection
request from a peer that as not been declared in the routing table, then the
isUnknownPeerAuthorized() of the DiameterListener interface is called. The
connection is accepted only if this method returns true.

Configuring Routes and Binding to Diameter Peers
A Diameter client application can declare remote peers by using the
createDiameterRoute()method.

The code fragment illustrated in Example 6–1 configures two Diameter realms,
realm1.domain.com and realm2.domain.com. The first realm is served by two
peers: peer1.realm1.domain.com and peer2.realm1.domain.com, whereas
the second realm is served by only one peer, peer.realm2.domain.com. The metric
values (1 and 2) are such that peer1 and peer2 are set up in master/backup mode.
Example 6–1 illustrates this source code for setting up this peer configuration.

Example 6–1 Configuring Peers

myStack.createDiameterRoute("ExampleApp", "realm1.domain.com",
 "aaa://peer1.realm1.domain.com", 1);
myStack.createDiameterRoute("ExampleApp", "realm1.domain.com",
 "aaa://peer2.realm1.domain.com", 2);
myStack.createDiameterRoute("ExampleApp", "realm2.domain.com",
 "aaa://peer.realm2.domain.com:41002", 1);

Realm State Availability
The DiameterRealmStateChangeEvent class is used to notify the application of
the reachability or unreachability of a remote realm as a result of peers coming up or
down. This is important because the Diameter stack will not accept an outgoing
message for which the remote realm is not available. Therefore, the application should
wait until the realm is available before sending requests.

A RealmStateChange event is passed to DiameterListener.processEvent()
whenever the availability of a pair (Remote-Realm, Application-ID) changes. The
availability of a remote realm for a given application ID depends on the availability of
active connections to at least one remote peer that is able to serve the specific realm

Note: There is no need for the user application to keep the references
on the listening points since they can be retrieved later by calling
DiameterStack.getDiameterListeningPoints().

Note: If a peer name (FQDN) is used in createDiameterRoute()
and if that peer is not yet known to the local stack, a transport
connection is initiated with the peer using the specified peer URI
(taking into account any URI optional information such as port
number and transport protocol). On the contrary, if the peer specified
by the FQDN part of the URI is already known, the URI is ignored,
and the existing peer entry is added to the routing table for the
specified realm and application ID.

Counters Management

Programming Oracle Diameter Applications B-3

and application ID. Since the route is not available, the application is not able to
exchange messages with the remote realm peers.

Example 6–2 illustrates a typical implementation of the
DiameterListener.processEvent() method.

Example 6–2 Implementing the DiameterListener.processEvent() Method

public void processEvent(DiameterEvent event)
{
 if (event instanceof DiameterRealmStateChangeEvent) {
 // A remote realm has become available or unavailable
 DiameterRealmStateChangeEvent event =
 (DiameterRealmStateChangeEvent)event;
 if (event.isRealmAvailable()) {
 System.out.println("Realm " + event.getRealm() + " is available");
 } else {
 System.out.println("Realm " + event.getRealm() + " is unavailable");
 }
 // ...
 }

Counters Management
Upon Diameter stack initialization, a set of defined counters is initialized and
associated to each DiameterStack and DiameterProvider instance created by the
application. These counters are defined in the DiameterStackImplMBean and
DiameterProviderImplMBean management interfaces.

There are two ways to access to these counters:

1. Directly, by calling one of the different methods defined in both management
interface.

2. Remotely, by registering the Diameter MBeans to a JMX agent using
javax.management package. Only the JDK 1.5 provides this package.

MBeans Management Interface
There are two management interfaces defined in the oracle.sdp.diameterimpl
package:

1. DiameterStackImplMBean: This interface represents the management API for
an instance of the DiameterStack interface.

2. DiameterProviderImplMBean: This interface represents the management API
for an instance of the DiameterProvider interface

Example 6–3 illustrates how to directly get the value of one of these defined counters:

Example 6–3 Getting the Value of a Counter

//--> Example Stack: getting the NbTransactions counter
MyStack->getNbTransactions();
//--> Example Provider: getting the NbSessionsCreated counter
MyProvider->getNbSessionsCreated();

Counters Management

B-4 Oracle Communication and Mobility Server Developer’s Guide

Managing a Diameter Application with MBeans
A Diameter Application can be managed remotely by registering the Diameter
MBeans to a JMX agent and can be monitored by using the Java JConsole program.

Registering the Diameter MBeans
A Java application using the Diameter API can publish management information by
registering instances of the DiameterStackImplMBean and
DiameterProviderImplMBean interfaced to a JMX agent. This can be done as
follows:

import javax.management.MBeanServerFactory;
import javax.management.MBeanServer;
import javax.management.ObjectName;

import oracle.sdp.diameter.*;

// Create DiameterStack and DiameterProvider instances.
// DiameterStack myStack = ...
// DiameterProvider myProvider = ...
List srvList = MBeanServerFactory.findMBeanServer(null);

if (srvList.isEmpty() == false) {
 MBeanServer server = (MBeanServer)srvList.iterator().next();
 try {
 ObjectName name;

 name = new ObjectName("oracle.sdp.diameterimpl:name=DiameterProvider");
 server.registerMBean(myProvider, name);

 name = new ObjectName("oracle.sdp.diameterimpl:name=DiameterStack");
 server.registerMBean(myStack, name);
 }
 catch (Exception e) {
 // Handle register exception
 // ...
 }
}

Using jconsole to Monitor Diameter Applications
When you have a Diameter application running -- and provided you have registered
the MBeans as described above -- you can use the JDK's jconsole application to browse
the management characteristics of the stack and application.

Start jconsole as follows:

jconsole

Note: This code requires the JDK 1.5 or later. Previous versions do
not have the required javax.management package.

If you intend to allow remote access to the MBeans, you must define
the Java property com.sun.management.jmxremote when
running your application, as follows:

java -Dcom.sun.management.jmxremote -classpath mdiameter.jar
MyApplication

Dictionary

Programming Oracle Diameter Applications B-5

And then select the application's JVM from the local list. The Diameter MBeans should
be visible under the MBeans tab.

Dictionary
This section includes the following topics:

■ "Dictionary Composition"

■ "Dictionary Extension"

Dictionary Composition
When a user’s application requires using commands or AVPs that are not defined in
the default loaded application dictionary, the user can extend the dictionary to define
new commands and/or AVPs syntaxes to be used by the Diameter stack.

dictionary Element
The root or top-level element of a Diameter dictionary extension is the <dictionary>
element:

<dictionary>
.... (other elements)
</dictionary>

The <dictionary> element contains zero or more <vendor> elements and zero or
more <application> elements.

vendor Element
The <vendor> element defines a vendor by a name and associated IANA.

The <vendor> attributes are:

1. The vendor id attribute must be unique across all <vendor> element definitions
of the dictionary. The value 0 is dedicated to the base protocol which corresponds
to the syntaxes defined in [RFC-3588] and [RFC-4006].

2. The vendor name attribute is some text describing the vendor.

In Example 6–4, the <vendor> element defines the vendor named "3GPP" whose
enterprise code is 10415:

Example 6–4 Defining a Vendor

<dictionary>
 <vendor id="10415" name="3GPP">
 (other elements)
 </vendor>
</dictionary>

The <vendor> element contains zero or more <returnCode> elements and zero or
more <avp> elements.

application Element
One of the ways in which the Diameter protocol can be extended is through the
addition of new applications.

The <application> element defines the new commands needed to support a new
vendor Diameter application.

Dictionary

B-6 Oracle Communication and Mobility Server Developer’s Guide

The <application> attributes are:

1. The application id attribute is the IANA-assigned Application Identifier for this
application. The value 0 is dedicated to the base protocol which corresponds to the
commands defined in RFC-3588 and RFC-4006.

2. The application name attribute is the human-readable name of this application.

3. The application vendor attribute is the name of the application vendor as
previously defined in the <vendor> element.

4. The application service-type attribute defined the type of service delivered by
the application. Possible values are "Acct" for accounting and "Auth" for
authorization.

In Example 6–5, the <application> element contains information for the 3GPP
accounting "Rf" application identified by the value "3":

Example 6–5 Defining an <application> Element

<dictionary>
 <application id="3" name="Rf" vendor="3GPP" service-type="Acct">
 (other elements)
 </application>
</dictionary>

The <application> element contains zero or more <command> elements.

command Element
A <command> element defines the attributes for a command.

The <command> attributes are:

1. The command name attribute defines the name of the command. Because only one
command is defined for both "Request" and "Answer" portions, the "Accounting"
command defines both "Accounting-Request" and "Accounting-Answer"
messages.

2. The command code attribute defines the command code used to transmit this
command.

In Example 6–6, the Rf application contains the command "Accounting" whose code is
271:

Example 6–6 Defining the <command> Element

<dictionary>
 <application id="3" name="Rf" vendor="3GPP" service-type="Acct">
 <command name="Accounting" code="271" />

 </application>
</dictionary>

returnCode Element
The <returnCode> element defines a possible value of the Result-Code AVP. In
Example 6–7, the 3GPP vendor defines the returnCode 5030 named DIAMETER_
USER_UNKNOWN.

Dictionary

Programming Oracle Diameter Applications B-7

Example 6–7 Defining the <returnCode> Element

<dictionary>
 <vendor id="10415" name="3GPP">
 <returnCode name="DIAMETER_USER_UNKNOWN" code="5030" />

 </vendor>
</dictionary>

avp Element
The <avp> element defines an AVP as described in RFC-3588.

The <avp> attributes are:

1. The avp name attribute is the human-readable name of this AVP.

2. The avp code attribute defines the integer value used to encode the AVP for
transmission on the network.

3. The avp mandatory attribute defines whether the mandatory bit of this AVP
should or should not be set. Possible values are "must" or "mustnot".

4. The avp protected attribute defines whether the protected bit of this AVP
should or should not be set. Possible values are "may" or "maynot".

5. The avp may-encrypt attribute defines whether the AVP has to be encrypted in
case of CMS security usage. Possible values are "yes" or "no".

6. The avp vendor-specific attribute specifies if this is a vendor specific AVP or
not. Possible values are "yes" or "no".

In Example 6–8, the 3GPP vendor extends the dictionary with the AVP
"Application-provided-called-party-address".

Example 6–8 Defining the <avp> Element

<dictionary>
 <vendor id="10415" name="3GPP">
 <avp name="Application-provided-called-party-address"
 code="837"
 mandatory="mustnot"
 protected="may"
 may-encrypt="no"
 vendor-specific="yes">

 </avp>
 </vendor>
</dictionary>

The <avp> element regroups either a <type> element or a <grouped> element.

type Element
The <type> element defines the data type of the AVP in which it appears. This
element must appear in all non-grouped AVP definitions.

The type-name attribute of the <type> element contains the data type name as
defined in RFC-3588: Possible values are:

■ "OCTETSTRING"

■ "INTEGER32"

■ "INTEGER64"

Dictionary

B-8 Oracle Communication and Mobility Server Developer’s Guide

■ "UNSIGNED32"

■ "UNSIGNED64"

■ "FLOAT32"

■ "FLOAT64"

■ "ADDRESS"

■ "IPADDRESS"

■ "TIME"

■ "UTF8STRING"

■ "DIAMETERIDENTITY"

■ "DIAMETERURI"

■ "IPFILTERRULE"

■ "QOSFILTERRULE"

■ "ENUMERATED"

■ "GROUPED"

In Example 6–9, the AVP "Application-provided-called-party-address" is an
UTF8String.

Example 6–9 Defining the <type> Element

<dictionary>
 <vendor id="10415" name="3GPP">
 <avp name="Application-provided-called-party-address"
 code="837"
 mandatory="mustnot"
 protected="may"
 may-encrypt="no"
 vendor-specific="yes">
 <type type-name="UTF8String"/>
 </avp>
 </vendor>
</dictionary>

enum Element
The <enum> element defines a name which is mapped to an Unsigned32 value used in
encoding and decoding AVPs of type Unsigned32. Enumerated elements should only
be used with Unsigned32 typed AVPs.

The <enum> element’s attributes are:

1. The enum name attribute is the text corresponding to a particular value for the
attribute.

2. The enum code attribute is the Unsigned32 value corresponding to this
enumerated value

In Example 6–10, the Accounting-Record-Type AVP has four values: EVENT_
RECORD, START_RECORD, INTERIM_RECORD and STOP_RECORD.

Note: These values are case-sensitive.

Dictionary

Programming Oracle Diameter Applications B-9

Example 6–10 Defining the <enum> Element

<dictionary>
 <vendor id="10415" name="3GPP">
 <avp name="Accounting-Record-Type"
 code="480"
 mandatory="must"
 protected="may"
 may-encrypt="yes">
 <type type-name="Unsigned32"/>
 <enum name="EVENT_RECORD" code="1"/>
 <enum name="START_RECORD" code="2"/>
 <enum name="INTERIM_RECORD" code="3"/>
 <enum name="STOP_RECORD" code="4"/>
 </avp>
 </vendor>
</dictionary>

grouped Element
The <grouped> element defines an AVP which encapsulates a sequence of AVPs
together as a single payload. It consists in grouping one or more <gavp> elements.
This way, a single "grouped" element can contain references to multiple AVPs. Each
<gavp> element holds an AVP name and a vendor-id attribute.

The <gavp> attributes are:

1. The gavp name attribute must correspond to some existing AVP’s name attribute.

2. The gavp vendor-id attribute refers to an existing vendor’s id attribute.

In Example 6–11, the 3GPP vendor defines an AVP named "CC-Money" which is a
set of previously defined AVPs named "Unit-Value" and "Currency-Code".

Example 6–11 Defining the <grouped> and <gavp> Elements

<dictionary>
 <vendor id="10415" name="3GPP">
 <avp name="CC-Money"
 code="413"
 mandatory="must"
 protected="may"
 may-encrypt="yes">
 <grouped>
 <gavp name="Unit-Value" />
 <gavp name="Currency-Code" />

 </grouped>
 </avp>
 </vendor>
</dictionary

Dictionary Extension
Once the Diameter dictionary extension has been defined, use the extendGrammar()
method to apply the extension to the default dictionary as follows:.

//--> Define dictionary extension string
String myDictionary =
 "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n" +
 "<!DOCTYPE dictionary SYSTEM \"dictionary.dtd\">\n" +
 "<dictionary>\n" +

Tracing and Logging Mechanism

B-10 Oracle Communication and Mobility Server Developer’s Guide

 " <vendor id=\"10415\" name=\"3GPP\">\n" +
 " </vendor>\n" +
 " <application id=\"3\" name=\"Rf\" vendor=\"3GPP\" \n" +
 " service-type=\"Acct\">\n" +
 " <command name=\"Accounting\" code=\"271\" />\n" +
 " </application>\n" +
 "</dictionary>\n";

//--> Apply new extension to current dictionary
try {
 myStack . extendGrammar(myDictionary);
} catch (DiameterException e) {
 // Handle dictionary syntax errors ...
}

For increased flexibility in a real application, you may want to read the XML syntax
description from a file rather than having it embedded in the Java source code. This
way, it becomes possible to change the mapping between names and codes without
recompiling the application.

The 3GPP Rf Interface dictionary is returned by getRfDictionary() and the 3GPP
Ro Interface dictionary is returned by getRoDictionary() and can be extended by
the Diameter stack.

Tracing and Logging Mechanism
The DiameterTraceLoggerListener class is an interface to the Diameter tracing
and logging mechanism. This interface represents the communication channel
implemented by an application to receive debug traces and logs from the Diameter
stack implementation. Logs are messages targeted to the user of DiameterStack.
Traces are for internal use and are meaningful only to people with a good knowledge
of the DiameterStack implementation.

All the messages that may be sent through the
DiameterTraceLoggerListener.log() logging interface are defined in
LogMessages.def. There is no definition file for trace messages.

By default, logs are sent to stdout and traces are not sent. This behavior may be
modified by users either by registering a user-defined subclass of
DiameterTraceLoggerListener or by defining specific environment variables. An
example of a DiameterTraceLoggerListener implementation is as follows:

Class MyTraceLoggerListener implements DiameterTraceLoggerListener
{
 // true or false.
 public boolean isTracingEnabled()
 {
 return true;
}

public void log (String file, int line, int severity, String message)
{
 String severity;
 switch (severity) {
 case LOG_INFO_SEVERITY: severity="INFO"; break;
 case LOG_WARNING_SEVERITY: severity="WARNING"; break;
 case LOG_ERROR_SEVERITY: severity="ERROR"; break;
 case LOG_DISASTER_SEVERITY: severity="DISASTER"; break;
 default: severity="?"; break;
 }

Tracing and Logging Mechanism

Programming Oracle Diameter Applications B-11

 // ...
 }

 public void trace (String file, int line, int mask, String message)
 {
 System.err.println(...);
}
}

Tracing and Logging Mechanism

B-12 Oracle Communication and Mobility Server Developer’s Guide

Accounting Even
C

Accounting Event API

This appendix describes the OCMS Accounting Event API, in the following sections:

■ Introduction

■ logEvent(SipServletRequest req, Map<Object, Object> additional) Method

■ logEvent(SipServletResponse resp, Map<Object, Object> additional) Method

■ logEvent(Map <Object, Object> event, String category) Method

■ Event Processing in Log4j

Introduction
OCMS provides the Accounting Event API, an interface to create SIP event data that
can be used for accounting and charging. The event output data can be post-processed
to create CDRs.

The Accounting Event API consists of the following two interfaces:

■ oracle.sdp.sipservletframework.eventlogger.EventLoggerFactory

■ oracle.sdp.sipservletframework.eventlogger.EventLogger

The container creates an EventLoggerFactory instance available through a
ServletContext attribute with the name
oracle.sdp.sipservlet.EventLoggerFactory.EVENT_LOGGER_FACTORY.
The string cannot be used by itself, but must be specified as follows:

EventLoggerFactory elf =
getServletContext().getAttribute(oracle.sdp.sipservletframework.eventlogger.
EventLoggerFactory.EVENT_LOGGER_FACTORY

 The EventLogger interface is implemented by the loggers created by the
EventLoggerFactory.getLogger(String loggerName) method. The
EventLogger instances use Apache Log4j internally for the actual logging. Log4j
allows flexible logging for instance to a file or to a centralized log server using syslog.

The EventLogger interface has three methods for logging events (illustrated in
Example C–1):

■ logEvent(SipServletRequest req, Map<Object, Object>
additional)

■ logEvent (SipServletResponse resp, Map<Object, Object>
additional

■ logEvent(Map<Object, Object> event, String category)
t API C-1

logEvent(SipServletRequest req, Map<Object, Object> additional) Method
Example C–1 Logging Events in the EventLogger Interface

public interface EventLogger
{
 public void logEvent(SipServletRequest req, Map<Object, Object> additional);

 public void logEvent(SipServletResponse resp, Map<Object, Object> additional);

 public void logEvent(Map<Object, Object> event, String category);

 public boolean isEnabled(SipServletRequest req);
 public boolean isEnabled(SipServletResponse resp);
 public boolean isEnabled(String category);
}

logEvent(SipServletRequest req, Map<Object, Object> additional) Method
The logEvent(SipServletResponse resp, Map<Object, Object>
additional) method logs an event with the characteristic request attributes listed
together with any additional event attributes provided. Table C–1 describes the
request attributes of the logEvent Method. The event is logged to the following Log4j
category name:

“eventlogger.” + loggerName + “.REQUEST.” + method.

Table C–1 Request Attributes of the logEvent(SipServletRequest req, Map<Object,
Object> additional) Method

Attribute Description

RequestUri The Request-URI value.

Method The method value.

To The To header value.

From The From header value.

Call-ID The Call-ID header value.

CSeq The CSeq header value.

Via A string of all Via header values, separated by semicolons (;).

Content-Type The Content-Type header value, or "".

Content-Length The Content-Length header value, or "".

MEDIA A string of all SDP media line values (that is, the portion
following m=), which are separated by semicolons(;). Only
include this attribute for INVITE requests when SDP content is
not present.

Service The name of the service generating the event (that is, the full
Log4j category name).
C-2 Oracle Communication and Mobility Server Developer’s Guide

logEvent(Map <Object, Object> event, String category) Method
logEvent(SipServletResponse resp, Map<Object, Object> additional)
Method

The public void logEvent(SipServletResponse resp, Map<Object,
Object> additional) method logs an event with the characteristic response
attributes listed in Table C–2 with any additional event attributes provided. The event
will be logged to the following full Log4j category name:

“eventlogger.” + loggerName + “.RESPONSE.” + method + “.” + statuscode.

Table C–2 describes the attributes for public void
logEvent(SipServletResponse resp, Map<Object, Object>
additional).

logEvent(Map <Object, Object> event, String category) Method
The public void logEvent(Map <Object, Object> event, String
category) method is a generic method that can be used to log any kind of event in
the form of an attribute map. The Service attribute listed in Table C–3 is also added
to the attribute map. The event will be logged to the full Log4j category name, which
can take either of the following two forms:

■ “eventlogger.” + loggerName

■ “eventlogger.” + loggerName + “.” + category if a non-null category is provided.

Table C–3 lists the attributes for this method.

Table C–2 Response Attributes for the logEvent(SipServletResponse resp, Map<Object,
Object> additional) Method

Attribute Description

StatusCode The response status code.

Method The method value.

To The To header value.

From The From header value.

Call-ID The Call-ID header value.

CSeq The CSeq header value.

Via A string of all Via header values, separated by semicolons (;).

Content-Type The Content-Type header value, or "".

Content-Length The Content-Length header value, or "".

MEDIA A string of all SDP media line values (that is, the portion
following m=), which are separated by semicolons(;). Only
include this attribute for INVITE requests when SDP content is
not present.

Service The name of the service generating the event (that is, the full
Log4j category name).
Accounting Event API C-3

Event Processing in Log4j
The isEnabled method returns true only if the Log4j filter is configured so that a
call to logEvent method with the same argument is logged. Example C–2 illustrates
how a servlet uses the Accounting Event API to log events for all of its requests and
responses.

Example C–2 Logging Events with the Accounting API

public class EventTestServlet extends SipServlet
{

 private EventLogger eventLogger;

 public void init() {

 ServletContext sc = getServletContext();
 EventLoggerFactory factory = (EventLoggerFactory) sc
 .getAttribute("oracle.sdp.sipservlet.EventLoggerFactory");
 eventLogger = factory.getLogger(EventTestServlet.class);
 }
 public void doRequest(SipServletRequest req) {
 if (eventLogger.isEnabled(req)) {
 eventLogger.logEvent(req, null);
 }
 URI requestURI = req.getRequestURI();
 req.getProxy().proxyTo(requestURI);
 }
 public void doResponse(SipServletResponse resp) {
 if (eventLogger.isEnabled(resp)) {
 Map additional = new HashMap();
 additional.put("foo", "bar")
 eventLogger.logEvent(resp, additional);
 }
 }
}

Event Processing in Log4j
Log4j is executes the following tasks:

■ Event filtering

■ Event formatting

■ Deciding the destination for events

These configurations can be changed in runtime by editing the Log4j configuration file
(log4j.xml).

For more information about Log4j, see http://logging.apache.org/log4j.

Table C–3 Attributes of the logEvent(Map <Object, Object> event, String category)
Method

Attribute Key Description of attribute value

Service The name of the service generating the event (that is, the full
Log4j category name).
C-4 Oracle Communication and Mobility Server Developer’s Guide

Event Processing in Log4j
Event Filtering
By uncommenting or commenting categories in the Log4j configuration file
(log4j.xml), events can be enabled or disabled as illustrated in Example C–3. The
Log4j configuration determines which events generated from the servlets are logged to
the event.log file.

Example C–3 illustrates a Log4j configuration for displaying 200 (OK) responses to
INVITE and BYE requests from the EventTestServlet. These responses are logged
to the event.log file.

Example C–3 Log4j Configuration for Displaying BYE Requests and 200 (OK)
Responses to INVITE Requests

<category
 name="eventlogger.com.example.EventTestServlet.RESPONSE.INVITE.200"
 additivity="false">
 <priority value="ALL"/>
 <appender-ref ref="EVENTLOGGER"/>
 <appender-ref ref="EVENTLOGGER_LOCAL" />
</category>
<category name="eventlogger.com.example.EventTestServlet.REQUEST.BYE"
 additivity="false">
 <priority value="ALL"/>
 <appender-ref ref="EVENTLOGGER"/>
 <appender-ref ref="EVENTLOGGER_LOCAL" />
</category>

Note the notation with class name and type of RESPONSE/REQUEST.

Event Formatting and Destination
The format of the events in the event.log is determined by the layout class in
Log4j. The default layout class used for SipServlet event logging is
oracle.sdp.eventlogger.BasicLayout, and it logs each event as a single row
with comma-separated attributes. The method toString() is then called on the
attribute keys and values, which are concatenated with an equals sign (=). The
BasicLayout class also adds the attributes described in Table C–4. If needed, you can
create a new layout class.

The configuration also determines where events will be sent, for example to console,
file, syslog, remote socket, or JMS. In Example C–4 the events are logged to a file, by
using syslog to the localhost (127.0.0.1).

For more information about Log4j, see http://logging.apache.org/log4j.

Example C–4 Logging Events to a File

<appender name="EVENTLOGGER_LOCAL"
 class="org.oracle.logging.appender.RollingFileAppender">
 <param name="File" value="/var/log/sdp/events.log"/>
 <param name="Append" value="true"/>
 <param name="MaxFileSize" value="100000KB"/>

Table C–4 Event Logging Attributes

Attribute Key Description of Attribute Value

Creation Time The event creation time in format:
yyyy-MM-dd'T'HH:mm:ss.SSS'Z'

TimeZoneOffset The offset, in minutes from GMT
Accounting Event API C-5

Event Processing in Log4j
 <param name="MaxBackupIndex" value="10"/>
 <layout class="oracle.sdp.eventlogger.BasicLayout">
 </layout>
</appender>

Example of BasicLayout Output
Each attribute is displayed in a separate row with the key in bold text.

REQUEST.INVITE:

CreationTime=2005-04-15T07:50:51.767Z,
To=<sip:08505@example.com>;tag=0f54d930-f916-4702-8293-d8b014810a29,
TimeZoneOffset=120,
Method=INVITE,
Content-Type=application/sdp,
Service=eventlogger.com.example.EventTestServlet.REQUEST.INVITE,
Call-ID=8e02578d-2021-4d06-b98d-bf9827c93003@192.0.2.0,
RequestUri=sip:08505@example.com;transport=TCP,
MEDIA=audio 8502 RTP/AVP 97 103 100 101 0 8 102 18 107,
CSeq=2 INVITE,
Content-Length=418,
Via=SIP/2.0/TCP 192.0.2.0:5060;branch=z9hG4bKc549d2be44c901ac050be55ff622e1c8;
rport; SIP/2.0/TCP
192.0.2.0:2051;received=192.0.2.0;branch=z9hG4bK-b20b96e2-
1fac-4500-8030-580da1d81051.1;rport=2051,
From=Alice <sip:alice@example.com>;tag=35ec862a-1d03-4f78-904c-
1accf44d15fe

RESPONSE.INVITE.200

CreationTime=2005-04-15T07:50:51.830Z,To=<sip:08505@example.com>;tag=0f54d930-f916
-4702-8293-d8b014810a29,
TimeZoneOffset=120,
Method=INVITE,
Content-Type=application/sdp,
Service=eventlogger.com.example.EventTestServlet.RESPONSE.INVITE.200,
Call-ID=8e02578d-2021-4d06-b98d-bf9827c93003@192.0.2.0,
StatusCode=200,
MEDIA=audio 8502 RTP/AVP 0 8,
CSeq=2 INVITE,
Content-Length=392,
Via=SIP/2.0/TCP 192.0.2.0:5060;branch=z9hG4bKc549d2be44c901ac050be55ff622e1c8;
rport; SIP/2.0/TCP
192.0.2.0:2051;received=192.0.2.0;branch=z9hG4bK-b20b96e2-
1fac-4500-8030-580da1d81051.1;rport=2051,
From=Alice <sip:alice@example.com>;tag=35ec862a-1d03-4f78-904c-
1accf44d15fe
C-6 Oracle Communication and Mobility Server Developer’s Guide

Index-1

Index

A
Accounting API, C-4
Accounting Event API, C-1
Aggregation Proxy, 6-2
appId, 3-1
applications, 2-4

default, 2-20
testing of, 5-9

asynchronous send method, 2-21
authentication, 2-22

B
Back to Back User Agent, 2-1, 4-2
Basic Response, 5-4, 5-5

C
Call Forward, 5-4, 5-5
classes

SipServletRequest, 2-8
SipServletResponse, 2-8

classes and methods, 2-7

D
deployment descriptor, 2-2, 2-5, 2-7
Diameter, A-1

accounting call flow, A-17
Accounting-Answer, A-21
Accounting-Request, A-20
APIs

3GPP/Rf Diameter Java API, A-5
3GPP/Ro Diameter Java API, A-9
3GPP/Sh Diameter Java API, A-14
Diameter Java Base Protocol API, A-2

application example, A-17
architecture, A-1
global cleaning, A-22

distributable applications, 4-1

E
Eclipse, 1-2, 5-1, 5-4

Basic Response SIP application example
project, 5-4, 5-5

Call Forward SIP application example
project, 5-4, 5-5

creating a new project, 5-3
importing a project, 5-3
Message Sender SIP/Web converged application

example project, 5-4, 5-5
Parlay X Web Services Client example

project, 5-4, 5-6
Proxy/registrar SIP application example

project, 5-4, 5-6
starting OCMS in, 5-9
Third Party Call Control SIP application example

project, 5-4, 5-6
event logging

attributes, C-5
EventLogger, C-1
EventLoggerFactory, C-1

H
headers, 2-9, 2-10, 2-11

HTTP X-3GPP-ASSERTED-IDENTITY, 6-2
HTTP, 2-21
HTTPS, 6-2

I
importing example projects, 5-4
initial requests, 2-19
initialization parameters, 2-5
INVITE requests, 2-7

J
Javadoc, 2-22
JSR 116, 2-1, 2-22, 3-1

L
listeners

SIP
listeners, 2-4

log files
system, 5-9

log level, 5-9
Log4j, C-4

Index-2

event filtering, C-5
event formatting and destination, C-5
event logging attributes, C-5
event processing, C-4

logEvent method, C-2
logging, C-5
logging events

to a file, C-5

M
memory usage, 4-2
MESSAGE requests, 2-7
Message Sender, 5-4, 5-5
messages, 2-8
methods

addAddressHeader, 2-10
createRequest, 2-3
createResponse, 2-9
doAck, 2-8
doBye, 2-8
doCancel, 2-8
doErrorResponse, 2-8
doInfo, 2-8
doInvite, 2-8
doMessage, 2-8
doNotify, 2-8
doOptions, 2-8
doPrack, 2-8
doProvisionalResponse, 2-8
doPublish, 2-21
doRedirectResponse, 2-8
doRegister, 2-8
doRequest(), 2-7
doResponse, 2-9
doResponse(), 2-7
doSubscribe, 2-8
doSuccessResponse, 2-8
getAddressHeader, 2-10
getApplicationSession(), 2-3
getHeaders, 2-10
getHost, 2-11
getInitParameter, 2-13
getLrParam, 2-11
getServletContext, 2-2
getSession(), 2-3
getSessions(), 2-3
getStatus(), 2-9
getUser, 2-11
init, 2-5
invalidate, 2-3
isEnabled, C-4
logEvent, C-2
match, 2-7, 3-1
override methods, 2-7
public void logEvent, C-3
request handling methods, 2-8
response handling, 2-8
send(), 2-21
service, 2-8

setContent(), 2-9
setMethod(), 2-11
toString(), C-5

multi-threading, 2-21

O
OCMS, 1-1

Service Creation Environment, 1-2
OCMS SCE, 1-3

OCMS SCE, 1-2
OID, 2-22
Oracle Communication and Mobility Server, 1-1
Oracle Internet Directory, 2-22

P
Parlay X

defining a Web services deployment server, 6-2
Presence custom error codes, 6-7

Parlay X Web Service interface, 1-2
Parlay X Web Services, 6-1
Parlay X Web Services Client, 5-4, 5-6
Presence, 1-1
Presence Web Services, 1-2
Presence Web Services interfaces, 6-3

code examples, 6-4
using, 6-4

PresenceConsumer interface, 6-3
PresenceNotification interface, 6-3
PresenceSupplier interface, 6-3
programming guidelines, 4-1
Protocol Sessions, 2-3
proxy

configuration values, 2-5
proxy servlet, 2-1
Proxy/registrar, 5-4, 5-6

R
RADIUS, 2-22
request handling, 2-8
request object structure, 2-16
Request URI, 3-1, 3-2
requests, 2-8
response handling, 2-8
responses, 2-9
RFC 2806, 2-11
RFC 3261, 2-11
RFC 3263, 2-12
RFC 3903, 2-21
RFC 822, 2-8
route header, 3-2

S
security, 3-3

authentication and authorization, 2-22
user roles, 3-3

Servlet Config object, 2-5
servlet context, 2-2

Index-3

servlet mapping, 2-7
servlets, 2-4
session

configuration values, 2-5
session attributes, 2-12
shared resources, 4-2
SIP, 2-4

applications, 2-4, 2-7
testing of, 5-9

headers, manipulating, 2-10
messages, 2-8
request or response content, 2-9
requests, 2-8
responses, 2-9
servlet mapping, 2-7
servlets, 2-4, 2-5, 2-7
session data, 2-22
transactions, 2-3

SIP Application Manager, 2-5
SIP Application Sessions, 2-3
SIP Applications

addressing, 3-1
SIP Container, 2-2, 2-5, 3-1

processing initial requests, 2-19
processing requests, 2-6

SIP Servlet API, 1-1, 2-12
classes and methods, 2-7

SIP Servlets
accessing externally, 2-22

SipURI, 2-11
accessing parameters in, 2-11

sip.xml, 2-2, 2-5, 2-7
standards

JSR 116, 2-1, 2-22, 3-1
RFC 2806, 2-11
RFC 3261, 2-11
RFC 3263, 2-12
RFC 3903, 2-21
RFC 822, 2-8

system headers, 2-9

T
TEL URLs, 2-11
testing, 5-9
Third Party Call Control, 5-4, 5-6

testing, 5-9
timeouts

proxy, 2-2
session, 2-2, 2-3

U
unpublish, 6-5
User Agent Client, 2-1
User Agent Server, 2-1

Index-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Overview
	Introduction to Oracle Communication and Mobility Server
	Application Development in OCMS
	SIP Servlet API
	Parlay X Web Service Interface
	Presence Web Services

	Oracle Communication and Mobility Server Development Tools

	2 SIP Servlets
	Introduction to SIP Servlets
	The SIP Container
	Servlet Context
	SIP Application Sessions
	Protocol Sessions
	Transactions
	Servlets
	Increased Servlet Modularity

	Listeners

	SIP Servlets and SIP Applications
	SIP Servlet Environment
	Servlet Mapping

	Classes and Methods
	Request and Response Handling Methods
	Messages
	Requests
	Responses
	Content
	Manipulating SIP headers
	SipURI
	Address
	SIP Details

	Storing Data as Session Attributes
	Adding Configuration Parameters

	Configuring SIP Applications in sip.xml
	Setting and Accessing Global Init Parameters
	Configuring Application Sessions
	Defining a Servlet
	Defining the Servlet Mapping
	Creating Rules Using the Request Object Structure
	Conditions
	Examples

	SIP Servlets in OCMS
	Handling Initial Requests
	Implementation Decisions
	Protocol Sessions
	Extended doRequest Methods
	Asynchronous Send

	Multi-Threading
	Sip Servlet API Javadoc
	External Access to SIP Servlets
	OCMS Authentication and Login Modules

	3 Advanced SIP Servlet Configuration
	Addressing SIP Applications
	Identifying the appId

	Configuring Application Security

	4 Programming Guidelines
	Introduction
	Marking Applications as Distributable
	Storing Data in Application Sessions
	Avoiding Static Data
	Avoiding Blocking Calls
	Invalidating the SipApplicationSession and SIPSession
	Monitoring the Memory Usage
	Avoiding Storing Shared Resources in Sessions
	Avoiding Creating Threads
	Creating B2BUA Applications

	5 Building a SIP Servlet Application
	Prerequisites
	SIP Application Development Process
	Creating a New Dynamic Web Project with SIP Support
	Importing an Existing Project
	Importing Example Projects
	Importing the Basic Response SIP Application Example Project
	Importing the Call Forward SIP Application Example Project
	Importing the Message Sender SIP/Web Converged Application Example Project
	Importing the Parlay X Web Services Client Example Project
	Importing the Proxy/Registrar Example Project
	Importing the Third Party Call Control Example Project

	Deploying a SIP Application to OCMS
	Testing an Application
	Changing the Logging Level
	Viewing the System Log File
	Starting the OCMS Server in Eclipse
	Testing a Third Party Call Control Servlet

	6 OCMS Parlay X Web Services
	Introduction
	Installing the Web Services
	Installing the Aggregation Proxy
	Configuring Web Services with the Aggregation Proxy
	Presence Web Services Interface Descriptions
	Using the Presence Web Services Interfaces
	Interface: PresenceConsumer, Operation: subscribePresence
	Code Example

	Interface: PresenceConsumer, Operation: getUserPresence
	Code Example

	Interface PresenceSupplier, Operation: publish and Oracle Specific "Unpublish"
	Code Example

	Interface: PresenceSupplier, Operation: getOpenSubscriptions
	Code Example

	Interface: PresenceSupplier, Operation: updateSubscriptionAuthorization
	Code Example

	Interface: PresenceSupplier, Operation: getMyWatchers
	Code Example

	Interface: PresenceSupplier, Operation: getSubscribedAttributes
	Code Example

	Interface: PresenceSupplier, Operation: blockSubscription
	Code Example

	OCMS Parlay X Presence Custom Error Codes

	A Oracle Diameter Java APIs
	Diameter Java Base Protocol API
	Base Protocol Diameter Java Interface
	Diameter Factory
	Diameter Stack
	Diameter Application
	Diameter Transport
	Diameter Attribute Value Pairs (AVPs)
	Diameter Session
	Diameter Event
	Diameter Exception

	3GPP/Rf Diameter Java API
	3GPP/Rf Diameter Java Interface
	Rf Provider
	Rf Listener
	Rf Message Factory
	3GPP/Rf Dictionary

	Rf Events
	Process Event
	Raise Events

	Rf Application Options
	Rf Server Stateless
	Rf Server StateFul
	Rf Client

	Rf Application FSM
	Rf Client FSM
	RF Stateful Server FSM
	Rf Stateless Server FSM

	3GPP/Ro DIAMETER JAVA API
	3GPP/Ro DIAMETER JAVA INTERFACE
	Ro Provider
	Ro Listener
	Ro Message Factory
	3GPP/Ro Dictionary
	Ro Events
	Process Events
	Raise Events

	Ro Application Options
	Ro Server
	Ro StateFul Client
	Ro StateLess Client

	Ro Application FSM
	Ro Stateful Client FSM
	Ro StateLess Client FSM
	Ro Server FSM

	3GPP/Sh Diameter Java API
	3GPP/Sh Diameter Java Interface
	Sh Provider
	Sh Listener
	Sh Message Factory

	3GPP/Sh Dictionary
	Sh Events
	Sh Application Options

	Diameter Application Example
	Accounting Call Flow
	Application initialization
	Rf Diameter Application
	Transport configuration

	Accounting Diameter message exchange
	Accounting-Request (ACR)
	Accounting-Answer (ACA)

	Cleanup

	B Programming Oracle Diameter Applications
	IP and Routes Configuration
	Creating a Diameter Stack
	Binding to Local Transport Addresses
	Configuring Routes and Binding to Diameter Peers
	Realm State Availability

	Counters Management
	MBeans Management Interface
	Managing a Diameter Application with MBeans
	Registering the Diameter MBeans
	Using jconsole to Monitor Diameter Applications

	Dictionary
	Dictionary Composition
	dictionary Element
	vendor Element
	application Element
	command Element
	returnCode Element
	avp Element
	type Element
	enum Element
	grouped Element

	Dictionary Extension

	Tracing and Logging Mechanism

	C Accounting Event API
	Introduction
	logEvent(SipServletRequest req, Map<Object, Object> additional) Method
	logEvent(SipServletResponse resp, Map<Object, Object> additional) Method
	logEvent(Map <Object, Object> event, String category) Method
	Event Processing in Log4j

	Index
	A
	B
	C
	D
	E
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U

